
On The Expressive Power of Three-Valued andFour-Valued LanguagesArnon AvronSchool of Mathematical SciencesSackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv 69978, IsraelAbstractWe investigate the expressive power relative to three-valued and four-valued logics of varioussubsets of the set of connectives which are used in the bilattices-based logics. Our study of alanguage is done in two stages. In the �rst stage the ability of the language to characterizesets of tuples of truth-values is determined. In the second stage the results of the �rst areused to determine its power to represent operations. Special attention is given to the role ofmonotonicity, closure and freedom properties in classifying languages, as well as to maximalityproperties (for example: we prove that by adding any nonmonotonic connective to the set offour-valued monotonic connectives, we get a functionally complete set).1 IntroductionIn [Be77a, Be77b] Belnap introduced a logic intended to deal in a useful way with inconsistent andincomplete information. This logic is based on four truth values: the classical ones, denoted hereby t and f , and two new ones: ?, that intuitively denotes lack of information (no knowledge), and>, that indicates inconsistency (\over"-knowledge).The truth values of Belnap's logic have two natural orderings: One, �t, intuitively re
ectsdi�erences in the \measure of truth" that every value represents. According to this order, f is theminimal element, t is the maximal one, and ?;> are two intermediate values that are incomparable.(ft; f;>;?g;�t) is a distributive lattice with an order reversing involution :, for which :> = >and :?=?. We shall denote the meet and the join of this lattice by ^ and _, respectively.The other partial order, �k, is understood (again, intuitively) as re
ecting di�erences in theamount of knowledge or information that each truth value exhibits. Again, (ft; f;>;?g;�k) isa distributive lattice where ? is its minimal element, > { the maximal element, and t, f areincomparable. Following Fitting [Fi90] we shall denote the meet and the join of the �k-lattice by1




 and �, respectively.The two lattice orderings are closely related. The knowledge operators 
 and � are monotonicw.r.t. the truth ordering �t, and the truth operators ^, _, and : (as well, of course, as 
 and�) are monotonic w.r.t. �k. Further, all the 12 distributive laws hold, and so are De-Morgan'slaws. The structure that consists of these four elements and the �ve basic operators (^;_;:;
;�)is usually called FOUR. A double Hasse diagram of FOUR is given in Figure 1.6k
-tu?uf utu>������@@@@@@������@@@@@@Figure 1: FOURThe next step in using FOUR for reasoning is to choose its set of designated elements. Theobvious choice is D=ft;>g, since both values intuitively represent formulae known to be true. Theset D has the property that a^b2 D (or a
b 2D) i� both a and b are in D, while a_b2 D (ora�b2D) i� either a or b is in D. From this point the various semantic notions and the associatedconsequence relation are de�ned on FOUR as in every many-valued logic.The algebraic structure of FOUR has been generalized by Ginsberg [Gi88] to the general conceptof a bilattice. He proposed Bilattices as a basis for a general framework for many applications.Bilattices were further investigated by Fitting, who used them for extending some well knownlogics (like Kleene 3-valued logics) and for logic programming (see, e.g., [Fi90, Fi91, Fi94]). In[AA96] the set D is also generalized to what is called there a bi�lter, and bilattices-based logics areintroduced. It turned out, however, that from a logical point of view, FOUR has among bilatticesthe same role that the two-valued Boolean algebra has among Boolean algebras. It is therefore aparticularly important bilattice (and so far it has also been the most useful one in applications).It can be shown that in the language of f:;^;_;
;�; t; f;>;?g no implication connective can2



be de�ned for which both MP and the deduction theorem obtain. In [AA96, AA98] the followingimplication, which does have these properties in all bilattice-based logics, has been used:De�nition 1.1 [Av91, AA96] a � b = ( b if a 2 Dt if a 62 DAnother connective which has been found useful in the literature on bilattices is Fitting's con-
ation, �, which is the �k-dual of negation. Not all bilattices possess a con
ation, but FOURdoes: �? = >;�> = ?;�t = t;�f = f .The purpose of this paper is to explore the expressive power relative to FOUR and its three-valued counterpart of various subsets of Lall, the set of connectives which are used in the bilattices-based logics (i.e.: Lall = f:;^;_;
;�; t; f;>;?;�;�g). Since negation will be included in everysubset we consider, ^ and _ will always be interde�nable (using De-Morgan laws), and the sameapplies to t and f . Hence in what follows we will investigate, in fact, the following set of connec-tives (which we also call Lall): f:;^;
;�; f;>;?;�;�g. Other important connections in FOURbetween elements of Lall are:(i) f = > ^?(ii) ? = f 
 :f(iii) > = f � :f(iv) a� b = (a ^ >) _ (b^ >) _ (a ^ b)(v) a
 b = (a ^ ?) _ (b^ ?) _ (a ^ b)(vi) f = :(? � ?)(vii) > = (a � a)� :(a � a)(viii) f = �:a ^ a(ix) > = �? = �:a � a ? = �> = �:a
 a(x) a� b = �(�a 
�b) a
 b = �(�a� �b)3



