
The Value of the Four ValuesOfer Arieli Arnon AvronDepartment of Computer Science Department of Computer ScienceSchool of Mathematical Sciences School of Mathematical SciencesTel-Aviv University Tel-Aviv UniversityRamat-Aviv 69978, Israel. Ramat-Aviv 69978, Israel.Email: ofera@math.tau.ac.il Email: aa@math.tau.ac.ilJanuary 21, 2004AbstractIn his well-known paper \How computer should think" ([Be77b]) Belnap argues that fourvalued semantics is a very suitable setting for computerized reasoning. In this paper we vindicatethis thesis by showing that the logical role that the four-valued structure has among Ginsberg'swell-known bilattices is similar to the role that the two-valued algebra has among Booleanalgebras. Speci�cally, we provide several theorems that show that the most useful bilattice-valued logics can actually be characterized as four-valued inference relations. In addition, wecompare the use of three-valued logics with the use of four-valued logics, and show that at leastfor the task of handling inconsistent or uncertain information, the comparison is in favor of thelatter.Keyworkds: Bilattices, Paraconsistency, Multiple-valued systems, Preferential logics, Reasoning.1 IntroductionIn [Be77a, Be77b] Belnap introduced a logic intended to deal in a useful way with inconsistentand incomplete information. This logic is based on a structure called FOUR, which has fourtruth values: the classical ones, t and f , and two new ones: ? that intuitively denotes lack ofinformation (no knowledge), and > that indicates inconsistency (\over"-knowledge). Belnap gavequite convincing arguments why \the way a computer should think" should be based on thesefour values. In [Gi87, Gi88] Ginsberg proposed algebraic structures called bilattices that naturallygeneralize Belnap's FOUR. The idea is to consider arbitrary number of truth values, and to arrangethem (like in FOUR) in two closely related partial orders, each forming a lattice. The originalmotivation of Ginsberg for introducing bilattices was to provide a uniform approach for a diversityof applications in AI. Bilattices were further investigated by Fitting, who showed that they andare useful also for providing semantic to logic programs [Fi90a, Fi91, Fi93, Fi94]. In [AA94, AA96]we presented bilattice-based logics and corresponding proof systems. These logics turned out tohave many desirable properties (like paraconsistency). In the present paper we proceed with thislogical approach. In particular, we consider bilattice-based logics that are preferential in the senseof Shoham [Sh87, Sh88], i.e.: they are based on the idea that inferences should be taken notaccording to all models of a given theory, but only w.r.t. a subset of them, determined accordingto certain preference criteria. We use here two main guidelines for making such preferences amongbilattice-based models: 1



1. Prefer models that assume as much consistency as possible. This approach re
ects the in-tuition that contradictory data corresponds to inadequate information about the real world,and therefore should be minimized.2. Prefer models that assume a minimal amount of knowledge; The idea this time is that weshould not assume anything that is not really known.FOUR, the structure that corresponds to Belnap four-valued logic, is the minimal bilattice,exactly as the structure that is based on the classical two values is the minimal Boolean algebra.The main goal of this paper is to show that the logical role of FOUR among bilattices is also verysimilar to that the two-valued algebra has among Boolean algebras. Indeed, it turned out that allthe natural bilattice-valued logics that we had introduced for various purposes can be characterizedusing only the four basic values! This does not mean, of course, that from now on bilattices haveno value (exactly as the fact, that Boolean algebras can be characterized in ft; fg, does not meanthat Boolean algebras have no value). It does demonstrate, however, the fundamental role of thefour values.In an opposite direction to that taken by Ginsberg and Fitting, other authors tried to get alongby using just three values for achieving the same (or similar) goals. We show, however, that theuse of four values is preferable to the use of three even for tasks that can in principle be handledusing only three values.Taken together, the main import of our results is a strong vindication (so we believe) of Belnap'sthesis concerning the fundamental importance of the four basic values for the goal of computerizedreasoning.The rest of this paper is organized as follows: In Section 2 we introduce a propositional languagewith four-valued semantics. Our language is based on the basic bilattice operators together withan appropriate implication connective. In Section 3 we show the adequacy of this language byexploring its expressive power as well as those of its fragments. Section 4 is devoted to introducingthe most important consequence relations that are based on FOUR, and to an examination of theirmain properties. In Section 5 we compare four-valued formalisms with three valued ones, and inSection 6 we generalize the four-valued logics of Section 4 to arbitrary bilattices. The main resultsof this section is that by doing so we do not get any new logic. Finally, in Section 7 we summarizethe main results and conclusions of this work.2 The language and its four-valued semantics2.1 The algebraic structure and its basic connectivesThe truth values of Belnap's logic mentioned above have two natural orderings:First we have the standard logical partial order, �t, which intuitively re
ects di�erences in the\measure of truth" that every value represents. According to this order, f is the minimal element, tis the maximal one, and ?;> are two intermediate values that are incomparable. (ft; f;>;?g;�t)is a distributive lattice with an order reversing involution :, for which :>=> and :?=?. Weshall denote the meet and the join of this lattice by ^ and _, respectively.The other partial order, �k, is understood (again, intuitively) as re
ecting di�erences in theamount of knowledge or information that each truth value exhibits. Again, (ft; f;>;?g;�k) isa lattice where ? is its minimal element, > { the maximal element, and t, f are incomparable.2



Following Fitting [Fi90a, Fi90b] we shall denote the meet and the join of the �k-lattice by 
 and�, respectively.The two lattice orderings are closely related. The knowledge operators 
 and � are monotonew.r.t. the truth ordering �t, and the truth operators ^, _, and : (as well, of course, as 
 and�) are monotone w.r.t. �k. Moreover, all the 12 distributive laws hold, as well as De-Morgan'slaws. The structure that consists of these four elements and the �ve basic operators (^;_;:;
;�)is usually called FOUR. A double Hasse diagram of FOUR is given in Figure 1.6k
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Figure 1: FOUR2.2 Designated elements and modelsThe next step in using FOUR for reasoning is to choose its set of designated elements. The obviouschoice is D=ft;>g, since both values intuitively represent formulae known to be true. The set Dhas the property that a^b2D i� a
b2D i� both a and b are in D, while a_b2D i� a�b2D i�either a or b is in D. From this point the various semantic notions are de�ned on FOUR as naturalgeneralizations of similar classical notions: A valuation � is a function that assigns a truth valuefrom FOUR to each atomic formula. Any valuation is extended to complex formulae in the obviousway. We will sometimes write  : b2 � instead of �( )= b. A valuation � satis�es  i� �( )2D.A valuation that satis�es every formula in a given set � of formulae is a model of �. The set of allmodels of � is denoted mod(�). The structure FOUR together with D as the set of the designatedelements will be denoted in the sequel by hFOURi.2.3 Implication connectivesUnlike in the classical calculus, Belnap's logic has no tautologies. Thus, excluded middle is notvalid in it. This implies that the de�nition of the material implication p 7!q as :p_q is not adequatethere for representing entailments. We introduce therefore instead the following implications andequivalence operation on FOUR:
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De�nition 2.1 [Av91, AA96]a � b = ( b if a 2 Dt if a 62 Da! b = (a � b) ^ (:b � :a)a$ b = (a! b) ^ (b! a)Proposition 2.2a) �( !�) is designated i� �( )�t �(�).b) �( $�) is designated i� �( )=�(�).Notes:1. Unlike the connectives of the basic language, the new connectives are not monotone w.r.t.�k.2. On ft; fg the material implication (7!) and the two new implications are identical, so alsothe connectives of De�nition 2.1 are generalizations of the classical implication.3. The sense in which � is a true implication will be clari�ed in Proposition 4.3 below.2.4 Canonical examplesExample 2.3 (Tweety dilemma) Consider the following well-known puzzle:bird(Tweety) 7! fly(Tweety)penguin(Tweety) � bird(Tweety)penguin(Tweety) � :fly(Tweety)bird(Tweety)penguin(Tweety)Denote this set of assertions by �. The �rst assertion of � is formulated by a weaker \implication"than the other two, since it is an instance of a rule that has exceptions. The six four-valued modelsof � are given in Figure 2.Model No. bird(Tweety) fly(Tweety) penguin(Tweety)M1 { M2 > > >; tM3 { M4 > f >; tM5 { M6 t > >; tFigure 2: The models of �Example 2.4 (Nixon diamond) This is another famous example : Nixon is a republican and aquaker. Quakers are considered to be doves (however, there might be exceptions), and republicansare generally hawks. Hawks and doves represent two di�erent political views, and each person is(roughly) either a hawk or a dove. A formulation of this puzzle is as follows:4



quaker(Nixon)republican(Nixon)quaker(Nixon) 7! dove(Nixon)republican(Nixon) 7! hawk(Nixon)dove(Nixon) � :hawk(Nixon)hawk(Nixon) � :dove(Nixon)hawk(Nixon) _ dove(Nixon)Denote this set of assertions by �. The twelve four-valued models of � are given in Figure 3.quaker(Nixon) republican(Nixon) hawk(Nixon) dove(Nixon)M1 { M4 >; t >; t > >M5 { M8 >; t > f >; tM9 { M12 > >; t >; t fFigure 3: The models of �3 The expressive power of the languageIn this section we examine the expressive power of the language we intoduced above. We do it fromtwo di�erent points of view (which happen to be equivalent in the two-valued case, but are not soin general).3.1 Characterization of subsets of FOURnNotation 3.1 For a set of formulae � denote by A(�) the set of atomic formulae that appear insome formula of �, and by L(�) the set of literals that appear in some formula of �.De�nition 3.2 Let  be a formula so that A( )�fp1; : : : ; png. Sn , the subset of FOURn whichis characterized by  , is:Sn = f(a1; a2; : : : ; an)2FOURn j 8�[(81� i�n �(pi)=ai) =) �( )2D]gProposition 3.3 A subset S of FOURn is characterizable by some formula in the language off:;�g (or f:;^;_;
;�;�;>g) i� (>;>; : : : ;>)2S.Proof: If  is any formula in the language of f:;^;_;
;�;�;>g s.t. A( )� fp1; : : : ; png and�(p1) = �(p2) = : : : = �(pn) = >, then �( ) = >. Hence the condition is necessary. For theconverse we introduce the following connectives: p �̂q = :(p � :q), p�_q = (p � q) � q, fn =p1 �̂:p1 �̂p2 �̂:p2 �̂ : : : pn �̂:pn. The following properties are easily veri�ed:1. �̂ is associative. Moreover,�( 1 �̂ 2 �̂ : : : �̂ n) = ( f 91� i�n�1 �( i) 62D�( n) 81� i�n�1 �( i)2D5



2. �( 1 �̂ 2 �̂ : : : �̂ n) 2 D i� 81� i�n �( i) 2 D.3. �_ is associative. Moreover,�( 1�_ 2�_ : : : �_ n) = ( �( n) 81� i�n�1 �( i) 62D or �( n)=>t otherwise4. �( 1�_ 2�_ : : : �_ n) 2 D i� 91� i�n �( i) 2 D.5. fn has the following property:�(fn) = ( > 81� i�n �(pi)=>f otherwiseNow, by (2) and (4) it follows that:(i) Sn 1 �̂:::�̂ m = Sn 1 \ : : : \ Sn m (ii) Sn 1�_:::�_ m = Sn 1 [ : : : [ Sn mLet ~a=(a1;: : :; an)2FOURn. De�ne, for every 1� i�n, ~ai = 8>>><>>>: pi �̂ :pi if ai=>pi �̂ (:pi � fn) if ai= t:pi �̂ (pi � fn) if ai=f(:pi � fn) �̂ (pi � fn) if ai=?Using the observations above, it is easy to see that  ~a1 �̂ ~a2 �̂ : : :  ~an characterizes f~>;~ag, where~>=(>;>; : : : ;>). This and (ii) above entail the proposition. 2Note: Obviously, the characterizing formula is much simpler in the f:;^;�g-language, where wecan use ^ instead of �̂ and _ instead of �_.>From Proposition 3.3 it follows that the language of f:;�g should be extended in order to getfull characterization of subsets of FOURn. One possibility is to add the propositional constant f :Theorem 3.4 Every subset of FOURn is characterizable in the language of f:;�; fgProof: All we need to change in the proof of Proposition 3.3 is to use f instead of fn in thede�nition of  ~ai . After this change the �̂-conjunction of the new  ~ai 's characterizes f~ag and notf~>;~ag. This suÆces (using �_) for the characterization of every nonempty set. The empty set itselfis characterized by f . 2Note: Since f =:(?�?), the language of f:;�;?g also suÆces for representing all subsets ofFOURn.Proposition 3.3 entails that one cannot delete f from the set f:;�; fg and retain the validityof Theorem 3.4. We next show that : and � cannot be deleted either:Corollary 3.5 � is not de�nable in terms of the other connectives we consider here.Proof: By Theorem 3.4 it is suÆcient to show that f?g (for example) is not characterizable inthe language f:;^;_;
;�; t; f;?;>g.1 This follows from the fact that these connectives are all�k-monotone. It follows that if A( )�fp1g and �1(p1)�k �2(p1) for some valuations �1; �2, then�1( )�k �2( ). In particular if ?2S1 then also f; t;>2S1 . 21Note that f?g is not characterizable even though the use of the propositional constant ? is allowed.6



