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Abstract

Bilattices were introduced and applied by Ginsberg and Fitting for a diversity of
applications, such as truth maintenance systems, default inferences and logic program-
ming. In this paper we investigate the structure and properties of a particularly impor-
tant class of bilattices called interlaced bilattices (introduced by Fitting). The main
results are that every interlaced bilattice is isomorphic to the Ginsberg-Fitting product
of two bounded lattices and that the variety of interlaced bilattices is equivalent to the
variety of bounded lattices with two distinguishable distributive elements which are
complements of each other . This implies that interlaced bilattices can be character-
ized using a finite set of equations. Our results generalize to interlaced bilattices results
of Ginsberg, Fitting and Jénsson for distributive bilattices.

Introduction

The notion of a bilattice was introduced by Ginsberg in [Gi88] as a general framework for a
diversity of applications, such as truth maintenance systems, default inferences and others.
The notion was further investigated and applied for logic programming by Fitting ([Fi89],
[Fi90], [Fi91], [Fi94]). The main idea behind bilattices is to use structures in which there
are two partial order relations, having different interpretations. There should, of course,
be a connection between the two relations. Ginsberg uses for this an operation of negation
which is order preserving w.r.t. one, an involution w.r.t. to the other. Another connection
he considered is distributive laws (12 altogether). This was generalized by Fitting who
introduced the notion of an interlaced bilattice, in which all the basic bilattice operations
are order preserving w.r.t. both partial orders.

The structure of distributive bilattices is well understood since Ginsberg and Fitting
proved a characterization theorem for them, to the effect that each such bilattice is isomor-
phic to a certain product of two distributive bounded lattices. Fitting has further observed

that if we apply that construction to any two bounded lattices (not necessarily distributive)



we get an interlaced bilattice. The converse, however, was not established, and the structure
of interlaced bilattices has not, so far, been well understood.

In this paper we thoroughly investigate the structure of interlaced bilatttices (with and
without negation), and their important properties. Our main result is a generalization to
interlaced bilattices of the Ginsberg-Fitting characterization of distributive bilattices (i.e.
the converse of Fitting’s observation). Other central results are characterizations using
equational bases and the equivalence of the variety of interlaced bilattices with the variety
of bounded lattices with two complementary, distributive elements. (This generalizes to

interlaced bilattice results of Jonsson in [Jo94] for distributive bilattices.)

Note

In order to make the presentation complete and self-contained, we repeat, together with the

appropriate references, some short proofs which have already appeared elsewhere.

1 General Background
1.1 Definition [Fi90]
An interlaced bilattice (IBL) is a structure B = (B, <4, <;, A\, V,®, @, 1, f, T, L) such that

L. (B, <4, A\, V,t, f) is a bounded lattice (with <; the order relation, A and V the meet

and join operations, and ¢, f the maximal and minimal elements, respectively).
2. (B, <k, ®,8,T,L) is also a bounded lattice.

3. Each of the four operations V, A, &, @ is order preserving with respect to both <; and
<k (e.g.ifa <p bthen a A e <pbAc).
Note

In the original definitions of Ginsberg and Fitting (B, <;) and (b, <j) are required to be
complete lattices. We shall call below I BLs with this property complete.

1.2 Definition [Gi88]

An IBL is called distributive if all the twelve possible distributive laws concerning A, V, ®
and @ hold.



Note

Fitting has observed (see, e.g. [Fi90]) that the distributive laws imply condition (3) of 1.1.
For example if « <; bthen b=a Vb, andso c@b=c® (aVb) = (c@a)V (c@b) by the

distributive laws. Hence ¢ ® a <; ¢ ® b in this case.

1.3 Definition

A unary operation ~ on an IBL B is called negation if it is order-preserving with respect

to <z and an involution w.r.t. <;. In other words, ~ is negation if

(i) ~rod = a
(ll) a St b = ~b St ~da

(iii) a <p b= ~a<;~b.

Notes

1. Ginsberg’s original definition of a bilattice in [Gi88] is: a structure which satisfies the

first two conditions in definition 1 (4+ completeness) and has a negation.