Following [Th92], we shall take f:;^g as the \hard core" of the language, and consider onlysets of connectives which contain it.Our investigations of the expressive power of the various languages will be done from twodi�erent points of view, which are equivalent in two-valued logic, but not in general. One is theability to characterize sets of tuples of truth values. The other is the ability to represent operations(of arbitrary arity) on the set of truth-values 1. We provide now the precise de�nitions in the caseof FOUR. Obviously, similar de�nitions can be made for any other many-valued logic. First weneed some notations (which can easily be generalized as well):1. Let  be a formula. We denote by A( ) the set of atomic formulas that occur in  .2. Let A( ) � fp1; : : : ; png. we denote by Fn the function from FOURn to FOUR that corre-sponds to  (i.e., the n-ary truth table which corresponds to  ).3. Let A( ) � fp1; : : : ; png. Sn , the subset of FOURn which is characterized by  , is:Sn = f(a1; : : : ; an) 2 FOURn j Fn (a1; : : : ; an) 2 DgDe�nition 1.2 A subset C � FOURn is characterizable in a language i� there exists a formula  of that language such that C = Sn .De�nition 1.3 We say that a formula ' such that A(') � fp1; : : : ; png represents an operatorg : FOURn ! FOUR i� Fn' = g.Obviously, the characterization power of a language depends on the choice of the set of desig-nated values. Its representation power, in contrast, has nothing to do with this choice, and dependsonly on the interpretations of the connectives. It is somewhat surprising, therefore, that our re-sults and proofs concerning representability heavily depend on those concerning characterizability.Indeed, the main innovation of this work is perhaps the separation of the study of the expressivepower of a language into two stages, which corresponds to these two points of view. In the �rststage the characterization power of the language is determined. In the second the results of the�rst stage are used to determine its representation power.1This is similar to the two di�erent roles that automata and other machines have in computability theory: Theyare investigated both as acceptors of languages, and as input-output devices.4



Our investigations of the representation power of a given set of connectives concentrate on twocentral problems. One is maximality: is the set functionally complete, and if not| is it maximallyso (which means that by adding any connective which is not de�nable from it we get a functionallycomplete set). The other problem is to �nd a set of properties which characterizes the given set(i.e. properties that all connectives which are de�nable in that set have, and only these connectiveshave all of these properties). Now in previous works on this subject in the context of partial logic([Bl86, vB88, La88, Th92]), three particularly important properties were identi�ed: monotonicity(also called \persistence"), closure, and freedom. Since this paper is a continuation (and in certaincases a completion) of those works, it is no wonder that these properties play a key role here aswell. In the case of closure and freedom we have however to generalize somewhat the previousde�nitions.De�nition 1.4 Let hV;�i be a poset. An operation H : V n ! V is called monotonic (relative to�) if H(~y) � H(~x) whenever ~y � ~x (we say that ~y = (y1; : : : ; yn) � ~x = (x1; : : : ; xn) i� yi � xi forall 1 � i � n).In the context of FOUR monotonicity is taken to be relative to the �k partial order.De�nition 1.5 Let V be a set which contains ft; fg, and let ft; fg � S � V . An operationH : V n ! V is called S-closed if 81� i�n xi 2 S =) H(~x) 2 SDe�nition 1.6 Let V be a set which contains ft; fg, and let a 2 V � ft; fg. An operationH : V n ! V is called a-free if H(a; ; : : : ; a) = aA �nal remark: many of the results below are new (to the best of our knowledge), but manyothers are not. We have tried to give appropriate credits whenever possible. For the sake ofcompleteness, and in order to demonstrate the unifying power of our method, we provide proofs toall results, not only to the new ones. 5



2 Expressive Power in Three-Valued LogicWe start with an examination of the three-valued case. For this we use the substructure of FOURwith consists of ft; f;>g. Let us call this substructure THREE. Using THREE (rather thanft; f;?g) means that we take both t and > as designated, instead of just t. It means also that theconnective � we use is the implication connective of the paraconsistent logic J3 (see [DO85, Av86,Av91, Ro89, Ep95]), which is de�ned by: a � b is t if a = f , b otherwise. Our choice does not a�ectthe de�nitions of the other connectives in which we are interested (only the notations we pick forsome of them), and it is immaterial from the point of view of representability of truth-functions.It is also irrelevant as far as monotonicity, closure and freedom of connectives are concerned (Notethat a three-valued function is monotonic according to ft; f;>g i� it is monotonic according toft; f;?g!). It is relevant, however, to the question what sets can be characterized by what sets ofconnectives.Of the nine connectives on which we concentrate in this paper, three (�;? and 
) are heremeaningless 2. Moreover: > and � are interde�nable, using equation (iv) from the introductionand the fact that in THREE > = :a � a. Accordingly, we concentrate in this section on thefollowing �ve connectives: :;^;�; f;>.Since in THREE we have only one extra truth-value (in addition to t and f), we shall simplywrite in this section \free" instead of \>-free", and \closed" instead of \ft; fg-closed" 3.2.1 Characterization of subsets of THREEnLemma 2.1 In FOUR and in THREE we have:1. Ski=1 Sn i = Sn 1_ 2_���_ k2. Tki=1 Sn i = S 1^ 2^���^ kProof: This easily follows from the fact that a ^ b 2 D i� a 2 D and b 2 D, while a _ b 2 D i�a 2 D or b 2 D.2Concerning ? and 
 it is more accurate to say that there is no di�erence between ? and > and between 
 and�. 3What we call here \closed" is called \classically closed" in [Th92], \pure" in [He83] and \deterministic" in [La88].6