Corollary 3.6 : is not de�nable in terms of the other connectives.Proof: Again, we show that without : not all subsets of FOUR are characterizable. For this it issuÆcient to show that if  is a formula in the language of f_;^;�;
;�; t; f;?;>g and A( )�fp1g,then ?2S1 i� f 2S1 . The proof of this fact is by an induction on the structure of  .� Base step: S1t =S1>=FOUR, S1f=S1?=;, S1p1=ft;>g.� Induction step:1. ?2S1 ^� i� ?2S1 and ?2S1�, i� f 2S1 and f 2S1� (by induction hypothesis), i� f 2S1 ^�.2. ?2S1 _� i� ?2S1 or ?2S1�, i� f 2S1 or f 2S1� (by induction hypothesis), i� f 2S1 _�.3. ?2S1 �� i� ?62S1 or ?2S1�, i� f 62S1 or f 2S1� (by induction hypothesis), i� f 2S1 ��.The cases of 
 and � are similar to the cases of ^ and _, respectively. 23.2 Representation of operations on FOURnWe turn now to the subject of functional completeness.De�nition 3.7 An operation g : FOURn ! FOUR is represented by a formula  s.t. A( ) �fp1; : : : ; png if for every valuation � we have �( )=g(�(p1); : : : ; �(pn)).The most important result of this section is the following:Theorem 3.8 The language L� = f:;^;�;?;>g is functionally complete for FOUR (i.e.: everyfunction from FOURn to FOUR is representable by some formula in L�).Proof: Let g : FOURn ! FOUR. Since f =:(?�?), by Theorem 3.4 every subset of FOURnis characterizable in L�. Let, accordingly,  gf ,  g>, and  g? characterize g�1(ffg), g�1(f>g), andg�1(f?g), respectively. De�ne: 	g=( gf � f)^ ( g> � >) ^ ( g? � ?). It is easy to verify that 	grepresents g. 2Notes:1. If we follow the construction of 	g step by step under the assumption that there are onlytwo truth values (t and f), we shall get (with the help of trivial modi�cations, like replacingp� f by :p and p^::p by p) the classical conjunctive normal form. Our construction is,therefore, a generalization of this normal form.2. The functional completeness property for operations is completely independent, of course, ofthe choice of the designated values. It is remarkable that our choice of D has, nevertheless,a crucial role in its proof (through the notion of characterizability of subsets, which doesdepend on the choice of D).The ten connectives we use are not independent. Obviously, ^ and _ are de�nable in term ofeach other (using :), and so are t and f . There are, however, other dependencies. The followingidentities are particularly important:21. > = (a � a)� :(a � a)2De�nitions of _ and ^ in terms of �;
; t and f , which are dual to (2) and (5), have been given in [Av96].7



2. a� b = (a ^ >) _ (b ^ >) _ (a ^ b)3. ? = f 
 :f4. f = :(? � ?)5. a
 b = (a ^ ?) _ (b ^ ?) _ (a ^ b)These identities mean that relative to the basic classical language L=f:;^;_;�g the connectives> and � are interde�nable, while ? is equivalent in expressive strength to the combination of 
and f . It follows, for example, that the set f:;^;
;�;�; fg is also functionally complete. This setis obtained from the full classical language (f:;^;_;�; t; fg) by adding to it the lattice operatorsof �k (
 and �).Example 3.9 (Kleene's three-valued logics and Fitting's guard connective) The meet and the joinin FOUR with respect to �t correspond to the conjunction and disjunction of strong Kleene's logic.In order to represent the connectives of the other Kleene's three-valued logics (weak-Kleene3 andsequential-Kleene4), Fitting [Fi94] introduces a new connective, called the guard connective. Thisconnective is denoted p : q, and is evaluated as follows: if p is assigned a designated value (t or >)the value of p : q has the value of q, otherwise p : q has the value ?. The guard connective has thefollowing simple and natural de�nition in our language:5p : q = (p � q)
 :(p � :q)We turn now to investigate the expressive power of the various fragments of our language whichinclude at least the basic classical language L=f:;^;_;�g. From the discussion before Example3.9 it follows that there are at most eight such fragments, corresponding to extending L with somesubset of (say) f
;�; fg. Our next theorem provides exact characterizations of the expressivepower of each of these fragments, implying that they are all di�erent from each other. We showthat there is a correspondence between these eight fragments and the various possible combinationsof the following three conditions:I g(~>) = >II g(~x) = > =) 91� i�n xi = >III g(~x) = ? =) 91� i�n xi = ?Theorem 3.10 Let L = f:;^;�g and suppose that � is a subset of f
;�; fg. A function g :FOURn ! FOUR is representable in L [ � i� it satis�es those conditions from I{III that all the(functions that directly correspond to the) connectives in � satisfy. In other words:� g is representable in f:;^;�g i� it satis�es I, II, and III.� g is representable in f:;^;�; fg (the full classical language) i� it satis�es II and III.� g is representable in f:;^;�;�g i� it satis�es I and III.� g is representable in f:;^;�;
g i� it satis�es I and II.3Also known as Bochvar's logic.4Also known as McCarthy's logic.5Fitting [Fi94] also provides a de�nition for the guard connective, which is somewhat less straightforward, butdoes not require implication: p :q=((p
t)�:(p
t))
q. 8



� g is representable in f:;^;�;
; fg i� it satis�es II.� g is representable in f:;^;�;�;
g i� it satis�es I.� g is representable in f:;^;�;�; fg i� it satis�es III.� g is representable in f:;^;�;�;
; fg.Proof: The proof closely follows that of Theorem 3.8. The following changes should be made:1. If f is not available we use fn as a substitute (see the proof of Proposition 3.3). In addition,instead of  gf ,  g>, and  g? (which are not available in this case) we use �gf , �g>, and �g? { theformulae in the language of f:;^;�g which characterize f~>g[g�1(ffg), f~>g[g�1(f>g), andf~>g[g�1(f?g) respectively (such formulae exist by Proposition 3.3).2. If > is not available (i.e., � 62 �) then we use the following sentence as a substitute:>n = (p1 � p1) ^ (p2 � p2) ^ : : : ^ (pn � pn)It is easy to verify that >n has the following property:�(>n) = ( > 91� i�n �(pi)=>t otherwise3. If ? is not available (i.e., f
; fg 6� �) then if 
 2 � we use as a substitute for ? the sentence?n = p1 
:p1 
 p2 
 :p2 
 : : :
 pn 
 :pnIf 
 62 � we use instead the following sentence:?0n = Wni=1(pi ^ ((pi _ :pi) � fn))These sentences have the following properties:�(?n) = ( > 81� i�n �(pi)=>? otherwise91� i�n �(pi)=? () �(?0n) = ?Following these guidelines, it is not diÆcult to prove the theorem. We show part 1 as an example,leaving the rest to the reader.Assume then that g :FOURn ! FOUR satis�es I { III. De�ne:�g = (�gf � fn) ^ (�g> � >n) ^ (�g? � ?0n)�g is in the language of f:;^;�g. We show that �g represents g. Let ~x2FOURn and assume that�(pi)=xi for i=1;: : :; n.Case 1: g(~x) = t. By condition I, ~x 6= ~>. Since g(~x) 6= f this implies that ~x 62 f~>g [ g�1(ffg).Therefore �(�gf ) 62 f>; tg and so �(�gf � fn)= t. The facts that �(�g>�>n)= t and �(�g?�?0n)= tfollows similarly. Hence �(�g)= t=g(~x).Case 2: g(~x)=f . Again, by condition I ~x 6= ~>, and so �(fn)=f . In addition, �(�gf )2ft;>g in thiscase, and so �(�gf �fn)=f . It follows that �(�g)=f=g(~x).Case 3a: g(~x)=> and ~x= ~>. Since �g is in the language of f:;^;�g, also �(�g)=>=g(~x).9



Case 3b: g(~x)=> and ~x 6= ~>. By condition II there exists 1� i�n s.t. xi=> and so �(>n)=>.It follows that �(�g>�>n)=> (since �(�g>)2ft;>g in this case). On the other hand, by the samearguments as in case 1, �(�gf�fn)=�(�g?�?0n)= t. Hence �(�g)=>=g(~x).Case 4: g(~x) =?. By III there exists 1� i� n s.t. xi =? and so �(?0n) =? and ~x 6= ~>. Sincein this case �(�g?) 2 ft;>g, it follows that �(�g?�?0n) = �(?0n) =?. Since the value of the othercomponents is again t (like in case 1), �(�g)=?=g(~x). 2Corollary 3.11 The eight fragments above are di�erent from each other.Proof: It is rather easy to construct for every subset of I { III a function from FOURn to FOURthat satis�es the conditions in this subset but not the rest. This easily implies the corollary. 2We conclude this section with a short discussion on the minimality of the set of connectivesin each case. By Corollaries 3.5 and 3.6, neither : nor � can be deleted from any of the sets ofconnectives which we have provided in each case. Theorem 3.10 and Corollary 3.11 imply thatnone of the connectives in f
;�; fg can be deleted in case it is included in the set we construct.6This leaves only the question of the necessity of ^. We shall content ourselves with an example inwhich this connective is necessary, and an example in which it is not .Proposition 3.12 The functionally complete set f:;^;�;>;?g considered in Theorem 3.8 isminimal in the sense that no connective can be deleted from it without losing the functionalcompleteness.Proof: We have discussed already the necessity of :;�;> and ? (again: ? takes here the role of
 and f together). To show that ^ is also indispensable we prove, by induction on the structureof formulae, that no formula  (p; q) in the language of f:;�;>;?g de�nes a function g such thatg(t;?)=? while g(>; t)=>. In particular ^ itself is not de�nable in this language. 2The set f:;^;�;>;?g is not minimal in the sense of the number of connectives in it. The nextproposition shows that there is a smaller set which is functionally complete.Proposition 3.13 The set f:;�;�;?g is functionally complete for FOUR.Proof: > and f are de�nable from this set as shown in the discussion before Example 3.9. Now,de�ne: p u q = (p �̂ q)� ((:p � :q) �̂ q)The relevant properties of u are the following:�(p u q) = 8><>: t �(p)= t; �(q)= t? �(p)= t; �(q)=?> �(p)=>; �(q)= tNow, given a function g :FOURn ! FOUR, de�ne:�g = ( gf � f) �̂ (( g> � >) u ( g? � ?)) 7It is easy now to check that �g characterizes g. 26Although one can always replace � by >, and the pair f
; fg by ?.7See the proof of Theorem 3.8 for the de�nition of  gf ,  g>, and  g?.10



