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2 A. Avron, B. Konikowskaof the propositional constant ? is the number 0, a ! b is t if a � band b otherwise, :a is simply a ! 0, and ^ and _ are, respectively,the min and max operations on hN [ ftg;�i.1 The matrices of fGngare similar, but the set of truth values of Gn is f0; :::; n� 2g [ ftg.The consequence relation `LC is de�ned as follows: '1; : : : ; 'n `LC  i� minfv('1); : : : ; v('n)g � v( ) for every valuation v in G!.2 This isequivalent 3 to taking t as the only designated element, and de�ning:'1; : : : ; 'n `LC  i�, for every v in G!, either v( ) = t or v('i) 6= tfor some 1 � i � n. The consequence relation corresponding to Gn isde�ned similarly.A Hilbert-type axiomatization for LC can be obtained from intu-itionistic logic by adding to it the axiom (' !  ) _ ( ! ') | see(Dummett, 1959).A cut-free Gentzen-type formulation for LC was �rst given by Sonobein (Sonobe, 1975). His approach was improved in (Avellone et al., 1999)and (Dyckho�, 1999), where terminating, contraction-free (and cut-free) versions have been presented. All those systems have, however, theserious drawback of using a rule with an arbitrary number of premises,all of which contain formulas of essential importance for the inference.A cut-free formulation of LC free of this drawback, and, unlike otherformulations, having exactly the same logical rules as the standard for-mulation of Intuitionistic Logic, was given in (Avron, 1991). However,the latter formulation is not very convenient for proof search. The mainreason is that some of its rules are not invertible.Our main goal in this paper is to suggest some analytic proof systemsfor LC and its �nite-valued counterparts which are suitable for proof-search, and only contain rules of a strictly local character (with atmost two premises). To achieve this goal, we shall follow the generalRasiowa-Sikorski methodology for constructing analytic proof systemsfor semantically de�ned logics. The main ideas are to decompose aformula ' to simpler formulas of the same vocabulary (though notnecessarily to subformulas of ') and to employ, if needed, a moreextensive set of axioms (or criteria for closing branches) than is usualin standard systems (more explanations are given in the next sectionand in the papers cited there). These ideas are discussed in detail whenwe present R-S deduction systems, for which they are raison d'etre.1 This interpretation is not the one given by G�odel and Dummett, but its dual.We note also that for the application as a fuzzy logic it is more useful (Hajek, 1998)to use instead of N [ ftg the real interval [0,1], with 1 playing the role of t. Thismakes a di�erence only when we consider inferences from in�nite theories, and inthis paper it is convenient to clearly distinguish between t and the other truth values.2 As usual, if n = 0 the \minimal element" is taken to be t.3 A proof of this well-known result can be found in (Avron, 1991).lc.tex; 8/12/2000; 8:24; p.2



Decomposition Proof Systems for G�odel Logic 3However, later we go on to show how the methodology can be usedwith other deduction mechanisms, like hypersequential calculi.Like in (Dyckho�, 1999), our systemswill be terminating, contraction-free, and based on invertible rules.2. R-S Deduction Systems for LC2.1. R-S Deduction Systems | BackgroundA Rasiowa-Sikorski (R-S) deduction system (Rasiowa and Sikorski,1963) is a variant of the tableau method4, which operates on sequencesof signed formulas. However, in contrast to tableaux, it is used forproving validity directly rather than as a refutational mechanism 5. AnR-S system usually has three main components:� Decomposition rules,� Expansion rules,� Fundamental sequences.A decomposition rule replaces some signed formula in a sequence
 by certain simpler signed formulas of the same (or partial) vocabu-lary. A signed formula to which such a rule can be applied is calleddecomposable. Otherwise it is called indecomposable. A sequence ofindecomposable signed formulas is called basic. Decomposition rulescan therefore only be applied to sequences which are not basic. Anexpansion rule, in contrast, may be applied only to basic sequences.Such a rule augments a given basic sequence with some other inde-composable signed formulas of the same vocabulary (so the outcome isstill basic). It is a fundamental requirement that both types of rules beanalytic. 6 Another crucial demand is that rules of both types shouldalso be invertible in the sense that the conclusion of a rule is provable inthe system i� all its premises are provable. If the system is sound andcomplete with respect to its intended semantics 7, then this is equiv-alent to the rules being validity-preserving in both directions. Usually,4 Though it has originally been developed and applied independently of thetableau method.5 Accordingly, in this section we use the symbol \T" where standard tableauxuse \F", and vice versa.6 There is no complete uniformity regarding the exact meaning of the term \an-alytic" in the literature. Here a rule is called analytic if the multiset of symbolsoccurring in any formula in its premises is contained in the multiset of symbolsoccurring in the conclusion.7 Which almost always exists, since the R-S methodology is semantically oriented.lc.tex; 8/12/2000; 8:24; p.3



4 A. Avron, B. Konikowskahowever, they have the stronger property of being truth-preserving (inboth directions) with respect to each intended model separately |which is also the case with the system developed here. Invertibility is astrong property symbolized by a double horizontal line in the standardnotation of the rules, which is: 