Theorem 2.2 A subset S of THREEn is characterizable by some formula in the language off:;^;�g (or f:;^;�;>g) i� ~> = (>;>; : : : ;>)2S.Proof: If  is any formula in the language of f:;^;�;>g s.t. A( )� fp1; : : : ; png and �(p1) =�(p2)= : : := �(pn)=>, then �( )=>. Hence the condition is necessary. For the converse we usethe following formula: fn = p1 ^ :p1 ^ p2 ^ :p2 ^ : : :^ pn ^ :pnObviously, fn has the following property:�(fn) = ( > 81� i�n �(pi)=>f otherwiseLet ~a=(a1;: : :; an)2THREEn. De�ne, for every 1� i�n, ~ai = 8><>: pi ^ :pi if ai=>:pi � fn if ai= tpi � fn if ai=fUsing the observation above concerning fn , it is easy to see that  ~a1 �̂ ~a2 �̂ : : : �̂ ~an characterizesf~>;~ag. This and the �rst part of Lemma 2.1 entail the theorem.Theorem 2.3 Every subset of THREEn is characterizable in the language of f:;^;�; fgProof: All we need to change in the proof of Theorem 2.2 is to use f instead of fn in the de�nition of ~ai . After this change the conjunction of the new  ~ai 's characterizes f~ag and not f~>;~ag. This su�ces(using _) for the characterization of every nonempty set. The empty set itself is characterized byf . Theorems 2.2 and 2.3 can be strengthened as follow:Theorem 2.4 A subset S of THREEn is characterizable by some formula in the language off:;�g i� ~>2S, while every subset of THREEn is characterizable in the language of f:;�; fg.Proof: We need to �nd substitutes for ^ and _ in the proofs of theorems 2.2 and 2.3. For thisde�ne: p �̂q = :(p�:q), p�_q = (p�q)�q. The following properties are easily veri�ed:7



1. �̂ is associative. Moreover,�( 1 �̂ 2 �̂ : : : �̂ n) = ( f 91� i�n�1 �( i) 62D�( n) 81� i�n�1 �( i)2D2. �( 1 �̂ 2 �̂ : : : �̂ n) 2 D i� 81� i�n �( i) 2 D.3. �_ is associative. Moreover,�( 1�_ 2�_ : : : �_ n) = ( �( n) 81� i�n�1 �( i) 62D or �( n)=>t otherwise4. �( 1�_ 2�_ : : : �_ n) 2 D i� 91� i�n �( i) 2 D.Using these facts it is easy to see that fn is equivalent to p1 �̂:p1 �̂p2 �̂:p2 �̂ : : : �̂pn �̂:pn, and(i) Sn 1 �̂:::�̂ m = Sn 1 \ : : :\ Sn m (ii) Sn 1�_:::�_ m = Sn 1 [ : : :[ Sn mFrom this point we proceed as in in the proofs of 2.2 and 2.3, using �̂ and �_ instead of ^ and _.We turn now to the languages without �.De�nition 2.5 Let hV;�i be a poset. A set S � V n is called a cone in hV n;�i if ~y 2 S whenever~y � ~x and ~x 2 S. If S = V n then the cone is called trivial.Note Obviously, a cone S in THREEn is nonempty i� ~> = (>; : : : ;>) 2 S.De�nition 2.6 Let hV;�i be a poset, and let S be a cone in hV n;�i. An element ~x 2 S is calleda stable element of S if f~y 2 V nj~y � ~xg � S.Theorem 2.7 Any subset of THREEn which can be characterized by some formula in f:;^; f;>gis a cone. Conversely, every cone C in THREEn can be characterized by a formula  C in f:;^; fg,so that if ~x is a stable element of C then Fn C (~x) = t.Proof: The �rst part is immediate from the fact that :;^; f;> correspond all to monotonicoperations. For the converse, we de�ne for every ~a 2 C and every 1 � i � n a formula  i~a as follows:If ~a is not a stable element of C then i~a = 8<: pi ^ :pi ai = >pi ai = t:pi ai = f8



If ~a is a stable element of C then  i~a = 8<: t ai = >pi ai = t:pi ai = fLet  ~a be  1~a ^  2~a ^ � � � ^  n~a . It is easy to see that ~a 2 S ~a for every ~a, and that Fn ~a(~a) = t incase ~a is a stable element of C. We show now that Sn ~a � C. This is obvious in case ~a is an elementof C which is not stable (because C is a cone). Assume that ~a is a stable element of C, and that~x 2 Sn ~a. Then xi � ai for every i such that ai 6= >. De�ne:ci = �ai ai 6= >xi ai = >Then ~c � ~a, and so ~c 2 C (since ~a is stable in C). But ~c � ~x also, and so ~x 2 C (because C is acone).De�ne now  C to be W~a2C  ~a in case C is not empty, f otherwise. Given what we have shown,it is obvious that  C has the required properties.Theorem 2.8 Any subset of THREEn which can be characterized by some formula in f:;^;>gis a nonempty cone. Conversely, every nonempty cone C in THREEn can be characterized by aformula  C in f:;^g, so that if ~x is a stable element of C other than ~> then  nC(~x) = t.Proof: If � is a formula in f:;^;>g then ~> 2 Sn� . This entails the �rst part. For the second part,note that the propositional constant f was used in the previous proof twice. It was used at theend, for characterizing the empty cone. This is not needed here. It was also used in the de�nitionof  i~a in case ~a is stable. But unless ~a = ~>, the conjuncts t can be deleted from this de�nition. Itremains to check the case when ~> is a stable element of C. This happens i� C is THREEn, and inthis case :fn (see the proof of Theorem 2.2) is a formula as required.2.2 Representation of operations on THREEnTheorem 2.9 The language f:;^;�; f;>g is functionally complete for THREE (i.e.: every func-tion from THREEn to THREE is representable by some formula in this language).Proof: Let g :THREEn! THREE. By Theorem 2.3, every subset of THREEn is characterizablein the language. Let, accordingly,  gf and  g> characterize g�1(ffg) and g�1(f>g) respectively.De�ne: 	g=( gf � f) ^ ( g> � >). It is easy to verify that 	g represents g.9



