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Abstract

In his well-known paper “How computer should think” ([Be77b]) Belnap argues that four
valued semantics is a very suitable setting for computerized reasoning. In this paper we vindicate
this thesis by showing that the logical role that the four-valued structure has among Ginsberg’s
well-known bilattices is similar to the role that the two-valued algebra has among Boolean
algebras. Specifically, we provide several theorems that show that the most useful bilattice-
valued logics can actually be characterized as four-valued inference relations. In addition, we
compare the use of three-valued logics with the use of four-valued logics, and show that at least
for the task of handling inconsistent or uncertain information, the comparison is in favor of the
latter.

Keyworkds: Bilattices, Paraconsistency, Multiple-valued systems, Preferential logics, Reasoning.

1 Introduction

In [Be77a, Be77b] Belnap introduced a logic intended to deal in a useful way with inconsistent
and incomplete information. This logic is based on a structure called FOUR, which has four
truth values: the classical ones, ¢ and f, and two new ones: | that intuitively denotes lack of
information (no knowledge), and T that indicates inconsistency (“over”-knowledge). Belnap gave
quite convincing arguments why “the way a computer should think” should be based on these
four values. In [Gi87, Gi88] Ginsberg proposed algebraic structures called bilattices that naturally
generalize Belnap’s FOUR. The idea is to consider arbitrary number of truth values, and to arrange
them (like in FOUR) in two closely related partial orders, each forming a lattice. The original
motivation of Ginsberg for introducing bilattices was to provide a uniform approach for a diversity
of applications in Al. Bilattices were further investigated by Fitting, who showed that they and
are useful also for providing semantic to logic programs [Fi90a, Fi91, Fi93, Fi94]. In [AA94, AA96]
we presented bilattice-based logics and corresponding proof systems. These logics turned out to
have many desirable properties (like paraconsistency). In the present paper we proceed with this
logical approach. In particular, we consider bilattice-based logics that are preferential in the sense
of Shoham [Sh87, Sh88], i.e.: they are based on the idea that inferences should be taken not
according to all models of a given theory, but only w.r.t. a subset of them, determined according
to certain preference criteria. We use here two main guidelines for making such preferences among
bilattice-based models:



1. Prefer models that assume as much consistency as possible. This approach reflects the in-
tuition that contradictory data corresponds to inadequate information about the real world,
and therefore should be minimized.

2. Prefer models that assume a minimal amount of knowledge; The idea this time is that we
should not assume anything that is not really known.

FOUR, the structure that corresponds to Belnap four-valued logic, is the minimal bilattice,
exactly as the structure that is based on the classical two values is the minimal Boolean algebra.
The main goal of this paper is to show that the logical role of FOUR among bilattices is also very
similar to that the two-valued algebra has among Boolean algebras. Indeed, it turned out that all
the natural bilattice-valued logics that we had introduced for various purposes can be characterized
using only the four basic values! This does not mean, of course, that from now on bilattices have
no value (exactly as the fact, that Boolean algebras can be characterized in {t, f}, does not mean
that Boolean algebras have no value). It does demonstrate, however, the fundamental role of the
four values.

In an opposite direction to that taken by Ginsberg and Fitting, other authors tried to get along
by using just three values for achieving the same (or similar) goals. We show, however, that the
use of four values is preferable to the use of three even for tasks that can in principle be handled
using only three values.

Taken together, the main import of our results is a strong vindication (so we believe) of Belnap’s
thesis concerning the fundamental importance of the four basic values for the goal of computerized
reasoning.

The rest of this paper is organized as follows: In Section 2 we introduce a propositional language
with four-valued semantics. Our language is based on the basic bilattice operators together with
an appropriate implication connective. In Section 3 we show the adequacy of this language by
exploring its expressive power as well as those of its fragments. Section 4 is devoted to introducing
the most important consequence relations that are based on FOUR, and to an examination of their
main properties. In Section 5 we compare four-valued formalisms with three valued ones, and in
Section 6 we generalize the four-valued logics of Section 4 to arbitrary bilattices. The main results
of this section is that by doing so we do not get any new logic. Finally, in Section 7 we summarize
the main results and conclusions of this work.

2 The language and its four-valued semantics

2.1 The algebraic structure and its basic connectives

The truth values of Belnap’s logic mentioned above have two natural orderings:

First we have the standard logical partial order, <;, which intuitively reflects differences in the
“measure of truth” that every value represents. According to this order, f is the minimal element, ¢
is the maximal one, and L, T are two intermediate values that are incomparable. ({¢, f, T, L}, <)
is a distributive lattice with an order reversing involution —, for which =T =T and =L =1. We
shall denote the meet and the join of this lattice by A and V, respectively.

The other partial order, <j, is understood (again, intuitively) as reflecting differences in the
amount of knowledge or information that each truth value exhibits. Again, ({¢,f, T,L}, <) is
a lattice where | is its minimal element, T — the maximal element, and ¢, f are incomparable.



Following Fitting [Fi90a, Fi90b] we shall denote the meet and the join of the <j-lattice by ® and
@, respectively.

The two lattice orderings are closely related. The knowledge operators ® and @ are monotone
w.r.t. the truth ordering <;, and the truth operators A, vV, and — (as well, of course, as ® and
@) are monotone w.r.t. <i. Moreover, all the 12 distributive laws hold, as well as De-Morgan’s
laws. The structure that consists of these four elements and the five basic operators (A, V, =, ®, ®)
is usually called FOUR. A double Hasse diagram of FOUR is given in Figure 1.

k T

Figure 1: FOUR

2.2 Designated elements and models

The next step in using FOUR for reasoning is to choose its set of designated elements. The obvious
choice is D={t, T}, since both values intuitively represent formulae known to be true. The set D
has the property that aAbe D iff a®be D iff both a and b are in D, while aVbeD iff a®be D iff
either a or b is in D. From this point the various semantic notions are defined on FOUR as natural
generalizations of similar classical notions: A waluation v is a function that assigns a truth value
from FOUR to each atomic formula. Any valuation is extended to complex formulae in the obvious
way. We will sometimes write 1 :b € v instead of v(1)) =b. A valuation v satisfies 1 iff v(1)) € D.
A valuation that satisfies every formula in a given set ' of formulae is a model of I'. The set of all
models of ' is denoted mod(T"). The structure FOUR together with D as the set of the designated
elements will be denoted in the sequel by (FOUR).

2.3 Implication connectives

Unlike in the classical calculus, Belnap’s logic has no tautologies. Thus, excluded middle is not
valid in it. This implies that the definition of the material implication p— ¢ as —pVq is not adequate
there for representing entailments. We introduce therefore instead the following implications and
equivalence operation on FOUR:



Definition 2.1 [Av91, AA9G]

Sh = b ifaeD
“20 TVt ifagD

a—b=(aDb)A(=bD —a)

ab=(a—b)Ab—a)

Proposition 2.2

a) v(y— ¢) is designated iff v(y) <;v(¢).
b) v(¢ <> ¢) is designated iff v(¢) =v(¢).

Notes:

1. Unlike the connectives of the basic language, the new connectives are not monotone w.r.t.

<k-

2. On {t, f} the material implication (—) and the two new implications are identical, so also
the connectives of Definition 2.1 are generalizations of the classical implication.

3. The sense in which D is a true implication will be clarified in Proposition 4.3 below.

2.4 Canonical examples

Example 2.3 (Tweety dilemma) Consider the following well-known puzzle:

bird(Tweety) — fly(Tweety)
penguin(Tweety) D bird(Tweety)
penguin(Tweety) D —fly(Tweety)
bird(Tweety)

penguin(Tweety)

Denote this set of assertions by I'. The first assertion of I' is formulated by a weaker “implication”
than the other two, since it is an instance of a rule that has exceptions. The six four-valued models

of I are given in Figure 2.

Model No. || bird(Tweety) fly(Tweety) | penguin(Tweety)
M1 M2 T T T
M3 -~ M4 T f Tt
M5 M6 t T Tt

Figure 2: The models of I'

Example 2.4 (Nixon diamond) This is another famous example :
quaker. Quakers are considered to be doves (however, there might be exceptions), and republicans
are generally hawks. Hawks and doves represent two different political views, and each person is

(roughly) either a hawk or a dove. A formulation of this puzzle is as follows:

Nixon is a republican and a



quaker (Nizon)

republican(Nizon)

quaker(Nizon) — dove(Nizon)
republican(Nizon) — hawk(Nizon)
dove(Nizon) D —hawk(Nizon)
hawk(Nizon) D —~dove(Nizon)

hawk(Nizon) V dove(Nizon)

Denote this set of assertions by A. The twelve four-valued models of A are given in Figure 3.

quaker(Nizon) | republican(Nizon) | hawk(Nizon) | dove(Nixzon)
M1 _ M4 T4 T T T
M5 M8 T, T f Tt
M9 — M12 T Tt Tt f

Figure 3: The models of A

3 The expressive power of the language

In this section we examine the expressive power of the language we intoduced above. We do it from
two different points of view (which happen to be equivalent in the two-valued case, but are not so
in general).

3.1 Characterization of subsets of FOUR"

Notation 3.1 For a set of formulae I' denote by A(T') the set of atomic formulae that appear in
some formula of ', and by L£(T") the set of literals that appear in some formula of T'.

Definition 3.2 Let ¢ be a formula so that A(¢) C{p1,...,pn}. Sy the subset of FOUR™ which
is characterized by 1, is:

Sy =1{(a1,az,...,a,) e FOUR" | V[(V1<i<n v(p;)=a;) = v(¢)) €D]}

Proposition 3.3 A subset S of FOUR" is characterizable by some formula in the language of
{_'aD} (Or {_'7/\ava®a@33a—|—}) iff (TaTa-'-aT)GS'

Proof: If ¢ is any formula in the language of {—-,A,V,®,®,D, T} s.t. A(¢) C{p1,...,pn} and
v(p1) = v(p2) = ... =v(pn) = T, then v(¢p) = T. Hence the condition is necessary. For the
converse we introduce the following connectives: pAg = —=(p D —q), pVg = (pDq) Dq, fn =
p1A=p1ApaA—paA ... ppA—p,. The following properties are easily verified:

1. A is associative. Moreover,

N Sl<i<n—1 u() ¢D
(1Al A = { V(1) Vi<i<n—1v(y;) €D



2. v(p1 Ao ... Apy) € D iff V1<i<n v(y;) € D.
3. V is associative. Moreover,

oo ) v(yn) V1i<i<n—1v(¢;)¢D or v(¢,)=T
V(1 ViV . Via) = { t otherwise
4. v(1 VoV ... Vep,) € D iff F1<i<n v(3;) € D.
5. fn has the following property:

T Vi<i<nv(p)=T
f otherwise

V(fn) -

Now, by (2) and (4) it follows that:

(’l) SZIA---Awm - ‘5’31 Nn...N S,Zm ('L’l) S,Zl\*/___\*/wm - ‘5’31 U...uU Snm
Let d=(ay,...,a,) € FOUR". Define, for every 1<i<n,
Di A —Pi if (L,;ZT
pi = Pi NP D fn) if aj=t
! —pi A (pi D fn) ifa;=f

(=pi D fn) A (pi D fn) if a; =1

Using the observations above, it is easy to see that ¥ApIA ... 4% characterizes {"I:,EL'}, where

-

T=(T,T,...,T). This and (ii) above entail the proposition. O

Note: Obviously, the characterizing formula is much simpler in the {—, A, D}-language, where we
can use A instead of A and V instead of V.

i From Proposition 3.3 it follows that the language of {—, D} should be extended in order to get
full characterization of subsets of FOUR™. One possibility is to add the propositional constant f:

Theorem 3.4 Every subset of FOUR" is characterizable in the language of {—, D, f}

Proof: All we need to change in the proof of Proposition 3.3 is to use f instead of f, in the
definition of ¢@. After this change the A-conjunction of the new t7’s characterizes {@} and not
{"I:, a}. This suffices (using V) for the characterization of every nonempty set. The empty set itself
is characterized by f. O

Note: Since f=—(L D L), the language of {—, D, L} also suffices for representing all subsets of
FOUR".

Proposition 3.3 entails that one cannot delete f from the set {—, D, f} and retain the validity
of Theorem 3.4. We next show that — and D cannot be deleted either:

Corollary 3.5 D is not definable in terms of the other connectives we consider here.

