
Encoding Modal Logics in Logical Frameworks?Arnon Avron2, Furio Honsell3, Marino Miculan3� and Cristian Paravano3August 14, 1996AbstractWe present and discuss various formalizations of Modal Logics in Logical Fra-meworks based on Type Theories. We consider both Hilbert- and Natural Deduction-style proof systems for representing both truth (local) and validity (global) consequencerelations for various Modal Logics. We introduce several techniques for encoding thestructural peculiarities of necessitation rules, in the typed �-calculus metalanguage ofthe Logical Frameworks. These formalizations yield readily proof-editors for ModalLogics when implemented in Proof Development Environments, such as Coq or LEGO.Keywords: Hilbert and Natural-Deduction proof systems for Modal Logics, LogicalFrameworks, Typed �-calculus, Proof Assistants.IntroductionIn this paper we address the issue of designing proof development environments (i.e. \proofeditors" or, even better, \proof assistants") for Modal Logics, in the style of [11, 12]. Tothis end, we explore the possibility of using Logical Frameworks (LF's) based on TypeTheory, such as the Edinburgh Logical Framework, the Calculus of Inductive Constructionsor Martin-L�of predicative Type Theory [7, 4, 22, 16]. Logical Frameworks can be viewed asgeneral \logic speci�cation" languages. They are based on the notions of hypothetico-generaljudgement [13] and the judgements-as-types, �-terms-as-proofs paradigm [7].According to the LF methodology the crucial step, in the development of a proof editorfor a given logic is the encoding (or formalization, or representation,. . .) of a particularpresentation of the logic in the typed metalanguage of LF.In this paper, we introduce and study various encodings in dependent typed �-calculus ofHilbert- and Natural Deduction-style (ND-style) systems for both the consequence relationsof validity and truth of K, KT, K4, KT4 (S4), KT45 (S5), KL. In particular, we extendand generalize the methodology developed in [2]. For each encoding we state the appropriatefaithfulness and adequacy theorem.The main challenge in encoding Modal Logics in Logical Frameworks is that of enforcingthe side conditions on the application of the proper modal rules, i.e. rules of proof or \impurerules" in the sense of [1]. Such rules, in fact, cannot be applied uniformly to any set ofpremises, but are subject to various forms of restrictions, e.g.: the premises depend on no?Partially supported by EC HCM Project No. CHRX-CT92.0046, Lambda-Calcul Typ�e, MURST 40%,CNR CC 94.0073.CT01.2Department of Computer Science, Tel-Aviv University, Tel-Aviv, Israel. aa@math.tau.ac.il.3Dipartimento di Matematica e Informatica, Universit�a di Udine. Via delle Scienze 206, I-33100 Udine,Italy. fhonsell,miculan,paravanog@dimi.uniud.it, http://www.dimi.uniud.it/SLP/gruppo.html.�Dipartimento di Informatica, Universit�a di Pisa. Corso Italia 40, I-56100 Pisa, Italy.1

assumption; or depend only on assumptions of a certain shape (boxed, essentially boxed,etc.); or even, the premises have been derived only by proofs of a certain special shape (seePrawitz's third version of S4). This issue was dealt with in [2] using systems with multiplejudgements. In this paper, we expand this solution and present new alternatives, usingjudgements on proofs or exploiting the underlying �-calculus structure of the metalanguage.Our objective is not that of extending to modal logics the \proposition-as-types", \ge-neralized �-terms-as-proofs" paradigm, as is the case in [14, 17]. We explore, rather, thepossibility of extending to modal logics the \judgements-as-dependent types", \�-terms-as-ND-proofs" paradigm of [7]. To this end we do not try to invent radically new deductivesystems or new proof �gures as in [14, 17], possibly using special extensions of the �-calculus.These systems, albeit very interesting for the new insights that they can provide in the con-ceptual understanding of modality, are beyond the scope of this paper, because they cannotbe used as the basis of an