GENTZEN-TYPE SYSTEMS, RESOLUTION AND TABLEAUX

Arnon Avron

Computer Science Department
Raymond and Beverly Sackler
Faculty of Exact Sciences
Tel Aviv University
Tel Aviv, Israel

E-mail address:aa@math.tau.ac.il

GENTZEN-TYPE SYSTEMS, RESOLUTION AND TABLEAUX

I. Introduction

In advanced books and courses on logic (e.g. [Sm], [BM]) Gentzen-type systems or their
dual, tableaux, are described as techniques for showing validity of formulae which are more
practical than the usual Hilbert-type formalisms. People who have learnt these methods
often wonder why the Automated Reasoning community seems to ignore them and prefers
instead the resolution method. Some of the classical books on AD (such as [CL], [Lo])
do not mention these methods at all. Others (such as [Ro]) do, but the connections and
reasons for preference remain unclear after reading them (at least to the present author,
and obviously also the authors of [OS], in which a theorem-prover, based exclusively on
tableaux, is described). The confusion becomes greater when the reader is introduced to
Kowalski’s form of a clause ([Ko], [Bu]), which is nothing but a Gentzen’s sequent of atomic
formulae, and when he realizes that resolution is just a form of a Cut, and so that while
the elimination of cuts is the principal tool in proof-theory, its use is the main technique
in AD!

It is one of the purposes of this paper to explain the deep connections between Gentzen-
type systems, tableaux and resolution. We show that both resolution and tableaux are based
on attempts to exploit the power of cut-elimination theorems in Gentzen-type calculi and
explain in which cases each should be preferred!. We provide purely syntactical proofs to
all our claims, including the major results about resolution (which are usually proved by
semantical considerations elsewhere). This is important for the goal of applying similar
techniques to other logics, which do not have the simple semantics that classical logic has,
but do have decent Gentzen-type formulations. (It is indeed easy to get from our work
precise criteria for when the existence of good resolution-like proof techniques might be

expected.) Finally, we suggest how the two methods (resolution and tableaux) can be

I T am sure that much (if not all) of the relevant material is already known. T was unable, however,
to find it written down in a systematic way (something that would have saved me time and might save
the time of others in the future). Still; [Ga] contains important material on Gentzen-type systems
and resolution (but from a different point of view), and crucial hints can be found in [Gil, sect. 13.4].
That section is mainly devoted to the case of Horn clauses. Nevertheless, many of the ideas and
results below (though they have been found independently) are either implicit in it or proved in [Gi2,
sect. 2.7].

combined to get more efficiency. Thus we show how tableaux can be used efficiently for
directly converting a formula (or a sequent) into clause form, without converting it first to
prenex normal form. Another major possibility that we show is that a preparatory work
with tableaux might help splitting the work to be done by resolution on one set of clauses
into separate works on several, smaller ones. This would certainly make the search for
refutation in each shorter. It might also open the door for working in parallel and for

exploiting considerations of symmetry (see example below).

II. Gentzen-type Systems

Let L be a formal language in which the notion of a well-formed-formula (wff) is defined.
A Gentzen-type calculus in L is first of all an axiomatic system which manipulates higher-
level constructs called sequents, rather than the formulae themselves. There are several
variants of what exactly constitutes a sequent. Here it is convenient to take it to be a
construct of the form I' = A, where I') A are finite sets of formulae of L and = is a new
symbol, not occurring in L. ? The following two basic features characterize the Gentzen
type formalisms which are based on this notion:

1) A = A should be provable for every formula A®.

2) The following “cut” rule should be valid:

F1:>A1U{A} {A}UF2:>A2
1,0y = Ay, Ay

Most Gentzen-type formalisms also satisfy the following demand:

Monotonicity: The system is closed under the Weakening rule:

I'= A
(W) D, I" = AA!

Another important property of Gentzen-type systems is given in the following:

Definition 1: A rule of a monotonic Gentzen-type system is called pure? if whenever

I' = A can be inferred by it from I'; = A; (¢ = 1,...,n) then T',T" = A, A’ can also be

% In other variants I', A may be either multisets or sequences of formulae. Having only one-sided
sequents is another possibility.

3 Officially we should have written { A} = {A}. We shall, however, follow tradition and omit the
curly brackets from both sides of =. Also, we shall usually write I', A for I' U A, etc.

* This is a variant of a notion which was first introduced in [Av].

2

inferred by it from I';,T" = A, A" (¢ = 1,...,n; IV, A’ — arbitrary sets of formulae). A
Gentzen-type system is called pure if all its rules are pure.