Proof: By Theorem 3.4 it is sufficient to show that {1} (for example) is not characterizable in
the language {—,A,V,®,®,t, f, L, T}.! This follows from the fact that these connectives are all
<j-monotone. It follows that if A(y)) C {p1} and v1(p1) <gv2(p1) for some valuations vy, v9, then
v1 (1Y) <gvo(1)). In particular if LES&, then also f,t, T € Sq}). O

'Note that {1} is not characterizable even though the use of the propositional constant L is allowed.



Corollary 3.6 — is not definable in terms of the other connectives.

Proof: Again, we show that without — not all subsets of FOUR are characterizable. For this it is
sufficient to show that if ¢ is a formula in the language of {V, A, &, ®, D, ¢, f, L, T} and A(¢)) C{p:1 },
then L € Sl}) iff fe S:/)' The proof of this fact is by an induction on the structure of .

e Base step: S =S+ =FOUR, S} =51=0,8),={t, T}

e Induction step:
1. Le S,}M¢ iff 1 e S:Z, and L€ S;&, iff fe S:Z, and f € Sgﬁ (by induction hypothesis), iff f € Sq]/)/\qﬁ.
2. Le Siw iff Le Sé) or Le Sqlﬁ, iff fe Sq}) or fe Sdl) (by induction hypothesis), iff f € Siw.

3. J_ESK}D(Z) iff J_QSJZ) or LeS! iff fQSJp or f ES(}) (by induction hypothesis), iff f E‘Sz]/oqﬁ'

The cases of ® and @ are similar to the cases of A and V, respectively. O

3.2 Representation of operations on FOUR"

We turn now to the subject of functional completeness.

Definition 3.7 An operation g : FOUR™ — FOUR is represented by a formula 9 s.t. A(y)) C
{p1,...,pn} if for every valuation v we have v()=g(v(p1),...,v(pn))-

The most important result of this section is the following:

Theorem 3.8 The language L* ={—,A, D, L, T} is functionally complete for FOUR (i.e.: every
function from FOUR™ to FOUR is representable by some formula in L*).

Proof: Let g: FOUR"™ — FOUR. Since f=-(L D 1), by Theorem 3.4 every subset of FOUR"
is characterizable in L*. Let, accordingly, w?, ¢9, and ¢ characterize g~ ' ({f}), g7 ({T}), and

g '({L}), respectively. Define: U9 = (w; DHOA@WE D T)A (W D L). It is easy to verify that ¥9
represents g. O

Notes:

1. If we follow the construction of W9 step by step under the assumption that there are only
two truth values (¢ and f), we shall get (with the help of trivial modifications, like replacing
p D f by —p and pA——p by p) the classical conjunctive normal form. Our construction is,
therefore, a generalization of this normal form.

2. The functional completeness property for operations is completely independent, of course, of
the choice of the designated values. It is remarkable that our choice of D has, nevertheless,
a crucial role in its proof (through the notion of characterizability of subsets, which does
depend on the choice of D).

The ten connectives we use are not independent. Obviously, A and V are definable in term of
each other (using —), and so are ¢t and f. There are, however, other dependencies. The following
identities are particularly important:?

1. T=(aD>a)®—(aDa)

"Definitions of V and A in terms of @, ®,t and f, which are dual to (2) and (5), have been given in [Av96].



2. a®b=(@AT)V(AT)V(aAb)
3. L=f®~f

4. f=—=(L>D1)

5. a®b=(aANL)V(bAL)V(aAD)

These identities mean that relative to the basic classical language L={—,A,V, D} the connectives
T and @ are interdefinable, while | is equivalent in expressive strength to the combination of ®
and f. It follows, for example, that the set {—, A\, ®,@®, D, f} is also functionally complete. This set
is obtained from the full classical language ({—, A, V, D, %, f}) by adding to it the lattice operators
of <; (® and ®).

Example 3.9 (Kleene’s three-valued logics and Fitting’s guard connective) The meet and the join
in FOUR with respect to <; correspond to the conjunction and disjunction of strong Kleene’s logic.
In order to represent the connectives of the other Kleene’s three-valued logics (weak-Kleene? and
sequential-Kleene?), Fitting [Fi94] introduces a new connective, called the guard connective. This
connective is denoted p : ¢, and is evaluated as follows: if p is assigned a designated value (¢ or T)
the value of p : ¢ has the value of ¢, otherwise p : ¢ has the value 1. The guard connective has the
following simple and natural definition in our language:®

p:ig=(pDq) ®-(pD-q)

We turn now to investigate the expressive power of the various fragments of our language which
include at least the basic classical language L={—,A,V, D}. From the discussion before Example
3.9 it follows that there are at most eight such fragments, corresponding to extending L with some
subset of (say) {®,®, f}. Our next theorem provides exact characterizations of the expressive
power of each of these fragments, implying that they are all different from each other. We show
that there is a correspondence between these eight fragments and the various possible combinations
of the following three conditions:

I g(T)=T
z

I1 ¢g(#) =T = 3N<i<nz;=T

Il (&) = L = 31 <i<nz; =1

Theorem 3.10 Let L = {—,A, D} and suppose that Z is a subset of {®,®, f}. A function g :
FOUR" — FOUR is representable in L U = iff it satisfies those conditions from I-IIT that all the
(functions that directly correspond to the) connectives in Z satisfy. In other words:

e g is representable in {—, A, D} iff it satisfies I, II, and III.
e g is representable in {—, A, D, f} (the full classical language) iff it satisfies IT and III.
e g is representable in {—, A, D, @} iff it satisfies I and IIIL.

e g is representable in {—, A, D, ®} iff it satisfies I and II.

% Also known as Bochvar’s logic.

*Also known as McCarthy’s logic.

SFitting [Fi94] also provides a definition for the guard connective, which is somewhat less straightforward, but
does not require implication: p:qg=((pRt)E-(pRt))Xq.



e g is representable in {—, A, D, ®, f} iff it satisfies II.
e g is representable in {—, A, D, ®, ®} iff it satisfies L.
e g is representable in {—, A, D, @, f} iff it satisfies III.

e g is representable in {—, A, D,®,®, f}.

Proof: The proof closely follows that of Theorem 3.8. The following changes should be made:

1. If f is not available we use f, as a substitute (see the proof of Proposition 3.3). In addition,
instead of w?, w%, and wi (which are not available in this case) we use ¢%, (;SQF, and (;Si the
formulae in the language of {—, A, D} which characterize {T }Ug ' ({f}), {TYUg *({T}), and
{TIUg '({L}) respectively (such formulae exist by Proposition 3.3).

2. If T is not available (i.e., ® ¢ Z) then we use the following sentence as a substitute:

Tp=@ Dp1)AP2Dp2) Ao A(Pn D Dn)

It is easy to verify that T, has the following property:

)T N<i<nv(p)=T
v(Tn) = { t otherwise

3. If L is not available (i.e., {®, f} € E) then if ® € E we use as a substitute for L the sentence

Ln=p1 @ Pp1®p2®p2Q... 0Py @ 7Py

If ® ¢ = we use instead the following sentence:
Ly = Visi(pi A((pi V =pi) D fn))

These sentences have the following properties:

)T Vi<i<nv(p)=T
v(dln) = { L otherwise

Jdi<i<nv(p)=L1 = v(l))=1

Following these guidelines, it is not difficult to prove the theorem. We show part 1 as an example,
leaving the rest to the reader.
Assume then that g: FOUR™ — FOUR satisfies I III. Define:

®9 = (¢4 D fa) A(¢F D Tu) A% D L})
®9 is in the language of {—, A, D}. We show that ®Y represents g. Let € FOUR™ and assume that
v(p;)==x; fori=1,....n.

Case 1: g(Z) =t. By condition I, Z # T. Since g(Z) # f this implies that ¥ ¢ {"?} Ug *{f}-
Therefore V(d)‘;’c) Z{T,t} and so Ix(gzﬁéfJ D fn) =t. The facts that v(¢% D T,)=¢ and v(¢] D L)) =t
follows similarly. Hence v(®9)=t=g(Z).

Case 2: g(Z)=f. Again, by condition I Z# T, and so v(fn)=f. In addition, V(QZS;) €{t, T} in this
case, and so v(¢% D fn)=f. It follows that v(®9)= f =g(Z).

Case 3a: g(Z)=T and £=T. Since ®¢ is in the language of {=, A, D}, also v(®9) =T =g(Z).



Case 3b: g(£)=T and Z#T. By condition II there exists 1<i<n s.t. ;=T and so v(T,)=T.
It follows that v(¢% D T,)=T (since v(¢%) € {t, T} in this case). On the other hand, by the same
arguments as in case 1, 1/(@25? D fn)=v(¢% D L)) =t. Hence v(®9)=T =g().

Case 4: g(#) = L. By III there exists 1 <i<n s.t. 2, =L and so v(L)) =L and Z# T. Since
in this case v(¢%) € {t, T}, it follows that v(¢% D L)) =wv(L))= L. Since the value of the other
components is again ¢ (like in case 1), v(®9) =L =g(¥). O

Corollary 3.11 The eight fragments above are different from each other.

Proof: It is rather easy to construct for every subset of I — III a function from FOUR™ to FOUR
that satisfies the conditions in this subset but not the rest. This easily implies the corollary. O

We conclude this section with a short discussion on the minimality of the set of connectives
in each case. By Corollaries 3.5 and 3.6, neither = nor O can be deleted from any of the sets of
connectives which we have provided in each case. Theorem 3.10 and Corollary 3.11 imply that
none of the connectives in {®, ®, f} can be deleted in case it is included in the set we construct.
This leaves only the question of the necessity of A. We shall content ourselves with an example in
which this connective is necessary, and an example in which it is not.

Proposition 3.12 The functionally complete set {—, A, D, T, L} considered in Theorem 3.8 is
minimal in the sense that no connective can be deleted from it without losing the functional
completeness.

Proof: We have discussed already the necessity of =, D, T and L (again: L takes here the role of
® and f together). To show that A is also indispensable we prove, by induction on the structure
of formulae, that no formula 1 (p, ¢) in the language of {—, D, T, L} defines a function g such that
g(t, L)=_1 while g(T,¢)=T. In particular A itself is not definable in this language. O

The set {—,A, D, T, L} is not minimal in the sense of the number of connectives in it. The next
proposition shows that there is a smaller set which is functionally complete.

Proposition 3.13 The set {—,®, D, L} is functionally complete for FOUR.

Proof: T and f are definable from this set as shown in the discussion before Example 3.9. Now,
define:

prg=({Aq&((-pD—q)Aq)

The relevant properties of N are the following;:
(
viptg) =4 L vip)=t v

Now, given a function g: FOUR" — FOUR, define:

Y= (DN A (WO TINW] DL)T

It is easy now to check that Y9 characterizes g. O

Although one can always replace @ by T, and the pair {®, f} by L.
"See the proof of Theorem 3.8 for the definition of ¢f, %, and ¥ .

10



Notes:

1. Using Theorem 3.10, Corollaries 3.5, 3.6, and Proposition 3.3, it is easy to show that no subset
of {=,A,V,®,®,D,t, f, T, L} with less than four connectives can be functionally complete.

2. The fact that L = f®—f together with Proposition 3.13 imply that {—,®, ®, D, f} is func-
tionally complete. Hence A can be deleted from the set provided by the last part of Theorem
3.10 (in contrast to that given in Theorem 3.8!)

4 Reasoning in FOUR

4.1 The basic consequence relation

We start with the simplest consequence relation which naturally corresponds to FOUR.

Definition 4.1 Suppose that I' and A are two sets of formulae. T'|=* A if every model of T' in
FOUR is a model of some formula of A.

Proposition 4.2 [AA96] =* is monotonic, compact, and paraconsistent.

Proposition 4.3 [AA96]
a) D is an internal implication for FOUR, i.e.: T,9p =4 ¢, A iff T|=4 D¢, A.
b) ¢ is an equivalence operator for FOUR, i.e.: 1 ¢[=*0 (1)) < O(¢).

4.1.1 Canonical examples — revisited

Example 4.4 (Tweety dilemma — continued) Consider again the set I' of Example 2.3.
Although I is classically inconsistent, nontrivial conclusions about Tweety can be obtained by =*:
Tweety is a penguin, a bird, and it cannot fly. The complementary conclusions cannot be obtained
by [=*, as expected.