encoding of modal logics in existing general proof assistants. Inthis paper we try to provide natural encodings of existing and classical systems of modallogic (or very slight extensions of them). We want to produce natural editors, which do notforce upon the user the overhead of unfamiliar, indirect encodings, or the burden of learningan altogether new system. A user of the original logic should transfer immediately to aneditor, based on our encodings, his practical experience and \trade tricks". The only pos-sible novelty, w.r.t. the original system, that he should experience, while using the editor,should arise only from the fact that the speci�cation methodology of Logical Frameworksforces him to make precise and explicit all tacit conventions. Our approach therefore dif-fers substantially from that of [14, 17], e.g. �-reductions of �-terms, encoding proofs in oursystems, are not intended to represent normalization of proofs, but only instantiation andapplication of Lemmata, i.e. the structural rule of Cut.Nevertheless, in our view, the interest of this paper goes beyond that of merely tailoringLogical Frameworks to the peculiarities and idiosyncrasies of Modal Logics. LF's naturallysuggest systems based on the natural deduction mechanism of assuming-discharging assump-tions. Moreover, LF's allow to conceive systems which manipulate multiple judgements onformul� and, exploiting the judgements-as-types paradigm, allow also to reason directly onproofs and not only on assertions. Some of the systems and encodings that we introduceand analyze, are interesting also from the purely logical point of view in that they suggestnaturally alternative presentations of Modal Logics. In particular, the ND-style systemswith multiple consequence relations that we introduce are new, as we know, and probablythey can compete with classical systems as far as naturality or easy of use.The paper is organized as follows. In Sect.1 we recall the basic syntactical and semanti-cal de�nitions of Modal Logic and we present the classical Hilbert systems and the classical(together with some not so classical) ND-style systems for K, KT, K4, KT4 (S4), KT45(S5), KL. In Sect.2 we present briey the main features and applications of Logical Fra-meworks. The encoding of the syntax of Modal Logic appears in Sect.3. The encodings ofthe Hilbert-system systems and the ND-style systems in LF appear in Sect.4, and 5 respecti-vely. In each section we discuss �rst systems for validity, then systems for truth. On severaloccasions we discuss more than one technique for implementing a given system; in Sect.6we relate formally these di�erent approaches. Final remarks, applications, and related workare discussed in Sec.7. Proofs of theorems appear in the Appendix A.1 Modal LogicsIn this section, we briey recall the basic notions of Modal Logics (see e.g. [10, 20]); we pre-sent Hilbert- and ND-style systems for representing truth and validity consequence relationsfor various modal logics. 2

1.1 Syntax and SemanticsThe formul� of the basic modal propositional language � are de�ned by the followingabstract syntax: ' ::= p j :' j ' � j 2', where p ranges over the set of atomic proposition,denoted by �a. The constant � 2 �a denotes the always false proposition. Given ' 2 �,we denote by FV(') the set of (free) atomic predicate variables, de�ned as usual; the notionof FV is extended to sets of formul�: FV(�) = ['2�FV('). By '[x1; : : : ; xn] we denote aformula ' such that FV(') � fx1; : : : ; xng; we de�ne �X def= f' 2 � j FV(') � Xg. Finally,we take 3' as a syntactic shorthand for :2:'.The interpretation of modal formul� is based on Kripke's frames and models. A frameis a pair F = hW;!i where W is the domain and !