
GENTZEN-TYPE SYSTEMS, RESOLUTION AND TABLEAUXArnon AvronComputer Science DepartmentRaymond and Beverly SacklerFaculty of Exact SciencesTel Aviv UniversityTel Aviv, Israel

E-mail address:aa@math.tau.ac.il



GENTZEN-TYPE SYSTEMS, RESOLUTION AND TABLEAUXI. IntroductionIn advanced books and courses on logic (e.g. [Sm], [BM]) Gentzen-type systems or theirdual, tableaux, are described as techniques for showing validity of formulae which are morepractical than the usual Hilbert-type formalisms. People who have learnt these methodsoften wonder why the Automated Reasoning community seems to ignore them and prefersinstead the resolution method. Some of the classical books on AD (such as [CL], [Lo])do not mention these methods at all. Others (such as [Ro]) do, but the connections andreasons for preference remain unclear after reading them (at least to the present author,and obviously also the authors of [OS], in which a theorem-prover, based exclusively ontableaux, is described). The confusion becomes greater when the reader is introduced toKowalski's form of a clause ([Ko], [Bu]), which is nothing but a Gentzen's sequent of atomicformulae, and when he realizes that resolution is just a form of a Cut, and so that whilethe elimination of cuts is the principal tool in proof-theory, its use is the main techniquein AD!It is one of the purposes of this paper to explain the deep connections between Gentzen-type systems, tableaux and resolution. We show that both resolution and tableaux are basedon attempts to exploit the power of cut-elimination theorems in Gentzen-type calculi andexplain in which cases each should be preferred1. We provide purely syntactical proofs toall our claims, including the major results about resolution (which are usually proved bysemantical considerations elsewhere). This is important for the goal of applying similartechniques to other logics, which do not have the simple semantics that classical logic has,but do have decent Gentzen-type formulations. (It is indeed easy to get from our workprecise criteria for when the existence of good resolution-like proof techniques might beexpected.) Finally, we suggest how the two methods (resolution and tableaux) can be1 I am sure that much (if not all) of the relevant material is already known. I was unable, however,to �nd it written down in a systematic way (something that would have saved me time and might savethe time of others in the future). Still, [Ga] contains important material on Gentzen-type systemsand resolution (but from a di�erent point of view), and crucial hints can be found in [Gi1, sect. 13.4].That section is mainly devoted to the case of Horn clauses. Nevertheless, many of the ideas andresults below (though they have been found independently) are either implicit in it or proved in [Gi2,sect. 2.7]. 1



combined to get more e�ciency. Thus we show how tableaux can be used e�ciently fordirectly converting a formula (or a sequent) into clause form, without converting it �rst toprenex normal form. Another major possibility that we show is that a preparatory workwith tableaux might help splitting the work to be done by resolution on one set of clausesinto separate works on several, smaller ones. This would certainly make the search forrefutation in each shorter. It might also open the door for working in parallel and forexploiting considerations of symmetry (see example below).II. Gentzen-type SystemsLet L be a formal language in which the notion of a well-formed-formula (w�) is de�ned.A Gentzen-type calculus in L is �rst of all an axiomatic system which manipulates higher-level constructs called sequents , rather than the formulae themselves. There are severalvariants of what exactly constitutes a sequent. Here it is convenient to take it to be aconstruct of the form � ) �, where �;� are �nite sets of formulae of L and ) is a newsymbol, not occurring in L. 2 The following two basic features characterize the Gentzentype formalisms which are based on this notion:1) A) A should be provable for every formula A3.2) The following \cut" rule should be valid:�1 ) �1 [ fAg fAg [ �2 ) �2�1;�2 ) �1;�2Most Gentzen-type formalisms also satisfy the following demand:Monotonicity: The system is closed under the Weakening rule:(W ) �) ��;�0 ) �;�0Another important property of Gentzen-type systems is given in the following:De�nition 1: A rule of a monotonic Gentzen-type system is called pure4 if whenever� ) � can be inferred by it from �i ) �i (i = 1; : : : ; n) then �;�0 ) �;�0 can also be2 In other variants �;� may be either multisets or sequences of formulae. Having only one-sidedsequents is another possibility.3 O�cially we should have written fAg ) fAg. We shall, however, follow tradition and omit thecurly brackets from both sides of ). Also, we shall usually write �;� for � [�, etc.4 This is a variant of a notion which was �rst introduced in [Av].2



