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Abstract

We present a mechanism for recovering consistent data
from inconsistent set of assertions. For a common family
of knowledge-bases we also provide an efficient algorithm
for doing so automaticly. This method is nonmonotonic and
paraconsistent. It is particularly useful for making diag-
noses on faulty devices.

Subject areas: Knowledge-based systems, Non-standard
logics for AI, Reasoning under uncertainty, Model-based
diagnosis.

1. Introduction

It is well-known that the classical calculus allows only
a trivial reasoning in the presence of inconsistency. This
property is particularly problematic when the system un-
der consideration is aimed to deal with conflicts. This is
the case, for instance, with diagnostic systems that are sup-
posed to analize the discrepancy between the actual behav-
ior of some device and the way it is meant to behave. A
common approach of handling inconsistent information is
to consider some consistent subsets that still contain mean-
ingful data. The usual method of doing so is to consider the
maximal consistent subsets of the “polluted” data. The main
drawback of this method is that none of these subsets neces-
sarily correspond to the intended semantics of the original
information. Even in the simplest inconsistent knowledge-
baseKB=fp;:pg every maximal consistent subset ofKB
classicallycontradicts an explicit data ofKB. In the case
of diagnostic systems this means that a diagnosis based on a
maximal consistent subset might not truthfully describe the
malfunctioning part of the examined device.

We propose here a different approach to “salvage” con-
sistent data without contradicting any assertion of the origi-
nal information. For a common family of knowledge-bases

we also provide an efficient algorithm for recovering this
data. We then illustrate the ideas in a diagnostic system
for checking faulty circuits. The underlying formalism is
based on Belnap’s four-valued logic [Be77a, Be77b], and it
is shown to be nonmonotonic and paraconsistent [dC74].

Due to a lack of space most of the proofs are omitted;
They will be given in the full version of the paper.

2. Preliminaries

We present a formalism that is based on Belnap’s well-
known four-valued logic. For a detailed discussion on this
logic see, e.g., [Be77a, Be77b]. We denote byt and f
the classical values.? and> denote, respectively, lack of
knowledge and “over”-knowledge (conflict). It is usual to
consider these four values according to two partial orders:
One,�t, might intuitively be understood as reflecting dif-
ferences in the “measure of truth” that every value repre-
sents. According to this order,f is the minimal element,t is
the maximal one, and?;> are two intermediate values that
are incomparable.(ft; f;>;?g;�t) is a distributive lattice
with an order reversing involution:, for which:>=>and:?=?. We shall denote the meet and the join of this lattice
by^ and_, respectively. The other partial order,�k, is un-
derstood (again, intuitively) as reflecting differences inthe
amount ofknowledgeor informationthat each truth value
exhibits. Again,(ft; f;>;?g;�k) is a lattice where? is
its minimal element,> – the maximal element, andt, f are
incomparable.

The language we treat here is the standard propositional
one. Given a setS of propositional formulae, we shall de-
note byA(S) the set of the atomic formulae that appear
in the languageS, and byL(S) the set of the literals that
appear in some formula ofS. The semantic notions are nat-
ural generalizations to the four-valued case of similar clas-
sical notions: Avaluation� is a function that assigns a truth
value fromf>;?; t; fg to each atomic formula. Any valu-
ation is extended to complex formulae in the standard way.
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We shall sometimes write : b2� instead of�( )= b. We
will say that� satisfies , iff �( ) 2 ft;>g. t and> are
called designated values. A valuation that satisfies every
formula in a given set of formulas,S, is said to be amodel
of S. The set of the models ofS will be denotedmod(S).
Note that unlike in the classical calculus, there are no tau-
tologies here. In fact, excluded middle is not a valid rule in
the four-valued case.

The formulae considered here are clauses, i.e.: disjuncts
of literals. As the following lemma shows, representing the
formulae in a clause form does not reduce the generality.

Lemma 2.1 For every formula there is a finite setS of
clauses such that for every valuation� and for every�2S,�( )2f>; tg iff �(�)2f>; tg.

