
THE METHOD OF HYPERSEQUENTS IN THE PROOF THEORYOF PROPOSITIONAL NON-CLASSICAL LOGICSArnon AvronSchool of Mathematical SciencesRaymond and Beverly SacklerFaculty of Exact SciencesTel Aviv UniversityRamat Aviv, 69978 IsraelI. An IntroductionUntil not too many years ago, all logics except classical logic (and, perhaps, intuitionis-tic logic too) were considered to be things esoteric. Today this state of a�airs seems to havecompletely been changed. There is a growing interest in many types of nonclassical logics:modal and temporal logics, substructural logics, paraconsistent logics, non-monotonic log-ics { the list is long. The diversity of systems that have been proposed and studied is sogreat that a need is felt by many researchers to try to put some order in the present logicaljungle. Thus [Cl91], [Ep90] and [Wo88] are three recent books in which an attempt is madeto develop a general theoretical framework for the study of logics. On the more pragmaticside, several systems have been developed with the goal of providing a computerized logicalframework in which many di�erent logical systems can be implemented in a uniform way.An example is the Edinburgh LF([HHP91]).It is clear that there is no limit to the number of logics that logicians (and non-logicians) can produce. Logical frameworks should only be expected, therefore, to be ableto handle those that are \good" or \interesting". But what is a \good" logic? One simpleanswer might be: a logic which has applications. This answer is not satisfactory, though.First, systems of logics are frequently introduced before they �nd actual applications.Moreover: there is a tendency to choose for application exactly those that are \good"in some sense. Second: Logic is an autonomous mathematical discipline, and as such1



should have its own independent criteria. One such criterion is the existence of simple,illuminating semantics. This indeed is always a very good sign. A more important criterion(in my opinion, and since logics deals above all with proofs) is the existence of a good proofsystem. Such a system should make it easier to �nd proofs in the system, to prove resultsabout it, and, above all, should have the subformula property.An important line of research in the general study of logics should, according tothe discussion above, be a search for a general proof-theoretical framework, within which\good" proof-systems could be constructed. Such a framework should have the followingproperties:(1) It should be able to handle a great diversity of logics of di�erent types. We expect thatmost logics which logicians have found interesting for other reasons will get good proofsystems within the framework (something that will indicate, in turn, that these logicsare really worth further investigations and use). On the other hand, the constructionof the framework might suggest new logics that should be important.(2) Because of the proof-theoretical nature and the expected generality, the frameworkshould be independent of any particular semantics. One should not be able to guess,just from the form of the structures which are used, the intended semantics of a givenproof system (recent frameworks for many-valued logics and for modal logics violatethis principle { see below).(3) The structures used in the framework should be built from the formulae of the logicand should not be too complicated (for human understanding and for computer im-plementation). Most important { the subformula property they allow should be a realone.1Beyond these three basic demands, the following properties are also desirable:(4) The rules of inference should have a small, �xed number of premises, and their appli-cation should have a local nature. In other words: the applicability of a rule shoulddepend only on the structure of the premises and not on the way they have been1 A use of \structural connectives" that can arbitrarily be nested usually violates this principle.It seems to me that this is the weak point of Belnap's framework of Display Logic [Be82], [AB92],which otherwise has all the other properties. 2



obtained.(5) Since there should be something common to all the various connectives, we call\conjunction", \disjunction", \implication" and \negation", the corresponding rulesshould be as standard as possible. The di�erence between logics should be due tosome other rules, which are independent of any particular connective. Such rules areusually called \structural rules".2(6) The proof systems constructed within the framework should give us better under-standing of the corresponding logics and the di�erence between them.The best example of a framework which has properties (1)-(6) above is, of course,that of cut-free proofs in Gentzen-style systems. Indeed, with respect to (1), it is amazinghow many and extremely di�erent logics can be captured within this framework: classicallogic, intuitionistic logic, the most important modal logics (except, perhaps, S5), relevancelogics, many-valued logics and more. On the other hand, the framework has indeed led tonew interesting logics (for example { Linear Logic [Gi87]).Powerful as it is, the framework of ordinary sequents is not capable of handling allinteresting logics. There are logics with nice, simple semantics and obvious interest forwhich no decent, cut-free formulation seems to exist (we shall see many examples below).It would be an exaggeration to reject them as worthless just because of this fact. Larger,but still satisfactory frameworks should therefore be sought.3 This paper is devoted toa description, with many examples, of one particular framework of this sort: that ofhypersequents. We shall show that this framework is indeed stronger than that of ordinarysequents, but still has properties (1)-(6) above. In addition, the following two pointsconcerning it should be noted:(a) Hypersequents are �nite sets (or sequences) of usual sequents. As such, they2 This principle was put forward in [Do89]. Do�sen's paper contains a general characterization ofthe basic standard connectives. A similar characterization, together with a discussion of the generalrole of these connectives, which explains their universal importance (and so why they usually arepicked) can be found in [Av91d].3 Two frameworks which were proposed and deserve mentioning here are that of higher-ordersequents ([Do85], [Du73], [AB75]) and Display Logic ([Be82], [AB92]). Both are somewhat weak, Ibelieve, with respect to point (3) above. 3



form a simple and natural generalization of the sequential framework. Obviously, everystandard, sequential calculus is also a hyperseqential calculus. There are, however, logics(like Dummet's LC and Lukasiewicz 3-valued logic) the treatment of which requires properhypersequents. It might be added here that although a hypersequent is certainly a morecomplex data structure than an ordinary sequent, it is not much more complicated, andgoes in fact just one step further.4(b) As we shall see, doing proofs within the hypersequential framework allows a highdegree of parallelism. Certain hypersequential calculi (and this admittedly is still no morethan a speculation) might provide therefore good models of parallel computations (exactlyas the sequential calculus for intuitionistic logic is recognized as a good model of sequentialcomputation).The structure of the rest of this paper is as follows. In section II we give a gen-eral description of hypersequential calculi and the way they are meant to be used. Theother sections are devoted to examples. We have tried to bring examples from di�erenttypes of logics, and also that each example will represent some new aspect of the use ofhypersequents or of logic in general. In more detail:Section III is devoted to two of the most important intermediate logics: Dummet'sLC (which corresponds to an in�nite-valued matrix of G�odel) and a weaker system wecall LCW . In both, the aspect of parallelism is well demonstrated. While LC is the mostfamous intermediate logic, we were led to LCW through a natural calculus of hypersequentsfor which we have discovered a very simple semantics. (As it happens this semantics anda corresponding Hilbert-type system had in fact been known long before.)Section IV is devoted to two substructural Logics (which belong, in fact, to the rel-evance family). For the �rst, RM , the use of hypersequents makes it possible to give aconstructive proof of a crucial theorem for which only semantical, non-constructive proofswere known before. The second example, RMIm, demonstrates the di�erence betweenweak and strong completeness and between theoremhood and consequence. An ordinaryGentzen-type system corresponds here to the �rst, but only a hypersequential one captures4 Hypersequents were �rst introduced in [Po83], and independently in [Av87].4