Theorem 2.10 A 3-valued operation g is representable in the language f:;^;�; fg i� it is closed.Proof: Obviously, every three-valued operation which is representable in the language f:;^;�; fgis closed. For the converse, replace in the de�nition of 	g from the proof of 2.9 the constant >with the formula: >n = (p1 _ :p1) ^ (p2 _ :p2) ^ : : :^ (pn _ :pn)It is easy to verify that >n has the following property:�(>n) = ( > 91� i�n �(pi)=>t otherwiseThis implies that if g is closed and g(~x) = > then Fn>n(~x) = >. This easily entails that the new 	grepresents g.Note: The language f:;^;�; fg is equivalent to the language used in the paraconsistent systemJ3 (see [DO85, Ep95]).Theorem 2.11 A 3-valued operation g is representable in the language f:;^;�;>g i� it is free.Proof: Again, the \if" part is obvious. For the converse, assume that g is free, and let �gf , �g>be the formulas in the language of f:;^;�g which characterize (respectively) f~>g[g�1(ffg) andg�1(f>g) (such formulas exist by theorem 2.2). De�ne: �g=(�gf � fn)^ (�g> � >), where fn is theformula which was introduced in the proof of 2.2. We show that �g represents g. Let ~x2THREEnand assume that �(pi)=xi for i=1;: : :; n.Case 1: g(~x)= t. Since g is free, ~x 6= ~>. This and the fact that g(~x) 6=f imply that ~x 62f~>g[g�1(ffg).Therefore �(�gf) = f , and so �(�gf � fn)= t. The fact that �(�g>�>) = t follows similarly. Hence�(�g)= t=g(~x).Case 2: g(~x)=f . Again, since g is free, ~x 6= ~>, and so �(fn)=f . In addition, �(�gf )2ft;>g in thiscase, and so �(�gf �fn)=f . It follows that �(�g)=f=g(~x).Case 3a: g(~x)=> and ~x 6= ~>. Then �(�g>)2ft;>g and so �(�g>�>)=>. On the other hand, bythe same arguments as in case 1, �(�gf �fn)= t. Hence �(�g)=>=g(~x).Case 3b: ~x= ~>. Since �g is in the language of f:;^;�g, �(�g)=>=g(~x).10



Theorem 2.12 A 3-valued operation g is representable in the language f:;^;�g i� it is closedand free.Proof: The \if" is trivial. The proof of the converse is a combination of the previous two proofs(i.e.: we use fn as a substitute for f , >n as a substitute for >, �gf instead of  gf , and �g> instead of g>). Details are left for the reader.Theorem 2.13 A 3-valued operation g is representable in the language f:;^;>; fg i� it is mono-tonic.Proof: The \if" is trivial. For the converse, let g be a monotonic function of arity n. De�ne:gt = f~x 2 THREEn j g(~x) �k tggf = f~x 2 THREEn j g(~x) �k fgSince g is monotonic, both gt and gf are cones. Moreover: if g(~x) = t then ~x is a stable element ofgt, while if g(~x) = f then ~x is a stable element of gf . Let  t and  f be, respectively, the formulaswhich characterize these cones according to theorem 2.7. De�ne:	g = ( t ^ >) _ (: f ^ >) _ ( t ^ : f) (=  t � : f )Now if g(~x) = t then Fn t(~x) = t (since ~x is stable) while Fn f (~x) = f (since ~x 62 gf ). It follows thatFn	g (~x) = t in this case. Similarly, if g(~x) = f then Fn	g(~x) = f . Finally, if g(~x) = > then ~x 2 gtand ~x 2 gf , and so Fn t(~x) 2 ft;>g and also Fn f (~x) 2 ft;>g. This implies that Fn	g (~x) = > in thiscase. Hence Fn	g (~x) = g(~x) in all cases, and so 	g represents g.Theorem 2.14 A 3-valued operation g is representable in the language f:;^;>g i� it is monotonicand free.Proof: The proof is almost identical to that of 2.13, only we use theorem 2.8 instead of 2.7. Thisis possible because in this case both gt and gf are nonempty: since g is free, ~> belong to both.Moreover: if g(~x) = t then ~x is a stable element of gt which is di�erent from ~>, and similarly forgf . Hence the exceptional case in 2.8 is not relevant here.11



Theorem 2.15 A 3-valued operation g is representable in the language f:;^; fg i� it is monotonicand closed.Proof: The proof is again almost identical to that of 2.13, only in the de�nition of 	g we substitute>n (from the proof of 2.10) for>. In case ~x 62 ft; fgn this makes no di�erence, since >n is equivalentto > for such ~x. On ft; fgn, on the other hand, g is a two-valued function (because it is closed)and it is easy to see that our 	g indeed represents g in the two-valued case.Theorem 2.16 A 3-valued operation g is representable in the language f:;^g i� it is monotonic,free, and closed.Proof: The proof is almost identical to that of of the previous one, only again we rely on theorem2.8 rather than on theorem 2.7.The eight theorems that were proved in this subsection provide a full characterization of the repre-sentation power of all the subsets of f:;^;�; f;>gwhich include : and ^. A precise correspondencehas been found between these sets of connectives (which correspond to the 8 subsets of f�; f;>g)and the 8 possible combinations of monotonicity, freedom, and closure. These eight theorems cantherefore be summarized as follows:Theorem 2.17 Let L = f:;^g and suppose that � is a subset of f�; f;>g. A function g :THREEn! THREE is representable in L[� i� it satis�es those conditions from the list: \mono-tonicity", \freedom", and \closure" that all the connectives in � satisfy.Note: Most of the theorems which were proved in this subsection are equivalent to theorems thathave been published before, sometimes with di�erent set of connectives4. Thus except for theorems2.11, 2.12 and 2.17, equivalents of all the other 6 theorems are proved in [Th92]. 5 In addition,equivalents of 2.9 can be found also in [He83, Bl86, La88], of 2.10 in [He83, vB88], Of 2.13 in[Fi75, Bl86], of 2.15 in [vB88], and of 2.14 in [vB88, La88]. Theorems 2.11 and 2.12, on the other4Especially the expressive power of �, though crucial in J3, does not seem to have been investigated before.5Instead of our � Thijsse has used another connective: �, which (given : and ^) is equivalent in its expressivepower to the combination of � and f : � p = p � f . 12



