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Abstract we also provide an efficient algorithm for recovering this

data. We then illustrate the ideas in a diagnostic system
We present a mechanism for recovering consistent datafor checking faulty circuits. The underlying formalism is
from inconsistent set of assertions. For a common family based on Belnap’s four-valued logic [Be77a, Be77b], and it
of knowledge-bases we also provide an efficient algorithmis shown to be nonmonotonic and paraconsistent [dC74].
for doing so automaticly. This method is nonmonotonicand Due to a lack of space most of the proofs are omitted;
paraconsistent. It is particularly useful for making diag- They will be given in the full version of the paper.
noses on faulty devices.

Subject areas: Knowledge-based systems, Non-standard 2. Preliminaries
logics for Al, Reasoning under uncertainty, Model-based

diagnosis. We present a formalism that is based on Belnap’s well-

known four-valued logic. For a detailed discussion on this
logic see, e.g., [Be77a, Be77b]. We denotetbgnd f
) the classical valuesl and T denote, respectively, lack of
1. Introduction knowledge and “over’-knowledge (conflict). It is usual to
consider these four values according to two partial orders:
It is well-known that the classical calculus allows only One, <;, might intuitively be understood as reflecting dif-
a trivial reasoning in the presence of inconsistency. This ferences in the “measure of truth” that every value repre-
property is particularly problematic when the system un- sents. According to this ordef,is the minimal element,is
der consideration is aimed to deal with conflicts. This is the maximal one, and, T are two intermediate values that
the case, for instance, with diagnostic systems that are supare incomparable({t, f, T, L}, <.) is a distributive lattice
posed to analize the discrepancy between the actual behawvith an order reversing involution, for which—T =T and
ior of some device and the way it is meant to behave. A -1 = 1. We shall denote the meet and the join of this lattice
common approach of handling inconsistent information is by A andv, respectively. The other partial ordet, is un-
to consider some consistent subsets that still contain meanderstood (again, intuitively) as reflecting differenceshia
ingful data. The usual method of doing so is to consider the amount ofknowledgeor informationthat each truth value
maximal consistent subsets of the “polluted” data. The main exhibits. Again,({¢, f, T, L}, <x) is a lattice whereL is
drawback of this method is that none of these subsets necesits minimal element —the maximal element, arigl f are
sarily correspond to the intended semantics of the originalincomparable.
information. Even in the simplest inconsistent knowledge-  The language we treat here is the standard propositional
baseKB = {p, —p} every maximal consistent subsetkiB one. Given a sef of propositional formulae, we shall de-
classicallycontradicts an explicit data oKB. Inthe case  note by.A(S) the set of the atomic formulae that appear
of diagnostic systems this means that a diagnosis based on i the languages, and by£(S) the set of the literals that
maximal consistent subset might not truthfully descritee th appear in some formula &. The semantic notions are nat-
malfunctioning part of the examined device. ural generalizations to the four-valued case of similas-cla
We propose here a different approach to “salvage” con- sical notions: Avaluationv is a function that assigns a truth
sistent data without contradicting any assertion of thgieri  value from{T, L, ¢, f} to each atomic formula. Any valu-
nal information. For a common family of knowledge-bases ation is extended to complex formulae in the standard way.



We shall sometimes writg : b € v instead ol () =b. We
will say thaty satisfiesy, iff v(¢) € {¢, T}. t and T are
called designated valuesA valuation that satisfies every
formula in a given set of formulas,, is said to be anodel
of 5. The set of the models & will be denotedmod(S).

Note that unlike in the classical calculus, there are no tau-

tologies here. In fact, excluded middle is not a valid rule in
the four-valued case.

a) KB = if every exact model oKB is a model ofy.

b) KB Emcem ¢ if every mcem ofKB is a model of.

C) KB Egmin v if every k-minimal exact model oKB is a
model ofi.

d) KB Eq 9 if every k-minimal mcem ofKB is a model of

Pt

Example 2.7 Let KB = (S, Ezact) whereS = {p, -pV

The formulae considered here are clauses, i.e.: disjuncts'q, ~¢Vr} and Ezact ={. The (exact) models &kB are

of literals. As the following lemma shows, representing the
formulae in a clause form does not reduce the generality.