Notes:1. Using Theorem 3.10, Corollaries 3.5, 3.6, and Proposition 3.3, it is easy to show that no subsetof f:;^;_;
;�;�; t; f;>;?g with less than four connectives can be functionally complete.2. The fact that ?= f
:f together with Proposition 3.13 imply that f:;
;�;�; fg is func-tionally complete. Hence ^ can be deleted from the set provided by the last part of Theorem3.10 (in contrast to that given in Theorem 3.8!)4 Reasoning in FOUR4.1 The basic consequence relationWe start with the simplest consequence relation which naturally corresponds to FOUR.De�nition 4.1 Suppose that � and � are two sets of formulae. � j=4 � if every model of � inFOUR is a model of some formula of �.Proposition 4.2 [AA96] j=4 is monotonic, compact, and paraconsistent.Proposition 4.3 [AA96]a) � is an internal implication for FOUR, i.e.: �;  j=4�;� i� � j=4 ��;�.b) $ is an equivalence operator for FOUR, i.e.:  $� j=4�( )$�(�).4.1.1 Canonical examples { revisitedExample 4.4 (Tweety dilemma { continued) Consider again the set � of Example 2.3.Although � is classically inconsistent, nontrivial conclusions about Tweety can be obtained by j=4:Tweety is a penguin, a bird, and it cannot 
y. The complementary conclusions cannot be obtainedby j=4, as expected.Example 4.5 (Nixon diamond { continued) By using j=4 on the assertions of Example 2.4one cannot tell whether Nixon is a dove or a hawk (which seems reasonable given the con
ictingdefaults). One can still infer the explicit information about Nixon, i.e. that he is a republican anda quaker. However, unlike in the classical case, the negations of these assertions cannot be inferred,despite the inconsistency. What can be inferred is their disjunction: :hawk(Nixon)_:dove(Nixon).4.1.2 Proof systemOne of the biggest advantages of j=4 is that it has a corresponding proof system, which is both niceand eÆcient. It was denoted GBL in [AA94, AA96]:Axioms: �;  ) �;  Rules: Exchange, Contraction, and the following logical rules:[:: )] �;  ) ��;:: ) � �) �;  �) �;:: [)::][^)] �;  ; �) ��;  ^ �) � �) �;  �) �; ��) �;  ^ � [)^]11
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][�)] �;  ) � �; �) ��;  � �) � �) �;  ; ��) �;  � � [)�][:�)] �;: ) � �;:�) ��;:( � �)) � �) �;: ;:��) �;:( � �) [):�][�)] �)  ;� �; �) ��;  � �) � �;  ) �;��)  � �;� [)�][:�)] �;  ;:�) ��;:( � �)) � �)  ;� �) :�;��) :( � �);� [):�][:t)] �;:t) � �) �; t [) t][f)] �; f ) � �) �;:f [) :f ][?)] �;? ) � �) �;> [) >][:?)] �;:? ) � �) �;:> [) :>]It is easy to see that GBL is closed under weakening. We could, in fact, have taken weakeningas a primitive rule.De�nition 4.6 We say that � follows from � in GBL (�`GBL�) if there exist �nite �0� �, �0��s.t. �0)�0 is provable in GBL.Theorem 4.7 [AA96]a) (Cut Elimination) If �1`GBL�1;  and �2;  `GBL�2, then �1;�2`GBL�1;�2.b) (Soundness and Completeness) � j=4� i� �`GBL�.Corollary 4.8 The f^;_;�; t; fg-fragment of j=4 is identical to the corresponding fragment ofclassical logic.Note: This means that like modal logic, j=4 can also be viewed as an extension of classical logicby new connectives (for example :). This is due to the fact that the classical negation of  canbe translated into  �f . It is more useful, however, to view : as the real counterpart of classicalnegation.Corollary 4.9a) All the rules of GBL are reversible.b) Given any sequent �)�, one can construct a �nite set S of clauses such that `GBL �)� i�`GBL s for every s2S.88By a \clause" we mean here a sequent which contains only literals.12



Proof:a) This follows easily from cut-elimination. For example, the rule [):�] is reversible because both:( ��))  and :( ��)) :� are easily derivable, using [:�)].b) This is immediate from (a). 2Note: The last corollary together with the equivalence of `GBL and j=4 mean that we can developa tableaux proof system for j=4, which is almost identical to that of classical logic.9 The maindi�erence is that unlike in classical logic, here a clause �)� is valid i� �\� 6=;. One should notealso that it is impossible here to translate a clause �)� in which � 6= ; into a sentence of thelanguage without using the implication connective �!As we have seen, j=4 has a lot of nice properties. Still, it has some serious drawbacks as well:It is too restrictive and \overcautious". Thus it is strictly weaker than classical logic even for con-sistent theories (a case in which one might prefer to use classical logic). Moreover, it totally rejectssome very useful (and intuitively justi�ed) inference rules, like the Disjunctive Syllogism: From :pand p_q one can never infer q by using j=4. Under normal circumstances we would certainly liketo be able to use this rule!In the next subsections we consider several possibilities of re�ning j=4. The main theme is torestrict the set of models we take into account, using some preference criteria. This is the ideabehind the notion of a preferential logic considered in [Sh87, Sh88]. This idea has recently receiveda considerable attention (see, e.g., [Ma89, KLM90, Pr91, LM92, KL92, Ma94, Sc97]).4.2 Taking advantage of the other partial orderA natural approach for reducing the set of models which are used for drawing conclusions is toconsider only the k-minimal models. The idea behind this approach is that we should not assumeanything that is not really known. Keeping the amount of knowledge as minimal as possible mayalso be captured, at least in FOUR, as a kind of consistency preserving method: As long asone keeps the redundant information as minimal as possible the tendency of getting into con
ictsdecreases.De�nition 4.10 Let �1; �2 be two four-valued valuations, and � { a set of formulae.a) �1 is k-smaller than �2 (�1�k �2) if for every atomic p, �1(p)�k �2(p).b) � is a k-minimal model of � if � is a �k-minimal element of mod(�).De�nition 4.11 � j=4k� i� every k-minimal model of � in hFOURi is a model of some Æ2�.Note: Obviously, if � j=4� then � j=4k�.Example 4.12 (Tweety dilemma| continued) Consider again Examples 2.3 and 4.4. Amongthe six models of � (see Figure 2), two are k-minimal:M4 = fbird(Tweety) :>; penguin(Tweety) : t; f ly(Tweety) :fg;M6 = fbird(Tweety) : t; penguin(Tweety) : t; f ly(Tweety) :>g:9Such a system was introduced in [Fi89, Fi90a], but only validity of signed formulae is considered there and notthe consequence relation. Moreover, only k-monotonic operators are dealt with in those papers.13



Using these models we reach the same conclusions as in j=4:� j=4k bird(Twety); � j=4k penguin(Twety); � j=4k:fly(Twety);� 6j=4k:bird(Twety); � 6j=4k:penguin(Twety); � 6j=4k fly(Twety):Example 4.13 (Nixon diamond | continued) Consider again Examples 2.4 and 4.5. Amongthe twelve models of � listed in Figure 3, three are k-minimal:M4 = fquaker(Nixon) : t; republican(Nixon) : t; hawk(Nixon) :>; dove(Nixon) :>g;M8 = fquaker(Nixon) : t; republican(Nixon) :>; hawk(Nixon) :f; dove(Nixon) : tg;M12 = fquaker(Nixon) :>; republican(Nixon) : t; hawk(Nixon) : t; dove(Nixon) :fg:Again, using these models we reach the same conclusions as in j=4, among which:� j=4k quaker(Nixon); � j=4k republican(Nixon);� 6j=4k:quaker(Nixon); � 6j=4k:republican(Nixon):The fact that in the last two examples we reached the same conclusions (at least with respectto the literals) as in j=4 is not accidental. It is an instance of the following general proposition:Proposition 4.14 If � does not include �, then � j=4� i� � j=4k�.Proof: For the proof we need the following lemma:Lemma: For every model M of � there exists a k-minimal model N of � s.t. N�kM .Proof: Suppose that M is some model of �, and let SM = fMi j Mi 2 mod(�); Mi �k Mg.Let C � SM be a descending chain w.r.t. �k. We shall show that C is bounded in SM , so byZorn's lemma SM has a minimal element, which is the required k-minimal model. Let N be the thefollowing valuation: N(p)=min�kfMi(p) jMi2Cg. N is de�ned since C is a chain, and FOUR hasa �nite number of elements. Obviously N bounds C. It remains to show that N 2SM . Assume that 2� and let A( )=fp1; : : : ; png (see Notation 3.1). Then: N(p1)=Mi1(p1); : : : ; N(pn)=Min(pn).Since C is a chain we may assume, without a loss of generality, that Mi1 �k : : : �k Min , and so Nis the same as Min on every atom in A( ). Since Min is a model of  , so is N . This is true forevery  2� and so N 2SM as required.Now, back to the proof of the original proposition: The \only if" direction is trivial. For the otherdirection, suppose that � j=4k�, and let M be some model of �. By the previous lemma there mustexist a k-minimal model N of � s.t. M �k N . Thus there is a Æ 2� s.t. N(Æ)2D. Since all theoperators that correspond to the connectives of � are monotone w.r.t. �k, M(Æ) �k N(Æ). But Dis upwards-closed w.r.t. �k, therefore M(Æ)2D as well. 2Corollary 4.15 In the monotonic fragment of the language (i.e., without �), the logics j=4 andj=4k are identical.Proposition 4.14 shows that as long as we are interested in inferring formulae that do not in-clude �, we can indeed limit ourselves to k-minimal models without any loss of generality. This inparticular is the case when we are interested in inferring literals. Examples 4.12 and 4.13 show thatthis approach may lead to a considerable reduction in the number of models that should be checked.The situation is completely di�erent when we do allow the implication connective to appear onthe right-hand side of j=4k: 14



Example 4.16 (Tweety dilemma [2.3, 4.4, 4.12] | continued) For � of Example 2.3 wehave � j=4k :penguin(Tweety)� f , although � 6j=4 :penguin(Tweety)� f .10 It follows that in thefull language j=4k 6= j=4. This can be strengthen as follows:Proposition 4.17 j=4k is nonmonotonic.Proof: q j=4k :q � p, since fp : ?; q : tg is the only k-minimal model of q. On the other hand,q;:q 6j=4k:q�p, since fp :?; q :>g is the only k-minimal model of fq;:qg. 2Note: By Proposition 4.14, j=4k is monotonic w.r.t. conclusions that do not contain �: If � j=4k�then �;  j=4k�, provided that � does not appear in the language of the formulae in �.Using the example of the last proof, one can easily see that q j=4k:q�p and also :q;:q�p j=4k p,but :q; q 6j=4k p. It follows that j=4k is not a consequence relation in the usual sense, since it is notclosed under (multiplicative) cut. This is not surprising, since j=4k is not monotonic, and it is usualto require a nonmonotonic relation to be closed only under cautious cut (see [Le92] and Section 4.5below).Proposition 4.18 j=4k preserves Cautious Cut: If �;  1; : : : ;  n j=4k� and � j=4k i;� for i=1 : : : n,then � j=4k�.Proof: Suppose thatM is a k-minimal model of �, butM(Æ) 62D for every Æ2�. Since � j=4k i;�,then M( i) 2D for i= 1 : : : n, and so M is a model of f�;  1; : : : ;  ng. Moreover, M must be ak-minimal model of f�;  1; : : : ;  ng, since any other model of this set which is strictly smaller thanM w.r.t. �k must be a model of �, which is k-smaller than M . Now, �;  1; : : : ;  n j=4k �, thusM(Æ)2D for some Æ2� | a contradiction. 2Despite the nice properties of j=4k (more of which will be shown in the sequel; See the note atthe end of Subsection 4.5.2), we will see in what follows (see, e.g., Example 4.22 below) that thisconsequence relation appears to be \too conservative". In the following subsections we considertherefore more subtle consequence relations.4.3 A consequence relation for preferring consistencyRecall that the basic idea in taking the k-minimal models was to avoid meaningless (or redundant)information. A \by-product" of this approach is a reduction in the level of inconsistency of ourset of assumptions. When we assume less, the tendency of getting into con
icts decreases. Inwhat follows we shall use a more direct approach of preserving consistency: Given a (possiblyinconsistent) theory �, the idea is to give precedence to those models of � that minimize theamount of inconsistent beliefs in �.Notation 4.19 Let � be a four-valued valuation. Denote:a) I1=f>g.b) I(�;I1)=fp j p is atomic and �(p)2I1g.Intuitively, I1 is the set of inconsistent values of hFOURi (which in this case consists only of asingle element), and I(�;I1) corresponds to the inconsistent assignments of � w.r.t. I1.10The meaning of  �f is that  cannot be true. This, of course, is stronger than saying that  is not a theorem,or even that : is a consequence of the assumptions. 15