2. Obviously, if ~ is a negation then ~(a Ab) = ~aV ~b, ~(aVb) = ~aN~b, ~(a B b) =
Na@/\/b7 N(d@b):wd@wb7 /\/t:f‘7 /\/f‘:t7 N—l—: —l—7 NJ_: J_

The main method of constructing an I BL is described in the following definition. It was

essentially introduced by Ginsberg in [Gi88], and further generalized by Fitting in [Fi90].

1.4 Definition

Let £ = (L,<p,Ur,Mg,15,05) and R = (R, <g,Ugr,MNg, 1r,0r) be two bounded lattices.
Their product, LOR, is the structure (L x R, <;, <p, A\, V, @, B, 1, f, T, L) defined as follows:

(1 ) = a1 SL a9 and bl SR bg
(11 ) = a1 SL a9 and bl ZR bg

)
)
)
(iv)
)
)
)

(iii V (az, b)) = (a1 Ug az, by Mg by)

A (az,b2) = (a1 Mg az, by Ug by)
(v ar, b)) @ (az, by) = (a1 Uy ag, by Ug by)
(vi ar, by) @ (ag, by) = (a1 My ag, by Mg by)

=(lr,0r)  f=(0,1r) T ={(lz,1r) L =(0z,0g)

(vii



1.5 Theorem

1. [Fi90,91], [Gi88] L ® R is an [BL. Moreover, if both L and R are distributive lattices
then so is L &R, and if both L and R are complete lattices then so is L (O R.

2. [Gi88] If L is a bounded lattice then the operation ~, defined by ~(x,y) = (y,x), is a

negation on L & L.

The proof of this theorem is straightforward.

For distributive bilattices, a converse to Theorem 1.5 was proved by Ginsberg and Fitting
(in [Gi88], [Fi90]): if B is a distributive bilattice then there exist distributive bounded lattices
L and R such that B is isomorphic to LOR. These £ and R are unique (up to isomorphism).

Ginsberg-Fitting’s result will easily follow from a generalization we prove below for every

IBL.

2 Basic Properties of I BLs

In this section B is a fixed interlaced bilattice.

2.1 Definition

(1) fa,b]i={r € Bla<;z < b}
(2)  fa,blp={xr € Bla<,x <, b}

2.2 Proposition
L. If a <; b then [a,b]; = [a @ b,a @ b].

2. If a <i b then [a,b]y = [a A b,aV bl

Proof

We show the first formula as an example. Assume first that y € [a, b], so a <; y <; b. Since
B is interlaced, a @ (¢ @b) <; y@ (a®@b) <, b@(a@b). Hence a @b <; y@ (a®@b) <; a@band
s0 Y@ (a®@b) = a®@b. It follows that a @b < y. Similarly y < a®b. Hence y € [a @b, aF b]y.

For the converse, assume that ¢ <; b and a @b <p y <p a B b. Then a A (¢ @ b) <,
alNy <paA(a®db). But,ifa <;bthena =a®a <, a®@band so aA(a®b) = a. Similarly,
aN(a®b) =a. Itfollows that ¢ <, a Ay < a and so a ANy = a and a <; y. Similarly,

y <;band so y € [a, b],.



2.3 Corollary

[a,b]; and [a,b]; are closed under N\,V,& and @. Moreover, in case a <; b then [a,b; is
an interlaced bilattice, with the same order relations and bilattice operations as B (but with
a,b,a @ b,a @b taking the roles of f,t, L, T respectively). Similarly, if a <j b then [a, by is
an I BL with the same order relations and bilattice operations as B.

2.4 Corollary

Ifa <;bthenb® f <pa <, bDf and a®@t <, b <p a @ t. Similarly, if a <. b then
bANL<;a<;,bVLandaANT <;6<,aVT.

Proof

The first part follows from 2.2 and the fact that if « <; b then « € [f,b]; and b € [a,];.

Similar considerations apply for the second part.

2.5 Corollary [Fi90]

(i) t@f=1, tef=T

(ii) LAT=f, L1vT=t
Proof
Since B = [f,1]:, we have by 2.2 that B = [f @ ¢, f @ t];. But also B =[L, T];. Hence, the
two equations in (i). The proof of (ii) is similar.

2.6 Proposition

(i) rANL=z®f, xVI=x®t,
(ii) cANT=xd [, VT =xzPt.

