
Four-Valued Diagnoses for Strati�ed Knowledge-BasesOfer Arieli and Arnon AvronDepartment of Computer ScienceSchool of Mathematical SciencesTel-Aviv UniversityRamat-Aviv 69978, IsraelEmail: fofera,aag@math.tau.ac.ilAbstract. We present a four-valued approach for recovering consis-tent data from inconsistent set of assertions. For a common family ofknowledge-bases we also provide an e�cient algorithm for doing so au-tomaticly. This method is particularly useful for making model-baseddiagnoses.1 IntroductionIt is well-known that the classical calculus allows only trivial reasoning in thepresence of inconsistency. This property is particularly problematic when thesystem under consideration is aimed to deal with conicts. This is the case, forinstance, with diagnostic systems that are supposed to explain the discrepancybetween the actual behavior of some device and the way it is meant to behave. Acommon approach of handling inconsistent information is to consider some con-sistent subsets that still contain meaningful data. The usual method of doing sois to consider the maximal consistent subsets of the \polluted" data. The maindrawback of this method is that none of these subsets necessarily correspondto the intended semantics of the original information. Even in the simplest in-consistent knowledge-base KB=fp;:pg every maximal consistent subset of KBclassically contradicts an explicit data of KB. In the case of diagnostic systemsthis means that a diagnosis based on a maximal consistent subset might nottruthfully determine why a given system is not functioning as it was intended.One might, of course, use the intersection of all the maximal consistent subsets.This, however, might be very expensive.We propose here a di�erent approach to \salvage" consistent data withoutcontradicting any assertion of the original information. Our approach is basedon the idea of reducing the number of models by using a second order relation(see details below). For a common family of knowledge-bases we also providean e�cient algorithm for recovering this data. We then illustrate the ideas ina diagnostic system for checking faulty circuits. The underlying formalism isbased on Belnap's four-valued logic [Be77a, Be77b], and it is nonmonotonic andparaconsistent [dC74] in nature.



2 PreliminariesWe present a formalism that is based on Belnap's well-known four-valued logic.For a detailed discussion on this logic see, e.g., [Be77a, Be77b]. We denote by tand f the classical values. ? and > denote, respectively, lack of knowledge and\over"-knowledge (conict). It is usual to consider these four values accordingto two partial orders: One, �t, might intuitively be understood as reectingdi�erences in the \measure of truth" that every value represents. According tothis order, f is the minimal element, t is the maximal one, and ?;> are twointermediate values that are incomparable. (ft; f;>;?g;�t) is a distributivelattice with an order reversing involution :, for which :>=> and :?=?. Weshall denote the meet and the join of this lattice by ^ and _, respectively. Theother partial order, �k, is understood (again, intuitively) as reecting di�erencesin the amount of knowledge or information that each truth value exhibits. Again,(ft; f;>;?g;�k) is a lattice where ? is its minimal element, > { the maximalelement, and t, f are incomparable.A double-Hasse diagram with the four elements and the two lattices is givenin Figure 1 below. 6k
-tu?uf utu>������@@@@@@������@@@@@@Fig. 1. The four-valued structureThe language we treat here is the propositional language based on f:, _, ^,?, >g.1 Given a set S of propositional formulae, we shall denote by A(S) theset of the atomic formulae that occur in S, and by L(S) the set of the literalsthat occur in S. The semantic notions are natural generalizations to the four-valued case of similar classical notions: A valuation � is a function that assigns a1 t and f are de�nable in this language: f =>^? and t=>_?. ^ is of course alsode�nable, using de-Morgan law.



truth value from f>;?; t; fg to each atomic formula. Any valuation is extendedto complex formulae in the standard way. We shall sometimes write  : b 2 �instead of �( )=b. We will say that � satis�es  , i� �( )2ft;>g. t and > arecalled designated values. A valuation that satis�es every formula in a given set offormulas S is said to be a model of S. The set of the models of S will be denotedmod(S). Note that unlike in the classical calculus, there are no tautologies here.In fact, excluded middle is not a valid rule in the four-valued case.The formulae on which we are going to concentrate here are clauses, i.e.:disjuncts of literals. As the following lemma shows, by doing so we do not reducethe generality.Lemma1. For every formula  there is a �nite set S of clauses such that forevery valuation �, �( )2f>; tg i� �(�)2f>; tg for every �2S.Proof: By an induction on the structure of  . The proof is similar to that ofthe classical case. Using the fact that de-Morgan's laws, distributivity, commu-tativity, associativity, and the double negation rule (::'=') remain valid inthe four-valued case, we can transform any formula into an equivalent one inconjunctive normal form. The lemma follows now from the fact that �1^�2 isdesignated here i� both �1 and �2 are designated. 2Lemma2. Let  be a clause, li (i = 1 : : :n) { its literals, and � { a valuationon A( ). Then �( )2ft;>g i� there is an 1� i�n s.t. �(li)2ft;>g.Proof: Immediate from the fact that ff;?g is closed under disjunction. 2De�nition3. A knowledge-base KB is a pair (S;Exact), where S is a set ofclauses, and Exact is a set of atoms in A(S) that are assumed to have onlyclassical values. mod(KB) =mod(S;Exact) denotes the set of exact models ofS, i.e.: the models of S in which every element of Exact is assigned a classicalvalue. Formally: mod(S;Exact)=fM 2mod(S) j 8p2Exact M (p)2ft; fgg.We introduced the set Exact because there are cases in which we do notwant to leave room to any doubts. For example, what a law says about somethingshould be very clear; It might not be very obviouse, however, if the law is obayed2(we shall give a concrete example in Section 5).De�nition4. Let M 2mod(S). De�ne: IncM (S) = fp2A(S) j M (p)=>g.De�nition5. LetM;N be two exact models of a knowledge-baseKB = (S;Exact).a)M ismore consistent than N (M>conN ) i� IncM (S)�IncN (S).M is smallerthan N (M �kN ) i� for any p2A(S), M (p)�kN (p).b) mcem(KB), kmin(KB), and 
(KB) respectively denote the set of the mostconsistent exact models of KB (mcems, for short), the set of the k-minimal ex-act models of KB, and the set of the k-minimal models among the elements ofmcem(KB) (minimal mcems, for short).2 The use of the set Exact is actually a kind of integrity constraint that we force onthe system.