inferred by it from �i;�0 ) �i;�0 (i = 1; : : : ; n; �0;�0 { arbitrary sets of formulae). AGentzen-type system is called pure if all its rules are pure.A Gentzen-type system, G, directly de�nes a Consequence Relation (C.R.) `G betweensequents . Usually, however, it is mainly used as a tool for investigating C.R.s between theformulae of L. There are two standard ways of using G for de�ning such C.R.s:De�nition 2: Let G be a Gentzen-type calculus(1) A1; : : : ; An `tG B i� `G A1; : : : ; Am ) B(2) A1; : : : ; An `vG B i� () A1); ; : : : ; () An) `G () B)Note that `tGB i� `vGB. The di�erence is when there are assumptions. Other basic con-nections between the two C.R.s are given in Proposition 1.Proposition 1. If � `tG B then � `vG B. If G is monotonic and pure5 then the converse isalso true.Proof: For the �rst part, use cuts. For the converse, suppose that � = fA1; : : : ; Ang andthat () A1); () A2); : : : ; () An) `G) B. Since G is pure this entails that (�) A1); (�)A2); : : : ; (� ) An) `G � ) B. But `G Ai ) Ai and G is monotonic. Hence `G � ) Ai(i = 1; : : : ; n), and so `G �) B.Our next proposition is crucial for understanding the method of resolution:Proposition 2. Suppose G is monotonic and pure. Then `G A1; : : : ; An ) B1; : : : ; Bm i�() A1); : : : ; () An); (B1 )); : : : ; (Bm )) `G).Proof: Similar.Notes: 1) For the vailidity of Proposition 2 we need purity on both sides. The propositionindeed fails for the intuitionistic calculus, in which 0::p ) p but (p)); () ::p) `).2) One important corollary of Proposition 2 is that `G) A i� (A )) `G). In otherwords A is valid if the assumption that it is false is contradictory. In case L has internalnegation : and internal falsehood ?6 this can be formally expressed as: `tG A i� :A `vG ?.5 It is enough to assume monotonicity and purity on the l.h.s. Hence, the proposition is true, e,g.,also for the intuitionistic Gentzen calculus.6 See [Av] for de�nitions. 3



III. Classical Propositional CalculusWe turn now to investigate the special case of GCPL { the Gentzen-type system forClassical Propositional Logic (CPL) { in which most of the connections between tableauxand resolution are already reected. The version we use here is the following:The System GCPLAxioms: A) AStructural Rules: Cut, Weakening (W)Logical Rules:(: )) �) �; A:A;�) � A;�) ��) �;:A () :)(!)) �) �; A B;�) �A! B;�) � �; A) �; B�) �; A! B ()!)(^ )) �; A; B ) ��; A ^ B ) � �) �; A �) �; B�) �; A^ B () ^)(_ )) �; A) � �; B ) ��; A _ B ) � �) �; A; B�) �; A_ B () _)It is not di�cult to show soundness and completeness of the above system w.r.t. thestandard two-valued semantics, but we shall not need these results here. What is importantfor us is the obvious fact that GCPL is both monotonic and pure. Hence Propositions 1and 2 apply to it. In particular: `vGCPL=`tGCPL .Notation: Until the end of this section we shall use ` for both `GCPL (the C.R. betweensequents) and `tGCPL.Perhaps the most characteristic property of the logical rules of GCPL is that all ofthem are invertible. In other words, the premises of each such rule can be deduced fromits conclusion. By this we mean not only that the premises should necessarily be provablewhenever the conclusion is, but that they follow from it. For example: (�) �; A! B) `(A;� ) �; B), since the r.h.s. can be deduced from the l.h.s. using the provable sequentA;A! B ) B and a cut. Similar considerations apply for the other rules.The invertibility of the rules has an immediate important corollary. Before stating itwe need a de�nition.De�nition 3: A Clause is a sequent which consists solely of atomic formulae7.7 This is known as \Kowalski's form" of a clause.4



Proposition 3. Every sequent is equivalent to a set of clauses (by \equivalence" we meanthat every clause in the set is deducible from the original sequent while the sequent itself isdeducible from the set as a whole).Proof: By induction on the complexity of the sequent.Note: A set of clauses which is equivalent to a given sequent actually represents a con-junctive normal form (CNF) of it. Indeed, a clause p1; : : : ; pn ) q1; : : : ; qm is equivalent to) :p1 _ : : :_:pn _ q1 _ : : :_ qm , while a set of sequents of the form �() A1); : : : ; () A`)	is equivalent to the sequent ) A1 ^ : : :^ A`. It follows, in particular, that every sentenceis equivalent to a sentence in CNF.The proof of Proposition 3 provides a constructive method for reducing a sequent� ) � to an equivalent set of clauses. Thus, for example, if A ! B 2 � we replace� ) � by fAg [ � ) fBg [ ��� fA ! Bg� and continue the reduction. If, on the otherhand, � contains A ! B we replace it by two sequents: fBg [ �� � fA ! Bg� ) � and� � fA! Bg ) � [ fAg, and reduce each.The process we have just described is the essence of the method of tableaux for de-termining whether A1; : : : ; An ` B in classical propositional logic. What is actually donethere is to check whether A1; : : : ; An ) B is a theorem of GCPL. For this we reduce it �rstto clause form, and then check each of the resulting clauses for provability. The idea is totake advantage of the fact that it is very easy to determine provability of clauses: a clause� ) � is provable i� � \� 6= ;. This claim is obvious by semantical considerations, butit is also an immediate corollary of the famous cut-elimination theorem of Gentzen [Ge],according to which every provable sequent has a proof without cuts.8When it comes to practice the method of tableaux proceeds as follows: Instead ofworking with a tree of sequents, we work with a tree of �nite sets of signed formulae ofthe form TA or FA. (A { a usual formula.) This tree is expanded systematically. At anystage of the expansion each of its branches represents a sequent. A non-marked occurrenceof TA on a branch means that A is on the l.h.s. of the corresponding sequent, while suchan occurrence of FA means that it is on the r.h.s. A signed formula is marked when areduction step is applied to it. Once a branch contains both TA and FA for some A it isdiscarded (and so it is not expanded any more). If all branches are discarded in this way8 A purely syntactic proof of this theorem can be found in [Ge], [Gi2] or [Ga].5