Lemma 2.1 For every formulay there is a finite se§ of
clauses such that for every valuatioand for everyp € S,

v(p)e{T,t}iff v()e{T,t}.

Here is another useful property of clauses that will be
used several times in the sequel:

Lemma 2.2 Lety be aclausd; (¢ = 1...n) —itsliterals,
andv — a valuation ond(y). Thenv(y) € {¢, T} iff there
isanl<i<ns.tv(l)e{t, T}

Definition 2.3 A knowledge-bas&B is a pair(S, Ezact),
where S is a set of clauses, anBlzact is a set of atoms

in LA(S) that are assumed to have only classical val-
ues. mod(KB) = mod(S, Ezact) denotes the set dx-
act modelsof S, i.e.: the models of in which every el-
ement of Ezact is assigned a classical value. Formally:
mod(S, Ezact) = {M € mod(S) | Vp € Ezact M(p) €

{t, 71}

Definition 2.4 Let M € mod(S). Define:
e (S) = {pc A(S) | M(p)=T}.

Definition 2.5 Let M, N be two exact models of a
knowledge-bas&B = (S, Fzact).

a) M is more consisterthan N (notation: M > .., N), iff
Inepr (S) CInen (S).

b) M is amost consistentxact model ofKB (mcem, for
short), if there is no other exact model 8B which is more
consistent thar/. The set of the most consistent exact
models ofKB will be denoted mce(kB).

c) M is smallerthan N with respect to< (M < N), if
for anyp € A(S), M(p) <x N(p), and there is g € A(S)
s.tM(q) <x N(q).

d) M is ak-minimalmodel of a setS, if there is no other
element ofS which is smaller w.r.t<, than.

e) The set of thek-minimal models ofmod(KB) will be
denoted kmifiKB); the set of thek-minimal models of
mcemEB) (minimal mcemsfor short) will be denoted
Q(KB).

Definition 2.6 Let KB=(S, Ezact) be a knowledge-base,
andy — a formula.

listed in Figure 1 below (An asterisk denotes some value in

{L, ;4,73
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Figure 1. The exact models of KB

Here, kmi{KB) {M1, My}, mcen{KB)
{Ml, Mz, M3}, andQ(KB) :{Ml} ThusKB ':mcem -q

andKB Eq —q, while KB [£gmin ~g and KB [~ —g.

When Ezact = {¢q} the (minimal) mcems oKB remain
the same, whilelf; becomes the singlé-minimal exact
model of KB, s0 NOWKB Egmin —q.

Several consequence relations simild&eg .., are con-
sidered in the literature. Priest [Pr91] uses similar cense
guence relation for defining the logic LPm from the three-
valued logic LP. Now, in [AA95] it is shown that for finite
sets of assertions ..., and=q are the same. Therefore,
when switching to four valued semantics and using only the
k-minimal mcems, one might consider fewer models than
in the case of LPm, since for evekyminimal mcem that
assignsl to an atomic formula, there aréwo correspond-
ing three-valued minimaly inconsistent LP models: One as-
signst to p, and the other assignsfit Also, here one might
impose further constraints on the relevant models since we
(unlike [Pr91]) do not consider models that are not exact.

Kifer and Lozinskii [KL92] also consider a similar re-
lation in the framework of annotated logics. Like Priest,
they also consider the most consistent models anaihg
the possible models. They do not restrict the attention to
some relevant subset (as we do) by constraining them in the
meta-level. See [AA94, AA96] for further discussion and a
comparison betweefr,,..» and the consequence relation
of [KL92].