De�nition6. Let KB=(S;Exact) be a knowledge-base, and  { a formula.a) KB j= if every exact model of KB is a model of  .b) KB j=mcem if every mcem of KB is a model of  .c) KB j=kmin if every k-minimal exact model of KB is a model of  .d) KB j=
 if every minimal mcem of KB is a model of  . 3Note: The consequence relations j=mcem, j=kmin, and j=
 are preferential logicsin the sense of Shoham [Sh87, Sh88]; Such consequence relations are based onthe idea that inferences should not take into account every model of a giventheory, but only a subset of them, determined according to a certain preferencecriteria. (Preferential logics has recently received a considerable attention. See,e.g., [KLM90, Pr91, LM92, KL92]).Example 1. Consider the knowledge-base KB = (S;Exact) where S = fp; :p _:qg, and Exact=;. The single (k-minimal) mcem of KB is M=fp : t; q :fg. Mand N=fp :>; q :?g are the k-minimal models of KB. Thus KB j=mcem:q andKB j=
 :q, while KB 6j=kmin:q and KB 6j=:q. When Exact= fqg, M remainsthe (minimal) mcem of KB, but now it is also the single element of kmin(KB),therefore KB j=kmin:q.Several consequence relations similar to j=mcem are considered in the liter-ature. Priest [Pr91] uses a similar consequence relation j=LPm for de�ning thelogic LPm from the three-valued logic LP. In [AA95] it is shown that j=mcemand j=
 are the same in case Exact = ;. The proof there applies in the gen-eral case as well. Therefore, when switching to four valued semantics and usingonly the k-minimal mcems, one might consider fewer models than in the caseof LPm, since for every k-minimal mcem that assigns ? to atomic formulae pii = 1;: : :n, there are 2n corresponding minimaly consistent models of LP, eachone assigns either t or f to these pi. Moreover, three valued reasoning can besimulated in our framework, since the entailment KB j=LPm  is equivalent toKB; p1_:p1; : : :pn_:pn j=mcem , where A(KB)=fp1; : : : ; png.Another di�erence between the present work and [Pr91] is that Priest con-siders, in fact, only the case Exact=;.Kifer and Lozinskii [KL92] also consider a similar relation in the frameworkof annotated logics. Like Priest, they only consider the most consistent modelsamong all the possible models. They do not restrict the attention to some rele-vant subset (as we do) by constraining them in the meta-level. Further discussionand a comparison between j=mcem and the consequence relation of [KL92] canbe found in [AA94, AA96].A basic property of the knowledge-bases that we use here is that for everyexact model there is an mcemwhich is at least as consistent. For �nite knowledge-3 One can view the consequence relation j=
 as a composition of the relations j=mcemand j=kmin. First we con�ne ourselves to the mcems of KB by using j=mcem, thenwe minimize the valuations that we have got by using j=kmin.