Proof

We show the first equality. The proof of the rest is similar.

Since x A L <; x we have by 2.4 that + ® f <; 2 A L. To show the converse it is enough
to show that @ A L < @ and 2 A L < f (since @ is the meet operation of <;). The first
inequality follows from L < x, since L <p x = o A L < 2 Az = x. The second inequality
follows from L <. f,since L < f=a AL <paAf=1F. O
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Notes

1. For distributive bilattices 2.6 was shown in [Jo94].

2. If we substitute, e.g. T for z in the first equality we get another proof of T A L = f.
Hence 2.5 is a corollary of 2.6.

2.7 Proposition

(1) If v > b then x = (x A b) & (x V b)
(2) If v <p b then x = (x A b) @ (z V b)
(3) If £ >, b then x = (2 @ b) V (2 B b)
(4) If e <; b then x = (2 @ b) A (2 B b)

Proof

Again we prove only (1).

Assume x > b. Then Az >} xAband so ¢ > xAb. Similarly, z >, Vb. By combining
these two inequalities we get @ >; (@ A b) & (2 V b). On the other hand x € [z A b,x V b];,
and so , by 2.2, x € [(x A b) @ (2 V b),(x Ab) B (x V b)]y. Hence,  <j (x Ab) & (xVb), and
the quality follows. a

2.8 Corollary

(1) r=@ANL)BEVL)=(@af)o(zat),
(2) r=@AT)@@EVT)=(df)(xdt),
(3) r=@@f)VEdf=@AL)V(EAT),
(4) r=(@@t) AN(zdt)=(xV L)A(zVT).

Proof

Immediate from 2.7 and 2.6.

Note

For distributive bilattices 2.8 is an immediate corollary of 2.5 and 2.6 (an so — of 2.6)

We end this section with a result which was shown for distributive bilattices in [Jo94].



2.9 Proposition

(1) G=< iff f=Lifft=T
(2) <=2 iff f=T ifft=1

Proof

1. Obviously, it <;=<; then f = 1 and ¢t = T. For the converse, assume, e.g. that f = L.
Then, for all a, b:

b<iaobe[fdiebe[ldEBbe[loaldadisbe|laisb<ia.

2. The proof is similar. a

3 The Characterization Theorems

In this section we show that the Ginsberg-Fitting characterization of distributive billatices
apply to I BLs in general, with the same construction.
We assume, again, that B is a fixed [ BL.

3.1 Notation

Lg={z|ax> L} Rg={z|x < L}

3.2 Proposition
L. Lp={a |z <t} Reg={xz |z <k f}

2. The relations <; and <;, on Lp are identical while on Rp they are inverse to each
other.

Proof
. Re=1f, L] 22 [f@ L, f@® Lk =[L, flx ={x | 2 < f}. The proof for Lg is similar.

2. Immediate from Part 1, 2.9 and 2.3.

3.3 Theorem

If B is an [ BL then there are bounded lattices L, R such that B is isomorphic to L & R.

These L and R are unique up to isomorphism.
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Proof

We first prove uniqueness. So assume B is isomorphic to £ (® R, where £ and R are bounded
lattices. Now, L is obviously isomorphic to the sublattice ({(x,0g) | # € L},<s) of LOR
(where <; here is that of LOR). But {(2,0r) | v € L} is exactly Lzor, which is isomorphic
to Lp (since L ® R is isomorphic to B). Hence, £ is isomorphic to (Lg,<;) (where here
<; is that of B) and so is unique up to isomophism. Similarly, R should be equivalent to
(Rg,>1t), and so is also unique.

To prove existence, we use the two condidates that are naturally suggested by the proof

of uniqueness (and are the ones used also in [Gi88] and [Fi90] for distributive bilattices):

Let EB = <LBv §t> (: <LBv §k> ) by 32)
RB — <R37 Zt> (: <R37 §k> ) by 32) .

Define g : B — Lg x Rg by g(x) = (xV L,2 A L). We show that ¢ is an isomorphism of B
on Lz ® Rg.!

That ¢ is one-one is immediate from 2.8(1).