Example 4.5 (Nixon diamond — continued) By using =* on the assertions of Example 2.4
one cannot tell whether Nixon is a dove or a hawk (which seems reasonable given the conflicting
defaults). One can still infer the explicit information about Nixon, i.e. that he is a republican and
a quaker. However, unlike in the classical case, the negations of these assertions cannot be inferred,
despite the inconsistency. What can be inferred is their disjunction: —hawk(Nizon)V-dove(Nizon).

4.1.2 Proof system

One of the biggest advantages of =* is that it has a corresponding proof system, which is both nice
and efficient. It was denoted GBL in [AA94, AA9Y6]:

Axioms: [y = A9

Rules: Exchange, Contraction, and the following logical rules:
Ly=A I'= A9
=] ot
-y =A = A,-)
r = A '=A = A
A=] T ¢g=A Y ¢ = A
DyAg=A =AY A

11



A=l =T ;:(2 A q;’;d): : FF: AA,’:(Z’/? Z) =]
T TEr rsagvg Y
o) TS g S ey P
R ey roages 0
S U Eve oA e B
~2=] FF;(T/:/;;Z?;»AA Fiie(ngjA [==3]
=] Tt = A rs At [=

[f=] I,f=A
[L=] I L=>A
[-l=] IL-L=A

t]
FZ}Aa_'f [:>_'f]

F=AT [=T]
= A-T [=-T]

It is easy to see that GBL is closed under weakening. We could, in fact, have taken weakening
as a primitive rule.

Definition 4.6 We say that A follows from I in GBL (T'Fgpr, A) if there exist finite I'C ', A’CA
s.t. "= A is provable in GBL.

Theorem 4.7 [AA96]
a) (Cut Elzmmatzon) Ty Fgpr Ar,9 and Tg, 9 Fapr, Ag, then I'y, T bgrr, Aq, Asg.
b) (Soundness and Completeness) T =* A iff T'gpr A.

Corollary 4.8 The {A,V,D,t, f}-fragment of =* is identical to the corresponding fragment of
classical logic.

Note: This means that like modal logic, |=* can also be viewed as an extension of classical logic
by new connectives (for example —). This is due to the fact that the classical negation of 9 can
be translated into % D f. It is more useful, however, to view — as the real counterpart of classical
negation.

Corollary 4.9

a) All the rules of GBL are reversible.

b) Given any sequent I'= A, one can construct a finite set S of clauses such that Fgg, I'= A iff
Fair, s for every s€ S.8

®By a “clause” we mean here a sequent which contains only literals.
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Proof:

a) This follows easily from cut-elimination. For example, the rule [=—D] is reversible because both
=(1h) D¢p) = 1 and —(p D $) = —¢ are easily derivable, using [- D=].

b) This is immediate from (a). O

Note: The last corollary together with the equivalence of F¢gr, and |:4 mean that we can develop
a tableaux proof system for |=*, which is almost identical to that of classical logic.” The main
difference is that unlike in classical logic, here a clause I'= A is valid iff 'NA #(. One should note
also that it is impossible here to translate a clause I' = A in which I' # () into a sentence of the
language without using the implication connective D!

As we have seen, |=* has a lot of nice properties. Still, it has some serious drawbacks as well:
It is too restrictive and “overcautious”. Thus it is strictly weaker than classical logic even for con-
sistent theories (a case in which one might prefer to use classical logic). Moreover, it totally rejects
some very useful (and intuitively justified) inference rules, like the Disjunctive Syllogism: From —p
and pVq one can never infer ¢ by using =*. Under normal circumstances we would certainly like
to be able to use this rule!

In the next subsections we consider several possibilities of refining |=4. The main theme is to
restrict the set of models we take into account, using some preference criteria. This is the idea
behind the notion of a preferential logic considered in [Sh87, Sh88]. This idea has recently received
a considerable attention (see, e.g., [Ma89, KLM90, Pr91, LM92, KL92, Ma94, Sc97]).

4.2 Taking advantage of the other partial order

A natural approach for reducing the set of models which are used for drawing conclusions is to
consider only the k-minimal models. The idea behind this approach is that we should not assume
anything that is not really known. Keeping the amount of knowledge as minimal as possible may
also be captured, at least in FOUR, as a kind of consistency preserving method: As long as
one keeps the redundant information as minimal as possible the tendency of getting into conflicts
decreases.

Definition 4.10 Let vq, 5 be two four-valued valuations, and I'  a set of formulae.
a) v is k-smaller than vy (14 <gvs) if for every atomic p, v1(p) <k va(p).
b) v is a k-minimal model of T if v is a <g-minimal element of mod(T).

Definition 4.11 T'={ A iff every k-minimal model of T in (FOUR) is a model of some § € A.
Note: Obviously, if I' =% A then I' =} A.

Example 4.12 (Tweety dilemma — continued) Consider again Examples 2.3 and 4.4. Among
the six models of I (see Figure 2), two are k-minimal:

M4 = {bird(Tweety): T, penguin(Tweety):t, fly(Tweety): f},

M6 = {bird(Tweety) :t, penguin(Tweety):t, fly(Tweety): T }.

9Such a system was introduced in [Fi89, Fi90a], but only walidity of signed formulae is considered there and not
the consequence relation. Moreover, only k-monotonic operators are dealt with in those papers.
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Using these models we reach the same conclusions as in =%
T =g bird(Twety), T =g penguin(Twety), T == fly(Twety),
T W4 —bird(Twety), T} —penguin(Twety), T %5 fly(Twety).

Example 4.13 (Nixon diamond — continued) Consider again Examples 2.4 and 4.5. Among
the twelve models of A listed in Figure 3, three are k-minimal:

M4 = {quaker(Nizon):t, republican(Nizon):t, hawk(Nizon): T, dove(Nizon): T},
M8 = {quaker(Nizon):t, republican(Nizon): T, hawk(Nizon): f, dove(Nizon):t},
M12 = {quaker(Nizon): T, republican(Nizon):t, hawk(Nizon):t, dove(Nizon):f}.

Again, using these models we reach the same conclusions as in =%, among which:
A =} quaker(Nizon), A =} republican(Nizon),
AW} —quaker(Nizon), A %4 -republican(Nizon).

The fact that in the last two examples we reached the same conclusions (at least with respect
to the literals) as in =* is not accidental. It is an instance of the following general proposition:

Proposition 4.14 If A does not include O, then T'E* A iff T =} A.

Proof: For the proof we need the following lemma:

Lemma: For every model M of I' there exists a k-minimal model N of I s.t. N <; M.

Proof: Suppose that M is some model of I', and let Sy = {M; | M; € mod(I"), M; < M}.
Let C' C Sj; be a descending chain w.r.t. <j. We shall show that C' is bounded in Sy, so by
Zorn’s lemma Sjy; has a minimal element, which is the required k-minimal model. Let N be the the
following valuation: N (p)=min<, {M;(p) | M;€C}. N is defined since C' is a chain, and FOUR has
a finite number of elements. Obviously N bounds C'. It remains to show that N € Sp;. Assume that
el and let A()={p1,...,pn} (see Notation 3.1). Then: N(p1)=M;, (p1),...,N(pn)=M;, (pn).
Since C' is a chain we may assume, without a loss of generality, that M;, >y ... > M;, , and so N
is the same as M; on every atom in A(¢). Since M;, is a model of 9, so is N. This is true for
every Y €' and so N € Sy as required.

Now, back to the proof of the original proposition: The “only if” direction is trivial. For the other
direction, suppose that I' \:i A, and let M be some model of I'. By the previous lemma there must
exist a k-minimal model N of " s.t. M >, N. Thus there is a § € A s.t. N(J) € D. Since all the
operators that correspond to the connectives of A are monotone w.r.t. <, M(d§) >, N(J). But D
is upwards-closed w.r.t. <g, therefore M (d) €D as well. O

Corollary 4.15 In the monotonic fragment of the language (i.e., without D), the logics =* and
=4 are identical.

Proposition 4.14 shows that as long as we are interested in inferring formulae that do not in-
clude D, we can indeed limit ourselves to k-minimal models without any loss of generality. This in
particular is the case when we are interested in inferring literals. Examples 4.12 and 4.13 show that
this approach may lead to a considerable reduction in the number of models that should be checked.

The situation is completely different when we do allow the implication connective to appear on
the right-hand side of |=;:
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Example 4.16 (Tweety dilemma [2.3, 4.4, 4.12] — continued) For I' of Example 2.3 we
have I' =} —penguin(Tweety) O f, although I' =4 =penguin(Tweety) D f.10 1t follows that in the
full language |:2 # [=*. This can be strengthen as follows:

Proposition 4.17 =} is nonmonotonic.

Proof: ¢ |:2 —q D p, since {p: L, ¢:t} is the only k-minimal model of q. On the other hand,
q,—q 3 —q D p, since {p: L, q: T} is the only k-minimal model of {g, ~¢}. O

Note: By Proposition 4.14, |:i is monotonic w.r.t. conclusions that do not contain D: If I’ |:iA
then I', 9 |:2 A, provided that D does not appear in the language of the formulae in A.

Using the example of the last proof, one can easily see that ¢ |:i —¢Dp and also —q,—q¢Dp |:ﬁp,
but —q, q %i p. It follows that \:i is not a consequence relation in the usual sense, since it is not
closed under (multiplicative) cut. This is not surprising, since |=} is not monotonic, and it is usual
to require a nonmonotonic relation to be closed only under cautious cut (see [Le92] and Section 4.5
below).

Proposition 4.18 =} preserves Cautious Cut: If I, ¢q,..., 9, Ef A and T =4, A for i=1...n,
then T'[=; A.

Proof: Suppose that M is a k-minimal model of T', but M (§) €D for every § € A. Since T’ [=1 ), A,
then M(1);) € D for i=1...n, and so M is a model of {I",91,...,9,}. Moreover, M must be a
k-minimal model of {T",1,...,,}, since any other model of this set which is strictly smaller than
M w.r.t. <, must be a model of I, which is k-smaller than M. Now, I';1q,...,, |:i A, thus
M(6) €D for some §€ A a contradiction. O

Despite the nice properties of |:ﬁ (more of which will be shown in the sequel; See the note at
the end of Subsection 4.5.2), we will see in what follows (see, e.g., Example 4.22 below) that this
consequence relation appears to be “too conservative”. In the following subsections we consider
therefore more subtle consequence relations.

4.3 A consequence relation for preferring consistency

Recall that the basic idea in taking the k-minimal models was to avoid meaningless (or redundant)
information. A “by-product” of this approach is a reduction in the level of inconsistency of our
set of assumptions. When we assume less, the tendency of getting into conflicts decreases. In
what follows we shall use a more direct approach of preserving consistency: Given a (possibly
inconsistent) theory I', the idea is to give precedence to those models of T' that minimize the
amount of inconsistent beliefs in T'.

Notation 4.19 Let v be a four-valued valuation. Denote:
a) 1={T}.
b) I(v,Z,)={p | p is atomic and v(p) €1, }.

Intuitively, Z; is the set of inconsistent values of (FOUR) (which in this case consists only of a
single element), and I(v,Z;) corresponds to the inconsistent assignments of v w.r.t. Z;.

'The meaning of ¢ D f is that ¢ cannot be true. This, of course, is stronger than saying that ¢ is not a theorem,
or even that —) is a consequence of the assumptions.
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Definition 4.20 Let I' be a set of formulae, and M, N — models of T'.

a) M is more consistent than N w.r.t. Zy (M >z, N) if [(M,Z,) CI(N,T,).

b) M is a most consistent model of T" w.r.t. Z; (Z;-mcm, in short), if there is no other model of T’
which is more consistent than M w.r.t. Z;. The set of all the Z;-mcms of I' is denoted mem (I, Zy).

Definition 4.21 T’ \:%1 A if every Z;-mcm of I' is a model of some formula of A.

Example 4.22 (Tweety dilemma — continued) Consider again Examples 2.3, 4.4, 4.12, and
4.16. Denote by I'"" the knowledge-base before Tweety is known to be a penguin, i.e.:

bird(Tweety) — fly(Tweety)
penguin(Tweety) D bird(Tweety)
penguin(Tweety) D —fly(Tweety)
bird(Tweety)

IV has 18 models altogether. They are listed in Figure 4.

