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I. An Introduction

Until not too many years ago, all logics except classical logic (and, perhaps, intuitionis-
tic logic too) were considered to be things esoteric. Today this state of affairs seems to have
completely been changed. There is a growing interest in many types of nonclassical logics:
modal and temporal logics, substructural logics, paraconsistent logics, non-monotonic log-
ics — the list is long. The diversity of systems that have been proposed and studied is so
great that a need is felt by many researchers to try to put some order in the present logical
jungle. Thus [C191], [Ep90] and [Wo88] are three recent books in which an attempt is made
to develop a general theoretical framework for the study of logics. On the more pragmatic
side, several systems have been developed with the goal of providing a computerized logical
framework in which many different logical systems can be implemented in a uniform way.
An example is the Edinburgh LF([HHP91]).

It is clear that there is no limit to the number of logics that logicians (and non-
logicians) can produce. Logical frameworks should only be expected, therefore, to be able
to handle those that are “good” or “interesting”. But what s a “good” logic? One simple
answer might be: a logic which has applications. This answer is not satisfactory, though.
First, systems of logics are frequently introduced before they find actual applications.
Moreover: there is a tendency to choose for application exactly those that are “good”

in some sense. Second: Logic is an autonomous mathematical discipline, and as such
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should have its own independent criteria. One such criterion is the existence of simple,

illuminating semantics. This indeed is always a very good sign. A more important criterion

(in my opinion, and since logics deals above all with proofs) is the existence of a good proof

system. Such a system should make it easier to find proofs in the system, to prove results

about it, and, above all, should have the subformula property.

An important line of research in the general study of logics should, according to

the discussion above, be a search for a general proof-theoretical framework, within which

“good” proof-systems could be constructed. Such a framework should have the following

properties:

(1)

It should be able to handle a great diversity of logics of different types. We expect that
most logics which logicians have found interesting for other reasons will get good proof
systems within the framework (something that will indicate, in turn, that these logics
are really worth further investigations and use). On the other hand, the construction
of the framework might suggest new logics that should be important.

Because of the proof-theoretical nature and the expected generality, the framework
should be independent of any particular semantics. One should not be able to guess,
just from the form of the structures which are used, the intended semantics of a given
proof system (recent frameworks for many-valued logics and for modal logics violate
this principle — see below).

The structures used in the framework should be built from the formulae of the logic
and should not be too complicated (for human understanding and for computer im-
plementation). Most important — the subformula property they allow should be a real

one.l

Beyond these three basic demands, the following properties are also desirable:
The rules of inference should have a small, fixed number of premises, and their appli-
cation should have a local nature. In other words: the applicability of a rule should

depend only on the structure of the premises and not on the way they have been
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A use of “structural connectives” that can arbitrarily be nested usually violates this principle.

It seems to me that this is the weak point of Belnap’s framework of Display Logic [Be82], [AB92],

which otherwise has all the other properties.



obtained.

(5) Since there should be something common to all the various connectives, we call
“conjunction”, “disjunction”, “implication” and “negation”, the corresponding rules
should be as standard as possible. The difference between logics should be due to
some other rules, which are independent of any particular connective. Such rules are
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usually called “structural rules”.

(6) The proof systems constructed within the framework should give us better under-

standing of the corresponding logics and the difference between them.

The best example of a framework which has properties (1)-(6) above is, of course,
that of cut-free proofs in Gentzen-style systems. Indeed, with respect to (1), it is amazing
how many and extremely different logics can be captured within this framework: classical
logic, intuitionistic logic, the most important modal logics (except, perhaps, S5), relevance
logics, many-valued logics and more. On the other hand, the framework has indeed led to
new interesting logics (for example — Linear Logic [Gi8T]).

Powerful as it is, the framework of ordinary sequents is not capable of handling all
interesting logics. There are logics with nice, simple semantics and obvious interest for
which no decent, cut-free formulation seems to exist (we shall see many examples below).
It would be an exaggeration to reject them as worthless just because of this fact. Larger,
but still satisfactory frameworks should therefore be sought.> This paper is devoted to
a description, with many examples, of one particular framework of this sort: that of
hypersequents. We shall show that this framework is indeed stronger than that of ordinary
sequents, but still has properties (1)-(6) above. In addition, the following two points

concerning it should be noted:

(a) Hypersequents are finite sets (or sequences) of usual sequents. As such, they

2 This principle was put forward in [Do89]. Dosen’s paper contains a general characterization of
the basic standard connectives. A similar characterization, together with a discussion of the general
role of these connectives, which explains their universal importance (and so why they usually are
picked) can be found in [Av91d].

3 Two frameworks which were proposed and deserve mentioning here are that of higher-order
sequents ([Do85], [Du73], [AB75]) and Display Logic ([Be82], [AB92]). Both are somewhat weak, I

believe, with respect to point (3) above.



form a simple and natural generalization of the sequential framework. Obviously, every
standard, sequential calculus is also a hyperseqential calculus. There are, however, logics
(like Dummet’s LC and Lukasiewicz 3-valued logic) the treatment of which requires proper
hypersequents. It might be added here that although a hypersequent is certainly a more
complex data structure than an ordinary sequent, it is not much more complicated, and
goes in fact just one step further.?

(b) As we shall see, doing proofs within the hypersequential framework allows a high
degree of parallelism. Certain hypersequential calculi (and this admittedly is still no more
than a speculation) might provide therefore good models of parallel computations (exactly
as the sequential calculus for intuitionistic logic is recognized as a good model of sequential

computation).

The structure of the rest of this paper is as follows. In section II we give a gen-
eral description of hypersequential calculi and the way they are meant to be used. The
other sections are devoted to examples. We have tried to bring examples from different
types of logics, and also that each example will represent some new aspect of the use of
hypersequents or of logic in general. In more detail:

Section IIT is devoted to two of the most important intermediate logics: Dummet’s
LC (which corresponds to an infinite-valued matrix of Godel) and a weaker system we
call LCW. In both, the aspect of parallelism is well demonstrated. While LC' is the most
famous intermediate logic, we were led to LC'W through a natural calculus of hypersequents
for which we have discovered a very simple semantics. (As it happens this semantics and
a corresponding Hilbert-type system had in fact been known long before.)

Section IV is devoted to two substructural Logics (which belong, in fact, to the rel-
evance family). For the first, RM, the use of hypersequents makes it possible to give a
constructive proof of a crucial theorem for which only semantical, non-constructive proofs
were known before. The second example, RM1I,,, demonstrates the difference between
weak and strong completeness and between theoremhood and consequence. An ordinary

Gentzen-type system corresponds here to the first, but only a hypersequential one captures

1 Hypersequents were first introduced in [Po83], and independently in [Av87].
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the second.

Section V deals with modal logic, with S5 as the principal example. Here the impor-
tance of modalized versions of structural rules is revealed (previously this idea was used
only in Linear Logic).

All the examples in sections III-V were of logics which do not have a finite charac-
teristic matrix (although they do have the finite model property). In section VI we show
that this is not a necessary feature by giving two examples of 3-valued logics: Lukasiewicz
L3 and RM; — which is a maximal paraconsistent logic.