the second.Section V deals with modal logic, with S5 as the principal example. Here the impor-tance of modalized versions of structural rules is revealed (previously this idea was usedonly in Linear Logic).All the examples in sections III-V were of logics which do not have a �nite charac-teristic matrix (although they do have the �nite model property). In section VI we showthat this is not a necessary feature by giving two examples of 3-valued logics: LukasiewiczL3 and RM3 { which is a maximal paraconsistent logic.One �nal note: this is for the most part a review paper, so except for section V (onmodal logics), in which most of the material is new, we omit proofs and only give referencesto the original papers. Exceptions are proofs of claims which were never proved before orproofs which are particularly short and illuminating.II. The Framework of Hypersequents { A General DescriptionDe�nition 1. A hypersequent is a structure of the form:�1 ) �1j�2 ) �2j � � � j�n ) �nwhere �i and �i (i = 1; : : : ; n) are �nite sequences of formulae (i.e.: �i ) �i is an ordinarysequent). �i ) �i (i = 1; : : : ; n) are called the components of the hypersequent. If for alli �i consists of a single formula the hypersequent is called single-conclusioned .We shall use G and H as variables for (possibly empty) hypersequents.The standard interpretation of the \j" symbol is usually disjunctive. Intuitively ahypersequent is true in a certain state i� one of its components is true in that state(relative to some semantics which makes the last statement meaningful).Axioms and rules. In most hypersequential calculi, the only axioms are of the formA ) A (or even p ) p, p atomic) { exactly as in standard sequential calculi. And likein sequential calculi one needs to add axioms to deal with propositional constants (forexample: ?, �) �) in case the language contains any.Again like in ordinary sequential calculi, the rules of inference are usually divided intological rules and structural rules. The guiding idea is that the logical rules should essentially5



be identical to those used in ordinary calculi, and that the di�erence between the variouslogics should mainly be due to di�erences in their structural rules. This in general is a veryimportant principle in modern research on logics { especially substructural logics. Thusthe di�erence between classical logic, intuitionistic logic, linear logic, various Relevancelogics, BCK logic and so on are all due to di�erences in the structural rules (concerningordinary sequents) which are allowed in each. As we shall see, the richer structure ofhypersequents makes it possible to introduce new types of structural rules, and so toextend the applicability of the above principle as well as to allow greater versatility indeveloping interesting logical systems.According to the above principles the only di�erence between the rules we shall employfor the standard connectives and the usual rules, will be that in the hypersequential versionextra side components will be allowed. For example, in all the systems below the rules ofconjunction will have either the multiplicative form:GjA;B;�) �jHGjA ^ B;�) �jH G1j�1 ) �1; AjH1 G2j�2 ) �2; BjH2G1jG2j�1;�2 ) �1;�2; A ^ BjH1jH2or else the additive form:5GjA;�) �jHGjA ^ B;�) �jH GjB;�) �jHGjA ^ B;�) �jH Gj�) �; AjH Gj�) �; BjHGj�) �; A ^BjHAs usual, the two sets of rules are equivalent in the presence of the standard structuralrules (see below), but not if one of them is omitted.The standard structural rules in ordinary Gentzen-type systems are permutation,contraction, weakening and cut. In calculi of hypersequents we have two versions of the�rst three: an external version and an internal version. The external one treats componentswithin a hypersequent. The internal one treats formulae within some component. Forexample, the external contraction rule is:Gj�) �j�) �jHGj�) �jHwhile the internal contraction rules are:GjA;A;�) �jHGjA;�) �jH Gj�) �; A;AjHGj�) �; AjH5 The terminology is due to [Gi87]. 6



In all the examples below, all the three external structural rules and internal permutationare valid. Internal contraction and internal weakening are sometimes omitted, though(usually only one of them).As for the cut rule { it has only internal versions. The more natural and useful one isthe multiplicative version:G1j�1 ) �1; AjH1 G2jA;�2 ) �2jH2G1jG2j�1;�2 ) �1;�2jH1jH2For all the logics dealt with below we give a version in which this cut rule is admissible(i.e.: the cut-elimination theorem obtains).We have noted above that the use of hypersequents opens the door to new types ofstructural rules. One example which is characteristic to hypersequents and has turned tobe particularly useful is that of splitting rules. We are using below four rules of this type:(Sc) Gj�1;�2 ) �1;�2jHGj�1 ) �1j�2 ) �2jH (SI) Gj�;�) AjHGj�) Aj�) AjH(MS) Gj��;�0 ) �0;��jHGj��) ��j�0 ) �0jH (ES) Gj�1;�2 ) �1;�2jHGj�1 ) �1j�0;�2 ) �2;�0jH(Sc) is the basic form of splitting. (SI) is its single-conclusioned (or \intuitionistic") ver-sion. We shall see that LC, for example, is obtained from intuitionistic logic by adding thisrule to it. (MS) is the modalized version of the rule. Here only modalized formulae (thosewhich begin with either � or } 6) are allowed to be split from a given component. Thislimitation is close in spirit to the limitation of the standard structural rules to modalized(or \exponential") formulae in Linear Logic. We shall see that S5 is obtained from S4 (oreven just T ) by adding to it this version of splitting. Finally, (ES) is an extended form ofsplitting which is useful in logics which do not permit the usual internal weakening, butdo allow it partially in a combination with splitting.Other types of rules which are useful might be called \shu�ing" rules. Here twocomponents of di�erent premises are shu�ed and then split in a certain way to produce6 For simplicity, � is mentioned in the formulation above, but this is not a necessary limitation.7



two or more components of the conclusion. Two examples which are used below are:(communication) G1j�1 ) A1jH1 G2j�2 ) A2jH2G1jG2j�1 ) A2j�2 ) A1jH1jH2(mixing) G1j�1;�2;�3 ) �1;�2;�3jH1 G2j�01;�02;�03 ) �01;�02;�03jH2G1jG2j�1;�01 ) �1;�02j�2;�02 ) �1;�02j�3;�03 ) �3;�03jH1jH2A �nal remark: as was noted already in the introduction, almost all the rules abovetreat exactly one component in each premise. Hence most of the time activity in onecomponent is completely independent of the activity in another, and rules can frequently beapplied concurrently. The only rule (among those which are described above or used below)which brings moments of synchronization into proofs is external contraction. This ruleshould therefore be very important in a use of a hypersequential calculus as a computationalmodel. This rule is also the one that causes most trouble in the proofs of cut-elimination,and its presence is the explanation why in hypersequential calculi cut-elimination usuallydoes not imply the Craig interpolation theorem.III. Intermediate LogicsIII.1 LC: Parallelism in Action.III.1.1 General Background.In [Go33] G�odel introduced a sequence fGng of n-valued logics, as well as an in�nite-valued matrix G! in which all the Gns can be embedded. He used these matrices to showsome important properties of intuitionistic logic. The logic of G! was later axiomatizedby Dummet in [Du59] and is known since then as Dummet's LC. It probably is the mostimportant intermediate logic, one that turns up in several places, like the provability logicof Heyting's Arithmetics ([Vi82]) and relevance logic ([DM71]).Semantically LC corresponds to linearly ordered Kripke structures. It also corre-sponds of course to G!, which is the matrix hN [ f!g;�;!;:;_;^i where � is the usualorder on N extended by a maximal element !, a ! b is ! if a � b and b otherwise,:a is simply a ! 0, and ^ and _ are, respectively, the min and max operations onhN [ f!g;�i. The consequence relation `LC is de�ned as follows: A1; : : : ; An `LC B i�8