hand, are new (to the best of my knowledge) and provide a solution to the two cases which remainopen in [Th92]. The ease in which we got them here (and the similarity of their proofs to thoseof the two theorems that precede them) demonstrate the power of the notion of characterizability.Moreover: nothing like theorem 2.17 can be found in the literature (as far as I know). In fact afailure to �nd a set of connectives which satis�es a theorem of this sort is explicitly noted in [Th92](the splitting of � into � and f is what makes theorem 2.17 possible!).The next theorem provide simple generalizations of some theorems of this subsection.Theorem 2.18 1. By adding to f:;^;�g any connective which is not free we get a languagein which every closed connective is representable.2. By adding to f:;^;�g any connective which is not closed we get a language in which everyfree connective is representable.3. Let L be a language in which f:;^;�g are all representable, as well as at least one connectivewhich is not closed and one (not necessarily distinct) connective which is not free. Then L isfunctionally complete (for three-valued operations).Proof:1. Obviously, if some connective which is not free is de�nable, then there is such a unary connec-tive C. By 2.10, it su�ces now to check that f is representable by :(p � p)^:(C(p)� C(p)).2. Suppose g(a1; : : : ; an) = >, where ai 2 ft; fg for all i. let h(x) = g(h1(x); : : : ; hn(x)), wherehi(x) = :x _ x if ai = t, :x ^ x if ai = f . Then h(t) = h(f) = >. Obviously, if g isrepresentable in some extension of f:;^g, then so is h. Assume that  (p) represents h. Then(:p _ p) ^ (: (p)_  (p)) is equivalent to >. Hence the claim follows from 2.11.We leave the proof of the third part to the reader.Corollary 2.19 Denote by CF the set of the closed, free 3-valued connectives, by C the set ofthe closed 3-valued connectives, and by F the set of the free 3-valued connectives. The followingrelations obtain in the set of all the sets of 3-valued connectives which are closed under composition:13



1. The set of all 3-valued connectives is the only proper extension of C. 62. The set of all 3-valued connectives is the only proper extension of F .3. The set of all 3-valued connectives, C, and F are the only proper extensions of CF .Note: In contrast, in [Bl86] it is proved there is exactly one intermediate class of connectivesbetween the set of monotonic connectives and the set of all 3-valued connectives. Hence the set ofmonotonic connectives does not have in THREE the maximality property that C and F have.We end this section with a theorem concerning the independence of our �ve basic connectives.Theorem 2.20 With the exception of ^, each of the connectives in f:;^;�; f;>g is not de�nablein terms of the rest. ^, in contrast is de�nable in terms of f:;�; f;>g, and so this set is a minimalfunctionally complete set of 3-valued connectives (by \minimal" we mean that no proper subset ofit is functionally complete).Proof: By what has been proved above, each element of f�; f;>g lacks a property (monotonicity,freedom or closure) which is shared by the other four connectives (and everything which is de�nablefrom them). Hence they are all independent of the rest. We describe now a similar non-property of:: De�ne a unary function D as follows. D(f) = f , D(t) = D(>) = t. Call a 3-valued operation gof arity n extensional ifD(g(~x)) = D(g( ~D(~x))) for all ~x, where ~D(x1; : : : ; xn) = (D(x1); : : : ; D(xn)).It is not di�cult to see that every connective which is de�nable from f^;�; f;>g is extensional.:, in contrast, is not (take x = >).The proof that f:;�; f;>g is functionally complete is similar to that of theorem 2.9. We onlyhave to use theorem 2.4 instead of theorem 2.3, and the connective �̂ from the proof of that theoreminstead of ^ in the de�nition of 	g .3 Expressive Power in Four-Valued LogicWe have many more languages which are de�ned by subsets of Lall in the four-valued case thanthe eight we have in the 3-valued case. In this work we concentrate on those that contain either6This particular result has �rst been proved in [He83].14



the standard classical connectives f:;^;_;�g or the basic bilattice operations f:;^;_;�;
g.For our investigations we shall need from time to time appropriate substitutes for the basicconstants. We list now some possible candidates, together with their main properties.� fn = p1 ^ :p1 ^ p2 ^ :p2 ^ : : :^ pn ^ :pn�(fn) = 8><>: > 81� i�n �(pi)=>? 81� i�n �(pi)=?f otherwise� f�n = :(p1 � p1) ^ :(p2 � p2) : : :^ :(pn � pn)�(f�n) = ( > 81� i�n �(pi)=>f otherwise� >n = (p1 � p1)^ (p2 � p2) ^ : : :^ (pn � pn)�(>n) = ( > 91� i�n �(pi)=>t otherwise� >�n = (p1 � p1)^ (p2 � p2) ^ : : :^ (pn � pn) ^ (�p1 � �p1) ^ : : :^ (�pn � �pn)�(>�n) = ( > 91� i�n �(pi) 62ft; fgt otherwise� >��n = :p1 � p1 � :p2 � p2 � � � � � :pn � pn�(>��n ) = ( ? 81� i�n �(pi)=?> otherwise� ?�n = Wni=1(pi ^ ((pi _ :pi) � f�n))�(?�n) = 8><>: > 81� i�n �(pi)=>? 91� i�n �(pi)=?f otherwise� ?��n = :p1 
 p1 
 :p2 
 p2 
 � � � 
 :pn 
 pn�(?��n ) = ( > 81� i�n �(pi)=>? otherwise15