One final note: this is for the most part a review paper, so except for section V (on
modal logics), in which most of the material is new, we omit proofs and only give references
to the original papers. Exceptions are proofs of claims which were never proved before or

proofs which are particularly short and illuminating.
II. The Framework of Hypersequents — A General Description

Definition 1. A hypersequent is a structure of the form:
1= A= Aol |7 = A,

where 7; and A; (¢ = 1,...,n) are finite sequences of formulae (i.e.: 7; = A, is an ordinary
sequent). 7; = A; (1 =1,...,n) are called the components of the hypersequent. If for all
t A; consists of a single formula the hypersequent is called single-conclusioned.

We shall use G and H as variables for (possibly empty) hypersequents.

The standard interpretation of the “|” symbol is usually disjunctive. Intuitively a
hypersequent is true in a certain state iff one of its components is true in that state

(relative to some semantics which makes the last statement meaningful).

Axioms and rules. In most hypersequential calculi, the only axioms are of the form
A = A (or even p = p, p atomic) — exactly as in standard sequential calculi. And like
in sequential calculi one needs to add axioms to deal with propositional constants (for
example: 1, 7 = A) in case the language contains any.

Again like in ordinary sequential calculi, the rules of inference are usually divided into

logical rules and structural rules. The guiding idea is that the logical rules should essentially
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be identical to those used in ordinary calculi, and that the difference between the various
logics should mainly be due to differences in their structural rules. This in general is a very
important principle in modern research on logics — especially substructural logics. Thus
the difference between classical logic, intuitionistic logic, linear logic, various Relevance
logics, BCK logic and so on are all due to differences in the structural rules (concerning
ordinary sequents) which are allowed in each. As we shall see, the richer structure of
hypersequents makes it possible to introduce new types of structural rules, and so to
extend the applicability of the above principle as well as to allow greater versatility in
developing interesting logical systems.

According to the above principles the only difference between the rules we shall employ
for the standard connectives and the usual rules, will be that in the hypersequential version
extra side components will be allowed. For example, in all the systems below the rules of

conjunction will have either the multiplicative form:

G|A,B,? :>A|H G1|?1 :>A1,A|H1 G2|?2:>A2, B|H2
G|A/\B,? :>A|H G1|G2|?1,?2:>A1,A2,A/\B|H1|H2
or else the additive form:®
G|A,? = A|H G|B,? = A|H G|? = A A|lH G|? = A,B|H
G|ANB,? = A|H G|ANB,? = A|H G|? = AJAANB|H

As usual, the two sets of rules are equivalent in the presence of the standard structural
rules (see below), but not if one of them is omitted.

The standard structural rules in ordinary Gentzen-type systems are permutation,
contraction, weakening and cut. In calculi of hypersequents we have two versions of the
first three: an external version and an internal version. The external one treats components
within a hypersequent. The internal one treats formulae within some component. For

example, the external contraction rule is:

G|? = Al? = A|H
G|? = A|H

while the internal contraction rules are:

G|A,A,? = A|H G|? = A, A, A|H
G|A,? = A|H G|? = A, A|H

® The terminology is due to [Gi87].



In all the examples below, all the three external structural rules and internal permutation
are valid. Internal contraction and internal weakening are sometimes omitted, though
(usually only one of them).

As for the cut rule — it has only internal versions. The more natural and useful one is

the multiplicative version:

G1|?1:>A1,A|H1 G2|A,?2:>A2|H2
G1|G2|71,72 = A1, Aq|Hy |H,

For all the logics dealt with below we give a version in which this cut rule is admissible
(i.e.: the cut-elimination theorem obtains).

We have noted above that the use of hypersequents opens the door to new types of
structural rules. One example which is characteristic to hypersequents and has turned to
be particularly useful is that of splitting rules. We are using below four rules of this type:

¢ G?71 = A7, = Ay |H ! G? = A[A= AlH

G|O?,7" = A, OA|H
GO7 = OA? = A'H

G|?1,?2 = A17A2|H

(MS) G|?1 :>A1|?l,?2:>A2,AI|H

(E5)

(S.) is the basic form of splitting. (Sy) is its single-conclusioned (or “intuitionistic”) ver-
sion. We shall see that LC', for example, is obtained from intuitionistic logic by adding this
rule to it. (MS) is the modalized version of the rule. Here only modalized formulae (those
which begin with either [J or { %) are allowed to be split from a given component. This
limitation is close in spirit to the limitation of the standard structural rules to modalized
(or “exponential”) formulae in Linear Logic. We shall see that S5 is obtained from S4 (or
even just T') by adding to it this version of splitting. Finally, (ES) is an extended form of
splitting which is useful in logics which do not permit the usual internal weakening, but
do allow it partially in a combination with splitting.

Other types of rules which are useful might be called “shuffling” rules. Here two

components of different premises are shuffled and then split in a certain way to produce

6 For simplicity, [J is mentioned in the formulation above, but this is not a necessary limitation.
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two or more components of the conclusion. Two examples which are used below are:

. . G1|?1 :>A1|H1 G2|?2:>A2|H2
(communication) GG = 472 = AL H|H)
(mixing) Gi|71,72,73 = Ay, Ay, As|Hy Go|?77,75,75 = AL AL AL Hy

G1|G2|?1,?l1 = Al,Al2|?2,?l2 = Al,Al2|?3,?g = A3,A3|H1|H2

A final remark: as was noted already in the introduction, almost all the rules above
treat exactly one component in each premise. Hence most of the time activity in one
component is completely independent of the activity in another, and rules can frequently be
applied concurrently. The only rule (among those which are described above or used below)
which brings moments of synchronization into proofs is external contraction. This rule
should therefore be very important in a use of a hypersequential calculus as a computational
model. This rule is also the one that causes most trouble in the proofs of cut-elimination,
and its presence is the explanation why in hypersequential calculi cut-elimination usually

does not imply the Craig interpolation theorem.

ITI. Intermediate Logics

I11.1 LC: Parallelism in Action.

IT1.1.1 General Background.

In [Go33] Godel introduced a sequence {G,,} of n-valued logics, as well as an infinite-
valued matrix G, in which all the GG,,s can be embedded. He used these matrices to show
some important properties of intuitionistic logic. The logic of G, was later axiomatized
by Dummet in [Du59] and is known since then as Dummet’s LC. It probably is the most
important intermediate logic, one that turns up in several places, like the provability logic
of Heyting’s Arithmetics ([Vi82]) and relevance logic ([DMT1]).

Semantically LC corresponds to linearly ordered Kripke structures. It also corre-
sponds of course to G, which is the matrix (N U{w}, <, —,~,V, A) where < is the usual
order on N extended by a maximal element w, a — b is w if @ < b and b otherwise,
—a 1s simply @ — 0, and A and V are, respectively, the min and maz operations on

(N U{w}, <). The consequence relation ¢ is defined as follows: Ay,..., A, Fre B iff
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min{v(A4;),...,v(4,)} < v(B) for every v in G,.” This is equivalent ([Av9la, p.236]) to
taking w as the only designated element and defining: Ay,..., A4, Frc B iff for every v in
G, either v(B) = w or v(A4;) # w for some 1 <7 < n.

A Hilbert-type axiomatization for LC can be obtained from intuitionistic logic by
adding to it the axiom (A — B)V (B — A) ([Dud9]). A cut-free formulation was first
given by Sonobo in [So75]. His system has, however, the serious drawback of using a rule
with arbitrary number of premises, all of which contain formulae which are essential for
the inference (strictly speaking, this is an infinite set of rules).