A Gentzen-type system, &, directly defines a Consequence Relation (C.R.) kg between
sequents. Usually, however, it is mainly used as a tool for investigating C.R.s between the

formulae of L. There are two standard ways of using G for defining such C.R.s:

Definition 2: Let G be a Gentzen-type calculus

(1) Ay, . A FL Bifftg Ay,...,A, = B

(2) Aq,..., A g Biff (= Ay),,...,(= 4,) Fa (= B)

Note that F. B iff FZB. The difference is when there are assumptions. Other basic con-

nections between the two C.R.s are given in Proposition 1.

Proposition 1. If T+ B then I' by, B. If G is monotonic and pure® then the converse is

also true.

Proof: For the first part, use cuts. For the converse, suppose that I' = {Ay,..., A, } and
that (= Ay),(= A2),...,(= A,) Fg= B. Since G is pure this entails that (I' = A;),(I' =
As),...,(I'= A,) F¢ I' = B. But F¢ A; = A; and G is monotonic. Hence g I' = A;
(i=1,...,n),and so k¢ I' = B.

Our next proposition is crucial for understanding the method of resolution:

Proposition 2. Suppose G is monotonic and pure. Then g Ay,..., A, = By,..., By, iff
(= A41),...,(=4,),(B1=),....(By =) Fg=.

Proof: Similar.

Notes: 1) For the vailidity of Proposition 2 we need purity on both sides. The proposition
indeed fails for the intuitionistic calculus, in which ¥==p = p but (p =), (= —~—p) b=

2) One important corollary of Proposition 2 is that Fg= A iff (A =) Fg=-. In other
words A is valid if the assumption that it is false is contradictory. In case L has internal

negation — and internal falsehood 1° this can be formally expressed as: F4 Aiff A FY L.

> Ttis enough to assume monotonicity and purity on the l.h.s. Hence, the proposition is true, e,g.,
also for the intuitionistic Gentzen calculus.
6 See [Av] for definitions.

III. Classical Propositional Calculus

We turn now to investigate the special case of GCPL — the Gentzen-type system for
Classical Propositional Logic (CPL) — in which most of the connections between tableaux

and resolution are already reflected. The version we use here is the following:

The System GCPL

Axioms: A=A
Structural Rules: Cut, Weakening (W)
Logical Rules:

= A A AT = A

(==) AT = A T=A, A (=)
' AA B I'=> A r,A= A,B

(==) A—BT=A T=AA—B (5=)

(A=) VA, B=> A = A A I'=A,B (= A)
IVAANB = A == AAAB

(v =) A=A IB= A I'=s=AAB (= V)
VAV B=A == A AVE

It is not difficult to show soundness and completeness of the above system w.r.t. the
standard two-valued semantics, but we shall not need these results here. What ¢s important
for us is the obvious fact that GCPL is both monotonic and pure. Hence Propositions 1

and 2 apply to it. In particular: F%app=F&cpr -

Notation: Until the end of this section we shall use - for both Fgepr, (the C.R. between
sequents) and & cpy -

Perhaps the most characteristic property of the logical rules of GCPL is that all of
them are invertible. In other words, the premises of each such rule can be deduced from
its conclusion. By this we mean not only that the premises should necessarily be provable
whenever the conclusion is, but that they follow from it. For example: (I' = A, A — B) F
(A,I' = A, B), since the r.h.s. can be deduced from the l.h.s. using the provable sequent
A, A — B = B and a cut. Similar considerations apply for the other rules.

The invertibility of the rules has an immediate important corollary. Before stating it

we need a definition.

Definition 3: A Clause is a sequent which consists solely of atomic formulae’.

7 This is known as “Kowalski’s form” of a clause.

4

Proposition 3. Every sequent is equivalent to a set of clauses (by “equivalence” we mean
that every clause in the set is deducible from the original sequent while the sequent itself is

deducible from the set as a whole).

Proof: By induction on the complexity of the sequent.

Note: A set of clauses which is equivalent to a given sequent actually represents a con-
junctive normal form (CNF') of it. Indeed, a clause p1,...,p, = @1, ..., ¢n is equivalent to
= p1 V...V op, V@i V...V gy, while a set of sequents of the form {(= A1),...,(= 4/)}
is equivalent to the sequent = Ay A ... A Ay. It follows, in particular, that every sentence

is equivalent to a sentence in CNF.

The proof of Proposition 3 provides a constructive method for reducing a sequent
I' = A to an equivalent set of clauses. Thus, for example, if A — B € A we replace
I'= A by {A}UT = {B}U (A L {4 — B}) and continue the reduction. If, on the other
hand, I' contains A — B we replace it by two sequents: {B} U (I' L {4 — B}) = A and
I' L{A — B} = AU{A}, and reduce each.