then the original sequent is provable.9Example 1: Prove (A _B) ^ (A _ C)! A _ (B ^ C):............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .................................................................................................................................................................................................................................................................................................................................................................................................................... ....................................................................................................................................................................................................................................................................................................................................................................................................................
...................................................................................................................................................................................................................................... ................................................................................................................... ...................................................................................................................

F�(A _ B) ^ (A_ C)! A _ (B ^ C)�1T�(A _B) ^ (A _ C)�; F�A _ (B ^ C)�T (A _B); T (A _ C); FA; F (B ^ C)64 4 5
FB FCTA TB TA TBX X X TA TCX X

12 3;2 34 5 6

The resolution method for determining the provability of a sentence A is dual to themethod of tableaux. Instead of checking whether `) A, it uses Proposition 2 and checkswhether (A )) `). For this we reduce A ) (rather than ) A) to an equivalent set Sof clauses10 . It remains then to check that S is inconsistent. This relies on the fact that9 For someone who hears about tableaux for the �rst time this description might be insu�cient,and we refer him to [Smu] for further details and explanations.10 This is equivalent to �nding a clause form for :A.6



inconsistency too is easier to prove for a set of clauses than for an arbitrary set or sequents.The crucial point this time is that for a set of clauses cuts (or resolutions11) su�ce forshowing inconsistency. This is a corollary of the following straightforward (though lessknown) generalization of the cut-elimination theorem:The strong cut-elimination theorem12. If S ` � ) � then there is a proof of �) �from S in which every cut is made on a formula which occurs in some sequent of S (inparticular, the case S = ; is just the standard cut-elimination theorem of Gentzen).First Proof: Just like Gentzen's proof of the special case in [Ge], only no reduction canbe made if one of the premises of the cuts is an assumption (from S).Second Proof: By induction on the number of clauses in S. The case n = 0 is justGentzen's theorem. For the induction step we use the fact that if S = S 0 [ f�0 ) �0g andS ` � ) � then S 0 ` � ) �; B and S 0 ` A;� ) � for every A 2 �0 and B 2 �0 (thisfollows from the purity of the rules and provability of A;�0 ) �0 and �0 ! �0; B for everyA and B as above). By applying the induction hypothesis to S 0, we get proofs as requiredfor the various � ) �; B and A;� ) �. � ) � can then be inferred from the sequentsand �0 ) �0 by cuts.Note: The second proof suggests a further strengthening: Let \hyper-resolution" be thefollowing rule:(A1; : : : ; An ) B1; : : : ; Bm); (�1 ) �1; A1); : : : ; (�n ) �n; An); (�01; B1 ) �01); : : : ; (�0m; Bm ) �0m)�1;�2; : : : ;�n;�01; : : : ;�0m ) �1; : : : ;�n;�01; : : : ;�0mCall A1; : : : ; An ) B1; : : : ; Bm the \nucleus" of the rule. Then S ` � ) � i� there is aproof of �) � from S which uses only logical rules, weakenings and hyper-resolutions withelements of S as nucleii.We next use the last theorem to prove the completeness of the resolution principle.De�nition: A normal clause is a clause �) � in which � \� = ;.Proposition 4. Let S be a set of clauses, �) � a normal clause and suppose S ` �) �.Then there are �0 � �, �0 � � and S 0 � S such that every element in S 0 is normal, none11 On the propositional level there is no di�erence.12 To the best of my knowledge, the �rst to observe this generalization, as well as its relevance toresolution, was Girard. See [Gi1, sect. 13.4], [Gi2, sect. 2.7].7



