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Abstract

We present and discuss various formalizations of Modal Logics in Logical Fra-
meworks based on Type Theories. We consider both Hilbert- and Natural Deduction-
style proof systems for representing both truth (local) and validity (global) consequence
relations for various Modal Logics. We introduce several techniques for encoding the
structural peculiarities of necessitation rules, in the typed A-calculus metalanguage of
the Logical Frameworks. These formalizations yield readily proof-editors for Modal
Logics when implemented in Proof Development Environments, such as Coq or LEGO.

Keywords: Hilbert and Natural-Deduction proof systems for Modal Logics, Logical
Frameworks, Typed A-calculus, Proof Assistants.

Introduction

In this paper we address the issue of designing proof development environments (i.e. “proof
editors” or, even better, “proof assistants”) for Modal Logics, in the style of [11, 12]. To
this end, we explore the possibility of using Logical Frameworks (LF’s) based on Type
Theory, such as the Edinburgh Logical Framework, the Calculus of Inductive Constructions
or Martin-Lof predicative Type Theory [7, 4, 22, 16]. Logical Frameworks can be viewed as
general “logic specification” languages. They are based on the notions of hypothetico-general
judgement [13] and the judgements-as-types, A-terms-as-proofs paradigm [7].

According to the LF methodology the crucial step, in the development of a proof editor
for a given logic is the encoding (or formalization, or representation,...) of a particular
presentation of the logic in the typed metalanguage of LF.

In this paper, we introduce and study various encodings in dependent typed A-calculus of
Hilbert- and Natural Deduction-style (ND-style) systems for both the consequence relations
of validity and truth of K, KT, K4, KT4 (S4), KT45 (S5), KL. In particular, we extend
and generalize the methodology developed in [2]. For each encoding we state the appropriate
faithfulness and adequacy theorem.

The main challenge in encoding Modal Logics in Logical Frameworks is that of enforcing
the side conditions on the application of the proper modal rules, i.e. rules of proof or “impure
rules” in the sense of [1]. Such rules, in fact, cannot be applied uniformly to any set of
premises, but are subject to various forms of restrictions, e.g.: the premises depend on no
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assumption; or depend only on assumptions of a certain shape (boxed, essentially boxed,
etc.); or even, the premises have been derived only by proofs of a certain special shape (see
Prawitz’s third version of S4). This issue was dealt with in [2] using systems with multiple
judgements. In this paper, we expand this solution and present new alternatives, using
judgements on proofs or exploiting the underlying A-calculus structure of the metalanguage.

Our objective is not that of extending to modal logics the “proposition-as-types”, “ge-
neralized A-terms-as-proofs” paradigm, as is the case in [14, 17]. We explore, rather, the
possibility of extending to modal logics the “judgements-as-dependent types”, “\-terms-as-
ND-proofs” paradigm of [7]. To this end we do not try to invent radically new deductive
systems or new proof figures as in [14, 17], possibly using special extensions of the A-calculus.
These systems, albeit very interesting for the new insights that they can provide in the con-
ceptual understanding of modality, are beyond the scope of this paper, because they cannot
be used as the basis of an encoding of modal logics in existing general proof assistants. In
this paper we try to provide natural encodings of ezisting and classical systems of modal
logic (or very slight extensions of them). We want to produce natural editors, which do not
force upon the user the overhead of unfamiliar, indirect encodings, or the burden of learning
an altogether new system. A user of the original logic should transfer immediately to an
editor, based on our encodings, his practical experience and “trade tricks”. The only pos-
sible novelty, w.r.t. the original system, that he should experience, while using the editor,
should arise only from the fact that the specification methodology of Logical Frameworks
forces him to make precise and explicit all tacit conventions. Our approach therefore dif-
fers substantially from that of [14, 17], e.g. B-reductions of A-terms, encoding proofs in our
systems, are not intended to represent normalization of proofs, but only instantiation and
application of Lemmata, i.e. the structural rule of CuT.

Nevertheless, in our view, the interest of this paper goes beyond that of merely tailoring
Logical Frameworks to the peculiarities and idiosyncrasies of Modal Logics. LF’s naturally
suggest systems based on the natural deduction mechanism of assuming-discharging assump-
tions. Moreover, LF’s allow to conceive systems which manipulate multiple judgements on
formulee and, exploiting the judgements-as-types paradigm, allow also to reason directly on
proofs and not only on assertions. Some of the systems and encodings that we introduce
and analyze, are interesting also from the purely logical point of view in that they suggest
naturally alternative presentations of Modal Logics. In particular, the ND-style systems
with multiple consequence relations that we introduce are new, as we know, and probably
they can compete with classical systems as far as naturality or easy of use.

The paper is organized as follows. In Sect.1 we recall the basic syntactical and semanti-
cal definitions of Modal Logic and we present the classical Hilbert systems and the classical
(together with some not so classical) ND-style systems for K, KT, K4, KT4 (S4), KT45
(S5), KL. In Sect.2 we present briefly the main features and applications of Logical Fra-
meworks. The encoding of the syntax of Modal Logic appears in Sect.3. The encodings of
the Hilbert-system systems and the ND-style systems in LF appear in Sect.4, and 5 respecti-
vely. In each section we discuss first systems for validity, then systems for truth. On several
occasions we discuss more than one technique for implementing a given system; in Sect.6
we relate formally these different approaches. Final remarks, applications, and related work
are discussed in Sec.7. Proofs of theorems appear in the Appendix A.

1 Modal Logics

In this section, we briefly recall the basic notions of Modal Logics (see e.g. [10, 20]); we pre-
sent Hilbert- and ND-style systems for representing truth and validity consequence relations
for various modal logics.



1.1 Syntax and Semantics

The formulae of the basic modal propositional language ® are defined by the following
abstract syntax: ¢ ::==p | =¢ | ¢ D ¢ | Dy, where p ranges over the set of atomic proposition,
denoted by ®,. The constant ff € ®, denotes the always false proposition. Given ¢ € @,
we denote by FV () the set of (free) atomic predicate variables, defined as usual; the notion

of FV is extended to sets of formulae: FV(I') = U,erEV(p). By ¢lz1,...,z,] we denote a

formula ¢ such that FV(p) C {z1,...,2,}; we define ®x ef {p € ® |V (p) C X}. Finally,

we take O as a syntactic shorthand for =O-p.

The interpretation of modal formule is based on Kripke’s frames and models. A frame
is a pair F = (W, =) where W is the domain and -—C W x W is the accessibility relation.
Elements of W are called states, and are denoted by s. A model is a triple M = (W, —, p)
where (W, —) is a frame, and p : ®, — P(W) is a valuation.

Given a formula ¢, a model M and a state s, we define when ¢ is true in s (s =1 @)
inductively on the structure of the formula, as usual. In particular, s Fay Op <= Vs'.s —
s' = s =m p. If pis true in every state of a model M, we say that ¢ is valid in M

(Fam %)

1.2 Consequence Relations

According to [1, 20], the semantic interpretation of formulae gives rise to (at least) two
(logical) consequence relations (CR’s).

Definition 1.1 (Truth and Validity Consequence Relations) Given I' C @, ¢ € @,
and M class of models, we say that

e pistruein T wrt. M (TlEym @) if YMeMVse MsEmT =sEnmp;

pistrueinT T E@) if YMYse MsEMT = s Em p;

pisvalidin T’ wrt. M (T |=m @) if VM e M. Epm T =F=uMm @5

pisvaidin T (T'|=¢) if VM. Em T ==Mm ¢.

These definitions are straightforwardly extended to sets of formulae, and subclasses of models:
given M a set of models, we define =pr=(cpr EM Fv= Npten Em

These CR’s correspond to the (model) global relation and the (model) local relation of
[20], respectively. They differ on the releavance given to assumptions: in the validity CR,
formulae of T are seen as theorems, true in every state, while in the truth CR they are
assumptions, locally true in each state we consider. This difference is made appearant in

Theorem 1.2 ([20]) ForT C®, o e ®: T'|=p < {0 | e, ne N} = .

Moreover, the usual “deduction theorem” (“I';p E ¢ <= T | ¢ D ") holds only for the
true CR’s: it is easy to see that p |= Op, but of course |= p D Op.

1.3 Hilbert-style systems

Hilbert-style systems have been (and still are) very important tools in investigating axio-
matizations of Modal Logics. Several kinds of such systems have been proposed; they differ
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Figure 1: Axioms, rules and Hilbert-style systems for Modal Logics.

essentially on the class of Kripke models they axiomatize implicitly, and on the represented
CR. All of them extend the following basic propositional calculus, which we denote by C:

A1: D(wD )
c Ag:((pwj(ijﬁ))j((ij)j(gojﬁ)) + MP%

Az : (=% D =) D (=¥ D) D V)

In Fig.1 we list the axioms and rules which can be added to C in order to obtain the
Modal Logic we shall focus on, namely K, KT, K4, KT4 (S4), KT45 (S5), KL. In naming
the systems we follow Lemmon’s convention.

These systems fall into two categories, depending on which CR is represented. These
correspond to adopting different necessitation rules: the pure rule NEC’ yields systems which
are sound and complete only w.r.t. the validity CR’s. If we are interested in the truth CR’s,
we need the impure rule NEC.

We denote by 7 : T kg ¢ the proof @ of ¢ from the set of assumptions I', using the
axioms and rules of system S. The set of free variables in 7 is denoted by FV(r).

Definition 1.3 (Valid Proofs) Given X C ®,,A C dx,p € ®x we say that 7w is a valid
proof (in the system S) of ¢ w.r.t. (X, A) (denoted by (X,A) =s7:¢)ifm: AFg ¢ and
V(r) C X.

Theorem 1.4 (Completeness of Hilbert-style systems) ForI' C &, ¢ € &:

- For S € {K,KT,K4,KT4,KT45 K4L} : T ks ¢ <= T =y (s) ¢;

~ For S € {K', KT, K4' KT4' KT45' K4L'} : T k5 ¢ <= T |=ps) @5

where M (S) denotes the class of models corresponding to the azioms characterizing S.

1.4 Natural Deduction-style systems

In this subsection we introduce ND-style systems for both validity and truth CR’s. All these
systems extend the usual ND-style system for propositional classic logic NC:

Lok 'FeDy T'kyp
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NKT4' = NKT' + 0Og-1 NKT4 = NKT + 0Og-1
NKT45' = NKT4' + Og-1 NKT45 = NKT4 + O-1
NKL' = NK'+ 0,1 NKL = NK+ 0,1

Figure 2: Rules and ND-style systems for Modal Logics.

We make extensive use of systems with multiple consequence relations. Multiple CR
systems of Natural Deduction are probably not very well-known, but we do not give here
a detailed presentation of them, because we feel that their “working” is self-evident. We
introduce, in this paper, multiple CR systems especially in relation with Natural Deduction
systems for validity. Such systems allow to achieve a sharpening of the adequacy theorems
appearing in [2] and a generalization of the encodings of logics weaker than S4. In Section
5.2.5 we briefly outline how to introduce multiple CR systems for truth, extending those for
validity. All the systems for truth appearing elsewhere in the paper are classical.

Systems are displayed in a linearized sequent-like fashion. We denote by 7 : I F% ¢ the
proof 7 of the fact tha ¢ is entailed by the assumptions I', accordingly to the i-th CR of the
system S.

In Fig.2 we display the rules which can be added to NC in order to obtain ND-style
versions of the Modal Logics K, KT, K4, KT4 (S4), KT45 (S5), KL. In naming these
systems we extend Lemmon’s convention for Hilbert-style systems.