� W �W is the accessibility relation.Elements of W are called states, and are denoted by s. A model is a triple M = hW;!; �iwhere hW;!i is a frame, and � : �a ! P(W) is a valuation.Given a formula ', a model M and a state s, we de�ne when ' is true in s (s j=M ')inductively on the structure of the formula, as usual. In particular, s j=M 2' () 8s0:s!s0) s0 j=M '. If ' is true in every state of a model M, we say that ' is valid in M(j=M ').1.2 Consequence RelationsAccording to [1, 20], the semantic interpretation of formul� gives rise to (at least) two(logical) consequence relations (CR's).De�nition 1.1 (Truth and Validity Consequence Relations) Given � � �, ' 2 �,and M class of models, we say that� ' is true in � w.r.t. M (� j=M ') if 8M 2M:8s 2M:s j=M �) s j=M ';� ' is true in � (� j= ') if 8M8s 2M:s j=M �) s j=M ';� ' is valid in � w.r.t. M (� jj=M ') if 8M 2M: j=M �)j=M ';� ' is valid in � (� jj= ') if 8M: j=M �)j=M '.These de�nitions are straightforwardly extended to sets of formul�, and subclasses of models:given M a set of models, we de�ne j=M= TM2M j=M, jj=M= TM2M jj=M.These CR's correspond to the (model) global relation and the (model) local relation of[20], respectively. They di�er on the releavance given to assumptions: in the validity CR,formul� of � are seen as theorems, true in every state, while in the truth CR they areassumptions, locally true in each state we consider. This di�erence is made appearant inTheorem 1.2 ([20]) For � � �, ' 2 �: � jj= ' () f2n j 2 �; n 2 Ng j= ':Moreover, the usual \deduction theorem" (\�; ' j= () � j= ' � ") holds only for thetrue CR's: it is easy to see that p jj= 2p, but of course 6jj= p � 2p.1.3 Hilbert-style systemsHilbert-style systems have been (and still are) very important tools in investigating axio-matizations of Modal Logics. Several kinds of such systems have been proposed; they di�er3

K : 2(' �) � (2' � 2)T : 2' � '4 : 2' � 22'5 : 3' � 23'L : 2(2' � ') � 2'Nec '2' ' does not dependon any assumptionNec' '2'
Validity TruthK0 = C+K +Nec' K = C+K +NecKT0 = K0 + T KT = K+ TK40 = K0 + 4 K4 = K+ 4KT40 = KT0 + 4 KT4 = KT+ 4KT450 = KT40 + 5 KT45 = KT4+ 5KL0 = K0 + L KL = K+ LFigure 1: Axioms, rules and Hilbert-style systems for Modal Logics.essentially on the class of Kripke models they axiomatize implicitly, and on the representedCR. All of them extend the following basic propositional calculus, which we denote by C:C def= A1 : ' � (� ')A2 : (' � (� #)) � ((' �) � (' � #))A3 : (: � :') � ((: � ') �) + MP ' ' � In Fig.1 we list the axioms and rules which can be added to C in order to obtain theModal Logic we shall focus on, namelyK,KT, K4,KT4 (S4), KT45 (S5), KL. In namingthe systems we follow Lemmon's convention.These systems fall into two categories, depending on which CR is represented. Thesecorrespond to adopting di�erent necessitation rules: the pure rule Nec' yields systems whichare sound and complete only w.r.t. the validity CR's. If we are interested in the truth CR's,we need the impure rule Nec.We denote by � : � `S ' the proof � of ' from the set of assumptions �, using theaxioms and rules of system S. The set of free variables in � is denoted by FV(�).De�nition 1.3 (Valid Proofs) Given X � �a;� � �X ; ' 2 �X we say that � is a validproof (in the system S) of ' w.r.t. (X;�) (denoted by (X;�) j=S � : ') if � : � `S ' andFV(�) � X.Theorem 1.4 (Completeness of Hilbert-style systems) For � � �; ' 2 �:{ For S 2 fK;KT;K4;KT4;KT45;K4Lg : � `S ' () � j=M(S) ';{ For S 2 fK0;KT0;K40;KT40;KT450;K4L0g : � `S ' () � jj=M(S) ';where M(S) denotes the class of models corresponding to the axioms characterizing S.1.4 Natural Deduction-style systemsIn this subsection we introduce ND-style systems for both validity and truth CR's. All thesesystems extend the usual ND-style system for propositional classic logic NC:NC def= �; ' ` ' �-I �; ' ` � ` ' � �-E � ` ' � � ` '� ` Raa �;:' ` �� ` ' �-I � ` ' � ` :'� ` � �-E � ` �� ` '4

