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1 Introduction

In several areas of Mathematical Logic and Computer Science one would
ideally like to use the set Form(L) of all formulas of some first-order language
L for some goal, but this cannot be done safely. In such a case it is necessary
to select a subset of Form(L) that can safely be used. Three main examples
of this phenomenon are:

• The main principle of naive set theory is the comprehension schema:

∃Z(∀x.x ∈ Z ⇔ A)

where A is a formula in which Z is not free (but may contain other
parameters). Ideally, every formula A should be used in this schema.
Unfortunately, it is well known that this would lead to paradoxes. What
the various axiomatic set theories do is to replace the general compre-
hension schema by “safer” versions. Thus most of the axioms of ZF , the
most famous axiomatic set theory, are just particular instances of the
comprehension schema. Historically, the guiding line behind the choice
of these instances has been the “limitation of size doctrine” ([8, 10]).
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However, the criterion provided by this doctrine is not constructive, so
ZF uses some constructive substitutes to select formulas which seem to
meet it. These principles are usually explained and justified ([18]) on
semantic ground, using certain general ontological assumptions. (some
of which, like the “cofinality principle”, may be debatable).

• A main goal of computability theory is to characterize the decidable
relations. Now the most straightforward method of defining relations
is by using formulas of an appropriate formal language L (like the
language of Peano Arithmetics PA in the case of arithmetical relations).
However, usually not every formula of L defines a decidable relation.
Hence a major problem here is: what are the “safe” formulas which do?
A strongly related problem of crucial importance for proof theory and
the foundations of Mathematics (especially Gödel theorems) is: what
formulas of L binumerate relations within a given theory T? 1 Again
it is well known that in the case of PA no constructive general solution
can be given for either problem. Therefore some constructively defined
classes of “safe” formulas, broad enough for the various applications,
have been selected in its language. Two major examples are the class
of primitive recursive (p.r.) formulas ([9, 14]) and the class of bounded
formulas ([21]).

• A query language for a database ([24, 2]) is an ordinary first-order lan-
guage with equality, the signature of which includes predicate symbols
for the database relations. Ideally, every formula ψ of a query language
can serve as a query. If ψ is closed then the answer to the query is either
“yes” or “no”. If ψ has free variables then the answer to ψ is the set of
tuples which satisfy it in the intended structure. However, an answer to
a query should be finite and computable, even if the intended domain
is infinite. Hence only “safe” formulas, the answers to which always
have these properties, should be used as queries. Unfortunately, it is
again undecidable which formulas are “safe”. Therefore all commercial
query languages (like SQL) allow to use as queries only formulas from
some syntactically defined class of safe formulas.

In all these examples the same pattern repeats: a certain undecidable
class of f.o. formulas, originally characterized by some semantic criterion, is

1If T is r.e. then such a relation is necessarily decidable.
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singled out for some fundamental application. Then an effective, syntacti-
cally defined subclass that can serve as a sufficient substitute is found. In
what follows we show that despite the different purposes and intuitions, the
principles which have been used in all these areas in order to secure safety
are similar (although they have independently been developed), and are di-
rectly based on the role of the first-order logical constants. By merging them
we will be able to develop a unified, purely logical framework for dealing
with “safety”. The key feature of this framework is the use of a generalized
concept of a f.o. signature. The idea is that a generalized signature for a
language can contain more than just the arity of the possible interpretations
of the primitive symbols of the language. It can contain e.g. also informa-
tion about the size and/or the computability of their intended interpretations
(reducing by this the class of allowed models).

Three concrete applications of our framework are:

• In set theory it provides a new, concise presentation (and in our opinion,
a new understanding) of ZF . This presentation is based on purely
syntactic criteria concerning the role the f.o. connectives and quantifiers
have in defining legitimate new sets.

• In Computability Theory it provides a general framework for analyzing
relative computability of both extensional and intensional relations and
functions, on arbitrary (or at least countable) f.o. structures.

• In database theory it provides a simple syntactical notion of safety,
which allows to use properties of relations and functions which do not
belong to the database scheme. This notion is adequate not only for
conventional databases, but also for databases in which there is only a
partial access to some of the relations (like in the world wide web).

2 The General Framework

In the examples above two different factors were involved in questions of
“safety”: size (of the class of tuples which satisfy a given formula) and com-
putability (of this class). Now of the three example above only safety in
databases is connected with both. It is reasonable therefore to take database
theory as our starting point. Another reason for this choice is that many
explicit proposals of decidable, syntactically defined classes of safe formulas
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have been made in this theory. Examples are: “range separable formulas”
([5]), “range restricted formulas” ([16]), “evaluable formulas” ([6]), “allowed
formulas” ([23]), and “range safe formulas” ([2]) 2. The simplest among them
(and the closer to what has actually been implemented) is perhaps the fol-
lowing class SS(D) (“syntactically safe” formulas for a database scheme D)
from [24] (originally designed for languages with no function symbols) 3:

1. pi(t1, . . . , tni
) ∈ SS(D) in case pi (of arity ni) is in D, and each ti is

either a variable or a constant.

2. x = c and c = x are in SS(D) (where x is a variable and c is a constant).

3. A ∨ B ∈ SS(D) if A ∈ SS(D), B ∈ SS(D), and they have the same
free variables.

4. ∃xA ∈ SS(D) if A ∈ SS(D).