Model No. bird(Tweety) | fly(Tweety) | penguin(Tweety)
M1 _ M3 T T.f T4, L
M9 M12 T £ 1 £l

M13 — M16 ¢ T T4 f, L
M17 MIS t t £l

Figure 4: The models of T”

Here mem (1, Z,) = {M17, M18}. Thus, using \:%1 one can infer that bird(Tweety) (but —bird(Tweety)
is not true), and fly(Tweety) (while = fly(Tweety) is not true). Also, nothing is yet known about
Tweety being a penguin. Note that fly(Tweety) is not a consequence of =} (and so not a conse-
quence of =* as well), although it seems to be an intuitive conclusion of I'". Therefore, as we have
noted before, =; might be considered as “overcautious”.

Suppose now that a new data arrives: penguin(Tweety). The models of the modified knowledge-
base, ', are listed in Figure 2. The mcms of I' w.r.t. Z; are denoted there by M4 and M6. Therefore,
according to the new information one should alter his beliefs and infer the intuitive conclusions, that
bird(Tweety), penguin(Tweety), and — fly(Tweety). The complements of these assertions cannot
be inferred by |:%1, as one expects.

Proposition 4.23 =7 is: (a) paraconsistent, (b) nonmonotonic.

Proof:
a) For example, p, —p bé%l g. A countermodel assigns T to p and f to q.
b) Consider, for instance, '={p, —-pV—q}. Then T \:%] —q but I' U {q} b&% —q. O

Proposition 4.24

a) If T|=* A then I')=7 A.

b) If I' = A then I'=7 A, provided that the formulae of A do not contain D.
c) ‘:%1 7é ‘:4 a’nd |:%1 # |:i
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Proof:

a) Immediate from the definition of =7 .

b) Follows from part (a) and Proposition 4.14.

c) Follows from Proposition 4.23(b) and its proof, since both =% and =} are monotonic w.r.t. the
language of {—,V}. O.

Proposition 4.25 If I', ¢ are in the language of {V,A,—,D,t, f} and " |:%1 1), then 1) classically
follows from T'.

Proof: Let M be a classical model of I'. M is, of course, also a valuation in FOUR, and for
formulae in the classical language ({—,V,A,D,t, f}) there is really no difference between viewing
M as a valuation in FOUR and viewing it as a valuation in {¢, f}.!" Tt follows that M is a model
of I in FOUR, and since I(M,Z,)=(, M must be an Z;-mcm of I". Thus M () is designated. But
we also know that M () € {t, f}, thus M (¢)) =t. It follows that M is a classical model of 1), and
so 1 classically follows from I'. O

4.4 A consequence relation for preferring classical assignments

The approach presented in this subsection is similar to that of the previous one. The difference is
that this time we prefer definite knowledge to an uncertain one. In particular, the approach taken
here prefers classical inferences whenever their use is possible.

Notation 4.26 Let v be a four-valued valuation. Denote:
a) IZ = {T7 l}
b) I(v,Zo)={p | p is atomic and v(p) € Zy}.

This time Zy is the set of the nonclassical values of FOUR, and I(v,Z;) corresponds to the
nonclassical assignments of the valuation v.

Definition 4.27 Let I' be a set of formulae, and M, N models of T.

a) M is more consistent than N w.r.t. Zy (M >1, N) if [(M,Z,) CI(N,Zy).

b) M is a most consistent model of T" w.r.t. Zy (Zo-mcm, in short), if there is no other model of T’
which is more consistent than M w.r.t. Z,. The Zy-mcms of I' are denoted by mem(TI', Zy).

Definition 4.28 T’ \:%2 A if every Zo-mcm of I' is a model of some formula of A.

Example 4.29 (Tweety dilemma — continued) Consider again Example 4.22 and Figure
4. When taking Z, as the set of the “inconsistent” values, M17 — the only classical model —
is also the only Zo-mem of TV. Tt follows that according to \:%2 one can infer that bird(Tweety),
fly(Tweety) (like in the case of =7 ), and —penguin(Tweety) (which is not deducible when using
|:%1). The inverse assertions are not true, as expected.

Now, let I' = I" U {penguin(Tweety)}. Like in the case of =7 , mem(T',I3) consists of the
valuations denoted M4 and M6 in Figure 2. The new conclusions are, therefore, bird(Tweety),
penguin(Tweety), and = fly(Tweety). Again, the complements of these assertions cannot be inferred
by |:%2. These are the intuitive conclusions in this case as well.

The following propositions are analogous to Propositions 4.23, 4.24, and 4.25, respectively:

"'This is so because {t, f} is closed under the corresponding operators.
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Proposition 4.30 =7, is: (a) paraconsistent, (b) nonmonotonic.
Proof: The proof is the same as that of Proposition 4.23, using |:%2 instead of |:%1. a

Proposition 4.31

a) If T}=* A then I'l=7 A.

b) If I'=} A then T \:%2 A, provided that the formulae of A do not contain D.
¢) Fy, # = and 7, # =

Proof: The proof is the same as that of Proposition 4.24, using |:%2 instead of |:%1. a

Proposition 4.32 Suppose that I', ¢ are in the language of {V, A, -, D, %, f}.
a) If T |:%2 1), then 1 classically follows from T
b) Suppose that T' is classically consistent. Then 1) classically follows from I' iff T’ \:%2 .

Proof: The proof of part (a) is the same as that Proposition 4.25(a). Part (b) follows from the
fact that if I is classically consistent then the set of its classical models is the same of the set of
the Zo-mcms of I in FOUR. O

It follows that \:%2 is a nonmonotonic consequence relation that is equivalent to classical logic
on consistent theories, and is nontrivial w.r.t. inconsistent theories.

4.5 General properties of =7 and 7,

We begin with a comparison between \:%1 and \:%2. In general, neither of these consequence
relations is stronger than the other. Consider, for instance, ['={p D> —p, -pDp}. The only Z;-mcm
of I" assigns | to p, while this valuation as well as the one in which p is assigned T are the Zy-mcms
of T'. Therefore, T’ |:%1 pDq while T’ [7&%2qu. On the other hand, \:%2 pV-p but [#%1 pV—p.

Proposition 4.33 Suppose that A(I',4) = {p1,p2,...}. Then I',p; V—p1,p2V-po,... \:%1 o iff
T,p1V-p1,p2V-pe, ... =1, 9

Proof: Denote: IV =TU{p;V-p1,p2V-po,...}. Then mem (', Z;) =mem (T, I,), since each model
of I assigns to the formulae in A(T", ) values from {¢, f, T}. O

Next we consider some common properties of \:%1 and \:%2. In the rest of this section we shall
write \:% whenever the results apply to both these relations.

4.5.1 =% and GBL-rules

For future purposes we need the following obvious technical lemma:

Lemma 4.34 Let I'1,T's be two sets of formulae s.t. mod(I'y) C mod(I'y). Then every Z-mcm of
I's which is also a model of I'y must be an Z-mcm of T';.

Proposition 4.35 (Weak Soundness) If I'Fgpr, A then I' =% A.
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Proof: Obvious from the fact that =% is sound w.r.t. GBL and Propositions 4.24(a), 4.31(a). O

Note that what the previous proposition claims is that GBL is sound for |:% in the weak sense;
once we add another rule to GBL there is no guarantee that the extended system would be sound
for |:% anymore, even if the new rule itself is sound for |:%. Moreover, the last corollary does not
claim that every single rule of GBL is sound for =%. In fact, as part (b) of the following proposition
shows, this is not the case.

Proposition 4.36
a) (Strong Soundness) All the rules of GBL except [D=] are valid for =%.
b) [D=] is not valid for =3, but its following weakened version is valid:

[¢yD¢=4¢,A T,9D¢¢=A
Lo =A

[D:ﬂw

Note: In every monotonic system with contraction, [D=-]y is equivalent to [D=]: [D=]w follows
from [D=-] by using contraction, and [D=>] is obtained from [D=-]y by the addition of %) D ¢ to
the Lh.s. of both premises. However, most of the consequence relations that we discuss are non-
monotonic, and so the non-weakened version of [D=>] will not be sound for them.

Proof of Proposition 4.36: The validity of Exchange and Contraction follows immediately from
the definition of |=7. All the introduction rules on the right, except [=D] (i.e.: [= A],[= —A], [=
V], [= V], [= Q], [= —®], [= &, [= ~®], [= = D], and [= ——]) remain valid since the same for-
mulae appear in them on the lLh.s. of the premises and on the Lh.s. of the conclusion, hence
the same Z-mcms are involved, and the arguments in the case of =% can be repeated. Similarly,
the rules [A =],[-V =], [® =], [-® =], [-® =], [~ D=], and [-— =] remain valid since the Lh.s.
of the premise and conclusion of each one of them have the same set of models. The validity of
[-A D], [V =], and [@ =] easily follows from Lemma 4.34. Finally, to show the validity of [= D],
suppose that T 71 D ¢, A. Then there is an Z-mecm M of T so that M(y) € D, M(¢) € D, and
M(0) ¢ D for every § € A. In particular M is a model of 'U{¢}. By Lemma 4.34, M is an Z-mcm
of TU{®}. Therefore, T, [~ ¢, A a contradiction.

b) A counter-example: Let p,q be atomic formulae. Then =5 (pA-p) D f,q and gA—q =+ q, but
((pA=p) D f) D (gA—q) ~+q (a counter Z-mem assigns T to p and f to g). For showing the validity of
[D=]w, suppose that I, D ¢ %5 A. Then there is an Z-mem M of TU{¢ D ¢} such that M () ¢ D
for every § € A. Since I',49) D ¢ =% 9, A, necessarily M (1) € D. But M is a model of 1) D ¢, so
M(¢) €D and M is a model of T'U{¢y D ¢, ¢}. Moreover, by Lemma 4.34 M must be an Z-mcm of
TU{¥ D¢, ¢}. Now, ') D¢, ¢ =%+ A, hence there is a § €A s.t. M(§) €D — a contradiction. O

Notes:

1. Unlike the case of GBL and [=*, not all the rules of GBL that are valid w.r.t. =7 are
also reversible. [=D], for instance, is not (Consider, e.g., I' = {-p}, ¥ = p, and ¢ = q).
This property for itself should not be considered as a drawback, and it is even desirable in
nonmonotonic systems: Whenever I', ¢ = 1) D ¢ holds (which is the case with =1), then the
assumption that T = ¢, together with (Cautious) Cut (which is also valid w.r.t. [=7; see
below) yield I'= 1 D ¢. This, and the inverse of [=D], imply that I',4 = ¢. Therefore, had

[=D] been reversible w.r.t. =7, this consequence relation would have been monotonic.
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2. Proposition 4.36(a) implies that given some valid sequents, one can deduce others without
checking all the models. Here is a simple example: Since for atomic formula p, g it holds that
—p,pVq=+q, then by [=D] we have pVqE3-pDq.

4.5.2 Comparison with general patterns of nonmonotonic reasoning

Being nonmonotonic, |:%1 and |:%2 do not respect weakening. Many rules for replacing weakening
has been proposed in the study of general patterns of nonmonotonic reasoning (see, e.g., [Ga85,
Ma89, KLM90, FLM91, Le92, LM92, Ma94]). The logic proposed in most of these works is based on
the two-valued propositional one. In particular, unlike in the present treatment, the consequence
relations considered there are not paraconsistent.

In what follows we consider some of the proposals of what should nonmonotonic systems look
like, and adapt them to the four-valued case. In this way we would be able to give them paracon-
sistent capabilities.

Definition 4.37 [Le92] A plausibility logic in a language L is a relation = between finite sets of
formulae in L that satisfies the the following conditions:

Inclusion: T, =>1).
Right Monotonicity: If I'= A, then I'= 1, A.
Cautious Left Monotonicity: If =1 and I'= A, then I',¢p=A. 12

Cautious Cut: If T epy, ...,y =A and I'=;, A for i=1...n, then I'= A.
Proposition 4.38 =1 is a plausibility logic.!?