2-I 2� ` '2� ` 2' �2-E � ` 2(' �) � ` 2'� ` 2 2-E � ` 2'� ` '20-I ; ` '; ` 2' �0-E � `̀ ' � � `̀ '� `̀ 22-I � ` 2'� ` 22'200-I � ` '� `̀ 2' �00-E � ` ' � � `̀ '� `̀ 23-I � ` 3'� ` 23'2000-I � `̀ '� `̀ 2' �000-E � `̀ ' � � ` '� `̀ 2�-I � ` 2(2' � ')� ` 2'Validity TruthNK0 = NC+�2-E+200-I+2000-I NS4 = NC+2-I+2-E+�0-E+�00-E+�000-E NK = NC+�2-E+20-INKT0 = NK0 +2-E NKT = NK+2-ENK40 = NK0 +22-I NK4 = NK+22-INKT40 = NKT0 +22-I NKT4 = NKT+22-INKT450 = NKT40 +23-I NKT45 = NKT4+ 23-INKL0 = NK0 +2�-I NKL = NK+2�-IFigure 2: Rules and ND-style systems for Modal Logics.We make extensive use of systems with multiple consequence relations. Multiple CRsystems of Natural Deduction are probably not very well-known, but we do not give herea detailed presentation of them, because we feel that their \working" is self-evident. Weintroduce, in this paper, multiple CR systems especially in relation with Natural Deductionsystems for validity. Such systems allow to achieve a sharpening of the adequacy theoremsappearing in [2] and a generalization of the encodings of logics weaker than S4. In Section5.2.5 we briey outline how to introduce multiple CR systems for truth, extending those forvalidity. All the systems for truth appearing elsewhere in the paper are classical.Systems are displayed in a linearized sequent-like fashion. We denote by � : � `iS ' theproof � of the fact tha ' is entailed by the assumptions �, accordingly to the i-th CR of thesystem S.In Fig.2 we display the rules which can be added to NC in order to obtain ND-styleversions of the Modal Logics K, KT, K4, KT4 (S4), KT45 (S5), KL. In naming thesesystems we extend Lemmon's convention for Hilbert-style systems.These systems count as ND-style systems, in that their rules follow the general schema8�1; : : : ;�n�1;�1 `i1 p1 : : :�n;�n `in pn�1; : : : ;�n `i p Cwhere C is a possible side condition, that is a restriction (max. level 2, in the terminologyof [1]) on the applicability of the schemata; and i1; : : : ; in; i 2 f1; : : : ;mg where `1; : : : ;`mare the m CR of the system S. In this view, ND-style systems are characterized by thefact that one does not focus only on theorems but rather on assumption-conclusion de-pendencies. Rules are monotone with respect to sets of assumptions and possibly exploitassumption-discharging mechanisms. Hence, we assume the structural rules of weakeningand contraction.Strictly speaking, rules of ND-style systems should exhibit also an internal symmetry,but it is well-known that this proof-theoretic property is problematic for modalities. Such a5

symmetry can be recovered by substantially modifying the notion of sequents, which is outof the scope of this work; see e.g. [15, 21].The systems in Fig.2 fall into two categories, depending on which CR is represented.NK,. . . , NS4 represent the truth CR's while NK',. . . , NKL' represent the validity CR's.ND-style systems are best suited to represent the truth consequence relation, since the �-Irule wraps up the deduction theorem in the system. Prawitz' systemNS4 is a good exampleof how to take full advantage of this [18].On the other hand, ND-style systems for validity are cumbersome: since the deductiontheorem does not hold for jj=, we can no longer adopt the usual introduction rule for impli-cation. A possible solution for overcoming this problem appears in the system NK' that weintroduce here. This system uses two di�erent CR's, i.e. `; `̀ , whose intended meaning is:� � ` ' i� \there is a proof of ' from � which does not use the 20-I, 200-I rules" (thesederivations are said box-intro free);� � `̀ ' i� \there is a proof of ' from � which does use the 20-I, 200-I rules".Box-intro free proofs can be used in deriving valid consequences, but not the converse. Theconnection between these two notions of derivation is clear in the box introduction rules:we can \box" a valid formula still obtaining a valid formula (rule 200-I), but if we \box" aformula obtained on the ` level, we obtain a valid formula (20-I). The rules �0-E, �00-E,�000-E allow for the \modus ponens" between valid and box-intro free derived formul�. Therule Embed � ` '� `̀ ' is however derivable:�00-E200-I � ` true� `̀ 2true �-I � ` '� ` 2true � '� `̀ 'where true denotes any propositional tautology, e.g. ' � ' (its derivation is omitted).The rule �2-E corresponds to the K axiom of Hilbert-style systems. The other rules for`̀ (�0-E, 20-I) correspond to the modus ponens and the necessitation rules, respectively.Rules