Here is another useful property of clauses that will be
used several times in the sequel:

Lemma 2.2 Let be a clause,li (i = 1 : : :n) – its literals,
and� – a valuation onA( ). Then�( )2ft;>g iff there
is an1� i�n s.t.�(li)2ft;>g.
Definition 2.3 A knowledge-baseKB is a pair(S;Exact),
whereS is a set of clauses, andExact is a set of atoms
in A(S) that are assumed to have only classical val-
ues. mod(KB) =mod(S;Exact) denotes the set ofex-
act modelsof S, i.e.: the models ofS in which every el-
ement ofExact is assigned a classical value. Formally:mod(S;Exact) = fM 2 mod(S) j 8p 2 Exact M (p) 2ft; fgg.
Definition 2.4 LetM 2mod(S). Define:IncM (S) = fp2A(S) jM (p)=>g.
Definition 2.5 Let M;N be two exact models of a
knowledge-baseKB = (S;Exact).
a)M is more consistentthanN (notation:M >con N ), iffIncM (S)�IncN (S).
b) M is a most consistentexact model ofKB (mcem, for
short), if there is no other exact model ofKB which is more
consistent thanM . The set of the most consistent exact
models ofKB will be denoted mcem(KB).
c) M is smaller thanN with respect to�k (M <k N ), if
for anyp2A(S), M (p)�k N (p), and there is aq 2A(S)
s.tM (q) <k N (q).
d) M is ak-minimalmodel of a setS, if there is no other
element ofS which is smaller w.r.t.�k thanM .
e) The set of thek-minimal models ofmod(KB) will be
denoted kmin(KB); the set of thek-minimal models of
mcem(KB) (minimal mcems, for short) will be denoted
(KB).
Definition 2.6 LetKB=(S;Exact) be a knowledge-base,
and – a formula.

a)KB j= if every exact model ofKB is a model of .
b) KB j=mcem if every mcem ofKB is a model of .
c)KB j=kmin if everyk-minimal exact model ofKB is a
model of .
d)KB j=
 if everyk-minimal mcem ofKB is a model of . 1

Example 2.7 Let KB = (S;Exact) whereS = fp; :p_:q; :q_rg andExact=;. The (exact) models ofKB are
listed in Figure 1 below (An asterisk denotes some value inf?; f; t;>g)

Model No. p q r Model No. p q rM1 t f ? M9 > ? tM2 t f t M10 > ? >M3 t f f M11 > t tM4 t f > M12 > t >M5 �M8 t > * M13 �M16 > f *M17 �M20 > > *

Figure 1. The exact models of KB
Here, kmin(KB) = fM1;M9g, mcem(KB) =fM1;M2;M3g, and
(KB)=fM1g. ThusKB j=mcem:q
andKB j=
 :q, whileKB 6j=kmin:q andKB 6j=:q.
WhenExact = fqg the (minimal) mcems ofKB remain
the same, whileM1 becomes the singlek-minimal exact
model ofKB, so nowKB j=kmin:q.

Several consequence relations similar toj=mcem are con-
sidered in the literature. Priest [Pr91] uses similar conse-
quence relation for defining the logic LPm from the three-
valued logic LP. Now, in [AA95] it is shown that for finite
sets of assertionsj=mcem andj=
 are the same. Therefore,
when switching to four valued semantics and using only thek-minimal mcems, one might consider fewer models than
in the case of LPm, since for everyk-minimal mcem that
assigns? to an atomic formulap, there aretwocorrespond-
ing three-valued minimaly inconsistent LP models: One as-
signst to p, and the other assigns itf . Also, here one might
impose further constraints on the relevant models since we
(unlike [Pr91]) do not consider models that are not exact.

Kifer and Lozinskii [KL92] also consider a similar re-
lation in the framework of annotated logics. Like Priest,
they also consider the most consistent models amongall
the possible models. They do not restrict the attention to
some relevant subset (as we do) by constraining them in the
meta-level. See [AA94, AA96] for further discussion and a
comparison betweenj=mcem and the consequence relation
of [KL92].

1One can view the consequence relationj=
 as a composition of the
relationsj=mcem andj=kmin . First we confine ourselves to the mcems
of KB by usingj=mcem, then we minimize the valuations that we have
got by usingj=kmin .



Definition 2.8 Let S be a set of assertions. An atomp 2A(S) is called apositive (negative) fact of S if p 2 S
(:p 2 S). p is calledstrictly positive (negative) fact if it
is a positive (negative) fact and:p 62S (p 62S).

Lemma 2.9 [AA95, Corollary 3.13] LetKB=(S;Exact).
If p is a strictly positive fact ofS thenKB j=mcem p andKB 6j=mcem :p. Strictly negative facts have the dual prop-
erty.