10ne can view the consequence relatjeg, as a composition of the
relationsEmeerm @andE=gmin. First we confine ourselves to the mcems
of KB by usingEmecem, then we minimize the valuations that we have
got by using=gmin -



Definition 2.8 Let S be a set of assertions. An atgsre Definition 3.5 A recovered setof a knowledge-base
A(S) is called apositive (negativg fact of S if p € S (S, Ezact) is a subset of that is consistent irf w.r.t.
(—p € S). pis calledstrictly positive (negative) fact if it  Ezact.
is a positive (negative) fact antp ¢ S (p¢ S).

Example 3.6 Consider the knowledge-bas&kB =
Lemma 2.9 [AA95, Corollary 3.13] LetKB = (S, Ezact). (S,{r,u}) whereS = {p, pVgq, "pV -1, »V -, rV
If pis a strictly positive fact o5 then KB =,cem p and -, uVwv} KB ={p, pVgq, -pV-r rV-u}is
KB |fmcem —p. Strictly negative facts have the dual prop- a recovered set okB, since{p:t, ¢: L, r: f, u: f}
erty. is a consistent exact model &B’ that is expandable to

_ M={p:t, q: L,r: f, u: f, v: T}, which is an exact model
A basic property of the knowledge-bases that we con- of KB.

sider here is that for every exact model there is an mcem

which is at least as consistent. For finite knowledge-bases e now provide a method for practically recovering a
this is trivialy the case. The following proposition assure knowledge-base. This method is strongly related to finding
that this property holds ieverypropositional knowledge-  mcems forkB. (see Proposition 3.10 below).

base:

- - Definition 3.7 Let M be an exact model of a knowledge-
Proposition 2.10 (Lin's Lemma, [Pr91]) LeB be a (pos- baseKB = (S, Ezact). The set that imssociated withf
sibly infinite) set of clauses. For every exact modglof is: KBy, :{1#,6 § LA() N near (5~ 0)

KB there isan mcenM’ of KB s.t. M' >.on M. ?

Example 3.8 In Example 3.6 M is an exact model ok B,
3. Recovery of knowledge-bases andKBy =KB'.

In this section we describe what we mean by saying “re- Proposition 3.9 Every set that is associated with some ex-
covering an inconsistent knowledge-base”. In particuler w &ct modelM of KB is a recovered set &{B.

define and characterize the recovered parts of a knowledge-

base. For that we first have to expand the notion of “consis- roposition 3.10 Evc_-)ry ma>_<|mal r_ecovered set of a
tency” to the four-valued case: knowledge-bas&B is associated with some mceif of

KB.
Definition 3.1 Let S be a set of clauses.
a) Amodel M of S is consistentf fnca (S)=0. 4. Stratified knowledge-bases and their recov-
b) S is consistenif it has a consistent model. ered sets
c) KB=(S, Ezact) is consistentf S has a consistent exact
model.

In general, computing mcems for a given knowledge-
Lemma 3.2 S is consistent iff it is classically consistent. ~ base and discovering its recovered sets might not be an
easy task. Even in relatively simple cases, where &.g.
Definition 3.3 A subsetS’ C § is consistent inS w.r.t. is consistent an@zact =.A(S), finding a recovered set for
Ezact, if S’ is a consistent set, and it has a consistent exact(S, Ezact) reduces to the problem of logical satisfaction,
model that is expandable to an (not necessarily consistentkince in this case one has to provide a classical modél.for
exact model of5. Therefore, we confine ourselves to a special (nevertheless
common) family of knowledge-bases, for which we provide

Example 3.4 5’ = {p} is a consistent set, but it tcon- 4y efficient algorithm that computes recoverable sets.

sistent inS = {p, -p} w.r.t. any setFzact, since there is no

consistent model of’ that is expandable to a model 8f Definition 4.1 Let S be a set of formulaeS, — thedilu-
Similarly, 5" ={p} is consistentitf ={p, -pVq, =pV-q}  tionof § w.r.t. a partial valuatiow — is constructed from
w.rt. Ezact = {p}, but it is not consistent ir§ w.r.t. S by the following transformations:
Ezact = {q}, since there is n@onsistenexact model of
S’ that is expandable to axactmodel ofS. 1. Deletingevery € KB s.t.v(¢)e{t, T},

Now we can define what we mean by recovering an in- 2. Removing from what is left every occurrence of a lit-
consistent knowledge-base: erall such thav(l) e {f, L}.3

2This lemma is proved in [Pr91] for the three-valued case, wmier 3Note the similarity between the the dilution process andibéond—

the implicit assumption tha&zact = @. However, it is easy to prove this Lifschitz transformation [GL88] used for providing semiasto logic pro-
lemma in our case as well. grams with negations.