A cut-free formulation of LC' which uses hypersequents and does not have the above
drawback has been given in [Av9la]. Like intuitionistic logic, it uses single-conclusioned

hypersequents.
I11.1.2 The System GLC.
Axioms. As in intuitionistic logic.

Rules. (1) The standard external rules and the standard single-conclusioned internal
rules.
(2) The hypersequential version of the intuitionistic logical rules.

(3) The intuitionistic splitting rule and the communication rule of the previous section:

G|?,A:>A|H G1|?1:>A1|H1 G2|?2:>A2|H2
(51 Gr A= am (Com) GG = 472 = A |,
An example of a proof.
(c )A:>A B=21B
om A= B|B=A
= A—>B|B=A
= (A—B)V(B—A)B=A
=(A—-B)V(B—A)|=B— A

=(A—-B)V(B— A
= (A— B)V

~—

|=(A—B)V(B— A)
B — A)

~

T As usual, in case n = 0 the “minimal element” is taken to be w.
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IT1.1.3 Notes. (1) In the previous section we have used a slightly different version
of (Com), in which G; = G5 and H; = Hy. Obviously, the two versions are equivalent
because of the external structural rules.

(2) In the above example of a proof the work on the two components (before they
are merged into one by external contraction at the last line) can be done completely in
parallel. The order chosen above (first working on the left component, and after finishing
with it working with the other) is completely arbitrary. This situation is typical.

(3) The name “communication rule” is due to the intuition that if we take a hyperse-
quent as representing a multiprocess then the rule corresponds to a communication, or an
exchange of information between two such multiprocesses.

(4) The two extra rules of LC (S; and Com) can be replaced by a single rule, that
may take either of the following forms:

G|?1,?2:>A|H G|?1,?2:>B|H G|?1,A1:>A|H G|?2,A2:>B|H
GI?1 = A7, = B|H Gl71.72 = AJAr, As = BIH

(The second rule is what was originally used in [Av91a] and called there the communication
rule, the first is a simplification suggested by Mints). The two forms are obviously equiva-
lent, since the first can be derived from the second using internal contractions, while the sec-
ond can be derived from the first using internal weakenings. Obviously, splitting can be de-
rived from the first version by taking A = B and using external contraction, while the com-
munication rule is derivable from it with the help of internal weakening. Finally, the first
version is derivable in GLC as follows: first, split G|?1,72 = A|H and G|?1,72 = B|H to
G|?1 = A|?2 = A|H and G|?1 = B|?3 = B|H respectively. Apply now communication
to these two hypersequents to get G|?71 = A|G|?2 = B|?1 = A|H|?2 = B|H. Finish by

external permutations and contractions.

II1.1.4. Semantics and Main Results. Let the interpretation of a sequent
A1, Ay,... A, = Bbe Ay —» (43 — -+ — (A, — B)---). The interpretation of a
hypersequent 71 = Aq|-+- |7, = Ay is or,=a, V- - Vor, =, , where for each ¢ o, a,
is the interpretation of 7; = A,.

The two main theorems concerning GLC' are:
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Theorem 1. The cut elimination theorem obtains for GLC'.

Theorem 2. A hypersequent is provable in GLC iff its interpretation is valid in G, (iff

it is provable in Dummet’s system LC').

The proofs of both theorems can be found in [Av9la]. We note that the second easily
follows from the first if we use Dummet’s completeness theorem, but it is possible to give
a direct proof. The proof of cut-elimination is not that easy. As in all hypersequential
calculi, the main obstacle is the presence of external contraction. Still, in the case of GLC

the proof is not as complicated as in the case of RM which is described in the next section.
I11.2. LCW: The Destructive Power of Conjunction.

I11.2.1. Background. The hypersequential system for LC has two special rules. A
natural question that the use of the hypersequential framework leads to now is: what
system do we obtain if we use only the first of them (the splitting rule, which seems to be

the most typical hypersequential rule)? The answer is somewhat surprising:

Theorem 1. The system which is obtained from GLC' by omitting the communication

rule is equivalent to GLC', but the cut-elimination theorem fails for it.

Proof: We can derive the communication rules in the resulting system with the help of

cuts as follows:

G|?1 = A1|H G|?2 = A2|H
Ay = Ay ( ) G|?1,?2:>A1/\A2|H A= Ay
A NAy= Ay, VG = A ANA|7, = A AN AN H Al A Ay = A

(Cuts)
G|?1 = A2|?2 = A1|H

(in the description of this proof we did the two cuts on the same line, since they can be
done in parallel. From now on we shall use such descriptions frequently).

To see that without communication we lose cut-elimination we note that in the system
without it, any hypersequent which consists only of atomic formula is provable without
cuts only if one of its components is of the from ? = p where p € ? (easy). Hence
p = q | g = p, which is valid in GLC, cannot have a cut-free proof. [

So is the communication rule needed only to get cut elimination? Not really. In its

derivation above conjunction and its rules have a crucial role. It turns out that without
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conjunction the situation is quite different. First, the communication rule is not derivable

any more. Second, we do have cut elimination.
111.2.2. The System GLCW.
Axioms. As in the intuitionistic logic.

Rules. (i) The standard external and single-conclusioned internal structural rules.
(ii) The hypersequential version of the intuitionistic rules for —,V and — (The propo-
sitional constants T, L are optional).

(iii) Intuitionistic splitting (Sy)
An Example of a Proof.

A=A B=10B
A A—-B=20B

(51) A= B|A—B=21B
= A—B|=(A—B)— B

(A= B)V((A—B) = B) = (A= B)V (A — B) — B)
= (A—-B)V((A— B)— B)

Theorem 2.
1) The cut-elimination theorem obtains for GLCW.
2) GLCW is strictly weaker than the corresponding fragment of GLC.

The proof of cut-elimination can be found in [Av9la]. The second part follows from
the first exactly as in the proof of theorem 1.

Why is conjunction the problematic connective? Well, here it is because unlike the
introduction rules on the r.h.s of the other connectives (which have all exactly one premise),
(= A) has two premises. This blocks the proof of cut-elimination for GLCW (see [Av91la]
for details). It should be emphasized, though, that this is not the only known case in which
the addition of conjunction is unconservative. In relevance logic, for example, the addition
of a connective A for which ANB — A, AANB — B and A — (B — AAB) are all valid has
even more catastrophic consequences. Thus in R_. (the implicational fragment of R) this
addition gives the {—, A} fragment of intuitionistic logic. In R~, (the purely multiplicative

fragment of R) it simply gives full classical logic. The moral is that conjunction is far from
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being a simple, “innocent” connective. The more general conclusion is that one should be

careful with the addition of connectives — even the most standard ones.

IT1.2.3 Semantics. Returning to GLCW  one may ask whether it too corresponds to
some nice semantics. The answer is positive. It corresponds to upper semi-lattices with a
greatest element (w) and a smallest element (0). The definitions of — and — are exactly
as in G, while V corresponds here to the operator of sup (rather then to max, which
does not always exist). If we limit ourselves to the purely implicational fragment then we
can use the larger class of posets with a greatest element: For negation we also need the

existence of 0.

Theorem 3. (1) Fgrew G iff for every valuation v in a structure as above G has a
component 7 = B such that v(B) = w or v(A) < v(B) for some A € 7.

(2) Farew G iff for every v as above G has a component 7 = B such that v(B) = w or
v(A) # w for some A € 7.

