
The Structure of Interlaced BilatticesArnon AvronDepartment of Computer ScienceSackler Faculty of Exact SciencesTel Aviv University, Ramat Aviv, Israel 69978AbstractBilattices were introduced and applied by Ginsberg and Fitting for a diversity ofapplications, such as truth maintenance systems, default inferences and logic program-ming. In this paper we investigate the structure and properties of a particularly impor-tant class of bilattices called interlaced bilattices (introduced by Fitting). The mainresults are that every interlaced bilattice is isomorphic to the Ginsberg-Fitting productof two bounded lattices and that the variety of interlaced bilattices is equivalent to thevariety of bounded lattices with two distinguishable distributive elements which arecomplements of each other . This implies that interlaced bilattices can be character-ized using a �nite set of equations. Our results generalize to interlaced bilattices resultsof Ginsberg, Fitting and J�onsson for distributive bilattices.IntroductionThe notion of a bilattice was introduced by Ginsberg in [Gi88] as a general framework for adiversity of applications, such as truth maintenance systems, default inferences and others.The notion was further investigated and applied for logic programming by Fitting ([Fi89],[Fi90], [Fi91], [Fi94]). The main idea behind bilattices is to use structures in which thereare two partial order relations, having di�erent interpretations. There should, of course,be a connection between the two relations. Ginsberg uses for this an operation of negationwhich is order preserving w.r.t. one, an involution w.r.t. to the other. Another connectionhe considered is distributive laws (12 altogether). This was generalized by Fitting whointroduced the notion of an interlaced bilattice, in which all the basic bilattice operationsare order preserving w.r.t. both partial orders.The structure of distributive bilattices is well understood since Ginsberg and Fittingproved a characterization theorem for them, to the e�ect that each such bilattice is isomor-phic to a certain product of two distributive bounded lattices. Fitting has further observedthat if we apply that construction to any two bounded lattices (not necessarily distributive)1



we get an interlaced bilattice. The converse, however, was not established, and the structureof interlaced bilattices has not, so far, been well understood.In this paper we thoroughly investigate the structure of interlaced bilatttices (with andwithout negation), and their important properties. Our main result is a generalization tointerlaced bilattices of the Ginsberg-Fitting characterization of distributive bilattices (i.e.the converse of Fitting's observation). Other central results are characterizations usingequational bases and the equivalence of the variety of interlaced bilattices with the varietyof bounded lattices with two complementary, distributive elements. (This generalizes tointerlaced bilattice results of J�onsson in [Jo94] for distributive bilattices.)NoteIn order to make the presentation complete and self-contained, we repeat, together with theappropriate references, some short proofs which have already appeared elsewhere.1 General Background1.1 De�nition [Fi90]An interlaced bilattice (IBL) is a structure B = hB;�t;�k;^;_;
;�; t; f;>;?i such that1. hB;�t;^;_; t; fi is a bounded lattice (with �t the order relation, ^ and _ the meetand join operations, and t, f the maximal and minimal elements, respectively).2. hB;�k;
;�;>;?i is also a bounded lattice.3. Each of the four operations _;^;�;
 is order preserving with respect to both �t and�k (e.g. if a �k b then a ^ c �k b ^ c).NoteIn the original de�nitions of Ginsberg and Fitting hB;�ti and hb;�ki are required to becomplete lattices. We shall call below IBLs with this property complete.1.2 De�nition [Gi88]An IBL is called distributive if all the twelve possible distributive laws concerning ^;_;
and � hold. 2