Proof: Inclusion and Right Monotonicity follow immediately from the definition of |:%. Cautious
Cut is shown like in Proposition 4.18. It is left to show Cautious Left Monotonicity: Assume that
['=51, and T =7 A, Let M be an Z-mcm of TU{%}. In particular, M is a model of I'. Moreover,
it must be an Z-mcm of I' as well, since otherwise there would be an N € mod(T"), that is strictly
more consistent than M. Since I' =1, this N would have been an Z-mem I'U{t} and therefore
N <z M w.r.t. TU{¢p} — a contradiction. Therefore, M is a Z-mcm of I'. Now, since I' =+ A, M
is a model of some § € A. Hence T, =7 A. O

The following definition is a generalization of the notion of preferential logics, which has been
introduced in [KLM90]:

Definition 4.39 Let |= be a consequence relation (in the usual monotonic sense). Suppose that
D is a connective that is an internal implication w.r.t. = and <> is a connective which is internal
equivalence w.r.t. = (see Proposition 4.3). Then a |=-preferential logic is a relation = that is
closed under the following conditions:

Reflexivity: If TNA#(D, then I'= A.
Left Logical Equivalence: f T''=1 <> ¢ and I',9p= A, then I, p= A.

Right Weakening: If I'l=9 D¢, A and I'=1), A, then I'= ¢, A.

2 This rule was first proposed in [Ga85].
"®Recall that this means that the rules of Definition 4.37 are valid w.r.t. both =7, and [=7,.
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Or: T, 9p=A and I, ¢=A, then I',9p V p=A. 14
Cautious Left Monotonicity.

Cautious Cut.

Preferential logics form the central family of nonmonotonic logics among those considered in
[KLM90]. In their original definition [KLM90] refer to the classical consequence relation together
with the classical material implication and equivalence. Naturally, we prefer to use |=* instead:

Definition 4.40 A four-valued preferential logic is a |=*-preferential logic, where D, <+ are the
connectives defined in Definition 2.1 (see also Proposition 4.3).

Proposition 4.41 \:% is a four-valued preferential logic.

Proof: By Proposition 4.3, D is indeed an internal implication and < is an internal equivalence
=4, Tt is left to show that the other conditions of Definition 4.39 are met. Reflexivity,
Cautious Left Monotonicity, Cautious Cut, and [V =] have already been proved in Propositions
4.36 and 4.38. It is left to show the validity of Left Logical Equivalence and Right Weakening.
Left Logical Equivalence: Let M be an Z-mcm of T'U{¢}, and suppose that M (d) € D for every
d€A. M is in particular a model of I' and thus it is a model of 9 <> ¢. By Proposition 2.2, T'U {4}
and T' U {¢} have the same models. Hence it is easily verified, using Lemma 4.34, that M is an
Z-mcm of T'U{¢}. But this contradicts the assumption that T, =3 A.

Right Weakening: Suppose that M is an Z-mcm of T' and M (¢), M (§) € D for every § € A. Since
M € mod(T") then by assumption, M (¢ D ¢) € D. But M(¢) ¢ D, and so M () ¢ D either — a
contradiction to T' =%, A. O

w.r.t.

Note: Similar proofs to those of Propositions 4.38 and 4.41 can be used for showing that |:2 is
also a plausibility logic as well as a four-valued preferential logic.

4.5.3 Reducing the amount of the preferred models

A we have already noted, one of the advantages of =7, and =7 w.r.t. =% is that the set of models
needed for drawing conclusions from the formers is never bigger than that of the latter. In this
subsection we consider cases in which it is possible to reduce the amount of the relevant models
even further, without changing the logic. The idea is to take the composition of <; and <7; Instead

of considering every Z;- [Z-]mcm of T', we use only the k-minimal models in this set.!”

Proposition 4.42 Suppose that the formulae of A are in the language without D. Then I’ |:%1 A
iff every k-minimal element of mcem/(T',Z;1) is a model of some § € A.

Proof: If I’ \:%] A then in particular every k-minimal element of mem(T',Zy) is a model of some
formula of A. For the converse, let M be an Z;-mcm of I'. By the lemma in the proof of Propo-
sition 4.14, there exists a k-minimal model N of I" s.t. N <, M. It follows that for every atom
p for which N(p) =T, M(p) =T as well. Thus I(N,Z,) CI(M,Z;). But M is an Z;-mcm of I,
so I(N,Z,) =1(M,Z;), and N is also an Z;-mcm of I". In particular, N is k-minimal among the
Zy-mems of T', and so there is a § € A s.t. N(J) € D. Since all the operators that correspond to

" This rule was denoted by [= V] in GBL.
15See [AA97a] for a practical usage of the k-minimal mcms of a theory.
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the connectives of A are monotone w.r.t. <y, M(d) >, N(§), and so M(0) € D as well. Therefore
=7 A O

Note: Proposition 4.42 is no longer true when D occurs in the conclusions. For a counter-example
consider, e.g., I' = {p,pVq}. The k-minimal element of mem(T,Z;) assigns ¢ to p and L to ¢,
therefore ¢ D —q is true in it. However, p,pVq [#%1 q2—q.

Proposition 4.43 Proposition 4.42 is not true for \:%2; It is not sufficient to consider only the
k-minimal elements of mem(I, Zy) for inferring I' =7, A, even if the formulae in A are all in the
language without D.

Proof: Consider the following infinite set: T'={p;V-p; Dpis1A—pit1 | 1 >1}. It is easy to verify
that mem(T,Zy) = { MY, Mif, M, Méf, ...}, where for every j>1, M; assigns L to {p1,...,pj_1},
t to pj, and T to {pj+1,pjt2,---}- Mjf is the same valuation as M;, except that p; is assigned f
instead of ¢. Therefore I' 7 pi. On the other hand, mem(T', Z3) has no k-minimal element (since

for every 7 >1, M;H <k th and M7f+] <k M]f), therefore everything would have followed from this
set (in particular p;), had we used only the k-minimal Zy-mems of I for drawing conclusions. O

Despite the previous proposition, we still have the following result:

Proposition 4.44 Suppose that I" is finite, and the formulae of A are in the language without D.
Then I' =7, A iff every k-minimal element of mem(T', Zy) is a model of some d € A,

Proof: Again, the “only if” direction is obvious. For the other direction, assume that the condition
holds. Since T' is finite, it has a finite number of (k-minimal models among the Z;-most consistent)
models. Therefore, for every Zo-mcm M of I' there is a model N which is k-minimal among the
Zy-mcms of T', and N <, M. By our assumption, there is a § € A s.t. N(0) € D. Like in the proof
of the Proposition 4.42, this implies that M (§) € D as well, and so T’ \:%2 A. O

Note: Like in Proposition 4.42, the condition about A is necessary in Proposition 4.44 as well: For
giving a counter-example in this case note that I" must be inconsistent (otherwise the Zo-mcms of T’
are its {t, f}-models, and so each Zo-mcm is k-minimal). Consider, therefore, I'={p D —-p, -p D p}.
The k-minimal element of mem(T, Zo) assigns L to p, and so pD f is true in it. On the other hand,

NNy

4.6 The monotonic classical fragment

We conclude this section with some results concerning the {V, A, =, ¢, f }-fragment of the language.
This fragment may be called the monotonic classical language. 1t is extensively discussed in the
literature, and although it has relatively weak expressive power in the multi-valued setting, the
corresponding fragments of our logics have many nice properties.

First, it is well known that with respect to the monotonic classical language =* is identical to
the set of “first degree entailments” in relevance logic (see [AB75, Du86]). The exact connection is

that ¥1,..., Y F 1, ifF 1 AL AP =1 V...V ¢y, is a first degree entailment.

A second important observation is that relative to this language, |:%2 is really a three valued
logic:
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Proposition 4.45 Suppose that the formulae of I' are in the language of {V, A, -, ¢, f} and that
M is an Ty-mcm of I'. Then there is no formula ¢ s.t. M (¢)= L.

Proof: Since {t, f, T} is closed under —,V and A, it is sufficient to show the proposition only for
atomic formulae. Define a transformation g : FOUR — {t, f, T} as follows: g(Ll)=1¢, g(b) =b
otherwise. Obviously, for every atom p, goM (p) >, M (p). Since every connective in the language
of I' is k-monotone, VyeT' goM(y) >, M (). Now, D is upward-closed w.r.t. <g, and so VyeTl
goM (y) €D. Thus goM is also a model of T". Since goM >7, M, necessarily goM =M. O

Another important property of formulae in the monotonic classical language is that like in the
classical case, every formulae can be translated to an equivalent formula in standard conjunctive
normal form (CNF) or standard disjunctive normal form (DNF):

Proposition 4.46 Every formula 1 in the monotonic classical language can be translated to a
CNF-formula 9" and to a DNF-formula 9" s.t. for every valuation v in FOUR, v(¢) =v(¢')=v(y").

Proof: The proof is similar to that of the classical case, using the fact that de-Morgan’s laws,
distributivity, commutativity, associativity, and the double negation rule (=—¢ = ¢) remain valid
in the four-valued case. O

Another connection with classical logic is the following:

Proposition 4.47 Let I' be a classically consistent set in the monotonic classical language, and
suppose that 1 is a formula in CNF, non of its conjuncts is a tautology.'® Then v classically follows
from T iff T'}=7, 4.

Proof: (=) Assume first that 1 is a disjunction of literals, which is not a tautology. Suppose also
that T'}£7, 4. Let M be an Z;-mcm of I' s.t. M () € D. Since I' is classically consistent, it has a
classical model, N. Since I(N,Zy)=0, I(M,Z;)=0 as well. Now, define:

) t M (p)=t, or (M(p)=_1 and ~p€ L(¢)).

M(p) = { f otherwise
All the connectives in I' are k-monotonic. Therefore, since M’ >, M, and M is a model of T, M’
is a (classical) model of T" as well. It is easy to see that M'(y))=f, therefore 1) does not classically
follow from T.

Suppose now that 1) is a formula in CNF, non of its conjuncts is a tautology, and I [#%1 1. Then
it must have a conjunct ¢’ s.t. T [#%1 ', We have shown that 1)’ cannot classically follow from T,
therefore 1) also does not classically follow from I'.
(<) Follows from Proposition 4.25. O

The last two propositions together with Proposition 4.42 entail that for checking whether a
formula classically follows from a consistent set I', it is sufficient to perform the following steps:

1. convert the formula to a conjunctive normal form,

2. drop all the conjuncts which are tautologies, and

6 Classically, every formulae which is not a tautology is equivalent to some formula of this form.
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3. check the remaining formula only w.r.t. the k-minimal Z;-mcms of T".17

The next proposition should be compared with Proposition 4.43:

Proposition 4.48 Suppose that the formulae of I' are in the monotonic classical language. Then
=7, A iff every k-minimal element of mem(T, Z,) is a model of some § € A.

Proof: By Proposition 4.45, in this case every Zo-mcm of T' is also k-minimal in mem(T', Zy), and
so the claim follows. O

Next we compare \:%1 and |:%2 in the monotonic classical language. At the beginning of
Subsection 4.5 we have noted that in general, neither of these relations is stronger than the other.
As Proposition 4.49 below shows, this is no longer true in the case of the {V, A, =, ¢, f}-fragment:

Proposition 4.49 Let I', A, 9 be in the monotonic classical language.
a) If T|=7 A then I'=7 A.
b) If ¢ is a CNF-formula, non of its conjuncts is a tautology, then T' |:%1 W iff T \:%2 1.

Proof:

a) This follows from the fact that in the classical monotonic language every Zo-mem of T is also
an Z;-mcm of I'. Indeed, let M be an Zo-mcm of I', and suppose that N is another model of T’
s.t. N >z, M. Define for every atom p a valuation M’ as follows: M'(p) =t if N(p) = L and
M'(p) = N(p) otherwise. Since the language is k-monotonic and M' >, N, M' € mod(T"). Now,
I(M",Zy) =1(M'",Z;) = I(N,Zy) C I(M,Z;). Moreover, by Proposition 4.45, I(M,T;) = I(M,TI,),
thus I(M',Zy) CI(M,Z,), and so M' >z, M — a contradiction.

b) Obviously, it suffices to show the claim for a disjunction %) of literals that does not contain an
atomic formula and its negation. So assume that I’ %%1 1. Then there is an Z;-mem M of I" s.t.
M (1) ¢D. Consider the valuation M', defined as follows:

" if M(p)=_L and pgL(¢))
Mp)={ f if M(p)=_L and pe L(1))
M (p) otherwise

1. M’ is a model of T, since VyeT' M'(v) >, M () and D is upward-closed w.r.t. <y,

2. M'" is an Zy-mcm of T, since if IN € mod(T") s.t. N >z, M' then I(N,Z;) C I(N,Z3) C
I(M",To)=1(M',7,)=1(M,Z,), so N >z, M a contradiction.

