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Abstract.

The main goal of the paper is to suggest some analytic proof systems for LC
and its finite-valued counterparts which are suitable for proof-search. This goal is
achieved through following the general Rasiowa-Sikorski methodology for construct-
ing analytic proof systems for semantically-defined logics. All the systems presented
here are terminating, contraction-free, and based on inwvertible rules, which have a
local character and at most two premises.
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1. The Godel-Dummett Logic LC

In (G6del, 1933) Godel introduced a sequence {G,} (n > 2) of n-valued
Matrices. He used these matrices to show some important properties
of intuitionistic logic. An infinite-valued matrix G, in which all the
Gns can be embedded was later introduced by Dummett in (Dummett,
1959). The logic of G, was axiomatized in the same paper, and has
been known since then as Godel-Dummett’s LC. It is probably the
most important intermediate logic, which turns up in several places,
such as the provability logic of Heyting’s Arithmetics (Visser, 1982),
and relevance logic (Dunn et al., 1971). Recently it has again attracted
a lot of attention because of its recognition as one of the three most
basic fuzzy logics (Hajek, 1998).

The language of LC is that of intuitionistic logic. Semantically, it
corresponds to linearly ordered Kripke structures. It also corresponds
of course to the matrix G, = (N U {t}, <, =, =, V,A), where < is the
usual order on N extended by a greatest element ¢, the interpretation
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of the propositional constant | is the number 0, a — bistif a < b
and b otherwise, —a is simply a — 0, and A and V are, respectively,
the min and maz operations on (N U {t}, <).! The matrices of {G,}
are similar, but the set of truth values of G, is {0,...,n — 2} U {t}.
The consequence relation 1o is defined as follows: @q,..., 0, FrLe ¥
iff min{v(p1),...,v(pn)} < v(¥) for every valuation v in G,,.? This is
equivalent ® to taking ¢ as the only designated element, and defining:
©1,-.-,¢n Fre ¢ iff, for every v in G, either v(¢)) =t or v(p;) # ¢
for some 1 < ¢ < n. The consequence relation corresponding to G,, is
defined similarly.

A Hilbert-type axiomatization for LC can be obtained from intu-
itionistic logic by adding to it the axiom (¢ — ¥) V (¢ — @) — see
(Dummett, 1959).

A cut-free Gentzen-type formulation for LC was first given by Sonobe
in (Sonobe, 1975). His approach was improved in (Avellone et al., 1999)
and (Dyckhoff, 1999), where terminating, contraction-free (and cut-
free) versions have been presented. All those systems have, however, the
serious drawback of using a rule with an arbitrary number of premises,
all of which contain formulas of essential importance for the inference.
A cut-free formulation of LC free of this drawback, and, unlike other
formulations, having exactly the same logical rules as the standard for-
mulation of Intuitionistic Logic, was given in (Avron, 1991). However,
the latter formulation is not very convenient for proof search. The main
reason is that some of its rules are not invertible.

Our main goal in this paper is to suggest some analytic proof systems
for LC and its finite-valued counterparts which are suitable for proof-
search, and only contain rules of a strictly local character (with at
most two premises). To achieve this goal, we shall follow the general
Rasiowa-Sikorski methodology for constructing analytic proof systems
for semantically defined logics. The main ideas are to decompose a
formula ¢ to simpler formulas of the same vocabulary (though not
necessarily to subformulas of ¢) and to employ, if needed, a more
extensive set of axioms (or criteria for closing branches) than is usual
in standard systems (more explanations are given in the next section
and in the papers cited there). These ideas are discussed in detail when
we present R-S deduction systems, for which they are raison d’etre.

! This interpretation is not the one given by Gédel and Dummett, but its dual.
We note also that for the application as a fuzzy logic it is more useful (Hajek, 1998)
to use instead of N U {t} the real interval [0,1], with 1 playing the role of t. This
makes a difference only when we consider inferences from infinite theories, and in
this paper it is convenient to clearly distinguish between t and the other truth values.

2 As usual, if n = 0 the “minimal element” is taken to be t.

3 A proof of this well-known result can be found in (Avron, 1991).
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However, later we go on to show how the methodology can be used
with other deduction mechanisms, like hypersequential calculi.

Like in (Dyckhoff, 1999), our systems will be terminating, contraction-
free, and based on invertible rules.

2. R-S Deduction Systems for LC

2.1. R-S DEDUCTION SYSTEMS — BACKGROUND

A Rasiowa-Sikorski (R-S) deduction system (Rasiowa and Sikorski,
1963) is a variant of the tableau method®, which operates on sequences
of signed formulas. However, in contrast to tableaux, it is used for
proving validity directly rather than as a refutational mechanism 5. An
R-S system usually has three main components:

— Decomposition rules,
— Expansion rules,
— Fundamental sequences.

A decomposition rule replaces some signed formula in a sequence
Q by certain simpler signed formulas of the same (or partial) vocabu-
lary. A signed formula to which such a rule can be applied is called
decomposable. Otherwise it is called indecomposable. A sequence of
indecomposable signed formulas is called basic. Decomposition rules
can therefore only be applied to sequences which are not basic. An
expansion rule, in contrast, may be applied only to basic sequences.
Such a rule augments a given basic sequence with some other inde-
composable signed formulas of the same vocabulary (so the outcome is
still basic). It is a fundamental requirement that both types of rules be
analytic. ® Another crucial demand is that rules of both types should
also be invertible in the sense that the conclusion of a rule is provable in
the system iff all its premises are provable. If the system is sound and
complete with respect to its intended semantics 7, then this is equiv-
alent to the rules being validity-preserving in both directions. Usually,

* Though it has originally been developed and applied independently of the
tableau method.