of them is subsumed by another, and there is a proof of �0 ) �0 from S 0 in which the onlyrules used are cuts on formulae that occur in S 0.Proof: By the previous theorem there is a proof P of � ) � from S in which every cutused is on a formula in S, i.e., atomic formula. Since � ) � also contains only atomicformulae no nonatomic formula can occur in P . Hence the only rules used in P are cuts onformulae in S and weakenings. With this knowledge, the proposition can easily be provedby induction on the length of P .Corollary 1 (Completeness of resolution in the propositional case). If S is aninconsistent set of clauses then there is a subset of normal clauses of S from which ) canbe derived using only cuts.How do we prove the general claim A1; : : : ; An ` B using the resolution method? Inmany textbooks this problem is reduced to showing that the sentence A1 ^ : : :^ An ! Bis provable. Hence they start by reducing A1 ^ : : :An ! B ) to a set of clauses. Usingthe tableaux rules this sequent is reduced, �rst of all, to the sequents () A1); : : : ; ()An) and (B )) (in some textbooks it is indeed recommended to �nd the clause form of:(A1 ^ : : :^An ! B) by taking the union of the clause forms of A1; : : : ; An and :B!). It isworth noting, however, that if we translate \A1; : : : ; An ` B" directly to \` A1; : : : ; An )B" and apply Proposition 2 we get the same reduction directly, without the detour viaA1 ^ : : :^ An ! B.Let us summarize what we have seen about the relations in CPL between the methodsof resolution and of tableaux. First, the validity of both is a consequence of the (strong)cut-elimination theorem. Second, for showing the validity of a sentence A both start byreducing an appropriate simple sequent to clause form () A in tableaux, A) in resolution).Third, in both, at the �nal stage, we use special properties that clauses have in the contextof GCPL. In the case of tableaux this is a simple criterion for provability of one clause,while in resolution { a criterion for the inconsistency of a set of clauses. Now, on average,reducing sequents of the form A) and ) A to clause forms are equally di�cult tasks. Inmost cases, on the other hand, the work needed on the resulting set of clauses is smallerin the tableaux case, since the work with resolution requires search. Moreover, in case A isnot valid, the work with tableaux will stop as soon as we �nd a normal clause among theclauses that correspond to A (this might happen even before they have all been found!).In the case of resolution we would be forced to try all possibilities before concluding that8



A is not valid. Another advantage of tableaux is that usually we need not, in fact, reach acomplete clause form while applying it. We conclude therefore that in the context of CPLthe tableaux method is superior to the resolution method.Another important point to note here is the following: As we have seen, both methodsstart by �nding a set of clauses which is equivalent to a given sentence or sequent. For bothmethods we should obviously use the most e�cient way of achieving this goal. Now in [CL]and [Lo] the suggested algorithm requires, �rst of all, the elimination of the implicationconnective and then to apply a certain list of equivalences (including, e.g., those of De-Morgan). This is rather unfortunate. As the example of A1 ^ : : :^An ! B above indicates,the tableaux method for doing this is better! In fact tableaux are, above all, the best wayknown to logicians to �nd a clause form (or a CNF) to a given sentence or sequent . Now,the discarding of a branch as soon as both TA and FA occur on it for some A is one wayin which this method frequently saves e�orts and produces economical clauses forms. If allbranches happen to be discarded then we conclude that the starting formula (or sequent)is valid, but this is just a special case!Example 2: Reduce :��(A! B)! (A! B)�! C� to clause form:1 F�:��(A! B)! (A! B)� ! C������12 T��(A! B)! (A! B)� ! C�...........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................23F�(A! B)! (A! B)� TC����3T (A! B); F (A! B)X 9



The left branch has been discarded before applying further reductions on A! B. Onthe other, only TC remains unreduced. The clause form is therefore the singleton �(C ))	.Example 3: Use resolution to prove (A _ B) ^ (A_ C)! A _ (B ^ C)1 T�(A _B) ^ (A _ C)! A _ (B ^ C)�........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................12 F�(A _B) ^ (A _ C)� 3 T�A _ (B ^ C)�....................................................................................................................................................................................................................................................................................................................................................................................................................24F (A _ B) 5F (A _ C) TA 6 T (B ^ C)....................................................................................................................................................................................................................................................................................................................................................................................................................34 ���� 5 ���� 6 ����FA; FB FA; FC TB; TC
................................................................................................................... ................................................................................................................... ...................................................................................................................

We got the following set of clauses : �() A;B); () A;C); (A )); (B;C ))	. It iseasy to derive ) from it using 4 resolutions.Despite what we have said above on the superiority of the method of tableaux, thereare clearly cases in which reducing A ) to clause form is faster then reducing ) A. Thismight well compensate for the extra work that is usually needed at the end. A clear case ofthis sort is when A is given in a (not too simple) disjunctive normal form. Reducing A )is easy then, while reducing ) A might be tedious. The reason is that reducing ) A mightinvolve a lot of () ^)-reductions, which leads to a great deal of branching and repetitions.In general too many reductions which involve branching might slow down the reductionprocess considerably.This brings us to another important point in our discussion. In many cases the best wayto proceed is by a combination of the two methods. For this we have, �rst of all, to see themboth in the more general context of proving arbitrary sequents , not only sentences (or evensequents of the form � ) A). To show then that a sequent A1; : : : ; An ) B1; : : : ; Bm10