3. M'(¢y)) ¢ D — This follows from the structure of ¢ and from the fact that for every I € L(v),
M'(1)eD iff M(l)eD.

By (1) (3) it follows that T'}£7 4. O

Note: The converse of part (a) of Proposition 4.49 is not true in general. For instance, |:%2 pV-p
while %%1 pV—p.

'"This process might be useful in case I is a fized theory, but the check should be made for many different potential
conclusions. Note that if I" than the number of k-minimal Z;-mcms is never greater than the number of classical
models and is frequently smaller. We shall return to this point in Section 5.
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5 Four values are better than three

5.1 The three-valued logics in the context of FOUR

Three-valued logics might be roughly divided into two families according to the decision whether
the middle element is taken to be designated or not. Logics of the first class are, in fact, logics
that are based on the subset {t, f, L} of FOUR, while logics of the other class are based on the
subset {t, f, T}. In both cases the languages of the corresponding standard logics are based on
some fragment of the language of {—,V, A, ®,®, D¢, f, T, L} (see [Av91]). The interpretations of
these connectives are the reductions of the corresponding operators of FOUR (provided that the
three values are closed under the operations, which is the case for the classical connectives. Note
that {¢, f, L} is closed under ® while {¢, f, T} is closed under @). The functional completeness
theorem concerning FOUR induces a corresponding theorem for the three-valued subsets:

Theorem 5.1
a) The language of {—, A\, D, ®, f} is functionally complete for {¢, f, L}.
b) The language of {—, A, D, ®, f} is functionally complete for {¢, f, T}.

Proof: This easily follows from the fifth and the seventh items, respectively, of Theorem 3.10. O

Note: The connective D of FOUR induces two different three-valued implications, depending on
the interpretation of the third value as either L or T. Parts (a) and (b) of Theorem 5.1 refer, in
fact, to these two different meanings of D. On the other hand, the three-valued truth tables of ®
in {¢, f, L} and of @ in {¢, f, T} are identical. The two parts of Theorem 5.1 do provide, therefore,
two different functionally complete sets of 3-valued connectives, but this is due to the different
meanings of D.

5.2 Comparison with four-valued systems

The main advantage of using FOUR rather than three-valued systems is, of course, that it allows us
to deal with both types of abnormal propositions in one system. In this section we show, moreover,
that one can in any case do with FOUR everything one can do using only three values, sometimes
even more efficiently. We start by showing that it is possible to simulate the basic three-valued logics
in the context of FOUR. Denote by |:%<1 the consequence relation that corresponds to Kleene'’s
logic (i.e. T =5, A iff every {t, f, L}-model of T is a {t, f, L }-model of some formula in A), and
by =35 the consequence relation of the logic LP'® (i.e. I'l=8, A iff every {t, f, T }-model of T is a
{t, f, T }-model of some formula in A). Then:

Proposition 5.2 Let I'; A be two sets of assertions with A(T', A)={p1,pa,...}.
a) T ‘:E(]A iff F,p] A=p1 Df,pg/\ﬁpg Df, ... |:4A.
b) r |:%P Aiff T, p1 V-pr, paV-po, ... |:4 A.

Proof: Part (a) follows from the fact that the {¢, f, L }-models of I" are the same as the four-valued
models of TU{p1 A—p1 D f,poA=paD f,...}. Similarly, in case (b) the {t, f, T }-models of T are the
same as the four-valued models of 'U{p;V—p1,p2V—ps,...}. O

A basic drawback of standard three-valued logics in which the nonclassical value in not desig-
nated is that they are not paraconsistent [dC74]; {p, —=p} has in them no model, and so everything

'8 Also known as J3, RM3, and PAC (see [Do85, Ro89, Av91] and chapter IX of [Ep90]).
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follows from this set. Since we consider paraconsistency as one of the major reasons for switching
to multi-valued semantics, we shall concentrate in what follows on the other family of three-valued
logics, in which the third value is designated.

We have already mentioned LP as the basic logic among the three-valued logics with middle
element designated. It is well known that LP invalidates the Disjunctive Syllogism (1, ~)V ¢ 3 5 ¢).
Priest [Pr89, Pr91] argues that this is a drawback: a consistent theory should preserve classical
conclusions. He suggests to resolve this drawback by considering as the relevant models of a set
I' only those that are minimally inconsistent. Such models assign T only to some minimal set of
atomic formulae. The consequence relation =3, of the resulting logic, LPm, is then defined as
follows: I' =3, 4 iff every minimally inconsistent model of T" is a model of 1.

The original treatment of Priest defines LPm only for what we have called the monotonic clas-
sical language ({V,A,—,t, f}). This idea, however, can easily be extended to reacher languages,
and that is what we just have done.

Like =} and =5, the logic of Priest can also easily be simulated in FOUR:

Proposition 5.3 Suppose that A(T,9)={p1,p2,...}. The following conditions are equivalent:
1) r |:iPm¢ 4

2) Fapl Vp1,p2Vpa,. .. |:Il T,b

3) Fap] v_'p17p2v_'p27 s |:%2'l'b

Proof: The three-valued models of I" are the same as the four-valued models of T'U{p; V—p1,p2V
=pa,...}. Since each one of them assigns to the atomic formulae in A(T, 1)) values from {t, f, T},
the LPm models of I" are the same as the Z;-mcms and the Zy-mcms of T'U{p1V—p1,paV-pg,...}.
|

Although the motivation for =7 and especially for |=7, is similar to that of Priest’s |=}p,, (all
of them try to minimize the amount of inconsistency), they are not the same logic. For instance,
POP,PpOP |:?‘Pm p, while p D —p,—pDp bé%j p for 7 =1,2. On the other hand, the following
proposition shows that in the monotonic classical language =} 5. is identical to \:%2, and has strong
connections with =7 .

Proposition 5.4 Let I', A be two sets of formulae and 1) a formula in the language of {—, A, V. ¢, f}.
a) D=fp, A ff T A,
b) Suppose that ¢ is a formula in CNF, non of its conjuncts is a tautology. Then T' =3, 1 iff

Proof: We leave the proof of part (a) to the reader. Part (b) immediately follows from part (a)
and Proposition 4.49. O

Proposition 5.4(b) together with Proposition 4.42 imply that a switch to four-valued semantics
might improve the three-valued inference process of LPm: Let 1 be a formula in the monotonic
classical language. For checking whether T’ \:ipm 1), it is sufficient to convert 1 to a conjunctive
normal form, remove every conjunct which contains some atomic formula together with its nega-
tion, and check the resulting formula only in the k-minimal Z;-mcms of I'. The number of such
models is usually smaller (and never bigger!) than the number of the LPm-models. This is due to
the fact that from every k-minimal Z;-mcm one can obtain several LPm-models by changing every
1-assignment to either ¢ or f. Here is a very simple example: Let I'={-pVgq,pVq}. ¢ follows
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from T according to =}, and so also according to [=7, (and classically as well, of course). Now,
I’ has two LPm-models: {p:t,q:t} and {p: f,q:t} (these are also its classical models), but only
one k-minimal Zy-model: {p: L, q:t}. This single model suffices for inferring that ¢ follows from T".

Figure 5 summarizes the relationships among the three- and four-valued consequence relations
w.r.t the monotonic classical language.' One should remember, however, that important as it is,
this language is quite limited.

|:iP
o
‘_4 _ |_4 3 _ 4
— T Tk — LPm — [ Iy
o o
.4
|:I1

Figure 5: Relationships among the three- and four-valued systems where L={—, A, V,t, f}.

6 More than four values are usually not necessary

In this section we consider a class of structures that naturally generalize (FOUR). We then general-
ize the above four-valued logics to those structures in an attempt to achieve more powerful inference
mechanisms. The major result of this section is that this freedom to use more truth values does
not add much; Each one of the multi-valued logics considered here can actually be characterized
by one of our four-valued logics.

6.1 Bilattices
6.1.1 Background and motivation

Bilattices [Gi87, Gi88] are algebraic structures that naturally generalize Belnap’s four-valued lattice,
FOUR. The idea is to consider arbitrary number of truth values, and to arrange them (like in
FOUR) in two closely related partial orders, each forming a lattice. As in the four-valued case,
one intuitively understands one of the orderings as representing degrees of truth, and the other as
representing degrees of knowledge.

The original motivation of Ginsberg for using bilattices was to provide a uniform approach for a
diversity of applications in Al. In particular he treated first order theories and their consequences,
truth maintenance systems and formalisms for default reasoning. The algebraic structure of bilat-
tices has been further investigated by Fitting and Avron [Fi90b, Fi94, Av96]. Fitting has also shown
that bilattices are very useful tools for providing semantic to logic programs: He proposed an exten-
sion of Smullyan’s tableaux-style proof method to bilattice-valued programs, and showed that this

""The observation that =} and \z%l are incomparable follows from the facts that excluded middle is valid w.r.t.
E25 but not w.r.t. |:%1 , while the disjunctive syllogism (applied to atomic formulae) is valid in |:%1 but not in =3 p.
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method is sound and complete with respect to a natural generalization of van-Emden and Kowal-
ski’s operator (see [Fi90a, Fi91]). Fitting also introduced a multi-valued fixedpoint operator (that
generalizes the Gelfond-Lifschitz operator [GL88]) for providing bilattice-based stable models and
well-founded semantics for logic programs (see [Fi93]). A well-founded semantics for logic programs
that is based on the bilattice NINE (Figure 6) is considered also in [DP95]. Bilattices have also
been found useful for nonmonotonic reasoning [AA96], temporal reasoning [FM93], model-based
diagnostics [Gi88, AA97a], and reasoning with inconsistent knowledge-bases [Sc96, AA97b].

6.1.2 Preliminaries

Definition 6.1 [Gi88] A bilattice is a structure B = (B, <;, <g, —) such that B is a nonempty set
containing at least two elements; (B, <;), (B, <)) are complete lattices; and — is a unary operation
on B that has the following properties: (a) if a <; b, then —a >; —b, (b) if a <j b, then —a < —b,
(c) ~—a=a. %

In what follows we shall continue to use A and V for the meet and join of <;, and ®, & for the
meet and join of <g. Also, f and # still denote the respective least and greatest element w.r.t. <;,
while | and T — the least and the greatest element w.r.t. <. It is easy to see that ¢, f, T, and L
are all distinct from each other.

Definition 6.2 A bilattice is called distributive [Gi88] if all the twelve possible distributive laws
concerning A, V, ®, and @ hold. It is called interlaced [Fi90a, Fi91] if each one of A, V, ®, and &
is monotonic with respect to both <; and <.

The following subsets of the truth values in B are used for defining validity of formulae and the
associated consequence relation. They provide a natural generalization of the set of the designated
values {t, T} of FOUR.

Definition 6.3 [AA94, AAY6]

a) A bifilter of a bilattice B is a nonempty set F C B, F # B such that:
anNbe Fifae Fand be F

a®beFifae Fandbe F

b) A bifilter F is called prime, if it satisfies also:

avVbe Fifae Forbe F

adbe Fifae Forbe F

Note: It can be shown that a subset F of an interlaced bilattice B is a (prime) bifilter iff it is a
(prime) filter relative to <; and T € F (iff it is a (prime) filter relative to <; and t€F).

From now on (unless otherwise stated) F will denote a prime bifilter. Obviously, if a € F and b>;a
or b>ra, then b€ F. It immediately follows that ¢, T € F while f, 1 ¢ F.

Example 6.4 Ginsberg’s DEFAULT (Figure 6, right) and Belnap’s FOUR are bilattices that
contain exactly one bifilter, {T,¢}, which is prime in both. NINE (Figure 6, left), on the other
hand, contains two bifilters: {b | b > t} as well as {b | b >} dt}; both are prime.

Definition 6.5 [AA94, AA96] A logical bilattice is a pair (B,F), where B is a bilattice, and F is
a prime bifilter on B.