Definition 4.2 A set of formulaeS is calledstratified if
there is a set of “stratifications$y = S, S1, ..., S, =0, S0
that for everny0 <i<n_L1 there is @€ . A(S;) s.t.:

a) p is either a positive fact or a negative fact$f

b) Si41 is a dilution ofS; w.r.t. the partial valuatiop: ¢ if p

is a strictly positive fact oF;, p: f if pis a strictly negative
fact of S;, andp: T if p is both a positive and a negative fact
of S;.

A knowledge-bas&B = (S, Ezact) is stratified iff.S is
stratified. In all the examples given here (see especiadly th
one of Section 5), as well as in most of the known puzzles of
the literature, the involved knowledge-bases are strdtifie

Definition 4.3

a) Let S be a set of formulae anBzact C A(S). A strat-
ification Sp . .. S, of S is properwith respect taEzact if
there is n@p € Ezact and an index <:i<n s.t. pis both a
positive and a negative fact &f.

b) A knowledge-base&B = (9, Ezact) is calledproperly
stratifiediff there is a stratification of that is proper w.r.t.
Ezact.

Example 4.4 Suppose thaKB = (S, {r, u}) is the same
knowledge-base of Examples 3.6 and 3.8. A possible strati-
fication of S is So ={p, pvg, "pvV—r, rV-u, rV-w, uvu},
Sy ={-r, »V-u, rV-w, uVv}, Sy ={-u, v, uVu},
S3={-w, v}, S4=0. This stratification is proper.

The algorithm given in Figure 2 checks whether a given
knowledge-baséS, Ezact) is properly stratified. If so, it
produces proper stratifications, and allows to construct re
covered sets by providing corresponding (minimal) mcems
of (S, Ezact) (see Theorem 4.7 below).

Every valuatiornv produced by the algorithm of Figure
2 is determined by a sequence of the picked atomic
formulae{po, p1, . . ., pn} Of the calls toRECOVER. For
shortening notations we shall just writavhen referring to
an arbitrary valuation produced by the algorithm, instead

Of V(pOapla . 'apn)-

Note: It is possible to assign any other truth value to the
atoms that are assigned (during the “filling” process of
the algorithm), and stil would be an exact model &B.
But in such cases; cannot be minimal w.r.t<. In partic-

ular, if the filling value isT, theny cannot be an mcem of
KB (see the proof of Theorem 4.7a). Also, it is possible to
assignf to the elements oEzact that are assignetidur-

ing the filling process without losing any of the properties
discussed below.

Example 4.5 In our canonical example (3.6, 3.8, and 4.4),
whereS ={p, pVgq, ~pV-r, rV-u, rV-w, uVv} and

input: a knowledge-baséB = (S, Ezact)
call RECOVER(S, 0,0)

procedureRECOVER(S, v, 1)
/* § —thes:-th stratification level oKB,
v — the valuation constructed so far. */

{
if (§ = 0) outputr and return; /v € Q(KB)*/

positives:= {p€ A(S) | p€ S};
negatives= {pc A(S) | -p€ S};
if (positives= @ A negatives= 0)
halt; /* don’t continue;KB is not stratified */

if (3p € positivesn negatives) Ezact)
return; /* backtracking; not a proper stratification */