5. If A = A1 ∧ A2 ∧ . . . ∧ Ak then A ∈ SS(D) if both of the following
conditions are met:

(a) For each 1 ≤ i ≤ k, either Ai is atomic, or Ai is in SS(D), or Ai

is a negation of a formula of either type.

(b) Every free variable x of A is limited in A. This means that there
exists 1 ≤ i ≤ k s.t. x is free in Ai, and either Ai ∈ SS(D), or
Ai ∈ {x = y, y = x}, where y is already limited in A.

There is one clause in this definition which is somewhat strange: the
last one, which treats conjunction. The reason why this clause does not
simply tell us (like in the case of disjunction) when a conjunction of two
formulas is in SS(D), is the desire to take into account the fact that once
the value of y (say) is known, the formula x = y becomes safe. One of the
crucial observations on which our framework is based is that in order to find

2In our opinion there is a mistake in the definition of the last one. According to this
definition a formula like x = c∧(¬∃y(y 6= x)) is range safe, although it is clearly not domain
independent (despite a theorem to the converse which is proved in [2]). We believe that
the source of the problem is a mistake in the way negation is handled there, and that it
should be corrected along the lines this is done below.

3What we present below is both a generalization and a simplification of Ullman’s orig-
inal definition. It should be noted that Ullman’s main concern is the stronger property of
domain-independence that we discuss in subsection 3.2.
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a common generalization of the various notions described above one should
indeed consider partial safety. In other words: safety should be viewed as
a relation between formulas and (finite) sets of variables rather than as a
property of formulas 4. Since two different issues are involved here (size and
computability), this observation leads to the following two generalizations of
SS(D) (where Fv(E) denotes the set of free variables of E):

Definition 1. A relation � between formulas A of a first-order language L
in a signature σ and subsets of Fv(A) is a size-safety (s-safety) relation if it
satisfies the following conditions:

(1) A � ∅ for all A.

(2) If x 6∈ Fv(t) then x = t � {x} and t = x � {x}.

(3) If A � X and B � X then A ∨B � X.

(4) If y 6∈ X and A � X ∪ {y} then ∃yA � X.

(5) If A � X, B � Y , and X ∩ Fv(B) = ∅ or Y ∩ Fv(A) = ∅, then
A ∧B � X ∪ Y .

Definition 2. A c-safety relation between formulas of a language L and finite
sets of variables is defined like in Definition 1, except that condition (1) is
replaced by the following weaker conditions:

(1a) p(x1, . . . , xn) � ∅ in case p is a primitive n-ary predicate symbol of σ.

(1b) If A � ∅ then ¬A � ∅.

Our standard interpretation of s-safety is that A(x1, . . . , xn, y1, . . . , yk)
is s-safe w.r.t. {x1, . . . , xn} in a given structure S, iff either n = 0, or
for any assignment c1 . . . , ck of values from S for y1, . . . , yk, the set of tu-
ples 〈d1, . . . , dn〉, which together with c1 . . . , ck satisfy A in S, is finite.
It is easy to prove that this interpretation indeed defines an s-safety rela-
tion (see section 4). To get an intuition concerning definition 2, think of
A(x1, . . . , xn, y1, . . . , yk) as a query with parameters y1, . . . , yk, and interpret
“A(x1, . . . , xn, y1, . . . , yk) � {x1, . . . , xn}” as: “The answer to the query A

4This may be compared with Tarski’s definition of the validity property of formulas in
structures via the satisfaction relation between formulas and assignments in structures.
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is finite and effectively computable for any values of the parameters”. In-
tuitively (see again section 4), this defines a c-safety relation, provided that
the interpretations of the primitive function symbols of σ are all effectively
computable, and the interpretations of the primitive predicate symbols of σ
are all effectively decidable (This cannot be rigorously proved, though, since
we do not have a precise definition of an “effectively computable answer to
a query”. We shall return to this point in section 4).

Note 1. For the present framework it is preferable to take ∧,∨,¬ and ∃
as primitive, and → and ∀ as defined in terms of them. Moreover: we take
¬(A→ B) as an abbreviation for A∧¬B, and ∀x1 . . . xkA as an abbreviation
for ¬∃x1 . . . xk¬A. This entails the following important property of “bounded
quantification”: If � is a c-safety relation, A � {x1, . . . , xn}, and B � ∅,
then ∃x1 . . . xn.A ∧B � ∅ and ∀x1 . . . xn.A→ B � ∅.

Note 2. In all examples we know, whenever a safety relation � is defined by
some semantic property, it obeys the following principle: If A � X, B is log-
ically equivalent to A, and Fv(A) = Fv(B), then B � X. s-safety is usually
closed under the even stronger principle: If A � X where X = {x1 . . . xk},
∃y1 . . . yn∀x1 . . . xk(A ↔ B) is logically valid, and {y1 . . . yn} ∩ Fv(B) = ∅,
then B � X. The reason we have not included these principles in the defini-
tions above is that we want to be able to define decidable safety relations that
can serve in applications as good substitutes for the undecidable, semantically
defined ones. Still, for convenience one may incorporate into the definitions
useful special cases of these properties, like standard boolean identities, and
the following facts concerning substitutions (which follow from the equiva-
lence between A(t/y) and ∃z∃y(z = t∧y = z∧A), where z 6∈ Fv(t)∪Fv(A)):

• If y 6∈ X, A � X∪{y}, Y ⊆ Fv(t), Y ∩Fv(A) ⊆ {y}, and z = t � Y for
z 6∈ Fv(t)∪Fv(A), then A(t/y) is equivalent to some B s.t. B � X∪Y .