De�nition 4.20 Let � be a set of formulae, and M;N | models of �.a) M is more consistent than N w.r.t. I1 (M>I1N) if I(M;I1)�I(N;I1).b) M is a most consistent model of � w.r.t. I1 (I1-mcm, in short), if there is no other model of �which is more consistent than M w.r.t. I1. The set of all the I1-mcms of � is denoted mcm(�;I1).De�nition 4.21 � j=4I1� if every I1-mcm of � is a model of some formula of �.Example 4.22 (Tweety dilemma | continued) Consider again Examples 2.3, 4.4, 4.12, and4.16. Denote by �0 the knowledge-base before Tweety is known to be a penguin, i.e.:bird(Tweety) 7! fly(Tweety)penguin(Tweety) � bird(Tweety)penguin(Tweety) � :fly(Tweety)bird(Tweety)�0 has 18 models altogether. They are listed in Figure 4.Model No. bird(Tweety) fly(Tweety) penguin(Tweety)M1 { M8 > >; f >; t; f;?M9 { M12 > t;? f;?M13 { M16 t > >; t; f;?M17 { M18 t t f;?Figure 4: The models of �0Heremcm(�0;I1)=fM17, M18g. Thus, using j=4I1 one can infer that bird(Tweety) (but :bird(Tweety)is not true), and fly(Tweety) (while :fly(Tweety) is not true). Also, nothing is yet known aboutTweety being a penguin. Note that fly(Tweety) is not a consequence of j=4k (and so not a conse-quence of j=4 as well), although it seems to be an intuitive conclusion of �0. Therefore, as we havenoted before, j=4k might be considered as \overcautious".Suppose now that a new data arrives: penguin(Tweety). The models of the modi�ed knowledge-base, �, are listed in Figure 2. The mcms of � w.r.t. I1 are denoted there by M4 and M6. Therefore,according to the new information one should alter his beliefs and infer the intuitive conclusions, thatbird(Tweety), penguin(Tweety), and :fly(Tweety). The complements of these assertions cannotbe inferred by j=4I1 , as one expects.Proposition 4.23 j=4I1 is: (a) paraconsistent, (b) nonmonotonic.Proof:a) For example, p;:p 6j=4I1 q. A countermodel assigns > to p and f to q.b) Consider, for instance, �=fp; :p_:qg. Then � j=4I1:q but � [ fqg 6j=4I1 :q. 2Proposition 4.24a) If � j=4� then � j=4I1�.b) If � j=4k� then � j=4I1�, provided that the formulae of � do not contain �.c) j=4I1 6= j=4 and j=4I1 6= j=4k. 16



Proof:a) Immediate from the de�nition of j=4I1 .b) Follows from part (a) and Proposition 4.14.c) Follows from Proposition 4.23(b) and its proof, since both j=4 and j=4k are monotonic w.r.t. thelanguage of f:;_g. 2.Proposition 4.25 If �;  are in the language of f_;^;:;�; t; fg and � j=4I1  , then  classicallyfollows from �.Proof: Let M be a classical model of �. M is, of course, also a valuation in FOUR, and forformulae in the classical language (f:;_;^;�; t; fg) there is really no di�erence between viewingM as a valuation in FOUR and viewing it as a valuation in ft; fg.11 It follows that M is a modelof � in FOUR, and since I(M;I1)=;, M must be an I1-mcm of �. Thus M( ) is designated. Butwe also know that M( )2ft; fg, thus M( )= t. It follows that M is a classical model of  , andso  classically follows from �. 24.4 A consequence relation for preferring classical assignmentsThe approach presented in this subsection is similar to that of the previous one. The di�erence isthat this time we prefer de�nite knowledge to an uncertain one. In particular, the approach takenhere prefers classical inferences whenever their use is possible.Notation 4.26 Let � be a four-valued valuation. Denote:a) I2=f>;?g.b) I(�;I2)=fp j p is atomic and �(p)2I2g.This time I2 is the set of the nonclassical values of FOUR, and I(�;I2) corresponds to thenonclassical assignments of the valuation �.De�nition 4.27 Let � be a set of formulae, and M;N { models of �.a) M is more consistent than N w.r.t. I2 (M>I2N) if I(M;I2)�I(N;I2).b) M is a most consistent model of � w.r.t. I2 (I2-mcm, in short), if there is no other model of �which is more consistent than M w.r.t. I2. The I2-mcms of � are denoted by mcm(�;I2).De�nition 4.28 � j=4I2� if every I2-mcm of � is a model of some formula of �.Example 4.29 (Tweety dilemma | continued) Consider again Example 4.22 and Figure4. When taking I2 as the set of the \inconsistent" values, M17 | the only classical model |is also the only I2-mcm of �0. It follows that according to j=4I2 one can infer that bird(Tweety),fly(Tweety) (like in the case of j=4I1), and :penguin(Tweety) (which is not deducible when usingj=4I1). The inverse assertions are not true, as expected.Now, let � = �0 [ fpenguin(Tweety)g. Like in the case of j=4I1 , mcm(�;I2) consists of thevaluations denoted M4 and M6 in Figure 2. The new conclusions are, therefore, bird(Tweety),penguin(Tweety), and :fly(Tweety). Again, the complements of these assertions cannot be inferredby j=4I2 . These are the intuitive conclusions in this case as well.The following propositions are analogous to Propositions 4.23, 4.24, and 4.25, respectively:11This is so because ft; fg is closed under the corresponding operators.17



Proposition 4.30 j=4I2 is: (a) paraconsistent, (b) nonmonotonic.Proof: The proof is the same as that of Proposition 4.23, using j=4I2 instead of j=4I1 . 2Proposition 4.31a) If � j=4� then � j=4I2�.b) If � j=4k� then � j=4I2�, provided that the formulae of � do not contain �.c) j=4I2 6= j=4 and j=4I2 6= j=4k.Proof: The proof is the same as that of Proposition 4.24, using j=4I2 instead of j=4I1 . 2Proposition 4.32 Suppose that �;  are in the language of f_;^;:;�; t; fg.a) If � j=4I2  , then  classically follows from �.b) Suppose that � is classically consistent. Then  classically follows from � i� � j=4I2  .Proof: The proof of part (a) is the same as that Proposition 4.25(a). Part (b) follows from thefact that if � is classically consistent then the set of its classical models is the same of the set ofthe I2-mcms of � in FOUR. 2It follows that j=4I2 is a nonmonotonic consequence relation that is equivalent to classical logicon consistent theories, and is nontrivial w.r.t. inconsistent theories.4.5 General properties of j=4I1 and j=4I2We begin with a comparison between j=4I1 and j=4I2 . In general, neither of these consequencerelations is stronger than the other. Consider, for instance, �=fp�:p;:p�pg. The only I1-mcmof � assigns ? to p, while this valuation as well as the one in which p is assigned > are the I2-mcmsof �. Therefore, � j=4I1 p�q while � 6j=4I2 p�q. On the other hand, j=4I2 p_:p but 6j=4I1 p_:p.Proposition 4.33 Suppose that A(�;  ) = fp1; p2; : : :g. Then �; p1_:p1; p2_:p2; : : : j=4I1  i��; p1_:p1; p2_:p2; : : : j=4I2  Proof: Denote: �0=�[fp1_:p1; p2_:p2; : : :g. Then mcm(�0;I1)=mcm(�0;I2), since each modelof �0 assigns to the formulae in A(�;  ) values from ft; f;>g. 2Next we consider some common properties of j=4I1 and j=4I2 . In the rest of this section we shallwrite j=4I whenever the results apply to both these relations.4.5.1 j=4I and GBL-rulesFor future purposes we need the following obvious technical lemma:Lemma 4.34 Let �1;�2 be two sets of formulae s.t. mod(�1)�mod(�2). Then every I-mcm of�2 which is also a model of �1 must be an I-mcm of �1.Proposition 4.35 (Weak Soundness) If �`GBL� then � j=4I�.
18



Proof: Obvious from the fact that j=4 is sound w.r.t. GBL and Propositions 4.24(a), 4.31(a). 2Note that what the previous proposition claims is that GBL is sound for j=4I in the weak sense;once we add another rule to GBL there is no guarantee that the extended system would be soundfor j=4I anymore, even if the new rule itself is sound for j=4I . Moreover, the last corollary does notclaim that every single rule of GBL is sound for j=4I . In fact, as part (b) of the following propositionshows, this is not the case.Proposition 4.36a) (Strong Soundness) All the rules of GBL except [�)] are valid for j=4I .b) [�)] is not valid for j=4I , but its following weakened version is valid:[�)]W �;  ��)  ;� �;  ��; �) ��;  ��) �Note: In every monotonic system with contraction, [�)]W is equivalent to [�)]: [�)]W followsfrom [�)] by using contraction, and [�)] is obtained from [�)]W by the addition of  � � tothe l.h.s. of both premises. However, most of the consequence relations that we discuss are non-monotonic, and so the non-weakened version of [�)] will not be sound for them.Proof of Proposition 4.36: The validity of Exchange and Contraction follows immediately fromthe de�nition of j=4I . All the introduction rules on the right, except [)�] (i.e.: [)^]; [):^]; [)_]; [):_]; [)
]; [):
]; [)�]; [):�], [):�], and [)::]) remain valid since the same for-mulae appear in them on the l.h.s. of the premises and on the l.h.s. of the conclusion, hencethe same I-mcms are involved, and the arguments in the case of j=4 can be repeated. Similarly,the rules [^)]; [:_)]; [
)]; [:
)]; [:�)]; [: �)], and [::)] remain valid since the l.h.s.of the premise and conclusion of each one of them have the same set of models. The validity of[:^�]; [_)], and [�)] easily follows from Lemma 4.34. Finally, to show the validity of [)�],suppose that � 6j=4I  ��;�. Then there is an I-mcm M of � so that M( ) 2D, M(�) 62 D, andM(Æ) 62D for every Æ2�. In particular M is a model of �[f g. By Lemma 4.34, M is an I-mcmof �[f g. Therefore, �;  6j=4I �;� | a contradiction.b) A counter-example: Let p; q be atomic formulae. Then j=4I (p^:p)� f; q and q^:q j=4I q, but((p^:p)�f)�(q^:q) 6j=4I q (a counter I-mcm assigns > to p and f to q). For showing the validity of[�)]W , suppose that �;  �� 6j=4I�. Then there is an I-mcm M of �[f ��g such that M(Æ) 62Dfor every Æ 2�. Since �;  � � j=4I  ;�, necessarily M( ) 2 D. But M is a model of  � �, soM(�)2D and M is a model of �[f ��; �g. Moreover, by Lemma 4.34 M must be an I-mcm of�[f ��; �g. Now, �;  ��; � j=4I�, hence there is a Æ2� s.t. M(Æ)2D | a contradiction. 2Notes:1. Unlike the case of GBL and j=4, not all the rules of GBL that are valid w.r.t. j=4I arealso reversible. [)�], for instance, is not (Consider, e.g., � = f:pg,  = p, and � = q).This property for itself should not be considered as a drawback, and it is even desirable innonmonotonic systems: Whenever �; �) �� holds (which is the case with j=4I), then theassumption that �) �, together with (Cautious) Cut (which is also valid w.r.t. j=4I ; seebelow) yield �) ��. This, and the inverse of [)�], imply that �;  )�. Therefore, had[)�] been reversible w.r.t. j=4I , this consequence relation would have been monotonic.19



2. Proposition 4.36(a) implies that given some valid sequents, one can deduce others withoutchecking all the models. Here is a simple example: Since for atomic formula p; q it holds that:p; p_q j=4I q, then by [)�] we have p_q j=4I:p�q.4.5.2 Comparison with general patterns of nonmonotonic reasoningBeing nonmonotonic, j=4I1 and j=4I2 do not respect weakening. Many rules for replacing weakeninghas been proposed in the study of general patterns of nonmonotonic reasoning (see, e.g., [Ga85,Ma89, KLM90, FLM91, Le92, LM92, Ma94]). The logic proposed in most of these works is based onthe two-valued propositional one. In particular, unlike in the present treatment, the consequencerelations considered there are not paraconsistent.In what follows we consider some of the proposals of what should nonmonotonic systems looklike, and adapt them to the four-valued case. In this way we would be able to give them paracon-sistent capabilities.De�nition 4.37 [Le92] A plausibility logic in a language L is a relation ) between �nite sets offormulae in L that satis�es the the following conditions:Inclusion: �;  ) .Right Monotonicity: If �)�, then �) ;�.Cautious Left Monotonicity: If �) and �)�, then �;  )�. 12Cautious Cut: If �;  1; : : : ;  n)� and �) i;� for i=1 : : : n, then �)�.Proposition 4.38 j=4I is a plausibility logic.13Proof: Inclusion and Right Monotonicity follow immediately from the de�nition of j=4I . CautiousCut is shown like in Proposition 4.18. It is left to show Cautious Left Monotonicity: Assume that� j=4I  , and � j=4I�. Let M be an I-mcm of �[f g. In particular, M is a model of �. Moreover,it must be an I-mcm of � as well, since otherwise there would be an N 2mod(�), that is strictlymore consistent than M . Since � j=4I  , this N would have been an I-mcm �[f g and thereforeN <IM w.r.t. �[f g | a contradiction. Therefore, M is a I-mcm of �. Now, since � j=4I�, Mis a model of some Æ2�. Hence �;  j=4I�. 2The following de�nition is a generalization of the notion of preferential logics, which has beenintroduced in [KLM90]:De�nition 4.39 Let j= be a consequence relation (in the usual monotonic sense). Suppose that� is a connective that is an internal implication w.r.t. j= and $ is a connective which is internalequivalence w.r.t. j= (see Proposition 4.3). Then a j=-preferential logic is a relation ) that isclosed under the following conditions:Re
exivity: If �\� 6=;, then �)�.Left Logical Equivalence: If � j= $� and �;  )�, then �; �)�.Right Weakening: If � j= ��;� and �) ;�, then �)�;�.12This rule was �rst proposed in [Ga85].13Recall that this means that the rules of De�nition 4.37 are valid w.r.t. both j=4I1 and j=4I2 .20