1 j
2 j : : : j 
nwhere all the 
's are sequences of signed formulas. 
 is called the con-clusion of the rule, and 
1;
2; : : : ;
n | its premises. Note that sinceR-S systems are used for proving validity, the vertical bar separatingindividual premises is taken to correspond to a meta-conjunction onthe validity level, while a sequence is understood as equivalent to ameta-disjunction of its elements.The general idea in an R-S deduction system is to prove an ordinaryformula ' by �rst decomposing T(') with help of the decompositionrules into simpler sequences which are valid i� the original ' is. If nodecomposition rule is applicable, expansion rules might be applied. Thisprocess results �nally in sequences, which are either fundamental, ornon-fundamental, basic and closed under the expansion rules. Finally,a sequence is considered proved if the above process yields in the endonly fundamental sequences, which play the role of axioms here. 8More information on R-S systems, their applications, and the generalmethodology of using this formalism for developing deduction systemsfor various kinds of logics from the analysis of their semantics, can befound in (Konikowska, 1999; Konikowska, 2000; Konikowska, 2000a).2.2. An R-S System for LC with Simple FundamentalSequencesIn what follows we use p, q, r to denote atomic formulas (including ?),and lower case Greek letters to denote arbitrary formulas.Intuitively, the sign T, when used in an R-S system, stands for\true",or \satis�ed", while F stands for \false", or \not satis�ed".Consistently with this intuition, satis�ability of signed formulas by avaluation v in G! (or Gn) is de�ned by:v j= T(') i� v(') = t; v j= F(') i� v(') 6= tThe above description of R-S systems dictates then the following:8 In most cases, including the systems presented below, it is possible to allowonly basic fundamental sequences, but in general it is more eÆcient not to imposethis restriction. lc.tex; 8/12/2000; 8:24; p.4



Decomposition Proof Systems for G�odel Logic 5DEFINITION 1. A sequence 
 = s1; s2; : : : ; sn of signed formulas inthe language of LC is satis�ed by a valuation v in G! or Gn i� v j= sifor some i; 1 � i � n. It is valid i� v j= 
 for every valuation v.In this section we develop our R-S formulation of LC. We start withsome explanations how the rules of this system are obtained.Under the R-S methodology, for each n-ary logical construct C wetry to �nd necessary and suÆcient conditions forT(C( 1; : : : ;  n)) andfor F(C( 1; : : : ;  n)) to be satis�ed in terms of some simpler formulasbeing satis�ed. In case of LC, this can be done in a straightforward wayfor disjunction and conjunction. The conditions here are quite classical:e.g., T('_ ) is satis�ed i� either T(') or T( ) is satis�ed. This givesrise to standard rules for these connectives.However,!, the basic connective of LC, cannot be handled so sim-ply, since satisfaction of T(' !  )/F(' !  ) cannot in general beexpressed just in terms of satisfaction of T(');F(');T( ), and F( ).In other words: the answer to the question whether v(' !  ) is t ornot is not determined by the answers to the corresponding questionsconcerning ' and  . What it really depends on is the order relationbetween v(') and v( ):v j= T('!  ) i� v(') � v( ); v j= F('!  ) i� v(') > v( )Therefore in the case of an implicational formulawe go one level deeper:if ' or  is a composed formula, then it must have been obtained outof some simpler formulae using _;^ or !. For each of these cases, wedevelop a separate pair of decomposition rules.As an example, let us show how the rule for ('1 ! '2) !  isdeveloped. By the semantics of !, to �nd when T(('1 ! '2)!  ) istrue under a valuation v, we should distinguish two cases:1. v('1) � v('2). Then v('1 ! '2) = t and v(('1 ! '2) !  ) =v( ). Hence we should have v( ) = t.2. v('1) > v('2). Then v('1 ! '2) 6= t and v(('1 ! '2) !  ) =v('2 !  ). Hence we should have v('2 !  ) = t.Thus the original formula is true i� either both T('1 ! '2) and T( )are true, or both F('1 ! '2) and T('2 !  ) are true. This is acondition in disjunctive normal form.Using standard classical reasoningon the metalevel (and the fact that F(') is true i� T(') is not true)we transform it to conditions in conjunctive normal form for the truthof T(('1 ! '2)!  ) and of F(('1 ! '2)!  ), respectively 9. After9 This is needed since the branching j between the premises of a rule correspondshere to meta-conjunction. lc.tex; 8/12/2000; 8:24; p.5



6 A. Avron, B. Konikowskasome simpli�cations (using facts like that the truth of T( ) impliesthat of T(' !  )) we get the rules (T(!) !) and (F(!) !) givenbelow.Other rules could have been developed similarly, but we have applieda shortcut, using the following equivalences valid in G!:('1 _ '2)!  � ('1 !  )^ ('2 !  )'! ( 1 _  2) � ('!  1)_ ('!  2)('1 ^ '2)!  � ('1 !  )_ ('2 !  )'! ( 1 ^  2) � ('!  1)^ ('!  2)'! ( 1 !  2) � ('!  2)_ ( 1 !  2)The above equivalences should be understood in the strongest possibleway, i.e. ' �  i�, for any valuation v, v(') = v( ).Note that no decomposition rule is applicable to signed formulashaving one of the following forms:T(p);F(p);T(p! q);F(p! q)These are therefore the indecomposable signed formulas of LCRS .Expansion rules of an R-S system are usually discovered while at-tempting to prove completeness of the system (relative to its intendedsemantics). The expansion rules of LCRS have also been obtained inthis way, and they reect properties of the order relation of G!.Now we turn to precise de�nitions of the relevant proof-theoreticalnotions.THE SYSTEM LCRS .Fundamental Sequences are those containing either:� F(?), or� both T(') and F(')Decomposition Rules(T_) 
0;T('_  );
00
0;T(');T( );
00(F_) 
0;F(' _  );
00
0;F(');
00 j 
0;F( );
00(T^) 
0;T(' ^  );
00
0;T(');
00 j 
0;T( );
00
lc.tex; 8/12/2000; 8:24; p.6