3.1 Characterization of subsets of FOURnWe start with the following analogues of theorems 2.2{2.4:Theorem 3.1 A subset S of FOURn is characterizable by some formula in the language of f:;�g(or f:;^;
;�;�;>g) i� ~> 2 S.Theorem 3.2 Every subset of FOURn is characterizable in f:;�; fg (and so also in f:;�;?gand in f:;�;�g, by identities (vi) and (viii) from the introduction).The proofs of these theorems are almost identical to their 3-valued counterparts. Only thede�nition of  ~ai should somewhat be changed. In the case of theorem 3.1 it should be: ~ai = 8>>><>>>: pi �̂ :pi if ai=>pi �̂ (:pi � f�n) if ai= t:pi �̂ (pi � f�n) if ai=f(:pi � f�n) �̂ (pi � f�n) if ai=?In the case of theorem 3.2 one should use f instead f�n in the above de�nition. 7De�nition 3.3 L4 = f:;^;
;�; f;>;?g.Note: By the identities in the introduction, L4 is equivalent to the language f:;^;>;?g.Theorem 3.4 Any subset of FOURn which can be characterized by some formula in L4 is a cone.Conversely, every cone C in FOURn can be characterized by a formula  C in f:;^; fg.Proof: It is easy to see that all the connectives of L4 correspond to �k-monotonic functions. SinceD itself is a cone in FOUR, every subset of FOURn which is characterized by some formula of L4is necessarily a cone.For the converse, assume that S is a cone in FOURn. If S is empty then the formula fcharacterizes it. If not, then since S is a cone, it is the union of all the subsets of FOURn of theform f~x 2 FOURn j ~x �k ~ag, where ~a 2 S. By Lemma 2.1 it su�ces therefore to show that everyset of this form is characterizable in L4. It is easy however to see that f~x 2 FOURn j ~x �k ~ag ischaracterized by  a1 ^  a2 ^ � � � ^  an , where: ai = 8>><>>: pi ^ :pi ai = >pi ai = t:pi ai = ft ai = ?7Theorems 3.1 and 3.2 have �rst been proved, using the same argument, in [AA98].16



Note: In case > is available we can of course use it (rather than t) in the last case of the de�nitionof  ai (or any other formula ' s.t. Fn' (~x) 2 D for all ~x 2 FOURn). In fact, except for the case~a = ~?, we could have done without the conjuncts of the form t, and just delete them from theformula above. Similarly, if ? is available we can use it (instead of f) for characterizing the emptycone.Theorem 3.5 Any subset of FOURn which can be characterized by some formula in f:;^;
;�gis a cone which is nonempty and nontrivial. Conversely, every cone of this sort is characterized bysome formula in f:;^g.Proof: The condition is obviously necessary, since ~> 2 Sn' and ~? 62 Sn' for every ' in the languageof f:;^;
;�g. The proof of the converse is very similar to that of Theorem 3.4, only here we donot need to consider the case where S = ;, while in the other case we should replace t by tn = :fn.tn has the property that Fntn(~x) 2 D unless ~x = ~?. Since ~? 62 S (because S is not trivial), thisexceptional case is harmless here.Theorem 3.61. A subset S of FOURn is characterizable in the language of f:;^;>g (or even f:;^;
;�;>g)i� it is a nonempty cone.2. A subset S of FOURn is characterizable in the language of f:;^;?g (or even f:;^;
;�;?g)i� it is a nontrivial cone.The proof is left to the reader.Theorem 3.7 Let L be obtained from L4 by adding to it a connective such that the correspondingfunction N 8 is not monotonic. Then every subset of FOURn is characterizable in L.Proof: By Lemma 2.1 it is enough to show that every singleton f(a1; : : : ; an)g is characterizable.For this, in turn, it su�ces to show that fag is characterizable for all a 2 FOUR. Indeed, if 'a(p)characterizes fag then obviously 'a1(p1) ^ 'a2(p2) ^ � � � ^ 'an(pn) characterizes f(a1; : : : ; an)g.8For convenience we use the same symbol for an n�ary connective and the corresponding function on FOURn.17



