
From Constructibility and Absoluteness to
Computability and Domain Independence

Arnon Avron

School of Computer Science
Tel Aviv University, Tel Aviv 69978, Israel

aa@math.tau.ac.il

Abstract. Gödel’s main contribution to set theory is his proof that
GCH is consistent with ZFC (assuming that ZF is consistent). For this
proof he has introduced the important ideas of constructibility of sets,
and of absoluteness of formulas. In this paper we show how these two
ideas of Gödel naturally lead to a simple unified framework for dealing
with computability of functions and relations, domain independence of
queries in relational databases, and predicative set theory.

1 Introduction: Absoluteness and Constructibility

Gödel classical work [6] on the constructible universe L is best known for its ap-
plications in pure set theory, especially consistency and independence proofs. Its
relevance to computability theory was mostly ignored. Still, in this work Gödel
introduced at least two ideas which are quite important from a computational
point of view:

Computations with Sets The notion of computation is usually connected
with discrete structures, like the natural numbers, or strings of symbols from
some alphabet. In this respect [6] is important, first of all, in being the first
comprehensive research on (essentially) computability within a completely
different framework (technically, the name Gödel used was “constructibility”
rather than “computability”, but the difference is not really significant). No
less important (as we shall see) is the particularly important data structure
for which computability issues were investigated in [6]: sets. Specifically, for
characterizing the “constructible sets” Gödel identified operations on sets
(which we may call “computable”), that may be used for “effectively” con-
structing new sets from given ones (in the process of creating the universe of
“constructible” sets). Thus, binary union and intersection are “effective” in
this sense, while the powerset operation is not. Gödel has even provided a fi-
nite list of basic set operations, from which all other “effective” constructions
can be obtained through compositions.

Absoluteness A formula in the language of set theory is absolute if its truth
value in a transitive class M , for some assignment v of objects from M to its
free variables, depends only on v, but not on M (i.e. the truth value is the

same in all structures M , in which v is legal). Absoluteness is a property of
formulas which was crucial for Gödel consistency proof. However, it is not
a decidable property. The following set ∆0 of absolute formulas is therefore
extensively used as a syntactically defined approximation:
– Every atomic formula is in ∆0.
– If ϕ and ψ are in ∆0, then so are ¬ϕ, ϕ ∨ ψ, and ϕ ∧ ψ.
– If x and y are two different variables, and ϕ is in ∆0, then so is ∃x ∈ yϕ.

Now there is an obvious analogy between the roles in set theory of absolute for-
mulas and of ∆0 formulas, and the roles in formal arithmetic and computability
theory of decidable formulas and of arithmetical ∆0 formulas (i.e. Smullyan’s
“bounded” formulas). This analogy was noticed and exploited in the research
on set theory. However, the reason for this analogy remains unclear, and beyond
this analogy the importance and relevance of these two ideas of Gödel to other
areas have not been noticed. As a result, strongly related ideas and theory have
been redeveloped from scratch in relational database theory.

2 Domain Independence and Computability in Databases

From a logical point of view, a relational database DB of a scheme {P1, . . . , Pn}
is just a tuple 〈P1, . . . , Pn〉 of finite interpretations (called “tables”) of the pred-
icate symbols P1, . . . , Pn. DB can be turned into a structure S for a first-order
language L with equality, the signature of which includes {P1, . . . , Pn} and con-
stants, by specifying a domain D, and an interpretation of the constants of L
in it (different interpretations for different constants). The domain D should be
at most countable (and usually it is finite), and should of course include the
union of the domains of the tables in DB. A query for DB is simply a formula
ψ of L. If ψ has free variables, then the answer to ψ in S is the set of tuples
which satisfy it in S. If ψ is closed, then the answer to the query is either “yes”
or “no”, depending on whether ψ holds in S or not (The “yes” and “no” can
be interpreted as {∅} and ∅, respectively). Now not every formula ψ of a L can
serve as a query. Acceptable are only those the answer for which is a computable
function of 〈P1, . . . , Pn〉 alone (and does not depend on the identity of the in-
tended domain D. This in particular entails that the answer should be finite).
Such queries are called domain independent ([8, 11, 1]). The exact definition is:

Definition 1. 1 Let σ be a signature which includes
−→
P = {P1, . . . , Pn}, and

optionally constants and other predicate symbols (but no function symbols). A
query ϕ(x1. . . . , xn) in σ is called

−→
P −d.i. (

−→
P −domain-independent), if whenever

S1 and S2 are structures for σ, S1 is a substructure of S2, and the interpretations
of {P1, . . . , Pn} in S1 and S2 are identical, then for all a1 ∈ S2, . . . , an ∈ S2:

S2 |= ϕ(a1, . . . , an) ↔ a1 ∈ S1 ∧ . . . ∧ an ∈ S1 ∧ S1 |= ϕ(a1, . . . , an)
1 This is a slight generalization of the definition in [Su98], which in turn is a gener-

alization of the usual one ([Ki88,Ul88]). The latter applies only to free Herbrand
structures which are generated by adding to σ some new set of constants.

Practical database query languages are designed so that only d.i. queries can
be formulated in them. Unfortunately, it is undecidable which formulas are d.i.
(or “safe” according to any other reasonable notion of safety of queries, like
“finite and computable”). Therefore all commercial query languages (like SQL)
allow to use as queries only formulas from some syntactically defined class of
d.i. formulas. Many explicit proposals of decidable, syntactically defined classes
of safe formulas have been made in the literature. The simplest among them
(and the closer to what has actually been implemented) is perhaps the following
class SS(

−→
P) (“syntactically safe” formulas for a database scheme

−→
P) from [11]

(originally designed for languages with no function symbols) 2:

1. Pi(t1, . . . , tni
) ∈ SS(

−→
P) in case Pi (of arity ni) is in

−→
P .

2. x = c and c = x are in SS(
−→
P) (where x is a variable and c is a constant).

3. ϕ ∨ ψ ∈ SS(
−→
P) if ϕ ∈ SS(

−→
P), ψ ∈ SS(

−→
P), and Fv(ϕ) = Fv(ψ) (where

Fv(ϕ) denotes the set of free variables of ϕ).
4. ∃xϕ ∈ SS(

−→
P) if ϕ ∈ SS(

−→
P).

5. If ϕ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕk, then ϕ ∈ SS(
−→
P) if the following conditions are

met:
(a) For each 1 ≤ i ≤ k, either ϕi is atomic, or ϕi is in SS(

−→
P), or ϕi is a

negation of a formula of either type.
(b) Every free variable x of ϕ is limited in ϕ. This means that there exists

1 ≤ i ≤ k such that x is free in ϕi, and either ϕi ∈ SS(
−→
P), or there

exists y which is already limited in ϕ, and ϕi ∈ {x = y, y = x}.

It should be noted that there is one clause in this definition which is somewhat
strange: the last one, which treats conjunction. The reason why this clause does
not simply tell us (like in the case of disjunction) when a conjunction of two
formulas is in SS(

−→
P), is the desire to take into account the fact that once the

value of y (say) is known, the formula x = y becomes domain independent. In
the unified framework described in the next section this problematic clause is
replaced by a more concise one (which at the same time is more general).

A more important fact is that given {P1, . . . , Pn}, the set of relations which
are answers to some query in SS(

−→
P) is exactly the closure of {P1, . . . , Pn} under

a finite set of basic operations called “the relational algebra” ([1, 11]). This set
is quite similar to set of basic operations used by Gödel in [6] for constructing
the constructible universe.

3 Partial Domain Independence and Absoluteness

There is an obvious similarity between the concepts of d.i. in databases, and
absoluteness in Set Theory. However, the two notions are not identical. Thus, the
formula x = x is not d.i., although it is clearly absolute. To exploit the similarity,
2 What we present below is both a generalization and a simplification of Ullman’s

original definition.

the formula property of d.i. was turned in [2] into the following relation between
a formula ϕ and finite subsets of Fv(ϕ):

Definition 2. Let σ be like in Definition 1. A formula ϕ(x1, . . . , xn, y1, . . . , yk)
in σ is

−→
P −d.i. with respect to {x1, . . . , xn}, if whenever S1 and S2 are structures

as in Definition 1, then for all a1 ∈ S2, . . . , an ∈ S2 and b1 ∈ S1, . . . , bk ∈ S1:

S2 |= ϕ(−→a ,
−→
b) ↔ a1 ∈ S1 ∧ . . . ∧ an ∈ S1 ∧ S1 |= ϕ(−→a ,

−→
b)

Note that ϕ is d.i. iff it is d.i. with respect to Fv(ϕ). On the other hand the
formula x = y is only partially d.i.: it is d.i. with respect to {x} and {y}, but
not with respect to {x, y}. Note also that a formula ϕ is d.i. with respect to ∅ if
whenever S1 and S2 are structures as in Definition 1 then for all b1, . . . , bk ∈ S1

S2 |= ϕ(
−→
b) ↔ S1 |= ϕ(

−→
b). Under not very different conditions concerning S1

and S2, this is precisely Gödel’s idea of absoluteness. We’ll return to this below.
Another important observation is that given a domain S for the database, if

ϕ(x1, . . . , xn, y1, . . . , yk) is
−→
P −d.i. with respect to {x1, . . . , xn} then the function

λy1, . . . , yk.{〈x1, . . . , xn〉 | ϕ} is a computable function from Sk to the set of finite
subsets of Sn, the values of which depend only on the values of the arguments
y1, . . . , yk, but not on the identity of S. In case n = 0 the possible values of this
function are {〈〉} and ∅, which can be taken as “true” and “false”, respectively.
Hence in this particular case what we get is a computable k-ary predicate on S.
From this point of view k-ary predicates on a set S should be viewed as a special
type of functions from Sk to the set of finite sets of S-tuples, rather than as a
special type of functions from Sk to S, with arbitrary chosen two elements from
S serving as the two classical truth values (while like in set theory, functions
from Sk to S should be viewed as a special type of (k+ 1)-ary predicates on S).

Now it is easy to see that partial d.i. has the following properties (where
ϕ � X means that ϕ is

−→
P −d.i. with respect to X):

0. If ϕ � X and Z ⊆ X, then ϕ � Z.
1. ϕ � Fv(ϕ) if ϕ is p(t1, . . . , tn) (where p ∈

−→
P).

2. x 6= x � {x}, t = x � {x}, and x = t � {x} if x 6∈ Fv(t).
3. ¬ϕ � ∅ if ϕ � ∅.
4. ϕ ∨ ψ � X if ϕ � X and ψ � X.
5. ϕ ∧ ψ � X ∪ Y if ϕ � X, ψ � Y , and Y ∩ Fv(ϕ) = ∅.
6. ∃yϕ � X − {y} if y ∈ X and ϕ � X.

These properties can be used for defining a syntactic approximation �P of the
semantic

−→
P -d.i. relation. It can easily be checked that the set {ϕ | ϕ �P Fv(ϕ)}

strictly extends SS(
−→
P) (but note how the complicated last clause in the defi-

nition of SS(
−→
P) is replaced here by a concise clause concerning conjunction!).

Note: For convenience, we are taking here ∧,∨,¬ and ∃ as our primitives.
Moreover: we take ¬(ϕ→ ψ) as an abbreviation for ϕ∧¬ψ, and ∀x1, . . . , xkϕ as

an abbreviation for ¬∃x1, . . . , xk¬ϕ. This entails the following important prop-
erty of “bounded quantification”: If � is a relation satisfying the above prop-
erties, and ϕ � {x1, . . . , xn}, while ψ � ∅, then ∃x1 . . . xn(ϕ ∧ ψ) � ∅ and
∀x1 . . . xn(ϕ→ ψ) � ∅ (recall that ϕ � ∅ is our counterpart of absoluteness).

4 Partial Domain Independence in Set Theory

We return now to set theory, to see how the idea of partial d.i. applies there.
In order to fully exploit it, we use a language with abstraction terms for sets.
However, we allow only terms which are known to be d.i. in a sense we now
explain. For simplicity of presentation, we assume the accumulative universe V
of ZF , and formulate our definitions accordingly.

Definition 3. Let M be a transitive class. Define the relativization to M of
terms and formulas recursively as follows:

– tM = t if t is a variable or a constant.
– {x | ϕ}M = {x | x ∈M∧ ϕM}.
– (t = s)M = (tM = sM) (t ∈ s)M = (tM ∈ sM).
– (¬ϕ)M = ¬ϕM (ϕ ∨ ψ)M = ϕM ∨ ψM. (ϕ ∧ ψ)M = ϕM ∧ ψM.
– (∃xϕ)M = ∃x(x ∈M∧ ϕM).