while (@p € positives\ negatives){
pick such ap;
positives:= positives\{p};
vi=vU{p:t}
Sit1 := Sp.; [*dilution */
for exeryg # ps.t.q € A(S)\ A(Six1) /*filling */
if (¢ Ezact)v:=vU{q: L}elsev:=vU{q:t};
) RECOVER(Siy1,v,i+1);
while (@p € negatives, positives) {
pick such ap;
negatives= negatives {p};
vi=vU{p: f}
Sit1 := Sp:y;  [*dilution */
foreveryg # ps.t.q € A(S)\ A(Siy1) /*filling */
if (¢ Ezact)v:=vU{q: L}elsev:=vU{q:t};
) RECOVER(Siy1,v,i+1);
while (@p € positivesn negativesp ¢ Ezact) {
pick such ap;
positives:= positives\{p};
negatives= negatives {p};
vi=vU{p: T}
Sit1 := Sp:1;  [*dilution */
for everyg # ps.t.q € A(S)\ A(Si31) [*filling */
if (¢ Ezact)v:=vU{q: L}elsev:=vU{q:t};
RECOVER(Siy1,v,i+1);

Figure 2. An algorithm for recovering strati-
fied knowledge-bases




Ezact ={r, u}, the algorithm produces a single (minimal)
mcem of KB: v(p)=t, v(q) =1, v(r)=f, v(u)=f,
andv(v) = T. Figure 3 illustrates the processing of the
algorithm in this case.

So={p, pVq, "pV-r, V-, rV-w, uVu}

Step O: pick p. setv(p)=t andv(q)= L.
Sy ={-r, V-, rV-wv, uVu}
Step 1: pick r. setv(r)=f.

Sa={-u, v, uvv}

Step 2: picku. setv(u)=7f.

S3a={-w, v}
Step 3: pickwv. setv(v)=T

S4a:®

pickv. setv(v)=f.

S3p = {_'u'a U,}
not a proper stratificatio

Step 4:

Figure 3. Generation of minimal mcems and
recovered sets for KB

Note that the algorithm does not necessarily produce
every mcem of the knowledge-base. In the last example
such an mcem is, for instancly: T,¢: L, r:¢,u:t,v: L},
However, as Theorems 4.7 and 4.8 showKB is properly
stratified the algorithm always finds at least one (minimal)
mcem, and it provides a maximal recovered setH@.

We now consider some properties of the algorithm.
Proposition 4.6 Let KB = (S, Ezact) be a finite
knowledge-base. If it is properly stratified then the algo-
rithm of Figure 2 finds every proper stratification&B and
outputs corresponding well-defined valuations $&¢S).
The algorithm halts without giving any valuation iff either
KB is not stratified, or every stratification §fis not proper
w.r.t. Ezact.

It follows from Proposition 4.6 that the algorithm halts
with a valuation for a finit&KB iff KB is properly stratified.
For the rest of this section suppose, then, #iBtis a finite
knowledge-base that is properly stratified.

Theorem 4.7 Let v be a valuation produced by the algo-
rithm for a knowledge-bask&B. Then: (ay € mcemKB),
(b) v € kmin(KB), and (c)v € Q(KB).

Proof: It is easy to see that every valuatiomproduced by
the algorithm is an exact model &B. We show thav
is also most consistent among the exact models by an
duction on the number of the recursive stép$ that are
required for creating it. lh=0 thenS; =@, so there is only
the initial step in whichv might assignT only to a literall
that is both a positive and a negative factSofSince in this
casel is assignedl” by every model ofS, » must be most
consistent. Suppose now that it takes 1 recursive steps
to createv. Denote byy; the part of the valuation that is
determined during step Then:

1) I, (S) = | e, (Si) = Incy,(S) Une, (S1)
0<i<n

n-

wherey’ = U v;. Now, let M be any mcem oKB, and

1<i<n
suppose thad/; is the reduction o to S;.