A basic property of the knowledge-bases that we con-
sider here is that for every exact model there is an mcem
which is at least as consistent. For finite knowledge-bases
this is trivialy the case. The following proposition assures
that this property holds ineverypropositional knowledge-
base:

Proposition 2.10 (Lin’s Lemma, [Pr91]) LetKB be a (pos-
sibly infinite) set of clauses. For every exact modelM ofKB there is an mcemM 0 of KB s.t.M 0�conM . 2

3. Recovery of knowledge-bases

In this section we describe what we mean by saying “re-
covering an inconsistent knowledge-base”. In particular we
define and characterize the recovered parts of a knowledge-
base. For that we first have to expand the notion of “consis-
tency” to the four-valued case:

Definition 3.1 Let S be a set of clauses.
a) A modelM of S is consistentif IncM (S)=;.
b) S is consistentif it has a consistent model.
c)KB=(S;Exact) is consistentif S has a consistent exact
model.

Lemma 3.2 S is consistent iff it is classically consistent.

Definition 3.3 A subsetS0 � S is consistent inS w.r.t.Exact, if S0 is a consistent set, and it has a consistent exact
model that is expandable to an (not necessarily consistent)
exact model ofS.

Example 3.4 S0=fpg is a consistent set, but it isnotcon-
sistent inS=fp;:pgw.r.t. any setExact, since there is no
consistent model ofS0 that is expandable to a model ofS.
Similarly,S0=fpg is consistent inS=fp; :p_q; :p_:qg
w.r.t. Exact = fpg, but it is not consistent inS w.r.t.Exact = fqg, since there is noconsistentexact model ofS0 that is expandable to anexactmodel ofS.

Now we can define what we mean by recovering an in-
consistent knowledge-base:

2This lemma is proved in [Pr91] for the three-valued case, andunder
the implicit assumption thatExact= ;. However, it is easy to prove this
lemma in our case as well.

Definition 3.5 A recovered set of a knowledge-base(S;Exact) is a subset ofS that is consistent inS w.r.t.Exact.
Example 3.6 Consider the knowledge-baseKB =(S; fr; ug) whereS = fp; p _ q; :p _ :r; r _ :u; r _:v; u _ vg. KB0 = fp; p _ q; :p _ :r; r _ :ug is
a recovered set ofKB, sincefp : t; q : ?; r : f; u : fg
is a consistent exact model ofKB0 that is expandable toM=fp : t; q :?; r :f; u :f; v :>g, which is an exact model
of KB.

We now provide a method for practically recovering a
knowledge-base. This method is strongly related to finding
mcems forKB. (see Proposition 3.10 below).

Definition 3.7 Let M be an exact model of a knowledge-
baseKB = (S;Exact). The set that isassociated withM
is: KBM =f 2S j A( ) \ IncM (S)=;g.
Example 3.8 In Example 3.6,M is an exact model ofKB,
andKBM =KB0.
Proposition 3.9 Every set that is associated with some ex-
act modelM of KB is a recovered set ofKB.

Proposition 3.10 Every maximal recovered set of a
knowledge-baseKB is associated with some mcemM ofKB.

4. Stratified knowledge-bases and their recov-
ered sets

In general, computing mcems for a given knowledge-
base and discovering its recovered sets might not be an
easy task. Even in relatively simple cases, where e.g.S
is consistent andExact=A(S), finding a recovered set for(S;Exact) reduces to the problem of logical satisfaction,
since in this case one has to provide a classical model forS.
Therefore, we confine ourselves to a special (nevertheless
common) family of knowledge-bases, for which we provide
an efficient algorithm that computes recoverable sets.

Definition 4.1 Let S be a set of formulae.S� — thedilu-
tion of S w.r.t. a partial valuation� — is constructed fromS by the following transformations:

1. Deleting every 2KB s.t.�( )2ft;>g,
2. Removing from what is left every occurrence of a lit-

eral l such that�(l)2ff;?g. 3

3Note the similarity between the the dilution process and theGelfond–
Lifschitz transformation [GL88] used for providing semantics to logic pro-
grams with negations.