minfv(A1); : : : ; v(An)g � v(B) for every v in G!.7 This is equivalent ([Av91a, p.236]) totaking ! as the only designated element and de�ning: A1; : : : ; An `LC B i� for every v inG! either v(B) = ! or v(Ai) 6= ! for some 1 � i � n.A Hilbert-type axiomatization for LC can be obtained from intuitionistic logic byadding to it the axiom (A ! B) _ (B ! A) ([Du59]). A cut-free formulation was �rstgiven by Sonobo in [So75]. His system has, however, the serious drawback of using a rulewith arbitrary number of premises, all of which contain formulae which are essential forthe inference (strictly speaking, this is an in�nite set of rules).A cut-free formulation of LC which uses hypersequents and does not have the abovedrawback has been given in [Av91a]. Like intuitionistic logic, it uses single-conclusionedhypersequents.III.1.2 The System GLCGLCGLC.Axioms. As in intuitionistic logic.Rules. (1) The standard external rules and the standard single-conclusioned internalrules.(2) The hypersequential version of the intuitionistic logical rules.(3) The intuitionistic splitting rule and the communication rule of the previous section:(SI) Gj�;�) AjHGj�) Aj�) AjH (Com) G1j�1 ) A1jH1 G2j�2 ) A2jH2G1jG2j�1 ) A2j�2 ) A1jH1jH2An example of a proof.(Com)A) A B ) BA) BjB ) A) A! BjB ) A) (A! B) _ (B ! A)jB ) A) (A! B) _ (B ! A)j ) B ! A) (A! B) _ (B ! A)j ) (A! B) _ (B ! A)) (A! B) _ (B ! A)7 As usual, in case n = 0 the \minimal element" is taken to be !.9



III.1.3 Notes. (1) In the previous section we have used a slightly di�erent versionof (Com), in which G1 = G2 and H1 = H2. Obviously, the two versions are equivalentbecause of the external structural rules.(2) In the above example of a proof the work on the two components (before theyare merged into one by external contraction at the last line) can be done completely inparallel. The order chosen above (�rst working on the left component, and after �nishingwith it working with the other) is completely arbitrary. This situation is typical.(3) The name \communication rule" is due to the intuition that if we take a hyperse-quent as representing a multiprocess then the rule corresponds to a communication, or anexchange of information between two such multiprocesses.(4) The two extra rules of LC (SI and Com) can be replaced by a single rule, thatmay take either of the following forms:Gj�1;�2 ) AjH Gj�1;�2 ) BjHGj�1 ) Aj�2 ) BjH Gj�1;�1 ) AjH Gj�2;�2 ) BjHGj�1;�2 ) Aj�1;�2 ) BjH(The second rule is what was originally used in [Av91a] and called there the communicationrule, the �rst is a simpli�cation suggested by Mints). The two forms are obviously equiva-lent, since the �rst can be derived from the second using internal contractions, while the sec-ond can be derived from the �rst using internal weakenings. Obviously, splitting can be de-rived from the �rst version by taking A = B and using external contraction, while the com-munication rule is derivable from it with the help of internal weakening. Finally, the �rstversion is derivable in GLC as follows: �rst, split Gj�1;�2 ) AjH and Gj�1;�2 ) BjH toGj�1 ) Aj�2 ) AjH and Gj�1 ) Bj�2 ) BjH respectively. Apply now communicationto these two hypersequents to get Gj�1 ) AjGj�2 ) Bj�1 ) AjHj�2 ) BjH. Finish byexternal permutations and contractions.III.1.4. Semantics and Main Results. Let the interpretation of a sequentA1; A2; : : : ; An ) B be A1 ! (A2 ! � � � ! (An ! B) � � �). The interpretation of ahypersequent �1 ) �1j � � � j�n ) �n is '�1)�1 _ � � � _ '�n)�n , where for each i '�i)�iis the interpretation of �i ) �i.The two main theorems concerning GLC are:10



Theorem 1. The cut elimination theorem obtains for GLC.Theorem 2. A hypersequent is provable in GLC i� its interpretation is valid in G! (i�it is provable in Dummet's system LC).The proofs of both theorems can be found in [Av91a]. We note that the second easilyfollows from the �rst if we use Dummet's completeness theorem, but it is possible to givea direct proof. The proof of cut-elimination is not that easy. As in all hypersequentialcalculi, the main obstacle is the presence of external contraction. Still, in the case of GLCthe proof is not as complicated as in the case of RM which is described in the next section.III.2. LCWLCWLCW : The Destructive Power of Conjunction.III.2.1. Background. The hypersequential system for LC has two special rules. Anatural question that the use of the hypersequential framework leads to now is: whatsystem do we obtain if we use only the �rst of them (the splitting rule, which seems to bethe most typical hypersequential rule)? The answer is somewhat surprising:Theorem 1. The system which is obtained from GLC by omitting the communicationrule is equivalent to GLC, but the cut-elimination theorem fails for it.Proof: We can derive the communication rules in the resulting system with the help ofcuts as follows:(Cuts) A2 ) A2A1 ^ A2 ) A2 (SI) Gj�1 ) A1jH Gj�2 ) A2jHGj�1;�2 ) A1 ^A2jHGj�1 ) A1 ^A2j�2 ) A1 ^A2jH A1 ) A1A1 ^A2 ) A1Gj�1 ) A2j�2 ) A1jH(in the description of this proof we did the two cuts on the same line, since they can bedone in parallel. From now on we shall use such descriptions frequently).To see that without communication we lose cut-elimination we note that in the systemwithout it, any hypersequent which consists only of atomic formula is provable withoutcuts only if one of its components is of the from � ) p where p 2 � (easy). Hencep) q j q ) p, which is valid in GLC, cannot have a cut-free proof. �So is the communication rule needed only to get cut elimination? Not really. In itsderivation above conjunction and its rules have a crucial role. It turns out that without11



conjunction the situation is quite di�erent. First, the communication rule is not derivableany more. Second, we do have cut elimination.III.2.2. The System GLCWGLCWGLCW .Axioms. As in the intuitionistic logic.Rules. (i) The standard external and single-conclusioned internal structural rules.(ii) The hypersequential version of the intuitionistic rules for!;_ and : (The propo-sitional constants >;? are optional).(iii) Intuitionistic splitting (SI)An Example of a Proof. (SI) A) A B ) BA;A! B ) BA) BjA! B ) B) A! Bj ) (A! B)! B) (A! B) _ ((A! B)! B)j ) (A! B) _ ((A! B)! B)) (A! B) _ ((A! B)! B)Theorem 2.1) The cut-elimination theorem obtains for GLCW .2) GLCW is strictly weaker than the corresponding fragment of GLC.The proof of cut-elimination can be found in [Av91a]. The second part follows fromthe �rst exactly as in the proof of theorem 1.Why is conjunction the problematic connective? Well, here it is because unlike theintroduction rules on the r.h.s of the other connectives (which have all exactly one premise),() ^) has two premises. This blocks the proof of cut-elimination for GLCW (see [Av91a]for details). It should be emphasized, though, that this is not the only known case in whichthe addition of conjunction is unconservative. In relevance logic, for example, the additionof a connective ^ for which A^B! A, A^B! B and A! (B ! A^B) are all valid haseven more catastrophic consequences. Thus in R! (the implicational fragment of R) thisaddition gives the f!;^g fragment of intuitionistic logic. In R�! (the purely multiplicativefragment of R) it simply gives full classical logic. The moral is that conjunction is far from12