NoteFitting has observed (see, e.g. [Fi90]) that the distributive laws imply condition (3) of 1.1.For example if a �t b then b = a _ b, and so c 
 b = c 
 (a _ b) = (c 
 a) _ (c 
 b) by thedistributive laws. Hence c
 a �t c
 b in this case.1.3 De�nitionA unary operation � on an IBL B is called negation if it is order-preserving with respectto �k and an involution w.r.t. �t. In other words, � is negation if(i) ��a = a(ii) a �t b) �b �t �a(iii) a �k b)�a �t �b :Notes1. Ginsberg's original de�nition of a bilattice in [Gi88] is: a structure which satis�es the�rst two conditions in de�nition 1 (+ completeness) and has a negation.2. Obviously, if � is a negation then �(a^ b) = �a_�b, �(a_ b) = �a^�b, �(a� b) =�a��b, �(a
 b) = �a
�b, �t = f , �f = t, �> = >, �? = ?.The main method of constructing an IBL is described in the following de�nition. It wasessentially introduced by Ginsberg in [Gi88], and further generalized by Fitting in [Fi90].1.4 De�nitionLet L = hL;�L;tL;uL; 1L; 0Li and R = hR;�R;tR;uR; 1R; 0Ri be two bounded lattices.Their product, L�R, is the structure hL�R;�t;�k;^;_;
;�; t; f;>;?i de�ned as follows:(i) (a1; b1) �k (a2; b2), a1 �L a2 and b1 �R b2(ii) (a1; b1) �t (a2; b2), a1 �L a2 and b1 �R b2(iii) (a1; b1) _ (a2; b2) = (a1 tL a2; b1 uR b2)(iv) (a1; b1) ^ (a2; b2) = (a1 uL a2; b1 tR b2)(v) (a1; b1)� (a2; b2) = (a1 tL a2; b1 tR b2)(vi) (a1; b1)
 (a2; b2) = (a1 uL a2; b1 uR b2)(vii) t = h1L; 0Ri f = h0L; 1Ri > = h1L; 1Ri ? = h0L; 0Ri3



1.5 Theorem1. [Fi90,91], [Gi88] L�R is an IBL. Moreover, if both L and R are distributive latticesthen so is L �R, and if both L and R are complete lattices then so is L �R.2. [Gi88] If L is a bounded lattice then the operation �, de�ned by �(x; y) = (y; x), is anegation on L �L.The proof of this theorem is straightforward.For distributive bilattices, a converse to Theorem 1.5 was proved by Ginsberg and Fitting(in [Gi88], [Fi90]): if B is a distributive bilattice then there exist distributive bounded latticesL and R such that B is isomorphic to L�R. These L and R are unique (up to isomorphism).Ginsberg-Fitting's result will easily follow from a generalization we prove below for everyIBL.2 Basic Properties of IBLsIn this section B is a �xed interlaced bilattice.2.1 De�nition (1) [a; b]t = fx 2 B j a �t x �t bg(2) [a; b]k = fx 2 B j a �k x �k bg2.2 Proposition1. If a �t b then [a; b]t = [a
 b; a� b]k.2. If a �k b then [a; b]k = [a ^ b; a _ b]t.ProofWe show the �rst formula as an example. Assume �rst that y 2 [a; b]t, so a �t y �t b. SinceB is interlaced, a
 (a
b)�t y
 (a
b) �t b
 (a
b). Hence a
b �t y
 (a
b) �t a
b andso y
(a
b) = a
b. It follows that a
b �k y. Similarly y �k a�b. Hence y 2 [a
b; a�b]k.For the converse, assume that a �t b and a 
 b �k y �k a � b. Then a ^ (a 
 b) �ka^ y �k a^ (a� b). But, if a �t b then a = a
 a �t a
 b and so a^ (a
 b) = a. Similarly,a ^ (a � b) = a. It follows that a �k a ^ y �k a and so a ^ y = a and a �t y. Similarly,y �t b and so y 2 [a; b]t. 24