20Note that FOUR is the minimal non-degenerated bilattice.
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Figure 6: NINE, and DEFAULT

Note: It can be shown that every distributive bilattice can be turned into a logical bilattice.

In [AA96] it is shown that if B is interlaced, then D(B)={be B | b>, T} is always a bifilter,
and even the smallest one.

Example 6.4 — continued: (FOUR) = (FOUR, {t,T}), (DEFAULT, {t,T}), (NINE, {b | b >,
t}), and (NINE,{b | b > dt}) are all logical bilattices.

The following definition of entailment is a natural generalization of Definition 2.1 for arbitrary
logical bilattices.

Definition 6.6 [Av91, AA96] Let (B, F) be a logical bilattice (B, F). Define:

Sp = b ifae F
20TVt ifagF

a—b=(aDb)A(=bD —a)

a<b=(a—=b)A(b—a)
The following semantic notions are also obvious generalizations of the four-valued ones:

Definition 6.7

a) A wvaluation v in B is a function that assigns a truth value from B to each atomic formula. Any
valuation is extended to complex formulas in the standard way.

b) Given (B, F), we will say that v satisfies ¢ (v|=19), iff v(¢) € F.

¢) A valuation that satisfies every formula in a given set of formulas, T, is said to be a model of T'.
Given (B, F), the set of the models of I" will be denoted mod(T").

6.1.3 Types of truth values and valuations

We assign to every element of a bilattice B and to every valuation in B a specific type. This typing
of the space of valuations on B will have a great significance in what follows.
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Definition 6.8 Let (B, F7) and (B2, F>) be two logical bilattices. Suppose that b; is some element
of B; and that v; is a valuation on B; for i=1, 2.

a) by and by are of the same type if: (i) by € Fy iff by € Fy, and (i1) —by € Fy iff —bg € Fo.

b) v; and v, are of the same type if for every atomic p, v1(p) and v9(p) are of the same type.

Note that the types depend on the identity of the bifilter, so two valuations might not be of the
same type even in case they are identical and the underlying bilattice is the same. Consider, e.g.,
a valuation v on NINE s.t. v(p)=ot for some atom p. Then v for F={b | b > t}) is not of the
same type as the same v where the bifilter is F={b | b > dt}).

Proposition 6.9 Let (By,F;) and (B3, F2) be two logical bilattices and suppose that vy, vy are
two valuations on Bj, B (respectively), which are of the same type. Then for every formula 1,
v1 (1) and vy(1p) are of the same type.

Proof: By an induction on the structure of ¢/ (The fact that F is prime is crucial here!). O

Corollary 6.10 Let 14,5 be two valuations of the same type on a logical bilattice (B,F). Then
for every formula 1), 14 (1) and v,(1)) are of the same type.

Theorem 6.11 A model of T in (FOUR) is also a model of T" in every logical bilattice (B, F).

Proof: Let M be a model of I' in FOUR, and suppose that M(57) is the same valuation defined
on some logical bilattice (B, F). Since every bifilter F contains ¢, T and does not contain f, L, then
MW and MB-7F) are of the same type. Hence, by Proposition 6.9, M) (¢)) and MB-F)(¢)) are of
the same type for every ¢ €. In particular MB-%) must be a model of T in (B, F) as well.2! O

Lemma 6.12 Let v be a valuation in a logical bilattice (B, F). Then v() <> ¢) € F iff v(1)) and
v(¢) are of the same type.

Notation 6.13 Given a logical bilattice (B, F). Denote the four possible types of its elements by
757, 757, 127 and TP de.:

727 ={beB | be F,-bg F}, T/ ={beB | b¢F,~beF},
P27 ={beB | be F,-be F}, TP7 ={beB | b¢ F,~b¢ F}.
We shall usually omit the superscripts, and just write 7z, Ty, 77, 7.

Definition 6.14 Let (B,F) be a logical bilattice. Define a function h : B — FOUR as follows:

T ifbeTr

)t ifbeT;
h(b) = f if be Ty
1 ifbeT,

Proposition 6.15
a) h is an homomorphism onto FOUR.
b) M is a model in (B, F) of a set I' of formulae iff the composition hoM is a model of T" in (FOUR).

Proof: Left to the reader (see also [AA96, theorems 2.17, 3.17]). O

?!n the specific case where (B, F) is interlaced, the last theorem immediately follows from Proposition 3.1 of [Fi91],
since it is shown there that FOUR is actually a sub-bilattice of every interlaced bilattice B, so in this case M(4)(1/))
and M(B’f)('(/)) are not only of the same type, but are actually identical.
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6.2 Extending the four-valued logics to bilattice-based logics

In this section we introduce obvious generalizations of the logics of Section 4 to arbitrary logical
bilattices. The main conclusion is that like in the case of the generalization of the classical two-
valued logic to arbitrary Boolean algebra, no new logic is obtained.

6.2.1 The logics |:B’7'— and |:f’7

Definition 6.16 Let (B,F) be a logical bilattice, and suppose that ', A are two sets of formulae.
a) I'=57 A if every model of T is a model of some formula in A.
b) T |:f’}—A if every k-minimal model of I is a model of some formula in A.

Note that =1 = [=(FOUR) and =} = :,<€FOUR>. Therefore, in the particular case of (FOUR) we
shall continue to use the abbreviations =* and |=;.

Theorem 6.17 [AA96] I' =57 Aff T =4 A.

Proof: One direction follows from Theorem 6.11. For the other, suppose that I" %B’f A. Then
there is a valuation M that is a model of I' in (B, F) but M (d) € F for every € A. Let M'=hoM.
From Propositions 6.9 and 6.15 it follows that M’ is a four valued model of " s.t. M'(d) & {t, T}
for every 0 € A. Therefore I' [Z* A. O

Theorem 6.18 Let (B, F) be a logical bilattice s.t. inf, F e F.22 Then I' =07 A iff I'|=1 A,

Proof: First, we prove some lemmas:

Lemma 6.18-A: Suppose that §#X C B and let =X ={-z | € X}. Then inf; =X =—inf; X.
Proof: € X = —z€ X = —z >, infp X = z >, —infy X. Thus: infy =X >; —inf; X. On
the other hand, replacing X with =X yields that inf; =——X >, —inf, =X, i.e. inf; X >, —inf, - X.
Therefore —inf; X >, inf; =X, and so —infy X =inf; - X.

Lemma 6.18-B: For every z € {t, f, T, L} infy 7, € T,. Moreover: infy 7, = 1, inf} T; =inf, F =
ming F, infy Ty =—infy F=-ming F, and inf; 77 =min, F@—-ming F.

Proof: (i) The case =1 is trivial, since L €T .

(i) The case x = t: Let a = infy F. Since T; C F, infy T; > a. Now, a € F (given). On the
other hand, t € F. Hence t >y a, and so f >; —a. It follows that —a ¢ F (otherwise f € F a
contradiction). Therefore a € T;, and so a =ming ;.

(ii7) The case z=f. Let again a=inf; F. Since =T; CF, by Lemma 6.18-A —inf, T; >, a. Hence
infy Ty > —a. On the other hand we just have shown that —a ¢ F, while -——a=a € F. It follows
that —a €7y, and so —a=miny, T;.

(iv) The case x=T: Since T CF and =71 CF, inf TT >y infy F € F and —infy T+ > infy, F € F.
Hence inf 7+ € F and inf =7+ € F. By Lemma 6.18-A, then, inf 71+ € T1. For the other part
note that ming F @ - ming F € F and also —(ming F @ —ming F) = = ming F @ming F € F. Thus
ming F&—- ming F € 71, and so inf;, Tt < ming 7@ min; F. On the other hand, Vb€ T+ b>} min;, F
(by (i1)) and —=b >j —ming F (by (iii)). Hence Vb € T1 b >j ming F @ —ming F. In particular,
inf, 77 > ming F@®—ming F, therefore infy, 7T =ming F @ — miny F.

Lemma 6.18-C: Suppose that M is a k-minimal model of T in (B, F), and let h : B — FOUR be
the homomorphism defined in 6.14. Then hoM is a k-minimal model of " in (FOUR).

*2This is clearly the case whenever B is finite. It can be shown also that if B is interlaced then inf, F € F iff
inf; F € F. Moreover, in this case inf; F =infy FAT while inf, F =inf, F®t.
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Proof: Suppose not. Then there is another model N of I'; which is k-smaller than hoM in (FOUR).
By Theorem 6.11, N is also a model of I" in (B, ). Define a valuation N’ by N'(p)=inf}, Ty, (p
atomic). By Corollary 6.10, N’ is also a model of T in (B, F). Note that N and N’ are of the same
type, and so are M and hoM. Let p be an atomic formula.

Case A: If N(p) and (ho M)(p) are of the same type, then so are N'(p) and M(p). By the
construction of N', N'(p) <y M (p).

Case B: If N(p) and (hoM)(p) are not of the same type, then since N(p) <y (hoM)(p), there are
three possible cases: (i) N(p)=_L1 and (hoM)(p)€{t, f, T}, or (i1) N(p)=t and (hoM)(p)=T, or
(i41) N(p)=7f, and (hoM)(p)=T. Let’s consider each case:

Case B-(i): In this case N'(p)=_L as well, while M (p) ¢ T, thus M(p)# L and so N'(p) <x M(p).
Case B-(ii): Since by Lemma 6.18-B N'(p) = miny F and M(p) € F, so N'(p) <x M(p). But
N'(p)# M (p) since =M (p) € F while =N'(p) ¢ F. Therefore N'(p) <p M (p).

Case B-(iii): Again, by Lemma 6.18-B, in this case N'(p) =min; —F. But =M (p) € F, so N'(p) <k
M (p) here as well.

Now, since N is a model of I' in (FOUR), which is strictly k-smaller than ho M, there is at least
one atom pg that falls under case B above. For this pg, N'(pg) <x M (pg) while for any other atom
p, N'(p) <r M(p). Hence N’ is a model of I" in (B, F) which is k-smaller than M — a contradiction.

The “if” direction of Theorem 6.18 now easily follows from Lemma 6.18-C: Suppose that for some
logical bilattice (B, F), T2 A. Let M be a k-minimal model of I' s.t. M (§) & F for every § € A.
By Lemma 6.18-C hoM is a k-minimal model of T in (FOUR) of the same type as M. Therefore
(hoM)(0) &€ {t, T} for every §€ A, and so I' [} A.

The other direction: Suppose that T'j%#; A. Then there is a k-minimal model M of T' in (FOUR)
s.t. M(6) ¢ {t, T} for every § € A. Define a valuation M’ on B as follows: M'(p) = infy, Tar,) (p
atomic). By Corollary 6.10 and Lemma 6.18-B, ho M’ = M. Hence (by Proposition 6.15) M’ is
a model of T, and M'(d) ¢ F for every 6 € A. Moreover, M' is a k-minimal model of T', and so
r %S’fA. Indeed, if N is another model of T s.t. N <; M', then hoN < hoM'= M. Also, there is
ps.t. N(p) <M'(p) and so N(p) & Tar(p)- Hence h(N(p))# M (p), and so actually hoN <; M. Since
hoN is a model of I in (FOUR) (because N is a model of "), M is not k-minimal — a contradiction.
O

6.2.2 The logics of \zg’f

Like =% and =}, the logics =7, and [=7, have also natural generalizations to bilattices.

Definition 6.19 [AA94, AA96] Let (B,F) be a logical bilattice, and b an arbitrary element in
B (the carrier of B). A subset Z of B is called an inconsistency set in (B, F), if it has the following
properties: (a) be Ziff -be Z, (b) FNI=Tr.

Lemma 6.20 Suppose that Z is an inconsistency set in (B,F). Then:

a) Tr CZ C TrUT,.

b) Te€Z and ¢, f¢T.

Proof: Immediate from Definition 6.19. O

Example 6.21 77 and 7+ U 7| are respectively the minimal and maximal inconsistency set in

every logical bilattice. In (FOUR) the former set was denoted Z; (4.19a) and the latter — Z,
(4.26a). These are the only inconsistency sets of (FOUR).
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Notation 6.22 I(v,Z) = {p | p is atomic and v(p) € Z}. Intuitively, I(v,Z) is the set of the
inconsistent assignments of a valuation v w.r.t. an inconsistency set Z (compare to 4.19b and
4.26b).