These systems count as ND-style systems, in that their rules follow the general schema

Flel l_il p1-- FTHA’N, l_in DPn

vIy,....T, C

P

where C' is a possible side condition, that is a restriction (max. level 2, in the terminology
of [1]) on the applicability of the schemata; and iy, ...,i,,i € {1,...,m} where F' ... F™
are the m CR of the system S. In this view, ND-style systems are characterized by the
fact that one does not focus only on theorems but rather on assumption-conclusion de-
pendencies. Rules are monotone with respect to sets of assumptions and possibly exploit
assumption-discharging mechanisms. Hence, we assume the structural rules of weakening
and contraction.

Strictly speaking, rules of ND-style systems should exhibit also an internal symmetry,
but it is well-known that this proof-theoretic property is problematic for modalities. Such a



symmetry can be recovered by substantially modifying the notion of sequents, which is out
of the scope of this work; see e.g. [15, 21].

The systems in Fig.2 fall into two categories, depending on which CR is represented.
NK,. .., NS4 represent the truth CR’s while NK’ ..., NKL’ represent the validity CR’s.
ND-style systems are best suited to represent the truth consequence relation, since the D-1
rule wraps up the deduction theorem in the system. Prawitz’ system NS4 is a good example
of how to take full advantage of this [18].

On the other hand, ND-style systems for validity are cumbersome: since the deduction
theorem does not hold for |=, we can no longer adopt the usual introduction rule for impli-
cation. A possible solution for overcoming this problem appears in the system NK” that we
introduce here. This system uses two different CR’s, i.e. I, -, whose intended meaning is:

e '+ ¢ iff “there is a proof of ¢ from I'" which does not use the O'-1, O”-1 rules” (these
derivations are said box-intro free);

e '+ ¢ iff “there is a proof of ¢ from I' which does use the O’-1, O"-1 rules”.

Box-intro free proofs can be used in deriving valid consequences, but not the converse. The
connection between these two notions of derivation is clear in the box introduction rules:
we can “box” a valid formula still obtaining a valid formula (rule O"-1), but if we “box” a
formula obtained on the F level, we obtain a valid formula (O'-1). The rules D'-E, D"-E,
D'"'-E allow for the “modus ponens” between valid and box-intro free derived formula. The

rr
rule EMBED ? is however derivable:
| R )
o 'k true 1 | R
' k- Otrue ' DOtrue D

O"-E

't

where true denotes any propositional tautology, e.g. ¢ D ¢ (its derivation is omitted).

The rule Dg-E corresponds to the K axiom of Hilbert-style systems. The other rules for
= (D'-E, O'-1) correspond to the modus ponens and the necessitation rules, respectively.
Rules corresponding to the axioms of the extensions of NK”, are added at the level of |-.

Notation for proofs and free variables of proofs are the same of Hibert-style systems.

Theorem 1.5 (Completeness of ND-style systems) For ' C &, ¢ € &:

- For S € {NK,NKT,NK4,NKT4,NKT45 NKL, NS4} : T Fs ¢ <= T [ s) @5
- For S € {NK',NKT',NK4',NKT4' ,NKT45' NKL'} : T -5 ¢ <= T |=ps) @;
where M (S) denotes the class of models corresponding to the rules characterizing S.

2 Logical Frameworks

Type Theories, such as the Edinburgh Logical Framework [7, 2] or the Calculus of Inductive
Constructions [4, 22] were especially designed, or can be fruitfully used, as a general logic
specification language, i.e. as a Logical Framework. In an LF, we can represent faithfully
and uniformly all the relevant concepts of the inference process in a logical system: syn-
tactic categories, terms, assertions, axiom schemata, rule schemata, tactics, etc. via the
“judgements-as-types A-terms-as-proofs” paradigm. The key concept is that of hypothetico-
general judgement [13], which is rendered as a type of the dependent typed A-calculus of
the Logical Framework. The A-calculus metalanguage of an LF supports higher order syn-
tax. Substitution, a-conversion of bound variables and instatiation of schemata are also



taken care of uniformly by the metalanguage. Since LF’s allow for higher order assertions
(judgements) one can treat on a par axioms and rules, theorems and derived rules.

Encodings in LF’s often provide the “normative” formalization of logic under conside-
ration. The specification methodology of LF’s, in fact, forces the user to make precise all
tacit, or informal, conventions, which always accompany any presentation of a logic.

Any interactive proof development environment for the type theoretic metalanguage of
an LF (e.g. Coq [11], LEGO [12]), can be readily turned into one for a specific logic. We
need only to fix a suitable environment (the signature), i.e. a declaration of typed constants
corresponding to the syntactic categories, term constructors, judgements, and rule schemata.
Such an LF-generated editor allows the user to reason “under assumptions” and go about in
developing a proof the way mathematicians normally reason: using hypotheses, formulating
conjectures, storing and retrieving lemmata, often in top-down, goal-directed fashion.

LF provide a common medium for integrating different systems. Hence LF-derived edi-
tors rival special purpose editors when efficiency can be increased by integrating independent
logical systems. LF-generated editors are natural. A user of the original logic can transfer
immediately to them his practical experience and “trade tricks.” They do not force upon
the user the overhead of unfamiliar indirect encodings, as would editors, say derived from
FOL editors, via an encoding.

The wide conceptual universe provided by LF allows, on various occasions, to device
genuinely new presentations of the logics. This will be the case for some of the encodings
for Modal Logics in this paper. In particular, we shall capitalize on the feature of LF’s of
treating simultaneously different judgements and of treating proofs as first-class objects.

In this paper, we work in the Edinburgh Logical Framework, as presented in [7].

3 Encoding of the Syntax

In encoding the language of Modal Logic we follow the LF paradigm [7, Sect.3]: the syntactic
category ® is represented by the type o of propositions; for each syntactic constructor, we
introduce a corresponding constructor over o. The signature X(®) for the language and the
encoding function e x : ® x — o0 appear below:

e Syntactic Categories o: Type, ex () def ¢ ifp €X ex(—p) def (= ex ()

¢ Operations def def
—:0—o0, OD:o—0, D:o—0—o. ex(Op) ex(p) ex( v) ex(p) ex(¥)

Given a set X = {z1,...,2z,} C ®,, we denote by I'x the context (z1 : 0,...,z, : 0).

Theorem 3.1 Given X C ®,, the function ex is a compositional bijection between ® x
and the canonical forms' of type o in X(®),Tx. Morover, the encoding is compositional in
the sense that for X = {z1,...,2,},Y C ®,, ¢ € ®x and ¢1,...,p0n € Py: ey(plz; =
Olyees @y = @n]) =ex(@)[z1 ==y (@1),-- -, Tn := ey (¢n)]-

All the systems we shall deal with have the same language. Hence, the signatures, that
we will introduce in the rest of the paper, will include X(®) without explicit mention.

4 Encodings of Hilbert-style systems

4.1 Systems for validity

The encodings of these systems follow the LF paradigm for specifying a logical system [7,
Sect. 4]. In Fig.3 we give the signature Y (K’) for the Hilbert-style system K, and its

!The notion of canonical form is very close to that of long #n-normal form; see [7] for details.



e Judgements V :0 — Type,

e Axioms and Rules

Aq: H % EX(Alwb)) ,with BV (p,v) C X.Similarly for As, s, As
PRUH

MpP: (v V(O ey)) = (V ¢), NEC: H V (Oyp))

»,¢:0

K, .

w9

L[V ex(Ly)) ,with W (¢) C X.Similarly for T,,4,,5,.

Figure 3: £(K') and its extensions for KL',....

extensions for other systems (K4', ...).
Given A C ® x, we define the LF context vy (A) as follows:
(A) %t () if A=
W lw (A v, (Vex(p)) if A=A, ¢ and v, fresh for vy (A’)

We can then define the encoding function Ei(A ) where X C ®,, A C ®x; such function
maps proofs 7 of K’ such that FV(7) C X to canonical forms of type (Vex(p)), for p € ®x,
in the environment X(K'), T x, vy (A):

EiA A | (X,A) Er g€ ®x} = {t [ Tx,w(A) Pk t: (Vex(yp),p € Px}
2(K') def A
€x,A (p) = vy vif p €
def
EX(A )(Aw, ) = A1 ex(v) ex(¥) ,analogously for A, , ,, Az, ,, K,y

XK (NEC, (1)) Y NEC ex(p) exX ) (m)
d f‘ ! !
sx“z V(MP, y(1,7) € MP ex(p) ex(¥) exa ) () exa (x')

2(K')

Theorem 4.1 The function ex 5 * is a compositional bijection between proofs m, such that
(X,A) Exr 7 : @, and canonical terms p,” such that Tx, vy (A) by p: (V ex ().

4.2 Systems for truth

In encoding these systems, we have to deal with the problematic issue of enforcing the
side condition of the necessitation rule. Hence, we have to extend accordingly the LF
methodology for encoding assertions. Here we consider three solutions. In the first, we add
a new parameter to the basic judgement, i.e. T : U — o — Type, where U is a type on
which no constructor is defined. In the second, we introduce a new judgement on proof terms,
corresponding to the metatheoretic notion that “the proof depends on no assumption.” The
third solution makes use of two judgements over formula, Ta,V : 0 — Type. It follows
closely the one in [2, Sect.4.1].

2In the following, we denote generic terms by ¢, proof forms by p, proofs of no-assumption judgement by
n, proofs of closed judgement by c,...



e Syntactic Categories U : Type, e Judgements T :U — o — Type,

e Axioms and Rules

Ay H (T w (ex (A1, ) ywith WV (g, ) C X.Similarly for As, , ,, Az, 4, Ko
@, Y0,w:U

MP: [ (Twe)» (TwOey) » (Twy), NECG]] (H(T w w)) - [T w (@)
p,Y0,w:U ©:0 w:U w:U

| L: HWO [1,..(T wex(Ly)), with ¢ C FV(X). Similarly for Ty,4,,5,. |

Figure 4: ¥,,(K), and its extensions for K4,. ..
4.2.1 World parameters

In Fig.4 we give the signature ¥, (K) for the Hilbert-style system K, and its extensions for

other systems (K4, KT, ...). The encoding function EiwA(Ii) is inductively defined on the

structure of proofs: given a proof 7 : A Fg ¢, ai‘”A(Iz) (m) is the proof term corresponding to

m, where X = FV(7).

w def .
A (o) o, Lif peA
) (Arpe) Ay ex () ex(W) w , similarly for Ay, Ag, K
XA (NEC,(m)) € NEC ex ()’ : Uiy X (r)) w

w def w w
XA (M P,y (n,7) & MP ex(p) ex(¥) w A (m) 5t ()

Given a variable w of type U, A C & with FV(A) C X, we define the LF context ~,,(A)
as follows:

(A)dif w:U ifA=0
Yo T V(A ve s (Twex(p)) if A=A pand v, fresh for v, (A’)

Theorem 4.2 The function 5?{”&12 is a compositional bijection between proofs m, such that
(X,A) Fx m: @, and canonical terms t, such that Tx,v,(A) Fs k) t: (T w ex(p)).

The idea behind the use of the extra parameter is that in making an assumption, we
are forced to assume the existence of a world, say w, and to instantiate the judgement also
on w. This judgement then appears as an hypothesis on w. Hence, deriving as premise a
judgement, which is universally quantified with respect to U, amounts to establishing the
judgement for a generic world on which no assumptions are made, i.e. on no assumptions.