2.3 Corollary[a; b]t and [a; b]k are closed under ^;_;� and 
. Moreover, in case a �t b then [a; b]t isan interlaced bilattice, with the same order relations and bilattice operations as B (but witha; b; a
 b; a� b taking the roles of f; t;?;> respectively). Similarly, if a �k b then [a; b]k isan IBL with the same order relations and bilattice operations as B.2.4 CorollaryIf a �t b then b 
 f �k a �k b � f and a 
 t �k b �k a � t. Similarly, if a �k b thenb ^ ? �t a �t b _ ? and a ^ > �t b �t a _ >.ProofThe �rst part follows from 2.2 and the fact that if a �t b then a 2 [f; b]t and b 2 [a; t]t.Similar considerations apply for the second part.2.5 Corollary [Fi90](i) t
 f = ? ; t� f = >(ii) ? ^> = f ; ? _> = tProofSince B = [f; t]t, we have by 2.2 that B = [f 
 t; f � t]k. But also B = [?;>]k. Hence, thetwo equations in (i). The proof of (ii) is similar.2.6 Proposition(i) x ^ ? = x
 f ; x _ ? = x
 t ;(ii) x ^ > = x� f ; x _ > = x� t :ProofWe show the �rst equality. The proof of the rest is similar.Since x^? �t x we have by 2.4 that x
 f �k x^?. To show the converse it is enoughto show that x ^ ? �k x and x ^ ? �k f (since 
 is the meet operation of �k). The �rstinequality follows from ? �k x, since ? �k x) x ^ ? �k x ^ x = x. The second inequalityfollows from ? �k f , since ? �k f ) x ^ ? �k x ^ f = f . 25



Notes1. For distributive bilattices 2.6 was shown in [Jo94].2. If we substitute, e.g. > for x in the �rst equality we get another proof of > ^ ? = f .Hence 2.5 is a corollary of 2.6.2.7 Proposition(1) If x �k b then x = (x ^ b)� (x _ b)(2) If x �k b then x = (x ^ b)
 (x _ b)(3) If x �t b then x = (x
 b) _ (x� b)(4) If x �t b then x = (x
 b) ^ (x� b)ProofAgain we prove only (1).Assume x �k b. Then x^x �k x^b and so x �k x^b. Similarly, x �k x_b. By combiningthese two inequalities we get x �k (x ^ b) � (x _ b). On the other hand x 2 [x ^ b; x _ b]t,and so , by 2.2, x 2 [(x ^ b)
 (x _ b); (x ^ b)� (x _ b)]k. Hence, x �k (x ^ b)� (x _ b), andthe quality follows. 22.8 Corollary(1) x = (x ^ ?)� (x _ ?) = (x
 f)� (x
 t) ;(2) x = (x ^ >)
 (x _ >) = (x� f)
 (x� t) ;(3) x = (x
 f) _ (x� f) = (x ^ ?) _ (x ^ >) ;(4) x = (x
 t) ^ (x� t) = (x _ ?) ^ (x _ >) :ProofImmediate from 2.7 and 2.6.NoteFor distributive bilattices 2.8 is an immediate corollary of 2.5 and 2.6 (an so { of 2.6)We end this section with a result which was shown for distributive bilattices in [Jo94].6



2.9 Proposition (1) �k=�t i� f = ? i� t = >(2) �k=�t i� f = > i� t = ?Proof1. Obviously, if �k=�t then f = ? and t = >. For the converse, assume, e.g. that f = ?.Then, for all a; b:b �t a, b 2 [f; a]t , b 2 [?; a]t 2:2, b 2 [?
 a;?� a]k , b 2 [?; a]k , b �k a :2. The proof is similar. 23 The Characterization TheoremsIn this section we show that the Ginsberg-Fitting characterization of distributive billaticesapply to IBLs in general, with the same construction.We assume, again, that B is a �xed IBL.3.1 Notation LB = fx j x �t ?g RB = fx j x �t ?g3.2 Proposition1. LB = fx j x �k tg ; RB = fx j x �k fg2. The relations �t and �k on LB are identical while on RB they are inverse to eachother.Proof1. RB = [f;?]t 2:2= [f 
?; f �?]k = [?; f ]k = fx j x �k fg. The proof for LB is similar.2. Immediate from Part 1, 2.9 and 2.3.3.3 TheoremIf B is an IBL then there are bounded lattices L;R such that B is isomorphic to L � R.These L and R are unique up to isomorphism.7