For proofs see again [Av9lal. It should be noted that the two characterizations hold
for the full language of GLCW as well as for its various fragments relative to their broader
semantics.

For the full language (with V) we also have the following characterization:

Theorem 4. Fgrow G iff g 1s valid, where ¢ is the translation of ¢ as defined in the

case of LC.

Proof: It is easy to see that if GG is provable then so is = ¢, since = ¢ can be derived
from G. Hence if Fgrow G then wg is valid, by theorem 3. For the converse, assume
wq 1s valid. By theorem 3 = @ is provable. By definition of ¢ and the easy fact that
Hl = A — (A — -+ = (A2 — B)...) is provable iff H|A;,..., A, = B is provable, all
we need to show is that if F= A; VA V.-V Ag then F= Ay| = As|---| = Aj. So assume
that = A;| = As|---| = Ay is not provable. Then there exists an upper semi-lattice M
(with 0 and w) and a valuation v in M s.t. v(A4;) # w for all 1 <¢ < k. Construct M' from
M by adding a new element w' so that w' < w but a < w' for all @ # w. Define v’ in M' by
v'(p) = v(p). By induction on the complexity of A prove that v'(A4) = v(A4) if v(A) # w,
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v'(A) € {w,w'} if v(A) = w. Since v(A4;) # w for all ¢, v'(A4;) = v(A4;) < W' for all ¢, and
sov(A1 VA V--- VA, <w, and Ay V-V A, is not valid. Hence = A; V---V A, is

not provable in this case. [

I11.2.4 Hilbert-Type Formulation. A corresponding Hilbert type system LCW can
be obtained by adding to intuitionistic logic the axiom (A — B)V ((A — B) — B)) which
we have proved above, or (W) :((A— B)—-C)— (((A— B)— B)— C)— C)in the

fragments without disjunction. The exact connection is the following:

Theorem 5. (1) Ay,..., A, Frocw B iff the sequent A;,..., A, = B is provable in
GLCW (this is true also for the fragments without V)
(2) Farew G iff Frow va.

The theorem follows easily from theorems 3.4 and the soundness and completeness
theorem for LCW which is proved in [Av9lal.

We have here a good opportunity to correct a mistake from [Av9la]. It is stated there
(p-139) that Gy,...,Gy, Farew G (using cuts) iff g, ..., vq, Frew ¢g. This is true if
n = 0 (theorem 5), and a corresponding theorem does obtain for LC'. Here, however, if we
take Gy = = AV B, G = = A| = B then pg, = ¢¢ but it is easy to construct a model
of = AV B which is not a model of = A| = B.®

1.2.5 Historical Notes.  The fact that by adding to the implicational intuitionistic
logic the axiom (W) above we get a system which corresponds to posets with a greatest
element (with — defined as above) was first shown in [Bu64]. The fact that by adding
conjunction to this system we get the full implication-conjunction fragment of LC (and
so this addition is not conservative) was first shown in [Pr64].” These two facts were
rediscovered in [Av9lal. I believe that the failure of the proof of cut-elimination in GLCW
when the rules for conjunction are added provides the deep explanation why the addition
of conjunction to LCW is not conservative (something which is difficult to understand

otherwise).

8 Note, however, that = A| = B is provable without assumptions whenever = A V B is, by
theorem 4 and its proof.

9 T am indebted to Kosta Dosen for bringing these two papers to my attention.
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IV. Substructural Logics

The name “substructural logics” is used nowadays for logics which are obtained from
classical logic by deleting some of the standard structural rules. The main examples are
linear logic, relevance logics and BCK logic. The term is not precisely defined, in fact.
Thus we shall see in section VI that Lukasiewicz 3-valued logic should also be called a
substructural logic, since the contraction rule is not valid there. In this section we shall
treat, however, examples which are more “standard”, since they belong (or are strongly

related to) the “relevance” family.
IV.1. RM: A Constructive Proof of the Disjunctive Syllogism.

IV.1.1. General Background.  The most characteristic feature of relevance logics
(see [ABT75], [Du84], [AB92]) is the rejection of the weakening rule. Thus, the purely
multiplicative (i.e. the {—, —} fragment) of R is obtained from the corresponding fragment
of classical logic in this way.!® R itself is obtained by adding also A and V in their additive
version, and a corresponding distribution axiom. The last is the source of many troubles for
R. With it no cut-free Gentzen-type formulation is known, and the system is undecidable
([Ur84]). The same problems exist in most other major systems created by Anderson &
Belnap’s relevantist school.!! There is one exception though: the Dunn-MecCall system
RM. This system is by far the best understood among the systems of this school: it has
been proved by Meyer to be decidable and to have a nice, simple semantics (which we
describe below). Still, no corresponding cut-free formulation was known for a long time,
although the existence of one should have been expected because of these nice properties.
Such a formulation was finally given in [Av87] using hypersequents.

RM is obtained from R by adding to it the “mingle” axiom A — (4 — A). This axiom
is equivalent to (A — B) — (A — A — B), and its validity is equivalent to that of the
converse of contraction in Gentzen-type systems. The idea (at least on the multiplicative
level) is that assumptions in deductions come in sets rather than in sequences or multisets

(as the multiplicative fragments of linear logic and of R suggest).

10" This was first discovered by Kripke [(Kr59b]).
1 They all are usually presented in a Hilbert-type form. See [ABT75], [Du84].
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Semantically, RM was shown by Meyer to correspond to Sugihara matrix S.. 5.

consists of the integers, equipped with the following operations:

—a= la
aV b= max(a,b)
a A b= min(a,b)

b max(|al, |b]) a<b
“7 77\ Lmax(lal, b)) a>b

Meyer’s main result is that Frays A iff v(A) > 0 for every valuation v in S,. Another
interesting result that deserves mentioning here is due to Dunn ([Du70]): RM does not
have a finite characteristic matrix, but every proper extension of it in its language does

(this is known as “the Scrogg’s property”).
IV.1.2. The System GRM.
Axioms. A = A (and optional axioms for propositional constants).

Rules. (1) The standard external structural rules.

(2) The standard internal structural rules, ezcept weakening (the converse of contrac-

tion is derivable, though).

(3) The hypersequential versions of the multiplicative rules for - and — and the

additive rules for V and A.

(4) The following Mingle rule (M) and splitting rule (.S,):

G|?1 = A1|H G|?2 = A2|H
G|?1,?2 = A17A2|H

G|?1,?2 = A17A2|H
G|?1 :>A1|?2 = A2|H ’

(M) (Se)

Note. The mingle rule (which is called “mix” in [Gi87]) is essentially a sequential
structural rule. Indeed, if we take the sequential versions of the rules above (except (S.),

of course) we get a cut-free system for RM without the distribution axiom.
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An Example of a Proof.

B=21B C=C
(M) B.C= B, C
(S.) .4 =b.¢
C=C B=C|C=DB B= B
A=A BvC=C|BVC=R1H A=A

ANBVC)=A ANBVC)=C|ANBVC(C)=B ANBVC)=A
AN(BVC)=ANCIANBVC)=ANAB
ANBVC)=(ANB)V(ANC)AN(BVC)= (AANB)V(ANC)
ANBVC)=(ANB)V(AANC)
= AAN(BVC)—=(AAB)V(AANC)

The above is a cut-free proof of the problematic distribution axiom. Note that in
the third line B = C|C = B is derived. The same hypersequent was derived also in the
section on LC, but using different rules (from this point on it is possible to proceed to

show (B — C) V (C — B) exactly as in the LC-example).
IV.1.3. Main Results.
Theorem 1. The cut-elimination theorem is valid for GRM.