To show that ¢ is onto, let (a,b) € Lg x Rg. We show that g(a & b) = (a,b). In other
words, we show that if @ >, L >; b then, (i) (¢ & b)V L = a; (ii) (a & b) A L = b. For
(i) note that since a <y a b, a <; (a & b) V L by 2.4. On the other hand, since a >; b,
a = a@®a >; a®b Since here also @ >; L it follows that ¢ >; (¢ & b) V L. Hence
a=(a®b)V L. The proof of (ii) is similar.

Next we need to show that « <; b & g¢(a) <; g(b) and a < b < g(a) <p g(b). We
show the second quivalence (the proof of the first is similar). So assume a <; b. Then
aV Ll <, bV Land a AL <, bA L. By 3.2 this means that « V L <, bV L and
aN L <z, bA L. Hence g(a) = (aV Lya AN L) < (bV L,bA L) = ¢g(b). Conversely,
assume g(a) <g g(b) and so aV L <, bV L, a A L <, bA L. This immediately entails that
a2 (aVv L) ®an L)< (bV L)@ (bAL)Es. O

Other characterizations are easy consequences of 3.3.

3.4 Proposition

A structure B = (B, <;, <) is a complete I BL iff there exist two complete lattices L, R such
that B is isomorphic to L & R.

!Most of the details of the proof are exactly as in [Fi90]. The proof that g is surjective is the only
true innovation. Of course, what makes the reproducing of that proof possible is the demonstration in the
previous section that the relevant facts obtain also for interlaced bilattices.



Proof

The “if” part is straightforward. For the “only if” we note that if B is complete then by an

obvious generalization of 2.3, so are Lz and Rp of the proof of 3.3. O

3.5 Proposition ([Gi88],[Fi90])

A structure B = (B, <;, <) is a (complete) distributive bilattice iff there exist (complete)
distributive bounded lattices L, R such that B is isomorphic to L © R.

Proof

Again the “if” part is easy, while the “only if” part follows from the proof of 3.3 and the fact
that if B is a distributive bilattice Then Lg, Rp are necessarily distributive lattices as well.
O

3.6 Proposition

An IBL B is distributive iff N and V (or & and @) are distributive over each other.

Proof

Since Lz and Rp are defined in terms of <; alone (or <j alone), if (B, <;) is a distributive
lattice so are Lz and Rz. Hence so is also Lz & Ry, which is isomorphic to B. O
Note

This means that for /B Ls, the 12 conditions in the definition of a distributive bilattice can
be replaced by just two.

We now establish a converse to Theorem 1.5, part (2).

3.7 Proposition

Suppose B is a (complete, distributive) I BL with negation. Then there exist a (complete,
distributive) bounded lattice L, so that (B, ~) is equivalent to LO L, equipped with Ginsberg’s

negation (i.e. ~(x,y) = (y,x)).



Proof

The proof is practically identical to that in [Fi94] for the distributive case: The function ¢
defined in the proof of 3.3 (¢g(z) = (' V L,z A L)) is an isomorphism of B on Lz ® Rpz. On
the other and the function Ax.~x is easily seen to be an isomorphism between the lattices
Lz and Rp. Hence the function h defined by h(z,y) = (x,~y) is an isomorphism between
Lr®Rgand L L. It follows that f = hog is an isomorphism between B and Lz L. It
remains only to show that f preserves also the negation operator. Now from the definitions,
flz) = (Vv L~z A L)) = (xV L,~xV L) (see note (2) after Definition 1.3). Hence
flrax)=(~aV L ~~aVLl)=(~zV L eV Ll)=~f(zx) (according to Ginsberg’s definition
of ~in Lg @ Lp). O

4 Applications

In this section we give some examples of the power of the characterization theorem 3.3, which

allows us to reduce claims about bilattices to simple calculations.

4.1 Definition
1. An element a of an I BL is called distributive if each equation of the form
T *q (y*QZ) = ([E*ly)*Q({E*lZ)
(were *q, %9 € {V,\, B, @}) obtains in case + = a or y = a or z = a.

2. Distributive elements of a lattice are defined similarly.

4.2 Theorem

T, L.t and [ are all distributive (in any IBL B).