ProofWe �rst prove uniqueness. So assume B is isomorphic to L�R, where L and R are boundedlattices. Now, L is obviously isomorphic to the sublattice hf(x; 0R) j x 2 Lg;�ti of L � R(where �t here is that of L�R). But f(x; 0R) j x 2 Lg is exactly LL�R, which is isomorphicto LB (since L � R is isomorphic to B). Hence, L is isomorphic to hLB;�ti (where here�t is that of B) and so is unique up to isomophism. Similarly, R should be equivalent tohRB;�ti, and so is also unique.To prove existence, we use the two condidates that are naturally suggested by the proofof uniqueness (and are the ones used also in [Gi88] and [Fi90] for distributive bilattices):Let LB = hLB;�ti (= hLB;�ki ; by 3:2)RB = hRB;�ti (= hRB;�ki ; by 3:2) :De�ne g : B ! LB �RB by g(x) = (x _ ?; x ^ ?). We show that g is an isomorphism of Bon LB �RB.1That g is one-one is immediate from 2.8(1).To show that g is onto, let (a; b) 2 LB � RB. We show that g(a � b) = (a; b). In otherwords, we show that if a �t ? �t b then, (i) (a � b) _ ? = a; (ii) (a � b) ^ ? = b. For(i) note that since a �k a � b, a �t (a � b) _ ? by 2.4. On the other hand, since a �t b,a = a � a �t a � b. Since here also a �t ? it follows that a �t (a � b) _ ?. Hencea = (a� b) _ ?. The proof of (ii) is similar.Next we need to show that a �t b , g(a) �t g(b) and a �k b , g(a) �k g(b). Weshow the second quivalence (the proof of the �rst is similar). So assume a �k b. Thena _ ? �k b _ ? and a ^ ? �k b ^ ?. By 3.2 this means that a _ ? �LB b _ ? anda ^ ? �RB b ^ ?. Hence g(a) = (a _ ?; a ^ ?) �k (b _ ?; b ^ ?) = g(b). Conversely,assume g(a) �k g(b) and so a _ ? �k b _ ?, a ^ ? �k b ^ ?. This immediately entails thata 2:8= (a _ ?)� (a ^ ?) �k (b _ ?)� (b ^ ?) 2:8= b. 2Other characterizations are easy consequences of 3.3.3.4 PropositionA structure B = hB;�t;�ki is a complete IBL i� there exist two complete lattices L;R suchthat B is isomorphic to L �R.1Most of the details of the proof are exactly as in [Fi90]. The proof that g is surjective is the onlytrue innovation. Of course, what makes the reproducing of that proof possible is the demonstration in theprevious section that the relevant facts obtain also for interlaced bilattices.8



ProofThe \if" part is straightforward. For the \only if" we note that if B is complete then by anobvious generalization of 2.3, so are LB and RB of the proof of 3.3. 23.5 Proposition ([Gi88],[Fi90])A structure B = hB;�t;�ki is a (complete) distributive bilattice i� there exist (complete)distributive bounded lattices L;R such that B is isomorphic to L �R.ProofAgain the \if" part is easy, while the \only if" part follows from the proof of 3.3 and the factthat if B is a distributive bilattice Then LB;RB are necessarily distributive lattices as well.23.6 PropositionAn IBL B is distributive i� ^ and _ (or � and 
) are distributive over each other.ProofSince LB and RB are de�ned in terms of �t alone (or �k alone), if hB;�ti is a distributivelattice so are LB and RB. Hence so is also LB �RB, which is isomorphic to B. 2NoteThis means that for IBLs, the 12 conditions in the de�nition of a distributive bilattice canbe replaced by just two.We now establish a converse to Theorem 1.5, part (2).3.7 PropositionSuppose B is a (complete, distributive) IBL with negation. Then there exist a (complete,distributive) bounded lattice L, so that hB;�i is equivalent to L�L, equipped with Ginsberg'snegation (i.e. �(x; y) = (y; x)). 9



