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Abstract. We claim that Proof Systems for natural many-valued logics,
whether finite-valued or infinite-valued should be similar in their struc-
ture to proof systems of any other natural logic: one should not be able
to tell from the structures which are used in a proof system the intended
semantics. It is also preferable that standard connectives will be used,
with corresponding standard rules. We demonstrate this thesis with some
examples in which cut-free Gentzen-type systems, which employ either
ordinary sequents or hypersequents, are used both for 3-valued logics and
for infinite-valued logics.

1 The Methodological Approach

In recent years there is a growing Interest in many types of nonclassical logics:
modal and temporal logics, substructural logics, constructive logics, many-valued
logics, paraconsistent logics, non-monotonic logics — the list 1s long. Obviously,
there is no limit to the number of logics that logicians (and non-logicians) can
produce. Some creteria are needed, therefore, to distinguish those that are “nat-
ural” or “interesting” in some sense (and so deserve studying). It seems to me
that the following are widely accepted virtues of a “natural” logic:

e Natural primitives. In other words: the primitive connectives and quantifiers
of the language of the logic should intuitively correspond to concepts which
are informally used outside the realm of formal logic, like: implication, nega-
tion, conjunction, necessity etc. The language might have several “conjunc-
tions” (say), each corresponding to a different interpretation of the informal
concept, but it should not include as primitives artificial constructs, tailored
for a specific semantics (for examples: unary connectives which correspond
to certain nonclassical truth values, as in [13]).

e The existence of a simple, illuminating semantics. On the propositional level
such a semantics should provide (so I believe) a decision procedure for the
consequence relation of the logic (and so, of course, also to its set of valid
formulas).

e The existence of a nice proof system. Such a system should make it easier
to find proofs in the system, to prove results about it, and, should have the
subformula property. Here again the proof system should determine not only
the set of valid formulas of the logic, but also its consequence relation.



To my opinion, having both a simple semantics and a nice proof system is the
strongest indication that we really have a “natural” (or important) logic. This is
so, however, only if the semantics and the proof system are independent, coming
from completely different sources, so that the correspondence between them is a
kind of a “surprise” (or, at least, not an obvious matter).! The way to achieve
such an independence is to use for the proof system a general proof-theoretical
framework.? Such a proof-theoretical framework should have the following prop-
erties:

e It should be able to handle a great diversity of logics of different types,
including most logics which logicians have found interesting in the past.

e Because of the proof-theoretical nature and the expected generality, the
framework should be independent of any particular semantics. One should
not be able to guess, just from the form of the structures which are used,
the intended semantics of a given proof system.

e Since there should be something common to all the various connectives that
we call “conjunction”, “disjunction” etc., the corresponding rules should be
as standard as possible (otherwise the first “virtue” above of a natural logic
is meaningless).

Another very important methodological principle which will guide us in what
follows (and has already been hinted twice above) is the modern view of a logic
as a language together with a consequence relation (For simplicity, and since we
shall deal with many-valued semantics, we shall restrict ourselves to Tarskian
Consequence relations). It should be emphasized that the set of valid formulas
does not always determine a logic. There are, for example, important 3-valued
logics (like Kleene’s) which does not have any! Accordingly, when we speak about
soundness and completeness of a given semantics or a given proof system for a
given logic we mean that the semantics or the proof system characterizes the
consequence relation. When it characterizes only the set of theorems we shall
call it weak soundness and completeness (or just weak completeness, for short).

2 What Is a Many-valued Logic?

Our answer to the title of this section is that it is in fact somewhat misleading
to talk about “many-valued logics”. One should talk instead about logics with
many-valued semantics. To see our point, consider the following 3 questions:

1. Is Lukasiewicz infinite-valued logic L, a many-valued logic?
2. Is Dummet intermediate logic LC' ([6]) a many-valued logic?

! The tableaux and sequents systems for finitely-many valued logics in [5] or [14] (see
there for further references) are examples of calculi which violate this principle, since
the semantics is built there into the proof theory. In fact, the methods there apply
to any finite-valued logic, so it cannot distinguish the natural from the unnatural.

2 Using such a framework is also very important for implementing logics on a computer,
using a uniform logical framework like the Edinburgh LF ([10]).