The process we have just described is the essence of the method of tableaux for de-
termining whether Ay,..., A, = B in classical propositional logic. What is actually done
there is to check whether Ay,..., A, = B is a theorem of GCPL. For this we reduce it first
to clause form, and then check each of the resulting clauses for provability. The idea is to
take advantage of the fact that it is very easy to determine provability of clauses: a clause
I' = A is provable iff T N A # (). This claim is obvious by semantical considerations, but
it is also an immediate corollary of the famous cut-elimination theorem of Gentzen [Ge],
according to which every provable sequent has a proof without cuts.®

When it comes to practice the method of tableaux proceeds as follows: Instead of
working with a tree of sequents, we work with a tree of finite sets of signed formulae of
the form T'A or FF'A. (A — a usual formula.) This tree is expanded systematically. At any
stage of the expansion each of its branches represents a sequent. A non-marked occurrence
of TA on a branch means that A is on the l.h.s. of the corresponding sequent, while such
an occurrence of F'A means that it is on the r.h.s. A signed formula is marked when a
reduction step is applied to it. Once a branch contains both T A and FA for some A it is

discarded (and so it is not expanded any more). If all branches are discarded in this way

8 A purely syntactic proof of this theorem can be found in [Ge], [Gi2] or [Ga].

5

then the original sequent is provable.”

Example 1: Prove (AVB)A(AV () — AV (BAC):

®F((A\/B)/\(A\/C)—>A\/(B/\C))

O

@T((A VB)A(AV C)),®F(A V(BAC))

®,®

@ @ ®
T(AV B), T(AVC), FA, F(BAC)

A A

TA TB TA

i t /@\
TA TC
X X

The resolution method for determining the provability of a sentence A is dual to the
method of tableaux. Instead of checking whether F= A, it uses Proposition 2 and checks

whether (A =) F=-. For this we reduce A = (rather than = A) to an equivalent set §

10

of clauses . It remains then to check that 5 is inconsistent. This relies on the fact that

9 For someone who hears about tableaux for the first time this description might be insufficient,
and we refer him to [Smu] for further details and explanations.
10" This is equivalent to finding a clause form for = A.

6

inconsistency too is easier to prove for a set of clauses than for an arbitrary set or sequents.
The crucial point this time is that for a set of clauses cuts (or resolutions!!) suffice for
showing inconsistency. This is a corollary of the following straightforward (though less

known) generalization of the cut-elimination theorem:

The strong cut-elimination theorem!2. If S T = A then there is a proof of I = A
from S in which every cut is made on a formula which occurs in some sequent of S (in

particular, the case S = () is just the standard cut-elimination theorem of Gentzen).

First Proof: Just like Gentzen’s proof of the special case in [Ge], only no reduction can

be made if one of the premises of the cuts is an assumption (from 5).

Second Proof: By induction on the number of clauses in 5. The case n = 0 is just
Gentzen’s theorem. For the induction step we use the fact that if S = §' U {T' = A’} and
SET = Athen S'FT = A,Band S'F AT = A for every A € A" and B € T’ (this
follows from the purity of the rules and provability of A,I" = A’ and I — A’, B for every
A and B as above). By applying the induction hypothesis to S’, we get proofs as required
for the various I' = A, B and A,I' = A. I' = A can then be inferred from the sequents
and I'' = A’ by cuts.

Note: The second proof suggests a further strengthening: Let “hyper-resolution” be the

following rule:

oAy = B, ., Br), (T = Ay A, ., (T = Ay AL, (T, By = AY,..., (T, B, = Al)

Fl,F2,...,Fn,F’1,...,F'm iAl,...,An,All,...,Alm
Call Ay,...,A, = B1,...,B,, the “nucleus” of the rule. Then S F I' = A iff there is a

proof of I' = A from S which uses only logical rules, weakenings and hyper-resolutions with

elements of 5" as nucleii.
We next use the last theorem to prove the completeness of the resolution principle.
Definition: A normal clause is a clause I' == A in which ' N A = (.

Proposition 4. Let § be a set of clauses, I' = A a normal clause and suppose S FT' = A.

Then there are ' C T, A’ C A and S" C S such that every element in S’ is normal, none

1 On the propositional level there is no difference.
12 To the best of my knowledge, the first to observe this generalization, as well as its relevance to
resolution, was Girard. See [Gil, sect. 13.4], [Gi2, sect. 2.7].

7

of them is subsumed by another, and there is a proof of I = A’ from S" in which the only

rules used are cuts on formulae that occur in 5'.

Proof: By the previous theorem there is a proof P of I' = A from 5 in which every cut
used is on a formula in 9, i.e., atomic formula. Since I' = A also contains only atomic
formulae no nonatomic formula can occur in P. Hence the only rules used in P are cuts on
formulae in 5 and weakenings. With this knowledge, the proposition can easily be proved

by induction on the length of P.