ProofThe proof is practically identical to that in [Fi94] for the distributive case: The function gde�ned in the proof of 3.3 (g(x) = (x _ ?; x ^ ?)) is an isomorphism of B on LB �RB. Onthe other and the function �x:�x is easily seen to be an isomorphism between the latticesLB and RB. Hence the function h de�ned by h(x; y) = (x;�y) is an isomorphism betweenLB�RB and LB�LB. It follows that f = h�g is an isomorphism between B and LB�LB. Itremains only to show that f preserves also the negation operator. Now from the de�nitions,f(x) = (x _ ?;�(x ^ ?)) = (x _ ?;�x _ ?) (see note (2) after De�nition 1.3). Hencef(�x) = (�x_?;��x_?) = (�x_?; x_?) = �f(x) (according to Ginsberg's de�nitionof � in LB 
 LB). 24 ApplicationsIn this section we give some examples of the power of the characterization theorem 3.3, whichallows us to reduce claims about bilattices to simple calculations.4.1 De�nition1. An element a of an IBL is called distributive if each equation of the formx �1 (y �2 z) = (x �1 y) �2 (x �1 z)(were �1; �2 2 f_;^;�;
g) obtains in case x = a or y = a or z = a.2. Distributive elements of a lattice are de�ned similarly.4.2 Theorem>;?; t and f are all distributive (in any IBL B).ProofIt is enough, by 3.3, to check it for IBLs of the form L�R. Obviously, the equation obtainsthere i� the corresponding distribution equations obtain for each component separately.Since >;?; t; f are all de�ned in terms of the extreme elements of L and B, and since suchelements of a lattice are always distributive (trivial), the claim follows. 210



An exampleSuppose �1 = _, �2 = 
, x = (x1; x2), y = t = (1L; 0R), z = (z1; z2),(x1; x2) _ ((1L; 0R)
 (z1; z2)) = (x1; x1) _ (1L uL z1; 0R uR z2) = (x1; x2) _ (z1; 0R)= (x1 tL z1; x2 uR 0R) = (x1 tL z1; 0R)((x1; x2) _ (1L; 0R))
 ((x1; x2) _ (z1; z2)) = (1L; 0R)
 (x1 tL z1; x2 uR z2) = (x1 tL z1; 0R) :NoteIn [Fi90], Fitting pointed out that in his proof of the analogue of 3.3 for distributive bilattices,only instances involving ? of the distributive laws are used. Hence the theorem is valid forevery IBL in which ? is distributive (and similarly for t; f;>). It follows that an alternativeproof of 3.3 can be achieved if we prove 4.2 directly. This is possible, but the proof is longer.One of the remarkable properties of all known �nite IBLs is that they can be representedby a two-dimensional graph, in which one axis represents the �t relation, while the otherthe �k relation. Moreover, the same edge on the graph between points A and B means thatA and B are immediate successors according to both relations (although it is possible thatA is an immediate �t-successor of B while B is an immediate �k-successor of A). In [Av95]we have shown that all �nite IBLs have in fact such a graphic representation. The key forthis was the next result. With the help of 3.3, we can obtain a new easy proof of it.4.3 PropositionLet a <1t b (a <1k b) mean that b is an immediate �t (�k) successor of a. Then if a <1t b,then a <1k b or b <1k a. Similarly, if a <1k b then a <1t b or b <1t a.ProofAgain it is enough to show this for bilattices of the form L�R. So suppose that (a1; b1) <1k(a2; b2). It is easy to see that this can happen only if either a1 = a2 and b1 <1R b2 or if b1 = b2and a1 <1L a2. In the �rst case (a2; b2) <1t (a1; b1), while in the second (a1; b1) <1t (a2; b2). 2NoteIn [Av95] it has been conjectured that every �nite bilattice which has the property describedin 4.3 (such bilattices were called there \precise") is necessarily interlaced. This conjectureis wrong, even if the bilattice has a negation. A counterexample is given by the followingbilattice EIGHT : 11
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t
k t� a>af b ? � b��� � � � ��That EIGHT is not interlaced follows immediately from the following proposition.4.4 PropositionA �nite bilattice B is interlaced only if jBj = jLBj � jRBj (where LB = fx 2 B j x �t ?g,RB = fx 2 B j x �t ?g).ProofImmediate from the proof of 3.3, which shows that if B is interlaced then B is isomorphic toLB �RB. 24.5 CorollaryIf B is a �nite IBL which has a prime number of elements then either �t=�k or �t=�k.ProofImmediate from 4.4 and 2.9.4.5.1 An ExampleThe bilattice DEFAULT of Ginsberg ([Gi88]) has seven elements and is not trivial. Henceit is not interlaced.A similar negative criterion for IBLs with negation is given in the next corollary.12