• If y 6∈ X, A � X, and X ∩ Fv(t) = ∅, then A(t/y) is equivalent to
some B such that B � X.

The straightforward way of defining a reasonable syntactical substitute
for a given semantical safety relation is to use definitions 1 or 2 as a basis
for an inductive definition. In most cases this amounts to specifying what
atomic formulas (other than those of the form x = t or t = x) are taken
as safe w.r.t. what variables. For this it is usually best to use the following
generalization of the notion of a signature for a language (see the introduction
for the motivation):
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Definition 3. A safety-signature is a pair (σ, F ), where σ is an ordinary
first-order signature and F is a function which assigns to every n-ary symbol
s from σ (other than equality) a nonempty subset of P({1, . . . , n}), so that if
I ∈ F (s) and J ⊂ X then J ∈ F (s).

Definition 4. Let (σ, F ) be a safety-signature. �(σ,F ) (�s
(σ,F )) is the (in-

ductively defined) minimal c-safety (s-safety) relation � (in the first order
language induced by σ) which satisfies the following conditions:

1. If p is an n-ary predicate symbol of σ; x1, . . . , xn are n distinct variables,
and {i1, . . . , ik} is in F (p), then p(x1, . . . , xn) � {xi1 , . . . , xik}.

2. If f is an n-ary function symbol of σ; y, x1, . . . , xn are n+1 distinct vari-
ables, and {i1, . . . , ik} ∈ F (f), then y = f(x1, . . . , xn) � {xi1 , . . . , xik}.

Proposition 1. Both �(σ,F ) and �s
(σ,F ) satisfy the following conditions:

1. If A � X then X ⊆ Fv(A).

2. If A � X and Z ⊆ X, then A � Z.

In the coming sections we shall see several applications of these notions.

3 Safety in Databases

From a logical point of view, a database of scheme D = {p1, . . . , pn} is just
a given set of finite interpretations of p1, . . . , pn. As noted in the introduc-
tion, a corresponding query language is an ordinary first-order language with
equality, the signature of which contains D. A query is “safe” if its answer is
finite and computable for all interpretations in which p1, . . . , pn are finite (and
given), while the interpretations of all other predicate symbols are decidable,
and function symbols (if any) are interpreted by computable functions. Our
framework leads in this case to the following syntactical counterpart:

Definition 5. Let D be a subset of σ such that each q ∈ D is a predicate
symbol of arity kq.

1. The safety signature (σ, FD) corresponding to σ and D is defined by:

FD(q) =

{

P({1, . . . , kq}) if q ∈ D
{∅} otherwise
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2. A formula A is called (σ, FD)-safe if A �(σ,FD) Fv(A).

It is easy to show inductively (using the intuitive meaning of c-safety
given in the previous section) that each (σ, FD)-safe formula can safely be
used as a query for any database of scheme D, and that in a language without
function symbols every formula in Ullman’s SS(D) is logically equivalent to
some (σ, FD)-safe formula5. It is important to note that our notion can in fact
be used even if function symbols are allowed (provided that their intended
interpretations are computable). Moreover: it is very easy to extend it in a
natural way in order to be able to take into account safety properties that
other functions and relations (not in the database scheme) might have in
the intended domain(s). Suppose for example that “<” is in the language,
and that its intended interpretation is the usual order relation of N , or the
substring relation on strings. In such a case the set {x | x < a} is finite and
computable for every a in the intended domain. This fact can be exploited
by taking FD(<) = {∅, {1}}. An example of a query that will become then
(σ, FD)-safe is ∃x∃y(p1(x, y) ∧ z < x+ y).

3.1 An Application: Querying the Web

An interesting application of c-safety has implicitly been made in [15]. There
the web is modeled as an ordinary database augmented with three more spe-
cial relations: 6 N(id, title, . . .), L(source, destination, . . .), C(node, value).
The intuitive interpretations of these relations are the following:

• The relation N contains the Web objects which are identified by a
Uniform Resource Locator (URL). id represents the URL and is a key.

• The relation L holds between two nodes source and destination if there
is a hypertext link from the first to the second.

• The meaning of the relation C is that the string which is represented
by its second argument occurs within the body of the document in the
URL which is represented by its first argument.

The question investigated in [15] is: what queries should be taken as safe,
if we assume that what is practically possible in the case of N and L is to

5If we strengthen �(σ,FD) as suggested in Note 2, then SS(D) becomes a proper subset
of the set of (σ, FD)-safe formulas.

6For simplicity, we ignore other special relations which are used there.
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list all their tuples which correspond to a given first argument, while C is
only assumed to be decidable. A special “Safe Web Calculus” based on these
assumptions is then introduced. It is not difficult to see that the notion of
safety which is defined by this calculus is in fact equivalent to (σweb, Fweb)-c-
safety in our sense, where {L,N,C} ⊆ σweb, and F is defined like in ordinary
databases, except that F (L) = P({2, . . . ,m}) (where m is the arity of L),
F (N) = P({2, . . . , k}) (where k is the arity of N), and F (C) = {∅}.