Definition 4. Let T be a theory such that V |= T .

1. Let t be a term, and let Fv(t) = {y1, . . . , yn}. We say that t is T -d.i., if the
following is true (in V) for every transitive model M of T :

∀y1 . . .∀yn.y1 ∈M∧ . . . ∧ yn ∈M→ tM = t

2. Let ϕ be a formula, and let Fv(ϕ) = {y1, . . . , yn, x1, . . . , xk}. We say that ϕ
is T -d.i. for {x1, . . . , xk} if {〈x1, . . . , xk〉 | ϕ} is a set for all values of the
parameters y1, . . . , yn, and the following is true (in V) for every transitive
model M of T :

∀y1 . . .∀yn.y1 ∈M∧ . . .∧ yn ∈M→ [ϕ↔ (x1 ∈M∧ . . .∧ xk ∈M∧ ϕM)]

Thus, a term is T -d.i. if it has the same interpretation in all transitive models
of T which contains the values of its parameters, while a formula is T -d.i. for
{x1, . . . , xk} if it has the same extension (which should be a set) in all transitive
models of T which contains the values of its other parameters. In particular: ϕ
is T -d.i. for ∅ iff it is absolute relative to T in the original sense of set theory,
while ϕ is T -d.i. for Fv(ϕ) iff it is domain-independent in the sense of database
theory (see Definition 1) for transitive models of T .

The set-theoretical notion of d.i., we have just introduced, is again a semantic
notion that one cannot characterize in a constructive manner, and so a syntactic
approximation of it should be used in practice. The key observation for this
is that the transitive classes are the structures for which the atomic formula
x ∈ y (where y is different from x) is d.i. with respect to {x}. Accordingly, an
appropriate approximation is most naturally obtained by adapting the definition
of �P above to the present language, taking into account this key observation:

Definition 5. The relation �RST is inductively defined as follows:
1. ϕ �RST ∅ if ϕ is atomic.
2. ϕ �RST {x} if ϕ ∈ {x 6= x, x = t, t = x, x ∈ t}, and x 6∈ Fv(t).
3. ¬ϕ �RST ∅ if ϕ �RST ∅.
4. ϕ ∨ ψ �RST X if ϕ �RST X and ψ �RST X.
5. ϕ ∧ ψ �RST X ∪ Y if ϕ �RST X, ψ �RST Y , and Y ∩ Fv(ϕ) = ∅.
6. ∃yϕ �RST X − {y} if y ∈ X and ϕ �RST X.

Note: It can easily be proved by induction on the complexity of formulas that
the clause 0 in the definition of �P is also satisfied by �RST : if ϕ �RST X and
Z ⊆ X, then ϕ �RST Z.

A first (and perhaps the most important) use of �RST is for defining the
set of legal terms of the corresponding system RST (Rudimentary Set Theory).
Unlike the languages for databases (in which the only terms were variables and
constants), the language of RST used here has a very extensive set of terms. It
is inductively defined as follows:
– Every variable is a term.
– If x is a variable, and ϕ is a formula such that ϕ �RST {x}, then {x | ϕ} is

a term (and Fv({x | ϕ}) = Fv(ϕ)− {x}).
(Actually, the relation �RST , the set of terms of RST , and the set of formulas
of RST are defined together by a simultaneous induction).

A second use of �RST is that the set {ϕ | ϕ �RST ∅} is a natural extension
of the set ∆0 of bounded formulas. Moreover, we have:

Theorem 1. Let RST be the theory consisting of the following axioms:
Extensionality: ∀y(y = {x | x ∈ y})
Comprehension: ∀x(x ∈ {x | ϕ} ↔ ϕ)

Then given an extension T of RST , any valid term t of RST is T -d.i., and if
ϕ �RST X, then ϕ is T -d.i. for X.

The following theorem connects �RST with the class of rudimentary set
functions (introduced independently by Gandy ([5]) and Jensen ([7]). See also
[4]) — a refined version of Gödel basic set functions:

Theorem 2.