4.2.2 “No Assumptions”-judgement

In Fig.5 we give the signature ¥ n,(K) and its extensions for the systems K4, KT, ...
Given A C @ with FV(A) C X, we define the LF context vy (A) as follows:

(A) 4 () if A=
T T (A, v, (T ex(p)) if A=A’ ¢ and v, fresh for yr(A")

The adequacy theorem relies on two technical lemmata (the second is in Sec.A.2.4):

Lemma 4.3 Vt,p canonical forms: T'x Fx k) p:(T t) = InTx ks (k) n:(Nap t).



e Judgements T :0— Type, Na : HT(p — Type,

@0
¢ Axioms and Rules
Ar: H (T (ex(A1,,)) swith WV (p,¢) C X.Similarly for As, , 4, As, ., Koy
.0
MP: [ @oew) > T o) = (Tvy), NEG][ [[ (Na¢d) - (T op)
@0 w0 d:(T )
Naa,: H (Na ex (A1, ) (Ar ¢ ¥)),  with VN (p,¢) C X. Similarly for As, , ,, A3, ,, Koy
e.i0

Nangco: H H H (Na Ogp (NEC ¢ d n))

pod:(Te)n:(Na ¢ d)

Nawre: [T ] [T (Nawd)— (Na (o ep)de) > (Nap (MP ¢ ¢ ds dy)),

e pi0d1 (T ) da:(T(Dp))

L: H(T ex(L,)) Nay: H(Na ex(L)(L @) with WV (p) C X.Similarly for T, 4,,5,.

©:0 p:o

Figure 5: ¥n,(K) and its extensions for K4,.. ..

Following the steps of the proof of Lemma 4.3, it is easy to define a function a which
maps each canonical form p, such that I'x Fx (k) p : (T ) to the corresponding proof
term n such that I'x s (k) 7 : (Na p t). Then we can define the encoding function for
Y na(K) as follows:

EiNAa (p) def 7zf oc A
EiNA" Aqy ) = A1 ex(p) ex(¥) , similarly for Ay, ., Az, Ky

(
(

2009 (N, () NEC ex (o ey M a (5" m)
g

si”s MP,, 4 (m,7') © MP ex(p) ex(¥) s (n) %" (x)

Theorem 4.4 The function €XA(K) is a compositional bijection between wvalid proofs ,
such that (X,A) Fx 7 : o, and canonical terms p, such that U'x,y7(A) Fey.x) P :
(T ex(¢))-

4.2.3 Two-judgements systems

We next describe a method in which the two consequence relations, validity and truth, are
handled together, in one comprehensive system. The method is rather general, and can be
used for every Hilbert-type system in which the rules are divided into rules of derivation
and rules of proof.

We start with the following observation. The basic concept of a proof of a formula A
in a Hilbert-type system # is that of a labelled tree. The labels are formula of H, and the
following condition should be satisfied:

e The formula which labels a node which is not a leaf should follow from the formulae
which label its successors by one of the rules of .

A formula A follows in H from a set of formulae A iff there is a proof-tree (of the kind just
described) in which every leaf is labelled by an axiom of H or by an element of A, and the
root is labelled by A. Now the main property of a pure Hilbert-type system is that for such

10



a system the condition above has a local character. By this we mean that all we need to
know in order to check it at a certain node, are the formula which label that node and its
successors. This is not the case, e.g. if one of the rule is a rule of proof. Checking validity of
a node which is justified by such a rule requires (among other things) checking the leaves of
all the branches which pass through that node and see that they all are labelled by axioms.
This is a global condition on the subtree of which that node is the root!

The solution to this problem is to arrange things so that all the data which is needed
for checking validity of a node would be found at that node and its successors. For rules of
proof this can be achieved rather easily by adding to each node a second label. This second
label is either the word valid or the word true. Officially, therefore, each node is labelled
by a pair (4,1), where A is a formula and | €{true,valid}. Let us call a tree of such pairs a
generalized H-proof if the following conditions are satisfied:

e As a tree of formula, the tree is a legitimate proof-tree of the system 7—[1, which is
obtained from # by turning any rule of proof into a rule of derivation.

e A node which is not a leaf is labelled valid iff all its successors are so labelled.

e A node which is derived by a rule of proof of H should be labelled valid (hence so
should also be the case for every node in the subtree which is generated by it).

e A leaf which is labelled by an axiom of H is labelled valid.
It is a straightforward task now to prove the following

Lemma 4.5 The erasing of the second label is a compositional bijection between.:
1. proofs in H and generalized H-proofs, in which all nodes are labelled valid.

2. (ordinary) proofs in H and generalized H-proofs, in which all leaves which are not
labelled by axioms are labelled true.

It is obvious, therefore, that generalized H-proofs subsume ordinary proofs in both H and
. On the other hand they behave nicely from the LF point of view, and so can easily be
represented. One possibility is to view generalized H-proofs as ordinary proofs of a pure
Hilbert-type system of signed formulae (where the signs are true and valid). An equivalent
approach which is perhaps more intuitive is to introduce two judgements, “I"” (for “truth”)
and “V” (for “validity”). The corresponding obvious representation in the case of the modal
logics treated above is given in figure 6.

Theorem 4.6 There is a compositional bijection between generalized H-proofs (where H =
K,K4, etc.) of (p1,01), -, (@n; ln) Fr (,1) and termst such that T x,vv (A),y7(E) sy, (1)
t:(Jex (), where A = {p; | l; = valid}, = = {p; | l; = true}, and J = {T if L= true

V' otherwise.
Corollary 4.7 Suppose {¢1,...,pn, 0} C Px.

1. There is a compositional bijection between proofs in H (where H = K, K4, etc.) of
@1 n Py b and terms t such that Ux,yv ({1, .., 0n}) Fxy,on) t: (V ex(9)).

2. There is a compositional bijection between proofs in H (where H = K, K4, etc.) of

@1 n by p and terms t such that Tx,yr({p1, ..., 0n}) Fxy ) t 2 (J ¥), where J
is V ifn =0, T otherwise.?

3J can, in fact be V even in case n # 0, provided no ¢; is used in the proof.

11



e Judgments 7T,V :0 — Type,
e Axioms and Rules

A; H (Vex(Ai,,)) with FV(p, ) € X. Similarly for Ay_, ,, 43, ,, K¢ 4.
@,Y:0
MPry: [ (T (0 ep) = (T o) = (T), MPuy:[[ (VO ew) = (Vo) = (V)
v, Y0 p, Y0
MPry : [[ (T (O ¢w) = (V)= (Tv), MPyor: [ (V (O ep) = (T ¢) = (T o),
p, Y0 PRUHY

NEC: [T(V ¢) = (V (D))

L:JJ(vV ex(Ly)) ,with W (¢) C X.Similarly for T,,4,,5,.
@:0

Figure 6: ¥,;(K) and its extensions for KL, ...

The last corollary is nice, but it is obvious that generalized H-proofs define, in fact,
something which is stronger than both H and H . What naturally corresponds to them is
a sort of a triple consequence relation, so that A; = b4 ¢ iff there is a generalized H-proof
in which the root is labelled by ¢, while every leaf is either labelled by an axiom, or by
an element of A and valid, or by an element of = and true. This is the case, it should be
emphasized, for any Hilbert-type system of the kind we treat here. In the case of modal
logics, however, this triple consequence relation has a clear semantic interpretation (and has
already been used, e.g., in [5], where it is denoted like this: A =4 = — ¢):

NEFy p<=VIMeMVse M(FMAANSEME)=skEmyp

It is clear that what we have constructed is a representation of this triple consequence
relation. It is easy, in fact, to show the following generalization of the previous corollary:

Theorem 4.8 There is a compositional bijection between generalized H-proofs of A; = Fqy
and canonical terms t such that

Cx, w(A),7(E) by, t: (J ex())

where J is either T or V (depending on whether = is empty or not), and AUEU{p} C ®x.

Remark. In our representation the MP rule has been represented by four constants, each
with a different type. In general, a rule of derivation R with n premises will be represented
by 2™ constants (while a rule of proof will need just one). We can, in fact, represent any
v and Ry 7), provided we introduce the following extra global

..........

constant:
C: IV w) = (T ¥)
YP:o
Using this constant we can define, e.g., M Pry and M Py 1 as follows:

MPry 0 App:odt: (T(D @p)As : (Vo). (MPry t (C s))

MPyr = Ap,p:0M:(T(Dpy))Ars: (Vo). (MPrr (Ct)s)

12



e Judgements Ta,V : o0 — Type,
e Rules O1: [T (Ta ) = (Taw) = (Ta> ¢ v)),
Ora1: [[(Ta 9) > (vV D), SErer s [ 0> ¢ ) (Ta ) - (Ta ),
o1 TV 9) = (v 5g). B [ (VO ¢ ) = (Tag) = (V ),
S Eren T[T g ) = (V ) = (V ), 5Evy  [[ (VO ¢ ) = (V 9) = (V ),
Don-E: ﬁ/):ETa 00D ¢ v¥)) = (TaOp) = (Ta Oy) o

Y0

0-E: [[(Ta Bp) > (Ta ) Oc-1: [[(Ta By) - (Ta DOg)

Oo-1 :ﬁ(Ta Op) = (Ta OOCp) O5-E :vﬁ(Ta O(D (Oy) ¢)) = (Ta Oyp)

Figure 7: £,;(NK') and its extensions for NK4°,. ..

Similar treatment can be given to any rule of derivation. This approach has the advantage
that we can require J (in Corollary 4.7 and Theorem 4.8) to be simply 7', which is rather
intuitive. The disadvantage is that we lose the bijection between proofs and terms: there is
some amount of freedom concerning where to apply C, and so more than one term corre-
sponds to a given proof. This can be remedied, e.g., by requiring that in canonical terms C
will be applied as late as possible.

5 Encodings of Natural Deduction-style systems

Thoroughout this section, we shall encode only the “minimal” fragment of the modal logics.
It should be straightforward to extend the signatures to the full systems.

5.1 Systems for validity

We use an extension of the two-judgements technique seen above. In Fig.7 we give the
signature ¥,;(NK') and its extension for systems NK4’, NKT’, . ...
Given A C @ with FV(A) C X, we define the LF context 7, (A) as follows:

(A) % () if A=
VTa T Yra(A"), v, (Taex(p)) if A=A ¢ and v, fresh for v, (A)

Theorem 5.1 For X C ®,, AC®x, pe Px:

e There exists a compositional bijection between proofs m, such that (X,A) =Nk’ 7 : @,
and canonical terms p, such that T'x,yrqa(A) by, (nky i (Ta ex(p)).

e There ezists a compositional bijection between proofs w, such that (X, A) |=nk' 7 : ¢,
and canonical terms p, such that I'x,yra(A) Fs, (nky P2 (V ex(9)).
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Special system for NS4. We can get an alternative Natural Deduction-style system
NS4’ for NKT4’, closer in spirit to Prawitz’ system for S4 [18], by replacing Dg-E and
Og-T by the rule

I, Op -4

'tdp>vy

o-

' € NC + S5-I + O-E. In this system, Dp and Og-1 are

The resulting system is NS4
derivable on the level of f-, not |-.

The encoding of system NS4’ is straightforward, and we get a compositional bijection.
This is an improvement of the encoding used in [2, Section 4.2].

One can get an analogue of Prawitz’ second system for S4 by using the rule

Lot

—————  is essentially-modal
F'-0Op Dy

Sem-1

The side condition can be handled, like in [2], by introducing a special judgement, EM :
o — Type, which corresponds to the property of being “essentially modal”.