Definition 4.2 A set of formulaeS is calledstratified, if
there is a set of “stratifications”S0=S, S1, : : :, Sn=;, so
that for every0� i�n�1 there is ap2A(Si) s.t.:
a) p is either a positive fact or a negative fact ofSi.
b) Si+1 is a dilution ofSi w.r.t. the partial valuationp : t if p
is a strictly positive fact ofSi, p :f if p is a strictly negative
fact ofSi, andp :> if p is both a positive and a negative fact
of Si.

A knowledge-baseKB=(S;Exact) is stratified iffS is
stratified. In all the examples given here (see especially the
one of Section 5), as well as in most of the known puzzles of
the literature, the involved knowledge-bases are stratified.

Definition 4.3
a) Let S be a set of formulae andExact�A(S). A strat-
ificationS0 : : :Sn of S is proper with respect toExact if
there is nop2Exact and an index1� i�n s.t. p is both a
positive and a negative fact ofSi.
b) A knowledge-baseKB = (S;Exact) is calledproperly
stratifiediff there is a stratification ofS that is proper w.r.t.Exact.
Example 4.4 Suppose thatKB = (S; fr; ug) is the same
knowledge-base of Examples 3.6 and 3.8. A possible strati-
fication ofS isS0=fp; p_q; :p_:r; r_:u; r_:v; u_vg,S1 = f:r; r_:u; r_:v; u_vg, S2 = f:u; :v; u_vg,S3=f:v; vg, S4=;. This stratification is proper.

The algorithm given in Figure 2 checks whether a given
knowledge-base(S;Exact) is properly stratified. If so, it
produces proper stratifications, and allows to construct re-
covered sets by providing corresponding (minimal) mcems
of (S;Exact) (see Theorem 4.7 below).

Every valuation� produced by the algorithm of Figure
2 is determined by a sequence of the picked atomic
formulaefp0; p1; : : : ; png of the calls toRECOVER. For
shortening notations we shall just write� when referring to
an arbitrary valuation produced by the algorithm, instead
of �(p0; p1; : : : ; pn).
Note: It is possible to assign any other truth value to the
atoms that are assigned? (during the “filling” process of
the algorithm), and still� would be an exact model ofKB.
But in such cases,� cannot be minimal w.r.t.�k. In partic-
ular, if the filling value is>, then� cannot be an mcem ofKB (see the proof of Theorem 4.7a). Also, it is possible to
assignf to the elements ofExact that are assignedt dur-
ing the filling process without losing any of the properties
discussed below.

Example 4.5 In our canonical example (3.6, 3.8, and 4.4),
whereS = fp; p_q; :p_:r; r_:u; r_:v; u_vg and

input: a knowledge-baseKB = (S;Exact)
callRECOVER(S; ;; 0)
procedureRECOVER(S; �; i)
/* S – thei-th stratification level ofKB,� – the valuation constructed so far. */f

if (S = ;) output� and return; /*�2
(KB) */

positives:= fp2A(S) j p2Sg;
negatives:= fp2A(S) j :p2Sg;
if (positives= ; ^ negatives= ;)

halt; /* don’t continue;KB is not stratified */

if (9p 2 positives\ negatives\ Exact)
return; /* backtracking; not a proper stratification */

while (9p 2 positivesn negatives)f
pick such ap;
positives:= positivesnfpg;� := � [ fp : tg;Si+1 := Sp:t; /* dilution */
for exeryq 6= p s.t. q 2 A(S) n A(Si+1) /* filling */

if (q 62 Exact) � := � [ fq : ?g else� := � [ fq : tg;RECOVER(Si+1 ; �; i+1);g
while (9p 2 negativesn positives) f

pick such ap;
negatives:= negativesnfpg;� := � [ fp : fg;Si+1 := Sp:f ; /* dilution */
for everyq 6= p s.t. q 2 A(S) n A(Si+1) /* filling */

if (q 62 Exact) � := � [ fq : ?g else� := � [ fq : tg;RECOVER(Si+1 ; �; i+1);g
while (9p 2 positives\ negatives,p 62Exact) f

pick such ap;
positives:= positivesnfpg;
negatives:= negativesnfpg;� := � [ fp : >g;Si+1 := Sp:>; /* dilution */
for everyq 6= p s.t. q 2 A(S) n A(Si+1) /* filling */

if (q 62 Exact) � := � [ fq : ?g else� := � [ fq : tg;RECOVER(Si+1 ; �; i+1);gg
Figure 2. An algorithm for recovering strati-
fied knowledge-bases