is provable, the tableaux method directly tries to �nd a proof of it, while the resolu-tion method again tries, by Proposition 2, to show that the set �() A1); : : : ; () An);(B1 )); : : : ; (Bm ))	 is inconsistent. One possible way to combine them might proceedas follows: take the sequent to be proved and apply as many non-branching tableaux re-ductions to it as you can. Apply then the resolution method to the sequent you have got.(Note that since sides are switched when we start doing this, the reduction of all formulaewill at least start with non-branching reductions!)Example 4: Prove (A _B) ^ (A _ C)! A _ (B ^ C)Stage 1: F�(A _ B) ^ (A_ C)! A _ (B ^ C)�����T�(A _B) ^ (A _ C)�; F�A _ (B ^ C)�����T (A _B); T (A_ C); FA; F (B ^ C)Stage 2: Interchange F and T . Reduce each formula to clause form:F (A _ B) F (A _ C) TA T (B ^ C)���� ���� ����FA; FB FA; FC TB; TCWe got the following set of clauses: �() A;B); () A;C); (A )); (B;C ))	 towhich we apply cuts (compare Example 3).A more radical approach is to use some branching tableaux reductions as well and soget two or more sequents that together are equivalent to the original one. The resolutionmethod can then be applied to each of them separately.Example 5: Let us return to the previous example, and suppose that at the end of Stage 1we apply one more reduction to F (B ^ C). We get then two branches, one representingA_B;A_C ) A;B the other A_B;A_C ) A;C. At Stage 2 we get, accordingly, two setsof clauses �() A;B); () A;C); (A)); (B ))	 and �() A;B); () A;C); (A)); (C ))	.>From each of them one sequent can immediately be deleted as useless by standard criteria,and two cuts su�ce to get ) from the others.Note: The two sets of clauses are obviously symmetrical with respect to B and C. A humanlogician would immediately realize, therefore, that it su�ces to prove the inconsistency ofonly one of them (in fact, he would already realize this symmetry at the end of Stage 1 and11



thereby save even more work). It is a subject of current research in what cases and how anautomated system will also be able to take advantage of such considerations of symmetry.The possibility of splitting the work done by resolution into several smaller jobs is ratherinteresting. We should admit, however, that we are just at the beginning of exploring thequestions how best to choose the point of switching and what branching reductions to applybefore that. IV. Classical Predicate CalculusWe start with GCL { the Gentzen-type system for classical logic that we are going touse. It is obtained from GCPL by the addition of the following 4 rules:(8 )) �; A(t=x)) ��; 8xA) � (�) � ) �; A�) � 8yA(y=x) () 8)(�)(9 )) �; A) ��; 9yA(y=x)) � �) �; A(t=x)�) �; 9xA () 9)(�) In () 8) and (9 )) the eigenvariable x should not occur free in the conclusion of therule.The side conditions on the applications of () 8) and (9 )) mean that these rules areimpure. In general, therefore, the second part of Proposition 1 fails for GCL. This is thesource of one of the two main di�erences between the propositional case and the presentone: the two associated C.R.s `tGCL and `vGCL are not identical13. Thus ' `v 8x' (the\generalization rule") while '0t8x'. Similarly ' `v '(t=x) but '0t'(t=x). Below weshall see that the method of tableaux is based on `t, while resolution on `v. It followsthat the two methods might provide di�erent answers to the question whether a formula Bfollows from the set fA1; : : : ; Ang. Still, there is an important case in which this would nothappen; when all the Ai's are sentences . (This includes, of course, the case n = 0.) Thisclaim easily follows from the fact that with respect to sentences the rules of GCL are pure.Hence if � ) � follows from �1 ) Di (i = 1; : : : ; n) and �0 [ �0 contains only sentencesthen �;�0 ) �;�0 follows from �0i;�0 ) �i;�0 (i = 1; : : : ; n). Using this our claim followsas in the proof of Proposition 1.The fact that GCL is not pure implies also that Proposition 2 (on which the methodof resolution is based) is not true as it stands. Again, it is true, and with the same proof,when it is applied to a sequent of sentences.13 We shall henceforth omit the subscript GCL from `GCL, `tGCL and `vGCL.12