Corollary 1 (Completeness of resolution in the propositional case). If S is an
inconsistent set of clauses then there is a subset of normal clauses of S from which = can

be derived using only cuts.

How do we prove the general claim Aq,..., A, - B using the resolution methodI' In
many textbooks this problem is reduced to showing that the sentence Ay A...A A, — B
is provable. Hence they start by reducing Ay A ... A, — B = to a set of clauses. Using
the tableaux rules this sequent is reduced, first of all, to the sequents (= A4;),...,(=
A,) and (B =) (in some textbooks it is indeed recommended to find the clause form of
=(A1 A...ANA, — B) by taking the union of the clause forms of Ay,..., A, and = B!). It is
worth noting, however, that if we translate “Ay,..., A, F B” directly to “F A,..., A, =
B” and apply Proposition 2 we get the same reduction directly, without the detour via

Let us summarize what we have seen about the relations in CPL between the methods
of resolution and of tableaux. First, the validity of both is a consequence of the (strong)
cut-elimination theorem. Second, for showing the validity of a sentence A both start by
reducing an appropriate simple sequent to clause form (= A in tableaux, A = in resolution).
Third, in both, at the final stage, we use special properties that clauses have in the context
of GCPL. In the case of tableaux this is a simple criterion for provability of one clause,
while in resolution — a criterion for the inconsistency of a set of clauses. Now, on average,
reducing sequents of the form A = and = A to clause forms are equally difficult tasks. In
most cases, on the other hand, the work needed on the resulting set of clauses is smaller
in the tableaux case, since the work with resolution requires search. Moreover, in case A is
not valid, the work with tableaux will stop as soon as we find a normal clause among the
clauses that correspond to A (this might happen even before they have all been found!).

In the case of resolution we would be forced to try all possibilities before concluding that

8

A is not valid. Another advantage of tableaux is that usually we need not, in fact, reach a
complete clause form while applying it. We conclude therefore that in the context of CPL
the tableaux method is superior to the resolution method.

Another important point to note here is the following: As we have seen, both methods
start by finding a set of clauses which is equivalent to a given sentence or sequent. For both
methods we should obviously use the most efficient way of achieving this goal. Now in [CL]
and [Lo] the suggested algorithm requires, first of all, the elimination of the implication
connective and then to apply a certain list of equivalences (including, e.g., those of De-
Morgan). This is rather unfortunate. As the example of A; A...AA,, — B above indicates,
the tableaux method for doing this is better! In fact tableaux are, above all, the best way
known to logicians to find a clause form (or a CNF) to a given sentence or sequent. Now,
the discarding of a branch as soon as both T'A and F A occur on it for some A is one way
in which this method frequently saves efforts and produces economical clauses forms. If all
branches happen to be discarded then we conclude that the starting formula (or sequent)

is valid, but this is just a special case!

Example 2: Reduce ~(((4 — B) — (4 — B)) — C) to clause form:
O F(ﬁ(((A — B)— (A — B)) — C))
®

@T<<(A—> B) = (A — B)) — C)

®F<(A—>B)—>(A—>B)) TC

T(A— B),F(A— B)

The left branch has been discarded before applying further reductions on A — B. On

the other, only 7C remains unreduced. The clause form is therefore the singleton {(C' =)}.
Example 3: Use resolution to prove (AV B)A(AV () — AV (BAC)

®T((A\/B)/\(A\/C)—>A\/(B/\C))

@F((A\/B)/\(A\/C)) ®T(A\/(B/\C))

@F(A\/B) <5%ﬂ(A\/C) TA @T(B/\C)

@ ® ‘ ®

FA,FB FA,FC TB,TC

We got the following set of clauses : {(= A, B),(= A,C),(A =),(B,C =)}. It is
easy to derive = from it using 4 resolutions.

Despite what we have said above on the superiority of the method of tableaux, there
are clearly cases in which reducing A = to clause form is faster then reducing = A. This
might well compensate for the extra work that is usually needed at the end. A clear case of
this sort is when A is given in a (not too simple) disjunctive normal form. Reducing A =
is easy then, while reducing = A might be tedious. The reason is that reducing = A might
involve a lot of (= A)-reductions, which leads to a great deal of branching and repetitions.
In general too many reductions which involve branching might slow down the reduction
process considerably.

This brings us to another important point in our discussion. In many cases the best way
to proceed is by a combination of the two methods. For this we have, first of all, to see them
both in the more general context of proving arbitrary sequents, not only sentences (or even

sequents of the form I' = A). To show then that a sequent Ay,...,4, = B1,..., B,

10

is provable, the tableaux method directly tries to find a proof of it, while the resolu-
tion method again tries, by Proposition 2, to show that the set {(:> A1), (= Ay,
(B1 =),...,(Bn :>)} is inconsistent. One possible way to combine them might proceed
as follows: take the sequent to be proved and apply as many non-branching tableaux re-
ductions to it as you can. Apply then the resolution method to the sequent you have got.
(Note that since sides are switched when we start doing this, the reduction of all formulae

will at least start with non-branching reductions!)