Or: If �;  )� and �; �)�, then �;  _ �)�. 14Cautious Left Monotonicity.Cautious Cut.Preferential logics form the central family of nonmonotonic logics among those considered in[KLM90]. In their original de�nition [KLM90] refer to the classical consequence relation togetherwith the classical material implication and equivalence. Naturally, we prefer to use j=4 instead:De�nition 4.40 A four-valued preferential logic is a j=4-preferential logic, where �, $ are theconnectives de�ned in De�nition 2.1 (see also Proposition 4.3).Proposition 4.41 j=4I is a four-valued preferential logic.Proof: By Proposition 4.3, � is indeed an internal implication and $ is an internal equivalencew.r.t. j=4. It is left to show that the other conditions of De�nition 4.39 are met. Re
exivity,Cautious Left Monotonicity, Cautious Cut, and [_)] have already been proved in Propositions4.36 and 4.38. It is left to show the validity of Left Logical Equivalence and Right Weakening.Left Logical Equivalence: Let M be an I-mcm of �[f�g, and suppose that M(Æ) 62 D for everyÆ2�. M is in particular a model of � and thus it is a model of  $�. By Proposition 2.2, �[f gand � [ f�g have the same models. Hence it is easily veri�ed, using Lemma 4.34, that M is anI-mcm of �[f g. But this contradicts the assumption that �;  j=4I�.Right Weakening: Suppose that M is an I-mcm of � and M(�);M(Æ) 62D for every Æ2�. SinceM 2mod(�) then by assumption, M( � �) 2 D. But M(�) 62 D, and so M( ) 62 D either | acontradiction to � j=4I  ;�. 2Note: Similar proofs to those of Propositions 4.38 and 4.41 can be used for showing that j=4k isalso a plausibility logic as well as a four-valued preferential logic.4.5.3 Reducing the amount of the preferred modelsA we have already noted, one of the advantages of j=4I1 and j=4I2 w.r.t. j=4 is that the set of modelsneeded for drawing conclusions from the formers is never bigger than that of the latter. In thissubsection we consider cases in which it is possible to reduce the amount of the relevant modelseven further, without changing the logic. The idea is to take the composition of �k and �I ; Insteadof considering every I1- [I2-]mcm of �, we use only the k-minimal models in this set.15Proposition 4.42 Suppose that the formulae of � are in the language without �. Then � j=4I1�i� every k-minimal element of mcm(�;I1) is a model of some Æ2�.Proof: If � j=4I1 � then in particular every k-minimal element of mcm(�;I1) is a model of someformula of �. For the converse, let M be an I1-mcm of �. By the lemma in the proof of Propo-sition 4.14, there exists a k-minimal model N of � s.t. N �kM . It follows that for every atomp for which N(p) =>, M(p) => as well. Thus I(N;I1)� I(M;I1). But M is an I1-mcm of �,so I(N;I1) = I(M;I1), and N is also an I1-mcm of �. In particular, N is k-minimal among theI1-mcms of �, and so there is a Æ 2� s.t. N(Æ) 2D. Since all the operators that correspond to14This rule was denoted by [)_] in GBL.15See [AA97a] for a practical usage of the k-minimal mcms of a theory.21



the connectives of � are monotone w.r.t. �k, M(Æ) �k N(Æ), and so M(Æ)2D as well. Therefore� j=4I1�. 2Note: Proposition 4.42 is no longer true when � occurs in the conclusions. For a counter-exampleconsider, e.g., � = fp; p_qg. The k-minimal element of mcm(�;I1) assigns t to p and ? to q,therefore q�:q is true in it. However, p; p_q 6j=4I1 q�:q.Proposition 4.43 Proposition 4.42 is not true for j=4I2 ; It is not suÆcient to consider only thek-minimal elements of mcm(�;I2) for inferring � j=4I2 �, even if the formulae in � are all in thelanguage without �.Proof: Consider the following in�nite set: �=fpi_:pi�pi+1^:pi+1 j i�1g. It is easy to verifythat mcm(�;I2) = fM t1;Mf1 ;M t2;Mf2 ; : : :g, where for every j � 1, M tj assigns ? to fp1; : : : ; pj�1g,t to pj, and > to fpj+1; pj+2; : : :g. Mfj is the same valuation as M tj , except that pj is assigned finstead of t. Therefore � 6j=4I2 p1. On the other hand, mcm(�;I2) has no k-minimal element (sincefor every j�1, M tj+1<kM tj and Mfj+1<kMfj ), therefore everything would have followed from thisset (in particular p1), had we used only the k-minimal I2-mcms of � for drawing conclusions. 2Despite the previous proposition, we still have the following result:Proposition 4.44 Suppose that � is �nite, and the formulae of � are in the language without �.Then � j=4I2� i� every k-minimal element of mcm(�;I2) is a model of some Æ2�.Proof: Again, the \only if" direction is obvious. For the other direction, assume that the conditionholds. Since � is �nite, it has a �nite number of (k-minimal models among the I2-most consistent)models. Therefore, for every I2-mcm M of � there is a model N which is k-minimal among theI2-mcms of �, and N �kM . By our assumption, there is a Æ2� s.t. N(Æ)2D. Like in the proofof the Proposition 4.42, this implies that M(Æ)2D as well, and so � j=4I2�. 2Note: Like in Proposition 4.42, the condition about � is necessary in Proposition 4.44 as well: Forgiving a counter-example in this case note that � must be inconsistent (otherwise the I2-mcms of �are its ft; fg-models, and so each I2-mcm is k-minimal). Consider, therefore, �=fp�:p;:p�pg.The k-minimal element of mcm(�;I2) assigns ? to p, and so p�f is true in it. On the other hand,� 6j=4I2 p�f .4.6 The monotonic classical fragmentWe conclude this section with some results concerning the f_;^;:; t; fg-fragment of the language.This fragment may be called the monotonic classical language. It is extensively discussed in theliterature, and although it has relatively weak expressive power in the multi-valued setting, thecorresponding fragments of our logics have many nice properties.First, it is well known that with respect to the monotonic classical language j=4 is identical tothe set of \�rst degree entailments" in relevance logic (see [AB75, Du86]). The exact connection isthat  1; : : : ;  n j=4�1; : : : ; �m i�  1 ^ : : : ^  n!�1 _ : : : _ �m is a �rst degree entailment.A second important observation is that relative to this language, j=4I2 is really a three valuedlogic: 22



Proposition 4.45 Suppose that the formulae of � are in the language of f_;^;:; t; fg and thatM is an I2-mcm of �. Then there is no formula  s.t. M( )=?.Proof: Since ft; f;>g is closed under :;_ and ^, it is suÆcient to show the proposition only foratomic formulae. De�ne a transformation g : FOUR ! ft; f;>g as follows: g(?) = t, g(b) = botherwise. Obviously, for every atom p, gÆM(p)�kM(p). Since every connective in the languageof � is k-monotone, 8
 2� gÆM(
)�kM(
). Now, D is upward-closed w.r.t. �k, and so 8
 2�gÆM(
)2D. Thus gÆM is also a model of �. Since gÆM �I2M , necessarily gÆM=M . 2Another important property of formulae in the monotonic classical language is that like in theclassical case, every formulae can be translated to an equivalent formula in standard conjunctivenormal form (CNF) or standard disjunctive normal form (DNF):Proposition 4.46 Every formula  in the monotonic classical language can be translated to aCNF-formula  0 and to a DNF-formula  00 s.t. for every valuation � in FOUR, �( )=�( 0)=�( 00).Proof: The proof is similar to that of the classical case, using the fact that de-Morgan's laws,distributivity, commutativity, associativity, and the double negation rule (::�� �) remain validin the four-valued case. 2Another connection with classical logic is the following:Proposition 4.47 Let � be a classically consistent set in the monotonic classical language, andsuppose that  is a formula in CNF, non of its conjuncts is a tautology.16 Then  classically followsfrom � i� � j=4I1  .Proof: ()) Assume �rst that  is a disjunction of literals, which is not a tautology. Suppose alsothat � 6j=4I1  . Let M be an I1-mcm of � s.t. M( ) 62D. Since � is classically consistent, it has aclassical model, N . Since I(N;I1)=;, I(M;I1)=; as well. Now, de�ne:M 0(p) = ( t M(p)= t, or (M(p)=? and :p2L( )).f otherwise.All the connectives in � are k-monotonic. Therefore, since M 0�kM , and M is a model of �, M 0is a (classical) model of � as well. It is easy to see that M 0( )=f , therefore  does not classicallyfollow from �.Suppose now that  is a formula in CNF, non of its conjuncts is a tautology, and � 6j=4I1  . Thenit must have a conjunct  0 s.t. � 6j=4I1  0. We have shown that  0 cannot classically follow from �,therefore  also does not classically follow from �.(() Follows from Proposition 4.25. 2The last two propositions together with Proposition 4.42 entail that for checking whether aformula classically follows from a consistent set �, it is suÆcient to perform the following steps:1. convert the formula to a conjunctive normal form,2. drop all the conjuncts which are tautologies, and16Classically, every formulae which is not a tautology is equivalent to some formula of this form.23



3. check the remaining formula only w.r.t. the k-minimal I1-mcms of �.17The next proposition should be compared with Proposition 4.43:Proposition 4.48 Suppose that the formulae of � are in the monotonic classical language. Then� j=4I2� i� every k-minimal element of mcm(�;I2) is a model of some Æ2�.Proof: By Proposition 4.45, in this case every I2-mcm of � is also k-minimal in mcm(�;I2), andso the claim follows. 2Next we compare j=4I1 and j=4I2 in the monotonic classical language. At the beginning ofSubsection 4.5 we have noted that in general, neither of these relations is stronger than the other.As Proposition 4.49 below shows, this is no longer true in the case of the f_;^;:; t; fg-fragment:Proposition 4.49 Let �;�;  be in the monotonic classical language.a) If � j=4I1� then � j=4I2�.b) If  is a CNF-formula, non of its conjuncts is a tautology, then � j=4I1  i� � j=4I2  .Proof:a) This follows from the fact that in the classical monotonic language every I2-mcm of � is alsoan I1-mcm of �. Indeed, let M be an I2-mcm of �, and suppose that N is another model of �s.t. N >I1 M . De�ne for every atom p a valuation M 0 as follows: M 0(p) = t if N(p) = ? andM 0(p) = N(p) otherwise. Since the language is k-monotonic and M 0 �k N , M 0 2mod(�). Now,I(M 0;I2) = I(M 0;I1) = I(N;I1)� I(M;I1). Moreover, by Proposition 4.45, I(M;I1) = I(M;I2),thus I(M 0;I2)�I(M;I2), and so M 0>I2M { a contradiction.b) Obviously, it suÆces to show the claim for a disjunction  of literals that does not contain anatomic formula and its negation. So assume that � 6j=4I1  . Then there is an I1-mcm M of � s.t.M( ) 62D. Consider the valuation M 0, de�ned as follows:M 0(p) = 8><>: t if M(p)=? and p 62L( )f if M(p)=? and p2L( )M(p) otherwise1. M 0 is a model of �, since 8
2� M 0(
)�kM(
) and D is upward-closed w.r.t. �k,2. M 0 is an I2-mcm of �, since if 9N 2 mod(�) s.t. N >I2 M 0 then I(N;I1) � I(N;I2) �I(M 0;I2)=I(M 0;I1)=I(M;I1), so N>I1M { a contradiction.3. M 0( ) 62D { This follows from the structure of  and from the fact that for every l2L( ),M 0(l)2D i� M(l)2D.By (1) { (3) it follows that � 6j=4I2  . 2Note: The converse of part (a) of Proposition 4.49 is not true in general. For instance, j=4I2 p_:pwhile 6j=4I1 p_:p.17This process might be useful in case � is a �xed theory, but the check should be made for many di�erent potentialconclusions. Note that if � than the number of k-minimal I1-mcms is never greater than the number of classicalmodels and is frequently smaller. We shall return to this point in Section 5.24