5 Accordingly, in this section we use the symbol “T* where standard tableaux
use “F”, and vice versa.

6 There is no complete uniformity regarding the exact meaning of the term “an-
alytic” in the literature. Here a rule is called analytic if the multiset of symbols
occurring in any formula in its premises is contained in the multiset of symbols
occurring in the conclusion.

? Which almost always exists, since the R-S methodology is semantically oriented.
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however, they have the stronger property of being truth-preserving (in
both directions) with respect to each intended model separately —
which is also the case with the system developed here. Invertibility is a
strong property symbolized by a double horizontal line in the standard
notation of the rules, which is:

Q
Q... |0

where all the 2’s are sequences of signed formulas. €2 is called the con-
clusion of the rule, and Q, s, ..., €, — its premises. Note that since
R-S systems are used for proving validity, the vertical bar separating
individual premises is taken to correspond to a meta-conjunction on
the validity level, while a sequence is understood as equivalent to a
meta-disjunction of its elements.

The general idea in an R-S deduction system is to prove an ordinary
formula ¢ by first decomposing T(yp) with help of the decomposition
rules into simpler sequences which are valid iff the original ¢ is. If no
decomposition rule is applicable, expansion rules might be applied. This
process results finally in sequences, which are either fundamental, or
non-fundamental, basic and closed under the expansion rules. Finally,
a sequence is considered proved if the above process yields in the end
only fundamental sequences, which play the role of azioms here. 8

More information on R-S systems, their applications, and the general
methodology of using this formalism for developing deduction systems
for various kinds of logics from the analysis of their semantics, can be
found in (Konikowska, 1999; Konikowska, 2000; Konikowska, 2000a).

2.2. AN R-S SysTEM ForR LC wiTH SIMPLE FUNDAMENTAL
SEQUENCES

In what follows we use p, ¢, r to denote atomic formulas (including 1),
and lower case Greek letters to denote arbitrary formulas.

Intuitively, the sign T, when used in an R-S system, stands for
“true” ,or “satisfied”, while F stands for “false”, or “not satisfied”.
Consistently with this intuition, satisfiability of signed formulas by a
valuation v in G, (or G,,) is defined by:

viET(p)iff v(p)=t, vEF(p)iff v(p)#1¢
The above description of R-S systems dictates then the following:

8 In most cases, including the systems presented below, it is possible to allow
only basic fundamental sequences, but in general it is more efficient not to impose
this restriction.
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DEFINITION 1. A sequence Q) = s1, 83, ... ,8, of signed formulas in
the language of LC is satisfied by a valuation v in G, or G, iff v = s;
for some 3,1 < i <n. It is valid iff v = Q for every valuation v.

In this section we develop our R-8 formulation of LC'. We start with
some explanations how the rules of this system are obtained.

Under the R-S methodology, for each n-ary logical construct C' we
try to find necessary and sufficient conditions for T(C (¢, ... ,¥n)) and
for F(C (41, ... ,%n)) to be satisfied in terms of some simpler formulas
being satisfied. In case of LC, this can be done in a straightforward way
for disjunction and conjunction. The conditions here are quite classical:
e.g., T(¢ V) is satisfied iff either T(p) or T(v) is satisfied. This gives
rise to standard rules for these connectives.

However, —, the basic connective of LC', cannot be handled so sim-
ply, since satisfaction of T(¢ — ¢)/F(¢ — 1) cannot in general be
expressed just in terms of satisfaction of T(p), F(¢), T(¢), and F(¥).
In other words: the answer to the question whether v(¢ — ) is ¢ or
not, is not determined by the answers to the corresponding questions
concerning @ and . What it really depends on is the order relation
between v(p) and v(¥):

vET(p = 9) ifu(e) <v(®), v F(p—v) i) > o(w)

Therefore in the case of an implicational formula we go one level deeper:
if ¢ or ¥ is a composed formula, then it must have been obtained out
of some simpler formulae using V, A or —. For each of these cases, we
develop a separate pair of decomposition rules.

As an example, let us show how the rule for (p; — p2) — ¢ is
developed. By the semantics of —, to find when T((p1 — @2) — ¢) is
true under a valuation v, we should distinguish two cases:

1. v(p1) < v(p2). Then v(p; — @a) = t and v((p1 = @2) = ¢¥) =
v(7). Hence we should have v(¢) = t.

2. v(p1) > v(p2). Then v(p; — @a) # t and v((p1 = @2) = ¢¥) =
v(p2 — ¥). Hence we should have v(py — ¢) = t.

Thus the original formula is true iff either both T(p; — ) and T(¥)
are true, or both F(¢1 — ¢3) and T(py — ) are true. This is a
condition in disjunctive normal form. Using standard classical reasoning
on the metalevel (and the fact that F(¢) is true iff T(p) is not true)
we transform it to conditions in conjunctive normal form for the truth
of T((¢1 — ¢2) — ¥) and of F((p1 — ©2) — ¥), respectively ?. After

® This is needed since the branching | between the premises of a rule corresponds
here to meta-conjunction.
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some simplifications (using facts like that the truth of T(t) implies
that of T(p — 1)) we get the rules (T(—) —) and (F(—) —) given
below.