Example 6: 0p(x)) p(y) but �p(y)) �; �) p(x)� `)Notes: Semantically, `t corresponds to the \truth" C.R. of [Av]: A1; : : : ; An `t B if givenany model M ,B is true for any assignment in M which makes all the Ai's true. `v, onthe other hand, corresponds to the \validity" C.R.: A1; : : : ; An `v B i� B is valid in everymodel in which A1; : : : ; An are all valid. See [Av] for further discussion.The second crucial di�erence between the propositional case and the present one hasto do with the two other new rules: (8 )) and () 9). Unlike the rest of the rules,these rules are not invertible. Moreover, their conclusion has an in�nite set of potentialpremises. This fact has far reaching consequences for the method of tableaux. As beforethis method is nothing but a systematic search for a cut-free proof in GCL of the sequentunder consideration. Unlike the previous case, however, when it comes to reducing T (8xA)to some T�A(t=x)� (or F (9xA) to F�A(t=x)�) we cannot be sure that we have chosen theright term t, or that only one reduction su�ces. The standard solution in the past had beento keep signed formulae of these forms after a reduction has been applied to them, and toregularly return to them, trying all the possibilities in some order. Gentzen's classical cut-elimination theorem guarantees that if we start with a provable sequent then this systematicsearch for a proof will eventually terminate with a success (this theorem again states thata provable sequent has a cut-free proof).The weakest point of the tableaux method just described is that it provides no clue tothe order in which we should try to substitute the terms in the reductions of the problematiccases. This is a crucial point, since each useless choice might cause a chain of uselessbranchings. If there are several of them the search for a proof would never be �nished ina feasible time. The \classical" tableaux method is not practical, therefore, for anythingwhich is more than trivial.14A possible idea for overcoming the problem caused by the noninvertible rules is thefollowing: Suppose we reach a sequent A1; : : : ; An ) B1; : : : ; Bm of sentences to which nononproblematic reduction can be applied. The Ai's are then of the form 8x A0i, the Bi ofthe form 9x B0i. As in the previous section, we can try at this point to show that the set�() A1); : : : ; () An); (B1 )); : : : ; (Bm ))	 is inconsistent. The advantage is, �rst of all,14 A much more practical version of tableaux is described in [Fi]. There tableaux with free variablesare employed and their use (like in the case of resolution) is based on the ideas of substitutions for freevariables and of uni�cation. The connection method of Bibel [Bi] is strongly related to this form oftableaux. The exact relations between these methods and the ideas presented here will be describedelsewhere. 13



that to each element of this set we can apply at least one nonproblematic reduction. In otherwords: the above set is inconsistent i� the set �() A01); : : : ; () A0n); (B01 )); : : : ; (B0m ))	is inconsistent.The classical resolution method, to which we now turn, directly treats only the casewhen each of the () Ai)'s and the (Bj ))'s can be reduced to clause form using only thenonproblematic reductions. Such, e.g., is the case when each Ai is of the form 8x1 : : :8x`iA0iand every Bj of the form 9x1 : : :9x`jB0j , where A0i and B0j are quanti�ers-free. This indeedis the case which is usually discussed in the textbooks15.Example 7 ([Lo], pp. 32-37): LetA = :�9x:p(x) ^ �9xp(x) _ 9x�p(x)^ q(x)�� ^ :9xp(x)�Starting with the nonproblematic tableaux reductions we get the tree in Figure 1 below.Notes: 1) The left-hand branch contains both F�9xp(x)� and T�9xp(x)�, and so it isclosed. Only the right-hand branch should therefore be dealt with.2) In the tree above a and b are new constants . This is unavoidable, since the validityof the switching from showing provability to showing inconsistency is justi�ed only if allthe formulae involved are sentences. Now the corresponding Gentzen-type rules refer tovariables . Still, it is easy to show that if x does not occur free in � [ �, then, e.g.,` � ) �; A i� ` � ) �; A(a=x) provided a is a new constant which does not occur in�) �; A. In the usual tableaux method we use, indeed, new constants while doing () 8)or (9 )) reductions. The resulting sequent is not equivalent to the original one, but itis provable i� the original one is. (The practical di�erence between new constants andvariables in the context of resolution will become clear below.)Example 7, continued: The right-hand branch of the tree which we got represents thesequent p(b); q(b)) p(a); 9xp(x). This is a sequent to which doing the switching is useful.What we get is �� ) p(b)�; �) q(b)�; �p(a)) �; �9xp(x)) �	. A (9 )) reduction on thelast sequent produces the clause p(x)), which subsumes p(a) ). The �nal set of clauseswe get is, accordingly: �� ) p(b)�; � ) q(b)�; �p(x) ) �	. This set is inconsistent, as canbe shown by one step of resolution.15 Usually, in fact, only the case m = 0 is considered, and the Ai's are assumed to be disjunctionsof literals. These extra assumptions are not needed here.14



1 FA1 ����2 T�9x:p(x)^ �9xp(x)_ 9x�p(x)^ q(x)�� ^ :9xP (x)�2 ����3 4 5T�9x:p(x)�; T�9xp(x)_ 9xp�(x)^ q(x)��; T:9xp(x)5 ����F�9xp(x)�3 ����6 T�:p(a)�6 ����F�p(a)�........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................47 T�9xp(x)� 8 T�9xp�(x) ^ q(x)��X 8 ����9 T�p(b)^ q(b)�9 ����T�p(b)�; T�q(b)�
...................................................................................................................
Figure 1Notes: 1) In this stage we cannot substitute a constant for x while reducing 9xp(x) ).The reason is that we are not trying to show provability of that sequent, but to use it as an15