5 Four values are better than three5.1 The three-valued logics in the context of FOURThree-valued logics might be roughly divided into two families according to the decision whetherthe middle element is taken to be designated or not. Logics of the �rst class are, in fact, logicsthat are based on the subset ft; f;?g of FOUR, while logics of the other class are based on thesubset ft; f;>g. In both cases the languages of the corresponding standard logics are based onsome fragment of the language of f:;_;^;�;
;�; t; f;>;?g (see [Av91]). The interpretations ofthese connectives are the reductions of the corresponding operators of FOUR (provided that thethree values are closed under the operations, which is the case for the classical connectives. Notethat ft; f;?g is closed under 
 while ft; f;>g is closed under �). The functional completenesstheorem concerning FOUR induces a corresponding theorem for the three-valued subsets:Theorem 5.1a) The language of f:;^;�;
; fg is functionally complete for ft; f;?g.b) The language of f:;^;�;�; fg is functionally complete for ft; f;>g.Proof: This easily follows from the �fth and the seventh items, respectively, of Theorem 3.10. 2Note: The connective � of FOUR induces two di�erent three-valued implications, depending onthe interpretation of the third value as either ? or >. Parts (a) and (b) of Theorem 5.1 refer, infact, to these two di�erent meanings of �. On the other hand, the three-valued truth tables of 
in ft; f;?g and of � in ft; f;>g are identical. The two parts of Theorem 5.1 do provide, therefore,two di�erent functionally complete sets of 3-valued connectives, but this is due to the di�erentmeanings of �.5.2 Comparison with four-valued systemsThe main advantage of using FOUR rather than three-valued systems is, of course, that it allows usto deal with both types of abnormal propositions in one system. In this section we show, moreover,that one can in any case do with FOUR everything one can do using only three values, sometimeseven more eÆciently. We start by showing that it is possible to simulate the basic three-valued logicsin the context of FOUR. Denote by j=3Kl the consequence relation that corresponds to Kleene'slogic (i.e. � j=3Kl� i� every ft; f;?g-model of � is a ft; f;?g-model of some formula in �), andby j=3LP the consequence relation of the logic LP18 (i.e. � j=3LP� i� every ft; f;>g-model of � is aft; f;>g-model of some formula in �). Then:Proposition 5.2 Let �;� be two sets of assertions with A(�;�)=fp1; p2; : : :g.a) � j=3Kl� i� �; p1^:p1�f; p2^:p2�f; : : : j=4�.b) � j=3LP� i� �; p1_:p1; p2_:p2; : : : j=4�.Proof: Part (a) follows from the fact that the ft; f;?g-models of � are the same as the four-valuedmodels of �[fp1^:p1�f; p2^:p2�f; : : :g. Similarly, in case (b) the ft; f;>g-models of � are thesame as the four-valued models of �[fp1_:p1; p2_:p2; : : :g. 2A basic drawback of standard three-valued logics in which the nonclassical value in not desig-nated is that they are not paraconsistent [dC74]; fp;:pg has in them no model, and so everything18Also known as J3, RM3, and PAC (see [Do85, Ro89, Av91] and chapter IX of [Ep90]).25



follows from this set. Since we consider paraconsistency as one of the major reasons for switchingto multi-valued semantics, we shall concentrate in what follows on the other family of three-valuedlogics, in which the third value is designated.We have already mentioned LP as the basic logic among the three-valued logics with middleelement designated. It is well known that LP invalidates the Disjunctive Syllogism ( ;: _� 6j=3LP�).Priest [Pr89, Pr91] argues that this is a drawback: a consistent theory should preserve classicalconclusions. He suggests to resolve this drawback by considering as the relevant models of a set� only those that are minimally inconsistent . Such models assign > only to some minimal set ofatomic formulae. The consequence relation j=3LPm of the resulting logic, LPm, is then de�ned asfollows: � j=3LPm i� every minimally inconsistent model of � is a model of  .The original treatment of Priest de�nes LPm only for what we have called the monotonic clas-sical language (f_;^;:; t; fg). This idea, however, can easily be extended to reacher languages,and that is what we just have done.Like j=3LP and j=3Kl, the logic of Priest can also easily be simulated in FOUR:Proposition 5.3 Suppose that A(�;  )=fp1; p2; : : :g. The following conditions are equivalent:1) � j=3LPm 2) �; p1_:p1; p2_:p2; : : : j=4I1  3) �; p1_:p1; p2_:p2; : : : j=4I2  Proof: The three-valued models of � are the same as the four-valued models of �[fp1_:p1; p2_:p2; : : :g. Since each one of them assigns to the atomic formulae in A(�;  ) values from ft; f;>g,the LPm models of � are the same as the I1-mcms and the I2-mcms of �[fp1_:p1; p2_:p2; : : :g.2 Although the motivation for j=4I2 and especially for j=4I1 is similar to that of Priest's j=3LPm (allof them try to minimize the amount of inconsistency), they are not the same logic. For instance,p� :p;:p� p j=3LPm p, while p� :p;:p� p 6j=4Ij p for j = 1; 2. On the other hand, the followingproposition shows that in the monotonic classical language j=3LPm is identical to j=4I2 , and has strongconnections with j=4I1 .Proposition 5.4 Let �;� be two sets of formulae and  a formula in the language of f:;^;_; t; fg.a) � j=3LPm� i� � j=4I2�.b) Suppose that  is a formula in CNF, non of its conjuncts is a tautology. Then � j=3LPm  i�� j=4I1  .Proof: We leave the proof of part (a) to the reader. Part (b) immediately follows from part (a)and Proposition 4.49. 2Proposition 5.4(b) together with Proposition 4.42 imply that a switch to four-valued semanticsmight improve the three-valued inference process of LPm: Let  be a formula in the monotonicclassical language. For checking whether � j=3LPm  , it is suÆcient to convert  to a conjunctivenormal form, remove every conjunct which contains some atomic formula together with its nega-tion, and check the resulting formula only in the k-minimal I1-mcms of �. The number of suchmodels is usually smaller (and never bigger!) than the number of the LPm-models. This is due tothe fact that from every k-minimal I1-mcm one can obtain several LPm-models by changing every?-assignment to either t or f . Here is a very simple example: Let � = f:p_q; p_qg. q follows26



from � according to j=3LPm and so also according to j=4I1 (and classically as well, of course). Now,� has two LPm-models: fp : t; q : tg and fp : f; q : tg (these are also its classical models), but onlyone k-minimal I1-model: fp :?; q : tg. This single model suÆces for inferring that q follows from �.Figure 5 summarizes the relationships among the three- and four-valued consequence relationsw.r.t the monotonic classical language.19 One should remember, however, that important as it is,this language is quite limited.
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Figure 5: Relationships among the three- and four-valued systems where L=f:;^;_; t; fg.6 More than four values are usually not necessaryIn this section we consider a class of structures that naturally generalize hFOURi. We then general-ize the above four-valued logics to those structures in an attempt to achieve more powerful inferencemechanisms. The major result of this section is that this freedom to use more truth values doesnot add much; Each one of the multi-valued logics considered here can actually be characterizedby one of our four-valued logics.6.1 Bilattices6.1.1 Background and motivationBilattices [Gi87, Gi88] are algebraic structures that naturally generalize Belnap's four-valued lattice,FOUR. The idea is to consider arbitrary number of truth values, and to arrange them (like inFOUR) in two closely related partial orders, each forming a lattice. As in the four-valued case,one intuitively understands one of the orderings as representing degrees of truth, and the other asrepresenting degrees of knowledge.The original motivation of Ginsberg for using bilattices was to provide a uniform approach for adiversity of applications in AI. In particular he treated �rst order theories and their consequences,truth maintenance systems and formalisms for default reasoning. The algebraic structure of bilat-tices has been further investigated by Fitting and Avron [Fi90b, Fi94, Av96]. Fitting has also shownthat bilattices are very useful tools for providing semantic to logic programs: He proposed an exten-sion of Smullyan's tableaux-style proof method to bilattice-valued programs, and showed that this19The observation that j=3LP and j=4I1 are incomparable follows from the facts that excluded middle is valid w.r.t.j=3LP but not w.r.t. j=4I1 , while the disjunctive syllogism (applied to atomic formulae) is valid in j=4I1 but not in j=3LP.27



method is sound and complete with respect to a natural generalization of van-Emden and Kowal-ski's operator (see [Fi90a, Fi91]). Fitting also introduced a multi-valued �xedpoint operator (thatgeneralizes the Gelfond-Lifschitz operator [GL88]) for providing bilattice-based stable models andwell-founded semantics for logic programs (see [Fi93]). A well-founded semantics for logic programsthat is based on the bilattice NINE (Figure 6) is considered also in [DP95]. Bilattices have alsobeen found useful for nonmonotonic reasoning [AA96], temporal reasoning [FM93], model-baseddiagnostics [Gi88, AA97a], and reasoning with inconsistent knowledge-bases [Sc96, AA97b].6.1.2 PreliminariesDe�nition 6.1 [Gi88] A bilattice is a structure B = (B;�t;�k;:) such that B is a nonempty setcontaining at least two elements; (B;�t), (B;�k) are complete lattices; and : is a unary operationon B that has the following properties: (a) if a �t b, then :a �t :b, (b) if a �k b, then :a �k :b,(c) ::a = a. 20In what follows we shall continue to use ^ and _ for the meet and join of �t, and 
, � for themeet and join of �k. Also, f and t still denote the respective least and greatest element w.r.t. �t,while ? and > { the least and the greatest element w.r.t. �k. It is easy to see that t; f;>, and ?are all distinct from each other.De�nition 6.2 A bilattice is called distributive [Gi88] if all the twelve possible distributive lawsconcerning ^, _, 
, and � hold. It is called interlaced [Fi90a, Fi91] if each one of ^, _, 
, and �is monotonic with respect to both �t and �k.The following subsets of the truth values in B are used for de�ning validity of formulae and theassociated consequence relation. They provide a natural generalization of the set of the designatedvalues ft;>g of FOUR.De�nition 6.3 [AA94, AA96]a) A bi�lter of a bilattice B is a nonempty set F�B, F 6=B such that:a ^ b 2 F i� a 2 F and b 2 Fa
 b 2 F i� a 2 F and b 2 Fb) A bi�lter F is called prime, if it satis�es also:a _ b 2 F i� a 2 F or b 2 Fa� b 2 F i� a 2 F or b 2 FNote: It can be shown that a subset F of an interlaced bilattice B is a (prime) bi�lter i� it is a(prime) �lter relative to �t and >2F (i� it is a (prime) �lter relative to �k and t2F).From now on (unless otherwise stated) F will denote a prime bi�lter. Obviously, if a2F and b�t aor b�k a, then b2F . It immediately follows that t;>2F while f;?62F .Example 6.4 Ginsberg's DEFAULT (Figure 6, right) and Belnap's FOUR are bilattices thatcontain exactly one bi�lter, f>; tg, which is prime in both. NINE (Figure 6, left), on the otherhand, contains two bi�lters: fb j b �k tg as well as fb j b �k dtg; both are prime.De�nition 6.5 [AA94, AA96] A logical bilattice is a pair (B;F), where B is a bilattice, and F isa prime bi�lter on B.20Note that FOUR is the minimal non-degenerated bilattice.28
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Figure 6: NINE, and DEFAULTNote: It can be shown that every distributive bilattice can be turned into a logical bilattice.In [AA96] it is shown that if B is interlaced, then D(B) = fb2B j b�t>g is always a bi�lter,and even the smallest one.Example 6.4 | continued: hFOURi= (FOUR; ft;>g), (DEFAULT; ft;>g), (NINE; fb j b �ktg), and (NINE; fb j b �k dtg) are all logical bilattices.The following de�nition of entailment is a natural generalization of De�nition 2.1 for arbitrarylogical bilattices.De�nition 6.6 [Av91, AA96] Let (B;F) be a logical bilattice (B;F). De�ne:a � b = ( b if a 2 Ft if a 62 Fa! b = (a � b) ^ (:b � :a)a$ b = (a! b) ^ (b! a)The following semantic notions are also obvious generalizations of the four-valued ones:De�nition 6.7a) A valuation � in B is a function that assigns a truth value from B to each atomic formula. Anyvaluation is extended to complex formulas in the standard way.b) Given (B;F), we will say that � satis�es  (� j= ), i� �( )2F .c) A valuation that satis�es every formula in a given set of formulas, �, is said to be a model of �.Given (B;F), the set of the models of � will be denoted mod(�).6.1.3 Types of truth values and valuationsWe assign to every element of a bilattice B and to every valuation in B a speci�c type. This typingof the space of valuations on B will have a great signi�cance in what follows.29