Other rules could have been developed similarly, but we have applied
a shortcut, using the following equivalences valid in G,,;:

(p1Vepa) > ¥ = (o1 = ¥)A(p2 = ¢)
= (1 Vi) = (¢—= 1)V (e — )
(p1Ap2) > Y = (p1 = ¥) V(02 = ¢)
= (i A2) = (¢ = 1) A (e — )
o= (b1 = 2) = (¢ = b2) V (Y1 — 2)

The above equivalences should be understood in the strongest possible
way, i.e. ¢ = ¢ iff, for any valuation v, v(¢) = v(¢).

Note that no decomposition rule is applicable to signed formulas
having one of the following forms:

TTP);FTP);TKP'—>Q),FTP-—>Q)

These are therefore the indecomposable signed formulas of LCRgg.
Expansion rules of an R-S system are usually discovered while at-
tempting to prove completeness of the system (relative to its intended
semantics). The expansion rules of LCgs have also been obtained in
this way, and they reflect properties of the order relation of G,,.
Now we turn to precise definitions of the relevant proof-theoretical
notions.

THE SYSTEM LCpgs.

Fundamental Sequences are those containing either:
— F(1),or
—  both T(p) and F(yp)

Decomposition Rules

2, T(pV ¢), Q"

(TV)

2, T(p), T(¢), Q"
(V) Q' F(p V), Q

QI, F((p), QII | QI, F(’l[)), QII
(TA) Q' T(p A1), Q

V', T(e), " | @, T(¢), Q"
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QI "

(FA) Fleny),Q

¥, F(y) F(¥), 2

QI:T((Pl _+‘¢):(2”| (y:tE(WZ —+‘¢),EW

QI: F(Sol — ’ll}); F(SDZ — ’ll}); Q”

QI: T(QD — ’d}l): T(QD — 1;[}2); Q”

QI: F(QD — ’d}l); Qr | QI: F(QD — 1»[}2); Qr

QI: T(Sol — ’ll}); T(SDZ — ’ll}); Q”

QI: F(Sol — ’ll}); Q” | QI: F(SDZ — ’ll}); Q”

QI: T(QD - ’d}l): Qr | QI: T(QD - 1»[}2); Q"

QI: F(QD — ’d}l); F(QD — 1;[}2); Q”

QI QII

(T N (_))) I :T(SD — (’d}l — 1;[}2)): -

O, T(h1 = ), T(p = 2),Q

QI QII

Fo) —  Fo — (”1&1 —I> ¥2)), _

QL F(¢h1 = 1), Q" | Q,F(p — 42),Q

QI QII

(T(—)) _)) I ;T((fl _>ISDZ) - ’ll}); _

Q iT(SDZ - ’d}): Q | Q :T(’d}): F(Sol — QDz), Q

QI QI/

(F(o) =) F((p1 = p2) = 9),

QI; T(Sol — 902): F(SDZ — ’d}): Q” | QI: F(’d})’ Q”
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Expansion Rules
QO F(p—q),F(g—r), Q"
QO F(p—q),Fl¢g—r),Flp—>r),

Transitivity:

QO F(p—q),F(p), '
Q,F(p — q),F(p), F(q), Q"

Left Maximality:

Q,T(p— q),Q"
o, T(p — Q): T(q)’ Q"

Right Maximality:

Q,T(p— q),Q"
Q' T(p — q),F(¢ > p), "

Linearity:

Q, F(p — 1), Q"
@, F(p - L): F(L — p); Qr

Minimality of |:

DEFINITION 2.

1. A decomposition tree for a sequence () is any tree T with vertices
labeled by sequences of signed formulas such that:

a) The root of T is labeled by Q.
b) If I labeled by X is a vertex of T, then:

i)l is a leaf iff either ¥ is a fundamental sequence, or ¥
s basic and no erpansion rule which introduces some new
signed formulas into 3 is applicable to 3 17;

i1) If I has sons labeled by 1,3, ... %, then

by
%2 ... | =

is a rule applicable to 3.

¢) T is a mazimal tree satisfying the above conditions.

2. A decomposition tree for a formula ! ¢ is a decomposition tree for
the one-element sequence Tp.

10 The last condition prevents needless expansion of sequences ad infinitum by
repeated applications of expansion rules.

1 Note that by a “formula” we always mean an ordinary, unsigned formula

(otherwise we explicitly write “signed formula”).
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Thus in order to obtain a decomposition tree of ¢ (or Q) we label
the root by T(y) (resp. ), and then expand the tree by applying first
the decomposition rules, followed by the expansion rules. If the rule R
applied to the label of a vertex has m premises, then the vertex has
n sons, labeled by the n premises of the rule, respectively. If in the
course of expanding the branch we get a fundamental sequence, we
terminate the branch — successfully. The branch is also terminated,
but unsuccessfully, if we get a basic sequence to which no expansion
rule that actually expands it (and hence no rule at all) can be applied.
Hence every leaf of the decomposition tree is labeled by either a funda-
mental sequence or a non-fundamental basic sequence. Since the tree is
maximal, each such basic sequence must be closed under all expansion
rules.

DEFINITION 3.