3.2 Domain-independence

Another property of queries to databases which is considered to be crucial
([12, 24, 2]) is domain-independence (d.i.). Its definition (in the case of
ordinary databases) is the following:

Definition 6. 7 Let σ be a signature which includes
−→
P = {P1, . . . , Pn}, and

optionally constants and other predicate symbols (but no function symbols).

A query in σ is called
−→
P −d.i. (

−→
P −domain-independent) if it has the same

answer in S1 and S2, whenever S1 is a substructure of S2, and the interpre-
tations of {P1, . . . , Pn} in S1 and S2 are identical.

Our next goal is to show that domain-independence can also successfully
be handled within our framework (using safety-signatures as our main tool).
For this we generalize first the ordinary notion of an extension of a structure
(for a signature σ) to structures for safety-signatures:

Definition 7. Let (σ, F ) be a safety-signature with no function symbols
(other than constants). Let S1 and S2 be two structures for σ s.t. S1 ⊆ S2.
S2 is called a (σ, F )−extension of S1 if the following condition is satisfied:
If p ∈ σ is of arity n, I ∈ F (p), and a1, . . . , an are elements of S2 such
that ai ∈ S1 in case i 6∈ I, then S2 |= p(a1, . . . , an) iff ai ∈ S1 for all i and
S1 |= p(a1, . . . , an).

Note 3. Since ∅ ∈ F (P ) for all P ∈ σ, S1 is a substructure of S2 whenever
S2 is a (σ, F )−extension of S1.

Examples:

7This is a slight generalization of the definition in [Su98], which in turn is a general-
ization of the usual one ([Ki88,Ul88]). The latter applies only to free Herbrand structures
which are generated by adding to σ some new set of constants.
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1. Let σ = {=, <}, and let F (<) = {∅, {1}}. Obviously, a structure for σ
is a (σ, F )−extension of its initial segments (and only of them).

2. Let σAS = {=,∈} and let FAS(∈) = {∅, {1}}. In this case the “uni-
verse” is a (σAS, FAS)− extension of what are known in Set Theory as
“transitive sets”.

Definition 8. Let (σ, F ) be as in Definition 7. A formula A of σ is called
(σ, F )−d.i. w.r.t. X (A �di

(σ,F ) X) if whenever S2 is a (σ, F )−extension
of S1, and A∗ resulted from A by substituting values from S1 for the free
variables of A that are not in X, then the sets of tuples which satisfy A∗

in S1 and in S2 are identical. 8 A formula A of σ is called (σ, F )−d.i. if
A �di

(σ,F ) Fv(A).

It can easily be proved that �di
(σ,F ) is a c-safety relation. It follows that if

A �(σ,F ) X (Definition 4) then A �di
(σ,F ) X. In particular: if A �(σ,F ) Fv(A)

then A is (σ, F )−d.i. It is also obvious that if D is a database scheme
in a signature σ, then a formula A is (σ, FD)−d.i. iff it is d.i. for D in
the usual sense (of Definition 6). Since already in this case the notion of
d.i. is undecidable ([7]), the class of (σ, FD)−safe formulas is again a good
syntactical substitute.

Note 4. Despite the close connection, safety of queries (in the sense of being
“effectively finite”) and domain independence of them are in general indepen-
dent notions. Thus every logically valid sentence (or a logical contradiction)
is d.i. w.r.t. ∅, but not necessarily safe w.r.t. ∅. On the other hand ∀x.x = c
is (effectively) safe w.r.t. ∅ (it is true if the domain is a singleton, false
otherwise), but not d.i. w.r.t. ∅ (for precisely the same reason).

4 Safety in Computability Theory and in Metamathe-
matics

We have followed up to now the intuition that a query is safe iff its answer is
finite and computable, but we have not defined what “computable” means.
The intuitive notion we have in mind is not identical to that investigated
in Classical Computability Theory (CCT). CCT provides answers to the
questions “what extensional relations are decidable?” and “what extensional

8A∗ is a formula only in a generalized sense, but the intention should be clear.
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functions are computable?”. Queries define however intensional relations,
and CCT provides only necessary conditions (like finiteness and decidability)
for the computability of such relations and functions. Thus every extensional
finite relation is “computable” according to CCT, but in reality we might not
know how to actually compute an intensional relation even if its extension is
finite. However, it is precisely the question of computing intensional relations
and functions that we encounter in practice. A particularly delicate question
in this context is what is the interpretation of “The answer to the query ϕ
is computable” in case ϕ is a sentence (i.e.: a query with a “yes” or “no”
answer). This is a question to which CCT provides no clue, but is important
for database theory, and is also the main point of difference between s-safety
and c-safety. It should be noted that this question is crucial for constructive
computability theory too. Thus Bridges explicitly gives in [4] the following
example of a function f from N to N , which is “computable” according to
CCT, but not constructively so: For all n, f(n) is 1 if Goldbach conjecture
is true, 0 otherwise.