(2): e (S) = {p€ A(S)\A(51) | M(p)=T} U
{peA(S1) | M(p)=T}
= {p€ A(S)\A(S1) | M(p)=T} U
ITLCM1 (51)

By its definition,o might assignT only tol € £(S) s.t.
I,1€ S. Obviously, such ah must be assigned by every
model ofS, in particularM (1)="T. Thus:

() Inc,o(S) C {pe A(S)\A(S51) | M(p)=T}

e Suppose first thadf; is an exact model of;. Since the
creation ofv’ requires onlyn | 1 steps, then by the induc-
tion hypothesis/’ is an mcem ofS;. In particular, either
Inc,+(S1) andIncyy, (S1) are incomparable w.r.t. the con-
tainment relation, or else:

(4):  Iney(S1) C Inepr, (S1)

From (1) — (4), eithellnc, (S) and Incps(S) are incompa-
rable, orlne, (S) C Inca (S), hencev is an mcem oKB.

o If My isnotan exact model of; thenM; is cannot be a
model ofS; either, since itis a reduction of an exact model
(M) of S. Thus there is a; € 51 s.t. My(y1) € {¢, T}
SinceM is a model ofS, then by Lemma 2.2 there isyac
Sandie L(y) st. M(I)e{t, T}, and{l} U L(x1) CL(¥).
Obviously,l € A(S) \ A(S1). Butthenvo(l) ¢ {¢, T} (oth-
erwisey is eliminated in the dilution of, and sa; ¢ S1).
Moreover,vo(1) € {t, T}, since ifvo(l) & {t, T} then nec-
essarilyvo(l) =L, and this happens only if there is a literal
I'e L(¥) s.t. wo(l') is designated, and in this case agajn,
is eliminated in the dilution oF, i.e. ¢; € S1. Therefore,
vo(l) ¢ {t, T} andwo(l) € {t, T}, sowe(l) = f. L is not
assigned this value in the filling process, since again, this
would imply thaty is eliminated in the dilution of, and
soy; € S;. Thus, by the definition ofy and sinceS is
stratified, necessarilyc S andl ¢ S. HenceKB |=1. But

M is an exact model akB and soM (I) € {¢, T}. Since



we have shown thal (I) € {t, T} as well, it follows that  of its behaviour. Suppose further that this observation
M(1) =T whilev(l) = f. Thereforelncp (S) € Inc, (S). conflicts with the way the system is meant to behave. The
This completes the proof of part (a). obvious goal is to identify the components of the system
The proof of part (b) is by an induction on the number of that behave abnormally, so that the discrepancy between
recursive steps required to createand is similar to that of ~ the observed and the correct system behavior would be
part (a). Part (c) now follows from (a) and (b). explained. In such case it seems reasonable to assume that
some minimal number of components are faulty. Therefore,
Theorem 4.8 Let v be a valuation produced by the algo- the mcems and their corresponding recovered sets are good
rithm for KB. ThenKB, is a maximal recovered set of candidates for providing accurate diagnoses, especially
KB. since they minimize the set of components that are assumed

Example 4.9 Consider again Example 4.5 and Figure 3. to behave differently than expected.

KB, = {p, pVgq, —pV-r, rV-u} is a maximal recov-

ered set oKB. For dealing with these kind of problems, it is convenient

first to expand the discussion to first-order logic. It is pos-
Proof of Theorem 4.8 (outlines): By Proposition 3.9 and  Sible to do so in a straightforward way, provided that there
Theorem 4.7 KB, is a recovered set d&B. If it is not a are no quantifiers within the clauses; each clause that con-
maximal recovered set, then by Proposition 3.10 there istains variables is considered as universally quantifiech-Co
an mcemM of KB s.t. KB, C KBys. Sincev is also an sequently, a knowledge-base containing non-grounded for-
mcem ofKB (Theorem 4.7 again), then there ipa.A(S) mula, v, will be viewed as representing the <_:0rrespondin_g
s.t. v(p) # T while M(p) = T. In particular,p ¢ Ezact, set of ground formulae formed by substituting each vari-
and by the construction of, eitherp or —pis a strict fact of ~ able that appears it with every possible member of the
some stratification leve$y, of S. Therefore there is some Herbrand universel/ > Formally: KBY = (SY, Ezact),
b€ S st peAl¢) andA(¢) N Inc,(S) =0 (Otherwise ~ WhereSY ={p(¥) | $ €S, p:var(¥)— U}, pis aground