corresponding to the axioms of the extensions of NK', are added at the level of `.Notation for proofs and free variables of proofs are the same of Hibert-style systems.Theorem 1.5 (Completeness of ND-style systems) For � � �; ' 2 �:{ For S 2 fNK;NKT;NK4;NKT4;NKT45;NKL;NS4g : � `S ' () � j=M(S) ';{ For S 2 fNK0;NKT0;NK40;NKT40;NKT450;NKL0g : � `̀ S ' () � jj=M(S) ';where M(S) denotes the class of models corresponding to the rules characterizing S.2 Logical FrameworksType Theories, such as the Edinburgh Logical Framework [7, 2] or the Calculus of InductiveConstructions [4, 22] were especially designed, or can be fruitfully used, as a general logicspeci�cation language, i.e. as a Logical Framework. In an LF, we can represent faithfullyand uniformly all the relevant concepts of the inference process in a logical system: syn-tactic categories, terms, assertions, axiom schemata, rule schemata, tactics, etc. via the\judgements-as-types �-terms-as-proofs" paradigm. The key concept is that of hypothetico-general judgement [13], which is rendered as a type of the dependent typed �-calculus ofthe Logical Framework. The �-calculus metalanguage of an LF supports higher order syn-tax. Substitution, �-conversion of bound variables and instatiation of schemata are also6

taken care of uniformly by the metalanguage. Since LF's allow for higher order assertions(judgements) one can treat on a par axioms and rules, theorems and derived rules.Encodings in LF's often provide the \normative" formalization of logic under conside-ration. The speci�cation methodology of LF's, in fact, forces the user to make precise alltacit, or informal, conventions, which always accompany any presentation of a logic.Any interactive proof development environment for the type theoretic metalanguage ofan LF (e.g. Coq [11], LEGO [12]), can be readily turned into one for a speci�c logic. Weneed only to �x a suitable environment (the signature), i.e. a declaration of typed constantscorresponding to the syntactic categories, term constructors, judgements, and rule schemata.Such an LF-generated editor allows the user to reason \under assumptions" and go about indeveloping a proof the way mathematicians normally reason: using hypotheses, formulatingconjectures, storing and retrieving lemmata, often in top-down, goal-directed fashion.LF provide a common medium for integrating di�erent systems. Hence LF-derived edi-tors rival special purpose editors when e�ciency can be increased by integrating independentlogical systems. LF-generated editors are natural. A user of the original logic can transferimmediately to them his practical experience and \trade tricks." They do not force uponthe user the overhead of unfamiliar indirect encodings, as would editors, say derived fromFOL editors, via an encoding.The wide conceptual universe provided by LF allows, on various occasions, to devicegenuinely new presentations of the logics. This will be the case for some of the encodingsfor Modal Logics in this paper. In particular, we shall capitalize on the feature of LF's oftreating simultaneously di�erent judgements and of treating proofs as �rst-class objects.In this paper, we work in the Edinburgh Logical Framework, as presented in [7].3 Encoding of the SyntaxIn encoding the language of Modal Logic we follow the LF paradigm [7, Sect.3]: the syntacticcategory � is represented by the type o of propositions; for each syntactic constructor, weintroduce a corresponding constructor over o. The signature �(�) for the language and theencoding function "X : �X ! o appear below:� Syntactic Categories o : Type;� Operations: : o! o; 2 : o! o; �: o! o! o: "X(') def= ' ; if' 2 X "X(:') def= (: "X('))"X(2') def= 2 "X(') "X(' �) def= � "X(') "X()Given a set X = fx1; : : : ; xng � �a, we denote by �X the context hx1 : o; : : : ; xn : oi.Theorem 3.1 Given X � �a, the function "X is a compositional bijection between �Xand the canonical forms1 of type o in �(�);�X : Morover, the encoding is compositional inthe sense that for X = fx1; : : : ; xng; Y � �a, ' 2 �X and '1; : : : ; 'n 2 �Y : "Y ('[x1 :='1; : : : ; xn := 'n]) = "X(')[x1 := "Y ('1); : : : ; xn := "Y ('n)]:All the systems we shall deal with have the same language. Hence, the signatures, thatwe will introduce in the rest of the paper, will include �(�) without explicit mention.4 Encodings of Hilbert-style systems4.1 Systems for validityThe encodings of these systems follow the LF paradigm for specifying a logical system [7,Sect. 4]. In Fig.3 we give the signature �(K0) for the Hilbert-style system K, and its1The notion of canonical form is very close to that of long ��-normal form; see [7] for details.7

� Judgements V : o! Type;� Axioms and RulesA1: Y'; :o(V "X(A1';)) ; with FV(';) � X:Similarly for A2'; ;# ; A3'; ;K'; :MP : Y'; :o(V ')! (V (� '))! (V); NEC :Y':o(V ')! (V (2'))L:Y':o(V "X(L')) ; with FV(') � X:Similarly for T'; 4'; 5':Figure 3: �(K0) and its extensions for KL0,. . . .extensions for other systems (K40, . . .).Given � � �X , we de�ne the LF context V (�) as follows:V (�) def= � hi if � � ;V (�0); v' : (V "X(')) if � � �0; ' and v' fresh for V (�0)We can then de�ne the encoding function "�(K0)X;� , where X � �a; � � �X ; such functionmaps proofs � ofK0 such that FV(�) � X to canonical forms of type (V "X(')), for ' 2 �X ,in the environment �(K0);�X ; V (�):"�(K0)X;� : f� j (X;�) j=K0 � : '; ' 2 �Xg ! �t j �X ; V (�) `�(K0) t : (V "X(')); ' 2 �X	"�(K0)X;� (') def= v' ; if ' 2 �"�(K0)X;� (A1';) def= A1 "X(') "X() ; analogously for A2'; ;# ; A3'; ;K'; "�(K0)X;� (Nec'(�)) def= NEC "X(') "�(K0)X;� (�)"�(K0)X;� (MP'; (�; �0)) def= MP "X(') "X() "�(K0)X;� (�) "�(K0)X;� (�0)Theorem 4.1 The function "�(K0)X;� is a compositional bijection between proofs �, such that(X;�) j=K0 � : '; and canonical terms p,2 such that �X ; V (�) `�(K0) p : (V "X(')):4.2 Systems for truthIn encoding these systems, we have to deal with the problematic issue of enforcing theside condition of the necessitation rule. Hence, we have to extend accordingly the LFmethodology for encoding assertions. Here we consider three solutions. In the �rst, we adda new parameter to the basic judgement, i.e. T : U ! o ! Type, where U is a type onwhich no constructor is de�ned. In the second, we introduce a new judgement on proof terms,corresponding to the metatheoretic notion that \the proof depends on no assumption." Thethird solution makes use of two judgements over formul�, Ta; V : o ! Type. It followsclosely the one in [2, Sect.4.1].2In the following, we denote generic terms by t, proof forms by p, proofs of no-assumption judgement byn, proofs of closed judgement by c,. . . 8

� Syntactic Categories U : Type; � Judgements T : U ! o! Type;� Axioms and RulesA1: Y'; :o;!:U(T ! ("X(A1';)) ; with FV(';) � X:Similarly for A2'; ;# ; A3'; ; K'; :MP : Y'; :o;!:U(T ! ')! (T !(� '))! (T !); NEC:Y':o Y!:U(T ! ')!!Y!:U(T ! (2'))L:Q':oQ!:U (T ! "X(L')); with ' � FV(X): Similarly for T'; 4'; 5':Figure 4: �w(K), and its extensions for K4,. . .4.2.1 World parametersIn Fig.4 we give the signature �w(K) for the Hilbert-style system K, and its extensions forother systems (K4, KT, . . .). The encoding function "�w(K)X;�;! is inductively de�ned on thestructure of proofs: given a proof � : � `K ', "�w(K)X;�;! (�) is the proof term corresponding to�, where X = FV(�)."�w(K)X;�;! (') def= v' ; if ' 2 �"�w(K)X;�;! (A1;') def= A1 "X(') "X() ! ; similarly for A2; A3;K"�w(K)X;�;! (NEC'(�)) def= NEC "X(')(�!0 : U:"�w(K)X;;;!0 (�)) !"�w(K)X;�;! (MP' (�; �0)) def= MP "X(') "X() ! "�w(K)X;�;! (�) "�w(K)X;�;! (�0)Given a variable ! of type U , � � � with FV(�) � X , we de�ne the LF context !(�)as follows:!(�) def= �! : U if � � ;!(�0); v' : (T ! "X(')) if � � �0; ' and v' fresh for !(�0)Theorem 4.2 The function "�w(K)X;�;! is a compositional bijection between proofs �, such that(X;�) j=K � : '; and canonical terms t; such that �X ; !