Example 4: Prove (AVB)AN(AV () — AV (BAC)

Stage 1:
F((AVB)A(AVC)— AV (BAC))

T((AVB)A(AV(C)),F(AV(BACQ))

T(AV B),T(AV C),FA,F(BAC)

Stage 2: Interchange F and T'. Reduce each formula to clause form:

F(AVB) F(AVC) TA T(BAC)

FA,FB FA,FC TB,TC

We got the following set of clauses: {(=> A, B),(= A,C),(A =),(B,C =)} to
which we apply cuts (compare Example 3).

A more radical approach is to use some branching tableaux reductions as well and so
get two or more sequents that together are equivalent to the original one. The resolution

method can then be applied to each of them separately.

Example 5: Let us return to the previous example, and suppose that at the end of Stage 1
we apply one more reduction to F(B A C'). We get then two branches, one representing
AVB,AvC = A, Btheother AVB,Av(C = A, (. At Stage 2 we get, accordingly, two sets
of clauses {(= 4, B),(= A,C),(A=),(B =)} and {(= A4, B),(= A4,C),(A=),(C =)}.
JFrom each of them one sequent can immediately be deleted as useless by standard criteria,

and two cuts suffice to get = from the others.

Note: The two sets of clauses are obviously symmetrical with respect to B and C'. A human
logician would immediately realize, therefore, that it suffices to prove the inconsistency of

only one of them (in fact, he would already realize this symmetry at the end of Stage 1 and

11

thereby save even more work). It is a subject of current research in what cases and how an
automated system will also be able to take advantage of such considerations of symmetry.

The possibility of splitting the work done by resolution into several smaller jobsis rather
interesting. We should admit, however, that we are just at the beginning of exploring the
questions how best to choose the point of switching and what branching reductions to apply

before that.

IV. Classical Predicate Calculus

We start with GCL — the Gentzen-type system for classical logic that we are going to

use. It is obtained from GCPL by the addition of the following 4 rules:
I'NA(t/z) = A =) I'=AA

V=) Tviasa TS A wage 0
(=) A=A I'=> A,A(t/x)
(=) T3au =4 ey R)

(*) In (= V) and (3 =) the eigenvariable 2 should not occur free in the conclusion of the

rule.

The side conditions on the applications of (= V) and (3 =) mean that these rules are
impure. In general, therefore, the second part of Proposition 1 fails for GCL. This is the
source of one of the two main differences between the propositional case and the present
one: the two associated C.R.s b5 and F&qp are not identical®®>. Thus ¢ FY Voo (the
“generalization rule”) while @F¥'Vze. Similarly ¢ Y o(t/z) but @Flo(t/z). Below we
shall see that the method of tableaux is based on F!, while resolution on F?. It follows
that the two methods might provide different answers to the question whether a formula B
follows from the set {Ay,..., A,}. Still, there is an important case in which this would not
happen; when all the A;’s are sentences. (This includes, of course, the case n = 0.) This
claim easily follows from the fact that with respect to sentences the rules of GCL are pure.
Hence if I' = A follows from I'y = D; (¢ = 1,...,n) and I U A’ contains only sentences
then I', I = A, A’ follows from I, I = A;, A’ (i = 1,...,n). Using this our claim follows
as in the proof of Proposition 1.

The fact that GCL is not pure implies also that Proposition 2 (on which the method
of resolution is based) is not true as it stands. Again, it is true, and with the same proof,

when it is applied to a sequent of sentences.

13 We shall henceforth omit the subscript GCL from Fger,, I—ECL and Fg e

12

Example 6: Fp(z) = p(y) but (p(y) =), (= p(z)) F=

Notes: Semantically, F! corresponds to the “truth” C.R. of [Av]: Ay,..., A, F! B if given
any model M,B is true for any assignment in M which makes all the A;’s true. F¥, on
the other hand, corresponds to the “validity” C.R.: Ay,..., A, F¥ B iff B is valid in every
model in which A4y,..., A, are all valid. See [Av] for further discussion.