Now f>g is characterized by p1 ^ :p1. For the other three singletons we note �rst that if anyof them is characterizable then so are the other two. Indeed, if ftg is characterized by the formula't(p1) then ffg is characterized by 't(:p1) while f?g is characterized by 't(p1� t)^'t(:p1� t).The case where ffg is characterizable is similar. Finally, if f?g is characterized by the formula '?then ftg is characterized by '?(p1 ^ ?) ^ p1.Another obvious observation is that one may assume that N is unary. This follows from the factthat ifN 0 is an n-ary connective s.t. N 0 is not monotonic, then there exist a1; : : : ; ai�1; ai+1; � � � ; an; band c such b �k c but N 0(a1; : : : ; ai�1; b; ai+1; : : : ; an) 6�k N 0(a1; : : : ; ai�1; c; ai+1; : : : ; an). It followsthat N (a1; : : : ; ai�1; p1; ai�1; : : : ; an) de�nes a unary connective which is not monotonic.So assume that N is unary and N is not monotonic. Since N (x) �k N (x) for all x 2 FOUR,we have �ve cases to consider:Case 1: N (t) 6�k N (>). Then N (t) 6= ?.subcase 1.1: N (t) = t. Then N (>) 2 f?; fg and so p1 ^ N (p1) characterizes ftg.subcase 1.2: N (t) = f . Then N (>) 2 f?; tg and p1 ^ :N (p1) characterizes ftg.subcase 1.3: N (t) = >. Then N (>) 6= > and p1 ^N (p1) ^ :N (p1) characterizes ftg.Case 2: N (f) 6�k N (>). Similar.Case 3: N (?) 6�k N (>). Then N (?) 6= ?.subcase 3.1: N (?) = t. Then N (>) 2 f?; fg, and so N (p1 � :p1) characterizes f?g.subcase 3.2: N (?) = f . Then N (>) 2 f?; tg and :N (p1 � :p1) characterized f?g.subcase 3.3: N (?) = >. Then N (>) 6= > and N (p1 � :p1) ^ :N (p1 � :p1) characterizesf?g.Case 4: N (?) 6�k N (t). Then N (?) 6= ?.subcase 4.1: N (?) = t. Then N (t) 2 f?; fg, and so N (p1 _?)^N (:p1_?) characterizesf?g.subcase 4.2: N (?) = f . Then N (t) 2 f?; tg and :N (p1 _?)^:N (:p1 _?) characterizesf?g. 18



subcase 4.3: N (?) = >. Then N (t) 6= >, and so N (p1 _ ?)^ :N (p1 _ ?)^N (:p1 _?) ^:N (:p1 _ ?) characterizes f?g.Case 5: N (?) 6�k N (f). Similar.3.2 Representation of operations on FOURnIn what follows we write >-closed instead ft; f;>g-closed, ?-closed instead of ft; f;?g-closed, andclassically closed instead of ft; fg-closed.We begin with languages which contain f:;^;�g.Theorem 3.8 The language L�=f:;^;�;?;>g is functionally complete for FOUR.Proof: Let g :FOURn ! FOUR. Since f =:(?�?), by Theorem 3.2 every subset of FOURnis characterizable in L�. Let, accordingly,  gf ,  g>, and  g? characterize g�1(ffg), g�1(f>g), andg�1(f?g), respectively. De�ne: 	g=( gf � f) ^ ( g> � >)^ ( g? � ?). It is easy to verify that 	grepresents g.The identities in the introduction imply that relative to f:;^;�g the connectives > and � areinterde�nable, while ? is equivalent in expressive strength to the combination of 
 and f . It followsthat the set f:;^;�;
;�; fg is also functionally complete. The next theorem show that there is anice correspondence between subsets of this set which contain f:;^;�g and combinations of basicproperties.Theorem 3.9 Let L = f:;^;�g and suppose that � is a subset of f
;�; fg. A function g :FOURn ! FOUR is representable in L [ � i� it satis�es those conditions from the list: \>-freedom", \>-closure", and \?-closure" that all the connectives in � satisfy.Proof: The proofs closely follows that of Theorem 3.8, and are very similar to the proofs of 2.9-2.12.The following changes should be made:1. If f is not available we use f�n as a substitute. In addition, instead of  gf ,  g>, and  g?(which are not available in this case) we use the formulas in the language of f:;^;�g whichcharacterize f~>g[g�1(ffg), f~>g[g�1(f>g), and f~>g[g�1(f?g) (such formulas exist byTheorem 3.1). 19



2. If > is not available (i.e., � 62 �) then we use >n as a substitute.3. If ? is not available (i.e., f
; fg 6� �) and 
 2 � we use ?��n as a substitute.4. If ? is not available and 
 62 � we use ?�n as a substitute.Following these guidelines, it is not di�cult to prove the theorem.Note: The last two theorems were �rst proved in [AA98]. We have repeated them here for thesake of completeness. Theorems which are equivalent to 3.8 have been proved in [He83, La88, Gi90,Th92]. Of the seven other claims included in 3.9, equivalent theorems have been proved in [La88]for the set of >-closed connectives and in [La88, Th92] for the set of connectives which are both>-closed and ?-closed (such connectives are called generally closed in [Th92]). Instead of our �these works use the connectives �, which is de�nable in our languages by: � p = p � f .We turn to our �rst two maximality results in the context of FOUR.Theorem 3.10 Any proper extension of the set of >-closed connectives is functionally complete.The same applies to the set of ?-closed connectives.Proof: By duality, it su�ces to prove the second part. Suppose then that g is not ?-closed. Thenthere are a1; : : : ; an 2 ft; f;?g such that g(a1; : : : ; an) = >. It follows that > is de�nable fromfg; t; f;?g. Hence, by theorem 3.8, the set fg; t; f;?;:;^;�g is functionally complete. In this setall elements except g are ?-closed. This entails the theorem.Theorem 3.11 Any proper extension of the set of >-free connectives is functionally complete.The same applies to the set of ?-free connectives.Proof: By duality, it su�ces to prove the �rst part. Suppose then that g is not >-free. Without lossin generality we may assume that g is unary and g(>) 6= >. Hence :(a � a) ^ :(g(a) � g(a)) = ffor all a 2 FOUR. It follows that f is de�nable from fg;:;^;�g. Hence, by theorem 3.9, the setfg;:;^;�;�;
g is functionally complete. In this set all elements except g are >-free. This entailsthe theorem. 20