3. Is the modal logic S5 a many-valued logic?

The answers that most people will give are “yes” to the first question (this
answer is, in fact, a part of the formulation of the question...) and “no” to the
third. As for the second— it might depend on the replier’s background and
knowledge. In 1959 it probably would have been “yes”. Today many, I guess,
will answer “no”. Still, there 1s no objective difference between these three log-
ics. Each of them has an infinite-valued semantics according to the definition
below (which is the most restrictive T know). The differences are that L, has
been defined by this semantics, and no better semantics is known (as far as I
know). LC' was has also been defined by its many-valued semantics, but today
the use of a possible-worlds semantics for it 1s more popular. Finally, S5 was
originally defined by a proof system, and its possible-worlds semantics is much
better known than its infinite-valued semantics (although the latter was discov-
ered first (See [11])). T do not think, however, that historical motivations should
be important for mathematical classifications. The existence of an alternative
semantics should not be a factor either, since it depends on our present knowl-
edge, which might be accidental. So from an objective point of view, all the three
logics above have the same right to be called “many-valued” (or rather, to have
the “many-valuedness” property). I proceed next to define this notion in precise
terms. For simplicity, I shall refer only to propositional logics.

Definitionl. 1. A matric M for a propositional language L is a triple <
M, D, O > such that:
(a) M is a nonempty set (of “truth-values”).
(b) D is a proper, nonempty subset of M (the “designated values”).
(c) O is a set of operations on M, so that for each connective of L there is
a corresponding operation on M and vice versa.

2. Let M be a matrix for L. Faq, The consequence relation induced by M, is
defined by: T'Faq ¢ iff v(¢) € D for every valuation v in M which respects
the operations and such that v(B) € D for every B € T.

3. A logic L is called (weakly) n-valued (where 1 < n < Ng) if there exists a
matrix M for L such that:

(a) M has exactly n elements.
(b) Fam=Fr (Fam ¢ iff Fp ¢ for every sentence ¢).
(c) For every finite I' and every ¢ (for every ¢) there is a finite submatrix

M* of M such that I'tp ¢ (Fp ¢) iff T'Fage ¢ (Faqe @).

Notes.

1. The main factor in our definition of a “many-valued” logic is the existence
of a single characteristic matrix. The second demand, on the other hand,
guarantees that every propositional many-valued logic is decidable; and it
malkes even infinite-valued logics semi-finite in a certain sense. It is possible,
of course, to consider a definition where this demand is dropped, but I believe
that it does reflect the spirit of the generalization from finite-valued logics
to infinite-valued ones.



2. Obviously, The same logic may be n-valued for several different values of n
(Tt is obvious, for example, that classical logic is 2 -valued for every m). In
such a case we might take the minimal such n as the principal one. Note also
that a logic might be weakly n-valued for a certain n, but k-valued only for
some k greater than n. We shall see examples of this below.3

3 The Proof-theoretical Framework

Among the various proof-theoretical frameworks, Gentzen calculi of sequents
seems to me the most successful, general and intuitive. I strongly believe that
the existence of a cut-free Gentzen-type proof system having the subformula
property 1s the main proof-theoretical test for the naturality of a logic. This
framework has indeed all the properties which we have listed above. It can suc-
cessfully handle a diversity of important logics, it is independent of any semantics
and each of the standard connectives has in it a small stock of rules that are
characteristic for it. The rules for conjunction, for example, may sometimes have
a “multiplicative” (or “intensional”) form and sometimes an “additive” form (in
the terminology of [9]). There might be cases in which a mixture of the two
forms is used and still others in which there are also rules for the combination of
conjunction with negation. Still, we can always identify a connective as a con-
junction according to its rules alone, regardless of any corresponding semantics.
If we cannot— then it is not a conjunction!

Some people might argue that the fact that Gentzen-type systems usually
treats structures with fwo sides is connected with the two-valued semantics of
classical logic. This impression is wrong, though. This is demonstrated by the
fact that many other logics (including n-valued logics with n = 3,4,8, and
logics which are not many-valued at all, like intuitionistic logic) also have cut-
free Gentzen-type formulations with the subformula property. What really stands
behind Gentzen’s sequents is again the fact that it is consequence relations which
Logic is all about. Dealing with single-conclusion sequents is therefore the most
natural thing to do, since a calculus G of such sequents naturally defines a
corresponding consequence relation Fg, where : T ¢ ¢ iff there exists a finite
list I" of elements of T" such that I" = ¢ is a theorem of G. A generalization
to calculi of multiple-conclusion sequents is then another natural step, which
allows us to take advantage of the symmetries of logic. Note that the definition
of the Tarskian consequence relation F¢ induced by G remains unchanged when
we make this step, and that the original (single-conclusion) sequents are now
particular cases of the extended notion of a sequent.