I am not aware of any precise definition in the literature (or an analogue
of Church’s thesis) for the concepts of “computable intensional function” and
“computable intensional relation”. What can therefore be done at present is
to provide obvious properties of these notions and use them for developing a
useful corresponding general theory.9 Where should we start? Well, the usual
approach to CCT is to characterize first the class of computable functions,
and then to define the class of decidable relations as those relations whose
characteristic functions are computable. However, in modern mathematics
functions are defined as a special type of relations, and so it seems more
reasonable from its point of view to go the other way around. This is certainly
more natural when a theory of intensional computability is sought, since even
intensional relations and functions should be defined in some formal language
— and what first-order languages (which are the most natural languages to
use for this purpose) directly define are relations. 10 Now for intensional
relations the general framework suggested here does provide a general relative
computability theory (though we do not claim it to be the ultimate one). In
fact it provides general sufficient criteria for a parametric formula in some
first-order language L to define a (finite) computable (intensional) relation

9A similar procedure is suggested in [17] as a possible approach for trying to prove
Church’s thesis in the extensional case.

10This has indeed been the approach of [21], where the class of “bounded formulas” is
used for defining the basic notions of CCT. We will return to this class below.
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in all structures for L in which the interpretations of the primitive predicates
and functions of L have certain computational properties:

Definition 9. Let L be a first-order language with equality, and let S be a
structure for L.

1. A formula A of L which is not a sentence is S−effective if the number
of tuples which satisfy it in S (for some order of its free variables) is
finite, and they can effectively be listed. A sentence is S−effective if its
truth-value in S can effectively be computed.

2. A formula A of L is S−effective w.r.t a finite subset X of its free
variables if for any substitution of concrete (syntactic names for) ele-
ments from S for the free variables of A which are not in X, we get an
S−effective formula (in the extended language L(S) of S ([17])).

Note 5. It should again be emphasized that this definition assumes the
intuitive notion of “effective computability” which is left here undefined (and
probably cannot be defined!). Note also that S−effectiveness of a formula A
w.r.t. ∅ means that the relation on S which A defines is effectively decidable.

Definition 10. Let (σ, F ) be a safety-signature. A structure S for σ is
appropriate for (σ, F ) if it satisfies the following two conditions:

• If p is an n-ary predicate symbol of σ; x1, . . . , xn are n distinct vari-
ables, and {i1, . . . , ik} ∈ F (p), then p(x1, . . . , xn) is S−effective w.r.t.
{xi1 , . . . , xik}.

• If f is an n-ary function symbol of σ; y, x1, . . . , xn are n+1 distinct vari-
ables, and {i1, . . . , ik} ∈ F (f), then y = f(x1, . . . , xn) is S−effective
w.r.t. {y} and w.r.t. {xi1 , . . . , xik}.

Theorem 1. If S is appropriate for (σ, F ), and C �(σ,F ) X, then the formula
C is S−effective w.r.t. X.

Intuitive Proof: By induction on the structure of C. If C is of the form
x = t or t = x then the claim is proved by induction on the structure of
t (using the assumption that every formula of the form y = f(x1 . . . , xn)
is S−effective w.r.t. {y}). The other safety conditions concerning atomic
formulas directly follow from the fact that S is appropriate for (σ, F ). The
induction step splits into four cases. We do here the case where C = A ∧B,
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A � X, B � Y , and Y ∩ Fv(A) = ∅. To simplify notation, assume that
Fv(A) = {x, z}, Fv(B) = Fv(C) = {x, y, z}, X = {x}, Y = {y}. Let c be
an element of S. To compute {< x, y >∈ S2 | C(c/z)}, compute first the
set Z(c) = {x ∈ S | A(c/z)} (Z(c) is finite and effectively computable by
our assumptions on A). Then for each d ∈ Z(c) compute the set W (c, d) =
{y ∈ S | B(d/x, c/z)} (W (c, d) is finite and effectively computable by our
assumptions on B). The set {< x, y >∈ S2 | C(c/z)} is the finite union of
the sets {d} ×W (c, d) (d ∈ Z(c)).

We present now two famous applications of Theorem 1 from the literature
on Metamathematics. This is another area in which one needs (especially
for the proof of Gödel’s second incompleteness theorem) a class of effective
intensional relations, defined by formulas in some particular f.o. languages.

Bounded safety: Let σb = {=, 0, S,+,×, <}. Define Fb(<) = {∅, {1}} and
F (f) = {∅} for any function symbol f . Let �b=�(σb,Fb).

Primitive recursive safety: Let σPA = {=, 0, S,+,×}, and let σPR be
σPA augmented with function symbols for every primitive recursive
(p.r.) function. Define FPR(S) = P({1}), FPR(+) = P({1, 2}), and
FPR(f) = {∅} otherwise. Let �PR=�(σPR,FPR).

Definition 11. A formula A is �b-effective if A �b ∅. A formula A is
�PR-effective if A �PR ∅.

It is easy to see that the structure N of the natural numbers (with the
standard interpretations of the symbols in σb and σPR) is appropriate for
(σb, Fb) and (σPR, FPR). Thus {1} ∈ Fb(<) means that x < y �b {x} (where
x and y are two different variables). This in turn means that given any
n ∈ N , there is only a finite number of k’s such that k < n, and they can
effectively be listed. Similarly, the fact that {1, 2} ∈ FPR(+) means that
y = x1 + x2 �PR {x1, x2}. This in turn means that given any n ∈ N , there
is only a finite number of pairs 〈k1, k2〉 such that n = k1 + k2, and they can
effectively be listed. Both claims are obvious. It follows from Theorem 1
that if A is �b-effective or �PR-effective then A defines a decidable relation
on the structure N .