Proof

It is enough, by 3.3, to check it for I B Ls of the form £ R. Obviously, the equation obtains
there iff the corresponding distribution equations obtain for each component separately.
Since T, L.t, f are all defined in terms of the extreme elements of £ and B, and since such

elements of a lattice are always distributive (trivial), the claim follows. a
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An example
Suppose *1 =V, 3 = @, & = (1, 22), y =t = (11,0r), z = (21, 22),

(z1,22) V ((11,0R) @ (21,22)) = (x1,21) V (1 Mg 21,0p Mg 22) = (21, 22) V (21, 0R)
= (¢ U 21,22 MR Or) = (21 Ug, 21,0R)
((z1,22) V (11,0R)) @ ((21,22) V (21, 22)) = (11,0R) @ (21 Ug 21,22 MR 22) = (21 U, 21,0R) .

Note

In [Fi90], Fitting pointed out that in his proof of the analogue of 3.3 for distributive bilattices,
only instances involving 1 of the distributive laws are used. Hence the theorem is valid for
every I BL in which L is distributive (and similarly for ¢, f, T). It follows that an alternative
proof of 3.3 can be achieved if we prove 4.2 directly. This is possible, but the proof is longer.

One of the remarkable properties of all known finite I B Ls is that they can be represented
by a two-dimensional graph, in which one axis represents the <; relation, while the other
the <j relation. Moreover, the same edge on the graph between points A and B means that
A and B are immediate successors according to both relations (although it is possible that
A is an immediate <;-successor of B while B is an immediate <j-successor of A). In [Av95]
we have shown that all finite /B Ls have in fact such a graphic representation. The key for
this was the next result. With the help of 3.3, we can obtain a new easy proof of it.

4.3 Proposition
Let a <; b (a <}, b) mean that b is an immediate <, (<y) successor of a. Then if a <} b,
then a <3, b or b <i a. Similarly, if a <j, b then a <{ b or b <} a.

Proof

Again it is enough to show this for bilattices of the form £ & R. So suppose that (ay,b) <j.
(a2, by). Tt is easy to see that this can happen only if either a; = ay and by <% by or if by = by
and a; <} ay. In the first case (az,by) <} (a1, b1), while in the second (ay,b;) <} (ag,by). O

Note

In [Av95] it has been conjectured that every finite bilattice which has the property described
in 4.3 (such bilattices were called there “precise”) is necessarily interlaced. This conjecture
is wrong, even if the bilattice has a negation. A counterexample is given by the following

bilattice FIGHT:

11



t

That EIGHT is not interlaced follows immediately from the following proposition.

4.4 Proposition

A finite bilattice B is interlaced only if |B| = |Lg|- |Rg| (where Lp = {& € B | @ >; 1},
Rg={zeB|x <, 1}).

Proof

Immediate from the proof of 3.3, which shows that if B is interlaced then B is isomorphic to
Ly ©Rg. O
4.5 Corollary

If B is a finite IBL which has a prime number of elements then either <;=<,. or <,=>y.

Proof

Immediate from 4.4 and 2.9.

4.5.1 An Example

The bilattice DEFAULT of Ginsberg ([Gi88]) has seven elements and is not trivial. Hence
it is not interlaced.

A similar negative criterion for I BLs with negation is given in the next corollary.

12



4.6 Corollary

If B is a finite I BL with negation then the number of elements in B is a perfect square.

Proof

Immediate from 3.7.

An Example

In [Fi91], Fitting presented an [ BL called STX as an example of an {BL with no negation.
By 4.6, the fact that S7X has no negation follows simply from the fact that it has six

elements.

5 An Equational Basis

In [Jo94], Jénsson shows that the variety of distributive bilattices is equivalent to the variety
of all algebras (A, &, ®, T, L, f,t) in which (A, $®,®, T, L) is a bounded distributive lattice
(with T and L as the upper and lower bounds) and f, are two complementaty elements of
AQetd f=T,t®@ f=1). We proceed now to show an analogous result for the variety
of IBLs.