Theorem 2. Let the interpretation of a sequent Ay,...,A, = DBy,...,Bp be
Ay +-As+ -+ A, +B1+ -+ By (where A+ B =ps ~A — B. This connective is
commutative and associative in linear logic and its extensions). Let also the interpretation
pq of a sequent G =71 = Ay|---|7, = A, beor,=a, V@r,=a, V- Vor, =a,, where
or,=na; (t =1,...,n) is the interpretation of 7; = A;. Then Fqgry G iff v is a theorem

of RM. In particular Fry A iff Fgry= A.

The proof of both theorems can be found in [Av87]. The proof there of theorem 1
is constructive, and quite complex. It uses a special method for constructive proofs of
cut-elimination in hypersequential calculi which is called the “history” method. Another
place in which an even more complex application of this method is described in detail is
[Av91b]. There a cut-free hypersequential formulation of the purely relevant logic RM I of

[Av90] is presented (for an easier description of this logic and its importance see [Av92]).
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IV.1.4. An Application. The admissibility of the disjunctive syllogism (if F —A
and - AV B then F B) has been considered as one of the major problems in relevance
logic. It has first been proved for many of the relevant systems in [MD69] and many other
proofs have been found since then (see [Du84] for more details). None of these proofs was
constructive, though. This fact was strongly emphasized in [AB75]: “The Meyer-Dunn
argument...guarantees the existence of a proof of B, but there is no guarantee that the
proof of B is related in any plausible way to that of A and AV B”. Using the above
hypersequential calculus, such a guarantee was provided for the first (and so far, the only)
time in one of the major systems, namely: RM. There the following constructive proof of

the disjunctive syllogism is given.

Theorem 3. IfFgy A andbgry AV B then by B.

Proof: The assumption implies by theorem 2, that A = and = A| = B are theorems of
GRM. Hence so is also = | = B, by theorem 1. It is easy however to show constructively
(using theorem 1), that if Fgry= |G then Fgryr G. It follows that Fgrar= B and so
Frar B.

IV.2. SRMI: The Difference Between Theoremhood and Consequence.

IV.2.1. General Background.

The multiplicative fragment LL,, of Linear Logic ([Gi87]) consists of the standard
axioms and rules for the multiplicative connectives (= and — suffice '?). In addition, there
is only one structural rule: permutation. This means that both sides of a sequent can be
treated as multisets. In R,,, the multiplicative fragment of R, contraction is added, but
the two sides of a sequent are still only multisets. In order to be able to treat them as sets

also the converse of contraction should be added. By doing so we get the system RMI,,.!3

12 We don’t include here the “multiplicative constants” of [Gi87] in LL,,, but is is possible to
include the “additive” ones.

13 Recall that this precisely has been the idea that led from R to RM. Indeed, in its standard
Hilbert-type formulation RM I, consists of the purely multiplicative axioms and rule of RM. Tt

was shown, however, in [Pa72] (see also [AB75, p. 148]) that RM is not a conservative extension of

RM1I;,. We note also that in [Av84] RM I, was called RMI~ .
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RMI,, was studied in [Av84] and shown there to admit cut-elimination and to have
a simple, nice semantic. It turned out that Frasr,, ¢ if v(p) #L for every valuation in the

following structure A,:
Truth Values. {T,1 1,15, I5,...,}. All elements except L are designated.

Operations. (i) ~T=L,-1=T,-I; =1I; (1 <j < o).

T a=1 orb=T
(ii)a—>b:{Ij a=b=1I;

1 otherwise .

Other important properties of RM I, are the variable-sharing property which is char-
acteristic to relevance logics (F A — B only if A and B share an atomic variable. Note
that RM lacks this property) and Scrogg’s property: it has no finite characteristic matrix,
but every proper extension in its language does (in fact, a submatrix of A, which consists
of {T,L,I,...,1,} for some n).

It seems, accordingly, that we have just described a simple structure with a cor-
responding simple, cut-free standard Gentzen-type system (called GRMI,, below). So
what else can be said and why is another, more complicated hypersequential system
needed (as the fact that this example is included here suggests)? The answer is that
the above correspondence between A, and RMI,, is only a weak one. It is true that
Frar, A (or Farur,= A) iff Ea, A It is not true that By,...,B, Fruyr,, A (or
= By,...,= B, Fagrur,= A) ift By,...,B, Fa, A. For example =(p — ¢) Fa, p,
but ~(p — ¢) Yrur,, p- In [Av94] it is shown that in order to get a system which is
strongly complete relative to A, one has to add to RM1I,, the rules -(A — B)/A and
—=(A — B)/=B (just one of them suffices, in fact. '*) The resulting system is called there
SRMI. It has the same logical theorems as RM1I,,, but a stronger consequence relation.

It is in order to have a cut-free Gentzen-type system which corresponds to Fspass

(= .4, ) that we need to use a hypersequential calculus.

IV.2.2. The System GSRMI and its Main Properties

(I) Axioms: A = A.

Moy, [Av94] the somewhat more intuitive form A ® B/A is used, where A ® B = —|(A — —|B).
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(IT) The standard external structural rules.

(ITIT) The hypersequential versions of internal permutation, contraction and its converse
and cut (but not weakening!).

(IV) The standard hypersequential versions of the multiplicative rules for = and —.

(V) The extended splitting rule (see section II):

G|?1,?2 = A17A2|H
G|?1 = A1|?l,?2 = AQ,A’|H

(E5)

An Example of a Proof.
) A=A

A= B A=A
= (A— B),A|= A
-(A—=B)=A|= A4

(ES

Note. Using a cut, this example shows that = ~(4A — B) Fgsrmr= A.
Theorem 1. The cut-elimination theorem obtains for GSRMI.

The prootf of this theorem and of all the results mentioned below can be found in

[AvO4].
Theorem 2. 7 = A is provable in classical logic iff 7 = A| = is provable in GSRM]I.

Theorem 3. 7 = A is provable in GRMI,, iff it is provable in GSRM 1. In other words:
if on ordinary sequent is provable in the hypersequential calculus GSRMI then it can
be proved in its purely sequential fragment, without a need for a detour through proper

hypersequents.

The proof of the last result in [Av94] is not constructive, and uses semantic considera-
tions. No method is given of transferring a given hypersequential proof of a sequent into a
purely sequential one. It is difficult, in fact, to imagine what such a method can look like.
The reason is that an example is given in [Av94] of a sequent 7 = A which has a hyper-
sequential proof which belongs to the “intuitionistic” fragment (i.e. all the hypersequents
used are single-conclusioned), but every possible purely sequential proof should contain a

sequent with more than one formula on the r.h.s.
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IV.2.3. The Semantics and Consequence Relation.

The characterizations of the consequence relation =4, which GSRMI provides are
summarized in the next theorem. It is instructive to compare its content with the example

above and the note that follows it.