1. If F is an n-ary rudimentary function, then there exists a formula ϕ s. t.:
(a) Fv(ϕ) = {y, x1, . . . , xn}
(b) ϕ �RST {y}
(c) F (x1, . . . , xn) = {y | ϕ}.

2. If ϕ is a formula such that:
(a) Fv(ϕ) = {y1, . . . , yk, x1, . . . , xn}
(b) ϕ �RST {y1, . . . , yk}
then there exists a rudimentary function F such that:

F (x1, . . . , xn) = {〈y1, . . . , yk〉 | ϕ}
Corollary 1. If Fv(ϕ) = {x1, . . . , xn}, and ϕ �RST ∅, then ϕ defines a rudi-
mentary predicate P . Conversely, if P is a rudimentary predicate, then there is
a formula ϕ such that ϕ �RST ∅, and ϕ defines P .

4.1 On Predicative Set Theory

In his writings Gödel expressed the view that his hierarchy of constructible sets
codified the predicatively acceptable means of set construction, and that the only
impredicative aspect of the constructible universe L is its being based on the full
class On of ordinals. This seems to us to be only partially true. We think that
indeed the predicatively acceptable instances of the comprehension schema are
those which determine the collections they define in an absolute way, indepen-
dently of any “surrounding universe”. Therefore a formula ψ is predicative (with
respect to x) if the collection {x | ψ(x, y1, . . . , yn)} is completely and uniquely
determined by the identity of the parameters y1, . . . , yn, and the identity of
other objects referred to in the formula (all of which should be well-determined
before). In other words: ψ is predicative (with respect to x) iff it is d.i. (with
respect to x). It follows that all the operations used by Gödel are indeed predica-
tively acceptable, and even capture what is intuitively predicatively acceptable
in the language of RST . However, we believe that one should go beyond first-
order languages in order to capture all the predicatively acceptable means of set
construction. In [3] we suggest that an adequate language for this is obtained
by adding to the the language of RST an operation TC for transitive closure
of binary relations, and then replacing �RST by the relation �PZF , which is
defined like �RST , but with the following extra clause: (TCx,yϕ)(x, y) �PZF X
if ϕ �PZF X, and {x, y} ∩X 6= ∅. See [3] for more details.

5 Domain Independence: a General Framework

In this section we introduce a general abstract framework for studying domain
independence and absoluteness (originally introduced in [2]).

Definition 6. A d.i.-signature is a pair (σ, F), where σ is an ordinary first-
order signature, and F is a function which assigns to every n-ary symbol s from
σ (other than equality) a subset of P({1, . . . , n}).

Definition 7. Let (σ, F) be a d.i.-signature. Let S1 and S2 be two structures for
σ s.t. S1 ⊆ S2. S2 is called a (σ, F)−extension of S1 if the following conditions
are satisfied:

– If p ∈ σ is a predicate symbol of arity n, I ∈ F (p), and a1, . . . , an are
elements of S2 such that ai ∈ S1 in case i 6∈ I, then S2 |= p(a1, . . . , an) iff
ai ∈ S1 for all i, and S1 |= p(a1, . . . , an).

– If f ∈ σ is a function symbol of arity n, a1, . . . , an ∈ S1, and b is the
value of f(a1, . . . , an) in S2, then b ∈ S1, and b is the value of f(a1, . . . , an)
in S1. Moreover: if I ∈ F (f), and a1, . . . , an are elements of S2 such that
ai ∈ S1 in case i 6∈ I, then S2 |= b = f(a1, . . . , an) iff ai ∈ S1 for all i, and
S1 |= b = f(a1, . . . , an).

Definition 8. Let (σ, F) be as in Definition 7. A formula ϕ of σ is called
(σ, F)−d.i. w.r.t. X (ϕ �di

(σ,F) X) if whenever S2 is a (σ, F)−extension of S1,

and ϕ∗ results from ϕ by substituting values from S1 for the free variables of
ϕ that are not in X, then the sets of tuples which satisfy ϕ∗ in S1 and in S2

are identical. 3 A formula ϕ of σ is called (σ, F)−d.i. if ϕ �di
(σ,F) Fv(ϕ), and

(σ, F)−absolute if ϕ �di
(σ,F) ∅.