Decomposition Proof Systems for G�odel Logic 7(F^) 
0;F('^  );
00
0;F(');F( );
00(T_ !) 
0;T(('1 _ '2)!  );
00
0;T('1 !  );
00 j 
0;T('2 !  );
00(F_ !) 
0;F(('1 _ '2)!  );
00
0;F('1 !  );F('2 !  );
00(T! _) 
0;T('! ( 1 _  2));
00
0;T('!  1);T('!  2);
00(F! _) 
0;F('! ( 1 _  2));
00
0;F('!  1);
00 j 
0;F('!  2);
00(T^ !) 
0;T(('1 ^ '2)!  );
00
0;T('1 !  );T('2 !  );
00(F^ !) 
0;F(('1 ^ '2)!  );
00
0;F('1 !  );
00 j 
0;F('2 !  );
00(T! ^) 
0;T('! ( 1 ^  2));
00
0;T('!  1);
00 j 
0;T('!  2);
00(F! ^) 
0;F('! ( 1 ^  2));
00
0;F('!  1);F('!  2);
00(T! (!)) 
0;T('! ( 1 !  2));
00
0;T( 1 !  2);T('!  2);
00(F! (!)) 
0;F('! ( 1 !  2));
00
0;F( 1 !  2);
00 j 
0;F('!  2);
00(T(!)!) 
0;T(('1 ! '2)!  );
00
0;T('2 !  );
00 j 
0;T( );F('1 ! '2);
00(F(!)!) 
0;F(('1 ! '2)!  );
00
0;T('1 ! '2);F('2 !  );
00 j 
0;F( );
00lc.tex; 8/12/2000; 8:24; p.7



8 A. Avron, B. KonikowskaExpansion RulesTransitivity: 
0;F(p! q);F(q ! r);
00
0;F(p! q);F(q ! r);F(p! r);
00Left Maximality: 
0;F(p! q);F(p);
00
0;F(p! q);F(p);F(q);
00Right Maximality: 
0;T(p! q);
00
0;T(p! q);T(q);
00Linearity: 
0;T(p! q);
00
0;T(p! q);F(q ! p);
00Minimality of ?: 
0;F(p!?);
00
0;F(p!?);F(? ! p);
00DEFINITION 2.1. A decomposition tree for a sequence 
 is any tree T with verticeslabeled by sequences of signed formulas such that:a) The root of T is labeled by 
.b) If l labeled by � is a vertex of T , then:i) l is a leaf i� either � is a fundamental sequence, or �is basic and no expansion rule which introduces some newsigned formulas into � is applicable to � 10;ii) If l has sons labeled by �1;�2; : : : ;�n, then��1 j�2 j : : : j �nis a rule applicable to �.c) T is a maximal tree satisfying the above conditions.2. A decomposition tree for a formula 11 ' is a decomposition tree forthe one-element sequence T'.10 The last condition prevents needless expansion of sequences ad in�nitum byrepeated applications of expansion rules.11 Note that by a \formula" we always mean an ordinary, unsigned formula(otherwise we explicitly write \signed formula"). lc.tex; 8/12/2000; 8:24; p.8



Decomposition Proof Systems for G�odel Logic 9Thus in order to obtain a decomposition tree of ' (or 
) we labelthe root by T(') (resp. 
), and then expand the tree by applying �rstthe decomposition rules, followed by the expansion rules. If the rule Rapplied to the label of a vertex has n premises, then the vertex hasn sons, labeled by the n premises of the rule, respectively. If in thecourse of expanding the branch we get a fundamental sequence, weterminate the branch | successfully. The branch is also terminated,but unsuccessfully, if we get a basic sequence to which no expansionrule that actually expands it (and hence no rule at all) can be applied.Hence every leaf of the decomposition tree is labeled by either a funda-mental sequence or a non-fundamental basic sequence. Since the tree ismaximal, each such basic sequence must be closed under all expansionrules.DEFINITION 3.A decomposition tree for a formula ' (or a sequence 
) is called aproof of ' (
) if it is �nite and all its leaves are labeled by fundamentalsequences. A formula ' (sequence 
) is said to be provable if it has aproof.THEOREM 1. A formula ' (a sequence �) is provable in LCRS i� itis valid in G!.Proof: It is straightforward to check that all the fundamental se-quences of LCRS are valid with respect to G!, and that each of itsrules is two-way sound in the sense that its conclusion is satis�ed by agiven valuation v in G! if and only if all its premises are satis�ed by v(this is the strong semantic invertibility mentioned in 2.1). Hence if '(�) is provable in LCRS then it is valid in G!. This entails soundness.In view of the two-way soundness and analycity of the rules ofLCRS, for every sequence 
 we can construct | by induction on thecomplexity of 
 | a �nite set S of basic sequences such that:� Every element of 
 is closed under each of the expansion rules;� 
 is valid i� all the elements of S are valid;� If all the elements of S are provable in LCRS then so is 
.To prove completeness it suÆces therefore to show that if � is a non-fundamental basic sequence closed under the expansion rules then �is not valid. So let � be such a sequence. Then � has the followingproperties:P1 If F(p! q) 2 � and F(q ! r) 2 �, then F(p! r) 2 �lc.tex; 8/12/2000; 8:24; p.9