assumption in deriving the empty sequent!2) The clause form which is obtained in [Lo] for the sentence in Example 7 is�� ) p(a); p(b)�; � ) p(a); q(b)�; �p(x) ) �	, which is more complicated. We would haveobtained the same set had we started by replacing 9xp(x)_9x�p(x)^q(x)� by the equivalentPrenex form: 9x9y�p(x)_ �p(y)^ q(y)��, or by the method of conversion to tableaux whichis described at the end of this paper (see example 8).Returning now to the resolution method, the question is now: how are we to prove thata given inconsistent set of clauses is indeed inconsistent? The answer might seem to be easy:just proceed as in the propositional case. This is wrong, however: despite the fact that allthe quanti�ers have been eliminated, the problem has not been reduced to the propositionalcase. This is illustrated by the following simple example: the set �� ) p(x)�; �p(a) ) �	is inconsistent, as the following deduction shows:(Cut)() 8) ) p(x)) 8xp(x)(8 )) p(a))8xp(x)))There is, however, no way to derive ) from this inconsistent set using only propositionallyvalid rules!The deep reason for this state of a�airs has already been noted above: the C.R. which isassociated with deductions in GCL from assumptions is `v , which is stronger than `t whenopen formulae are involved. Now the main di�erence between `t and `v is the substitutionrule, which is valid for the later but not for the former. In terms of sequents this rule allowsinferring from a sequent any substitution-instance of it. This can also be achieved by usingthe quanti�ers' rules and cuts (as in the example above), but if we want to avoid usingquanti�ers then we have no choice but to add substitution as an o�cial rule. This wouldallow us to prove the following key result:The strong cut-elimination theorem for GCL:16 Let GCLS = GCL + substitution.Let S be a set of sequents and suppose S `GCLS �) �. Then there is a proof in GCLS of� ) � from S in which the substitution rule is applied only to sequents in S and all cutsare on instances of formulae which occur in sequents of S.16 Again, Girard seems to be the �rst to observe the validity of an equivalent theorem. See [Gi2,Theorem 2.7.1]. The only di�erence is that Girard does not consider substitution as an independentrule, but restricts himself to the case in which S is closed under it.16



Proof (outline): First we use Gentzen's method to show that all cuts which are not oninstances of formulae which occur in S are eliminable (the substitution rule is needed whenthe cut formula begins with a quanti�er and we want to apply the induction hypothesis toimmediate subformulae of it). Then we use induction on length of such proofs to show thatall applications of the substitution rule can be done on sequents in S.Gentzen's original cut-elimination theorem is again just the case S = ; in the lasttheorem. What we need here is another easy corollary, the proof of which we leave to thereader (see the proofs of Proposition 4 and its Corollary 1):Corollary 2. Let S be a set of clauses and s a clause such that S ` s. Let S 0 be a subsetof S with the following properties:(1) S 0 contains no tautology.(2) Each element in S is subsumed by some element of S 0.(3) No element in S 0 is subsumed by another element of S 0.Then there exists a clause s0 which subsumed s so that s0 can be inferred from S 0 usingonly substitutions and cuts.Corollary 3. If S is an inconsistent set of clauses then there is a �nite set S 0 of instancesof clauses in S from which ) can be derived using only cuts.17This last corollary (which we have proved in a purely syntactical way, and withoutany detour through ground clauses18) is the main syntactical fact on which the resolutionmethod is based. It entails that in order to show the inconsistency of a set S of clauses weshould just �nd the appropriate substitution instances of clauses in S, and then proceedas in the propositional case. Just as in the classical tableaux method the main problem istherefore: how to make the choice of the instances of S. Unlike that method, on the otherhand, this time we do have a general guiding principle: substitutions should be made only ifthey open the door for applications of the cut rule. As is well known, this is most e�cientlydone not by doing all the substitutions at the beginning (as the last corollary may suggest)but by making them either as a part of a combination with cut (\binary resolution") or inorder to unify two or more formulae in a clause (\factorization"). In both cases the mostgeneral substitution which accomplishes the task is chosen. Details can be found in any17 Herbrand theorem easily follows from this corollary!18 Although it is straightforward to prove it with the extra requirement that S 0 contains onlyground clauses! 17