Exactly as the class of single-conclusion sequents can successfully be enlarged
to the class of multiple-conclusion ones, one might consider further extensions.
The main properties which characterizes Gentzen-type systems should be pre-
served, though. For example: the stock of rules for the standard connectives
should practically remain the same, and the use of the usual sequents should be

? 1t is possible, in principle, also that a logic might be weakly many-valued without
being many-valued, but I know no example of this kind.



a part of the extended framework. An extension of this sort which proved to be
fruitful (especially for many-valued logic) is that of hypersequents:*

Definition 2. Let L be a language. A hypersequent is a creature of the form:
I = A= As|. [T = A,

where I3, A; are finite sequences of formulae of L. The I; = A;’s will be called
the components of the hypersequent.

We shall use GG, H as metavariables for (possibly empty, i.e., without compo-
nents) hypersequents.

Like in ordinary sequential calculi, the rules of inference for hypersequents
are usually divided into logical rules and structural rules. The guiding idea is
that the logical rules should essentially be identical to those used in the ordinary
calculi, and that the difference between the various logics should mainly be due
to differences in their structural rules. For example, the rules for implication are
usually the following:

G|A,F:>B,A|H G1|F1:>A1,A|H1 G2|B,F2:>A2|H2
G|F:>A—>B,A|H G1|G2|A—>B,F1,F2:>A1,A2|H1|H2

The other usual rules, both structural and logical are generalized to the frame-
work of hypersequents in a similar way. In addition, this framework allows new
types of structural rules. The simplest of these are the external structural rules.
For example, external contraction has the form:

G|I'= A|I' = A|H
G|I'= A|H

External weakening and permutation are defined similarly. An example of a rule
which is peculiar to the hypersequential framework is the following splitting rule
(some versions of which are used in many cut-free formulations of known logics):

G|F1,F2 = Al,A2|H
G|F1 = A1|F2 = A2|H

Given a calculus GG of hypersequent we define the associated consequence rela-
tion, k¢ as follows: T' ¢ ¢ iff there exists finite lists I, ..., [}, of elements of T'
such that I'y = ¢|...|I, = ¢ is a theorem of G. It is not difficult to see that if G
is closed under the external structural rules (as we always assume) and A = A is
provable for every A, then this indeed is a Tarskian consequence relation. (note
that if G allows only the use of ordinary sequents we get the same definition as
beforel!).

The use of hypersequents makes it possible to give cut-free formulations (with
strong completeness!) to several well-known many-valued logics. Examples are
LC, S5 and Lukasiewicz 3-valued logic L3 (see [4] for these and others). This
demonstrates that these logics are really natural. I should point out, however,

* see [4] for a survey.



that all the many-valued logics T know which have cut-free formulations (us-
ing either ordinary sequents or hypersequents) are either 3-valued, 4-valued or
infinite-valued. Does this fact reflect something? Unfortunately, this is a question
for which I have no answer.

4 An Example: Sobocirski’s Many-valued Logic(s)

In this section we present a case study in which the various ideas which were
described above are applied, with suggestive results.

In [12] Sobocinski introduced a 3-valued matrix which we shall call here
(following [1]) M3. The elements of M3 are 1, 0 and -1. The designated elements
are 1 and 0. The negation operation is simply the arithmetical one, while the
implication operation — is defined as follows:

0 a=b=0
a—=>b=<{—-1la>"b
1 otherwise

(Sobocitiski introduced also what we call today multiplicative disjunction
and conjunction. These, however, can be defined from the above negation and
implication in the usual manner). In his paper Sobocinski gave a Hilbert-type
axiomatization of this logic with M P for — as the only rule of inference. An
equivalent cut-free Gentzen-type formulation GRM,, was found later.® It can be
obtained from the classical calculus for this language (with the above multiplica-
tive form of the rules for —) by replacing the weakening rules (on both side) by
the following structural rule, which today (following [9]) is usually called “mix”:

I = A Iy = A,
I, Iy = Ay Ay

Equivalent descriptions of GRM,, are:

e Multiplicative Linear Logic together with contraction and mix
o Intensional Relevant Logic together with mix

In any case, the Gentzen-type formulation clearly shows that Fgras,, is a natural
substructural logic.® Nothing in the structures used in this formulation suggests
that it is a many-valued logic!