Theorem 4. (1) ? |4, B iff there exits 71,...,7p < 7 such that
7?1 = B|?y = B|---|?7, = B is provable (without cuts)in GSRM]I.
(2)? Ea, Biff 7 = B| = B is provable (without cuts) in GSRMI.
(3) 7 Ea, B iff = B can be derived (with cuts!) in GSRMI from (= A1),...,(= An),

where 7 = Aq,..., A,.
The system GSRM1I can in fact be used to show more concerning A,:

Theorem 5. 7y = Ay|---|?, = A, is provable in GSRM]I iff for every valuation v in
A, there exists 1 < i < n such that v(¢r,;=na,;) #L (where ¢r,=na, is the translation of

7 = A, into the language, as given in the previous subsection).

Corollary. GSRMT is decidable.

Note. We have not given above a translation of a full hypersequent into the language.
Such a translation exists, though. It is possible to define in the language a connective V
so that v(Ay V---V A, ) #L iff v(A;) #L for some i. In fact, SRMI,, and (GSRM]I) has

the following interesting stronger property.

Theorem 6. There is a strong translation of positive classical logic into SRMI,,, where
by “strong” we mean that the interpretation preserves the consequence relation (not just
the theorems) of classical logic, and the classical connectives are interpreted by definable
connectives of the language. If we add to the language a constant L (corresponding to
Girard’s 0) with the axiom 1 — A (L,7 = A in GSRM]I) then all of the above theorems
1-5 remain valid, but now full classical logic can be strongly translated into the resulting

system.

21



Note. No such translations are known for any other substructural logic (including linear
logic and the standard relevance logics).
One more property of =4, (and the corresponding formal systems) which deserves

mentioning here is the fact that it is paraconsistent: —p,p =4, ¢ when p and ¢ are atomic.
V. Modal Logic

V.1. S5: The Use of Modalized Structural Rules.

V.1.1. General Background.

Most of the important systems in propositional modal logic (like K, K4, T, S4 and the
provability logics GL and Grz) have ordinary, cut-free Gentzen-type formulations. The
sequential system for S4, for example, is obtained from that of classical logic by adding to
it the following two rules for [J (for simplicity we deal only with [, taking ¢ as a definable

connective):
7,A= A (= O) (17 = A
7, 04A= A 07 = 04

(0?7 is a sequence of formulae which begin with 0. If ? = By,...,Bj then 07 =
OBy, ...,0By).

O=)

There is one very important modal system for which no such cut-free system is known:

Or'=A,0A It iS

S5. In its usual formulation the (= ) rule of 54 is strengthened to: FF=rigs-

easy to see, however, that p = [-[]-p is derivable in this system using a cut on [1-p, but
it has no cut-free proof.!?

The problem of providing a cut-free formulation for S5 can be a solved with the help
of hypersequents. In a sense, the idea goes back at least to [Kr59a], where a semantic
tableaux for S5 is presented. This tableaux system can easily be presented in the form
of a Gentzen-type calculus (see, e.g. [Mi74] and [Mi92]), which in turn can be viewed as
a hypersequential calculus. Following Kripke, Mints’ calculus uses formulae labeled with
worlds, and one of these worlds is designated. The hypersequential form is therefore only

implicit here. It is made explicit in [Po83], where hypersequents and nothing beyond (like

15 What can be shown is that only analytic cuts are needed here. This means: only cuts on

subformulae of the proved sequent.
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a “designated” component) are used for the first time. Nevertheless, it is not difficult to
see that the systems of Mints and Pottinger are essentially equivalent.

We present now our version of a hypersequential calculus for S5, which is both simpler
(at least in our opinion) and in line with the other systems which are described in this

paper (this is important if we seek unity and a useful but general framework).

V.1.2. The System GS5.

(I) Axioms: A = A.

) The standard external and internal structural rules (including cut).
(ITIT) The hypersequential version of the rules of S4 (or just T').

) The modalized splitting rule

G“:‘?l,?z = DA17A2|H
G071 = DAL 72 = Aol H

(M5)

As noted in section II, (MS) is a modalized version of the splitting structural rule,
which follows the spirit of the exponential versions of the structural rules in Linear

Logic.

An Example of a Proof.

p=0p
D, P =

p,U-p =
(MS) p= |U-p=

p=|=-U-p
p=|=0-0-p
p = O=-O-plp = O-0-p
p = U=C-p

Notes. (1) In the presence of (MS) the (= ) can be strengthened to the usual one of

G|Or=0A,A|H

© GOr=0A,OA[H- Here is the derivation:

(Mg)GID? = OA AJH
G|O? = A| = UOA|H
G|O? = OA| = OA|H
G|O? = OA, 04|07 = OA,TA|H
G|O? = OA, A
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By the same token, a much weakened version, %, suffices for getting the full power

of (= 0):
G|O? = A|H

GO? = | = A|H

GIO? = | = OA|H

G|0? = OA|D? = DA|H
G|O? = OA|H

(2) Pottinger’s main rule in [Po83] was basically a combination of (LI =) and the

following rule: 16
GIOA, 7y = Ay|?79 = As|H
G|?1 = A1|DA,?2 = A2|H '

This rule can be derived in GS5 as follows:

(MS) GIEA 21 = Aif?s = Ao|H
Cl?7y = A|UA = |72 = Aq|H

C|71 = A|OA, 75 = Ay|0A, 75 = Ay|H
G|?71 = A|OA, 7, = Ay|H

The equivalence of 55 and GS5 is established by the next definition and the theorem
that follows it.

Definition.  The translation of the hypersequent 71 = Ay|?73 = Aqg| -+ |7, = A, is
the sentence Upr, A, V Upr,=n, V.- - VUpr =, where or— a is the standard classical

translation of 7 = A into a sentence.

Theorem 1. Fggs G iff g5 .

Proof: LetG =7 = Ay|---|?, = A,. Suppose g5 ¢G. Then = Uer,=a,, Ter,=a,,
Oer, =, is derivable in the standard ordinary sequential formulation of S5 (described
at the beginning of the subsection), and so also in GS5 (which extends that calculus).
Applying (ES) we get that Fgss= Upr,=a,| = Oer,=a,| -] = Uer,=a,. But

16 Tn Pottinger’s system the standard external and internal structural rules (except cut) are built

into the axioms and rules. As a result, his form of the rule is a little bit more complicated.
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Fass e = ¢. Hence (using cuts) Fass= ¢r,=a,| | = ¢1r,=A,. Since or=na,? = A
is a tautology, we get Fggs G (using cuts again).

For the converse, we prove by induction on length of proofs, that if Fggs G then
Fss @@. The case of the axioms is trivial, while for most induction steps all we need is
classical logic and the fact that if Fg5 41 = (42 — -+ — (A, — B)---) then 4, —
(0A; — -+ — (A, — OB)---). For example, since ¢4 r=a — ¢r=a, -4 is a classical
tautology, ks, Upar=a — Upr=a —-a. From this the induction step in the case of the
(= ) easily follows (For the (O =) we also need the axiom [JA — A, of course). The
more difficult cases are (= ) and (M .S). In the case of (= [J) we may limit ourselves to
the special case described in note (1) above, and this special case is handled by the axiom

A — OOA. Finally, the (MS) case follows from the following theorems of S5 .

(i) O(@AVB)—-0O0AvOB (i) O(-0AvVB)—O-04vOB |

The above proof relies on the fact that cut is one of the rules of GS5. We now give a

constructive proof that cut is not necessary.

Theorem 2. GS5 admits cut-elimination.