¢ is diluted in some stage before stage Thus¢ € KB, substitutionfrom the variables of every € KB to the in-
while ¢ ¢ KBy, and saKB,, ¢ KBy dividuals ofU, and Ezact consists of predicates that every

instansiation of which should be assigned classical values

Finally, let's consider some complexity issues. As we The exact models are the elementsrafd(SV, Ezact) =
have noted before, the problem of recovering arbitrary {M € mod(SY) | Vp € Ezact Vz; €U M (p(z1,. . ., zn)) €
knowledge-base is at least NP-complete. Deno®@py?)  {t, f}}. KBY is called theHerbrand expansiorof KB
that it takesO(A) running time to solve a certain problem W.r.t. Herbrand universg'.
when quering an oracle for solving problems with complex-

ity O(B). Then our algorithm require®(|S|*(*)) run- gxample 5.1 Figure 4 depicts a binary full adder, exam-
ning time to recover a knowledge-bas§, Fzact) thatis  jned extensively in the literature of diagnostic systenes(S
properly stratified. As the following proposition shows, e.g., [Ge84, Re87, Gi88, Ra92] and many others). It con-

the complexity of the algorithm is considerably reduced in gists of five components: two and-gatés and 4,, two
cases that stratification implies proper stratification: xor-gatesX; andX,, and an or-gate;.

Proposition 4.10 Whenever every stratification dfB =

(S, Ezact) is proper, it take®)(|S| - |.A(S)[) running time 1——’1 X, )
to check whetheKB is stratified, and if so, thisis also the 0 j
time needed to recover it (i.e., to provide a maximal recov-
ered set oKB).

1

1
Obvious cases in which the condition of the last proposi- Az

tion is met are Whelji]ma,ct =0, or if there is nd € Ezact
s.t. bothl € £(5) andl € L(S).

Jx)—

)
A

5. Model-based diagnosis

Suppose that one is given a description of some system

(physical device, for example) together with an observatio Figure 4. A full adder

“4In our case at every stratification level the oracle choodastahat 5In fact, this restriction guarantees that we stay, esdntia a propo-
yields, eventually, to a proper stratification. sitional level.



The full adder’s description is given by systefal. It inl | inl | in2 | ok | ok | ok | ok | ok
appears in Figure 5. X201 |01 | A1 | A2 | X1 | X2]|O01
M1 F |f [F 1t ¢+ |T |+ i
andGate(z) A ok(z) — (out(z) + (inl(z) A in2(z))), M2 |t f f t Tt T t
. . M3t [t |fFf |t |t |t |T |T
zorGate(z) A ok(z) — (out(z) < (inl(z) @ in2(z))),

)
orGate(z) A ok(z) — (out(z) <> (inl(z) V in2(z))), Figure 6. The mcems of (FA, Ezact)
andGate(z) — (—orGate(z) A ~zorGate(z)),

zorGate(z) — (—andGate(z) A —orGate(z)), FA ok(X1), zorGate(Xy) A ok(Xy out(Xy
orGate(z) — (~andGate(z) A ~zorGate(z)), (znl(\XE) ngn%(Xl)))} (X0) A ok(X1) = (out(Xa) ¢

z,nl(Xl) < ?nl(Al)' n2(X1) € in2(A1), In particular, FAys, entails (w.r.t. both= and =pcem)
inl(Az) ¢ f”z(Xz)' ' ok(z) for z € {Aq, A2, X2, 01}, but it doesnot entail
out(Xy) <> in2(4;), out(Xy) <+ inl(Xy), ok(X1). Similarly, the other two mcemaZ2 and M3, as
out(A1) < in2(01), out(Asz) <> inl(041), well as their associated sets represent respective singati
andGate(A;), andGate(Ay), in which gates{X,, A5} and gates{X_z, 0.} are fau_lties. 3
zorGate(X;), zorGate(X3), orGate(Os), These are the generally accepted diagnoses of this specific

case (see, e.g. [Re87, Example 2.2], [Gi88, Sections 15,16]

ok(A1), ok(Az), ok(X1), ok(Xz), ok(O1), and [Ra92, Examples 1,4]).