4.6 CorollaryIf B is a �nite IBL with negation then the number of elements in B is a perfect square.ProofImmediate from 3.7.An ExampleIn [Fi91], Fitting presented an IBL called SIX as an example of an IBL with no negation.By 4.6, the fact that SIX has no negation follows simply from the fact that it has sixelements.5 An Equational BasisIn [Jo94], J�onsson shows that the variety of distributive bilattices is equivalent to the varietyof all algebras hA;�;
;>;?; f; ti in which hA;�;
;>;?i is a bounded distributive lattice(with > and ? as the upper and lower bounds) and f; t are two complementaty elements ofA (i.e. t� f = >, t
 f = ?). We proceed now to show an analogous result for the varietyof IBLs.5.1 De�nitionA structure L = hB;�k;
;�;?;>; t; fi is a potential IBL if:1. hB;�k;
;�;?;>i is a bounded lattice;2. t; f are distributive elements of L which are complements of each other. In other words,the following equations obtain:(I) t� f = > t
 f = ?(II) a
 (t� b) = (a
 t)� (a
 b) a� (t
 b) = (a� t)
 (a� b)a
 (f � b) = (a
 f)� (a
 b) a� (f 
 b) = (a� f) 
 (a� b)(III) t
 (a� b) = (t
 a)� (t
 b) t� (a
 b) = (t� a)
 (t� b)f 
 (a� b) = (f 
 a)� (f 
 b) f � (a
 b) = (f � a)
 (f � b)13



NoteSince the variety of bounded lattices has an equational basis (i.e. can be de�ned by a set ofequations { see [Bi48]), so does the variety of potential IBLs.Our next proposition shows that the set of equations in the equational basis for potentialIBLs can be reduced somewhat.5.2 PropositionThe set of 6 equations in (I) and (II) of 5.1 can be replaced by the following two equations.(i) x = (x
 t)� (x
 f)(ii) x = (x� t)
 (x� f)ProofFor one direction, assume (I) and (II). Thenx = x
> (I)= x
(t�f) (II)= (x
t)�(x
f) ; x = x�? (I)= x�(t
f) (II)= (x�t)
(x�f) :For the converse, assume (i),(ii) and the equations in III of 5.1. Substituting > for x in(i) and ? for x in (ii), we get the equations in (I). Next we prove the �rst equation in II asan example, leaving the rest to the reader:a
 (t� b) (i)= [(a
 (t� b))
 t]� [(a
 (t� b))
 f ]= [a
 ((t� b)
 t)]� [a
 ((t� b)
 f)](III)= (a
 t)� [a
 ((t
 f)� (b
 f))]= (a
 t)� [a
 (?� (b
 f))] by (I), which has already been proved,= (a
 t)� (a
 b
 f)(a
 t) + (a
 b) (i)= (a
 t)� [((a
 b)
 t)� (a
 b)
 f ]= [(a
 t)� ((a
 t)
 b)]� ((a
 b)
 f)= (a
 t)� ((a
 b)
 f) since �;
 are lattice operations.Hence a
 (t� b) = (a
 t)� (a
 b). 2The main theorem of this section is the following.5.3 TheoremThe varieties of IBLs and of potential IBLs are equivalent. Speci�cally:1. If B is an IBL then the reduct hB;�k;�;
;>;?; t; fi is a potential IBL.14