bases this is trivialy the case. The following proposition assures that this propertyholds in every propositional knowledge-base:Proposition7. (Lin's Lemma, [Pr91]) Let KB be a (possibly in�nite) set ofclauses. For every exact modelM ofKB there is an mcemM 0 ofKB s.t.M 0�conM . 43 Recovery of knowledge-basesIn this section we describe what we mean by saying \recovering an inconsistentknowledge-base". In particular we de�ne and characterize the recovered parts ofa knowledge-base. For that we �rst have to expand the notion of \consistency"to the four-valued case:De�nition8. Let S be a set of clauses.a) A model M of S is consistent if IncM (S)=;.b) S is consistent if it has a consistent model.c) KB=(S;Exact) is consistent if S has a consistent exact model.Lemma9. S is consistent i� it is classically consistent.Proof: One direction is obvious. For the other, assume that M is a consistentmodel of S. Then there is no p2A(S) s.t.M (p)=>. Consider the valuationM 0de�ned for every p2A(S) as follows:M 0(p)=f if M (p)2ff;?g, and M 0(p)= totherwise. By Lemma 2, M 0 is a model of S as well. 2De�nition10. A subset S0 � S is consistent in S w.r.t. Exact if S0 is a con-sistent set that has a consistent exact modelM 0, and there is a (not necessarilyconsistent) exact model M of S s.t. M (p)=M 0(p) for every p2A(S0).Example 2. S0 = fpg is a consistent set, but it is not consistent in S = fp;:pgw.r.t. any set Exact, since there is no consistent model of S0 that is expandableto a model of S. Similarly, S0 = fpg is consistent in S = fp; :p _ q; :p _ :qgw.r.t. Exact=fpg, but it is not consistent in S w.r.t. Exact=fqg, since there isno consistent exact model of S0 that is expandable to an exact model of S.De�nition11. Let M be an exact model of a knowledge-base KB=(S;Exact).The set that is associated with M is: KBM =f 2S j A( ) \ IncM (S)=;g.Example 3. Consider the knowledge-base KB = (S; feg) where S = fp; q; :p _r; :q _:r; p_ s; :r_ e; :r_:eg. M=fp :>; q : t; r :f; s :?; e : tg is an exactmodel of KB, and KBM =fq; :q _ :r; :r _ e; :r _ :eg.4 This lemma is proved in [Pr91] for the three-valued case, and under the implicitassumption that Exact= ;. However, it is easy to prove this lemma in our case aswell by the same method.



Proposition12. A set that is associated with an exact model of KB is consis-tent in KB.Proof: Let M be an exact model of KB = (S;Exact) and suppose that M 0 isits reduction to A(S) n IncM (S) only. Obviously, KBM �S. It is a consistent setin KB, since M 0 is a consistent exact model of KBM that is expandable to anexact model (M ) of KB. 2De�nition13. A recovered set of (S;Exact) is a maximal subset of S that isconsistent in S w.r.t. Exact.Example 4. Consider again Example 3. KBM is a recovered set of KB, since itis a maximal subset of KB that has a consistent model (fq : t; r :f; s :?; e : tg)which is expandable to a model (M ) of KB.Proposition14. Every recovered set of KB is associated with an mcem of KB.Proof: Suppose that S0 is any set that is consistent in a knowledge-base KB=(S;Exact). Let N 0 be a consistent exact model of S0, and N { its expansion tothe whole S. Consider any mcemM that satis�es N �conM (by Proposition 7such a valuation exists). Since A(S0)�A(S)nIncN (S)�A(S) n IncM (S), everyformula  2S0 consists only of literals that are assigned consistent truth valuesunder M . Hence S0 �KBM . Proposition 12 assures that KBM is consistent inKB, hence S0=KBM in case S0 is maximal. 2Next we provide a condition that implies the existence of a nonempty recov-ered set for a given knowledge-base:Proposition15. Let KB = (S;Exact) be a knowledge base, and suppose thatthere is an l2L(S) s.t. KB j=mcem l and KB 6j=mcem l. Then there is a nonemptyrecovered set for KB.Proof:Without a loss of generality, assume thatKB j=mcem p andKB 6j=mcem:p.Then there is an M 2mcem(KB) s.t. M (p) 2 ft;>g while M (:p) 62 ft;>g, i.e.M (p) = t. Consider the set KBM . It cannot be empty, since otherwise every 2S contains some element of IncM (S) or its negation. De�ne: N =fr :f j r2A(S) n IncM (S)g [ fs :> j s2 IncM (S)g. By Lemma 2, N is an exact model ofKB. Moreover, N is an mcem of KB, since IncN (S)= IncM (S). But N (p)= f ,and so KB 6j=mcem p { a contradiction. Therefore KBM is a nonempty set, andby Proposition 12 it is consistent in KB. Now, if KBM is a maximal set withthis property then it is the required recovered set of KB, otherwise it is includedin a recovered set of KB which cannot be empty. 24 Strati�ed knowledge-bases and their recovered setsIn general, computing mcems for a given knowledge-base and discovering itsrecovered sets might not be an easy task. Even in relatively simple cases, where