inl(X1), =in2(X1), inl(Az), out(X2), —out(On) One might treatFd;;; as the preferred recovered set,
since it is the only set that entails that only a single com-
Figure 5. The system FA ponent is faulty, and one normally expects components to

fail independently of each other. This kind of diagnosis is

Notice that the observation indicates that the physical known as ssingle fault diagnosis

circuit is faulty; both circuit outputs are wrong for the giv Next we show that the correspondence in the previ-

inputs. ' _ ous example between the fault diagnoses and the incon-
The predicatesnl(z), in2(z), andout(z) are assigned  sjstent assignments of the mcems is not accidental. First

values that correspond to binary values of the wires of e present two basic notions from the literature on model-
the system. Therefore they should have only classicalpaseq diagnosis:

values (e.g.in(G) = T for a gateG is a meaningless

value). Also, it seems natural to restrict the values of Definition 5.2 [Re87] A system is a triple

the predicatesandGate, orGate, and zorGate to be (5d, Comps, Obs), where:

only classical as well. This is because we know in a)Sd (system descriptigns a set of first order sentences.

advance what is the kind of each gafein the system, b)Comps (System components a finite set of constants.

and so the only open question abo@tis whether it ) Obs (observationkis a finite set of sentences.

behaves as expected (i.e., whetbgfG)). So, the actual

knowledge-base for the full adder (#4, Ezact), where ~ Definition 5.3 [Re87] A diagnosisis a minimal setA C

Ezact={inl, in2, out, andGate, orGate, zorGate}. Comps s.t. Sd U Obs U {ok(c) | c € Comps \ A} U
{—-ok(c) | ce A} is classically consistent.

The table of Figure 6 lists the elements of
mcen{FA, Ezact). We have omitted from the table
predicates (likeinl(X7)) that have the same (obvious)
value in every exact model ¥4, Ezact), and predicates
that have the same values as some other predicates (likgefinjtion 5.4 A correct behaviour assumptidar a given
in2(42), which is identical tan1(X3)). set of component®A C Comps is the setCBA(A) =

{ok(c) | ce A}.

The mcems of FA, Ezact), and the recovered sets that
are associated with them preserve what Reiter [Re87] callsNotation 5.5 For a given systenisd, Comps, Obs), and a
the principle of parsimonythey represent the conjecture set of componentA C Comps, denoteS(A) = 54U ObsU
that some minimal set of components are faulty. For ex- CBA(A). WheneverA = Comps we shall write justS
ample, according tdf1 the only component that behaves instead ofS(Comps). Also, in the sequel we shall continue
incorrectly is the xor gateéX;. The recovered set that is to assume thaf(A) is a set of clauses. Recall that this
associated with/ 1 reflects this indication:  FAp; = assumption can be taken without any loss of generality.

In the example above we assumed that the devices nor-
mally behave as expected. We next formalize this assump-
tion:



Proposition 5.6 Denote by~ the consequence relation
of the first order classical logic.

a) [Re87, Proposition 3.4\ C Comps is a diagnosis
for (&d, Comps, Obs) iff A is a minimal set such that
S(Comps \ A) is classically consistent.

b) [Re87, Proposition 3.3] IfA is a diagnosis for
(&d, Comps, Obs) thenS(Comps \ A) = —ok(c) for each
ceA.

When considering diagnostic systems in the classical,
two-valued logics, any inconsistency in the data causes tri

considers the contradictory data as useless, and regérds al
the remaining information unaffected. This kind of ap-
proach is nonmonotonic and paraconsistent in nature. For
a common family of knowledge-bases we have also pro-
vided an efficient algorithm for an automatic recovery. Our
method is particularly useful for diagnostics systems, nehe

it might be used for supplying a description of the well-
behaved parts of a faulty device.
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