The second crucial difference between the propositional case and the present one has
to do with the two other new rules: (Vv =) and (= 3). Unlike the rest of the rules,
these rules are not invertible. Moreover, their conclusion has an infinite set of potential
premises. This fact has far reaching consequences for the method of tableaux. As before
this method is nothing but a systematic search for a cut-free proof in GCL of the sequent
under consideration. Unlike the previous case, however, when it comes to reducing T'(Vz A)
to some T (A(t/x)) (or F(3zA) to F(A(t/2))) we cannot be sure that we have chosen the
right term ¢, or that only one reduction suffices. The standard solution in the past had been
to keep signed formulae of these forms after a reduction has been applied to them, and to
regularly return to them, trying all the possibilities in some order. Gentzen’s classical cut-
elimination theorem guarantees that if we start with a provable sequent then this systematic
search for a proof will eventually terminate with a success (this theorem again states that
a provable sequent has a cut-free proof).

The weakest point of the tableaux method just described is that it provides no clue to
the order in which we should try to substitute the terms in the reductions of the problematic
cases. This is a crucial point, since each useless choice might cause a chain of useless
branchings. If there are several of them the search for a proof would never be finished in
a feasible time. The “classical” tableaux method is not practical, therefore, for anything

which is more than trivial.l*

A possible idea for overcoming the problem caused by the noninvertible rules is the
following: Suppose we reach a sequent Ay,..., A, = By,..., B, of sentences to which no
nonproblematic reduction can be applied. The A;’s are then of the form Vz Al the B; of
the form Jz B.. As in the previous section, we can try at this point to show that the set

{(= A1),....,(= A,),(B1 =),...,(B,, =)} is inconsistent. The advantage is, first of all,

1 A much more practical version of tableaux is described in [Fi]. There tableaux with free variables
are employed and their use (like in the case of resolution) is based on the ideas of substitutions for free
variables and of unification. The connection method of Bibel [Bi] is strongly related to this form of
tableaux. The exact relations between these methods and the ideas presented here will be described
elsewhere.

13

that to each element of this set we can apply at least one nonproblematic reduction. In other
words: the above set is inconsistent iff the set {(=> A}),....(= A.), (B} =),...,(B,, =)}
is inconsistent.

The classical resolution method, to which we now turn, directly treats only the case
when each of the (= A;)’s and the (B; =)’s can be reduced to clause form using only the
nonproblematic reductions. Such, e.g., is the case when each A; is of the form Vay ...Va,, Al
and every B; of the form Jzy ... 3z, B, where A} and B’ are quantifiers-free. This indeed

is the case which is usually discussed in the textbooks'®.

Example 7 ([Lo], pp. 32-37): Let

A ==(Jz-p(z) A [Fzp(z) vV Iz (p(z) A g(z))] A ~Fap(z))

Starting with the nonproblematic tableaux reductions we get the tree in Figure 1 below.

Notes: 1) The left-hand branch contains both F(3zp(z)) and T(Jazp(z)), and so it is
closed. Only the right-hand branch should therefore be dealt with.

2) In the tree above a and b are new constants. This is unavoidable, since the validity
of the switching from showing provability to showing inconsistency is justified only if all
the formulae involved are sentences. Now the corresponding Gentzen-type rules refer to
variables. Still, it is easy to show that if z does not occur free in I' U A, then, e.g.,
FI'= AJAiff T = A, A(a/x) provided @ is a new constant which does not occur in
I' = A, A. In the usual tableaux method we use, indeed, new constants while doing (= V)
or (3 =) reductions. The resulting sequent is not equivalent to the original one, but it
is provable iff the original one is. (The practical difference between new constants and

variables in the context of resolution will become clear below.)

Example 7, continued: The right-hand branch of the tree which we got represents the
sequent p(b), ¢(b) = p(a),Jzp(z). This is a sequent to which doing the switching is useful.
What we get is {(= p(b)), (= ¢(b)), (p(a) =), (Jzp(z) =) }. A (I =) reduction on the
last sequent produces the clause p(z) =, which subsumes p(a) =>. The final set of clauses
we get is, accordingly: {(= p(b)), (= ¢(b)), (p(z) =)}. This set is inconsistent, as can

be shown by one step of resolution.

15 Usually, in fact, only the case m = 0 is considered, and the A;’s are assumed to be disjunctions
of literals. These extra assumptions are not needed here.

14

0|
F(3ap(z))
0|
© r(pa)
|
F(p(a))
D (Gap(e) Or (2op((2) 1 g(2)))
X ‘
D7 (p(b) A g(0)
o |
T(p(b)), T (q(b))
Figure 1

Notes: 1) In this stage we cannot substitute a constant for & while reducing Jzp(z) =.

The reason is that we are not trying to show provability of that sequent, but to use it as an

15

assumption in deriving the empty sequent!

2) The clause form which is obtained in [Lo] for the sentence in Example 7 is
{(= pla),p(d)), (= p(a),q(b)), (p(z) =)}, which is more complicated. We would have
obtained the same set had we started by replacing Jzp(x)V Iz (p(ac)/\q(x)) by the equivalent
Prenex form: Elxﬂy(p(x) v (p(y) A q(y))), or by the method of conversion to tableaux which
is described at the end of this paper (see example 8).