A decomposition tree for a formula ¢ (or a sequence Q) is called a
proof of ¢ (Q) if it is finite and all its leaves are labeled by fundamental
sequences. A formula ¢ (sequence Q) is said to be provable if it has a

proof.

THEOREM 1. A formula ¢ (a sequence X) is provable in LCgs iff it
is valid in G,.

Proof: It is straightforward to check that all the fundamental se-
quences of LCgg are valid with respect to G, and that each of its
rules is two-way sound in the sense that its conclusion is satisfied by a
given valuation v in G, if and only if all its premises are satisfied by v
(this is the strong semantic invertibility mentioned in 2.1). Hence if ¢
(X) is provable in LCRgg then it is valid in G,,. This entails soundness.
In view of the two-way soundness and analycity of the rules of
LCRs, for every sequence €2 we can construct — by induction on the
complexity of 2 — a finite set S of basic sequences such that:

— Every element of €2 is closed under each of the expansion rules;
— €1 is valid iff all the elements of S are valid;
— If all the elements of S are provable in LCgrg then so is Q.

To prove completeness it suffices therefore to show that if A is a non-
fundamental basic sequence closed under the expansion rules then A
is not valid. So let A be such a sequence. Then A has the following
properties:

P1IfF(p—q)€eAand F(¢g >r) € A, thenF(p—r) €A
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10 A. Avron, B. Konikowska

P2 If F(p — q) € A and F(p) € A, then F(q) € A
P3 If T(p — q) € A, then T(q) € A.

P4 If T(p — q) € A, then F(¢g — p) € A.

P5 If F(p — L) € A, then F(L — p) € A.

P6 If T(¢) € A, then F(¢) ¢ A

Note that P6 and P7 correspond to the assumption that A is not
fundamental, whereas P1-P5 follow from the fact that A is closed under
the five expansion rules (listed in the same order).

Let p < g denote either F(p — ¢) or T(q — p) '> . Then A has the
following crucial property:

(*) There are no pi,...,pn such that p1 = p,, (pi < pPiz1) € A
for1 <i<mn—1,and T(p; — p;) € A for some i, j.

Indeed, if such py,...,p, exist, then by P4 F(p; — piy1) € A for
1 < ¢ < n — 1. Therefore P1 and the equality p; — p, imply that
F(p; — p;) € A for all 4, j. This contradicts P6.

Call now ¢q,...,q “an n—sequence for p” if ¢ = p, (¢; < ¢iy1) € A
for 1 < ¢ <1-1, and for n different i’s, T(¢g;+1 — ¢;) € A. Define a
valuation v in G, as follows: v(p) = t iff F(p) € A. Otherwise let v(p)
be the maximal n for which there exists an n—sequence for p (such a
maximal n exists by (*)). The valuation v has the following properties:

— If F(p) € A, then v(p) =t by the definition of v.
— If T(p) € A, then v(p) # t by P6.

— I F(p— q) € A, then v(p) < v(g). This is obvious if F(q) € A. If
not, then also F(p) ¢ A by P2, and any n—sequence for p can be
turned into an n—sequence for ¢ by adding F(p — ¢) to it.

— I T(p — q) € A, then v(p) > v(q). This follows from P3 (together
with P6) and the fact that any n—sequence for ¢ can be turned
into an (n + 1)—sequence for p by adding T(p — q) to it.

2 The notation reflects the fact that if p < ¢ € A, and v refutes A, then v(p) <
v(q). See the list of properties of A below.
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— w(Ll) = 0. Indeed, v(L) # ¢t by P7. On the other hand, by P1,
P4 and P5, if g1 ...q; is an n—sequence for | then A contains
F(q; — g;) for all ¢, 5. This contradicts (*) for n > 0. Hence the
only n for which an n—sequence for | exists is 0.

It immediately follows from these facts that v is a valuation giving
a countermodel of A. Hence A is not valid.

2.3. AN EQUIVALENT GENTZEN-TYPE FORMULATION

In (Konikowska, 2000) there is a simple algorithm for translating a
given R-S deduction system RS into an equivalent Gentzen-type calcu-
lus G(RS) of sequents of ordinary formulas. The algorithm translates a
sequence €2 into a sequent I' = A, in which T consists of the F-formulas
of @ and A consists of the T-formulas of Q (the signs are omitted
in both cases) '®. The axioms of G(RS) are the translations of the
fundamental sequences of RS, and its rules of inference are the obvious
translations of the rules of RS (written in “reverse”, so that premises
of a rule of RS are translated into premises of the corresponding rule
of G(RS), and the same applies to conclusions'*). Hence every proof
in RS can be transformed stepwise into a proof in G(RS) of the same
formula, and vice versa. In particular, a formula is provable in RS iff
its translation is provable in G(RS). Moreover: a sequent is provable in
G(RS) iff it is the translation of a provable sequence of RS (and vice
versa).

The purely implicational fragment of the calculus GLCRggs produced
by this algorithm in the case of LCRgg is given below.