Note. We assume that we are talking only about first-order languages with
equality, and so we do not include the equality symbol in our first-order sig-
natures. Had it been included then we would have defined F (=) = {{1}, {2}}
(meaning that x1 = x2 is d.i. w.r.t. both {x1} and {x2}, but not w.r.t. {x1, x2}).

Examples

– Let σ be a signature which includes
−→
P = {P1, . . . , Pn}, and optionally con-

stants and other predicate symbols (but no function symbols). Assume that
the arity of Pi is ni, and define F (Pi) = {{1, . . . , ni}}. Then ϕ is (σ, F)−d.i.
w.r.t. X iff it is

−→
P −d.i. w.r.t. X in the sense of Definition 2.

– Let σZF = {∈} and let FZF (∈) = {{1}}. In this case the universe V is a
(σZF , FZF)− extension of the transitive sets and classes. Therefore a formula
is σZF -absolute iff it is absolute in the usual sense of set theory.

Again the relation of (σ, F)−d.i. is a semantic notion that in practice should
be replaced by a syntactic approximation. The following definition generalizes
in a very natural way the relations �P and �RST :

Definition 9. The relation �(σ,F) is inductively defined as follows:

0. If ϕ �(σ,F) X and Z ⊆ X, then ϕ �(σ,F) Z.
1a. If p is an n-ary predicate symbol of σ; x1, . . . , xn are n distinct variables,

and {i1, . . . , ik} is in F (p), then p(x1, . . . , xn) �(σ,F) {xi1 , . . . , xik
}.

1b. If f is an n-ary function symbol of σ; y, x1, . . . , xn are n+1 distinct variables,
and {i1, . . . , ik} ∈ F (f), then y = f(x1, . . . , xn) �(σ,F) {xi1 , . . . , xik

}.
2. ϕ �(σ,F) {x} if ϕ ∈ {x 6= x, x = t, t = x}, and x 6∈ Fv(t).
3. ¬ϕ �(σ,F) ∅ if ϕ �(σ,F) ∅.
4. ϕ ∨ ψ �(σ,F) X if ϕ �(σ,F) X and ψ �(σ,F) X.
5. ϕ ∧ ψ �(σ,F) X ∪ Y if ϕ �(σ,F) X, ψ �(σ,F) Y , and Y ∩ Fv(ϕ) = ∅.
6. ∃yϕ �(σ,F) X − {y} if y ∈ X and ϕ �(σ,F) X.

Again it is easy to see that if ϕ �(σ,F) X, then ϕ �di
(σ,F) X. The converse

fails, of course. However, we suggest the following conjecture (that for reasons to
become clear in the next section, may be viewed as a generalized Church Thesis):

Conjecture. Given a d.i. signature (σ, F), a formula is upward (σ, F)-absolute
iff it is logically equivalent to a formula of the ∃y1, . . . , ynψ, where ψ �(σ,F) ∅
(ϕ(x1, . . . , xn) is upward (σ, F)-absolute if whenever S2 is a (σ, F)−extension of
S1, and |=S1 ϕ(a1, . . . , an), then |=S2 ϕ(a1, . . . , an)).

3 ϕ∗ is a formula only in a generalized sense, but the intention should be clear.

6 Absoluteness and Computability in N

Finally, we turn to the connections between the above ideas and computability
in the Natural numbers.

Definition 10. The d.i. signature (σN , FN) is defined as follows:

– σN is the first-order signature which includes the constants 0 and 1, the
binary predicate <, and the ternary relations P+ and P×.

– FN (<) = {{1}}, FN (P+) = FN (P×) = {∅}.

Definition 11. The standard structure N for σN has the set of natural numbers
as its domain, with the usual interpretations of 0, 1, and <, and the (graphs
of the) operations + and × on N (viewed as ternary relations on N) as the
interpretations of P+ and P×, respectively.