5.2 Systems for truth

We present two general solutions for handling the necessitation rule in the classical systems
presented in Section 1.4: the first is based on world parameters, the second makes use of a
“closed assumption”-judgement. These solutions extend the corresponding ones introduced
for the Hilbert-style case. In Section 5.2.5 we sketch also yet another general solution which
makes use of three judgements on formulae. Strictly speaking, this is an encoding of novel
multiple CR systems for the truth CR of Modal Logics.

For the special system NS4 introduced by Prawitz [18], we consider two more encodings.
These adopt an auxiliary judgement on proofs for enforcing Prawitz’s conditions (“boxed
assumptions” and “boxed-fringe”, respectively). Also in this section, we restrict ourselves
to the “minimal” fragment of modal logic.

5.2.1 World parameters

In Fig.8 we give the signature ¥,,(NK) and its extensions for the other systems (NK4, ...).

The encoding function Ei A(NK) is defined on the structure of proofs of NK: given a proof
7 : A FNk @, 5X7A(1’\LK) (m) is the proof term corresponding to .
SXau () v, if g €A
XA (DT, (n) E O-Tex (p) (W' 2 Uy (1) w
AL (O Lpu () E DT ex () ex (1) w(hv, : (Twex (@))€ ()
XA (O Em L) % SO ex(e) ex () w XA (n) iwA‘NKW)
N (05-B (1, 7)) % 55-B ex(p) ex(8) w i) ()

(NK

)

is a compositional bijection between proofs w, such that
t: (T wex(p).

Theorem 5.2 The function Ei‘”A w

(X,A) BNk 7 1@, and canonical terms t, such that Tx,v,(A) Fx, (Nk)
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e Syntactic Categories U:Type, || O-E : H (T wOp) > (T w @)
¢ Judgements T:U — o— Type, gi0,w:U
¢ Axioms and Rules Op-1: H (T w Dg) = (T w OOyp)
> [ (@we) = (Tw) = TwO ew)), g0l

@, :0,w:U Oe-1: H (T w <>(p) — (T w DO(P)
O-E: H (T W(D 801/))) — (T w 90) — (T w w)) po,w:U

¢ vi0,wil O--E: (T w O(D (Agp) ¢))
So-E H (T w OO p)) =» (T w Op) = (TwOy), LP:E:U

p,Y0,w:U — (T w DL)O)

o'-1: H (H(T w tp)) - H(T w (Bp))

@:0 w:U w:U

Figure 8: £, (NK) and its extensions for NK4,. ..
5.2.2 “Closed Assumptions”-judgement

In Fig.9 we give the signature ¥, (NK) and its extensions for the other truth systems (NK4,
NKT, ...). Notice that there is a rule for establishing the “closed assumption”-judgement
corresponding to each proof constructor, i.e. for each rule in NK.

The existence and definition of the encoding function relies upon two technical lemmata:

Lemma 5.3 Vp canonical form, if Ux, A by (nk) i (T t) then Ie.Tx, A, Z,(A) Fe g, (Nk)
c: (Clt p), where E,(A) def {c:(Cltz)|zeFV(p) A(z:(T t)) € A}.

Lemma 5.3 defines naturally a function from canonical proof forms p : (T t) to canonical
forms of type (Cl t p), in the same environment expanded with the “closed assumptions”
for the free variables of p. Let us denote such function by «.

Lemma 5.4 Ve canonical form, if Tx,AE by (nk) ¢:(Cl t p) then T'x, A", = by (NK)
c:(Cl t p), where E contains all and only the Cl assertions, and A" = {x:(T t)|(Cl t z) €

We can now define the encoding function Ei?A(NK), which relies on the o abovementioned.

ZCZ NK QD) def =’Lfg0€A

>, ¢< m) € 5T ex(p) ex (1) (o ex ()£ (x)

B, (7)) € 5B ex () ex(®) ex AN (') exeANY (x)
Do By (' M) S E ex(p) ex () AN (r1) AN ()
AN 01, (1) 2 D1 () 25N ) (S35 @)

zc, NK)

zc, NK)

(
(
ZC, (NK) (
(
(

€x.0 €x.,0

Theorem 5.5 The function Eici(NK) is a compositional bijection between proofs w, such

that (X, A) =Nk 7, and canonical terms t, such that T x,yr(A) s, (nk) (T ex(¢)).

5.2.3 “Boxed Assumptions”-judgement

In Fig.10 we give the signature ¥.o(NS4), which adopts a special technique for implementing
Prawitz’ system NS4 [18].
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¢ Judgements T :0— Type, Cl: H(T ¢) — Type,

e Axioms and Rules DZE ] (T 006 e9) = (T 0p) = (T By),
o1 [T (T 9) = (T ¥) = (T(D wv)), e L I (@ G ew) = (T ¢) - (T w),
M @ro-aem ag T T 11 @G0 e a)
g0 d:(T ) w0 d1:(T @) c1:(Cl ¢ di)
c>1: I 11 II €tez)— (Clydn) | - (Cly (51 0y a)),

e, pi0di(T @)= (T ) \z:(T p)
c>e: [ 11 I ©led)— (1 ¢w)di)— (Cly (5E ¢ v didy)),
p.Y0di1:(T(D ¢ ¥))da: (T ¢)

Cly_ g+ H H H (CL O ) dy) = (Cl Op dy) — (Cl O (Da-E ¢ d;y dy))

¢, P:0di:(T O(Dpy)) do:(T Op)

oE: [[(Tog) = (), Clogg:[[ [ Cloed > Cle@Epd); .., .

@:0 w0 d:(T Og)
Figure 9: ¢ (NK) and its extensions for NK4, ....
Given A C @ with FV(A) C X, we define the LF context yg(A) as follows:

() ifA=0
(A) def ) yo(A"), v, 1 (Tex(p)) if A=A’ p, ¢ is not boxed and v, fresh for yo(A')
g T ) 1e(A"), v, (Tex (), it A=A ¢, pis boxed and vy, vb, fresh for yo(A')
vb,  (Brzx (¢)0,)

The long proof of adequacy relies upon some very technical lemmata. We report here
only those needed for defining the encoding function; the others are in Section A.3.8. For
sake of simplicity, we adopt the following definition: for p term and I' context, we define

C(p,T) € for all vy € V(p), if (vy:(T ex (1)) € T then (vby:(Bx ex (1h) vy)) €T

Lemma 5.6 Given a canonical term p such that T x,yo(A) Fx(nsay p: (T 1), if C(p,y0(A))
holds then there is a canonical term b such that T'x,yo(A) Fx,(nsa) b2 (Bx t p).

A consequence of this lemma is the existence of a function Sa which maps proof terms
p whose free variables are “boxed,” to proofs b of (Bx ¢ p); this “reifies” the fact that p
represents a proof which depends only on boxed assumptions. This function is inductively
defined as follows.

v )difvb ,if o € A and ¢ boxed

Ba(
Ba(D-Tt (Mg (T )p)) C (B 1t (Aoy:(T 8).p) Aor:(T )My :(Bx t v1)-Basx () (0)))
Ba(D-E t ' pi po) & (Br~_g tt' p1 p2 Ba(p1) Ba(p2))

Ba(0-1tpb)  (Beg 1t pb)

Ba(D-E t p) = (Bag_g t p Ba(p))

Ba(Da-1t t po) def (B.rDD_I t t' pa(Avr:(T t)Ave:(Bx t Ul)-ﬂA,ax(A) ()

where p def Avp:(T ) vg:(Bx t vy).p
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e Judgements T :0— Type, Bz : H(Tgp) — Type,

o Axioms and Rules Dp-1: H H (Bx Op d) = (T ) | = (T'(D Qe v)),
w0 \d:(T Op)
O-L: [T (T 9) = (T w) = (5w w)). B : [T @O ¢4) = (T 9) = (T 9),
pio @90
o1 J] I (Be e d) = (T (D0)). o-E : [[(T(0g) = (T @),
w0 d:(T ) pi0

Br~_ 1 H H H H (Bz ¢ (d ab))

@0 d:(Ha o DW)(BI O¢ a)—=(T %)) a:(TOp) b:(Bz Op a)
= (Bz(3 B¢ ¢)(Do-1 ¢ ¢ d)),

B 1 [ 11 I Bz ¢a)—= Bz ¢ (da) | - (Ba(> ¢ v)(O-Tp v d)),
@0 di(T @)= (T ¥) \a:(T @)

Basp: [[ II II BeG pv)d) > (Begde) 5 (Be b OB p v di o)),
e.bi0di1:(T(D ¢ ¥))da:(T )

Baop: [[ [I ] (Beoe@ipdb), Bagg:[[ [] (Br B¢ d) - (Bx ¢ (0-Eg d)

pio d:(Typ) b:(Bzy d) w0 d:(T Oyp)

Figure 10: ¥5(INS4).

Lemma 5.7 VX, A p, if (X,A) Ensa 7 : @ then there exists a canonical form p such that
Lx,70(A) Fyonsay v (T ex(p)).

A consequence of this lemma, is the existence of the function EimgNS‘l) which maps proofs

of NS4 to canonical proof terms. This function is inductively defined as follows.

Y (0) E o, ifpeA
(De-1 ex(p) ex (1)
(A

NS (5, (r1)) T (wgi(Tex (9) Mob, (Brex (p)vg).ex'Ae D (x')  if ¢ boxed
(O-Lex(p) ex(¥) (Mvp:(Tex(p)-ex A Y (a')) if ¢ = boxed

TSV (0-Ep (', 1) € (0-E ex(p) ex (@) exa V(@) ey (¢))

NS (01, (1) Y (O-T ex(p) exalr) Baler* N (@)

CUSYO-E () B (0-E ex (9) 2 ()

Theorem 5.8 The function singNS‘l) is a compositional bijection between proofs w, such

that (X, A) F=nsa 7 : @, and canonical terms t, such that T x, yo(A) Fx(nsay t: (T ex(9))-

In this signature, besides a rule for establishing the “boxed assumption”-judgement cor-
responding to each rule in NS4, there is also an extra rule, namely Dg-I. This subtle rule is
necessary in order to discharge “boxed assumption”-judgements: see the following example.