By letting x < y abbreviate in σPA ∃w∃x∃z.y = x + w ∧ w = S(z), we
get that x < y �PR {x} as well. Hence �b is contained in �PR. Now Note 1
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implies that the set of �b-effective formulas is closed under bounded quan-
tification (the same applies to the set of �PR-effective formulas). It follows
that this class is an extension of the class of bounded formulas ([21]). It
is not difficult to see, in fact, that the two classes define the same class of
(extensional) relations on N . Similarly, the class of �PR-effective formulas
11 is equivalent to Feferman’s class of primitive recursive formulas ([9, 14]),
which is of crucial importance in Metamathematics. Actually, this impor-
tance is easily seen to be due to the following connections between �PR and
provability:

Theorem 2. Let Q∗ and PA∗ be the extensions in σPR of Q and PA (respec-
tively) with the defining axioms of every p.r. function12. Let A be a formula
in σPR such that A �PR {x1, . . . , xk}.

1. Assume that A′ is a closed substitution instance of A. If A′ is true (in
N ) then `Q∗ A′, while if it false then `Q∗ ¬A′.

2. Let Fv(A)−X = {y1, . . . , yn}. If k > 0 then there exists a p.r. function
fA s.t. `Q∗ A→

(

x1 < fA(y1, . . . , yn) ∧ . . . ∧ xk < fA(y1, . . . , yn)
)

. 13

3. A→ PrPA∗(dA(ẋ1, . . . , ẋn, ẏ1, . . . , ẏn)e) is provable in PA∗.14

Proof: The proof of (3) is similar to the usual proofs of such results in
the literature, using the fact that by (2), if A �PR {x} then the existential
quantification of A on x can be replaced by bounded quantification on x.
The proofs of (1) and (2) are done simultaneously, using an induction on
the construction of �PR. We do here the case A = ∃yB as an example. To
simplify notation we assume that Fv(B) = {x, y, z}, B �PR {x, y} (and so
indeed A �PR {x}). By induction hypothesis there is a p.r. function fB s.t.:

(I) `Q∗ B → x < fB(z)

(II) `Q∗ B → y < fB(z)

11More accurately: the class of formulas which result from the �PR-effective ones by
substituting everywhere δf (x1, . . . , xn, y) for y = f(x1, . . . , xn), where δf (x1, . . . , xn, y) is
the standard formula in σPA which binumerates f in PA ([14]).

12It is well known ([14]) that Q∗ and PA∗ are conservative extensions of Q and PA.
13For convenience, we use here the same symbol for fA in both σPR and in our meta-

language.
14The notation here follows that of [20].
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It immediately follows from (I) that `Q∗ A → x < fB(z), proving (2) for A
(take fA = fB). To prove (1), assume that A′ is a closed instance of A. Then
there are numbers n and k such that A′ is equivalent in Q∗ to ∃yB(n, y, k). If
A′ is true in N there is a number m such that B(n,m, k) is true, and so (by
induction hypothesis) provable in Q∗. This entails that A′ is provable in Q∗.
If, on the other hand, A′ is false then B(n, i, k) is false for every i < fB(k).
Hence, by induction hypothesis, we have for every i < fB(k):

(III) `Q∗ ¬B(n, i, k)

On the other hand (II) above implies that

(IV) `Q∗ B(n, y, k) → y < fB(k).

Together, (III) and (IV) imply that `Q∗ ¬∃yB(n, y, k), and so `Q∗ ¬A′.

Note 6. Let σp = {=, 1, S,+,×}. Define Fp(S) = P ({1}), Fp(+) = Fp(×) =
P ({1, 2}). Let �p=�(σp,Fp). It is possible to show that the class of �p-
effective relations is exactly the class of arithmetical relations that can be
decided in polynomial time (some other complexity classes can similarly be
characterized).

The class of �b-effective relations is a proper subclass of the class of �PR-
effective relations. Our general definition allows us, accordingly, to capture
different notions of “effectiveness”. None of them can exactly capture the in-
tuitive notion of “constructive effectiveness” (by a diagonalization argument).
What does seem to be robust is the notion of semi-decidable relations:

Definition 12. A formula is called �b-r.e. if it is of the form ∃xA, where
A is a �b-effective formula. A relation is called �b-r.e. if it is defined by a
�b-r.e. formula. The classes of �p-r.e. and �PR-r.e. formulas and relations
are defined similarly.

Proposition 2. The classes of �b-r.e. relations, �p-r.e. relations, and
�PR-r.e. relations are all identical (to the usual class of r.e. relations).

Note 7. From the last proposition it is clear that a possible formulation of
Church’s Thesis is that a relation R on N is semi-decidable iff it is definable
by a formula of the form ∃xA, where A is either a �b-effective or �PR-effective
(R is of course decidable iff both R and its complement are semi-decidable).
It follows that CCT for extensional relations does not really involve principles
that go beyond those that are suggested in our framework for c-safety of f.o.
formulas and for intensional computability.
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Note 8. Unlike in databases, the interest in CCT and in Metamathematics
has been in safety of a formula A w.r.t. ∅ (rather than w.r.t. Fv(A)).