THE SYSTEM GLCgs.
Axioms: =, 1=
Structural Rules: Weakening and Permutation (on both sides)

Logical Rules

F:>A;’¢}1_>¢2;SD_)¢2
T'= A p— (1 — 9)

(== ()

F;¢1_>¢2:>A F:SD_>’¢}2:>A
=(=)=) Iy = (1 = 9¢n) = A

'3 Note again that in the translation of tableau systems the signs are exactly

opposite.
4 Recall that the premises of an R-S rule are written below the double line, whereas
its conclusion is written above it.
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12 A. Avron, B. Konikowska

= A gy — o L1 = o2 =AY

=)= L= A, (p1 = @2) > ¢

F;¢2_>¢:>A;901_>S02 F:¢:>A
F,(gol—>g02)—)’ll}:>A

(=) ==)

Analytic Omission Rules

'p—qq—or,p—r=A

Transitivity: T A
P 4,9 1=

I'p—q,p,g= A

Left Maximality:
Ip—=q¢p=A

I'= A, q,p—4q

Right Maximality:
ig aximality = Ap g

Ig—p=A,p—gq
I'=>A,p—gq

Linearity:

Lp—>1,1l -p=>A

Minimality of |:
Lp—>1L=A

THEOREM 2.
1. GLCRg is sound and complete for LC.

2. GLCRgs 1s closed under Contraction and Cut.

Proof: The first part is just a reformulation of Theorem 1 (given
the way GLCRs has been obtained from LCgg). The second part is a
corollary of the first.

2.4. A CuUT-FREE VERSION WITHOUT EXPANSION RULES

From the viewpoint of the usual methodology of Gentzen-type systems,
there is a big difference between the logical rules and the omission rules
of GLCRg. All the logical rules have what might be called the sem:i-
subformula property: written in Polish notation, every formula in their
premises either appears in their conclusion or is obtained from some
formula there by deleting some of its symbols. This is not very different
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Decomposition Proof Systems for Gddel Logic 13

from the usual subformula property. The omission rules, in contrast, do
not have this property (although they are still analytic). These rules are
close in nature to what is known in Gentzen-type systems as analytic
cut (although they are simpler!). Systems with such rules are somewhat
less natural in the Gentzen-type framework.

Instead of using omission rules, we can take as an axiom any valid
basic sequent (a basic sequent here is a sequent with all elements being
either atomic formulas or implications of atomic formulas). This is
acceptable if a purely syntactic, constructive characterization of such
sequents can be given. The completeness proof for LCpgs implicitly
includes, in fact, such a characterization. To formulate it explicitly, we

need to introduce suitable notation '°:

DEFINITION 4. LetT = A be a basic sequent.

— We say that (p<gq) e (T' = A)iff (p—q) €T.
t<q)e(I'=>A)iffqeT.
p<q) el =A4)f(¢—p)€A.

— We say that (¢ <t) € (T = A) iff g € A.

(
We say that (
(

— We say that

— Let p, q be either atomic formulas or t 6.
We say that (p<q) € (I' = A) iff either (p < q) € (T = A) or
(p<q) e (= A).

— A sequence qi,...,q (where g; is either atomic or t) is called a
strictly increasing sequence for I' = A if (¢; < gj+1) € (IT' = A)
for 1 < i <11, and either (¢; < gir1) € (I' = A) for some
1<j<l—-1,0orq=t, qg—= 1.

Note: It can easily be checked that if ¢qq, ..., ¢ is a strictly increasing
sequence for I' = A, and v refutes I' = A/ then v(q1),...,v(q) (where
v(g;) =py¢ t in case g; is t) is monotonically increasing, but not constant.

THE SYSTEM GLCjs.

Axioms: Every basic sequent for which there exists a strictly increas-
ing sequence g . . . g satisfying one of the following:

1. =gq

'® The fact that this notation is similar to the notation used in (Baaz and
Fermiiller, 1999) is no accident, of course. See Section 4.
6 Note that in this paper t is not a symbol of the language of LC.
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2. qlzt
3. qIZZAL

Logical Rules: Like in GLCRs.

THEOREM 3.
1. GLC%g s sound and complete for LC.

2. GLCRg is closed under Weakening, Contraction and Cut.

Proof: The first part easily follows from the proof of Theorem 1. The
second is again a corollary of the first.

Notes.

1. To avoid the need for the permutation rule, we assume that the
sequents of GLCx¢ employ multisets of formulas (rather than se-
quences) on both sides (that the system is closed under weakening
can easily be seen also by a straightforward induction on the length
of proofs).

2. GLC%g corresponds of course to an alternative R-S system for LC
(LC%s)- In LCjg no expansion rules are used. Instead there is
a much more extensive set of “fundamental sequences”. This is
still in full coherence with the R-S methodology, which allows for a
tradeoff between rules (especially expansion rules) and fundamental
sequences.

3. It can easily be proved (either semantically or proof-theoretically)
that GLCRg is closed under substitutions. Hence it is possible to
extend its set of axioms to include all their substitution instances.

4. Like Dyckhoff’s system G4 — LC in (Dyckhoff, 1999), GLC}g is

contraction-free and terminating.

An advantage of GLC%Rg over GLCRrs and G4 — LC is that it can be
extended in a straightforward way to any finite Godel logic Gp:

THEOREM 4. Let GLC}*{g be obtained from GLCyg by adding to it

as azxioms all basic sequents I' = A which have a strictly increasing
sequence qi . . .q; such that (¢; < ¢;11) € (I' = A) for at least k different
g;’s. Then GLC}*{g is a cut-free, sound and complete system for Gy,.