Proof: We prove by induction on length of proofs that if G1|71 = Ay, A, ... A+ |7, =
Ap, A, .. A|Hy and Gy|A,... A7) = Al|---|A,...,A 7, = A}|H; are provable in
G S5 then:

(1) Fass G1lG2|71,. ., 20, 2, 00 = A, A AL AL H [ Hy

(2) If A = OB then Fggs Gi|G2|?71 = Aq]--- |7, = A7 = A7, =
A} |Hi|Hy (note that the hypersequent in (1) follows from that in (2) using internal weak-
enings and external contractions).

Some explanations are in order here. The generalization to the case in which the
cut-formula appears in more than one component is needed for handling the external
contraction rule. The need for a special treatment of the case in which the cut formula

is of the form B arises in the following situation (for brevity we omit side components
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ete.):
07,7, = Ay, OA, OA
7. = A, |07 = 0OA, 04 04,7, = Ay
7 = A | O7,7, = OA, A,

If we apply the induction hypothesis (1) to the two premises we get only [?7,71,75 =
LA, Ay, Ay and from this one cannot, in general, deduce the desired result. By applying
the induction hypothesis (2) we can infer, in contrast, from the two premises 07,7 =
A1, 0A|?72 = As. From this follows, by (MS), 71 = A¢|00? = OA|?3 = As, and from

this the desired conclusion easily follows. Similarly in the following case:
LA, 1?7 = B
7= AL OA UA, 007 = UB
07,7 = A',OOB

An application of the induction hypothesis (1) to the premises yields 7',[J? = A’, B. One
cannot apply (M.S) or (= ) to this component, though. An application of (2), on the
other hand, gives 7' = A'|[[J? = B. From this follows ?' = A'|[0? = OB and then
07,7 = A" OB.

It is straightforward (though tedious) to check that the proof goes through in all cases.
It should be emphasized that because of (2) one should be careful even in the basic case,
when one of the premises is an axiom [JA = [JA. An application of (2) to this and to
(say) LJA, 71, = Aq1|0A, 72 = A|G yields A = |77 = Aq]72 = Ag|G. This can, of
course, be derived directly from the second premise using several application of (M S) and

external contraction. [ |

V.1.3. Relating GS5 to the Semantics.

In the previous subsection the equivalence of GS5 with S5 was proved constructively,
using only proof-theoretical notions and methods. In this subsection we attack the same
issues from the semantic point of view, giving alternative (though less constructive) proofs.
The reason is that we believe that this sheds further light on the system and the prospect
of generalizing the method to other modal systems (also some may find the proofs here

easier).
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Definition [Po83]. A hypersequent G is valid if given any Kripke model (M, v) there
exists a component of G which is valid in this model (i.e.: true in any a € M, where 7 = A

is true in a iff v(pr=na,a) =T).

Notes. (1) Again the meaning of | is disjunctive, but there is a difference here between
this meaning and that of the comma on the r.h.s of a component. Given a € M, the
meaning of = Ay,..., A, is that one of the Al is true in a (relative to v), while the
meaning of G1|--- |Gy is that one of the G;’s is valid in (M, v) (i.e. true for all a € M).
(2) The connection between the last definition and the translation given in the last

subsection is obvious.

Soundness Theorem. If Fggs H then H 1s valid. Moreover: if G can be derived in
GS5. (From Hy,...,H, then G is valid in any Kripke model in which all the H;’s are
valid.

Proof: Straightforward. We only note that the soundness of (M.S) is due to the fact
that in an S5-model (M, v) a formula of the form [JA is either true in all elements of M,
or false in all them. |

The completeness of GS5 and the cut-elimination theorem are proved simultaneously
in the next theorem. Its proof was essentially given in [Kr59a] (see also [Mi92]). Since it

was not stated as such there, we give below a simplified version.

Theorem 3. If a hypersequent G is valid then it has a cut-free proof.

Proof: Call a hypersequent H saturated if the following conditions are satisfied.

(1) If ? = Ais a component of G and AV B € A then both A and B are in A, while
if AV B € 7 then either A € 7 or B € 7. Similar conditions should obtain for the other
classical connectives.

(2) If 7 = Ais a component of G and [JA € ? then A € ?' for every component
7= Al of G.

(3)If ? = Ais a component of G and [JA € A then there exists a component 7' = A’
of G such that A € A.

(4) ? N A =0 for every component of G.
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Lemma 1. A saturated hypersequent G is not valid.

Proofof Lemma 1. Take M to consist of the components of G and let v(p,? = A)=T
ifpe?, vp,?=A)=Fifpe A (if p¢? UA define v(p) arbitrarily). It is easy to see
that v(A,? = A)=T it Ae? v(A,? = A)=Fif A€ A. Hence every component is

false (as a sequent) in itself (taken as a world).

Lemma 2. If H has no cut-free proof then there is a saturated hypersequent G that can

be derived from it using external and internal weakenings.

Proof of Lemma 2. By a double induction on the complexity of a maximal formula
for which one of conditions (1)-(3) (in the definition of a saturated formula) is violated,
and the number of such maximal formulae. If there are no such formulae then H itself is
saturated since the fact that it has no cut-free proof entails condition (4).

Assume there is such a maximal formula of the form A V B which appears in the
component 7 = A. If AV B € A obtains H* from H by adding A and B to A. Obviously
H* does not have a cut-free proof. If AV B € 7 then by adding either A or B to 7 we
obtain a hypersequent H* which also does not have a cut-free proof. In either case we can
apply the induction hypothesis to H*.

The cases of the other classical connectives are treated similarly.

Suppose next that there is a maximal formula of the form [A. If JA € A for some
component 7 = A, obtain H* from H by adding to it a component ?* = A, where B € 7*
iff (1B belongs to the 1Lh.s of some component of H. If [JA € 7 add A to the left hand
side of all components of H. In both cases H can be derived from H* (Pottinger’s rule
of note (2) of V.1.2. is very useful in showing this) and so does not have a cut-free proof.

Apply now the induction hypothesis to H*.

Theorem 3 follows now easily from the two lemmas and the soundness theorem. W

Note. We needed to add ?* in the last case to ensure that no new formula of the

previous higher complexity (or even higher) is created.
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V.2. Other Modal Systems.

In [Po83] Pottinger applied the hypersequential framework also to S4 and T. His
system for S4 was (essentially) like ours for S5 — but without the modal splitting rule.
Without it, however, the only way to create new components is through external weakening
and this does not really add anything to the power of the system. It is easy, in fact, to
see that in Pottinger’s system for T and 54 a hypersequent G is provable iff one of its
components is provable in the usual sequential calculi and with a proof which is contained
in the proof of G. The passage to hypersequents is therefore artificial and unnecessary
there.

In Mints” approach in [Mi92] (following [Kr59]), more structure is added to that of a
hypersequent. A hypersequent is not just a set of ordinary sequents, but this set comes
equipped also with a relation R. The way rules of the system are applied depends on this
R. For example, external contraction of S; and S5 might be allowed only if S;RS; or
SoRS1.17 Semantically, a hypersequent Sy Sz - -« | Sk is valid iff for every model (M, R*,v)
of the appropriate type and for every choice of elements Iy,...,I; of M which satisfies
I;R*I; whenever S;RS;, S; is true in I; for at least one ¢. This approach seems more
promising for generalization. Still, in the case of 54 and T the resulting systems can easily
be seen to be equivalent to those of Pottinger. In any case, the addition of the relation
R means building the semantics into the formal systems (something that goes against the
desiderata at set forth in section II), and it takes us out of the simple hypersequential

framework dealt with in this paper.