It is easy now to see that N is a (σN , FN)-extension of a structure S for σN
iff the domain of S is an initial segment of N (where the interpretations of the
relation symbols are the corresponding reductions of the interpretations of those
symbols in N). Accordingly, if ϕ �(σN ,FN) ∅, then for any assignment in N it
gets the same truth value in all initial segments of N (including N itself) which
contain the values assigned to its free variables. Now the set of formulas ϕ such
that ϕ �(σN ,FN) ∅ is a straightforward extension of Smullyan’s set of bounded
formulas ([10]). This set is defined of course using the relation �N=�(σN ,FN).
From definitions 9 and 10 it easily follows that this relation can be characterized
as follows (compare with Definition 5!):

1. ϕ �N ∅ if ϕ is atomic.
2. ϕ �N {x} if ϕ ∈ {x 6= x, x = t, t = x, x < t}, and x 6∈ Fv(t).
3. ¬ϕ �N ∅ if ϕ �N ∅.
4. ϕ ∨ ψ �N X if ϕ �N X and ψ �N X.
5. ϕ ∧ ψ �N X ∪ Y if ϕ �N X, ψ �N Y , and Y ∩ Fv(ϕ) = ∅.
6. ∃yϕ �N X − {y} if y ∈ X and ϕ �N X.

Now the crucial connection between Gödel’s work on absoluteness in set the-
ory, and computability in the natural numbers, is given in the following Theorem:

Theorem 3. The following conditions are equivalent for a relation R on N :

1. R is semi-decidable.
2. R is definable by a formula of the form ∃y1, . . . , ynψ, where ψ �N ∅.
3. R is definable by a formula of the form ∃y1, . . . , ynψ, where the formula ψ

is (σN , FN)-absolute.

Proof. 2. follows from 1. by the Thesis of Church and Smullyan’s characterization
in [10] of the r.e. subsets of N using his set of bounded formulas (recall that if
ψ is bounded, then ψ �N ∅). That 3. follows from 2. is immediate from the
fact that if ψ �N ∅, then ψ is (σN , FN)-absolute. To show that 3. entails 1.,
assume that R is definable by a formula of the form ∃y1, . . . , ynψ, where the

formula ψ(x1, . . . , xk, y1, . . . , yn) is (σN , FN)-absolute. Given numbers n1, . . . , nk

we search whether R(n1, . . . , nk) by examining all the finite initial segments of
N that contain n1, . . . , nk, and return “true” if we find in one of them numbers
m1, . . . ,mn such that ψ(n1, . . . , nk,m1, . . . ,mn) is true in it. From the fact that
ψ is (σN , FN)-absolute, it easily follows that this procedure halts with the correct
answer in case R(n1, . . . , nk), and never halt otherwise.

The last theorem shows a very close connection between (semi)-computability
and (upward) absoluteness. However, further research is needed in order to un-
derstand the full connection between these notions. A key problem that one has
to solve in order to provide a general computability theory based on d.i. relations
and absoluteness, is what is so special about the standard interpretations in N
of P+ and P× that makes the last theorem possible. We suspect that in order
to provide a satisfactory answer (and develop the desired theory), one should
go beyond first-order languages (most probably to first-order language with a
transitive closure operation). We leave that for future investigations.

References

1. S. Abiteboul, R. Hull and V. Vianu, Foundations of Databases, Addison-Wesley,
1995.

2. A. Avron, Safety Signatures for First-order Languages and Their Applications, in
First-Order Logic revisited (Hendricks et al, eds.), 37-58, Logos Verlag Berlin,
2004.

3. A. Avron, A New Approach to Predicative Set Theory, to appear.
4. K. J. Devlin, Constructibility, Perspectives in Mathematical Logic, Springer-

Verlag, 1984.
5. Gandy, R. O., em Set-theoretic functions for elementary syntax, In Axiomatic

set theory, Part 2, AMS, Providence, Rhode Island, 1974, 103-126.
6. K. Gödel, The Consistency of the Continuum Hypothesis, Annals of Math-

ematical Studies, No. 3, Princeton University Press, Princeton, N.J., 1940.
7. R. B. Jensen, The Fine Structure of the Constructible Hierarchy, Annals of Math-

ematical Logic 4 (1971), 229-308, AMS, Providence, Rhode Island, 1974, 143-176.
8. M. Kiffer, On Safety Domain independence and capturability of database queries,

Proc. International Conference on database and knowledge bases, 405-414,
Jerusalem 1988.

9. K. Kunen, Set Theory, An Introduction to Independence Proofs, North-
Holland, 1980.

10. R. M. Smullyan, The Incompleteness Theorems, Oxford University Press,
1992.

11. J.D. Ullman, Principles of database and knowledge-base systems, Com-
puter Science Press, 1988.