Proof: It is easy to see that every refutation of the new axioms
requires more than k different elements of GG,,. This entails soundness.
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For completeness, assume that I' = A is not provable. Call ¢1,...,q
“an n—sequence for p” if ¢ = p, q1,...,q is strictly increasing for
I' = A/ and for n different #’s, (¢; < ¢iy+1) € (I' = A). The new axioms
ensure that for no p can there be an n-sequence for p with n > k. Let
v(p) = t if either p € T or there is a (k — 1)-sequence for p. Otherwise
let v(p) be the maximal n for which there exists an n—sequence for p.
Following the proof of Theorem 1, it is not difficult to show that v is a
refuting valuation for I' = A in Gj. Details are left to the reader.

3. A More Efficient Hypersequent Calculus

In this section we show how the R-S methodology applied in this work
can be combined with the use of hypersequents (the data structure
used for LC in (Avron, 1991)) to improve the system GLC}g. 17 Use
of hypersequents rather than ordinary sequents will allow us to have:

— Considerably fewer logical (or “decomposition”) rules;
— Fewer types of indecomposable formulas;

—  Fewer types of axioms (or “fundamental sequences”).

3.1. THE SysTEM GLC*

We start by recalling some definitions from (Avron, 1991).

DEFINITION 5. A (single-succedent) hypersequent is a structure of
the form:

' => A4 |Ty= A |- | T = A,

where I'; = A; is an ordinary single-succedent sequent. 1%

Fach T'; = A; is called a component of the hypersequent (Note that
we do mnot allow components with an empty succedent, although such
can be easily added if so desired).

We use G, H as variables for (possibly empty) hypersequents, S for
sequents. We shall assume that the order of the components in a hy-
persequent and the order of formulas on the 1.h.s. of a component do not
matter (i.e.: we again use multisets throughout rather than sequences
or sets).

'7 Hypersequents are a generalization of Gentzen-type sequents. Up to now, no
work has been done on generalizing R-S systems in an analogous way - but the way
towards doing this seems clear, and it will be a subject for future work.

'3 Note that while the symbol | denotes conjunction on the meta-level in R-S
systems, in hypersequents it denotes disjunction on the meta-meta-level.
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16 A. Avron, B. Konikowska

DEFINITION 6. The interpretation of a standard sequent of the form
A1, Ag,... A, => B is Ay —» (A2 —» -+ = (A — B)---). The
interpretation of a hypersequent T'y = Aq|---|T,, = A, is in turn
¢r =>4, V- -V Qr, =4, where ¢r,— 4, is the interpretation of I'; = A;.

DEFINITION 7. A hypersequent G is called valid in G, (Fg, G) if

its interpretation is valid in G,,.

The main advantage of using here single-succedent hypersequents
rather than multiple-succedent sequents is that in LC', like in multi-
succedent intuitionistic logic, the classical rule for introducing — on
the right-hand side of = is only sound in general when the conclusion
has just a single succedent. It is in fact easy to demonstrate that

Fe. Gl ==y if e, GT,p=19¢

As a result, the indecomposable formulas are only the atomic ones
(on both sides of a component) and basic implications (i.e.: implications
of atomic formulas) which occur on the Lh.s. of a component. Such
occurrences will be further constrained as follows:

DEFINITION 8.
1. A basic sequent is a sequent of the form:
q1y--- Qs P —>T1y...,p > T =P
where p,q1,...,q, and r1,...,7; are all atomic.

2. A hypersequent is called basic if each of its components is basic.

The main properties of basic sequents and hypersequents are given
in the following lemma, the easy proof of which we leave to the reader.

LEMMA 1.

1. A basic sequent I' = p is refuted by a valuation v in G, only if
v(p) < v(q) for all atomic g € T, and v(p) < v(q) for every q such
that (p — q) € T. If v(p) # t for every atomic variable p then the
converse 1s also true.

2. A hypersequent is refuted by v iff v refutes all its components.

Like GLCRg, our new hypersequent calculus consists of logical de-
composition rules, together with a purely syntactic, constructive char-
acterization of valid basic hypersequents. For the latter we again need
some notations:
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DEFINITION 9. Let p,q be atomic formulas, and let G be a hyperse-
quent. 19

~(p<q)€eGiff T'\p— q=p is a component of G for someT.
~(p<q) €Giff T',q = p is a component of G for some T

— (p<q) € G iff either (p< q) € G or (p<q) €G.

— A sequence qi ...q (where ¢; is atomic) is called a strictly in-

creasing sequence for G, if (¢;<4¢j41) € G for1 <i<I1—1, and
(¢: < giy1) € G for some 1 <i<1l-—1.

THE SYSTEM GLC™.

Axioms: Every basic hypersequent for which there exists a strictly
increasing sequence ¢ . . . g; such that one of the following holds:

L.g=aq
2.¢q,=1

Logical Rules:
Gl = ¢ Gl = ¢

= A

( ) GIl'=> oAy
GIl,p,v=10

(A=) T, 0,9
Gl,oANY =0
GI' = ¢|'=>

(=) =l =9
Gll'=pVvy
Gl'p= 186 GII',¢y =86

(v =) T, ¢ T,

G,V =106

Gl=p—>v¢

® Note that ¢ is not needed here!
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G|F:S0_>¢1:SD_>¢2:>H

— A
( ) GIT,o = 1 ANipa = 8
G|F,g01—)’ll}:>0 G|F,g02—)’ll}:>0
(A=)
GIT,p1 Aps > =0
G|F,g0—)’ll}1:>0 G|F,g0—)’ll}2:>0
(= V)
G|F,Q0—)’t[}1\/’l[}2:>0
G|F;901_>¢;902_>¢:>0
(V—)
GIT, o1V o2 = ¢ =0
GIT,o =2 =0  GIT,¢1 = =0
(= (=)
GIT, o = (Y1 > ) => 0
GIl',¢Y =6 Gl = |l 9 — 0 = 6
(=) —)
G|F,(Q01—)Q02)—>’ll} =0
Gl=rp—g=>p Glg=r
(—=)
Glp—>qg=>r
Notes:

1. All the rules of GLC* are again easily seen to be sound and in-
vertible with respect to G,. All of them are decomposition rules,
except —=>, which has also the flavor of an expansion rule (in the
sense of R-S systems).