Example 5.1 We show the derivation of axiom 4 : Op D OOy, both in NS4 and in LF
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e Judgements T :0 — Type, BF : H(T ¢) — Type,
w0

o Axioms and Rules Dno-1: H H (BF Og d) = (T'¥) | = (T'(D Og v)),
w0 \d:(T Op)
oL [T (T 9) = (T w) = (@5 ¢ ). >E: [T@ 0O ¢u) = (T e) = (T 9),
v, Y0 @,Y:0
o1 [ I (BF ¢ @) = ( (99)), O-E : [[(T(@g) = (T o),
w0 di(T ) pi0

N || 11 IT I BF¢@ab)

0 g, : b:
R od,Ha:(T by (BF 0% a)=(T ¢) \¢ (TOp) b:(BF Dp a)

= (BF (D Op ¢)(Do-1 ¢ ¢ d)),

sro 1[I 11 I[ BF¢a)=(BFy (da) | = (BF (O ¢ ) (0T ¢ d),
e.i0di(T o)=(T ¥) \a:(T ¢)

rsp [[ I II BFO ¢w)d) = (BF ¢ do) 5 (BF v (OB ¢ ¢ di d2)),
pp0di:(T (D ¢ ¥))da:(T )

BF, 5[] 11 II (BF B¢ (5-E¢ oy di ds)),

. pi0dr: (T (D ¢ O%))do:(T )

Brg 1 [[ [T ] BF oe (©1pdb)), BFg g [[ T[] (BF ¢ (BE¢a)

p:0 d:(Tp)b:(BFy d) w0 d:(T Og)

Figure 11: ¥ p,.(NS4).
(for typographical reasons, we omit the function x ).

yo(Og)
F FX,;)EW, : (T(0y)), vbay : (Bx (Dap)vm¢)‘
I'x,7(B¢) F (O-1 (Bp) vo, vboy) : (T(BH¢))

I'x F (Avoy : (T'(Qp))Avba, @ (Bz (Og) voy).di) :

Oy F Op do

—0-1
Oy F O0Op . (Huw:(T (0p)) Hvbw;(Bz (Op) vgg,)(T(DD‘P))) app(50-T)
F Op D O0p I'x F (Do-1 ¢ (OOp)d2) : (T (Op D O0yp)) ppi-e

app(0-1)

2 X abs

5.2.4 “Boxed Fringe”-judgement

For the sake of completeness we sketch here how to encode Prawitz’s third version of system
NS4 [18]. The signature Xp,(NS4) appears in Fig.11.

The judgement BF : HW:O(T ) — Type holds only on proofs with a fringe of boxed
formulae (in the minimal fragment of modal logic, boxed formula are all the essentially
modal formulae). In the system there are rules for establishing the “boxed fringe” judgement
corresponding to each rule in NS4. Additional rules for BF can be induced by elimination
rules whenever the inferred formula is boxed (and hence belongs to the fringe). This is the
case, e.g., of D-E.
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¥, (NK') + e Judgements Ta,V,T :0— Type,
e Axioms and Rules C: H(V ) = (T ¢)

Dr-1: H (T ) = (T ¥)) = (T(D¢y)), Dr-E: H (T (O o)) = (T @) = (T ),
o simifeﬁl:; for negation and ff. @, Pi0

O-E : H(Ta Op) = (Ta p) On-1: H(Ta Op) — (Te O0Oy)
Oo-1: H(Ta Op) = (Ta OCp) O5-E: H(Ta O(D (Og) ¢)) — (T'a Oyp)

Figure 12: £3;(NK") and its extensions for NK4”,. ...

5.2.5 Three-judgements

We can introduce ND-style systems for “truth” based on the multiple CR ND-style system
NK’ for validity. We need only to add a third consequence relation, namely -, with exactly
the same rules as -, and in addition the rule EMBED’. The whole system is called NK”:

ot 't ¢D It r -
Syl L% Y pE DY Y Raap ¥ Ir
NK” % NK' + 't Dy | T | A )
I,ph- ff IFH_@ LH —p I EFFH—ﬁ” EMBED’ L
y P ' )T~ T H ﬁc T T P ©
Soundness of NK” is obvious; completeness follows from the fact that ¢1,...,¢, E ¢

iff o1 D ... D w, D is valid.

In order to encode this system we add a judgement 7' : 0 - Type, whose constructors
are like those of T'a plus a constant C' which represents the EMBED’ rule (Fig.12). We can
prove then

Theorem 5.9 There is a compositional bijection between proofs  : A Fnkr ¢ with FV(7) C
X and canonical terms t such that T'x,yr(A) by, vk t: (T ex(¢))-

Again, similarly to the case of two-judgement system for K (see Section 4.2.3), the
resulting system is more powerful than this result points out, since it can deal with both
truth and tautology notions, at the same time. Let define the triple semantic consequence
relation for K as follows:

NEEFp<—=YVMeMVYse M(FMAASEME)=sEmy

This semantic consequence relation combines tautuologies and truth CR, just as is done by
NK?” in a syntactical manner:

Theorem 5.10 For X C ®,, A,/ ZC ®x, ¢ € ®x, the following are equivalent:
1. 3t canonical term such that T x,yr.(A),yr(Z) Feonky t: (T ex(@));
2. AjE = o
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6 Cross soundness

As we have seen, different techniques can be used for encoding the same system; for in-
stance, K can be encoded by using either “world parameters” (X,,(K)) or “no assumption”-
judgements (X n,(K)), or “two-judgments” (X,;(K)). Morally, these techniques are closely
related: for instance, (the encoding of) a proof has no assumptions (in ¥ (NK)) iff it can
be carried out from no assumptions (in X,,(NK)).

Theorem 6.1 (Cross-soundness for K) For X C ®,, A C ®x, ¢ € &x, the following
are equivalent:

2. 3", nTx,yr(A) Fey. k) n: (Na ¢ t')
3 Fvlx,y7(A) Feyyx) v (V)

Theorem 6.2 (Cross-soundness for NK) For X C ®,, A C &y, p € ®x, the following
are equivalent:

1 3T x,7%0) ks, vk t: (T w @)
2. Eit’,n.FX,'yT(A) l_Ecz(NK) n: (Cl Y2 t’)
3 . x,y7a(A) by vk v (V@)

These results can be seen as “internal proofs” of adequacy of the encodings. Similar con-
nections can be formulated with respect to other techniques appearing in this paper. These
metatheoretic results could be proved formally within some Logical Framework, e.g. Coq.

7 Final Remarks

Applications. Modalities are a common feature of most program logics [6, 8, 19], hence,
the techniques we have presented here can be fruitfully employed in developing proof as-
sistants for program logics. The “world parameter” technique was used for encoding a
ND-style system for Dynamic Logic [9]. Applications of the other techniques presented in

this papers deserve further investigations.

Related Work. A purely semantical approach to the implementation of Modal Logics,
alternative to ours, has been studied in [3]. There, the Kripke semantics is built-in the
calculus: worlds are reified, and a first order proposition R over worlds is introduced in
order to represent the accessibility relation. Introduction of modalities is then reduced to
a quantification over accessible worlds; different axiomatizations of R are used to represent
the various logics. Although such systems may be easy to implement and use, they force
the user to deal directly with specific semantic notions.
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Proofs

A.1 Proof of Theorems of Section 3
A.1.1 Proof of Theorem 3.1

The encoding function e x is clearly injective. It is easy to show by induction on the structure
of formula that € x yields a canonical form of the appropriate type. Surjectivity is established
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by defining a decoding map dx that is left-inverse to ex. The decoding dx is defined by
induction on the structure of the canonical forms as follows:

Sx(0) € o Lif ¢ € dom(Tx) Sx (—p) € —6x ()
Ix (Op) ' D6x (p) 3x (2 o) ¥ ox(p) D bx (¥)

Such dx is total, for [7, Lemma 2.4.4] and inspection of ¥(®) and I'x.
The compositionality property is established by a straightforward induction on the struc-
ture of modal formule (omitted). O

A.2 Proofs of Theorems of Section 4
A.2.1 Proof of Theorem 4.1

It is straightforward to verify by induction on the structure of proofs that, given the hy-
pothesis of the theorem, ei(IA( )(77) is a canonical term of type (V ex(p)) in X(K') and

Cx,vv(A). It is a routine matter to show by induction on proofs that si(lz )i injective. To
"

establish surjectivity we exhibit a left-inverse 6)2((72 defined by induction on the structure

of the canonical forms as follows:

vcp) if vy € dom(yy (A)).
At t”) dﬁf AMX £),0x (1) analogously for Ay, Az, K
NEC't p) & Nucs, i (035 ()

def ! !
MPtt pp') = MPs,).sxt) (5§(§ '(p), 5§(E§ )(p'))

(
(
N
N

This function is clearly total and well-defined. It remains to show that 6?2') (Ei(,IA(I) (7r)) =

7w and compositionality of the encoding; this is established by induction on the proofs. 0O

A.2.2 Proof of Theorem 4.2

We verify by induction on the structure of proofs that sij”A(I’i) (7) is a canonical term of type
(T wex(p)) in £, (K) and T'x, 7, (A).
Base Step. We have two cases. If 7 is instance of an axiom, say @ = Ajy,9, then it is
straightforward to prove that I'x,7,(4A) Fx, (k) si‘”A(Ii) (A1yg9): (T wex(y D W DY))).
The cases of Ay, A3, K are similar.

Otherwise, ¢ € A is an assumption. Since Ei‘”A(Ii)(np) = v, € Y,(A), immediately

Ly, 7 (A) bz, k) (T wex(p)).
Inductive Step. By cases on the last rule applied.
If = MPy o(n', "), then 7', 7" are respectively valid proofs of ¢ D ¢, ¢ w.r.t. (X, A).

By TH, Tx, 7. (A) Fx, (k) ex'A o () : (T w ex (¥)) and
Lx,7(A) Fx, (k) si‘”A(Ii) (") : (T w ex (¢ D ¢)). Therefore, we have immediately,

™
g
2z
—~
3
—
™
™
g
z

P, 70(8) P (MP ex () exte) w el ) 2 @) (T w ex(9)

Otherwise, 7 = NEC,(7'); then 7' is a valid proof of ¢ w.r.t. (X,0). By IH, I'x, 7., (0) ks, (k)
Y (K) 1y . T
Expe () (T wex(p)).
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By abstracting on w we have T'x Fy_ (k) (/\w Uey m(w)(ﬂ'l)) : H (T w' ex(p)). Therefore,
w"U
we have immediately

Cx,70) Fs, (k) (NEC ax(go)(/\w':U.Ei’:’m(E,) (71"))) wi(T w Oex ().

By the above steps, it is easy to show that Ei‘”A(K) is injective. Surjectivity is established

K)

by exhibiting a left-inverse 5)( Ao , defined by induction on the structure of the canonical

forms as follows:

5)2( I;) (Uw) if v, € dom(y,(A))
5§(WAI§J)(A tt ) = A1(5x £),0x () similarly for As, A3, K
S (MP ' wpp) = M MPsy (1),6x (#) (5)2&@ (p), Ox"Ae) (p’))
6§T£§)<NE0t (' iUp) w) ' Nros, ) (375 ()

The decoding map 6X A is total and well-defined by the definition of canonical forms
and inspection of the 81gnature ¥, (K). By the lemma of characterization, a canonical form
p of type (T w t) must have the shape ((M; ... M), where k is the arity ofC By inspection
of ¥, (K) and I'x, 7, (A) we see that the only choices are ¢ € {v,, A1, Az, A3, K, M P, NEC}.
Base Step. We have two cases. If p = v, : (T w ex(p)) then, taken 7 = ¢ we have a valid
proof of ¢ w.r.t. (X,A). Otherwise, p € {A1 Ay, A3, K}, sayt= A1 ¢/ t" w: (T w(> (D
t"t")). Then we cons1der T = A1, (11),6x (¢)- Similarly in the case p is As, A3, K
Inductive Step. We have two cases. If p = (MPtt"wp p")(T wt"), since p is well-
typed, we have that I'x,7,(A) ks, (k) P(T w t') and FX 'yw(A) Fe.x) P'(T w (D

t' t")). By IH there are two proofs such that (X, A) Ek 5X A ( N:0x (t') and (X,A) Fx

6)2( A(Ii (p'"):0x (D t' t"). Therefore by applying MP we obtain (X,A) =k m:dx (t").
Otherwise, p = (NEC ' (A’ : Up')w) : (T w (Ot')). Since p is well-typed, we have
that I'x,7,(A) Fx, (k) Aw":Up'): ], (Tw't"). Notice that each canonical term p of type
(T w t) has exactly one free variable of type U, namely w. This can be proved by induction
on the structure of p (look at the previous steps). Hence, (Aw’:U.p'") has no free variable
of type U. We can drop therefore the hypotheses ~,(A), since if they appear free in p
there should be two free variables of type U in p' a contradiction. Hence, I'x Fy (k)
A"U.p"): [y (T W' 1), that is I'x,w":U ks, (k) p':(T" w' t'). By IH there is a valid proof
(X,0) Ex 6)2(‘7”@(715,) (p'):0x(t"). Hence by applying NEC we obtain (X,A) =y, (k) m:0x (Ot').