10 A. Avron, B. KonikowskaP2 If F(p! q) 2 � and F(p) 2 �, then F(q) 2 �P3 If T(p! q) 2 �, then T(q) 2 �.P4 If T(p! q) 2 �, then F(q ! p) 2 �.P5 If F(p!?) 2 �, then F(? ! p) 2 �.P6 If T( ) 2 �, then F( ) =2 �P7 F(?) =2 �Note that P6 and P7 correspond to the assumption that � is notfundamental, whereas P1{P5 follow from the fact that � is closed underthe �ve expansion rules (listed in the same order).Let p � q denote either F(p! q) or T(q ! p) 12 . Then � has thefollowing crucial property:(*) There are no p1; : : : ; pn such that p1 = pn, (pi � pi+1) 2 �for 1 � i � n� 1, and T(pj ! pi) 2 � for some i; j.Indeed, if such p1; : : : ; pn exist, then by P4 F(pi ! pi+1) 2 � for1 � i � n � 1. Therefore P1 and the equality p1 = pn imply thatF(pj ! pi) 2 � for all i; j. This contradicts P6.Call now q1; : : : ; ql \an n�sequence for p" if ql = p, (qi � qi+1) 2 �for 1 � i � l � 1, and for n di�erent i's, T(qi+1 ! qi) 2 �. De�ne avaluation v in G! as follows: v(p) = t i� F(p) 2 �. Otherwise let v(p)be the maximal n for which there exists an n�sequence for p (such amaximal n exists by (*)). The valuation v has the following properties:� If F(p) 2 �, then v(p) = t by the de�nition of v.� If T(p) 2 �, then v(p) 6= t by P6.� If F(p! q) 2 �, then v(p) � v(q). This is obvious if F(q) 2 �. Ifnot, then also F(p) 62 � by P2, and any n�sequence for p can beturned into an n�sequence for q by adding F(p! q) to it.� If T(p! q) 2 �, then v(p) > v(q). This follows from P3 (togetherwith P6) and the fact that any n�sequence for q can be turnedinto an (n+ 1)�sequence for p by adding T(p! q) to it.12 The notation reects the fact that if p � q 2 �, and v refutes �, then v(p) �v(q). See the list of properties of � below. lc.tex; 8/12/2000; 8:24; p.10



Decomposition Proof Systems for G�odel Logic 11� v(?) = 0. Indeed, v(?) 6= t by P7. On the other hand, by P1,P4 and P5, if q1 : : : ql is an n�sequence for ? then � containsF(qi ! qj) for all i; j. This contradicts (*) for n > 0. Hence theonly n for which an n�sequence for ? exists is 0.It immediately follows from these facts that v is a valuation givinga countermodel of �. Hence � is not valid.2.3. An Equivalent Gentzen-type FormulationIn (Konikowska, 2000) there is a simple algorithm for translating agiven R-S deduction system RS into an equivalent Gentzen-type calcu-lus G(RS) of sequents of ordinary formulas. The algorithm translates asequence 
 into a sequent �) �, in which � consists of the F-formulasof 
 and � consists of the T-formulas of 
 (the signs are omittedin both cases) 13. The axioms of G(RS) are the translations of thefundamental sequences of RS, and its rules of inference are the obvioustranslations of the rules of RS (written in \reverse", so that premisesof a rule of RS are translated into premises of the corresponding ruleof G(RS), and the same applies to conclusions14). Hence every proofin RS can be transformed stepwise into a proof in G(RS) of the sameformula, and vice versa. In particular, a formula is provable in RS i�its translation is provable in G(RS). Moreover: a sequent is provable inG(RS) i� it is the translation of a provable sequence of RS (and viceversa).The purely implicational fragment of the calculus GLCRS producedby this algorithm in the case of LCRS is given below.THE SYSTEM GLCRS.Axioms: ') ', ? )Structural Rules: Weakening and Permutation (on both sides)Logical Rules()! (!)) �) �;  1 !  2; '!  2�) �; '! ( 1 !  2)(! (!))) �;  1 !  2 ) � �; '!  2 ) ��; '! ( 1 !  2)) �13 Note again that in the translation of tableau systems the signs are exactlyopposite.14 Recall that the premises of an R-S rule are written below the double line, whereasits conclusion is written above it. lc.tex; 8/12/2000; 8:24; p.11



12 A. Avron, B. Konikowska() (!)!) �) �; '2 !  �; '1 ! '2 ) �;  �) �; ('1 ! '2)!  ((!)!)) �; '2 !  ) �; '1 ! '2 �;  ) ��; ('1 ! '2)!  ) �Analytic Omission RulesTransitivity: �; p! q; q! r; p! r ) ��; p! q; q ! r) �Left Maximality: �; p! q; p; q) ��; p! q; p) �Right Maximality: �) �; q; p! q�) �; p! qLinearity: �; q ! p) �; p! q�) �; p! qMinimality of ?: �; p! ?;?! p) ��; p!? ) �THEOREM 2.1. GLCRS is sound and complete for LC.2. GLCRS is closed under Contraction and Cut.Proof: The �rst part is just a reformulation of Theorem 1 (giventhe way GLCRS has been obtained from LCRS). The second part is acorollary of the �rst.2.4. A Cut-free Version Without Expansion RulesFrom the viewpoint of the usual methodology of Gentzen-type systems,there is a big di�erence between the logical rules and the omission rulesof GLCRS. All the logical rules have what might be called the semi-subformula property: written in Polish notation, every formula in theirpremises either appears in their conclusion or is obtained from someformula there by deleting some of its symbols. This is not very di�erentlc.tex; 8/12/2000; 8:24; p.12