Exact= fr; ug, the algorithm produces a single (minimal)
mcem ofKB: �(p) = t; �(q) = ?; �(r) = f; �(u) = f ,
and�(v) = >. Figure 3 illustrates the processing of the
algorithm in this case.S0=fp; p_q; :p_:r; r_:u; r_:v; u_vg
Step 0: pick p. set�(p)= t and�(q)=?.S1=f:r; r_:u; r_:v; u_vg
Step 1: pick r. set�(r)=f .S2=f:u; :v; u_vgPPPPPP������
Step 2: pick u. set�(u)=f . pick v. set�(v)=f .S3a=f:v; vg S3b=f:u; ug
Step 3: pick v. set�(v)=> not a proper stratification

Step 4: S4a=;
Figure 3. Generation of minimal mcems and
recovered sets for KB
Note that the algorithm does not necessarily produce

every mcem of the knowledge-base. In the last example
such an mcem is, for instance,fp :>; q :?; r : t; u : t; v :?g.
However, as Theorems 4.7 and 4.8 show, ifKB is properly
stratified the algorithm always finds at least one (minimal)
mcem, and it provides a maximal recovered set forKB.

We now consider some properties of the algorithm.

Proposition 4.6 Let KB = (S;Exact) be a finite
knowledge-base. If it is properly stratified then the algo-
rithm of Figure 2 finds every proper stratification ofKB and
outputs corresponding well-defined valuations forA(S).
The algorithm halts without giving any valuation iff eitherKB is not stratified, or every stratification ofS is not proper
w.r.t.Exact.

It follows from Proposition 4.6 that the algorithm halts
with a valuation for a finiteKB iff KB is properly stratified.
For the rest of this section suppose, then, thatKB is a finite
knowledge-base that is properly stratified.

Theorem 4.7 Let � be a valuation produced by the algo-
rithm for a knowledge-baseKB. Then: (a)�2mcem(KB),
(b) �2 kmin(KB), and (c)�2
(KB).

Proof: It is easy to see that every valuation� produced by
the algorithm is an exact model ofKB. We show that�
is also most consistent among the exact models by an in-
duction on the number of the recursive steps(n) that are
required for creating it. Ifn=0 thenS1=;, so there is only
the initial step in which� might assign> only to a literall
that is both a positive and a negative fact ofS. Since in this
casel is assigned> by every model ofS, � must be most
consistent. Suppose now that it takesn� 1 recursive steps
to create�. Denote by�i the part of the valuation� that is
determined during stepi. Then:

(1): Inc� (S) = [0�i�n Inc�i(Si) = Inc�0(S) [ Inc�0 (S1)
where� 0= [1�i�n�i. Now, letM be any mcem ofKB, and

suppose thatM1 is the reduction ofM to S1.

(2): IncM (S) = fp2A(S)nA(S1) jM (p)=>g [fp2A(S1) jM (p)=>g= fp2A(S)nA(S1) jM (p)=>g [IncM1 (S1)
By its definition,�0 might assign> only to l 2 L(S) s.t.l; l2S. Obviously, such anl must be assigned> by every
model ofS, in particularM (l)=>. Thus:

(3): Inc�0 (S) � fp2A(S)nA(S1) jM (p)=>g� Suppose first thatM1 is an exact model ofS1. Since the
creation of� 0 requires onlyn�1 steps, then by the induc-
tion hypothesis� 0 is an mcem ofS1. In particular, eitherInc�0(S1) andIncM1 (S1) are incomparable w.r.t. the con-
tainment relation, or else:

(4): Inc�0 (S1) � IncM1 (S1)
From (1) – (4), eitherInc�(S) andIncM (S) are incompa-
rable, orInc�(S)�IncM (S), hence� is an mcem ofKB.� If M1 is notan exact model ofS1 thenM1 is cannot be a
model ofS1 either, since it is a reduction of an exact model
(M ) of S. Thus there is a 1 2 S1 s.t. M1( 1) 62 ft;>g.
SinceM is a model ofS, then by Lemma 2.2 there is a 2S andl2L( ) s.t.M (l)2ft;>g, andflg[L( 1)�L( ).
Obviously,l2A(S) n A(S1). But then�0(l) 62ft;>g (oth-
erwise is eliminated in the dilution ofS, and so 1 62S1).
Moreover,�0(l)2 ft;>g, since if�0(l) 62 ft;>g then nec-
essarily�0(l)=?, and this happens only if there is a literall02L( ) s.t. �0(l0) is designated, and in this case again, 
is eliminated in the dilution ofS, i.e.  1 62 S1. Therefore,�0(l) 62 ft;>g and�0(l) 2 ft;>g, so�0(l) = f . l is not
assigned this value in the filling process, since again, this
would imply that is eliminated in the dilution ofS, and
so  1 62 S1. Thus, by the definition of�0 and sinceS is
stratified, necessarilyl 2S and l 62S. HenceKB j= l. ButM is an exact model ofKB and soM (l) 2 ft;>g. Since