being a simple, \innocent" connective. The more general conclusion is that one should becareful with the addition of connectives { even the most standard ones.III.2.3 Semantics. Returning to GLCW , one may ask whether it too corresponds tosome nice semantics. The answer is positive. It corresponds to upper semi-lattices with agreatest element (!) and a smallest element (0). The de�nitions of ! and : are exactlyas in G!, while _ corresponds here to the operator of sup (rather then to max, whichdoes not always exist). If we limit ourselves to the purely implicational fragment then wecan use the larger class of posets with a greatest element: For negation we also need theexistence of 0.Theorem 3. (1) `GLCW G i� for every valuation v in a structure as above G has acomponent �) B such that v(B) = ! or v(A) � v(B) for some A 2 �.(2) `GLCW G i� for every v as above G has a component � ) B such that v(B) = ! orv(A) 6= ! for some A 2 �.For proofs see again [Av91a]. It should be noted that the two characterizations holdfor the full language of GLCW as well as for its various fragments relative to their broadersemantics.For the full language (with _) we also have the following characterization:Theorem 4. `GLCW G i� 'G is valid, where 'G is the translation of ' as de�ned in thecase of LC.Proof: It is easy to see that if G is provable then so is) 'G, since) 'G can be derivedfrom G. Hence if `GLCW G then 'G is valid, by theorem 3. For the converse, assume'G is valid. By theorem 3 ) 'G is provable. By de�nition of 'G and the easy fact thatHj ) A1 ! (A2 ! � � � ! (A2 ! B) : : :) is provable i� HjA1; : : : ; An ) B is provable, allwe need to show is that if `) A1_A2_� � �_Ak then `) A1j ) A2j � � � j ) Ak. So assumethat ) A1j ) A2j � � � j ) Ak is not provable. Then there exists an upper semi-lattice M(with 0 and !) and a valuation v inM s.t. v(Ai) 6= ! for all 1 � i � k. ConstructM 0 fromM by adding a new element !0 so that !0 < ! but a � !0 for all a 6= !. De�ne v0 inM 0 byv0(p) = v(p). By induction on the complexity of A prove that v0(A) = v(A) if v(A) 6= !,13



v0(A) 2 f!;!0g if v(A) = !. Since v(Ai) 6= ! for all i, v0(Ai) = v(Ai) � !0 for all i, andso v(A1 _ A2 _ � � � _ An) � !0, and A1 _ � � � _ An is not valid. Hence ) A1 _ � � � _ An isnot provable in this case. �III.2.4 Hilbert-Type Formulation. A corresponding Hilbert type system LCW canbe obtained by adding to intuitionistic logic the axiom (A! B)_ ((A ! B)! B)) whichwe have proved above, or (W ) : ((A ! B) ! C)! ((((A ! B)! B)! C)! C) in thefragments without disjunction. The exact connection is the following:Theorem 5. (1) A1; : : : ; An `LCW B i� the sequent A1; : : : ; An ) B is provable inGLCW (this is true also for the fragments without _)(2) `GLCW G i� `LCW 'G.The theorem follows easily from theorems 3,4 and the soundness and completenesstheorem for LCW which is proved in [Av91a].We have here a good opportunity to correct a mistake from [Av91a]. It is stated there(p.139) that G1; : : : ; Gn `GLCW G (using cuts) i� 'G1; : : : ; 'Gn `LCW 'G. This is true ifn = 0 (theorem 5), and a corresponding theorem does obtain for LC. Here, however, if wetake G1 = ) A _ B, G = ) Aj ) B then 'G1 = 'G but it is easy to construct a modelof ) A _B which is not a model of ) Aj ) B.8I.2.5 Historical Notes. The fact that by adding to the implicational intuitionisticlogic the axiom (W ) above we get a system which corresponds to posets with a greatestelement (with ! de�ned as above) was �rst shown in [Bu64]. The fact that by addingconjunction to this system we get the full implication-conjunction fragment of LC (andso this addition is not conservative) was �rst shown in [Pr64].9 These two facts wererediscovered in [Av91a]. I believe that the failure of the proof of cut-elimination in GLCWwhen the rules for conjunction are added provides the deep explanation why the additionof conjunction to LCW is not conservative (something which is di�cult to understandotherwise).8 Note, however, that ) Aj ) B is provable without assumptions whenever ) A _ B is, bytheorem 4 and its proof.9 I am indebted to Kosta Do�sen for bringing these two papers to my attention.14



IV. Substructural LogicsThe name \substructural logics" is used nowadays for logics which are obtained fromclassical logic by deleting some of the standard structural rules. The main examples arelinear logic, relevance logics and BCK logic. The term is not precisely de�ned, in fact.Thus we shall see in section VI that Lukasiewicz 3-valued logic should also be called asubstructural logic, since the contraction rule is not valid there. In this section we shalltreat, however, examples which are more \standard", since they belong (or are stronglyrelated to) the \relevance" family.IV.1. RMRMRM : A Constructive Proof of the Disjunctive Syllogism.IV.1.1. General Background. The most characteristic feature of relevance logics(see [AB75], [Du84], [AB92]) is the rejection of the weakening rule. Thus, the purelymultiplicative (i.e. the f:;!g fragment) of R is obtained from the corresponding fragmentof classical logic in this way.10 R itself is obtained by adding also ^ and _ in their additiveversion, and a corresponding distribution axiom. The last is the source of many troubles forR. With it no cut-free Gentzen-type formulation is known, and the system is undecidable([Ur84]). The same problems exist in most other major systems created by Anderson &Belnap's relevantist school.11 There is one exception though: the Dunn-McCall systemRM . This system is by far the best understood among the systems of this school: it hasbeen proved by Meyer to be decidable and to have a nice, simple semantics (which wedescribe below). Still, no corresponding cut-free formulation was known for a long time,although the existence of one should have been expected because of these nice properties.Such a formulation was �nally given in [Av87] using hypersequents.RM is obtained fromR by adding to it the \mingle" axiom A! (A! A). This axiomis equivalent to (A ! B) ! (A ! A ! B), and its validity is equivalent to that of theconverse of contraction in Gentzen-type systems. The idea (at least on the multiplicativelevel) is that assumptions in deductions come in sets rather than in sequences or multisets(as the multiplicative fragments of linear logic and of R suggest).10 This was �rst discovered by Kripke [(Kr59b]).11 They all are usually presented in a Hilbert-type form. See [AB75], [Du84].15



Semantically, RM was shown by Meyer to correspond to Sugihara matrix Sz. Szconsists of the integers, equipped with the following operations::a = �aa _ b = max(a; b)a ^ b = min(a; b)a! b = �max(jaj; jbj) a � b�max(jaj; jbj) a > bMeyer's main result is that `RM A i� v(A) � 0 for every valuation v in Sz. Anotherinteresting result that deserves mentioning here is due to Dunn ([Du70]): RM does nothave a �nite characteristic matrix, but every proper extension of it in its language does(this is known as \the Scrogg's property").IV.1.2. The System GRMGRMGRM .Axioms. A) A (and optional axioms for propositional constants).Rules. (1) The standard external structural rules.(2) The standard internal structural rules, except weakening (the converse of contrac-tion is derivable, though).(3) The hypersequential versions of the multiplicative rules for : and ! and theadditive rules for _ and ^.(4) The following Mingle rule (M) and splitting rule (Sc):(M) Gj�1 ) �1jH Gj�2 ) �2jHGj�1;�2 ) �1;�2jH (Sc) Gj�1;�2 ) �1;�2jHGj�1 ) �1j�2 ) �2jH :Note. The mingle rule (which is called \mix" in [Gi87]) is essentially a sequentialstructural rule. Indeed, if we take the sequential versions of the rules above (except (Sc),of course) we get a cut-free system for RM without the distribution axiom.16