Decomposition Proof Systems for G�odel Logic 13from the usual subformula property. The omission rules, in contrast, donot have this property (although they are still analytic). These rules areclose in nature to what is known in Gentzen-type systems as analyticcut (although they are simpler!). Systems with such rules are somewhatless natural in the Gentzen-type framework.Instead of using omission rules, we can take as an axiom any validbasic sequent (a basic sequent here is a sequent with all elements beingeither atomic formulas or implications of atomic formulas). This isacceptable if a purely syntactic, constructive characterization of suchsequents can be given. The completeness proof for LCRS implicitlyincludes, in fact, such a characterization. To formulate it explicitly, weneed to introduce suitable notation 15:DEFINITION 4. Let �) � be a basic sequent.� We say that (p � q) 2 (�) �) i� (p! q) 2 �.� We say that (t � q) 2 (�) �) i� q 2 �.� We say that (p < q) 2 (�) �) i� (q ! p) 2 �.� We say that (q < t) 2 (�) �) i� q 2 �.� Let p; q be either atomic formulas or t 16.We say that (p / q) 2 (� ) �) i� either (p � q) 2 (� ) �) or(p < q) 2 (�) �).� A sequence q1; : : : ; ql (where qi is either atomic or t) is called astrictly increasing sequence for � ) � if (qj / qj+1) 2 (� ) �)for 1 � i � l � 1, and either (qi < qi+1) 2 (� ) �) for some1 � j � l� 1, or q1 = t; ql = ?.Note: It can easily be checked that if q1; : : : ; ql is a strictly increasingsequence for �) �, and v refutes �) �, then v(q1); : : : ; v(ql) (wherev(qi) =Df t in case qi is t) is monotonically increasing, but not constant.THE SYSTEM GLC�RS.Axioms: Every basic sequent for which there exists a strictly increas-ing sequence q1 : : : ql satisfying one of the following:1. q1 = ql15 The fact that this notation is similar to the notation used in (Baaz andFerm�uller, 1999) is no accident, of course. See Section 4.16 Note that in this paper t is not a symbol of the language of LC.lc.tex; 8/12/2000; 8:24; p.13



14 A. Avron, B. Konikowska2. q1 = t3. ql = ?Logical Rules: Like in GLCRS.THEOREM 3.1. GLC�RS is sound and complete for LC.2. GLC�RS is closed under Weakening, Contraction and Cut.Proof: The �rst part easily follows from the proof of Theorem 1. Thesecond is again a corollary of the �rst.Notes.1. To avoid the need for the permutation rule, we assume that thesequents of GLC�RS employ multisets of formulas (rather than se-quences) on both sides (that the system is closed under weakeningcan easily be seen also by a straightforward induction on the lengthof proofs).2. GLC�RS corresponds of course to an alternative R-S system for LC(LC�RS). In LC�RS no expansion rules are used. Instead there isa much more extensive set of \fundamental sequences". This isstill in full coherence with the R-S methodology, which allows for atradeo� between rules (especially expansion rules) and fundamentalsequences.3. It can easily be proved (either semantically or proof-theoretically)that GLC�RS is closed under substitutions. Hence it is possible toextend its set of axioms to include all their substitution instances.4. Like Dyckho�'s system G4 � LC in (Dyckho�, 1999), GLC�RS iscontraction-free and terminating.An advantage of GLC�RS over GLCRS and G4� LC is that it can beextended in a straightforward way to any �nite G�odel logic Gk:THEOREM 4. Let GLC�kRS be obtained from GLC�RS by adding to itas axioms all basic sequents � ) � which have a strictly increasingsequence q1 : : : ql such that (qi < qi+1) 2 (�) �) for at least k di�erentqi's. Then GLC�kRS is a cut-free, sound and complete system for Gk.Proof: It is easy to see that every refutation of the new axiomsrequires more than k di�erent elements of G!. This entails soundness.lc.tex; 8/12/2000; 8:24; p.14



Decomposition Proof Systems for G�odel Logic 15For completeness, assume that � ) � is not provable. Call q1; : : : ; ql\an n�sequence for p" if ql = p, q1; : : : ; ql is strictly increasing for�) �, and for n di�erent i's, (qi < qi+1) 2 (�) �). The new axiomsensure that for no p can there be an n-sequence for p with n � k. Letv(p) = t if either p 2 � or there is a (k � 1)-sequence for p. Otherwiselet v(p) be the maximal n for which there exists an n�sequence for p.Following the proof of Theorem 1, it is not diÆcult to show that v is arefuting valuation for �) � in Gk. Details are left to the reader.3. A More EÆcient Hypersequent CalculusIn this section we show how the R-S methodology applied in this workcan be combined with the use of hypersequents (the data structureused for LC in (Avron, 1991)) to improve the system GLC�RS . 17 Useof hypersequents rather than ordinary sequents will allow us to have:� Considerably fewer logical (or \decomposition") rules;� Fewer types of indecomposable formulas;� Fewer types of axioms (or \fundamental sequences").3.1. The System GLC�We start by recalling some de�nitions from (Avron, 1991).DEFINITION 5. A (single-succedent) hypersequent is a structure ofthe form: �1 ) A1 j �2 ) A2 j � � � j �n ) Anwhere �i ) Ai is an ordinary single-succedent sequent. 18Each �i ) Ai is called a component of the hypersequent (Note thatwe do not allow components with an empty succedent, although suchcan be easily added if so desired).We use G;H as variables for (possibly empty) hypersequents, S forsequents. We shall assume that the order of the components in a hy-persequent and the order of formulas on the l.h.s. of a component do notmatter (i.e.: we again use multisets throughout rather than sequencesor sets).17 Hypersequents are a generalization of Gentzen-type sequents. Up to now, nowork has been done on generalizing R-S systems in an analogous way - but the waytowards doing this seems clear, and it will be a subject for future work.18 Note that while the symbol j denotes conjunction on the meta-level in R-Ssystems, in hypersequents it denotes disjunction on the meta-meta-level.lc.tex; 8/12/2000; 8:24; p.15