It remains to show that 5)2{1(12 (E?”A(Ii) (71')) = m, and that si‘”A(IZ) is compositional. This

is proved by induction on the structure of 7, following the steps above. O

A.2.3 Proof of Lemma 4.3

By lemma of characterization, a canonical form p of type (7" ¢) must have the form (M ... M,
where £k is the arity of {. By inspection of ¥x,(K) and I'x we see that the only choices for
(_: are C € {Al,AQ,Ag,K, MP/ NEC}
Base Step: p is an instance of an axiom scheme; say p = (A; ¢ t'); we take n = (Naa, tt').
The cases of schemata Ay, A3, K are similar.
Inductive Step. We have two cases.

If p=(MPttp p"),since pis well-typed we have that I'x Fy (k) p':(T (D t 1))
and I'x Fy,, k) P":(T t). By IH there are n',n" such that I'x Fy, (k) n':(Na (D
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tt') p') and I'x kg, (k) n'':(Na t p"). Then, I'x ks, (k) (Nayp tt' p" p' n" n') :
(Na t (MP ¢t p'p")).

Otherwise, p = (NEC't p' n); since p is well-typed we have that I'x Fx (k) p':(T t) and
Ix Fsy.x) n:(Natp'). Then 'y Fs (k) (Naypot p' n):(Na Ot (NEC't p' n)). O

A.2.4 Proof of Theorem 4.4

It is straightforward to verify by induction on the structure of proofs that siNA”(K) (m) is a

canonical term of type (T ex(¢)) in Enq(K) and T'x,yr(A).
Base Step. We have two cases. If ¢ is an axiom instance, say m = Ajy,9, then we take
p= siNA”(K) (A1y,9), it is straightforward to prove that I'x,v7(A) Fy (k) p(T ex (¥ D
(¥ D 1))). Similarly in the cases Ay, Ag, K.

Otherwise, ¢ is an assumption, say m = ¢ con ¢ € A; then we take p = v, = EiNA“(K) ().
It is straightforward to prove that I'x,yr(A) Fx . k) P:(T ex(v)). 7
Inductive Step. By cases on the last rule applied.

If 7 = MPy (n',n"), then n', 7" are respectively valid proofs of ¢y D ¢, w.r.t.
(X,A). By IH there are two canonical terms such that T'x,v7(A) ks, (k) Eil:rAa(K) (n')

(Tex(v D ¢)) and I'x,y7(A) Fxy, (k) s?fA“(K) (7"):(Twex (¢)). Therefore, we have imme-

diately, Tx, vr(A) Fsy, ) MP ex(¥) ex(9) 5" () X5 ()T ex():
Otherwise, 1 = NEC,(7'); then, we have that 7’ is a valid proof of ¢ w.r.t. (X,0). So
by TH, T'x,yr(0) Foy. k) ail\g‘(K) (7") : (T ex(¢)). Now, by Lemma 4.3 we obtain that

there exists a term n such that I'x by (k) n : (Na ex(p) Ei%ﬂ(K) (7]")) . Then we have

Lx,(A) Frym) (NEC ex(9) £ (7)) n) : (T Dex ().

By above, E?\Z(K)

Sna(K
5X7A( )

is injective. Surjectivity is established by exhibiting a left-inverse

, defined by induction on canonical forms as follows:

A
oy
Bk
o™

Unp) = ¢ if vy € dom(’yT(A)).

At t") ef Atsy (t1),5x (1) similarly for A,, Az, K.
def

NEC t pn) = NECs, 1) (B(n))

def Na Na
MPtt' pp) = MPs,1)6x (1) (5§(,A(K)(p)75§(,A(K) (P'))

~ o~ —~

The decoding map 5§NA“(K) is total and well-defined follows from the definition of canonical
forms and inspection of the signature ¥ n,(K). By lemma of characterization, a canonical
form p of type (T t) must have the form (M, ... M}, where k is the arity of . By inspection of
Ena(K) and I'x,y7(A) we see that the only choices are ¢ € {v,, A1, A2, A3, K, MP, NEC}.
Base Step. We have two cases. If ¢ is an assumption, say p = v,:(T' w ex(p)), then, taken
m = ¢ we have a valid proof of ¢ w.r.t. (X,A).

Otherwise, p € {A1, A4, A3, K}; say p = (A t' t"):(T(D t'(D t"t')). Then we take
T = A1sy (1),6x () Similarly in the other cases.
Inductive Step. We have two cases.

Ifp=(MPtt"p p"):(T wt"), since p is well-typed, I'x,y7(A) Fy . x) P:(T (D
t' ")) and I'x,y7(A) Fxy,x) P":(T t'). By IH there are two proofs such that (X,A) Fx
6)2(%“(}() () :dx(Dt't") and (X,A) Fk 6)2(%“(}() (") : 0x(t"). By applying MP we obtain
(X, A) Ex mox (t").
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Otherwise, p = (NEC t' p' n) : (T' (Ot')); then, since p is well-typed, I'x,y7(A) Fx .. (k)
p' (T t') and I'x,y7(A) Fyuy.x) n:(Na t' p'). Here we need a technical lemma (Lemma
A.1) which relates Na and derivations from the empty set of assumptions; it appears below.
So, for this lemma, there is #' such that (X,0) Fx 7' : x(t'). By applying NEC to ' we
obtain (X, A) Ex m:dx (Ot').

ZNa (K) ( Ena(K)

It remains to show that §y ( EX.A (7T)) =, and that Eil,vAa(K)

is compositional.

This is proved by induction on the structure of proofs. O
Lemma A.1 Vn canonical: Tx,y7(A) by, k) i (Na t p) = 3n.(X,0) Fk 7 0x(t).

Proof. By lemma of characterization, a canonical form p of type (Na ¢ p) must have the
form (M, ... My, where k is the arity of . By inspection of ¥ n,(K) and I'x,vr(A) we see
that the only choices are ¢ € {Naa,, Naa,, Naa,, Nagx, Nayp, Naygot-

Base Step: n is one of Naa,, Naa,, Nar, say n = (Naa, tt'). Then, T'x,v7(A) b, . (k)
n:(Na (Dt (D t't)) (A tt')); hence we take ™ = Ay 5, (4).55(¢)- The cases of other schemata
are similar.

Inductive Step. We have two cases.

Ifn = (Nayptt pp' n'n"), then since n is well-typed we have that I'x, yr(A) Fx ., k)
n': (Natp) and Tx,vr(A) Fy. k) n':(Na (D tt') p'). By IH (X,0) =k 7':0x(t) and
(X,0) Fx ©":0x (D tt'). Then we take 7 = MPys, (4) 55 ) (7', 7'") with (X, 0) =k m:0x (t').

Otherwise, n = (Napo t pn'); since n is well-typed we have that T'x,y7(A) ks, (k)
n':(Na t p). By IH, (X,0) Fk 7":0x(t); then we take 7 = NEC;s, (1)(7') with (X,0) =k
m:0x (Ot). o

A.2.5 Proof of Theorem 4.6

Similar to that of Theorem 4.1. |

A.3 Proofs of Theorems of Section 5
A.3.1 Proof of Theorem 5.1

The proof follows the standard methodology of [7]. We exhibit the encoding function, and
its inverse, for the - CR (the case of validity CR. is similar). These functions are defined by
induction on the proofs in NK' and on the terms of ¥,;(NK') respectively.

NK’ (@)dEf ,if(pEA
(0L p(m) ¥ >1ex(p) ex(v) a AL (m)
<3 E% (7', 7)) Y > Erara ex () ex @) 2N (1) o N (x)
) (06-Ey o (n', 1) @ 56-F ex(p) ex () o3 (51) 25N (1)
2 (NKD ) ) 20 Jif vy € dom(yra(A))
221 N STt p) STy (. ) BT 5 (o) (P))
NK V(5-Erara t ' p 1) D-Esy 500 BrAN ), BN (1))
NK JOaFtt pp) S 50 Fsy nae 1y BN ), AN ) |
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A.3.2 Proof of Theorem 5.2

Very similar to Theorem 4.2. We have only to take care of the D-I rule, which envolves a
dischargement, as a new case of inductive steps.
If 7 = D-1, y(n'), then (X, (A, ¢)) Fnk 7'1wp. By IH, we have I'x, v, (A, p) s, (Nk)

Eif((x;)’w(w’) (T wex(y)). By abstracting on v, we obtain

T, 7 (A) b, vk Qi (T wex(9) ey @) [ (T wex@).
v,:(T w ex(p))
By applying the constant D-I, we obtain

T, 7w (A) Fs, vk O-Tex () ex (@) w (W, 5 (Twex ()3 Ay (1) s (Twex(D 1)),

The rest of the proof follows closely that of Theorem 4.2. We show just the left-inverse:

v,) & Jif v, € dom(7u(A))
>- Itt’ WO (T w 1)) % 515, )0 0 (5Zw(<AN§§>( e (p'))
oo )0 )

def Yw
Oo-Et ¢ wpp) = DD_de(t),dx(t’) (6X7A,u)

p
def w
D>-Ett'wpyp) de D-Eax(t)76x(t’) (5)E(7A(1:)K) (p), 6 XA W I))

def w
01t (W' Up) w) € O'-1gy (5;@(,5}()(1’))

XAu)

> > (=] S3h
R b

“52
AAAAA

A.3.3 Proof of Lemma 5.3

By lemma of characterization, a canonical form p of type (T t) must be (M, ... My, where
k is the arity of ¢. By inspection of X ;(NK) and I'y,v7(A), we see that the only choices
for ¢ are ¢ € {v,,D-1,>-E,0"-1, Dg-E .. .}.
Base Step. If p is an assumption of type (p:(T t)) € A then we have p € FV(p) and hence
c:(Cl t p) € Z,(A).
Inductive Step. By cases on the last rule applied. We will see only some significant cases,
the other being similar.

ep=(D-Ett'p p”): since p is well-typed we have that I'x, A by, (nk) P':(T (D t 1))
and FX7A l_ZCl(NK) (T t) By II‘I7 FX7A,EPI(A) l_ECl(NK) C’Z(Cl (3 t t’) p’) and
Cx,AZ0(A) Fegyvk) €:(CLE p"). Since Z,(A) 2 Z,(A),Zpr (A), then
Cx, AEp(A) by k) (Cloy g tt' p'p" " ) (CLE (O-Et t' p' p")).

op=(D-1tt ’): since p is well-typed we have I'x, A Fx (nk) p':(T' t) — (T #'). Since
p' is a canonical form, it must be p' = Az : (T' t).p", where I'x, A, x:(T t) by, (nk) P"
(I't'). By IH, I'x, A, z:(T t),Zpn (A, 2:(T 1) Fs.,(nk) ¢":(CLE p"). Now we have that
Epr (A, z:(T t)) CEpn(A), ¢ :(Cl t z), then by abstracting on ¢’ and = we obtain