De�nition 6.8 Let (B1;F1) and (B2;F2) be two logical bilattices. Suppose that bi is some elementof Bi and that �i is a valuation on Bi for i=1; 2.a) b1 and b2 are of the same type if: (i) b12F1 i� b22F2, and (ii) :b12F1 i� :b22F2.b) �1 and �2 are of the same type if for every atomic p, �1(p) and �2(p) are of the same type.Note that the types depend on the identity of the bi�lter, so two valuations might not be of thesame type even in case they are identical and the underlying bilattice is the same. Consider, e.g.,a valuation � on NINE s.t. �(p)= ot for some atom p. Then � for F = fb j b �k tg) is not of thesame type as the same � where the bi�lter is F=fb j b �k dtg).Proposition 6.9 Let (B1;F1) and (B2;F2) be two logical bilattices and suppose that �1; �2 aretwo valuations on B1; B2 (respectively), which are of the same type. Then for every formula  ,�1( ) and �2( ) are of the same type.Proof: By an induction on the structure of  (The fact that F is prime is crucial here!). 2Corollary 6.10 Let �1; �2 be two valuations of the same type on a logical bilattice (B;F). Thenfor every formula  , �1( ) and �2( ) are of the same type.Theorem 6.11 A model of � in hFOURi is also a model of � in every logical bilattice (B;F).Proof: LetM (4) be a model of � in FOUR, and suppose thatM (B;F) is the same valuation de�nedon some logical bilattice (B;F). Since every bi�lter F contains t;> and does not contain f;?, thenM (4) and M (B;F) are of the same type. Hence, by Proposition 6.9, M (4)( ) and M (B;F)( ) are ofthe same type for every  2�. In particular M (B;F) must be a model of � in (B;F) as well.21 2Lemma 6.12 Let � be a valuation in a logical bilattice (B;F). Then �( $�)2F i� �( ) and�(�) are of the same type.Notation 6.13 Given a logical bilattice (B;F). Denote the four possible types of its elements byT B;Ft , T B;Ff , T B;F> and T B;F? , i.e.:T B;Ft =fb2B j b2F ;:b 62Fg; T B;Ff =fb2B j b 62F ;:b2Fg;T B;F> =fb2B j b2F ;:b2Fg; T B;F? =fb2B j b 62F ;:b 62Fg:We shall usually omit the superscripts, and just write Tt;Tf ;T>, T?.De�nition 6.14 Let (B;F) be a logical bilattice. De�ne a function h : B ! FOUR as follows:h(b) = 8>>><>>>: > if b2T>t if b2Ttf if b2Tf? if b2T?Proposition 6.15a) h is an homomorphism onto FOUR.b)M is a model in (B;F) of a set � of formulae i� the composition hÆM is a model of � in hFOURi.Proof: Left to the reader (see also [AA96, theorems 2.17, 3.17]). 221In the speci�c case where (B;F) is interlaced, the last theorem immediately follows from Proposition 3.1 of [Fi91],since it is shown there that FOUR is actually a sub-bilattice of every interlaced bilattice B, so in this case M (4)( )and M (B;F)( ) are not only of the same type, but are actually identical.30



6.2 Extending the four-valued logics to bilattice-based logicsIn this section we introduce obvious generalizations of the logics of Section 4 to arbitrary logicalbilattices. The main conclusion is that like in the case of the generalization of the classical two-valued logic to arbitrary Boolean algebra, no new logic is obtained.6.2.1 The logics j=B;F and j=B;FkDe�nition 6.16 Let (B;F) be a logical bilattice, and suppose that �, � are two sets of formulae.a) � j=B;F� if every model of � is a model of some formula in �.b) � j=B;Fk � if every k-minimal model of � is a model of some formula in �.Note that j=4 = j=hFOURi and j=4k = j=hFOURik . Therefore, in the particular case of hFOURi weshall continue to use the abbreviations j=4 and j=4k.Theorem 6.17 [AA96] � j=B;F� i� � j=4�.Proof: One direction follows from Theorem 6.11. For the other, suppose that � 6j=B;F �. Thenthere is a valuation M that is a model of � in (B;F) but M(Æ) 62F for every Æ2�. Let M 0=hÆM .From Propositions 6.9 and 6.15 it follows that M 0 is a four valued model of � s.t. M 0(Æ) 62 ft;>gfor every Æ2�. Therefore � 6j=4�. 2Theorem 6.18 Let (B;F) be a logical bilattice s.t. infk F 2F .22 Then � j=B;Fk � i� � j=4k�.Proof: First, we prove some lemmas:Lemma 6.18-A: Suppose that ; 6=X�B and let :X=f:x j x2Xg. Then infk :X=: infkX.Proof: x 2 :X ) :x 2 X ) :x �k infkX ) x �k : infkX. Thus: infk :X �k : infkX. Onthe other hand, replacing X with :X yields that infk ::X�k: infk :X, i.e. infkX�k: infk :X.Therefore : infkX�k infk :X, and so : infkX=infk :X.Lemma 6.18-B: For every x2ft; f;>;?g infk Tx 2Tx. Moreover: infk T?=?, infk Tt= infk F =mink F , infk Tf=: infk F=:mink F , and infk T>=mink F�:mink F .Proof: (i) The case x=? is trivial, since ?2T?.(ii) The case x = t: Let a = infk F . Since Tt � F , infk Tt �k a. Now, a 2 F (given). On theother hand, t 2 F . Hence t �k a, and so f �k :a. It follows that :a 62 F (otherwise f 2 F { acontradiction). Therefore a2Tt, and so a=mink Tt.(iii) The case x=f . Let again a=infk F . Since :Tf �F , by Lemma 6.18-A : infk Tf �k a. Henceinfk Tf �k :a. On the other hand we just have shown that :a 62 F , while ::a= a2F . It followsthat :a2Tf , and so :a=mink Tf .(iv) The case x=>: Since T>�F and :T>�F , infk T>�k infk F 2F and : infk T>�k infk F 2F .Hence inf T> 2 F and inf :T> 2 F . By Lemma 6.18-A, then, inf T> 2 T>. For the other partnote that mink F�:mink F 2 F and also :(mink F�:mink F) = :mink F�mink F 2 F . Thusmink F�:mink F 2T>, and so infk T>�kmink F�:mink F . On the other hand, 8b2T> b�k mink F(by (ii)) and :b �k :mink F (by (iii)). Hence 8b 2 T> b �k mink F�:mink F . In particular,infk T>�kmink F�:mink F , therefore infk T>=mink F�:mink F .Lemma 6.18-C: Suppose that M is a k-minimal model of � in (B;F), and let h : B ! FOUR bethe homomorphism de�ned in 6.14. Then hÆM is a k-minimal model of � in hFOURi.22This is clearly the case whenever B is �nite. It can be shown also that if B is interlaced then infk F 2 F i�inft F 2F . Moreover, in this case inftF=infk F^> while infk F=inftF
t.31



Proof: Suppose not. Then there is another model N of �, which is k-smaller than hÆM in hFOURi.By Theorem 6.11, N is also a model of � in (B;F). De�ne a valuation N 0 by N 0(p)=infk TN(p) (patomic). By Corollary 6.10, N 0 is also a model of � in (B;F). Note that N and N 0 are of the sametype, and so are M and hÆM . Let p be an atomic formula.Case A: If N(p) and (h ÆM)(p) are of the same type, then so are N 0(p) and M(p). By theconstruction of N 0, N 0(p)�kM(p).Case B: If N(p) and (hÆM)(p) are not of the same type, then since N(p)�k (hÆM)(p), there arethree possible cases: (i) N(p)=? and (hÆM)(p)2ft; f;>g, or (ii) N(p)= t and (hÆM)(p)=>, or(iii) N(p)=f , and (hÆM)(p)=>. Let's consider each case:Case B-(i): In this case N 0(p)=? as well, while M(p) 62T?, thus M(p) 6=? and so N 0(p)<kM(p).Case B-(ii): Since by Lemma 6.18-B N 0(p) = mink F and M(p) 2 F , so N 0(p) �k M(p). ButN 0(p) 6=M(p) since :M(p)2F while :N 0(p) 62F . Therefore N 0(p)<kM(p).Case B-(iii): Again, by Lemma 6.18-B, in this case N 0(p)=mink :F . But :M(p)2F , so N 0(p)<kM(p) here as well.Now, since N is a model of � in hFOURi, which is strictly k-smaller than hÆM , there is at leastone atom p0 that falls under case B above. For this p0, N 0(p0)<kM(p0) while for any other atomp, N 0(p)�kM(p). Hence N 0 is a model of � in (B;F) which is k-smaller than M { a contradiction.The \if" direction of Theorem 6.18 now easily follows from Lemma 6.18-C: Suppose that for somelogical bilattice (B;F), � 6j=B;Fk �. Let M be a k-minimal model of � s.t. M(Æ) 62F for every Æ2�.By Lemma 6.18-C hÆM is a k-minimal model of � in hFOURi of the same type as M . Therefore(hÆM)(Æ) 62ft;>g for every Æ2�, and so � 6j=4k�.The other direction: Suppose that � 6j=4k�. Then there is a k-minimal model M of � in hFOURis.t. M(Æ) 62 ft;>g for every Æ 2�. De�ne a valuation M 0 on B as follows: M 0(p) = infk TM(p) (patomic). By Corollary 6.10 and Lemma 6.18-B, hÆM 0 =M . Hence (by Proposition 6.15) M 0 isa model of �, and M 0(Æ) 62 F for every Æ 2�. Moreover, M 0 is a k-minimal model of �, and so� 6j=B;Fk �. Indeed, if N is another model of � s.t. N<kM 0, then hÆN�k hÆM 0=M . Also, there isp s.t. N(p)<M 0(p) and so N(p) 62TM(p). Hence h(N(p)) 6=M(p), and so actually hÆN<kM . SincehÆN is a model of � in hFOURi (because N is a model of �), M is not k-minimal { a contradiction.26.2.2 The logics of j=B;FILike j=4 and j=4k, the logics j=4I1 and j=4I2 have also natural generalizations to bilattices.De�nition 6.19 [AA94, AA96] Let (B;F) be a logical bilattice, and b { an arbitrary element inB (the carrier of B). A subset I of B is called an inconsistency set in (B;F), if it has the followingproperties: (a) b 2 I i� :b 2 I, (b) F \ I=T>.Lemma 6.20 Suppose that I is an inconsistency set in (B;F). Then:a) T> � I � T>[T?.b) >2I and t; f 62I.Proof: Immediate from De�nition 6.19. 2Example 6.21 T> and T> [ T? are respectively the minimal and maximal inconsistency set inevery logical bilattice. In hFOURi the former set was denoted I1 (4.19a) and the latter { I2(4.26a). These are the only inconsistency sets of hFOURi.32



Notation 6.22 I(�;I) = fp j p is atomic and �(p) 2 Ig. Intuitively, I(�;I) is the set of theinconsistent assignments of a valuation � w.r.t. an inconsistency set I (compare to 4.19b and4.26b).The next two de�nitions are natural extensions of De�nitions 4.20, 4.21, 4.27, and 4.28, togeneral logical bilattices:De�nition 6.23 Let � be a set of formulae, and M;N { models of �.a) M is more consistent than N w.r.t. I (M>IN) if I(M;I)�I(N;I).b) M is a most consistent model of � w.r.t. I (I-mcm, in short), if there is no other model of �which is more consistent than M . The set of all the I-mcms of � is denoted mcm(�;I).De�nition 6.24 � j=B;FI � if every I-mcm of � is a model of some formula of �.23Note: Several relations similar to j=B;FI are considered in the literature. We have already men-tioned, e.g., Priest's LPm [Pr91]. In our terms, Priest considers the inconsistency set I = T>.In the 3-valued case this is the only inconsistency set, and it consists only of >. In the general(multi-valued) case there are many others.Kifer and Lozinskii [KL92] also propose a similar relation (denoted there j��, where � standsfor the values that are considered as representing inconsistent knowledge). This relation is consid-ered in the framework of annotated logics [Su90a, Su90b]. See [AA96, AA97a] for a discussion onthe similarities and the di�erences between j=B;FI and j��.We now show that again everything that one can infer by using j=B;FI may be inferred in hFOURitogether with either I1 or I2 as the inconsistency set:Theorem 6.25 For every logical bilattice (B;F) and an inconsistency set I there is a consistencyset J in hFOURi s.t. � j=B;FI � i� � j=4J �.Proof: In the course of this proof we shall use the following convention: whenever � is a functionfrom the atomic formulae to ft; f;>;?g, �4 denotes its expansion to complex formulae in FOUR,and �B denotes the corresponding valuation on B.24Let (B;F) be a logical bilattice, and let h : (B;F) ! FOUR be the homomorphism onto FOUR,de�ned in 6.14.Lemma 6.25-A: �4=hÆ�B .Proof: We show by induction on the structure of a formula  that �4( )=hÆ�B( ). For atomicformulae this follows from the fact that on ft; f;>;?g, h is the identity function. For more com-plicated formulae we use the fact that h is an homomorphism.23There is a slight (but signi�cant) change between the relation j=B;FI de�ned here and the relation j=B;Fcon(I)(abbreviation: j=con), considered in [AA94, AA96]. The di�erence is that instead of considering the inconsistentassignments of � on every atomic formulae as we do here, in [AA94, AA96] only the assignments on the atomicformulae that appear in the language of the set of assumptions, �, are considered. In other words, the relevant set ofassignments there is I(�;�; I)=fp2A(�) j �(p)2Ig (cf. De�nition 6.22). Our new de�nition has certain advantagesover the original one. Thus, Proposition 4.32(b) fails for j=4con(f>;?g) and Proposition 4.36(a) fails for both j=4con(f>g)and j=4con(f>;?g).24Note that although �4(p)=�B(p) when p is atomic, this might not be the case in general, unless B is interlaced.33