16 A. Avron, B. KonikowskaDEFINITION 6. The interpretation of a standard sequent of the formA1; A2; : : : ; An ) B is A1 ! (A2 ! � � � ! (An ! B) � � �). Theinterpretation of a hypersequent �1 ) A1j � � � j�n ) An is in turn'�1)A1 _ � � �_'�n)An , where '�i)Ai is the interpretation of �i ) Ai.DEFINITION 7. A hypersequent G is called valid in G! (j=G! G) ifits interpretation is valid in G!.The main advantage of using here single-succedent hypersequentsrather than multiple-succedent sequents is that in LC, like in multi-succedent intuitionistic logic, the classical rule for introducing ! onthe right-hand side of ) is only sound in general when the conclusionhas just a single succedent. It is in fact easy to demonstrate thatj=G! Gj�) '!  i� j=G! Gj�; ')  As a result, the indecomposable formulas are only the atomic ones(on both sides of a component) and basic implications (i.e.: implicationsof atomic formulas) which occur on the l.h.s. of a component. Suchoccurrences will be further constrained as follows:DEFINITION 8.1. A basic sequent is a sequent of the form:q1; : : : ; qk; p! r1; : : : ; p! rl ) pwhere p; q1; : : : ; qk and r1; : : : ; rl are all atomic.2. A hypersequent is called basic if each of its components is basic.The main properties of basic sequents and hypersequents are givenin the following lemma, the easy proof of which we leave to the reader.LEMMA 1.1. A basic sequent � ) p is refuted by a valuation v in G! only ifv(p) < v(q) for all atomic q 2 �, and v(p) � v(q) for every q suchthat (p ! q) 2 �. If v(p) 6= t for every atomic variable p then theconverse is also true.2. A hypersequent is refuted by v i� v refutes all its components.Like GLC�RS, our new hypersequent calculus consists of logical de-composition rules, together with a purely syntactic, constructive char-acterization of valid basic hypersequents. For the latter we again needsome notations: lc.tex; 8/12/2000; 8:24; p.16



Decomposition Proof Systems for G�odel Logic 17DEFINITION 9. Let p; q be atomic formulas, and let G be a hyperse-quent. 19� (p � q) 2 G i� �; p! q ) p is a component of G for some �.� (p < q) 2 G i� �; q ) p is a component of G for some �.� (p / q) 2 G i� either (p � q) 2 G or (p < q) 2 G.� A sequence q1 : : : ql (where qi is atomic) is called a strictly in-creasing sequence for G, if (qj / qj+1) 2 G for 1 � i � l � 1, and(qi < qi+1) 2 G for some 1 � i � l � 1.THE SYSTEM GLC�.Axioms: Every basic hypersequent for which there exists a strictlyincreasing sequence q1 : : : ql such that one of the following holds:1. q1 = ql2. qn = ?Logical Rules:()^) Gj�) ' Gj�)  Gj�) '^  (^ )) Gj�; ';  ) �Gj�; '^  ) �()_) Gj�) 'j�)  Gj�) ' _  (_ )) Gj�; ') � Gj�;  ) �Gj�; '_  ) �()!) Gj�; ')  Gj�) '!  19 Note that t is not needed here! lc.tex; 8/12/2000; 8:24; p.17



18 A. Avron, B. Konikowska(!^) Gj�; '!  1; '!  2 ) �Gj�; '!  1 ^  2 ) �(^ !) Gj�; '1 !  ) � Gj�; '2 !  ) �Gj�; '1 ^ '2 !  ) �(!_) Gj�; '!  1 ) � Gj�; '!  2 ) �Gj�; '!  1 _  2 ) �(_ !) Gj�; '1 !  ; '2!  ) �Gj�; '1 _ '2 !  ) �(! (!) Gj�; '!  2 ) � Gj�;  1 !  2 ) �Gj�; '! ( 1 !  2)) �(!)!) Gj�;  ) � Gj'1 ) '2j�; '2 !  ) �Gj�; ('1!'2)! ) �(!)) Gj�) rjp! q ) p Gj�; q ) rGj�; p! q ) rNotes:1. All the rules of GLC� are again easily seen to be sound and in-vertible with respect to G!. All of them are decomposition rules,except !), which has also the avor of an expansion rule (in thesense of R-S systems).2. An initial version of GLC� together with the related theorems werepresented in (Avron, 2000). Here we have simpli�ed the character-ization of the axioms as well as the proofs.Examples of axioms: Here is the full list (up to the order of compo-nents and names of variables) of the simplest axioms which use at most3 di�erent variables (the rest can be obtained by repeatedly adding ei-ther a new arbitrary basic component, or some indecomposable formulato an existing component): lc.tex; 8/12/2000; 8:24; p.18