(�) `�w(K) t : (T ! "X(')):The idea behind the use of the extra parameter is that in making an assumption, weare forced to assume the existence of a world, say w, and to instantiate the judgement alsoon w. This judgement then appears as an hypothesis on w. Hence, deriving as premise ajudgement, which is universally quanti�ed with respect to U , amounts to establishing thejudgement for a generic world on which no assumptions are made, i.e. on no assumptions.4.2.2 \No Assumptions"-judgementIn Fig.5 we give the signature �Na(K) and its extensions for the systems K4, KT, . . .Given � � � with FV(�) � X , we de�ne the LF context T (�) as follows:T (�) def= � hi if � � ;T (�0); v' : (T "X(')) if � � �0; ' and v' fresh for T (�0)The adequacy theorem relies on two technical lemmata (the second is in Sec.A.2.4):Lemma 4.3 8t; p canonical forms: �X `�Na(K) p:(T t)) 9n:�X `�Na(K) n:(Na p t).9

� Judgements T : o! Type; Na :Y':o T'! Type;� Axioms and RulesA1: Y'; :o(T ("X(A1';)) ; with FV(';) � X:Similarly for A2'; ;# ; A3'; ; K'; :MP : Y'; :o (T (� '))! (T ')! (T); NEC:Y':o Yd:(T ') (Na ' d)! (T 2')NaA1 : Y'; :o(Na "X(A1';) (A1 ')); with FV(';) � X: Similarly for A2'; ;# ; A3'; ; K'; :NaNEC:Y':o Yd:(T') Yn:(Na ' d)(Na 2' (NEC ' d n))NaMP : Y'; :o Yd1:(T ') Yd2:(T (�'))(Na ' d1)! (Na (� ')d2)! (Na (MP ' d2 d1));L:Y':o(T "X(L')) NaL:Y':o(Na "X(L')(L ')) ; with FV(') � X:Similarly for T'; 4'; 5':Figure 5: �Na(K) and its extensions for K4,. . . .Following the steps of the proof of Lemma 4.3, it is easy to de�ne a function � whichmaps each canonical form p, such that �X `�Na(K) p : (T t) to the corresponding proofterm n such that �X `�Na(K) n : (Na p t). Then we can de�ne the encoding function for�Na(K) as follows:"�Na(K)X;� (') def= v' ; if ' 2 �"�Na(K)X;� (A1';) def= A1 "X(') "X() ; similarly for A2'; ;# ; A3'; ;K'; "�Na(K)X;� (Nec'(�)) def= NEC "X(')"�Na(K)X;; (�) ��"�Na(K)X;; (�)�"�Na(K)X;� (MP'; (�; �0)) def= MP "X(') "X() "�Na(K)X;� (�) "�Na(K)X;� (�0)Theorem 4.4 The function "�Na(K)X;� is a compositional bijection between valid proofs �,such that (X;�) j=K � : '; and canonical terms p; such that �X ; T (�) `�Na(K) p :(T "X(')):4.2.3 Two-judgements systemsWe next describe a method in which the two consequence relations, validity and truth, arehandled together, in one comprehensive system. The method is rather general, and can beused for every Hilbert-type system in which the rules are divided into rules of derivationand rules of proof.We start with the following observation. The basic concept of a proof of a formula Ain a Hilbert-type system H is that of a labelled tree. The labels are formul� of H, and thefollowing condition should be satis�ed:� The formula which labels a node which is not a leaf should follow from the formul�which label its successors by one of the rules of H.A formula A follows in H from a set of formul� � i� there is a proof-tree (of the kind justdescribed) in which every leaf is labelled by an axiom of H or by an element of �, and theroot is labelled by A. Now the main property of a pure Hilbert-type system is that for such10

a system the condition above has a local character. By this we mean that all we need toknow in order to check it at a certain node, are the formul� which label that node and itssuccessors. This is not the case, e.g. if one of the rule is a rule of proof. Checking validity ofa node which is justi�ed by such a rule requires (among other things) checking the leaves ofall the branches which pass through that node and see that they all are labelled by axioms.This is a global condition on the subtree of which that node is the root!The solution to this problem is to arrange things so that all the data which is neededfor checking validity of a node would be found at that node and its successors. For rules ofproof this can be achieved rather easily by adding to each node a second label. This secondlabel is either the word valid or the word true. O�cially, therefore, each node is labelledby a pair hA; li, where A is a formula and l 2ftrue,validg. Let us call a tree of such pairs ageneralized H-proof if the following conditions are satis�ed:� As a tree of formul�, the tree is a legitimate proof-tree of the system H0 , which isobtained from H by turning any rule of proof into a rule of derivation.