2. In any potential IBL B, it is possible to de�ne, in a unique way, a partial order �tso that the resulting structure is an IBL with t and f as the upper and lower boundsof �t.Proof1. Immediate from 2.5 and 4.2 (Note: using 5.2 and 2.8 one need only show the equationsin III of 5.2. This can in fact be done directly, without appealing to the characterizationtheorem. For example, since t �t b, t 
 b �t b 
 b = b. Similarly, t 
 c �t c. Hence,(t 
 b) � (t 
 c) �t b � c. By 2.4 this entails: (t 
 b) � (t 
 c) �k t 
 (b � c). Theconverse is true since hB;�k;
;�i is a lattice.)2. Uniqueness is obvious from the following two equations, the validity of which in everyIBL can easily be checked using 3.3:2(�) x _ y = (x
 t)� (y 
 t)� (f 
 x
 y)(��) x ^ y = (x
 f) � (y 
 f)� (t
 x
 y)It remains to show that by using equations (�) and (��) to de�ne ^ and _ in a givenpotential IBL B, we really get an IBL.To make reading easier we shall write (until the end of this proof) + instead of �, xyinstead of x
 y, and we shall omit parentheses in the usual way. For example, (�) and (��)above will be rewritten as follows:(�) x _ y = tx+ ty + fxy (��) x ^ y = fx+ fy + txyLemma 1^ and _ as de�ned in (�) and (��) are associative, commutative and idempotent.Proof of Lemma 1We do the case of _. Commutativity is trivial, while idempotency easily follows from 5.2(i).It remains to to show associativity. Well, by de�nition:(x _ y) _ z = t(tx+ ty + fxy) + tz + f(tx+ ty + fxy)z2J�onsson uses in [Jo94] other formulas, which are also valid in every IBL, but those presented here arebetter for our needs. 15



using the distributivity of t and f this reduces tottx+ tty+ tfxy + tz + (ftx+ fty + ffxy)zsince ft = ?, ?a = ?, ?+ a = a and aa = a, this reduces to tx+ ty+ tz+ fxyz. A similarcomputation shows that x _ (y _ z) reduces to the same expression. Hence the equality.Lemma 2 x _ y = y i� x ^ y = x :Proof of Lemma 2Assume, for example, that x _ y = y, then:x ^ y = fx+ fy + txy = fx+ f(x _ y) + tx(x _ y)= fx+ f(tx+ ty + fxy) + xt(tx+ ty + fxy)= fx+ ftx+ fty + ffxy + x(ttx+ tty + tfxy) ; since t; f are distributive,= fx+ fxy + x(tx+ ty) ; since tf = ?= ((fx) + (fx)y) + xt(x+ y) ; since t is distributive= fx+ t(x(x+ y)) by the absorption laws in a lattice= fx+ tx by the absorption laws in a lattice= x by 5.2(i) :Lemmas 1 and 2 together imply (see [Bi48]) that by de�ningx �t y ,Df x _ y = y (, x ^ y = x)we get a lattice hB;�ti in which ^ and _ are the lattice operations. We show next that thislattice is bound by t and f . Indeed, for every x 2 Bt _ x = tt+ tx+ ftx = (t+ tx) +?x = t+? = tf _ x = tf + tx+ ffx = ?+ (tx+ fx) = x by 5.2(i) :It remains to show that hB;�k;�ti is interlaced. Now the fact that if x �k y thenx _ z �k y _ z and x ^ z �k y ^ z easily follows from the de�nitions of _ and ^ and thefact that the lattice operations � and 
 are order preserving w.r.t. �k. The proof of thetheorem will be concluded, therefore, by the following two lemmas.16