Theorem 3.12 An operation g is representable in f:;^;�;�g i� it is classically closed.Proof: All the connectives in f:;^;�;�g are classically closed. Hence the \only if" part. For theconverse, note �rst that f is de�nable in the language (by identity (viii) from the introduction).Assume now that g is classically closed, and let 	g be de�ned as in the proof of theorem 3.8, but with>�n and �>�n instead of > and ? (respectively). Assume, e.g., that g(~x) = ?. Since g is classicallyclosed, there exists i such that xi 62 ft; fg. hence F�>�n(~x) = ?, and so also F	g (~x) = ? = g(~x).The case where g(~x) = > is similar, while the cases where g(~x) = t and g(~x) = f are exactly as inthe proof of theorem 3.8.Note: Theorems which are equivalent to theorem 3.12 have been proved in [He83, Th92]. Thenext theorem has also �rst been proved in [He83].Theorem 3.13 Any proper extension of the set of classically closed connectives is functionallycomplete.Proof: Suppose g is not classically closed. Then there are a1; : : : ; an 2 ft; fg such that g(a1; : : : ; an)is in f>;?g. It follows that > and ? are both de�nable from fg; t; f;�g. Hence, by theorem 3.8,the set fg; t; f;�;:;^;�g is functionally complete. In this set all elements except g are classicallyclosed. This entails the theorem.Corollary 3.14 Any proper extension of f:;^;�;�g is functionally complete.The last corollary entails that theorems 3.9 and 3.12 provide full characterizations of the de�n-ability power of all subsets of Lall which contain f:;^;�g. We turn now to subsets of Lall thatcontain f:;^;_;�;
g but not �.De�nition 3.15 Let g : FOURn ! FOUR. De�ne:gt = f~x 2 FOURn j g(~x) �k tggf = f~x 2 FOURn j g(~x) �k fgThe following lemma is immediate from the de�nitions:21



Lemma 3.16 If g is monotonic then gt and gf are cones. If g is monotonic and >-free they arenonempty cones, while if it is monotonic and ?-free they are non-trivial cones.The key for obtaining our next results is the following simple lemma:Lemma 3.17 Let L be a propositional language which contains:;^;
 and>, and let g : FOURn !FOUR. Assume that gt and gf are characterized by formulas in L. Then g itself is representablein L.Proof: Suppose gt and gf are characterized by  t and  f , respectively. We claim that the formula = ( t ^ >) 
 (: f _ >) represents g. Indeed:� If g(~x) = > then Fn t(~x) 2 ft;>g;:Fn f (~x) 2 ff;>g and so Fn (~x) = >
 > = >.� If g(~x) = t then Fn t(~x) 2 ft;>g;:Fn f (~x) 2 ft;?g and so Fn (~x) = > 
 t = t.� If g(x) = f then Fn t(~x) 2 f?; fg, :Fn f (~x) 2 ff;>g and so Fn (~x) = f 
> = f .� If g(x) = ? then Fn t(~x) 2 f?; fg, :Fn f (~x) 2 f?; tg and so Fn (~x) = f 
 t = ?.We turn to some corollaries of the last lemma and its proof. We begin with a result which isattributed in [Th92] to R. Muskens ( [Mu89] ).Theorem 3.18 An operation g is representable in L4 (De�nition 3.3) i� it is monotonic.Proof: The condition is necessary since the operations which correspond to the connectives of L4are all �k-monotonic. Its su�ciency follows from Lemma 3.16, theorem 3.4 and lemma 3.17.Theorem 3.19 An operation g : FOURn ! FOUR is representable in the language of f:;^;
;>g(=f:;^;
;�;>g) i� it is monotonic and g(~>) = ~>.Proof: The conditions are obviously necessary. Their su�ciency easily follows from Lemma 3.16,theorem 3.6 and lemma 3.17.Theorem 3.20 1. An operation g : FOURn ! FOUR is representable in the language off:;^;
;�g i� it is monotonic, >-free, and ?-free.22



2. An operation g : FOURn ! FOUR is representable in the language of f:;^;�;?g i� it ismonotonic and ?-free.Proof:1. The three conditions are obviously necessary. On the other hand if g satis�es all of themthen gt and gf are characterizable in f:;^;
;�g by Theorem 3.5. Now Lemma 3.17 is notdirectly applicable here, since > is not available. We can however mimic its proof in this case,using >��n instead of >. The only case that might be problematic in the reproduction of theproof of Lemma 3.17 is when ~x = ~?. The ?-freedom of g ensures, however, that in this casetoo we have the desired result.2. We leave the proof to the reader.The next theorem is one of the main results of this paper. It shows a striking di�erence withrespect to monotonic functions between the three-valued case and the four-valued one.Theorem 3.21 Any proper extension of L4 is functionally complete.Proof: Immediate from Theorem 3.7 and Lemma 3.17.Theorem 3.22 The set L� = f:;^;
;�g is functionally complete for FOUR. Moreover, it is aminimal such set in the sense that none of its proper subsets has this property.Proof: By identities (viii)-(x) from the introduction, every connective of L4 is de�nable in L�.Since � is not monotonic this implies, by Theorem 3.21 , that L� is functionally complete. Thefact that � is not monotonic entails also that it is unde�nable in terms of :;^ and 
. By duality,: is not de�nable in terms of �;^;
. That 
 is not de�nable in terms of :;^ and � follows fromthe fact that every g : FOURn ! FOUR which is representable in f:;^;�g is classically closed,while 
 is not. That ^ is not de�nable in f:;
;�g follows by duality.The last theorem and the identities from the introduction imply that we have characterized allthe subsets of Lall which include f:;^;
;�g but not �.23
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