5.1 Definition
A structure £ = (B, <, ®,®, L, T,t, f) is a potential IBL if:
1. (B, <p,@,, L, T) is a bounded lattice;

2. t, f are distributive elements of L which are complements of each other. In other words,

the following equations obtain:

(1) tef=T t@f=1

(I) ae@(tdb)=(a2t)d (a®b) a®(t@b)=(adt)D(aBb)
a@(fDb)=(a® [)D(a @ D) a®(fRb)=(adf)(aDb)

(IlI) t®@(edbd)=t@a)®(tDDb) tB(a@b)=(tda)(tDD)
folewb) = (fab) foleob)=(Da)o(fDb)

13



Note

Since the variety of bounded lattices has an equational basis (i.e. can be defined by a set of
equations — see [Bi48]), so does the variety of potential I B Ls.
Our next proposition shows that the set of equations in the equational basis for potential

I BLs can be reduced somewhat.

5.2 Proposition

The set of 6 equations in (1) and (I1) of 5.1 can be replaced by the following two equations.
(i) ro= (z@1)@ (e [f)
(i) vo= (z@)@ @ /f)

Proof

For one direction, assume (I) and (II). Then

r=e0T2e0te) B @one@ef), c=olZzotef)®@one@ar).

For the converse, assume (i),(ii) and the equations in III of 5.1. Substituting T for = in
(i) and L for x in (ii), we get the equations in (I). Next we prove the first equation in II as

an example, leaving the rest to the reader:

(i)

a@(t®b) = [(a@(t®b)@td[(a@(tdb)d f]

= e ((tab)et)dlad ((t®b) o f)
2 wenelo(@eNe®o )
= (a@t)@la®@ (LB (b® f))] by (1), which has already been proved,
5 (a@t)®B(a@b® f)

(@) +@ab) € @ons((cobh)ensaob)f
= [(c@t)®((a@) @)@ ((a@b)® f)
= (a@t)® ((a®@b)® f) since &, are lattice operations.

Hence a @ (t @ b) = (a @t) B (a @b). 0O

The main theorem of this section is the following.

5.3 Theorem

The varieties of I BLs and of potential I BLs are equivalent. Specifically:

1. If B is an IBL then the reduct (B, <j,&,®, T, L,t, f) is a potential IBL.

14



2. In any potential IBL B, it is possible to define, in a unique way, a partial order <,
so that the resulting structure is an IBL with t and f as the upper and lower bounds

of <;.
Proof

1. Immediate from 2.5 and 4.2 (Note: using 5.2 and 2.8 one need only show the equations
in IIT of 5.2. This can in fact be done directly, without appealing to the characterization
theorem. For example, since t >; b, t @ b >; b®@ b = b. Similarly, t ® ¢ >; ¢. Hence,
(t@b)® (t@c) > b c. By 2.4 this entails: (1 @b0) B (t@c¢) 2t @ (bF ¢). The

converse is true since (B, <;, ®,®) is a lattice.)

2. Uniqueness is obvious from the following two equations, the validity of which in every

IBL can easily be checked using 3.3:?

(*) aVy =@ot)s(yot)s(foray)
() 2Ay =(@floafletray)

It remains to show that by using equations (*) and (**) to define A and V in a given

potential IBL B, we really get an I BL.

To make reading easier we shall write (until the end of this proof) + instead of &, xy
instead of x ® y, and we shall omit parentheses in the usual way. For example, (*) and ()

above will be rewritten as follows:
(%) aVy=te+ty+ fay (#x) xANy= fo+ fy+tzy

Lemma 1

A and V as defined in (%) and (**) are associative, commutative and idempotent.

Proof of Lemma 1

We do the case of V. Commutativity is trivial, while idempotency easily follows from 5.2(i).

It remains to to show associativity. Well, by definition:

(xVy)Vz=tlte+ty+ foy) +tz+ f(ta +ty + fay)z

2Jénsson uses in [Jo94] other formulas, which are also valid in every IBL, but those presented here are
better for our needs.
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using the distributivity of ¢ and f this reduces to
tte + tty + tfay +tz+ (fte + fty + ffay)z

since ft =1, Lla= 1, 1 4+a=aand aa = a, this reduces to tx +ty +tz+ fryz. A similar

computation shows that x V (y V z) reduces to the same expression. Hence the equality.

Lemma 2

tVy=y iff zANy==x.