S is consistent and Exact=A(S), �nding a recovered set for (S;Exact) reducesto the problem of logical satisfaction, since in this case one has to provide aclassical model for S. Therefore, we con�ne ourselves to a special (neverthelesscommon) family of knowledge-bases, for which we provide an e�cient algorithmthat computes recovered sets.De�nition16. Let S be a set of formulae. S� | the dilution of S w.r.t. a givenpartial valuation � | is constructed from S by the following transformations:1. Deleting every  2S that contains > or a literal l s.t. �(l)2ft;>g,2. Removing from every formula other than ? that is left every occurrence of? and every occurrence of a literal l such that �(l)2ff;?g. 5 6Proposition17. If � can be extended to an exact model of S then S� has anexact model. Moreover, the union of � with any exact model of S� is an exactmodel of S.De�nition18. Let S be a set of assertions. An atom p2A(S) is called a positive(negative) fact of S if p2S (:p2S). p is called strictly positive (negative) factof S if it is a positive (negative) fact of S and :p 62S (p 62S).De�nition19. A knowledge-base KB = (S;Exact) is called strati�ed , if thereis a sequence of \strati�cations" S0=S, S1, S2, : : :, Sn=;, so that:a) No Si (0� i�n) contains a fact p s.t. fp;:pg�Si \Exact.b) For every i<n there is a (positive or negative) fact pi2A(Si) s.t. Si+1 is thedilution of Si w.r.t. the partial valuation pi : t i� pi is a strictly positive fact,pi :f i� pi is a strictly negative fact, and pi :> i� pi is both a positive and anegative fact of Si.In all the examples given here, as well as in most of the known puzzles of theliterature, the involved knowledge-bases are strati�ed.Proposition20. Let S0; S1; : : : ; Sn be a strati�cation of a knowledge-base KB.For every 0� i�n�1 let �i be the partial valuation according to which Si+1 isobtained from Si (I.e., Si+1=(Si)�i). Then M=[n�1i=0 �i is a model of KBi.Proof: By an induction on the structure of a formula in KB. 2Note: Had the dilution of each strati�cation level been performed w.r.t. morethan a single atom (cf. De�nition 19b), Proposition 20 wouldn't have been validanymore. To see this consider, e.g., KB = (S; ;) where S = fp; q; :p_:qg. Adilution of S w.r.t. both p and q would have yield a valuation � = fp : t; q : tg,which is not an (exact) model of KB.5 To simplify matters we shall take here the empty clause as identical with ? ratherthan with f (as the de�nition of _ actually dictates).6 Note the similarity between the the dilution process and the Gelfond{Lifschitz trans-formation [GL88] used for providing semantics to logic programs with negations.



Example 5. Let KB=(S; feg) be the same knowledge-base of Examples 3 and 4.A possible strati�cation of S is S0=fp; q; :p_r; :q_:r; p_s; :r_e; :r_:eg,S1=fp; :p _ r; :r; p _ s; :r _ e; :r _ :eg, S2=fp; :p; p _ sg, S3=;.The algorithm given in Figure 2 checks whether a given knowledge-base(S;Exact) is strati�ed. If so, the algorithm produces strati�cations, and al-lows to construct recovered sets by providing corresponding (minimal) mcemsof (S;Exact) (see Theorem 22 below).Every valuation � produced by the algorithm is determined by a sequence ofpicked atoms p0; p1; : : : ; pn of the calls to RECOVER. For shortening notationswe shall just write � instead of �(p0; p1; : : : ; pn).Example 6. In our canonical example (3, 4, and 5), the algorithm produces two(minimal) mcems of KB: M1 = fp : t; q : t; r :>; s :?; e : tg and M2 = fp :>; q :t; r : f; s :?; e : tg Figure 3 illustrates the processing of the algorithm in thiscase.Proposition21. Let KB=(S;Exact) be a �nite knowledge-base. If it is strati-�ed then the algorithm of Figure 2 �nds every strati�cation of KB and outputscorresponding well-de�ned valuations for A(S). The algorithm halts withoutgiving any valuation i� KB is not strati�ed.Outline of proof: Every strati�cation of (S;Exact) is produced by the al-gorithm since it performs a breadth �rst search on the atomic facts of everystrati�cation level. The other parts of the proposition are easily veri�ed, usingthe following facts:(a) If a knowledge-base is strati�ed, then any order in which the facts are chosendetermines strati�cation. This is so since dilution does not change facts; A fact(positive, negative, or both) of a certain level remains a fact in the successivelevels unless it is used for the next dilution.(b) The order in which the facts are chosen might be signi�cant for checkingcondition (b) in the de�nition of strati�cation (De�nition 19); This is the case,e.g., in our canonical example (see Figure 3). 2It follows from Proposition 21 that the algorithm halts with a valuation fora �nite KB i� KB is strati�ed. For the rest of this section suppose, then, thatKB is �nite and strati�ed.Theorem22. Let � be a valuation produced by the algorithm for a knowledge-base KB. Then: (a) �2kmin(KB), (b) �2mcem(KB), and (c) �2
(KB).Proof: We show the claim using three lemmas:Lemma 22a: Every valuation � produced by the algorithm is an exact modelof KB.Proof: Let  be a clause that appears in S. From De�nition 16 and the algo-rithm of Figure 2 it is obvious that some part of  is eliminated from some Si+1