Decomposition Proof Systems for G�odel Logic 19? ) ? p) p? ) p p) qjq ) p(p! q)) pjp) q (p!?)) pjp) qp) qjq ) rjr) p q ! p) qjq ) rjr) p(q ! p)) qj(r! q)) rjr) p (q !?)) qj(r! q)) rjr) pTHEOREM 5. A sequent G is valid i� `GLC� G.Proof: Because of the soundness and the semantic invertibility ofthe rules of GLC�, for every hypersequent G we can e�ectively �nd a�nite set B of basic hypersequents such that G is derivable from B inGLC�, and G is valid i� each H 2 B is valid. On the other hand, iteasily follows from Lemma 1 that the axioms of GLC� are valid. Henceit suÆces to show that each basic hypersequent which is not an axiomis refutable. Given such a hypersequent G and atomic p, call q1; : : : ; ql\an n�sequence for p" if ql = p, (qi /qi+1) 2 G for 1 � i � l�1, and forn di�erent i's, (qi < qi+1) 2 G. Let v(p) be the maximal n for whichthere exists an n�sequence for p. Like in the proof of Theorem 1, iteasily follows from the fact of G not being an axiom that v is a well-de�ned valuation in G! (in particular: v(?) = 0). Moreover: v(p) 6= tfor every atomic p. Hence we may apply Lemma 1, and an argumentsimilar to that used in the proof of Theorem 1, to show that v indeedrefutes G.COROLLARY 1.1. The cut rule and all the standard structural rules are admissible inGLC�.2. A formula ' is valid in LC i� ) ' has a proof in GLC�.Again a corresponding system for Gk can easily be obtained:THEOREM 6. Let GLC�k be obtained from GLC� by adding to it asaxioms all hypersequents G which have a strictly increasing sequenceq1 : : : qn such that (qi < qi+1) 2 G for at least k di�erent qi's. ThenGLC�k is a cut-free, sound and complete system for Gk.Proof: The proof is similar to that of Theorem 4.3.2. A Tableau System for LC based on GLC�In order to develop a tableau system for proof search in GLC�, werepresent a hypersequent G by a set SG of signed formulas with linkslc.tex; 8/12/2000; 8:24; p.19



20 A. Avron, B. Konikowskabetween them. An occurrence of T' in SG means that ' occurs on thel.h.s. of at least one component of G, while an occurrence of F' in SGmeans that ' is the r.h.s of at least one component of G20. A link fromT' to F means that ' occurs on the l.h.s. of a component of G inwhich  is the r.h.s. Thus every signed formula of the form T' in SGis linked to at least one signed formula of the form F'.In our tableau system, the set of signed formulas on some branch, towhich no reduction rule has yet been applied on that branch, represents(together with the links between its elements) a hypersequent that weneed to prove. In principle, a branch is closed if it contains a set ofsigned formulas (together with links) which represents a substitutioninstance of an axiom. In practice we may apply this test only when noreduction rule can be applied on that branch (the branch representsin such a case a basic hypersequent). Before this stage is reached, wewill close a branch in some simple cases only (for example: when thebranch contains a formula of the form T?, or a pair T';F' with alink between these two formulas).As usual, the rules of our system replace some signed formula on abranch by other (usually simpler) ones. In addition, they also changethe set of links on that branch. The �gure below contains all the purelyimplicational rules of the tableaux system. The full list can be foundin (Avron, 2000), from which the material presented in this subsectionhas been taken. F'!  (F!) ����T';F T ! (�! ')(T! (!)) � �T ! ' T� ! '
Tp! q(T!) � �Tp! q;Fp TqT( ! �)! '((T!)!) � �T' T ;F�;T�! 'We next describe the changes in links that each rule causes. Usingthe results of the previous section, it is easy to show that the resultingtableau system is sound and complete.20 Note that unlike in Section 1, we use here the standard notation of tableaux.lc.tex; 8/12/2000; 8:24; p.20



Decomposition Proof Systems for G�odel Logic 21(T! (!)): Every formula that was linked to T ! (� ! ') beforethe application of the rule should be linked to the new T ! 'and to the new T� ! ' after it.(F!): Every formula that was linked to F' !  before the applica-tion of the rule should be linked to the new F after it. In addition,a link should be added between the new T' and the new F .(T!): The new Tp! q should be linked to the new Fp. The newTq should be linked to all the formulas other than Fp to whichTp! q was linked before the application of the rule.(T(!)!): The new T should be linked to the new F�. The new T'and the new T� ! ' should be linked to the formulas to whichT( ! �)! ' was linked before the application of the rule.Note. In the terminology of the previous section, the indecomposableformulas of this system are those of the form Tp;Fp and Tp ! q21.Almost all its rules are strict decomposition rules. As noted above,the only exception is (T !), which is more an expansion rule. (T !)should indeed be applied only if no other rule is applicable, and only ifp; q are atomic, p 6= q, p 6= ?, and there is a formula di�erent from Fpto which Tp! q is linked on that branch. We note also that in practiceno rule should be applied to signed formulas of the forms T? !  andT !  , and such formulas should simply be ignored.Detailed examples of the use of the above tableaux calculus are givenin (Avron, 2000).4. Conclusion and Comparison with Other WorksIn this paper we have introduced three new cut-free calculi for LC. Inthese calculi the great advantage that the hypersequent systemGLC of(Avron, 1991) has over all other known systems for LC is lost:GLC hasexactly the same logical rules as intuitionistic logic, and the di�erencesbetween the two logics is (according to GLC) only with respect to thestructural rules. This is no longer true for the calculi of this paper, sinceall of them employ several logical rules which are not intuitionisticallyvalid. Another nice property of GLC which is partially lost here is thepure subformula property. Instead, we have only the semi-subformulaproperty, which is a little bit less pure and elegant. For understanding21 They correspond, respectively, to F(p);T(p) and F(p ! q) of the R-Sformulation. lc.tex; 8/12/2000; 8:24; p.21