Tx, A, Ep (A) by nk) Az (T )M (CLE)."): [ (Cltx)— (CLt p").
z:(T t)
Moreover we have that =,(A) = E,/(A) because FV(p) = FV(p") \ {CU} and z:(T t) ¢ A

(otherwise A, z:(T t) would be not a valid context) Then, defining t, X (/\a: (T't)A:(Clt z).c'"),
we have I'x, A, Ep(A) b vk t1 0 [ (CLE 2) = (CLE p”). We apply now Cl5 1
obtaining I'x, A, Z,(A) by, (nk) (Ol 1 tt pt): (CLY (O-1tt p)).
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ep = (O'-1t p' ¢): since p is well-typed we have I'x,A Fx_ (nk) P ¢ (T t) and
Ix, Aty (nk) ¢ (Cltp'). Then we apply O'-1 obtaining I'x, A(A) by (nk) (Clgr_ptp' ')
(Cl(Ot)(O'-1t p' ")), and therefore

I'x, A(A),Ep(A) Fypynk) (Clyr_p tp' ¢):(CL(OF) (B'-1¢ p' ¢)).0

A.3.4 Proof of Lemma 5.4

By lemma of characterization, ¢ of type (Cl t p) is of the form (M, ... My, where k is
the arity of ¢. By inspection of ¥¢;(NK) and I'x,v7(A) we see that the only choices are
CEdom( )U{Clj I; Clj E’ClD’ CZDD-E"'}'
Base Step: ¢:(Cl t' p)) € E; then, the claim is trivial.
Inductive Step: by cases on the top constructor. We see only some significant cases, the
other being similar.

oc = (Clo gttt pt'): (ClLt (D-1tt p)): since ¢ is well-typed we have that
Lx,AZ by, (nky p(T'1) = (T't') and T'x, A, ZE by (nk) 1 [[,4(ClEz) = (CLE (px)).
Since " is a canonical form then it must be ' = Az:(T t)A¢':(Cl t x).t"". Then by some
introductions we obtain T'x, A, z:(T t),Z,c":(Cl t z) b, (nk) t"':(CL ' (p 2)). By the ITH

we know T'x, A", Z,c":(Cl t x) by, (nk) t"":(CL 1" (p x)), where A" def {p:(T th|(Cl t' p) €
S(E,c:(Cltx))} = A'U{z:(T t)}. Then, by abstracting on z, ¢’ we find that T'x, A", Z by (nK)
" Hw:(T t)(Cl tx) — (Clt' (px)). Finally, by applying Cl~_1 we obtain I'x, A", = by, (nk)
(Cly_p tt' pt"):(CLE (D-1t 1 p)).

oc = (Clgytpc): (ClOt (O-1tp c)): since ¢ is well-typed we have that
FX, A, = l_ECl(NK) (T t) and FX A = l_z(‘l(NK (Cl tp) By ITH we have that
x,A" =2 I—ECI(NK c:(Cl t p). Hence Ix, A" E by nk) pi(T t). Then we apply Cly_y
obtaining I'x, A", E by ( NK (C’lD/ tpd):(ClOt (O-1tpc)).

oc= (CZDD‘E tt'pp ¢ ") an 1mmediate application of IH on ¢, ¢". O

A.3.5 Proof of Theorem 5.5

It is straightforward to verify by induction on the structure of proofs that, given the hypo-
thesis of the theorem, Eiﬁ(NK) (m) is a canonical term of type (T ex(¢)) in E¢(NK) and
Lx,y7(A).
Base Step: ¢ is an assumption, i.e. 7 = ¢ € A. Then immediately I'x,y7r(A) Fx,, (nk)
0,i(T ex ().
Inductive Step. By cases on the last rule applied. We see only some significant cases, the
other being similar.

o = D-I, y(n'): then (X, (A, ¢)) Enk 7':¢p. By IH we have that

FX;VT(A;‘P) l_ZC,(NK) t’:(T Ex(il))) Let t' = def /\'Utp (T Ex((p)).t’; then FX;VT(A) l_ZC,(NK)
- Hv,,:(T x (o) (T €x(¥)). By applying D-I we obtain
P, 11 (A) Faerni) (O-1 £x(9) ex () #0:(T (5 £x(9) ex (1)),

o = D-E, (', 7"): then (X,A) Enk 7' 1 ¢ D ¢ and (X, A) Enk 7" . By IH,
Cx,97(A) Fso, k) t': (T ex(w D)) and T'x,yr(A) e nk) t" 2 (T ex(¢)). Therefore
by applying D-E we obtain T'x,v7(A) by, (nk) (O-E ex(9) ex(¥) t' t"):(T ex(¢)).

o = O'-I,(n'): then (X,0) Enk 7' . By IH, I'x Fy . (nk) t1 2 (T ex(¢)), and hence
by Lemma 5.3 there is a term ¢;, such that I'x by, (nk) ¢1,:(Cl ex () t1). Therefore, by
applying O'-1, we obtain I'x,y7(A) Fx ., (nk) (B'-Lex (@) t1 ¢t,) : (T Oex ().

By the above steps, it is easy to see that 5ZC’(NK)

cl NK)
5X,A

is injective. Surjectivity is estabilished

by exhibiting a left-inverse , defined by induction on the structure of the canonical
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forms as follows:

ZC, NK)

> Jif v, € dom(yp(A))

def
) E O'-15, (1) (P)

(v
zc, NK) (
Z“ N (o1t t' (AT )91 DT (1), (1) O A s 1) (7))
(
ger

>
=
>

Zm NOGE ! pp) € 5By .00 ) Gx AN (0), 554N ()
sZc1(NK)

Z NK def
ol -Ett' pp) = Do-Esyysxa)OxaA (),

The 6)2(% NK) is total and well-defined for the definition of canonical forms and inspection of
the signature X (NK). The application of O'-I is sound, for the presence of ¢ : (Cl dx () p)
and the fact that no Cl assumptions are made by the encoding of the context (yy(A)).

By lemma of characterization, a canonical form p of type (T t) must be (M; ... My,
where k is the arity of (. By inspection of X (NK), I'x,yr(A) we see that the only choices
for ¢ are ¢ € {v,,0'-1,D>-1, >-E, Dp-E .. .}.

Base Step: p = v, € y7(A), then we take 7 = ¢.
Inductive Step: we see only some significant cases.

ep =0'-1¢ p' c: since p is well-typed we have that I'x,yr(A) Fx, (nk) P ¢ (T t) and
Cx,yr(A) I—ZCZ(NK :(Cltyp'). By Lemma 5.4, there is a term ¢ such that T'x, 0 Fx_, (nk)
c: (Cltp'); since ¢ is well-typed, I'x, 0 Fy,, (nk) P':(T' t). By the IH, we obtain that there
exists 7’ such that (X, () Enk 7' : 0x(t) and hence we conclude 7 = O'-I5, () (7).

ep = D-1t# p's since p is well-typed, I'x,y7(A) Fs,(nk) ' 2 (T 1) — (T' 1'), then
Cx,yr(A),a: (T't) Fs,, (vk) P'a: (T't"). By IH there exists 7’ such that (X, (A, dx(t))) Fnk
7":0x (t'), and hence we conclude taking m = D-T5, (1) 5 () (7')-

op=D-Ettp p" since pis well-typed, I'x,y7(A) Fynk) P/ (T (D tt')) and
Lx,797(A) by, vk p":(T t). By IH there exist 7', 7" such that (X, A) Enk 7' 1 0x(D tt')
and (X,A) Exk 7 1 0x(t). We conclude taking 7 = D-Es (4),5 (¢ (7', 7"). O

A.3.6 Proof of Lemma 5.6

By the lemma of characterization, a canonical form p of type (T t) is (M, ... My, where k
is the arity of ¢, which is ¢ € {v,, D-I,D-E,0-1,0-E, Dg-1...}.
Base Step: p = vs, () : (T t). By definition of yo, C(p,70(A)) holds, then there is
the assumption (vbs, (+):(Bx t v5,(1))) € 70(A). Hence, Tx,v0(A) Fxy(nsa) Vs :
(B.’E t U(Sx(t))-
Inductive Step: we see only some significant cases.

ep = (0-11py b): (T Ot). Since p is well-typed, we have I'x,y0(A) Fxp(nsa) p1: (T 1)
and T'x,v0(A) Fxonsa)y b 2 (Bx t pr). Hence I'x,v0(A) by (nss) (Bxgpt pr b) -
(Bz Ot (3-1 ¢ py b)).

op=(D-Ttt (s : (Tt).p1)) : (T(D tt')): since pis well-typed, T'x, 70(A) ks, (Nsa)
(Avsy () (T 1).p1) « (g7 (T 1)), that is I'x, v (A), vs 1) + (T'1) g (nsay 1 (T71).
Moreover, chosen a fresh variable vbs, (1), C (pl, (Y(A), 55 (1):(T t),vbsy (1):(Bx t v,;X(t))))
holds. Then, by TH there is by such that I'x, ya(A), vs, (1):(T ), vbs, (1):(Bx t vs, (1)) Fxo(Nsa)
by:(Bz t' p1), and hence

Lx,70(A) Fyq(nsa) " H H (Bx t' p),

U&X(t)Z(T t) viX(t):(Ba: t vgx(t))
where ¢ % sy (1) (T ) Avbs  (1):(Bx t 54 (+))-b1. Then, finally

Fx,’yD(A) l_ZD(NS4) (B.’ED_I tt ()\U(gx( 1) (T t) pl) ) (B:L' (D tt’) (D—Itt’ ()‘U(Sx(t)5(T t).pl))).
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ep=(D-Ett'p pa): (T t'): since pis well-typed, I'x, 70(A) Fxp(nsay p1: (T (D t1))
and I'x,v0(A) Fxg(nsa) p2 2 (T'1). Since FV(p1), FV(p2) € FV(p), then both C(p1,va(A))
and C(p2,70(A)) hold. Then, by TH there exist by, by such that I'x,ya(A) Fxj(nsa) b ¢
(B.’I? (D t t’) pl) and FX")/D(A) l_ED(NS4) bg : (B.’I? tpz) Therefore FX7’}/|](A) l_ZD(NS4)
(BQ?D_E tt P1 P2 by bg) : (BZE t (D—E tt jol pz))

op = (Do-T1tt (Mg, (o):(T Ot) Avbs, (0y):(Bx Ot vs, (ng))-p1) : (T (D Ot t'))): since p is
well-typed, I'x, 70 (A), vs (o) : (T Ot), vbs, (ne):(Bx Ot w5, (a¢)) Fya(nsa) P12 (T't'). Moreo-
ver C (pl, (Y0(A), vs, (oe):(T Ot), vbs, (ng): (B Ot ’U(;X(Dt)))) holds. Then by IH there exists
by such that I'x,va(A), Vs (Ot)" (T O, Ubéx(Dt) (Bx Ot ’l}(;x(gt)) l_ZD(NS4) by : (Bz t' p1).
By abstracting we obtain

Ix,70(A) Fxgnsa ¢ H H (Bx t' py).