An Example of a Proof.(M) B ) B C ) C(Sc) B;C ) B;CC ) C B ) CjC ) B B ) BA) AA ^ (B _ C)) A B _ C ) CjB _ C ) BA ^ (B _ C)) CjA ^ (B _ C)) B A) AA ^ (B _ C)) AA ^ (B _ C)) A ^ CjA ^ (B _ C)) A ^BA ^ (B _ C)) (A ^B) _ (A ^ C)jA ^ (B _ C)) (A ^ B) _ (A ^ C)A ^ (B _ C)) (A ^B) _ (A ^ C)) A ^ (B _ C)! (A ^B) _ (A ^ C)The above is a cut-free proof of the problematic distribution axiom. Note that inthe third line B ) CjC ) B is derived. The same hypersequent was derived also in thesection on LC, but using di�erent rules (from this point on it is possible to proceed toshow (B ! C) _ (C ! B) exactly as in the LC-example).IV.1.3. Main Results.Theorem 1. The cut-elimination theorem is valid for GRM .Theorem 2. Let the interpretation of a sequent A1; : : : ; Am ) B1; : : : ; Bk be:A1 + :A2 + � � �+ :Am +B1 + � � �+Bk (where A+B =Df :A! B. This connective iscommutative and associative in linear logic and its extensions). Let also the interpretation'G of a sequent G = �1 ) �1j � � � j�n ) �n be '�1)�1 _ '�2)�2 _ � � � _ '�n)�n, where'�i)�i (i = 1; : : : ; n) is the interpretation of �i ) �i. Then `GRM G i� 'G is a theoremof RM . In particular `RM A i� `GRM) A.The proof of both theorems can be found in [Av87]. The proof there of theorem 1is constructive, and quite complex. It uses a special method for constructive proofs ofcut-elimination in hypersequential calculi which is called the \history" method. Anotherplace in which an even more complex application of this method is described in detail is[Av91b]. There a cut-free hypersequential formulation of the purely relevant logic RMI of[Av90] is presented (for an easier description of this logic and its importance see [Av92]).17



IV.1.4. An Application. The admissibility of the disjunctive syllogism (if ` :Aand ` A _ B then ` B) has been considered as one of the major problems in relevancelogic. It has �rst been proved for many of the relevant systems in [MD69] and many otherproofs have been found since then (see [Du84] for more details). None of these proofs wasconstructive, though. This fact was strongly emphasized in [AB75]: \The Meyer-Dunnargument...guarantees the existence of a proof of B, but there is no guarantee that theproof of B is related in any plausible way to that of :A and A _ B". Using the abovehypersequential calculus, such a guarantee was provided for the �rst (and so far, the only)time in one of the major systems, namely: RM . There the following constructive proof ofthe disjunctive syllogism is given.Theorem 3. If `RM :A and `RM A _B then `RM B.Proof: The assumption implies by theorem 2, that A) and) Aj ) B are theorems ofGRM . Hence so is also) j ) B, by theorem 1. It is easy however to show constructively(using theorem 1), that if `GRM) jG then `GRM G. It follows that `GRM) B and so`RM B.IV.2. SRMISRMISRMI: The Di�erence Between Theoremhood and Consequence.IV.2.1. General Background.The multiplicative fragment LLm of Linear Logic ([Gi87]) consists of the standardaxioms and rules for the multiplicative connectives (: and! su�ce 12). In addition, thereis only one structural rule: permutation. This means that both sides of a sequent can betreated as multisets. In Rm, the multiplicative fragment of R, contraction is added, butthe two sides of a sequent are still only multisets. In order to be able to treat them as setsalso the converse of contraction should be added. By doing so we get the system RMIm.1312 We don't include here the \multiplicative constants" of [Gi87] in LLm, but is is possible toinclude the \additive" ones.13 Recall that this precisely has been the idea that led from R to RM . Indeed, in its standardHilbert-type formulation RMIm consists of the purely multiplicative axioms and rule of RM . Itwas shown, however, in [Pa72] (see also [AB75, p. 148]) that RM is not a conservative extension ofRMIm . We note also that in [Av84] RMIm was called RMI�!.18



RMIm was studied in [Av84] and shown there to admit cut-elimination and to havea simple, nice semantic. It turned out that `RMIm ' if v(') 6=? for every valuation in thefollowing structure A!:Truth Values. f>;?; I1; I2; I3; : : : ; g. All elements except ? are designated.Operations. (i) :> =?, : ?= >, :Ij = Ij (1 � j <1).(ii)a! b : (> a =? or b = >Ij a = b = Ij? otherwise .Other important properties of RMIm are the variable-sharing property which is char-acteristic to relevance logics (` A ! B only if A and B share an atomic variable. Notethat RM lacks this property) and Scrogg's property: it has no �nite characteristic matrix,but every proper extension in its language does (in fact, a submatrix of A! which consistsof f>;?; I1; : : : ; Ing for some n).It seems, accordingly, that we have just described a simple structure with a cor-responding simple, cut-free standard Gentzen-type system (called GRMIm below). Sowhat else can be said and why is another, more complicated hypersequential systemneeded (as the fact that this example is included here suggests)? The answer is thatthe above correspondence between A! and RMIm is only a weak one. It is true that`RMIm A (or `GRMIm) A) i� j=A! A. It is not true that B1; : : : ; Bn `RMIm A (or) B1; : : : ;) Bn `GRMIm) A) i� B1; : : : ; Bn j=A! A. For example :(p ! q) j=A! p,but :(p ! q) 6`RMIm p. In [Av94] it is shown that in order to get a system which isstrongly complete relative to A! one has to add to RMIm the rules :(A ! B)=A and:(A! B)=:B (just one of them su�ces, in fact. 14) The resulting system is called thereSRMI. It has the same logical theorems as RMIm, but a stronger consequence relation.It is in order to have a cut-free Gentzen-type system which corresponds to `SRMI(= j=A!) that we need to use a hypersequential calculus.IV.2.2. The System GSRMIGSRMIGSRMI and its Main Properties(I) Axioms: A) A.14 In [Av94] the somewhat more intuitive form A
B=A is used, where A
B = :(A! :B).19



(II) The standard external structural rules.(III) The hypersequential versions of internal permutation, contraction and its converseand cut (but not weakening!).(IV) The standard hypersequential versions of the multiplicative rules for : and !.(V) The extended splitting rule (see section II):(ES) Gj�1;�2 ) �1;�2jHGj�1 ) �1j�0;�2 ) �2;�0jHAn Example of a Proof. (ES) A) AA) B;Aj ) A) (A! B); Aj ) A:(A! B)) Aj ) ANote. Using a cut, this example shows that ) :(A! B) `GSRMI) A.Theorem 1. The cut-elimination theorem obtains for GSRMI.The proof of this theorem and of all the results mentioned below can be found in[Av94].Theorem 2. �) � is provable in classical logic i� �) �j ) is provable in GSRMI.Theorem 3. �) � is provable in GRMIm i� it is provable in GSRMI. In other words:if on ordinary sequent is provable in the hypersequential calculus GSRMI then it canbe proved in its purely sequential fragment, without a need for a detour through properhypersequents.The proof of the last result in [Av94] is not constructive, and uses semantic considera-tions. No method is given of transferring a given hypersequential proof of a sequent into apurely sequential one. It is di�cult, in fact, to imagine what such a method can look like.The reason is that an example is given in [Av94] of a sequent � ) A which has a hyper-sequential proof which belongs to the \intuitionistic" fragment (i.e. all the hypersequentsused are single-conclusioned), but every possible purely sequential proof should contain asequent with more than one formula on the r.h.s.20