we have shown thatM (l) 2 ft;>g as well, it follows thatM (l) => while �(l) = f . ThereforeIncM (S) 6� Inc�(S).
This completes the proof of part (a).

The proof of part (b) is by an induction on the number of
recursive steps required to create�, and is similar to that of
part (a). Part (c) now follows from (a) and (b).

Theorem 4.8 Let � be a valuation produced by the algo-
rithm for KB. ThenKB� is a maximal recovered set ofKB.

Example 4.9 Consider again Example 4.5 and Figure 3.KB� = fp; p_ q; :p_:r; r_:ug is a maximal recov-
ered set ofKB.

Proof of Theorem 4.8 (outlines):By Proposition 3.9 and
Theorem 4.7,KB� is a recovered set ofKB. If it is not a
maximal recovered set, then by Proposition 3.10 there is
an mcemM of KB s.t. KB� �KBM . Since� is also an
mcem ofKB (Theorem 4.7 again), then there is ap2A(S)
s.t. �(p) 6= > whileM (p) = >. In particular,p 62 Exact,
and by the construction of�, eitherp or:p is a strict fact of
some stratification levelSk of S. Therefore there is some� 2 S s.t. p 2 A(�) andA(�) \ Inc�(S) = ; (Otherwise� is diluted in some stage before stagek). Thus� 2KB�
while� 62KBM , and soKB� 6�KBM .

Finally, let’s consider some complexity issues. As we
have noted before, the problem of recovering arbitrary
knowledge-base is at least NP-complete. Denote byO(AB)
that it takesO(A) running time to solve a certain problem
when quering an oracle for solving problems with complex-
ity O(B). Then our algorithm requiresO(jSjjA(S)j) run-
ning time to recover a knowledge-base(S;Exact) that is
properly stratified.4 As the following proposition shows,
the complexity of the algorithm is considerably reduced in
cases that stratification implies proper stratification:

Proposition 4.10 Whenever every stratification ofKB =(S;Exact) is proper, it takesO(jSj � jA(S)j) running time
to check whetherKB is stratified, and if so, this is also the
time needed to recover it (i.e., to provide a maximal recov-
ered set ofKB).

Obvious cases in which the condition of the last proposi-
tion is met are whenExact=;, or if there is nol2Exact
s.t. bothl2L(S) andl2L(S).
5. Model-based diagnosis

Suppose that one is given a description of some system
(physical device, for example) together with an observation

4In our case at every stratification level the oracle chooses afact that
yields, eventually, to a proper stratification.

of its behaviour. Suppose further that this observation
conflicts with the way the system is meant to behave. The
obvious goal is to identify the components of the system
that behave abnormally, so that the discrepancy between
the observed and the correct system behavior would be
explained. In such case it seems reasonable to assume that
some minimal number of components are faulty. Therefore,
the mcems and their corresponding recovered sets are good
candidates for providing accurate diagnoses, especially
since they minimize the set of components that are assumed
to behave differently than expected.

For dealing with these kind of problems, it is convenient
first to expand the discussion to first-order logic. It is pos-
sible to do so in a straightforward way, provided that there
are no quantifiers within the clauses; each clause that con-
tains variables is considered as universally quantified. Con-
sequently, a knowledge-base containing non-grounded for-
mula, , will be viewed as representing the corresponding
set of ground formulae formed by substituting each vari-
able that appears in with every possible member of the
Herbrand universe,U .5 Formally: KBU = (SU ; Exact),
whereSU =f�( ) j  2S; � :var( )!Ug, � is aground
substitutionfrom the variables of every 2KB to the in-
dividuals ofU , andExact consists of predicates that every
instansiation of which should be assigned classical values.
The exact models are the elements ofmod(SU ; Exact) =fM 2mod(SU ) j 8p2Exact 8xi2U M (p(x1;: : :; xn))2ft; fgg. KBU is called theHerbrand expansionof KB
w.r.t. Herbrand universeU .