The next two definitions are natural extensions of Definitions 4.20, 4.21, 4.27, and 4.28, to
general logical bilattices:

Definition 6.23 Let I' be a set of formulae, and M, N models of T.

a) M is more consistent than N w.r.t. Z (M >z N) if I[(M,Z)CI(N,T).

b) M is a most consistent model of I' w.r.t. Z (Z-mcm, in short), if there is no other model of T’
which is more consistent than M. The set of all the Z-mcms of I" is denoted mem(T, Z).

Definition 6.24 T’ \zg’}—A if every Z-mcm of T is a model of some formula of A2

Note: Several relations similar to \zg’}- are considered in the literature. We have already men-
tioned, e.g., Priest’s LPm [Pr91]. In our terms, Priest considers the inconsistency set Z = Tr.
In the 3-valued case this is the only inconsistency set, and it consists only of T. In the general
(multi-valued) case there are many others.

Kifer and Lozinskii [KL92] also propose a similar relation (denoted there /Ra, where A stands
for the values that are considered as representing inconsistent knowledge). This relation is consid-
ered in the framework of annotated logics [Su90a, Su90b]. See [AA96, AA97a] for a discussion on
the similarities and the differences between |:§’F and Ra.

We now show that again everything that one can infer by using |:§’f may be inferred in (FOUR)
together with either Z; or Z, as the inconsistency set:

Theorem 6.25 For every logical bilattice (B, F) and an inconsistency set Z there is a consistency
set J in (FOUR) s.t. TR A iff TEL A

Proof: In the course of this proof we shall use the following convention: whenever v is a function
from the atomic formulae to {t, f, T, L}, v* denotes its expansion to complex formulae in FOUR,
and v? denotes the corresponding valuation on B.%*

Let (B, F) be a logical bilattice, and let h : (B,F) — FOUR be the homomorphism onto FOUR,
defined in 6.14.

Lemma 6.25-A: v*=hov?B.

Proof: We show by induction on the structure of a formula 1 that v*(¢) =hov? (). For atomic
formulae this follows from the fact that on {¢, f, T, L}, A is the identity function. For more com-
plicated formulae we use the fact that h is an homomorphism.

23There is a slight (but significant) change between the relation =57 defined here and the relation ‘:fof(I)

(abbreviation: |[=con), considered in [AA94, AA96]. The difference is that instead of considering the inconsistent
assignments of v on every atomic formulae as we do here, in [AA94, AA96] only the assignments on the atomic
formulae that appear in the language of the set of assumptions, I, are considered. In other words, the relevant set of
assignments there is I(v,I',Z)={p€ A(T") | v(p) €Z} (cf. Definition 6.22). Our new definition has certain advantages
over the original one. Thus, Proposition 4.32(b) fails for ':3on({T,L}) and Proposition 4.36(a) fails for both ‘:gon({‘r})
and ‘:gon({T,L})-

*Note that although v*(p)=v"(p) when p is atomic, this might not be the case in general, unless B is interlaced.
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Lemma 6.25-B: v¥ is a model of T in (B, F) iff v* is a model of ' in (FOUR).
Proof: Immediate from Lemma 6.25-A and the fact that v?(y) € F iff v4(yp) =hovB(y) € {t, T}.

The rest of the proof is divided into two cases that correspond to the two possibilities of defining
an inconsistency set in (FOUR):

e case A: T, CT
e case B: T) \ T # 0.

For each case define a corresponding inconsistency set in (FOUR). In case A let J=To={T, L},
and in case B let 7=7;={T}.

Lemma 6.25-C: In case A, M is an Z-mcm of I in (B, F) iff hoM is an Zo-mcm of I" in (FOUR).
Proof: By Lemma 6.20(a) in case A, Z=T7UT, and so be T iff h(b) € Zy. Therefore, for every two
valuations My and M, in B,

M, >§’]: M,
< {p| Mi(p)eZ} C{p| My(p)eL}

< {p| (hoMi)(p)€Ta} C{p | (hoM2)(p) €L2}}
<= hoM, >%2 hoM,.

It immediately follows that if ho M is an Zy-mem of I' in (FOUR) then M is an Z-mcm of I' in
(B,F). For the converse, assume that hoM is not an Zo-mcm of I' in (FOUR). Let v be an
assignment in FOUR s.t. v* is a model of T in (FOUR) and v* >%2 hoM. By Lemma 6.25-A,

v*=hov®. Thus hov? >%2 hoM , and so v? >g’fM. Moreover, by 6.25-B v is a model of I' in B.
Hence M is not an Z-mcm of I" in (B, F).

Corollary 6.25-D: In case A, [ |=77 A iff T =4 A.

Proof: Suppose that T’ [7&%2 A. Then there is an assignment v in FOUR s.t. v* is an To-mcm of T’
in (FOUR) that is not a model of any § € A. By Lemma 6.25-A, v*=hov? and by 6.25-B, 6.25-C,
vBis an T-mem of T in (B, F) s.t. vB(8) & F for every 6 € A. Hence T [#g’fA. For the converse,
assume that M is an Z-mcm of T' in (B, F) which is not a model of any formula in A. Then, by
Lemma 6.25-B and 6.25-C, ho M is an Zy-mcm of I in (FOUR), and ho M (§) € {f, L} for every
0 € A. Therefore I" %%2 A.

Let us turn now to case B, in which there is an a € 7 \Z. Suppose that M is a model of I in
(B, F). Consider the valuation M,, defined for every atomic formula p as follows:

a it M(p)eT.NT
M (p) otherwise
Since obviously ho M =hoM,, then in particular:
(1) I(hoM.Iy) = I(hoMa,Th)

Lemma 6.25-E: For every ¢y €', M (¢) € F ift M, () € F.
Proof: Immediate from Proposition 6.9.
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Corollary 6.25-F: If M is an Z-mcm of I then M = M,,.

Proof: In other words, we have to show that there is no atom p such that M(p) €T, NZ. Assume
otherwise. Then M, >§’]: M. Since by Lemma 6.25-E M, is also a model of I, this implies that
M is not an Z-mcm of T'.

Lemma 6.25-G: If M =M, then:
(2) I(M,Z) = I(hoM,T)

Proof: If M = M,, there is no atom p such that M(p) € T, N Z. Hence, by Lemma 6.20,
M(p)eZ < M(p)eTt < (hoM)(p)€Zy, and so I(M,Z)=1(hoM,TI,).

Lemma 6.25-H: In case B, If M is an Z-mcm of I' in (B,F) then hoM is an Z;-mcm of I in
(FOUR).

Proof: Suppose that M is an Z-mcm of T' in (B, F). Assume that v is a valuation in FOUR s.t.
v'is a model of I' in (FOUR) and v* >7 hoM. By Lemma 6.25-B, v¥ is a model of I in (B, F).

Now, since obviously (v2),=vE, we have:
IwB,7) =1(hov® 7)) by Lemma 6.25-G
= I(hov®,7;) by Equation (1)
=10, Ty) by Lemma 6.25-A
C I(hoM,Zy) by the assumption
=I(M,T) by Corollary 6.25-F and Lemma 6.25-G

Hence v >§’FM, and so M is not an Z-mcm of I' in (B, F), a contradiction.

Corollary 6.25-I: In case B, |77 A iff D=4 A.

Proof: If T %g’fA then there exists an Z-mcm M of T s.t. M (§) € F for every § € A. By Lemma
6.25-H, hoM is an Z;-mcm of I" in (FOUR) and (hoM)(d) ¢ {t, T} for every § € A. Therefore
r %%1 A. For the converse, assume that I’ [7&%1 A. Suppose that v is an assignment in FOUR s.t.
vt is an Z;-mem of T' in (FOUR) and v*(0) ¢ {t, T} for every 6 € A. By Lemma 6.25-A v*=hovB.
By Lemma 6.25-B and its proof, v? is a model of T in (B, F) s.t. v?(5) € F for every 6 € A. By
Lemma 6.25-E the same is true for 2. Tt is left to show, then, that v2 is an Z-mcm of T in (B, F).
Suppose otherwise. Then there is an Z-mcm M of T', s.t. M >§’f vB. Since (vB), =12 and (by
Corollary 6.25-F) M = M, we have:

I(hoM,Z,) =1(M,TI) by Lemma 6.25-G
cIwB 1) by the assumption
= I(ho uB Z,) by Lemma 6.25-G
= I(hov®,7;) by Equation (1)

Therefore (hoM)>7 (hov?)=v". Since hoM is a model of I' (because M is), this is a contradiction.
This concludes the proof of Corollary 6.25-1 and Theorem 6.25. O

The following conclusion easily follows from the proof of Theorem 6.25:

Corollary 6.26 Let (B,F) and Z be some logical bilattice and an inconsistency set in it. Then:
a) If Tf’fCI then ‘:g,f = \:%17
b) If 707 ¢ T then =37 = =4 .
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Note: The relation =57 of [AA94, AA96] (see footnote after Definition 6.24) can also be charac-
terized by FOUR; I’ ‘:co’f(f) A iff there is an inconsistency set J in FOUR s.t. T’ \:ﬁon( A. The
proof is similar to that of Theorem 6.25; We omit the details.

T)

7 Summary and conclusion

Bilattices are algebraic structures that have been shown useful in several areas of computer science.
The smallest non-degenerated bilattice, FOUR, consists of four elements, and it is usually associ-
ated with Belnap four-valued logic. The goal of this work has been to show that the logical role
of FOUR among (logical) bilattices is similar to that the two-valued (classical) lattice has among
Boolean algebras. As such, FOUR provides a useful framework for capturing classical reasoning (in
cases its use is appropriate) as well as some standard non-monotonic methods and paraconsistent
techniques.

We began this work by providing appropriate interpretations of the classical connectives in
terms of FOUR, and adding to them connectives that correspond to the basic bilattice operations.
We have examined the expressive power of the various fragments of the resulting language, and
showed that (a fragment of) our language is functionally complete for FOUR.

With this syntactical tool in our disposal, we turned to considering the use of (FOUR) as our
main semantical tool. The existence of elements like T and 1, as well as the idea of ordering data
according to degrees of knowledge, suggest that this structure should be particularly suitable for
reasoning with uncertainty.

During the discussion on the importance of FOUR we have considered several inference relations
that allow plausible reasoning mechanisms:

e =% This is a consequence relation in the standard sense of Tarski and Scott. It was called
here “the basic consequence relation”. We have shown that this relation is sound and complete
w.r.t. the cut-free Gentzen type system GBL, monotonic, compact, and paraconsistent. Its
main drawbacks are that it is strictly weaker than classical logic even for consistent theories,
and that it always invalidates some intuitively justified inference rules, like the Disjunctive
Syllogism.

e =}: This relation considers only the k-minimal models for making inferences. The idea behind
its definition is that we should not assume anything that is not really known. We have shown
that as long as we are interested in inferring formulae that do not include our nonmonotonic
D, \:i is equivalent to =*. Therefore, in such cases we can indeed limit ourselves to the k-
minimal models without any loss of generality, and so reduce the amount of models required
for making inferences.

o \:%1: The idea here is to give precedence to the models that minimize the amount of in-
consistent beliefs. This approach reflects the intuition that contradictory data corresponds
to inadequate information about the real world, and therefore should be minimized. This
relation is a plausibility logic, paraconsistent, nonmonotonic, and preferential. In the mono-
tonic classical fragment of the language this relation can be used for efficiently checking which
element of a given set of formulae classically follows from a given consistent theory.

. \:%2: This relation prefers definite knowledge to an uncertain one. Thus, the approach taken
here is to prefer classical inferences whenever possible. Indeed, for consistent theories in the
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classical fragment this inference relation is identical to the classical one. In general, however,

4

=1,

is different than classical logic, since it is paraconsistent and nonmonotonic.

All these consequence relations can be generalized in a natural way to arbitrary logical bilattices.
A natural question that arises at this point is whether by this generalization one obtains something
that is not already available in (FOUR). Alternatively, one may wonder whether only three values
suffice. Our answer to both questions is basically negative. We have shown that everything that
can be done using three values is also possible in the four-valued setting, and even more efficiently.
On the other hand, we gave a sequence of theorems that show that it is possible to characterize in
FOUR any bilattice-valued version of the consequence relations mentioned above. The outcome is,
as the title of this paper implies, a strong evidence for the fundamental logical role and usefulness
of the four-valued framework.
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