22 A. Avron, B. KonikowskaLC, and for reasoning about it,GLC is therefore better (in our opinion)than our new systems. On the other hand, these systems are much moresuitable for proof search than GLC. This is due to the fact that unlikeGLC, they are terminating, contraction-free, and all their rules areinvertible.Among our three systems, the hypersequent system GLC� is de�-nitely more eÆcient and economical than GLC�RS . It is less clear whichof GLCRS and GLC� is superior. The advantages of GLCRS are that ituses ordinary sequents (rather than hypersequents), and its axioms aremuch simpler. Whether this compensates for the need to use severalomission (or \expansion") rules should perhaps best be judged on anexperimental basis.It is interesting to compare our systems here with two other systemsthat have recently (and independently) been introduced with the samepurpose:� The system G4 � LC of (Dyckho�, 1999) (which is an improvedversion of the system in (Avellone et al., 1999)) has a lot in commonwith GLCRS. Like GLCRS, it uses ordinary, multiple-succedentsequents. The two systems have the same axioms, and both arecut-free, terminating, contraction-free, and with invertible rulesonly. In both cases, this is achieved by giving up the pure subfor-mula property (and having the semi- subformula property instead).Moreover: they both use decomposition rules in an essential way(some of these rules being identical). However, the principal ruleof G4 � LC (the one that allows inference of the characteristicaxiom of LC) does not have a �xed number of premises. Moreover:the corresponding tableau rule requires analyzing several formulassimultaneously, so it has a global character (although it is localaccording to the formal de�nition of that term in (Troelstra andSchwichtenberg, 2000)). In GLCRS , in contrast, all the rules arestrictly local: the corresponding tableau system analyzes just oneformula at a time. Another important shortcoming of G4� LC isthat its principal rule may be applied only if its conclusion cannotpossibly be obtained by any other rule of the system (the rule willstill be sound if this side condition is removed, but then it will notbe invertible any more). As a result, its set of valid proofs is notclosed under substitution of formulas for propositional variables.In GLCRS, in contrast, all the rules are pure, with no side condi-tions, they are completely independent of each other and remainsound (in both directions) under substitutions. We hope that thisadvantage will make it easier to extend GLCRS (as well as GLC�)to the �rst-order case (something which is a little problematic forlc.tex; 8/12/2000; 8:24; p.22



Decomposition Proof Systems for G�odel Logic 23G4�LC. See (Dyckho�, 1999)). This, however, should be checkedin the next stage of this research.� The system RG1 of (Baaz and Ferm�uller, 1999) seems similarto GLC� in that it employs hypersequents rather than ordinarysequents. Its main advantage over the systems of this work is thatit has the pure subformula property. This, however, is achievedonly at the cost of using two types of components: A � B andA < B (with the obvious semantical interpretations in G!), andbeing forced to use the constant 1 (our t) in the system (even foraxiomatizing just the pure implicational fragment of LC!). Nowdespite of the apparent use of hypersequents, RG1 is actuallyequivalent to GLC�RS, since a hypersequent G of RG1 can betranslated into a sequent �) � as follows:1. If 1 � B is a component of G then B 2 �2. If B � 1 is a component of G then B ! B 2 �3. If 1 < B is a component of G then B ! B 2 �4. If B < 1 is a component of G then B 2 �5. If A � B is a component of G (A;B 6= 1) then A! B 2 �6. If A < B is a component of G (A;B 6= 1) then B ! A 2 �It can easily be checked that this translation makes the axiomsand rules of RG1 identical to those of GLC�RS 22. We believe,however, that the fact that the implementation of GLC�RS does notinvolve implementing a new logical framework, makes that systemsuperior toRG1 from a practical point of view (although from theviewpoint of proof search there is of course no di�erence betweenthe two versions). Moreover: since GLC� is obviously more eÆcientthan GLC�RS , it is (in our opinion, at least) also more eÆcient thanthe equivalent RG1. ReferencesA. Avellone, M. Ferrari, P. Miglioli. Duplication-free Tableaux Calculi Together withCut-free and Contraction-free Sequent Calculi for the Interpolable PropositionalIntermediate Logics. Logic J. IGPL, 7:447{480, 1999.22 Note that one of the rules in (Baaz and Ferm�uller, 1999), (�:<: r), is erroneous.This has hidden the equivalence for a while. The authors of (Baaz and Ferm�uller,1999) have con�rmed that the correct rule, as computed by their algorithm, shouldhave been the translation of the rule (! (!))) of GLC�RS .lc.tex; 8/12/2000; 8:24; p.23
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