5 Safety in Set Theory

As we have noted in the introduction, what the various axiomatic set theories
actually provide are syntactic criteria for classes of formulas which may be
assumed to be “safe” for applying the naive comprehension schema. This
is evident, e.g., in the case of Quine’s NF, in which the notion of a “strati-
fied formula” is used. However, we show in this section that it is true also
in the case of ZF , the most famous (and universally accepted) among the
axiomatic set theories. Most of the axioms of ZF are indeed just particular
instances of the comprehension schema. As noted in the introduction, the
guiding line behind the choice of these instances has been the semantic “lim-
itation of size doctrine” ([8, 10]). According to this criterion, only collections
which are not “too big” can be accepted as sets. Here “not too big” is an
intuitive notion (which encompasses quite large infinite sets). With this in-
tuitive notion in mind, a formula A of set theory may be called “size-safe”
(“s-safe”) w.r.t x, if {x | A} determines a collection which is “not too big”.
The comprehension axioms of ZF lists all the cases which are universally
recognized to be “s-safe” in this sense. Now in databases “size-safe” means
“finite”. In set theory it means something completely different (like “not
equipotent with the collection of all sets”). We show now that the principles
which have been used in these two disciplines in order to secure limitation
of size are nevertheless the same, although they have been developed inde-
pendently. This, we believe, provides strong support to the claim (recently
made, e.g., by H. Friedman) that with the exception of the infinity axiom,
all the other comprehension axioms of ZF are obtained by an extrapolation
from the finite case to the general one. It also leads to new presentations of
ZF which are based on purely syntactic considerations — in contrast to the
usual semantical justifications (as presented, e.g., in [18]).

To achieve these goals we should use of course an appropriate s-safety
relation rather than a c-safety relation (computability is not an issue here!).
To be able to present one, we need (because of the Powerset axiom) to as-
sume that =, ∈ and ⊆ are all primitive symbols of ZF 15. Finally, in order
to get a real insight into the nature of ZF , we follow its presentation in [18]

15Hence the usual definition of ⊆ in terms of ∈ should be taken as one of the axioms.
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(where the axioms of ZF are explained and an attempt is made to justify
them on a semantic ground). Practically this means that we use for ZF a
dynamic language which has the means to introduce new symbols for de-
finable functions. In other words: once ∃!yA(x1, . . . , xn, y) is proved, it is
possible to introduce a new function symbol FA together with the axiom
∀x1, . . . , xn(A(x1, . . . , xn, FA(x1, . . . , xn))) (see [17], section 4.6). Officially
we assume that the language includes all these function symbols from the
start, and that every instance of the following schema is an axiom:

∀x1, . . . , xn(∃!yA(x1, . . . , xn, y) → A(x1, . . . , xn, FA(x1, . . . , xn)))

By this we obtain a conservative extension of ZF which we denote by ZF f .
We next introduce a corresponding safety-signature:

Definition 13. Let σZF = {=,∈,⊆}, and let σZF f be σZF augmented with all
the function symbols of ZF f . Define FZF (∈) = FZF (⊆) = {∅, {1}}. Extend
FZF to σZF f by letting FZF f (g) = {∅} for every function symbol g.

In the rest of this section “safety” will mean (σZF f , FZF f )-s-safety. For
the reader convenience, we recall that this relation is defined here as follows:

(A) Every formula is safe w.r.t ∅.

(B) If x 6∈ Fv(t) then x = t, t = x, x ∈ t, and x ⊆ t are safe w.r.t {x}.

(C) If A and B are both safe w.r.t. X, then so is A ∨B.

(D) If A is safe w.r.t. X, B is safe w.r.t. Y , and X ∩ Fv(B) = ∅ or
Y ∩ Fv(A) = ∅, then A ∧B is safe w.r.t. X ∪ Y .

(E) If y 6∈ X and A is safe w.r.t. X ∪ {y}, then ∃yA is safe w.r.t. X.

Theorem 3. The standard comprehension axioms of ZF f (Pairing, Pow-
erset, Union, Separation, and Replacement) can be replaced by the following
single safe comprehension schema (SCnf ):

∃Z∀x.x ∈ Z ⇔ A, where A is safe w.r.t. {x}, and Z 6∈ Fv(A).

Proof: The comprehension axioms of ZF f are all instances of SCnf :

Pairing: ∃Z∀x.x ∈ Z ⇔ (x = y ∨ x = z)

The formula used here is safe w.r.t. {x} by (B) and (C).
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Powerset: ∃Z∀x.x ∈ Z ⇔ (x ⊆ y)

The formula used here is safe w.r.t. {x} by (B). 16

Union: ∃Z∀x.x ∈ Z ⇔ (∃v.x ∈ v ∧ v ∈ y)

The formula used here is safe w.r.t. {x} by (B), (D), and (E).

Separation: ∃Z∀x.x ∈ Z ⇔ (x ∈ y ∧B)

The formulas used in this schema are safe w.r.t. {x} by (A), (B), (D).

Replacement: ∃Z∀x.x ∈ Z ⇔ (∃v.v ∈ y ∧ x = t)

Here x, y, v are 3 distinct variables, and t is a term in which x does not
occur free. The formulas used in this scheme are safe w.r.t. {x} by
(B), (D), and (E).