IV.2.3. The Semantics and Consequence Relation.The characterizations of the consequence relation j=A! which GSRMI provides aresummarized in the next theorem. It is instructive to compare its content with the exampleabove and the note that follows it.Theorem 4. (1) � j=A! B i� there exits �1; : : : ;�k � � such that�1 ) Bj�2 ) Bj � � � j�n ) B is provable (without cuts) in GSRMI.(2) � j=A! B i� �) Bj ) B is provable (without cuts) in GSRMI.(3) � j=A! B i� ) B can be derived (with cuts!) in GSRMI from () A1); : : : ; () An),where � = A1; : : : ; An.The system GSRMI can in fact be used to show more concerning A!:Theorem 5. �1 ) �1j � � � j�n ) �n is provable in GSRMI i� for every valuation v inA! there exists 1 � i � n such that v('�i)�i) 6=? (where '�i)�i is the translation of�i ) �i into the language, as given in the previous subsection).Corollary. GSRMI is decidable.Note. We have not given above a translation of a full hypersequent into the language.Such a translation exists, though. It is possible to de�ne in the language a connective _so that v(A1 _ � � � _An) 6=? i� v(Ai) 6=? for some i. In fact, SRMIm and (GSRMI) hasthe following interesting stronger property.Theorem 6. There is a strong translation of positive classical logic into SRMIm, whereby \strong" we mean that the interpretation preserves the consequence relation (not justthe theorems) of classical logic, and the classical connectives are interpreted by de�nableconnectives of the language. If we add to the language a constant ? (corresponding toGirard's 0) with the axiom ?! A (?;�) � in GSRMI) then all of the above theorems1-5 remain valid, but now full classical logic can be strongly translated into the resultingsystem. 21



Note. No such translations are known for any other substructural logic (including linearlogic and the standard relevance logics).One more property of j=A! (and the corresponding formal systems) which deservesmentioning here is the fact that it is paraconsistent : :p; p 6j=A! q when p and q are atomic.V. Modal LogicV.1. S5: The Use of Modalized Structural Rules.V.1.1. General Background.Most of the important systems in propositional modal logic (like K;K4; T; S4 and theprovability logics GL and Grz) have ordinary, cut-free Gentzen-type formulations. Thesequential system for S4, for example, is obtained from that of classical logic by adding toit the following two rules for � (for simplicity we deal only with �, taking } as a de�nableconnective): (�)) �; A) ��;�A) � () �) ��) A��) �A(�� is a sequence of formulae which begin with �. If � = B1; : : : ; Bk then �� =�B1; : : : ;�Bk).There is one very important modal system for which no such cut-free system is known:S5. In its usual formulation the () �) rule of S4 is strengthened to: ��)A;����)�A;��. It iseasy to see, however, that p) �:�:p is derivable in this system using a cut on �:p, butit has no cut-free proof.15The problem of providing a cut-free formulation for S5 can be a solved with the helpof hypersequents. In a sense, the idea goes back at least to [Kr59a], where a semantictableaux for S5 is presented. This tableaux system can easily be presented in the formof a Gentzen-type calculus (see, e.g. [Mi74] and [Mi92]), which in turn can be viewed asa hypersequential calculus. Following Kripke, Mints' calculus uses formulae labeled withworlds, and one of these worlds is designated. The hypersequential form is therefore onlyimplicit here. It is made explicit in [Po83], where hypersequents and nothing beyond (like15 What can be shown is that only analytic cuts are needed here. This means: only cuts onsubformulae of the proved sequent. 22



a \designated" component) are used for the �rst time. Nevertheless, it is not di�cult tosee that the systems of Mints and Pottinger are essentially equivalent.We present now our version of a hypersequential calculus for S5, which is both simpler(at least in our opinion) and in line with the other systems which are described in thispaper (this is important if we seek unity and a useful but general framework).V.1.2. The System GS5GS5GS5.(I) Axioms: A) A.(II) The standard external and internal structural rules (including cut).(III) The hypersequential version of the rules of S4 (or just T ).(IV) The modalized splitting rule(MS) Gj��1;�2 ) ��1;�2jHGj��1 ) ��1j�2 ) �2jHAs noted in section II, (MS) is a modalized version of the splitting structural rule,which follows the spirit of the exponential versions of the structural rules in LinearLogic.An Example of a Proof. (MS) p) pp;:p)p;�:p)p) j�:p)p) j ) :�:pp) j ) �:�:pp) �:�:pjp) �:�:pp) �:�:pNotes. (1) In the presence of (MS) the () �) can be strengthened to the usual one ofS5: Gj��)��;AjHGj��)��;�AjH . Here is the derivation:(MS)Gj��) ��; AjHGj��) Aj ) ��jHGj��) �Aj ) ��jHGj��) ��;�Aj��) ��;�AjHGj��) ��;�A23



By the same token, a much weakened version, Gj)AjHGj)�AjH , su�ces for getting the full powerof () �): Gj��) AjHGj��) j ) AjHGj��) j ) �AjHGj��) �Aj��) �AjHGj��) �AjH(2) Pottinger's main rule in [Po83] was basically a combination of (� )) and thefollowing rule: 16 Gj�A;�1 ) �1j�2 ) �2jHGj�1 ) �1j�A;�2 ) �2jH :This rule can be derived in GS5 as follows:(MS) Gj�A;�1 ) �1j�2 ) �2jHCj�1 ) �1j�A) j�2 ) �2jHCj�1 ) �1j�A;�2 ) �2j�A;�2 ) �2jHGj�1 ) �1j�A;�2 ) �2jHThe equivalence of S5 and GS5 is established by the next de�nition and the theoremthat follows it.De�nition. The translation of the hypersequent �1 ) �1j�2 ) �2j � � � j�n ) �n isthe sentence �'�1)�1 _ �'�2)�2_� � �_�'�n)�n , where '�)� is the standard classicaltranslation of �) � into a sentence.Theorem 1. `GS5 G i� `S5 'G.Proof: Let G = �1 ) �1j � � � j�n ) �n. Suppose `S5 'G. Then) �'�1)�1 ;�'�2)�2,�'�n)�n is derivable in the standard ordinary sequential formulation of S5 (describedat the beginning of the subsection), and so also in GS5 (which extends that calculus).Applying (ES) we get that `GS5) �'�1)�1j ) �'�2)�2j � � � j ) �'�n)�n. But16 In Pottinger's system the standard external and internal structural rules (except cut) are builtinto the axioms and rules. As a result, his form of the rule is a little bit more complicated.24



`GS5 �') '. Hence (using cuts) `GS5) '�1)�1 j � � � j ) '�n)�n. Since '�)�;�) �is a tautology, we get `GS5 G (using cuts again).For the converse, we prove by induction on length of proofs, that if `GS5 G then`S5 'G. The case of the axioms is trivial, while for most induction steps all we need isclassical logic and the fact that if `S5 A1 ) (A2 ! � � � ! (An ! B) � � �) then �A1 !(�A2 ! � � � ! (�An ! �B) � � �). For example, since 'A;�)� ! '�)�;:A is a classicaltautology, `S5 �'A;�)� ! �'�)�;:A. From this the induction step in the case of the() :) easily follows (For the (� )) we also need the axiom �A ! A, of course). Themore di�cult cases are () �) and (MS). In the case of () �) we may limit ourselves tothe special case described in note (1) above, and this special case is handled by the axiom�A! ��A. Finally, the (MS) case follows from the following theorems of S5 .(i) � (�A _B)! � �A _�B (ii) �(:�A _B)! �:�A _�B �The above proof relies on the fact that cut is one of the rules of GS5. We now give aconstructive proof that cut is not necessary.Theorem 2. GS5 admits cut-elimination.Proof: We prove by induction on length of proofs that ifG1j�1 ) �1; A; : : : ; Aj � � � j�n )�n; A; : : : ; AjH1 and G2jA; : : : ; A;�01 ) �01j � � � jA; : : : ; A;�0k ) �0kjH2 are provable inGS5 then:(1) `GS5 G1jG2j�1; : : : ;�n;�01; : : : ;�0k ) �1; : : : ;�n;�01; : : : ;�0kjH1jH2(2) If A = �B then `GS5 G1jG2j�1 ) �1j � � � j�n ) �nj�01 ) �01j � � � j�0k )�0kjH1jH2 (note that the hypersequent in (1) follows from that in (2) using internal weak-enings and external contractions).Some explanations are in order here. The generalization to the case in which thecut-formula appears in more than one component is needed for handling the externalcontraction rule. The need for a special treatment of the case in which the cut formulais of the form �B arises in the following situation (for brevity we omit side components25