Example 5.1 Figure 4 depicts a binary full adder, exam-
ined extensively in the literature of diagnostic systems (See,
e.g., [Ge84, Re87, Gi88, Ra92] and many others). It con-
sists of five components: two and-gatesA1 andA2, two
xor-gatesX1 andX2, and an or-gateO1.----- --- -- --r r r r��A1 ��A2���� ��X1 ���� ��X2�� ��O11

0

1

0

1

Figure 4. A full adder

5In fact, this restriction guarantees that we stay, essentially, on a propo-
sitional level.



The full adder’s description is given by systemFA. It
appears in Figure 5.andGate(x) ^ ok(x)! (out(x)$ (in1(x) ^ in2(x))),xorGate(x) ^ ok(x)! (out(x)$ (in1(x) � in2(x))),orGate(x) ^ ok(x)! (out(x)$ (in1(x) _ in2(x))),andGate(x)! (:orGate(x) ^ :xorGate(x)),xorGate(x)! (:andGate(x) ^ :orGate(x)),orGate(x)! (:andGate(x)^ :xorGate(x)),in1(X1)$ in1(A1), in2(X1)$ in2(A1),in1(A2)$ in2(X2),out(X1)$ in2(A2), out(X1)$ in1(X2),out(A1)$ in2(O1), out(A2)$ in1(O1),andGate(A1), andGate(A2),xorGate(X1), xorGate(X2), orGate(O2),ok(A1), ok(A2), ok(X1), ok(X2), ok(O1),in1(X1), :in2(X1), in1(A2), out(X2), :out(O1)

Figure 5. The system FA
Notice that the observation indicates that the physical

circuit is faulty; both circuit outputs are wrong for the given
inputs.

The predicatesin1(x), in2(x), andout(x) are assigned
values that correspond to binary values of the wires of
the system. Therefore they should have only classical
values (e.g.,in(G) = > for a gateG is a meaningless
value). Also, it seems natural to restrict the values of
the predicatesandGate, orGate, and xorGate to be
only classical as well. This is because we know in
advance what is the kind of each gateG in the system,
and so the only open question aboutG is whether it
behaves as expected (i.e., whetherok(G)). So, the actual
knowledge-base for the full adder is(FA;Exact), whereExact=fin1; in2; out; andGate; orGate; xorGateg.

The table of Figure 6 lists the elements of
mcem(FA;Exact). We have omitted from the table
predicates (likein1(X1)) that have the same (obvious)
value in every exact model of(FA;Exact), and predicates
that have the same values as some other predicates (likein2(A2), which is identical toin1(X2)).

The mcems of(FA;Exact), and the recovered sets that
are associated with them preserve what Reiter [Re87] calls
the principle of parsimony; they represent the conjecture
that some minimal set of components are faulty. For ex-
ample, according toM1 the only component that behaves
incorrectly is the xor gateX1. The recovered set that is
associated withM1 reflects this indication: FAM1 =

in1 in1 in2 ok ok ok ok okX2 O1 O1 A1 A2 X1 X2 O1M1 f f f t t > t tM2 t f f t > t > tM3 t t f t t t > >
Figure 6. The mcems of (FA;Exact)FA n fok(X1); xorGate(X1) ^ ok(X1)! (out(X1)$(in1(X1) � in2(X1)))g.

In particular,FAM1 entails (w.r.t. bothj= and j=mcem)ok(x) for x 2 fA1; A2; X2; O1g, but it doesnot entailok(X1). Similarly, the other two mcemsM2 andM3, as
well as their associated sets represent respective situations,
in which gatesfX2; A2g and gatesfX2; O1g are faulties.
These are the generally accepted diagnoses of this specific
case (see, e.g. [Re87, Example 2.2], [Gi88, Sections 15,16],
and [Ra92, Examples 1,4]).

One might treatFAM1 as the preferred recovered set,
since it is the only set that entails that only a single com-
ponent is faulty, and one normally expects components to
fail independently of each other. This kind of diagnosis is
known as asingle fault diagnosis.