input: a knowledge-base KB = (S; Exact)call RECOVER(S; ;; 0)procedure RECOVER(S; �; i)/* S { the i-th strati�cation level of KB, � { the valuation constructed so far. */f if (S = ;) then output � and return; /* �2
(KB) */pos := fp2A(S) j p2Sg; /* positive-facts */neg := fp2A(S) j :p2Sg; /* negative-facts */if (pos = ; ^ neg = ;) halt; /* KB is not strati�ed */if (? 2 S) return; /* backtracking; not a strati�cation */if (9p 2 Exact \ pos \ neg) return; /* backtracking; not a strati�cation */while ((9p 2 Exact \ pos) _ (9p 2 Exact \ neg) _ (9p 2 pos \ neg)) fpick such a p;if (p 2 Exact \ pos) fpos := pos n fpg;�i := fp : tg;gif (p 2 Exact \ neg) fneg := neg n fpg;�i := fp : fg;gelse fpos := pos n fpg;neg := neg n fpg;�i := fp : >g;gSi+1 := S�i ; /* dilution */do (8q s.t. �i(q) is unde�ned and q 2 A(S) n A(Si+1)) /* �lling */if (q 62 Exact) then �i := �i [ fq : ?g else �i := �i [ fq : tg;RECOVER(Si+1 ; � [ �i; i+1);gwhile (9p 2 pos [ neg) fpick such a p;if (p 2 pos) fpos := pos n fpg;�i := fp : tg;gelse fneg := neg n fpg;�i := fp : fg;gSi+1 := S�i ; /* dilution */do (8q s.t. �i(q) is unde�ned and q 2 A(S) n A(Si+1)) /* �lling */if (q 62 Exact) then �i := �i [ fq : ?g else �i := �i [ fq : tg;RECOVER(Si+1 ; � [ �i; i+1);gg Fig. 2. An algorithm for recovering strati�ed knowledge-bases



fp; q; :p _ r; :q _ :r; p _ s; :r _ e; :r _ :egp :t; s :? q :tXXXXXXXXXXXX������������fq; r; :q _ :r; :r _ e; :r _ :eg fp;:p _ r; :r; p _ s; :r _ e; :r _ :egq :t r :t p :t; s :? r :f; e :tHHHHHH������ HHHHHH������fr;:r;:r _ e;:r _ :eg fq;:q; e;:eg fr;:r;:r _ e;:r _ :eg fp;:p; p _ sgr :> r :> p :>e :t e :t s :?; not a strati�cation ; ;Fig. 3. Generation of minimal mcems and recovered sets for KBduring the dilution of Si. This happens i� (at least) one of its literals l is as-signed a designated truth value by � (note that a formula cannot be eliminatedby sequently removing every literal of it according to (2) of De�nition 16, sincethe last literal left must be assigned a designated value). By Lemma 2, then,�( )2ft;>g, and so � is a model of KB. � is an exact model of KB, since noelement of Exact is assigned > or ? by the algorithm.Lemma 22b: Every valuation produced by the algorithm is an mcem of KB.Proof: The proof is by an induction on the number of the recursive steps (n)that are required for creating a valuation �. If n = 0 then S1 = ;, so there isonly the initial step in which � might assign > only to a literal l that is botha positive and a negative fact of S. Since in this case l is assigned > by everymodel of S, � must be most consistent. Suppose now that it takes n�1 recursivesteps to create �. Denote by �i the part of the valuation � that is determinedduring step i. Then:(1): Inc�(S) = [0�i�nInc�i (Si) = Inc�0(S) [ Inc�0 (S1)where � 0 = [1�i�n�i. Now, let M be an exact model of KB. We show thatM 6>con �. For this suppose that M1 is the reduction of M to A(S1).(2): IncM (S) = fp2A(S)nA(S1) jM (p)=>g[ fp2A(S1) jM (p)=>g= fp2A(S)nA(S1) jM (p)=>g[ IncM1 (S1)By its de�nition, �0 might assign > only to l2L(S) s.t. l; l2S. Obviously, such