Returning now to the resolution method, the question is now: how are we to prove that
a given inconsistent set of clauses is indeed inconsistentl’ The answer might seem to be easy:
just proceed as in the propositional case. This is wrong, however: despite the fact that all
the quantifiers have been eliminated, the problem has not been reduced to the propositional
case. This is illustrated by the following simple example: the set {(= p(w)), (p(a) =)}

is inconsistent, as the following deduction shows:

= p(v) pla) =
Ezuj)) = pr(w)(v :>)pr($) =
=

There is, however, no way to derive = from this inconsistent set using only propositionally
valid rules!

The deep reason for this state of affairs has already been noted above: the C.R. which is
associated with deductions in GC'L from assumptions is -V, which is stronger than +* when
open formulae are involved. Now the main difference between ! and F? is the substitution
rule, which is valid for the later but not for the former. In terms of sequents this rule allows
inferring from a sequent any substitution-instance of it. This can also be achieved by using
the quantifiers” rules and cuts (as in the example above), but if we want to avoid using
quantifiers then we have no choice but to add substitution as an official rule. This would

allow us to prove the following key result:

The strong cut-elimination theorem for GCL:'® Let GCLS = GCL 4 substitution.
Let S be a set of sequents and suppose 5 Facrs I' = A. Then there is a proof in GCLS of
I' = A from S in which the substitution rule is applied only to sequents in .5 and all cuts

are on instances of formulae which occur in sequents of 5.

16 Again, Girard seems to be the first to observe the validity of an equivalent theorem. See [Gi2,
Theorem 2.7.1]. The only difference is that Girard does not consider substitution as an independent
rule, but restricts himself to the case in which .5 is closed under it.

16

Proof (outline): First we use Gentzen’s method to show that all cuts which are not on
instances of formulae which occur in 5 are eliminable (the substitution rule is needed when
the cut formula begins with a quantifier and we want to apply the induction hypothesis to
immediate subformulae of it). Then we use induction on length of such proofs to show that

all applications of the substitution rule can be done on sequents in 5.

Gentzen’s original cut-elimination theorem is again just the case S = @ in the last
theorem. What we need here is another easy corollary, the proof of which we leave to the

reader (see the proofs of Proposition 4 and its Corollary 1):

Corollary 2. Let S be a set of clauses and s a clause such that S+ s. Let 5" be a subset
of § with the following properties:

(1) S' contains no tautology.

(2) Each element in S is subsumed by some element of 5.

(3) No element in S is subsumed by another element of 5.

Then there exists a clause s' which subsumed s so that s' can be inferred from S' using

only substitutions and cuts.

Corollary 3. If S is an inconsistent set of clauses then there is a finite set S’ of instances

of clauses in S from which = can be derived using only cuts.'”

This last corollary (which we have proved in a purely syntactical way, and without
any detour through ground clauses!'®) is the main syntactical fact on which the resolution
method is based. It entails that in order to show the inconsistency of a set 5 of clauses we
should just find the appropriate substitution instances of clauses in .5, and then proceed
as in the propositional case. Just as in the classical tableaux method the main problem is
therefore: how to make the choice of the instances of 5. Unlike that method, on the other
hand, this time we do have a general guiding principle: substitutions should be made only if
they open the door for applications of the cut rule. Asis well known, this is most efficiently
done not by doing all the substitutions at the beginning (as the last corollary may suggest)
but by making them either as a part of a combination with cut (“binary resolution”) or in

order to unify two or more formulae in a clause (“factorization”). In both cases the most

general substitution which accomplishes the task is chosen. Details can be found in any

T Herbrand theorem easily follows from this corollary!
18 Although it is straightforward to prove it with the extra requirement that S’ contains only

ground clauses!

17

textbook on automated reasoning (the proofs given there at this point are purely syntactical
and so we need not repeat them here. Many of them, as well as proofs of completeness of
various refinements, can be simplified a lot using the last theorem and its corollaries).