’USX(E”):(T 0t) vng(m):(Bz Ot 'UJX(E”))
where " & Mg (oe) (T Ot) \ubs  (op):(Bx Ot vs, (op)).bi1. Then

Cx,70(4) "ZD(NS4) (Bﬂfju_l t tl()‘véx(ﬂt):(T Dt)./\vb,gx(m):(Ba: 0t Ursx(mt))-pl)(t”)) :
(Bx (D Ot t') (Do-Ltt" (Ms, (oy:(T Ot)Avbs, (oy:(Bx Ot vs, (0g))-p1)))-

ad

A.3.7 Proof of Lemma 5.7

By induction on the structure of .
Base Step: ¢ is an assumption, i.e. ¢ € A. Then we take p = v, € dom(ya(A)).
Inductive Step: by cases on the last rule applied. We see only some significant cases, the
other being similar.

o = D-Tyg(n'): then (X, (A,9)) Ensa 7' : 6 and hence by IH there exists a canonical
term p such that I'x,v0(A, %) Fo,vsa) P (T €x(0)). Now there are two cases, depending
on whether v is boxed or not.

e if ¢ is boxed, then yo({¢}) = vy:(T ex (¢)), vby:(Bx x(¢) vy). Then

Ix,70(A) Feo(nsa) ¢ H H (T ex(9))

vy (T ex (¥)) vby (Bz ex (¥) vy)

where t &' Avy: (T ex (). Avby:(Bz ex (¢) vy).p. Hence
Ix,70(A) Fronse) (Oo-Tex(¥) ex(8) ):(T (D ex () ex(6)))
(

e otherwise, ¢ is not boxed; then yo({¢}) = vy:(T ex(+)). Then I'x,ya(A) Fx,(Nsa)
(My:(T ex(¥)).p) : (Huy:(T ex(¥))).(T ex()). Hence immediately
Ix;78(A) Fegnsay (O-Tex (¥)ex (0)(Avy:(Tex ())p)) : (T(D ex(¥) ex(6)))-

o = O-Ly(7'); then (X,0A) =ns4 7' : 9. By IH there exists a canonical term p; such
that I'x,yo(0A) Fxy(nsa) p1 ¢ (T ex(v)). Since C(p1,ya(OA)) always holds, by Lemma
5.6 there exists a canonical term b; such that I'x,y0(0A) Fxj(nsa) b1 ¢ (B ex () p1).
Hence I'x,70(0A) by (nsa) (B-Tex(¥) p1 b1) : (T Dex ().

o = D-Ey (7', 7"): then (X,A) =nsa 7' ¢ and (X, A) =nsa 7" 2 ¢ D . The-
refore by IH there exist two canonical terms py,ps such that I'yx,ya(0A) Fxy(nsa) 1o
(T Ex('l[))) and Fx,’}/D(DA) l_Zg(NS4) p2 (T EX(UJ D (p)) Then, Fx,’yD(DA) l_ZD(NS4)
(>-E ex(¥) ex(¢) p2 p1) : (Tex () O

29



A.3.8 Proof of Theorem 5.8

The result follows immediately from Lemma 5.7 and the following two technical Lemma A.2,
A.3. For sake of simplicity, we adopt the following definitions: for p term and I context, we
define

C'(p,T) Y forall c € FV(p), for all (c:(T t)) € I', there exists (b:(Bz t ¢)) € T
ap(l) = A | (0,:(T ex(¥))) € I' and v, € FV(p)}.

Intuitively, the set a,(I') contains the “active assumptions” in the context I' for p.

Lemma A.2 If there is a canonical term b such that T x,yno(A) Fxy(nsa) b: (Bx ¢ p) then
C'(p,va(A)) holds.

Proof. By lemma of characterization, a canonical form d of type (Bz ¢ p) must be
(M ... My, where k is the arity of (. By inspection of ¥5(INS4) and I'x, yo(A) we see that
the only choises are ¢ € {vb,, Bx~_1, Br~_g, Brg.1, Bro.g, - -}
Base Step: b = vb, € yo(A); then, immediately, v, € ya(A) and hence C'(p, yo(A)) holds.
Inductive Step: we see some significant cases, the other being similar.

ob = (Bro 1 t t'(Avgy ()i (T 1).p1)(Avsy o) = (T t)Avbs, 1):(Bx t vs,(r))-b1)): then
Cx,70(A) Fxy(nse) b: (Bx (D tt') p). Since b is well-typed we have that

FX7’YD(A)7’U5X(1§) : (T t):'szSX(t) : (B:U t 'U(SX(t)) FED(NS4) by : (BCU t pl).

By IH C'(py, (’}/D(A),U(;X(t) (T t),vb(gx(t) : (Bx t ’U(;X(t)))). Since p = D-1t t/()\’l}(gx(t) :
(T't).p1), we have FV(p) = FV(p1) \ {vs, (1) }, therefore C'(p,v(A)) holds.

ob = (Br g t t' p1 p2 by ba): then I'x,7ya(A) Fyynsay b2 (Bz t' p) where p def
(D-E tt' p1 p2). Since b is well-typed we have that T'x,y0(A) Fx (nsa) b1 (Bx (Dt t') pr)
and I'x,y0(A) Fxy(nsa) b2 : (Bx t po). By TH, C'(pl,70(A)) and C’(p2 ~va(A)) hold; then
C'(p,va(A)) holds, since FV(p1) UEV (p2) = FV(p).

oh = (Ba:DD_I t t' p1 p2), where p; def Ay (o) (T Bt).Avbs . (op):(Bz Ot vs, (0p)-py and

P2 déf )"U(Sx(Dt) . (T Dt) Avbéx(Dt) (B:E 0t 'U(SX(EIt))-bl- Then Fx,’yD(A) l_ZD(NS4) b: (B’E (D
Ot t') p) where p= (Dg-1t ¢ p1). Since b is well-typed we have that

FX,’)/D(A),U(;X(M):(T Dt),’ung(gt) : (B:E Ot 'U(SX(t)) FZD(NS4) bll(BZE t p’l)

By inductive hypothesis, C’'(p}, (y0(A), vs, (e):(T" Ot), vbs, (o) = (Bx Ot vs, (ny))) holds,
and then C'(p1,v0(A)) holds too. Therefore C'(p, yo(A)) holds.

ob = (Brp_1 t p1 b1): then I'x,y0(A) Fxp(nsa) b: (B (Ot) p) with p = (O-1 % py by).
Since b is well-typed we have T'x, yo(A) Fs (ns4) b1 : (Bx t p1), and hence by TH C'(p1,v(A))
holds. Therefore C'(p,v(A)) holds as well, because the free variables in by are typed in y(A)
only by the Bx judgement. O

Lemma A.3 Given a canonical term p such that I'x,yo(A) Fx,(~nsay 0 (T 1), there exists
a proof © such that (X, ap(vo(A))) Ensa 71 0x(1).

Proof. By lemma of characterization, a canonical form p of type (T t) must be (M ... My,
where k is the arity of (. By inspection of ¥5(INS4) e I'x,va(A) we see that the only
choices for ¢ are ¢ € {v,, D-1, >-E,0-1,0-E, Dg-1...}. We proceed by induction.

Base Step: p = vs,(t). Then, I'x,70(A) Fxy(nsa) p ¢ (T 1) and moreover we have that
ap(yo(A)) = {dx(t)}. Taken 7 = dx (t), we obtain (X,dx(t)) =Nsa 7 : dx(t).
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Inductive Step. We see only some significant cases.

ep=(D-Ett py p2): then I'x,v0(A) Fxynsae) p: (T'1). Since p is well-typed we have
that T'x,v0(A) Fxonsa) pi:(T(D t t')) and T'x,y0(A) Fsy(nsa) p2 2 (T t). By TH there
exist 7', 7" such that (X, ap, (70(A))) FEnsa 7' 0x(D t t') and (X, ap, (ya(4))) Ensa
7' dx(t). Then taken m = D-Es (4),55 ) (7', 7") we obtain that (X, a,(ya(A))) FNsa 7 :
dx (t).

op = (D-1tt'(Avsy(r) : (T t).p1)): then, I'x,70(A) Fxynsa) p: (T(D ¢ 1')). Since pis
well-typed we have that T'x, vo(A), vsy 1):(T t) Fxy(nsa) P12 (T 1)
(ie. T'x,va(A,6x(t) Feynsay po: (T 1) because va(A,dx (1) 2 vo(A),vsy @y : (T 1)).
By IH there exists 7' such that (X, ap, (70(A,0x(t)))) Ensa 7':0x (t'). Moreover,
iy, (16 (A, 8 (1)) C 0 (1(A)), 6 (£) since FV(p1) C WV (p) U {us, (o} Then
(X, ap(70(A)),6x (1) F=nsa m':0x(t'); taken m = D-I5, 4).5, @) (7'), we finally obtain
(X, p(10(A))) Ensa m:0x (Dt ).

op = (Do-T1 ¢t (Avsy):(T t)Avbsy (1):(Bx t v5,(1))-p1)): then T'x,y0(A) Fs (nsa) P :
(T (o tt')). Since p is well-typed we have

Lx,70(A), v (1):(T 1), vbs 1y:(Bx t v5, (1)) Fyansay p1: (T 1),
B

Moreover, since dx (t) is boxed, it is I'x, ya (A, dx (t)) Fxy(nsa) p1 ¢ (T'#'). By IH there exists
7' such that (X, ap, (70(A, dx(#)))) Fnsa m':0x (t'). Now, ap, (70(A, dx (1)) € ap(va(A))U
{0x(A)}, since FV(p1) € FV(p) U {vs, (1), Vbs5(t)}- Then (X, a,(vo(A)),0x (1)) =nsa 7' :
dx (t'). Taken m = Do-T5, (1),6, () (7') we obtain that (X, a,(y0(A))) Fnsa m:dx (Dt t').

ep = (O-11p;y b1): then I'x,70(A) Fxy(nsa) p i (T (O1)). Since p is well-typed we have
Ix,70(A) Fxonsa) b1 2 (Bt pr) and I'x,70(A) Fonsa) p1: (T'1). By IH there exists
7' such that (X, ap, (7(A))) Ensa 7':0x(t). By the lemma A.2, C'(p1,vc(A)) holds. Now,
for each 9 € ay, (yo(A)), by definition of a there is an assumption (vy:(T ex (¥))) € vu(A)
such that vy € FV(p1). Since C'(p1,70(A)) holds, we have that there is an assumption
(vby @ (Bz ex () vy)) € yu(A), but by definition of g, this means that ¢ is boxed. Then
ap1(yo(A)) contains only boxed formulae. Then we can take 7 = O-I;, (4)(7') obtaining
(X, ap(10(A))) Ensa 71 Oox (). O

From Lemma A.3 follows the definition of the decoding function 5§?A(NS4) :

2N (0,) E Jif vy € dom(vys(A)).

(O-FE £t 1 p2) 5 Fo 1).am (1) (G (1), 55085 ()

(-1t ' (Mg ()3 (T £).01)) = DT .5 () (05 A 50 (1 (P1)

Y (0T £t (W ()1 (T ) M0bs (1:(B2 t 5 (1) 21)) S D0-Tay 1.5 (1) (O g (0 (P1)
(Ot py b)) 0T, (1 (054 (1)

(O-E t pr1) & 0By () (652 N5 (1))

A.3.9 Proof of Theorem 6.1
Actually, only some hints:

e 1 = 2: by induction on t.

e 2 = 3: by induction on n.

e 3 = 1: by induction on v. Alternatively, replace everywhere (V ) by [],,., (T w v)
and (T ¢) by (T w ).

3
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e 3 = 2: it is possible to express V in terms of Na, by means of X-types: (V ¢) =
ZNT w)(Cl ¢ x). Hence, proof of (V () is, a proof of (T' ) together with the proof
that it does not depend on any assumptions. This is not possible in LF but in some
higher-order logical framework, such as CIC. O

A.3.10 Proof of Theorem 6.2

Similar to Theorem 6.1.
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