an l must be assigned > by every model of S, in particular M (l)=>. Thus:(3): Inc�0(S) � fp2A(S)nA(S1) jM (p)=>g� Suppose �rst thatM1 is an exact model of S1. Since the creation of � 0 requiresonly n�1 steps, then by the induction hypothesis � 0 is an mcem of S1. In par-ticular, either Inc�0 (S1) and IncM1(S1) are incomparable w.r.t. the containmentrelation, or else:(4): Inc�0(S1) � IncM1(S1)From (1) { (4), either Inc�(S) and IncM (S) are incomparable, or Inc�(S) �IncM (S).� If M1 is not an exact model of S1 then M1 is cannot be a model of S1 either,since it is a reduction of an exact model (M ) of S. Thus there is a  1 2S1 s.t.M1( 1) 62ft;>g. Since M is a model of S, then by Lemma 2 there is a  2S andl2L( ) s.t. M (l)2ft;>g, and flg [ L( 1)�L( ). Obviously, l2A(S) n A(S1).But then �0(l) 62 ft;>g (otherwise  is eliminated in the dilution of S, and so 1 62S1). Moreover, �0(l)2ft;>g, since if �0(l) 62ft;>g then necessarily �0(l)=?,and this happens only if  is eliminated in the dilution of S, i.e.  1 62S1. There-fore, �0(l) 62 ft;>g and �0(l)2ft;>g, so �0(l)=f . l is not assigned this value inthe �lling process, since again, this would imply that  is eliminated in the di-lution of S, and so  1 62S1. Thus, by the de�nition of �0 and since S is strati�edthen necessarily l2S and l 62S. Hence KB j= l. But M is an exact model of KBand so M (l)2ft;>g. Since we have shown that M (l)2ft;>g as well, it followsthat M (l)=> while �(l)=f . Therefore IncM (S) 6�Inc�(S) in this case as well.Lemma 22c: The algorithm produces k-minimal exact models of KB.Proof: Again, we denote by �i the part of the valuation � that is created in thei-th recursive call to RECOVER. The proof is by an induction on the numberof recursive steps required to create �:n=0 : �0 may assign > only to a literal l s.t. l2S and l2S. In this case > isthe only possible value for l, and so it is k-minimal. The same argument is truefor any literal l s.t. l2S and l 62S (for that l, �(l)= t). It is also obviously truefor all the literals in Exact, and for the literals that are assigned ?.n�1 : LetM be a model of KB. We show thatM 6<k �. LetM1 be the reductionofM to A(S1), and suppose �rst thatM1 is an exact model of S1. By the induc-tion hypothesis �1 is a k-minimal exact model of S1, thus there exists p2A(S1),s.t. M1(p) 6�k �1(p), therefore M 6<k �. The other possibility is that M1 is notan exact model of S1. In this case M1 cannot be a model of S1 either, thereforethere must be a clause  12S1 s.t. M1( 1) 62 ft;>g. Since M is an exact modelof S, then by Lemma 2 there is a  2S and an l2L( ) s.t. M (l)2ft;>g, andflg [ L( 1) � L( ). But then �(l) 62 ft;>g (Otherwise,  is eliminated in thedilution of S and so  1 62S1), while M (l)2ft;>g. It follows that M (l) 6<k �(l),therefore again M 6<k �.Now, by Lemma 22b, � 2 mcem(KB), by Lemma 22c, � 2 kmin(KB), and byboth, �2
(KB). This ends the proof of Theorem 22. 2



Note: It is possible to assign any other truth value to the atoms that are assigned?, and still � would be an exact model of KB. However, in such a case � cannotbe minimalw.r.t. �k. Also, when assigning > instead of ?, � cannot be an mcemof KB. It is also possible to assign f to the elements of Exact that are assignedt during the �lling process without losing any of the properties discussed above.Theorem23. Let � be a valuation produced by the algorithm for KB. ThenKB� is a recovered set of KB.Example 7. Consider again Example 6 and Figure 3. KBM1=fp; q; p _ sg andKBM2=fq; :q _ :r; :r _ e; :r _:eg are the recovered sets of KB.Proof of Theorem 23: By Theorem 22, every valuation � that is generatedby the algorithm is an exact model of KB. Thus, by Propositions 12, KB� isconsistent in KB. It is left to show that KB� is also a maximal subset withthis property. Suppose not. Then by Proposition 14 there is an mcemM of KBs.t. KB� �KBM , hence Inc�(KB) 6= IncM (KB). Since � is also an mcem of KB(Theorem 22 again), there is a p2A(S) s.t. �(p) 6=> while M (p) =>. In par-ticular, since M is an exact model of KB, p 62Exact. Consider some  2S s.t.p2A( ). Since  62KBM ,  62KB� either. Thus there is a q2A( ) s.t. �(q)=>.By the de�nition of � this is possible only if there is a strati�cation S0; : : : ; Snof S and an index 1� i� n s.t. q;:q2Si. Therefore �(p) 6=? (Otherwise, p aswell as all the other elements of A( ) are diluted from Sj for some j � i, andso q 62 A(Si)). It follows that either �(p)= t or �(p)= f . Since p 62Exact, thenby the construction of �, either p or :p is a strict fact (positive or negative) ofsome strati�cation level Sk of S. It follows that there is some �2S s.t. p2A(�)and A(�) \ Inc�(S)=; (Otherwise, if there is some r2A(�) s.t. �(r)=>, then� and its atoms are diluted in some stage before stage k, and so p cannot be astrict fact of Sk). Therefore �2KB� while � 62KBM { a contradiction. 2Finally, let's consider some complexity issues. As we have noted before, theproblem of recovering arbitrary knowledge-base is at least NP-complete. Denoteby O(AB) that it takes O(A) running time to solve a certain problem whenusing an oracle for solving problems with complexity O(B). Then our algorithmrequires O(jSjjA(S)j) running time to recover a knowledge-base (S;Exact) that isstrati�ed.7 As the following proposition shows, the complexity of the algorithmmight sometimes be considerably reduced:Proposition24. Whenever each strati�cation level of KB = (S;Exact) doesnot contain a pair of complementary exact literals, it takes only O(jSj � jA(S)j)running time to check whether KB is strati�ed, and if so, this is also the timeneeded to �nd some recovered set of it.7 In our case, at every strati�cation level the oracle chooses a fact that yields, eventu-ally, a strati�cation.