2. An initial version of GLC™ together with the related theorems were
presented in (Avron, 2000). Here we have simplified the character-
ization of the axioms as well as the proofs.

Examples of axioms: Here is the full list (up to the order of compo-
nents and names of variables) of the simplest axioms which use at most
3 different variables (the rest can be obtained by repeatedly adding ei-
ther a new arbitrary basic component, or some indecomposable formula
to an existing component):
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1 =1 D=Dp
L=p p=>4qlg=>p
p—=>q)=>plp=>q (- 1L)=pp=9q
p=>qlg=>rlr=>p gop=>gqlg=>rir=p
(g—=p)=q(r—q¢ =rlr=0p (¢g— =4qllr—q¢g)=>rlr=>p

THEOREM 5. A sequent G is valid iff Fgre~ G.

Proof: Because of the soundness and the semantic invertibility of
the rules of GLC™, for every hypersequent G we can effectively find a
finite set B of basic hypersequents such that G is derivable from B in
GLC*, and G is valid iff each H € B is valid. On the other hand, it
easily follows from Lemma 1 that the axioms of GLC™ are valid. Hence
it suffices to show that each basic hypersequent which is not an axiom
is refutable. Given such a hypersequent GG and atomic p, call ¢1,...,q
“an n—sequence for p” if g = p, (¢:<¢g;11) € Gfor 1 <i<[-1, and for
n different 7’s, (¢; < ¢;+1) € G. Let v(p) be the maximal n for which
there exists an n—sequence for p. Like in the proof of Theorem 1, it
easily follows from the fact of G not being an axiom that v is a well-
defined valuation in G, (in particular: v(L) = 0). Moreover: v(p) # ¢
for every atomic p. Hence we may apply Lemma 1, and an argument
similar to that used in the proof of Theorem 1, to show that v indeed
refutes G.

COROLLARY 1.

1. The cut rule and all the standard structural rules are admissible in

GLC™.
2. A formula ¢ is valid in LC iff = ¢ has a proof in GLC™.

Again a corresponding system for G}, can easily be obtained:

THEOREM 6. Let GLC** be obtained from GLC* by adding to it as

axioms all hypersequents G which have a strictly increasing sequence
q1---Gn Such that (¢; < gir1) € G for at least k different ¢;’s. Then
GLC** is a cut-free, sound and complete system for Gy,.

Proof: The proof is similar to that of Theorem 4.

3.2. A TABLEAU SYSTEM ForR LC BASED oN GLC*

In order to develop a tableau system for proof search in GLC*, we
represent a hypersequent G by a set Sg of signed formulas with links
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between them. An occurrence of Ty in Sg means that ¢ occurs on the
L.h.s. of at least one component of G, while an occurrence of Fp in Sg
means that ¢ is the r.h.s of at least one component of G2°. A link from
T to Fi means that ¢ occurs on the L.h.s. of a component of G in
which 9 is the r.h.s. Thus every signed formula of the form Ty in Sg
is linked to at least one signed formula of the form Fe.

In our tableau system, the set of signed formulas on some branch, to
which no reduction rule has yet been applied on that branch, represents
(together with the links between its elements) a hypersequent that we
need to prove. In principle, a branch is closed if it contains a set of
signed formulas (together with links) which represents a substitution
instance of an axiom. In practice we may apply this test only when no
reduction rule can be applied on that branch (the branch represents
in such a case a basic hypersequent). Before this stage is reached, we
will close a branch in some simple cases only (for example: when the
branch contains a formula of the form T 1, or a pair Ty, Fp with a
link between these two formulas).

As usual, the rules of our system replace some signed formula on a
branch by other (usually simpler) ones. In addition, they also change
the set of links on that branch. The figure below contains all the purely
implicational rules of the tableaux system. The full list can be found
n (Avron, 2000), from which the material presented in this subsection
has been taken.

Tp—q

¥
(F —) " ‘_) (=) / \

Tp —q,Fp Tgq

Ty, Fy
Ty — (0 — @) T —0) >y
R I AR (£=)=) / \
T4, FO,
Ty — T — ¢ TS

We next describe the changes in links that each rule causes. Using
the results of the previous section, it is easy to show that the resulting
tableau system is sound and complete.

20 Note that unlike in Section 1, we use here the standard notation of tableaux.
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(T — (—)): Every formula that was linked to Ty — (6 — ) before
the application of the rule should be linked to the new Ty — ¢
and to the new T — ¢ after it.

(F —): Every formula that was linked to Fo — 1 before the applica-
tion of the rule should be linked to the new F1) after it. In addition,
a link should be added between the new Ty and the new Fq.

(T —): The new Tp — g should be linked to the new Fp. The new
Tgq should be linked to all the formulas other than Fp to which
Tp — q was linked before the application of the rule.