textbook on automated reasoning (the proofs given there at this point are purely syntacticaland so we need not repeat them here. Many of them, as well as proofs of completeness ofvarious re�nements, can be simpli�ed a lot using the last theorem and its corollaries).To complete the picture we note that the usual method of proving a general sequent ofsentences using resolution is to replace it �rst by a sequent to which this method is directlyapplicable and which is provable i� the original one is (although in general they are notequivalent). This is done by replacing �rst each sentence by an equivalent one in Prenexnormal form, and then using Skolem functions to eliminate the unwanted quanti�ers (theexistential ones on the left, the universal ones on the right). The justi�cation of thesesteps can also be done purely syntactically, using Gentzen midsequent theorem. Detailscan be found in [Ga1]. It is worth noting, however, that the passage to Prenex form oftenunnecessarily complicates matters. A much better procedure is based on the followingobservation: If S is a set of sequents then S [ f�0 ) �0 ; 9 xAg ` � ) � i� S [ ��0 )�0 ; A�f(y1; : : : ; yn)�x� ` � ) �, where y1; : : : ; yn are the free variables in � ) �; 9 xAand f is a new function symbol, not occurring anywhere in S;�;�0;�;�0 and A (a similarobservation applies in the dual case). Since in resolution we are interested with provabilityfrom a set of sequents (and no, as in tableaux, in the provability of a sequent), this meansthat instead of the two problematic tableaux rules one can use the following two rules:(1) Replace F (9xA) by F�A�f(y1; : : : ; yn)=x�� where f is a new function symbol that doesnot occur in the tree and y1; : : : ; yn are the free variables on the branch in which thesigned formula occurs.(2) Replace T (8xA) by T�A�f(y1; : : : ; yn)�x�� under the same conditions.Now given a sequent of sentences A1; : : : ; An ) B1; : : : ; Bm, �nd a set of clauses whichis inconsistent i� this sequent is provable as follows: �rst construct the following tree....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................� � � � �� � � � � �F (A1) F (A2) F (An) T (B1) T (Bm)(which represents the set of sequents: f) A1; : : : ;) Bn; B1 ); : : : ; Bm )g). Next, expandthe tree using the new set of tableaux rules (i.e., all the previous invertible rules together18



with the new ones). Stop when there are no more rules to apply. Every branch which isnot closed contributes then a clause which consists of its atomic formulae. More precisely,if these formulae are T (p1); : : : ; T (pn0); F (q1); : : : ; F (qm0) then the corresponding clause isp1; : : : ; pn0 ) q1; : : : ; qm0 .Example 8. Returning to example 7, in order to prove A (i.e., ) A) we construct thefollowing tree �........................................................................T (A)........................................................................F�9x:p(x) ^ �9xp(x) _ 9x�p(x)^ q(x)�� ^ :9xp(x)�...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................F�9x:p(x)�........................................................................F�:p(c)�........................................................................T�p(c)�
F�9xp(x)_ 9x�p(x)^ q(x)��........................................................................F�9xp(x)�; F�9x�p(x)^ q(x)��........................................................................F�p(a)�........................................................................F�p(b)^ q(b)�..................................................................................................... .....................................................................................................F�p(b)� F�q(b)�

F�:9xp(x)�........................................................................T�9xp(x)�........................................................................T�p(x)�
We get therefore the following set of clauses: ��p(c) ) �; � ) p(a); p(b)�; � ) p(a); q(b)�;�p(x)) �	. After deleting p(c)) (which is subsumed by p(x))) we get the clause formin [Lo] (compare notes after example 7). 19



Another important point which we would like to raise is that again the tableaux andthe resolution methods can be combined to get better e�ciency. Not only can tableaux helpin obtaining an economical clause form in a faster way, but it might also split the work tobe done by resolution into smaller jobs. In Example 7 we saw the extreme case, in whichthe work on one of these jobs was already �nished in the tableaux stage (had we not closedthe left-hand branch, we would have got the set ��) p(a)�; �p(x)) �	 from it)!References[Av] Avron A., Simple Consequence Relations , Information and Computation, 92(1991), pp. 105-139.[Bi] Bibel W., Autometrd Theorem Proving, Vieweg Verlag, Braunschweig, 1982.[BM] Bell J.L. and Machover M., A Course in Mathematical Logic, North-Holland,Amsterdam, 1977.[Bu] Bundy A., The Computer Modelling of Mathematical Reasoning, Aca-demic Press, New York, 1983.[CL] Chang C. & Lee R.C., Symbolic Logic and Mechanical Theorem Proving,Academic Press, New York, 1973.[Fi] Fitting M.C., First Order Logic and Automated Theorem Proving, Springer-Verlag, 1989.[Ga] Gallier J.H. Logic and Computer Science { Foundations of AutomaticTheory Proving, Harper & Row, New York, 1986.[Ge] Gentzen G. Investigations into Logical Deduction, in: The Collected Work ofGerhard Gentzen, ed. by M.E. Szabo, North Holland, Amsterdam, 1969.[Gi1] Girard J.Y., Lafont Y. & Taylor P., Proofs and Types, Cambridge UniversityPress, Cambridge, 1989.[Gi2] Girard J.Y. Proof Theory and Logical Complexity, Bibliopolis, 1987.[Ko] Kowalski R. Logic for Problem Solving, Elsevier, North Holland, New York,1979.[Lo] Loveland D.W. Automated Theorem Proving: A Logical Basis, ElsevierNorth-Holland, New York, 1989.[OS] Oppacher F. & Suen E.Controlling Deduction with Proof Condensation and Heuris-tics , in: Proceedings of CADE 8 (1986), pp. 364-393, Springer-Verlag.20



[Ro] Robinson J.A. Logic: Form and Function, Elsevier North-Holland, New York,1979.[Sm] Smullyan R.M. First-order Logic, Springer-Verlag, Berlin, 1986.

21