Proof: By the conditions of the proposition, in order to �nd some recovered setof KB it is su�cient to execute the algorithm on a single sequence of recursivecalls to RECOVER, without backtracking. Now, computing stage i of the recur-sion requires only O(jSij) running time. Since there are at most jA(S)j recursivecalls to RECOVER, the whole process does not take more than O(jSj � jA(S)j)running time. By 23, this is also the time required to supply a recovered set KB�for KB. 2Obvious cases in which the condition of the last proposition is met are whenExact=;, or if there is no l2Exact s.t. both l2L(S) and l2L(S).5 Model-based diagnosisSuppose that we are given a description of some faulty device. Our goal is to�nd some minimal set of components the collective failure of which can explainan observed malfunction. In this section we show that the mcems and their cor-responding recovered sets of the knowledge-base that describes that device aregood candidates for providing accurate diagnoses regarding the faulty compo-nents. For that we �rst expand the discussion to �rst-order logic. It is possibleto do so in a straightforward way, provided that each clause that contains vari-ables is considered as universally quanti�ed. Consequently, a knowledge-basecontaining non-grounded formula,  , will be viewed as representing the cor-responding set of ground formulae formed by substituting each variable thatappears in  with every possible element of the Herbrand universe, U . For-mally: KBU = (SU ; Exact), where SU = f�( ) j  2 S; � : var( ) ! Ug, � isa ground substitution from the variables of every  2KB to the individuals ofU , and Exact consists of predicates every instance of which should be assignedclassical values. The exact models are the elements of mod(SU ; Exact)= fM 2mod(SU ) j 8p2Exact 8xi2U M (p(x1;: : :; xn))2ft; fgg.Example 8. Figure 4 depicts a binary full adder. It consists of �ve components:two and-gates A1 and A2, two xor-gates X1 and X2, and an or-gate O1.The full adder's description is given by system FA in Figure 5. Notice that thisspeci�c circuit is faulty; both circuit outputs are wrong for the given inputs.The predicates in1(x), in2(x), and out(x) of FA are assigned values thatcorrespond to binary values of the wires of the system, therefore they shouldhave only classical values. Also, it seems natural to restrict the values of thepredicates andGate, orGate, and xorGate to be only classical as well. Thisis because we know in advance what is the kind of each gate G in the sys-tem, and so the only open question about G is whether it behaves as expected.The knowledge-base that represents the full adder is then (FA;Exact), whereExact=fin1; in2; out; andGate; orGate; xorGateg.The table of Figure 6 lists the elements of mcem(FA;Exact). We have omit-ted from the table predicates that have the same value in every exact model,and any predicate that has the same values as some predicate in the table.



----- --- -- --r r r r��A1 ��A2���� ��X1 ���� ��X2�� ��O1101 01Fig. 4. A full adderandGate(x) ^ ok(x)! (out(x)$ (in1(x) ^ in2(x))),xorGate(x) ^ ok(x)! (out(x)$ (in1(x)� in2(x))),orGate(x) ^ ok(x)! (out(x)$ (in1(x) _ in2(x))),andGate(x)! (:orGate(x) ^ :xorGate(x)),xorGate(x)! (:andGate(x) ^ :orGate(x)),orGate(x)! (:andGate(x) ^ :xorGate(x)),in1(X1)$ in1(A1), in2(X1)$ in2(A1), in1(A2)$ in2(X2),out(X1)$ in2(A2), out(X1)$ in1(X2), out(A1)$ in2(O1), out(A2)$ in1(O1),andGate(A1), andGate(A2), xorGate(X1), xorGate(X2), orGate(O2),ok(A1), ok(A2), ok(X1), ok(X2), ok(O1),in1(X1), :in2(X1), in1(A2), out(X2), :out(O1)Fig. 5. The system FAThe mcems of (FA;Exact), and the recovered sets that are associated withthem preserve what Reiter [Re87] calls the principle of parsimony ; they representthe conjecture that some minimal set of components are faulty. For instance,according to M1 the only component that behaves incorrectly is the xor gateX1. The set that is associated with M1 reects this indication:FAM1=FAnfok(X1); xorGate(X1)^ok(X1)! (out(X1)$ (in1(X1)�in2(X1)))gIn particular, FAM1 entails (w.r.t. both j= and j=mcem) ok(x) for x2fA1, A2,X2, O1g, but it does not entail ok(X1). Similarly, the other two mcems M2and M3, together with their associated sets represent (respectively) situations,in which gates fX2; A2g and gates fX2; O1g are faulty. These are the generallyaccepted diagnoses of this case (see, e.g., [Re87, Example 2.2], [Gi88, Sections15,16], and [Ra92, Examples 1,4]).