(T(—) —): The new T4 should be linked to the new Fé. The new Ty
and the new T@ — ¢ should be linked to the formulas to which
T (¢ — 0) — ¢ was linked before the application of the rule.

Note. In the terminology of the previous section, the indecomposable
formulas of this system are those of the form Tp, Fp and Tp — ¢2'.
Almost all its rules are strict decomposition rules. As noted above,
the only exception is (T —), which is more an expansion rule. (T —)
should indeed be applied only if no other rule is applicable, and only if
p, q are atomic, p # ¢, p # |, and there is a formula different from Fp
to which Tp — q is linked on that branch. We note also that in practice
no rule should be applied to signed formulas of the forms T 1 — %) and
Ty — 1, and such formulas should simply be ignored.

Detailed examples of the use of the above tableaux calculus are given
in (Avron, 2000).

4. Conclusion and Comparison with Other Works

In this paper we have introduced three new cut-free calculi for LC. In
these calculi the great advantage that the hypersequent system GLC of
(Avron, 1991) has over all other known systems for LC is lost: GLC has
exactly the same logical rules as intuitionistic logic, and the differences
between the two logics is (according to GLC) only with respect to the
structural rules. This is no longer true for the calculi of this paper, since
all of them employ several logical rules which are not intuitionistically
valid. Another nice property of GLC which is partially lost here is the
pure subformula property. Instead, we have only the semi-subformula
property, which is a little bit less pure and elegant. For understanding

*' They correspond, respectively, to F(p), T(p) and F(p — gq) of the R-S
formulation.
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LC, and for reasoning about it, GLC is therefore better (in our opinion)
than our new systems. On the other hand, these systems are much more
suitable for proof search than GLC. This is due to the fact that unlike
GLC, they are terminating, contraction-free, and all their rules are
invertible.

Among our three systems, the hypersequent system GLC™ is defi-
nitely more efficient and economical than GLCR¢. It is less clear which
of GLCRrs and GLC™ is superior. The advantages of GLCRgg are that it
uses ordinary sequents (rather than hypersequents), and its axioms are
much simpler. Whether this compensates for the need to use several
omission (or “expansion”) rules should perhaps best be judged on an
experimental basis.

It is interesting to compare our systems here with two other systems
that have recently (and independently) been introduced with the same
purpose:

— The system G4 — LC of (Dyckhoff, 1999) (which is an improved
version of the system in (Avellone et al., 1999)) has a lot in common
with GLCRg. Like GLCRg, it uses ordinary, multiple-succedent
sequents. The two systems have the same axioms, and both are
cut-free, terminating, contraction-free, and with invertible rules
only. In both cases, this is achieved by giving up the pure subfor-
mula property (and having the semi- subformula property instead).
Moreover: they both use decomposition rules in an essential way
(some of these rules being identical). However, the principal rule
of G4 — LC (the one that allows inference of the characteristic
axiom of LC') does not have a fixed number of premises. Moreover:
the corresponding tableau rule requires analyzing several formulas
stmultaneously, so it has a global character (although it is local
according to the formal definition of that term in (Troelstra and
Schwichtenberg, 2000)). In GLCgs, in contrast, all the rules are
strictly local: the corresponding tableau system analyzes just one
formula at a time. Another important shortcoming of G4 — LC is
that its principal rule may be applied only if its conclusion cannot
possibly be obtained by any other rule of the system (the rule will
still be sound if this side condition is removed, but then it will not
be invertible any more). As a result, its set of valid proofs is not
closed under substitution of formulas for propositional variables.
In GLCRgs, in contrast, all the rules are pure, with no side condi-
tions, they are completely independent of each other and remain
sound (in both directions) under substitutions. We hope that this
advantage will make it easier to extend GLCgs (as well as GLC*)
to the first-order case (something which is a little problematic for
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G4 — LC. See (Dyckhoff, 1999)). This, however, should be checked

in the next stage of this research.

— The system RG,, of (Baaz and Fermiiller, 1999) seems similar
to GLC™ in that it employs hypersequents rather than ordinary
sequents. Its main advantage over the systems of this work is that
it has the pure subformula property. This, however, is achieved
only at the cost of using two types of components: A < B and
A < B (with the obvious semantical interpretations in G,,), and
being forced to use the constant 1 (our %) in the system (even for
axiomatizing just the pure implicational fragment of LC!). Now
despite of the apparent use of hypersequents, RG, is actually
equivalent to GLC%Rg, since a hypersequent G of RG., can be
translated into a sequent T' = A as follows:

. If 1 < B is a component of G then B € A

. If B <1 is a component of G then B - B € A

. If 1 < B is a component of G then B - B €T

. If B < 1 is a component of G then B € T

. If A< B is a component of G (A,B# 1) then A » B € A
. If A< Bis acomponent of G (A,B#1)then B> A €T

Sy Ot AR W N =

It can easily be checked that this translation makes the axioms
and rules of RG,, identical to those of GLC%s ?2. We believe,
however, that the fact that the implementation of GLCg ¢ does not
involve implementing a new logical framework, makes that system
superior to RG, from a practical point of view (although from the
viewpoint of proof search there is of course no difference between
the two versions). Moreover: since GLC* is obviously more efficient
than GLCjg, it is (in our opinion, at least) also more efficient than
the equivalent RG .
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