VI. 3-Valued Logics

There is something which is common to all examples described so far: None of them
have a finite characteristic matrix. We end therefore with two examples that show that
the application of the hypersequential method is not limited to such logics.

There exists a well-known method of systemizing (finite) many-valued logics using
structures that superficially resembles hypersequents. (See e.g. [Ca9l] and [Za93]. The

latter contains extensive references to the literature on Gentzen-type calculi for many-

1T This is not the way the systems are described, but they can be reformulated like this.
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valued logics.) There are crucial differences, though. In any hypersequential calculus there
exist hypersequents with an arbitrary number of components. In the framework we have
just mentioned, the number of components is always fixed, and depends on the logic in
question: 3 for 3-valued logics, 4 for four-valued logic etc. Also a component is not an
ordinary sequent, but a sequence of formulae. The structures used are therefore straight-
forward generalizations of ordinary sequents, but ordinary sequents are not a special case
of the structure used for, say, 3-valued logics.

This approach is very successful in handling many-valued logics. From the point of
view which was described in the framework it has however, serious drawbacks:

(1) The semantics is strongly built into the proof theory.

(2) As a result, this is only a framework for finite-valued logics, not a general frame-
work.

(3) The method applied, practically, to every possible finite-valued logic. This strong
advantage 1s also a source of weakness: one cannot use the framework for distinguishing
between valuable logics and those that probably are not.

(4) The rules for the standard connectives are frequently complex and unnatural,
and 1t might be difficult to tell what makes a certain connective an “implication” or a
“disjunction”.

Because of these drawbacks we believe that cut-free hypersequential versions, that
follow the lines described in the introduction, are preferable whenever they exist. As
usual, we expect them to exist only in special, important cases. Now there are well-known,
important 3-valued logics that have nice, cut-free standard sequential formalisms (Kleene
3-valued logics and Sobocinski 3-valued logic [So52] are two examples.) We now give two
examples of (relatively) well-known 3-valued logics which apparently do not have such

formalisms but do have cut-free hypersequential calculi.

VI.1. General Background.

We assume that the 3 truth values are {T, I, 1}, ordered as follows: L < I < T. In both
examples a V b is max(a,b), a A bis min(a,b), - L= T, =T =1, = = I. The differences
are with respect to the definition of — and what values are taken as designated. In Lj

(Lukasiewicz 3-valued logic) only T is designated and @« — bis T ifa <b, L if a =T and
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b=L1, I otherwise. In RMj3 (the 3-valued extension of RM, and the strongest logic in the
relevance family) both T and I are designated, whilea — bis Lifa>b Iifa=0b=1,
T otherwise.

It might seem that we have given a full description of L3 and RM;s. This is false,
since we have not defined yet the intended consequence relations. Suppose we simply
define that ? = A if every valuation which gives designated values to all the elements
in 7 does the same to A. In such a case we can do with ordinary sequents — provided
we change our choice of primitive connectives (without changing the expressive power of
the language). All we have to do is to define A D B =py BV (A — (A — B)) (this
is equivalent to A — (A — B) in the case of Ly and to BV (A — B) in RMs). The
language of {—,V, A, D} is equivalent, in both cases, to that of {—=,V, A, —}. Indeed, in
both cases A — B is equivalent to (4 D B) A (=B D —A). Now it is not difficult (see
[Av9lc]) to construct cut-free sequential calculi for both systems in the new language. The
calculi are almost identical. The only difference is with respect to the axioms: A = A and
A —A=1n“Ly", A= Aand = A,-A in “RM3”. Obviously, if we are interested only in
theoremhood of formulae this would be completely sufficient.

There is a certain amount of cheating in this approach. The reason is that the conse-
quence relation that is used in it does not correspond to the official implication connectives
of Ly and RM; — while these implications are the characteristic connectives of these logics.
The real consequence relation which reflects the spirit of Ly and RMj; should be defined
as follows: Ay,..., 4, F Biff Ay — (43 — -+ = (A, — B)---) is valid. Moreover, an
appropriate Gentzen-type formulation should reflect this consequence relation. In other
words: Aj,...,A, = B should be provable iff 4, — (42 — -+ — (4, — B)---) is
valid. In order to achieve this we need to employ hypersequential calculi (first presented
in [Av9lc]) in which not all standard internal structural rules are allowed (in this sense

they are substructural logics too, like those presented in section IV).

VI1.2. The System GRMj.
This system can be described as the union of GRM and GSRM1I of section IV:

Axioms. A= A.
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Rules.

(1) The standard external structural rules.

(2) The standard internal structural rules, except weakening.

(3) The hypersequential versions of the multiplicative rules for = and — and the additive

rules for V and A.

(4) The mingle rule (of GRM) and the extended splitting rule (of GSRMI):

G|?1:>A1|H G|?2:>A2|H G|?1,?2:>A1,A2|H

(M) (ES)

G|?1,?2:>A1,A2|H G|?1:>A1|?l,?2:>A2,AI|H

An Example of a Proof.

(Esyd=A
= A|[A= B
= AV(A—B)=A—-B
= AV(A— B)|= AV (A — B)
= AV (A — B)

Main Properties:

(1) The cut-elimination theorem obtains.

(2) Farms A1y, Ap = Bift Ay — (++- = (A, — B)---) is valid in the matrix for
RM;. On the other hand, B follows from 7 in the sense that if v(A) #.L for all A € ?
then v(B) #L iff Fgry, 71 = B|?72 = B|--- |7, = B for some 74,...,7, C7.

(3) Let ¢r=na be a standard translation (in classical logic) of 7 = A in terms of —
and —. Then Fary, 71 = Al |75 — A il or,2a, Ver,=a, V- Vor, =, is valid
in RMs;.

The proofs of these results are similar to those in the case of GSRMI. See [Av94] for

more details.

VI1.3. The System GLs.

Axioms. A= A.
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Rules.
(I) The standard external structural rules.
(IT) The standard internal structural rules, ezcept contraction.
(IIT) The same rules for the connectives as in GRM;.
(IV) The mizing (MX) rule from section II:

Gl71,79,75 = Ar, Ao, Ag|H GI?1, 70,70 = AL AL ALIH
G|?1,?l1 = Al,AH?Q,?IZ = Az,Al2|?37?é :>A3,A3|H

An Example of a Proof.

A=A (MX)A:>A B =D
A= ADB B=|=A| A=1B B=21B A=A
= A, A— B B=|=A|=>A—-1B B B—-A=A

(A-B)—-B=A|=A| (A—-B)—-BB—-A=A4
(A— B)—B,B—A= A|(A>B)—B,B—~A= A|(A>B)—B,B—»A= A
(A->B)—>BB— A=A
(A-B)—B = (B—A)—A

Main Properties ([Av91c]):

(1) The cut-elimination theorem obtains.

(2) Fgr, 4,..., A, =Bift A, - (- = (A, — B)---)is valid in L3

(3) Fars 71 = Aq|- |70 — Ay iff or A, V- Vpr, —a, is valid in Ls, where or—a

is, again, a standard translation of 7 = A in terms of — and —.
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