Model in1 in1 in2 ok ok ok ok okNo. X2 O1 O1 A1 A2 X1 X2 O1M1 f f f t t > t tM2 t f f t > t > tM3 t t f t t t > >Fig. 6. The mcems of (FA;Exact)One might treat FAM1 as the preferred recovered set, since it is the only setthat entails that only a single component is faulty, and one normally expectscomponents to fail independently of each other. This kind of diagnosis is knownas a single fault diagnosis.As it is proved below, the correspondence in the previous example betweenthe fault diagnoses and the inconsistent assignments of the mcems is not acci-dental. For showing that we �rst present two basic notions from the literatureon model-based diagnosis:De�nition25. [Re87] A system is a triple (Sd;Comps;Obs), where: Sd, the sys-tem description, is a set of �rst order sentences; Comps, the system components,is a �nite set of constants; and Obs, the observations set , is a �nite set of sen-tences.De�nition26. [Re87] A diagnosis is a minimal set ��Comps s.t. Sd [Obs [fok(c) j c2Comps n�g [ f:ok(c) j c2�g is classically consistent.De�nition27. A correct behavior assumption for a given set of components��Comps is the set CBA(�) = fok(c) j c2�g.De�nition28. For a given system (Sd;Comps;Obs), and a set of components��Comps, denote S(�) = Sd[Obs[CBA(�). Whenever � = Comps we shallwrite just S instead of S(Comps). We shall continue to assume that S(�) is aset of clauses.Proposition29. [Re87] Denote by j=cl the consequence relation of the �rstorder classical logic.a) � is a diagnosis for (Sd;Comps;Obs) i� � is a minimal set s.t. S(Compsn�)is classically consistent.b) If � is a diagnosis for (Sd;Comps;Obs) then S(Comps n �) j=cl :ok(c) forevery c2�.In the present treatment, unlike in the classical case, an inconsistency doesnot yield trivial reasoning, and only a subset of the atomic formulae must haveclassical values. In our terms, then, a diagnostic system is de�ned as follows:De�nition30. A diagnostic knowledge-base is a knowledge-base (S;Exact),where S=Sd[Obs[CBA(Comps), and Exact consists of every ground atom ofS except the elements of CBA(Comps).88 Note that this requirement is met in Example 8.



Theorem31. Let (S;Exact) be a diagnostic knowledge-base. An exact modelM of (S;Exact) is an mcem of (S;Exact) i� IncM (S)=CBA(�) for some diag-nosis � of S.Proof: (() Assume that M is an exact model of (S;Exact) and that � isa diagnosis of S s.t. IncM (S) = CBA(�). If M is not an mcem of S then byProposition 7 there is an exact model M 0 s.t. IncM 0 (S) � IncM (S) =CBA(�),i.e.: there is a c02� s.t. M 0(ok(c0)) 6=>. But:(a) M 0 is a model of S and ok(c0)2S thus M 0(ok(c0))2ft;>g, and(b) By Proposition 29(b), S(Comps n�) j=cl :ok(c0). Hence by Lemma 4.11 of[AA96] 9, S(Compsn�) j=mcem :ok(c0). Since M is a (most) consistent exactmodel of S(Comps n�), so is M 0. Therefore M 0(:ok(c0))2ft;>g.By (a) and (b), M 0(ok(c0))=> { a contradiction.()) From the condition on Exact it follows that for every exact model Mof (S;Exact), IncM (S) �CBA(Comps). Suppose, then, that M is an mcem of(S;Exact) and that IncM (S)=CBA(�) for some ��Comp. By Proposition 29,in order to prove that � is a diagnosis for S it is su�cient to show that � is aminimal set such that S(Compsn�) is classically consistent. Suppose not. Thenthere is a proper subset �0�� s.t. S(Compsn�0) is classically consistent, andso has a consistent model, N . Let M 0 be the following valuation:M 0(p) = �N (p) if p2A(S(Compsn�0)).> otherwise.It is easy to verify (using Lemma 2) that M 0 is a model of S. Therefore, sinceExact(S)�A(S(Compsn�0)),M 0 is an exact model ofmod(S;Exact). Moreover,IncM 0 (S) = CBA(�0), and �0 � �, thus IncM 0(S) = CBA(�0) � CBA(�) =IncM (S). It follows that M cannot be a mcem of (S;Exact). 2Corollary 32. Let (S;Exact) be a diagnostic knowledge-base. If� is a diagnosisof S then there exists an mcemM of (S;Exact) s.t. IncM (S)=CBA(�).Proof: By Proposition 29(a), S(Compsn�) is classically consistent, thereforethere is an exact model M of (S;Exact) that assigns > only to CBA(�). ThisM is an mcem of (S;Exact) by Theorem 31. 2It follows that whenever the requirement of Theorem 31 is met and (S;Exact)is strati�ed, one can use the algorithm of Section 4 for �nding diagnoses andconstructing recovered knowledge-bases of the faulty system. This is the case,e.g., in Example 8.9 According to that lemma, if S is a classically consistent set of assertions,  is a clausethat does not contain any pair of complementary literals, and  classically followsfrom S, then S j=mcem  . In [AA96] this is proved only for the case Exact= ;, butthe proof can easily be adapted to the general case.
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