For the converse, let C be a formula which is safe w.r.t. {x1, . . . , xn}
(where {x1, . . . , xn} are all free in C). Define Setx1,...,xn

C to be ¬C ∨ C in
case n = 0, and ∃Z(∀x1 . . . ∀xn(< x1, . . . , xn >∈ Z ⇔ C)) in case n > 0.
We show by induction on the structure of C that Setx1,...,xn

C is a theorem
of ZF f (the principle we want to show is obtained from this result as the
particular case in which n = 1). Most of the cases are straightforward.
We again do here the case of conjunction (which is the most complicated)
as an example. To simplify notation, assume again that Fv(A) = {x, z},
Fv(B) = {x, y, z}, A is safe w.r.t. {x}, B is safe w.r.t. {y} (and so A∧B is
safe w.r.t. {x, y}). By induction hypothesis, `ZF f SetxA, and `ZF f SetyB.
We show that `ZF f Setx,y(A ∧ B). Now the assumptions imply that there
are sets Z(z) and W(x,z) such that:

`ZF f x ∈ Z(z) ⇔ A `ZF f y ∈W (x, z) ⇔ B

It follows that {< x, y >| A ∧ B} =
⋃

x∈Z(z){< x, y >| y ∈ W (x, z)}. Hence

Setx,y(A∧B) follows from the axiom of replacement and the axiom of union.

16Note that the validity of the Powerset axiom is enforced here by taking ⊆ as primitive,
and letting {1} ∈ FZF (⊆).



ARNON AVRON 55

Example: The existence of the Cartesian product of two sets, U and V , is
due to the safety w.r.t. {x} of ∃a∃b.a ∈ U ∧b ∈ V ∧x =< a, b > (One should
here justify first the use of the term < a, b >. This is easy.

Already Theorem 3 suffices for supporting the claim that the construction
principles behind ZF are nothing more than standard syntactical principles
concerning the first-order logical constants which are normally used to secure
finiteness17. However, if one insists on using just standard first-order formulas
of the signature σZF , then replacement causes a problem. The reason is that
unlike the other comprehension axioms of ZF , its official formulation in ZF
has the form of a conditional. A possible solution to this problem is to
translate into the language of ZF the conditions which define safety, and
take these translations as our axioms. For this we assume first that a binary
function symbol <,> for forming ordered pairs is added to σZF , together
with an axiom which corresponds to its usual definition.18

Theorem 4. The various comprehension axioms of ZF can be replaced (in
the language with <,>) by the following axioms:

(A) Setx1,...,xn
A⇒ Setz1,...,zn

A where z1, . . . , zn is a permutation of
x1, . . . , xn.

(B1) setxx = y

(B2) setxx ⊆ y

(C) (Setx1,...,xn
A ∧ Setx1,...,xn

B) ⇒ Setx1,...,xn
A ∨B

(D) (Setx1,...,xn
A ∧ (∀x1 . . . ∀xnSety1,...,ym

B)) ⇒ Setx1,...,xn,y1,...,ym
A ∧B

in case {y1, . . . , ym} ∩ Fv(A) = ∅.

(E) Setx1,...,xn,yA⇒ Setx1,...,xn
∃yA

Proof: We shall show here how to prove replacement from the new set of
axioms, leaving the rest for the reader. For this it is convenient to use the
version of replacement given in [17]. In the present notation, this version can
be formulated as follows:

∀ySetxA⇒ Setx∃y.y ∈ w ∧ A

17This basing of the axioms of ZF on a syntactically defined notion of “smallness” is
similar in spirit to recent works on category-theoretic models of ZF (see [11, 19]).

18Alternatively, one may add a function symbol for forming unordered pairs.
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So assume ∀ySetxA. Since Setyy ∈ w is logically valid, this assumption
implies (Setyy ∈ w) ∧ (∀ySetxA). By axiom (D) we can infer therefore
Setx,yy ∈ w ∧ A. From this Setx∃y.y ∈ w ∧ A follows by axiom (E).

Note 9. Still another approach, in which an extra case is added to the notion
of safety in ZF (and the explicit use of the abstraction operation is allowed)
is outlined in [1]. In that paper also the infinity axiom is presented as a
particular case of the safe comprehension schema, but for this one needs to
use an extension of first-order logic with a transitive closure operation.

Note 10. We have seen that in database theory the interest is in safety
of a formula w.r.t. to its whole set of free variables. Then we saw that in
computability theory and in metamathematics the interest is in safety of a
formula w.r.t. the empty set of variables. Now we see that in set theory,
in contrast, the main interest is in safety of a formula w.r.t. exactly one of
its free variables! These differences might be the reason why the connection
between the three cases has been hidden for so long.

5.1 Absoluteness

It is interesting to note that also an analogue of the concept of domain-
independence from database theory (see subsection 3.2) has independently
been introduced in the literature on set theory. This is the notion of abso-
luteness, which is crucial for independence proofs (see, e.g., [13]). Indeed, it
is easy to see that a formula is (σAS, FAS)−d.i. with respect to ∅ (see the
second example after Definition 7) iff it is absolute according to the literature
on set theory. Again we see here an interesting difference between what has
been taken to be important in database theory and in set theory: while in
database theory the main interest is in d.i. of a formula w.r.t. its set of free
variables, in set theory the interest has been in d.i. of a formula w.r.t. ∅!.
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