etc.): ��;�1 ) �1; ��; �A�1 ) �1 j ��) ��;�A �A;�2 ) �2�1 ) �1 j ��;�2 ) ��;�2If we apply the induction hypothesis (1) to the two premises we get only ��;�1;�2 )��;�1;�2 and from this one cannot, in general, deduce the desired result. By applyingthe induction hypothesis (2) we can infer, in contrast, from the two premises ��;�1 )�1;��j�2 ) �2. From this follows, by (MS), �1 ) �1j�� ) ��j�2 ) �2, and fromthis the desired conclusion easily follows. Similarly in the following case:�0 ) �0;�A �A;��) B�A;��) �B��;�0 ) �0;�BAn application of the induction hypothesis (1) to the premises yields �0;��) �0; B. Onecannot apply (MS) or () �) to this component, though. An application of (2), on theother hand, gives �0 ) �0j�� ) B. From this follows �0 ) �0j�� ) �B and then��;�0 ) �0;�B.It is straightforward (though tedious) to check that the proof goes through in all cases.It should be emphasized that because of (2) one should be careful even in the basic case,when one of the premises is an axiom �A ) �A. An application of (2) to this and to(say) �A;�1;) �1j�A;�2 ) �2jG yields �A ) j�1 ) �1j�2 ) �2jG. This can, ofcourse, be derived directly from the second premise using several application of (MS) andexternal contraction. �V.1.3. Relating GS5GS5GS5 to the Semantics.In the previous subsection the equivalence of GS5 with S5 was proved constructively,using only proof-theoretical notions and methods. In this subsection we attack the sameissues from the semantic point of view, giving alternative (though less constructive) proofs.The reason is that we believe that this sheds further light on the system and the prospectof generalizing the method to other modal systems (also some may �nd the proofs hereeasier). 26



De�nition [Po83]. A hypersequent G is valid if given any Kripke model (M;v) thereexists a component of G which is valid in this model (i.e.: true in any a 2M , where �) �is true in a i� v('�)�; a) = T ).Notes. (1) Again the meaning of j is disjunctive, but there is a di�erence here betweenthis meaning and that of the comma on the r.h.s of a component. Given a 2 M , themeaning of ) A1; : : : ; An is that one of the A0s is true in a (relative to v), while themeaning of G1j � � � jGk is that one of the Gi's is valid in (M;v) (i.e. true for all a 2M).(2) The connection between the last de�nition and the translation given in the lastsubsection is obvious.Soundness Theorem. If `GS5 H then H is valid. Moreover: if G can be derived inGS5. >From H1; : : : ;Hn then G is valid in any Kripke model in which all the Hi's arevalid.Proof: Straightforward. We only note that the soundness of (MS) is due to the factthat in an S5-model (M;v) a formula of the form �A is either true in all elements of M ,or false in all them. �The completeness of GS5 and the cut-elimination theorem are proved simultaneouslyin the next theorem. Its proof was essentially given in [Kr59a] (see also [Mi92]). Since itwas not stated as such there, we give below a simpli�ed version.Theorem 3. If a hypersequent G is valid then it has a cut-free proof.Proof: Call a hypersequent H saturated if the following conditions are satis�ed.(1) If �) � is a component of G and A _B 2 � then both A and B are in �, whileif A _ B 2 � then either A 2 � or B 2 �. Similar conditions should obtain for the otherclassical connectives.(2) If � ) � is a component of G and �A 2 � then A 2 �0 for every component�0 ) �0 of G.(3) If �) � is a component of G and�A 2 � then there exists a component �0 ) �0of G such that A 2 �0.(4) � \� = ; for every component of G.27



Lemma 1. A saturated hypersequent G is not valid.Proof of Lemma 1. TakeM to consist of the components of G and let v(p;�) �) = Tif p 2 �, v(p;� ) �) = F if p 2 � (if p =2 � [� de�ne v(p) arbitrarily). It is easy to seethat v(A;� ) �) = T if A 2 �, v(A;� ) �) = F if A 2 �. Hence every component isfalse (as a sequent) in itself (taken as a world).Lemma 2. If H has no cut-free proof then there is a saturated hypersequent G that canbe derived from it using external and internal weakenings.Proof of Lemma 2. By a double induction on the complexity of a maximal formulafor which one of conditions (1)-(3) (in the de�nition of a saturated formula) is violated,and the number of such maximal formulae. If there are no such formulae then H itself issaturated since the fact that it has no cut-free proof entails condition (4).Assume there is such a maximal formula of the form A _ B which appears in thecomponent �) �. If A_B 2 � obtains H� from H by adding A and B to �. ObviouslyH� does not have a cut-free proof. If A _ B 2 � then by adding either A or B to � weobtain a hypersequent H� which also does not have a cut-free proof. In either case we canapply the induction hypothesis to H�.The cases of the other classical connectives are treated similarly.Suppose next that there is a maximal formula of the form �A. If �A 2 � for somecomponent �) �, obtainH� from H by adding to it a component �� ) A, where B 2 ��i� �B belongs to the l.h.s of some component of H. If �A 2 � add A to the left handside of all components of H. In both cases H can be derived from H� (Pottinger's ruleof note (2) of V.1.2. is very useful in showing this) and so does not have a cut-free proof.Apply now the induction hypothesis to H�.Theorem 3 follows now easily from the two lemmas and the soundness theorem. �Note. We needed to add �� in the last case to ensure that no new formula of theprevious higher complexity (or even higher) is created.28



V.2. Other Modal Systems.In [Po83] Pottinger applied the hypersequential framework also to S4 and T . Hissystem for S4 was (essentially) like ours for S5 { but without the modal splitting rule.Without it, however, the only way to create new components is through external weakeningand this does not really add anything to the power of the system. It is easy, in fact, tosee that in Pottinger's system for T and S4 a hypersequent G is provable i� one of itscomponents is provable in the usual sequential calculi and with a proof which is containedin the proof of G. The passage to hypersequents is therefore arti�cial and unnecessarythere.In Mints' approach in [Mi92] (following [Kr59]), more structure is added to that of ahypersequent. A hypersequent is not just a set of ordinary sequents, but this set comesequipped also with a relation R. The way rules of the system are applied depends on thisR. For example, external contraction of S1 and S2 might be allowed only if S1RS2 orS2RS1.17 Semantically, a hypersequent S1jS2j � � � jSk is valid i� for every model (M;R�; v)of the appropriate type and for every choice of elements I1; : : : ; Ik of M which satis�esIiR�Ij whenever SiRSj, Si is true in Ii for at least one i. This approach seems morepromising for generalization. Still, in the case of S4 and T the resulting systems can easilybe seen to be equivalent to those of Pottinger. In any case, the addition of the relationR means building the semantics into the formal systems (something that goes against thedesiderata at set forth in section II), and it takes us out of the simple hypersequentialframework dealt with in this paper.VI. 3-Valued LogicsThere is something which is common to all examples described so far: None of themhave a �nite characteristic matrix. We end therefore with two examples that show thatthe application of the hypersequential method is not limited to such logics.There exists a well-known method of systemizing (�nite) many-valued logics usingstructures that super�cially resembles hypersequents. (See e.g. [Ca91] and [Za93]. Thelatter contains extensive references to the literature on Gentzen-type calculi for many-17 This is not the way the systems are described, but they can be reformulated like this.29