Proof of Lemma 2

Assume, for example, that = V y = y, then:

ey = fr+ fy+tey=fo+ flzVy)+te(zVy)
= fo+ f(te +ty + fay) + at(te + ty + fry)
= fa+ fta+ fty+ ffey + x(tte + tty + tfay) , since t, f are distributive,
= fa4 fey+a(te+ty), sincetf =1
= ((fz)+ (fr)y) +zt(x+y), since t is distributive
= fz+1t(z(r+y)) by the absorption laws in a lattice
= fax+tx by the absorption laws in a lattice
= x byb.2(i).

Lemmas 1 and 2 together imply (see [Bi48]) that by defining
v<iySprrVy=y (Srhy=2)

we get a lattice (B, <;) in which A and V are the lattice operations. We show next that this
lattice is bound by ¢ and f. Indeed, for every x € B

tVae = tt+te+4 flta=((+te)+ La=t4+ 1L =1
fve = tf+ta+ ffe=L1L+ e+ fo)=2x by 5.2(i) .

It remains to show that (B, <, <;) is interlaced. Now the fact that if @ <, y then
xVz<pyVzand x Az <, y Az easily follows from the definitions of V and A and the
fact that the lattice operations & and @ are order preserving w.r.t. <;. The proof of the

theorem will be concluded, therefore, by the following two lemmas.
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Lemma 3

If x <, ythenao+4+2z < y+ 2.

Lemma 4

If x <,y then xz <, yz.

Proof of Lemma 3

We are assuming that y = «Vy = te+ty+ foy. We want to prove that (v+2)V(y+z) = y+=

(z+2)V(y+z) = tlat2)+ty+z2)+ fla+2)(y+2)
= dotilz4ty+iz+(z+2)(f (tz+ty+ fay+2)), sincey=xzVy
= tet+ily+itz+ (x4 2)(fta+ fly+ ffey + [2)
= te+ty+tz+ (v +2)(fey + f2)
= tetty+tz+ fle+2)(xy + 2)

but  + z > ay 4+ z. Hence (z + z)(ay + z) = 2y + z. It follows that:

(e +2)V(y+z) = tetly+iz+ flay +2)
= (to+ty+ fry) + (L2 + 2)
= y+=z (sincet:z;—l—ty—l-fl'y:y)

Proof of Lemma 4

Again we assume that y = = V y. We show this time that zz A yz = zz.

rzANyz = foz+ fyz+trzyz
= faz+ f(te+ty+ foy)z + t{te +ty + fay)az
= faz+ (fte 4 fty+ fay)z 4+ (e +ty + tfay)az
= faz+ feyz+ (te +ty)ez
= ((fzz)+ (frz)-y) +t((x +y)r)z since ¢ is distributive,
= faz+txz (by the absorption laws)
= a2z (by5.2)

17



5.4 Corollary [Jo94]

Suppose (B, <y, @,@, L, T, f, 1) is a structure in which (B, <;, ®,&, L, T) is a bounded
distributive lattice and ¢, f are two complementary elements of B. Then there exists a
unique partial order <; on B such that B = (B, <;,®,6, L, T,<; A,V, f, 1) is an [BL.
This I BL is distributive.

Proof

t and [ are trivially distributive here, so the existence of a unique <; which provides B
follows from 5.3. It remains to show that this B is distributive. This follows immediately
from 3.6. O

Note

Unlike in the distributive case, the conditions t & f = T, ¢ ®@ f = L are not sufficient in the
general interlaced case, and we do need the extra condition that ¢, f should be distributive

elements. Thus in the following bounded lattice:

L

f,t are complementary, but there is no way to define an appropriate <;. This is an immediate

consequence of 4.5.

5.5 Corollary

A finite lattice which has a prime number of elements and two complementary elements,

different from the L.u.b and ¢.l.b of the lattice, cannot be distributive.
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Proof

Again, this follows from 5.4 and 4.5. O

We end with the following observation:

5.6 Theorem

The variety of interlaced bilattices can be defined by a set of equations.

Proof

The results of this section provide several alternative equational bases for the variety of 1B Ls
(with or without negation): In the form of potential I BLs we have already provided it above
with two such bases. A basis for the full signature (with vV and A but, of course, without
<, <k) can be obtained from them just by adding equations (*) and (**) from the proof of
5.3. O
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