Lemma 6.25-B: �B is a model of � in (B;F) i� �4 is a model of � in hFOURi.Proof: Immediate from Lemma 6.25-A and the fact that �B( )2F i� �4( )=hÆ�B( )2ft;>g.The rest of the proof is divided into two cases that correspond to the two possibilities of de�ningan inconsistency set in hFOURi:� case A: T? � I� case B: T? n I 6= ;.For each case de�ne a corresponding inconsistency set in hFOURi. In case A let J =I2=f>;?g,and in case B let J =I1=f>g.Lemma 6.25-C: In case A, M is an I-mcm of � in (B;F) i� hÆM is an I2-mcm of � in hFOURi.Proof: By Lemma 6.20(a) in case A, I=T>[T? and so b2I i� h(b)2I2. Therefore, for every twovaluations M1 and M2 in B, M1 >B;FI M2() fp j M1(p)2Ig � fp j M2(p)2Ig() fp j (hÆM1)(p)2I2g � fp j (hÆM2)(p)2I2gg() hÆM1 >4I2 hÆM2:It immediately follows that if hÆM is an I2-mcm of � in hFOURi then M is an I-mcm of � in(B;F). For the converse, assume that hÆM is not an I2-mcm of � in hFOURi. Let � be anassignment in FOUR s.t. �4 is a model of � in hFOURi and �4 >4I2 hÆM . By Lemma 6.25-A,�4=hÆ�B . Thus hÆ�B>4I2 hÆM , and so �B>B;FI M . Moreover, by 6.25-B �B is a model of � in B.Hence M is not an I-mcm of � in (B;F).Corollary 6.25-D: In case A, � j=B;FI � i� � j=4I2�.Proof: Suppose that � 6j=4I2�. Then there is an assignment � in FOUR s.t. �4 is an I2-mcm of �in hFOURi that is not a model of any Æ2�. By Lemma 6.25-A, �4=hÆ�B and by 6.25-B, 6.25-C,�B is an I-mcm of � in (B;F) s.t. �B(Æ) 62F for every Æ2�. Hence � 6j=B;FI �. For the converse,assume that M is an I-mcm of � in (B;F) which is not a model of any formula in �. Then, byLemma 6.25-B and 6.25-C, hÆM is an I2-mcm of � in hFOURi, and hÆM(Æ) 2 ff;?g for everyÆ2�. Therefore � 6j=4I2�.Let us turn now to case B, in which there is an �2T?nI. Suppose that M is a model of � in(B;F). Consider the valuation M�, de�ned for every atomic formula p as follows:M�(p) = ( � if M(p)2T? \ IM(p) otherwiseSince obviously hÆM =hÆM�, then in particular:(1) I(hÆM;I1) = I(hÆM�;I1)Lemma 6.25-E: For every  2�, M( )2F i� M�( )2F .Proof: Immediate from Proposition 6.9. 34



Corollary 6.25-F: If M is an I-mcm of � then M=M�.Proof: In other words, we have to show that there is no atom p such that M(p)2T? \I. Assumeotherwise. Then M�>B;FI M . Since by Lemma 6.25-E M� is also a model of �, this implies thatM is not an I-mcm of �.Lemma 6.25-G: If M=M� then:(2) I(M;I) = I(hÆM;I1)Proof: If M = M�, there is no atom p such that M(p) 2 T? \ I. Hence, by Lemma 6.20,M(p)2I ,M(p)2T> , (hÆM)(p)2I1, and so I(M;I)=I(hÆM;I1).Lemma 6.25-H: In case B, If M is an I-mcm of � in (B;F) then hÆM is an I1-mcm of � inhFOURi.Proof: Suppose that M is an I-mcm of � in (B;F). Assume that � is a valuation in FOUR s.t.�4 is a model of � in hFOURi and �4>4I1 hÆM . By Lemma 6.25-B, �B is a model of � in (B;F).Now, since obviously (�B� )�=�B� , we have:I(�B� ;I) = I(hÆ�B� ;I1) by Lemma 6.25-G= I(hÆ�B ;I1) by Equation (1)= I(�4;I1) by Lemma 6.25-A� I(hÆM;I1) by the assumption= I(M;I) by Corollary 6.25-F and Lemma 6.25-GHence �B� >B;FI M , and so M is not an I-mcm of � in (B;F), a contradiction.Corollary 6.25-I: In case B, � j=B;FI � i� � j=4I1�.Proof: If � 6j=B;FI � then there exists an I-mcm M of � s.t. M(Æ) 62F for every Æ2�. By Lemma6.25-H, hÆM is an I1-mcm of � in hFOURi and (hÆM)(Æ) 62 ft;>g for every Æ 2�. Therefore� 6j=4I1 �. For the converse, assume that � 6j=4I1 �. Suppose that � is an assignment in FOUR s.t.�4 is an I1-mcm of � in hFOURi and �4(Æ) 62ft;>g for every Æ2�. By Lemma 6.25-A �4=hÆ�B .By Lemma 6.25-B and its proof, �B is a model of � in (B;F) s.t. �B(Æ) 62 F for every Æ 2�. ByLemma 6.25-E the same is true for �B� . It is left to show, then, that �B� is an I-mcm of � in (B;F).Suppose otherwise. Then there is an I-mcm M of �, s.t. M >B;FI �B� . Since (�B� )�= �B� and (byCorollary 6.25-F) M=M�, we have:I(hÆM;I1) = I(M;I) by Lemma 6.25-G� I(�B� ;I) by the assumption= I(hÆ�B� ;I1) by Lemma 6.25-G= I(hÆ�B ;I1) by Equation (1)Therefore (hÆM)>4I1 (hÆ�B)=�4. Since hÆM is a model of � (becauseM is), this is a contradiction.This concludes the proof of Corollary 6.25-I and Theorem 6.25. 2The following conclusion easily follows from the proof of Theorem 6.25:Corollary 6.26 Let (B;F) and I be some logical bilattice and an inconsistency set in it. Then:a) If T B;F? �I then j=B;FI � j=4I1 ,b) If T B;F? 6�I then j=B;FI � j=4I2 . 35



Note: The relation j=B;Fcon of [AA94, AA96] (see footnote after De�nition 6.24) can also be charac-terized by FOUR; � j=B;Fcon(I)� i� there is an inconsistency set J in FOUR s.t. � j=4con(J )�. Theproof is similar to that of Theorem 6.25; We omit the details.7 Summary and conclusionBilattices are algebraic structures that have been shown useful in several areas of computer science.The smallest non-degenerated bilattice, FOUR, consists of four elements, and it is usually associ-ated with Belnap four-valued logic. The goal of this work has been to show that the logical roleof FOUR among (logical) bilattices is similar to that the two-valued (classical) lattice has amongBoolean algebras. As such, FOUR provides a useful framework for capturing classical reasoning (incases its use is appropriate) as well as some standard non-monotonic methods and paraconsistenttechniques.We began this work by providing appropriate interpretations of the classical connectives interms of FOUR, and adding to them connectives that correspond to the basic bilattice operations.We have examined the expressive power of the various fragments of the resulting language, andshowed that (a fragment of) our language is functionally complete for FOUR.With this syntactical tool in our disposal, we turned to considering the use of hFOURi as ourmain semantical tool. The existence of elements like > and ?, as well as the idea of ordering dataaccording to degrees of knowledge, suggest that this structure should be particularly suitable forreasoning with uncertainty.During the discussion on the importance of FOUR we have considered several inference relationsthat allow plausible reasoning mechanisms:� j=4: This is a consequence relation in the standard sense of Tarski and Scott. It was calledhere \the basic consequence relation". We have shown that this relation is sound and completew.r.t. the cut-free Gentzen type system GBL, monotonic, compact, and paraconsistent. Itsmain drawbacks are that it is strictly weaker than classical logic even for consistent theories,and that it always invalidates some intuitively justi�ed inference rules, like the DisjunctiveSyllogism.� j=4k: This relation considers only the k-minimal models for making inferences. The idea behindits de�nition is that we should not assume anything that is not really known. We have shownthat as long as we are interested in inferring formulae that do not include our nonmonotonic�, j=4k is equivalent to j=4. Therefore, in such cases we can indeed limit ourselves to the k-minimal models without any loss of generality, and so reduce the amount of models requiredfor making inferences.� j=4I1 : The idea here is to give precedence to the models that minimize the amount of in-consistent beliefs. This approach re
ects the intuition that contradictory data correspondsto inadequate information about the real world, and therefore should be minimized. Thisrelation is a plausibility logic, paraconsistent, nonmonotonic, and preferential. In the mono-tonic classical fragment of the language this relation can be used for eÆciently checking whichelement of a given set of formulae classically follows from a given consistent theory.� j=4I2 : This relation prefers de�nite knowledge to an uncertain one. Thus, the approach takenhere is to prefer classical inferences whenever possible. Indeed, for consistent theories in the36



classical fragment this inference relation is identical to the classical one. In general, however,j=4I2 is di�erent than classical logic, since it is paraconsistent and nonmonotonic.All these consequence relations can be generalized in a natural way to arbitrary logical bilattices.A natural question that arises at this point is whether by this generalization one obtains somethingthat is not already available in hFOURi. Alternatively, one may wonder whether only three valuessuÆce. Our answer to both questions is basically negative. We have shown that everything thatcan be done using three values is also possible in the four-valued setting, and even more eÆciently.On the other hand, we gave a sequence of theorems that show that it is possible to characterize inFOUR any bilattice-valued version of the consequence relations mentioned above. The outcome is,as the title of this paper implies, a strong evidence for the fundamental logical role and usefulnessof the four-valued framework.References[AB75] A.R.Anderson, N.D.Belnap. Entailment. Vol.1, Princton University Press, Prinston N.J.;1975.[AA94] O.Arieli, A.Avron. Logical bilattices and inconsistent data. Proc. 9th IEEE Annual Symp.on Logic in Computer Science, IEEE Press, pages 468{476, 1994.[AA96] O.Arieli, A.Avron. Reasoning with logical bilattices. Journal of Logic, Language and In-formation, Vol.5, No.1, pages 25{63, 1996.[AA97a] O.Arieli, A.Avron. A model-theoretic approach to recover consistent data from incon-sistent knowledge-bases. Technical Report 317/97, Dept. of Computer Science, Tel-AvivUniversity, 1997.[AA97b] O.Arieli, A.Avron. Bilattices and paraconsistency. To apear at the First World Congresson Paraconsistency, 1997.[Av91] A.Avron. Natural 3-valued logics: Characterization and proof theory. Journal of SymbolicLogic Vol.56, No.1, pages 276{294, 1991.[Av96] A.Avron. The structure of interlaced bilattices. Journal of Mathematical Structures inComputer Science, Vol.6, pages 287{299, 1996.[Be77a] N.D.Belnap. A useful four-valued logic. Modern Uses of Multiple-Valued Logic(G.Epstein, J.M.Dunn - Eds.), Reidel Publishing Company, Boston, pages 7{37, 1977.[Be77b] N.D.Belnap. How computer should think. Contemporary Aspects of Philosophy (G.Ryle- Ed.), Oriel Press, pages 30{56, 1977.[dC74] N.C.A.da-Costa. On the theory of inconsistent formal systems. Notre Damm Journal ofFormal Logic, Vol.15, pages 497{510, 1974.[DP95] C.V.Damasio, L.M.Pereira A model theory for paraconsistent logic programming. Proc.7th Portuguese Conf. on Arti�cial Intelligence, LNAI No. 990, Springer-Verlag, pages409{418, 1995.[Da80] M.Davis. Note on the mathematics of non-monotonic reasoning. Journal of Arti�cialIntelligence, Vol.13, pages 73{80, 1980.37
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