Next we show that the correspondence in the previ-
ous example between the fault diagnoses and the incon-
sistent assignments of the mcems is not accidental. First
we present two basic notions from the literature on model-
based diagnosis:

Definition 5.2 [Re87] A system is a triple(Sd;Comps;Obs), where:
a)Sd (system description) is a set of first order sentences.
b)Comps (system components) is a finite set of constants.
c)Obs (observations) is a finite set of sentences.

Definition 5.3 [Re87] A diagnosisis a minimal set� �Comps s.t. Sd [ Obs [ fok(c) j c 2 Comps n �g [f:ok(c) j c2�g is classically consistent.

In the example above we assumed that the devices nor-
mally behave as expected. We next formalize this assump-
tion:

Definition 5.4 A correct behaviour assumptionfor a given
set of components� � Comps is the setCBA(�) =fok(c) j c2�g.
Notation 5.5 For a given system(Sd;Comps;Obs), and a
set of components��Comps, denoteS(�) = Sd[Obs[CBA(�). Whenever� = Comps we shall write justS
instead ofS(Comps). Also, in the sequel we shall continue
to assume thatS(�) is a set of clauses. Recall that this
assumption can be taken without any loss of generality.



Proposition 5.6 Denote byj=cl the consequence relation
of the first order classical logic.
a) [Re87, Proposition 3.4]� � Comps is a diagnosis
for (Sd;Comps;Obs) iff � is a minimal set such thatS(Comps n�) is classically consistent.
b) [Re87, Proposition 3.3] If� is a diagnosis for(Sd;Comps;Obs) thenS(Compsn�) j=cl :ok(c) for eachc2�.

When considering diagnostic systems in the classical,
two-valued logics, any inconsistency in the data causes triv-
ial reasoning. This is, of course, not the case in the present
treatment, where we allow truth value that exhibits inconsis-
tencies, and only a subset of the atomic formulae necessar-
ily have classical values. In terms of our discussion, then,
a diagnostic system is a knowledge-baseKB=(S;Exact),
whereS=Sd [Obs [CBA(Comps).
Theorem 5.7 Let (S;Exact) be a knowledge-base of a di-
agnostic system, and suppose that the Herbrand base ofS isfp(x1;: : :; xn) j p2Exact; xi2Compsg[CBA(Comps).6
An exact modelM of (S;Exact) is an mcem of(S;Exact)
iff IncM (S)=CBA(�) for some diagnosis� of S.

Outline of proof: (() Otherwise there is an exact modelM 0 s.t. IncM 0(S) � IncM (S) = CBA(�), i.e.: there is ac0 2 � s.t. M 0(ok(c0)) 6= >. But: (a) ok(c0) 2 S thusM 0(ok(c0))2ft;>g, and: (b)S(Comps n�) j=cl :ok(c0)
and by Lemma 4.11 of [AA96]7, S(Compsn�) j=mcem:ok(c0), thereforeM 0(:ok(c0))2 ft;>g. By (a) and (b),M 0(ok(c0))=> – a contradiction.()) By Proposition 5.6, in order to prove that� is a di-
agnosis forS it is sufficient to show that� is a mini-
mal set such thatS(Compsn�) is classically consistent.
This follows from the condition on Herbrand base ofS
that assures that for every exact modelM of (S;Exact),IncM (S)�CBA(Comps).
Corollary 5.8 Under the assumption of Theorem 5.7, if� is a diagnosis ofS then there exists an mcemM of(S;Exact) s.t. IncM (S)=CBA(�).

It follows that whenever the requirement of Theorem 5.7
is met and(S;Exact) is properly stratified, one can use
the algorithm of Section 4 for finding diagnoses and con-
structing maximal recovered knowledge-bases of the faulty
system. This is the case, e.g., in Example 5.1.

6. Conclusion

We have proposed a mechanism for recovering consis-
tent data from inconsistent set of assertions. Our approach

6Note that this requirement is met in Example 5.1.
7According to that lemma, ifS is a classically consistent set of asser-

tions, is a clause that does not contain any pair of an atomic formulaand
its negation, and follows classically fromS, thenS j=mcem .

considers the contradictory data as useless, and regards all
the remaining information unaffected. This kind of ap-
proach is nonmonotonic and paraconsistent in nature. For
a common family of knowledge-bases we have also pro-
vided an efficient algorithm for an automatic recovery. Our
method is particularly useful for diagnostics systems, where
it might be used for supplying a description of the well-
behaved parts of a faulty device.
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