valued logics.) There are crucial di�erences, though. In any hypersequential calculus thereexist hypersequents with an arbitrary number of components. In the framework we havejust mentioned, the number of components is always �xed, and depends on the logic inquestion: 3 for 3-valued logics, 4 for four-valued logic etc. Also a component is not anordinary sequent, but a sequence of formulae. The structures used are therefore straight-forward generalizations of ordinary sequents, but ordinary sequents are not a special caseof the structure used for, say, 3-valued logics.This approach is very successful in handling many-valued logics. From the point ofview which was described in the framework it has however, serious drawbacks:(1) The semantics is strongly built into the proof theory.(2) As a result, this is only a framework for �nite-valued logics, not a general frame-work.(3) The method applied, practically, to every possible �nite-valued logic. This strongadvantage is also a source of weakness: one cannot use the framework for distinguishingbetween valuable logics and those that probably are not.(4) The rules for the standard connectives are frequently complex and unnatural,and it might be di�cult to tell what makes a certain connective an \implication" or a\disjunction".Because of these drawbacks we believe that cut-free hypersequential versions, thatfollow the lines described in the introduction, are preferable whenever they exist. Asusual, we expect them to exist only in special, important cases. Now there are well-known,important 3-valued logics that have nice, cut-free standard sequential formalisms (Kleene3-valued logics and Soboci�nski 3-valued logic [So52] are two examples.) We now give twoexamples of (relatively) well-known 3-valued logics which apparently do not have suchformalisms but do have cut-free hypersequential calculi.VI.1. General Background.We assume that the 3 truth values are f>; I;?g, ordered as follows:?< I < >. In bothexamples a _ b is max(a; b), a ^ b is min(a; b), : ?= >, :> =?, :I = I. The di�erencesare with respect to the de�nition of ! and what values are taken as designated. In L3(Lukasiewicz 3-valued logic) only > is designated and a! b is > if a � b, ? if a = > and30



b =?, I otherwise. In RM3 (the 3-valued extension of RM , and the strongest logic in therelevance family) both > and I are designated, while a ! b is ? if a > b, I if a = b = I,> otherwise.It might seem that we have given a full description of L3 and RM3. This is false,since we have not de�ned yet the intended consequence relations. Suppose we simplyde�ne that � j= A if every valuation which gives designated values to all the elementsin � does the same to A. In such a case we can do with ordinary sequents { providedwe change our choice of primitive connectives (without changing the expressive power ofthe language). All we have to do is to de�ne A � B =Df B _ (A ! (A ! B)) (thisis equivalent to A ! (A ! B) in the case of L3 and to B _ (A ! B) in RM3). Thelanguage of f:;_;^;�g is equivalent, in both cases, to that of f:;_;^;!g. Indeed, inboth cases A ! B is equivalent to (A � B) ^ (:B � :A). Now it is not di�cult (see[Av91c]) to construct cut-free sequential calculi for both systems in the new language. Thecalculi are almost identical. The only di�erence is with respect to the axioms: A) A andA;:A) in \L3", A) A and) A;:A in \RM3". Obviously, if we are interested only intheoremhood of formulae this would be completely su�cient.There is a certain amount of cheating in this approach. The reason is that the conse-quence relation that is used in it does not correspond to the o�cial implication connectivesof L3 and RM3 { while these implications are the characteristic connectives of these logics.The real consequence relation which re
ects the spirit of L3 and RM3 should be de�nedas follows: A1; : : : ; An j= B i� A1 ! (A2 ! � � � ! (An ! B) � � �) is valid. Moreover, anappropriate Gentzen-type formulation should re
ect this consequence relation. In otherwords: A1; : : : ; An ) B should be provable i� A1 ! (A2 ! � � � ! (An ! B) � � �) isvalid. In order to achieve this we need to employ hypersequential calculi (�rst presentedin [Av91c]) in which not all standard internal structural rules are allowed (in this sensethey are substructural logics too, like those presented in section IV).VI.2. The System GRM3GRM3GRM3.This system can be described as the union of GRM and GSRMI of section IV:Axioms. A) A. 31



Rules.(1) The standard external structural rules.(2) The standard internal structural rules, except weakening.(3) The hypersequential versions of the multiplicative rules for : and! and the additiverules for _ and ^.(4) The mingle rule (of GRM) and the extended splitting rule (of GSRMI):(M) Gj�1 ) �1jH Gj�2 ) �2jHGj�1;�2 ) �1;�2jH (ES) Gj�1;�2 ) �1;�2jHGj�1 ) �1j�0;�2 ) �2;�0jHAn Example of a Proof.(ES)A) A) AjA) B) A _ (A! B)j ) A! B) A _ (A! B)j ) A _ (A! B)) A _ (A! B)Main Properties:(1) The cut-elimination theorem obtains.(2) `GRM3 A1; : : : ; An ) B if A1 ! (� � � ! (An ! B) � � �) is valid in the matrix forRM3. On the other hand, B follows from � in the sense that if v(A) 6=? for all A 2 �then v(B) 6=? i� `GRM3 �1 ) Bj�2 ) Bj � � � j�n ) B for some �1; : : : ;�n � �.(3) Let '�)� be a standard translation (in classical logic) of � ) � in terms of :and!. Then `GRM3 �1 ) �1j � � � j�k ! �k i� '�1)�1 _ '�2)�2 _ � � � _ '�n)�n is validin RM3.The proofs of these results are similar to those in the case of GSRMI. See [Av94] formore details.VI.3. The System GL3GL3GL3.Axioms. A) A. 32



Rules.(I) The standard external structural rules.(II) The standard internal structural rules, except contraction.(III) The same rules for the connectives as in GRM3.(IV) The mixing (MX) rule from section II:Gj�1;�2;�3 ) �1;�2;�3jH Gj�01;�02;�03 ) �01;�02;�03jHGj�1;�01 ) �1;�01j�2;�02 ) �2;�02j�3;�03 ) �3;�03jHAn Example of a Proof.A) A (MX) A) A B ) BA) A;B B ) j ) A j A) B B ) B A) A) A;A! B B ) j ) A j ) A! B B;B ! A) A(A! B)! B ) A j ) A j (A! B)! B;B ! A) A(A! B)!B;B!A) Aj(A!B)!B;B!A) Aj(A!B)!B;B!A) A(A! B)! B;B ! A) A(A!B)!B ) (B!A)!AMain Properties ([Av91c]):(1) The cut-elimination theorem obtains.(2) `GL3 A; : : : ; An ) B i� An ! (� � � ! (An ! B) � � �) is valid in L3(3) `GL3 �1 ) �1j � � � j�n ! �n i� '�1)�1 _ � � � _ '�n!�n is valid in L3, where '�)�is, again, a standard translation of �) � in terms of ! and :.References[AB75] Anderson A.R. and Belnap N.D., Entailment vol. 1, Princeton UniversityPress, Princeton, N.J., 1975.[AB92] Anderson A.R. and Belnap N.D., Entailment vol. 2, Princeton UniversityPress, Princeton, N.J., 1975. 33
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