Lemma 3If x �t y then x+ z �t y + z.Lemma 4If x �t y then xz �t yz.Proof of Lemma 3We are assuming that y = x_y = tx+ty+fxy. We want to prove that (x+z)_(y+z) = y+z(x+ z) _ (y + z) = t(x+ z) + t(y + z) + f(x+ z)(y + z)= tx+ tz + ty + tz + (x+ z)(f � (tx+ ty + fxy + z)) ; since y = x _ y= tx+ ty + tz + (x+ z)(ftx+ fty + ffxy + fz)= tx+ ty + tz + (x+ z)(fxy + fz)= tx+ ty + tz + f(x+ z)(xy + z)but x+ z �k xy + z. Hence (x+ z)(xy + z) = xy + z. It follows that:(x+ z) _ (y + z) = tx+ ty + tz + f(xy + z)= (tx+ ty + fxy) + (tz + z)= y + z (since tx+ ty + fxy = y)Proof of Lemma 4Again we assume that y = x _ y. We show this time that xz ^ yz = xz.xz ^ yz = fxz + fyz + txzyz= fxz + f(tx+ ty + fxy)z + t(tx+ ty + fxy)xz= fxz + (ftx+ fty + fxy)z + (tx+ ty + tfxy)xz= fxz + fxyz + (tx+ ty)xz= ((fxz) + (fxz) � y) + t((x+ y)x)z since t is distributive,= fxz + txz (by the absorption laws)= xz (by 5.2) 217



5.4 Corollary [Jo94]Suppose hB;�k;
;�;?;>; f; ti is a structure in which hB;�k;
;�;?;>i is a boundeddistributive lattice and t; f are two complementary elements of B. Then there exists aunique partial order �t on B such that B = hB;�k;
;�;?;>;�t ^;_; f; ti is an IBL.This IBL is distributive.Prooft and f are trivially distributive here, so the existence of a unique �t which provides Bfollows from 5.3. It remains to show that this B is distributive. This follows immediatelyfrom 3.6. 2NoteUnlike in the distributive case, the conditions t� f = >, t
 f = ? are not su�cient in thegeneral interlaced case, and we do need the extra condition that t; f should be distributiveelements. Thus in the following bounded lattice
�0f > t?f; t are complementary, but there is no way to de�ne an appropriate �t. This is an immediateconsequence of 4.5.5.5 CorollaryA �nite lattice which has a prime number of elements and two complementary elements,di�erent from the l.u.b and g.l.b of the lattice, cannot be distributive.18



ProofAgain, this follows from 5.4 and 4.5. 2We end with the following observation:5.6 TheoremThe variety of interlaced bilattices can be de�ned by a set of equations.ProofThe results of this section provide several alternative equational bases for the variety of IBLs(with or without negation): In the form of potential IBLs we have already provided it abovewith two such bases. A basis for the full signature (with _ and ^ but, of course, without�t;�k) can be obtained from them just by adding equations (�) and (��) from the proof of5.3. 2References[Av95] Avron A., A Note on the Structure of Bilattices Forthcoming in the Journal ofMathematical Structures in Computer Science.[Bi48] Birkho� G. Lattice theory, Providence (A.M.S) (1948).[Fi89] Fitting M., Negation as refutation. Proc. 4th Annual Symp. on Logic in ComputerScience, IEEE Press (pp. 63-70); 1989.[Fi90] Fitting M., Bilattices in logic programming. The 20th Int. Symp. on Multiple-ValuedLogic (G.Epstein - Ed.), IEEE Press (pp.238-246); 1990.[Fi91] Fitting M., Bilattices and the semantics of logic programming. Journal of LogicProgramming, Vol.11, No.2 (pp. 91-116); Aug. 1991.[Fi94] Fitting M., Kleene's three-valued logics and their children. Fundamenta InformaticaeVol.20 (pp. 113-131); 1994.[Gi88] Ginsberg M.L.,Multivalued logics: a uniform approach to reasoning in AI. ComputerIntelligence, Vol.4 (pp.256-316); 1988.[Jo94] J�onsson B., Distributive Bilattices, Vanderbilt University, Dec 1994.19