Now we come to a very important point. The description we just have given
concerning the proof theory of Sobocinski’s 3-valued logic is a standard one. Yet
it 1s misleading. Actually, Fgrar,, and Faq, are not identical, and the former
is not a 3-valued logic! The reason is that the correspondence between these

51 do not know who was the first to discover it. It can be found in [2], but was
well-known much before.

5 Personally, 1 have first encountered it as such, before knowing its connection to Ma,
and I am sure that I am not the only one with this experience!



two logics is only a weak one: The two logics have the same valid formulas, but
not the same consequence relation (Also Sobociriski has proved, in fact, only
weak completeness relative to M3. His Hilbert-type system is indeed strongly
equivalent to GRMp,). An example of the difference is the fact that ~ (4 —
B) |_M3~ B but ~ (A — B) |7(GRMmN B.

The fact just mentioned naturally leads to the following two questions:

1. Is GRM,, many-valued logic (in the strong sense) at all?
2. Is there a nice Gentzen-type proof system for Faq,7

The answer to both questions is not simple, but 1t is positive nevertheless.
It turns out that G RM,, 1s an infinite-valued logic, but not finite-valued, while
F . does have a cut-free formulation, but only if we use hypersequents. We give
next some more details.

Let us start with the first question. In the relevance logic literature (see
[1] and [8]) there have been extensive investigations of the semi-relevant system
RM of Dunn and McCall. This system is obtained from Sobociiiski’s system (the
Hilbert-type counterpart of GRM,,) by adding to its language extensional (or
additive) conjunction and disjunction together with the corresponding axioms
and rules of the relevance system R (including the distribution axiom, which
is missing in Linear Logic). Now R.K.Meyer has proved ([1]) that RM has an
infinite characteristic matrix §,, known as Sugihara Matrix. The truth-values
of this matrix are the integers, and the designated values are the non-negative
integers. Negation is again the arithmetical one, V and A are, respectively, the
operations of maz and min, while — is defined as follows:

p= max(lal, |b]) a <b
¢ T  —maz(lal, b)) a > b

Now &, is also a characteristic matrix for GRM,, in the strong sense defined
above (provided we limit ourselves to finite sets of assumptions. If we allow
infinite theories then a little bit more complicated infinite matrix should be
used.” Moreover: no finite-valued matrix has this property, since it is not too
difficult to show that although

~ ((Pnt1 = Prng1) = (Pn = Pn)), -~ ((p2 = p2) = (11 = p1)) Yorm,, 11

no n-valued matrix can be used to demonstrate this fact.

It is interesting indeed that the fact, that what we have here is a strictly
infinite-valued logic, 1s revealed already on the level of weak completeness when
we pass to the stronger language of RM . On the other hand this passage forces us
to use a cut free Gentzen-type calculus GRM , which is much more complicated
then GRM,,. This calculus uses hypersequents, and it is obtained from GRM,,
by:

1. Adding the standard additive form of the rules for the additional connectives

7 Again, T know no place in which these results are explicitly proved, but they are
implicit in the works of Meyer and Dunn, especially [7].



2. Changing all rules to their hypersequential version
3. Adding the standard external structural rules as well as the splitting rule
described above

More details about this system can be found in [2]. Among other things, it is
shown there that it allows us, e.g., a constructive proof of the admissibility of
the disjunctive syllogism in RM . Proofs of this kind are exactly what we expect
a good proof system to offer us!

To sum up: In case we consider only weak completeness, the passage from
simple sequential calculus to a hypersequential one can be seen here as forced
by a move from a finite-valued logic to an infinite-valued one. If, on the other
hand, we look at the matter from the point of view of consequence relations
and strong completeness, it seems that it is caused by a strengthening of the
language without changing the semantics.

We turn next to the second question. In [3] it is shown that a strongly com-
plete, cut-free proof system for Faq, can be obtained from the purely multi-
plicative fragment of the (hypersequential) system G RM if we strengthen the
splitting rule to the following rule:

G|F1,F2 = Al,A2|H
G|F1 :>A1|F2,F’ :>A2,A’|H

In this case, therefore, the passage to a calculus of hypersequents corresponds
to a passage from what is really an infinite-valued logic (GRM,,) to a finite-
valued one (Faq,) (note that both calculi of hypersequents are here conservative
extensions of the purely sequential system GRMp,!).

The outshot of these examples is that neither sequents nor hypersequents are
structures that necessarily correspond to finite-valued or infinite-valued logics.
They are natural structures of proof-theory, and so one aspects that appropriate
cut-free calculi based on them can be used when we deal with natural logics
(finite-valued, infinite-valued, or not many-valued at alll).
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