To complete the picture we note that the usual method of proving a general sequent of
sentences using resolution is to replace it first by a sequent to which this method is directly
applicable and which is provable iff the original one is (although in general they are not
equivalent). This is done by replacing first each sentence by an equivalent one in Prenex
normal form, and then using Skolem functions to eliminate the unwanted quantifiers (the
existential ones on the left, the universal ones on the right). The justification of these
steps can also be done purely syntactically, using Gentzen midsequent theorem. Details
can be found in [Gal]. It is worth noting, however, that the passage to Prenex form often
unnecessarily complicates matters. A much better procedure is based on the following
observation: If § is a set of sequents then S U{I" = A’ , J2A} F T = Aiff SU{I' =
Al A(f(yl,...,yn)/w) FT = A, where y1,...,y, are the free variables in I' = A,z A
and f is a new function symbol, not occurring anywhere in S, T, T, A; A’ and A (a similar
observation applies in the dual case). Since in resolution we are interested with provability
from a set of sequents (and no, as in tableaux, in the provability of a sequent), this means
that instead of the two problematic tableaux rules one can use the following two rules:

(1) Replace F(3zA) by F(A(f(yl, .. ,yn)/x)) where f is a new function symbol that does
not occur in the tree and #,...,%, are the free variables on the branch in which the
signed formula occurs.

(2) Replace T(VzA) by T(A(f(yl, .. ,yn)/x)) under the same conditions.

Now given a sequent of sentences Ay,..., A, = By,..., By, find a set of clauses which

is inconsistent iff this sequent is provable as follows: first construct the following tree.

F(Ay) F(Az) F(An) T(By) T(By)

(which represents the set of sequents: {= Ay,...,= B,, B1 =,..., B, =}). Next, expand

the tree using the new set of tableaux rules (i.e., all the previous invertible rules together

18

with the new ones). Stop when there are no more rules to apply. Every branch which is
not closed contributes then a clause which consists of its atomic formulae. More precisely,

if these formulae are T'(p1),...,T(pw), F(q1), ..., F(qm) then the corresponding clause is

Ploe-sPnt = G155 qm! -

Example 8. Returning to example 7, in order to prove A (i.e., == A) we construct the

following tree

F(Jz-p(2)) F(Jap(z) Vv Iz (p(z) A q(2))) F(-3ap(z))
F(=p(c)) F(3zp(z)), F(3z(p(2) A q(2))) T (3ap(x))
T(p(c)) F(p(a)) T(p(x)

F(p(b) A q(b))

AN

F(p(b)) F(q(b))

We get therefore the following set of clauses: {(p(c) =), (= p(a),p(d)), (= p(a),q(b)),
(p(z) =) }. After deleting p(c) = (which is subsumed by p(z) =) we get the clause form

in [Lo] (compare notes after example 7).

19

Another important point which we would like to raise is that again the tableaux and
the resolution methods can be combined to get better efficiency. Not only can tableaux help
in obtaining an economical clause form in a faster way, but it might also split the work to
be done by resolution into smaller jobs. In Example 7 we saw the extreme case, in which
the work on one of these jobs was already finished in the tableaux stage (had we not closed

the left-hand branch, we would have got the set {(= p(a)), (p(z) =)} from it)!

References
[Av] Avron A., Simple Consequence Relations, Information and Computation, 92
(1991), pp. 105-139.
i ibel W., Autometr eorem Proving, Vieweg Verlag, Braunschweig, .
Bi Bibel W., A d Th Proving, Vieweg Verlag, B hweig, 1982

[BM] Bell J.L.. and Machover M., A Course in Mathematical Logic, North-Holland,
Amsterdam, 1977.

[Bu] Bundy A., The Computer Modelling of Mathematical Reasoning, Aca-
demic Press, New York, 1983.

[CL] Chang C. & Lee R.C., Symbolic Logic and Mechanical Theorem Proving,
Academic Press, New York, 1973.

[Fi] Fitting M.C., First Order Logic and Automated Theorem Proving, Springer-
Verlag, 1989.

[Ga] Gallier J.H. Logic and Computer Science — Foundations of Automatic

Theory Proving, Harper & Row, New York, 1986.

[Ge] Gentzen G. Investigations into Logical Deduction, in: The Collected Work of
Gerhard Gentzen, ed. by M.E. Szabo, North Holland, Amsterdam, 1969.

[Gil] Girard J.Y., Lafont Y. & Taylor P., Proofs and Types, Cambridge University
Press, Cambridge, 1989.

[Gi2] Girard J.Y. Proof Theory and Logical Complexity, Bibliopolis, 1987.

Ko Kowalski R. Logic for Problem Solving, Elsevier, North Holland, New York,
g g
1979.

[Lo] Loveland D.W. Automated Theorem Proving: A Logical Basis, Elsevier
North-Holland, New York, 1989.

[0S] Oppacher F. & Suen E. Controlling Deduction with Proof Condensation and Heuris-
tics, in: Proceedings of CADE 8 (1986), pp. 364-393, Springer-Verlag.

20

Ro Robinson J.A. Logic: Form and :FllIlCtiOIl7 Flsevier North—Holland, New YvOI’k7
g
1979.

[Sm] Smullyan R.M. First-order Logic, Springer-Verlag, Berlin, 1986.

21