� A node which is not a leaf is labelled valid i� all its successors are so labelled.� A node which is derived by a rule of proof of H should be labelled valid (hence soshould also be the case for every node in the subtree which is generated by it).� A leaf which is labelled by an axiom of H is labelled valid.It is a straightforward task now to prove the followingLemma 4.5 The erasing of the second label is a compositional bijection between:1. proofs in H0 and generalized H-proofs, in which all nodes are labelled valid.2. (ordinary) proofs in H and generalized H-proofs, in which all leaves which are notlabelled by axioms are labelled true.It is obvious, therefore, that generalized H-proofs subsume ordinary proofs in both H andH0 . On the other hand they behave nicely from the LF point of view, and so can easily berepresented. One possibility is to view generalized H-proofs as ordinary proofs of a pureHilbert-type system of signed formul� (where the signs are true and valid). An equivalentapproach which is perhaps more intuitive is to introduce two judgements, \T" (for \truth")and \V " (for \validity"). The corresponding obvious representation in the case of the modallogics treated above is given in �gure 6.Theorem 4.6 There is a compositional bijection between generalized H-proofs (where H =K;K4, etc.) of h'1; l1i; : : : ; h'n; lni `H h ; li and terms t such that �X ; V (�); T (�) `�2j (H)t : (J "X()), where � = f'i j li = validg, � = f'i j li = trueg, and J = n T if l = trueV otherwise.Corollary 4.7 Suppose f'1; : : : ; 'n; g � �X .1. There is a compositional bijection between proofs in H0 (where H = K;K4, etc.) of'1 : : : 'n `H and terms t such that �X ; V (f'1; : : : ; 'ng) `�2j(H) t : (V "X()).2. There is a compositional bijection between proofs in H (where H = K;K4, etc.) of'1 : : : 'n `H and terms t such that �X ; T (f'1; : : : ; 'ng) `�2j (H) t : (J), where Jis V if n = 0, T otherwise.33J can, in fact be V even in case n 6= 0, provided no 'i is used in the proof.11

� Judgments T; V : o! Type;� Axioms and RulesA1 : Y'; :o(V "X(A1';)); with FV(';) � X . Similarly for A2'; ;# ; A3'; ;K'; :MPT;T :Y'; :o(T (� '))! (T ')! (T); MPV;V :Y'; :o(V (� '))! (V ')! (V);MPT;V :Y'; :o(T (� '))! (V ')! (T); MPV;T :Y'; :o(V (� '))! (T ')! (T);NEC :Y':o(V ')! (V (2'))L:Y':o(V "X(L')) ; with FV(') � X:Similarly for T'; 4'; 5':Figure 6: �2j(K) and its extensions for KL, . . .The last corollary is nice, but it is obvious that generalized H-proofs de�ne, in fact,something which is stronger than both H and H0 . What naturally corresponds to them isa sort of a triple consequence relation, so that �; � `H ' i� there is a generalized H-proofin which the root is labelled by ', while every leaf is either labelled by an axiom, or byan element of � and valid, or by an element of � and true. This is the case, it should beemphasized, for any Hilbert-type system of the kind we treat here. In the case of modallogics, however, this triple consequence relation has a clear semantic interpretation (and hasalready been used, e.g., in [5], where it is denoted like this: � j=H � �! '):�; � `H '() 8M 2M:8s 2M:(j=M � ^ s j=M �)) s j=M 'It is clear that what we have constructed is a representation of this triple consequencerelation. It is easy, in fact, to show the following generalization of the previous corollary:Theorem 4.8 There is a compositional bijection between generalized H-proofs of �;� `H 'and canonical terms t such that�X ; V (�); T (�) `�2j(H) t : (J "X('))where J is either T or V (depending on whether � is empty or not), and �[�[f'g � �X .Remark. In our representation the MP rule has been represented by four constants, eachwith a di�erent type. In general, a rule of derivation R with n premises will be representedby 2n constants (while a rule of proof will need just one). We can, in fact, represent anysuch rule by just two (RV;:::;V and RT;:::;T), provided we introduce the following extra globalconstant: C :Y :o(V)! (T)Using this constant we can de�ne, e.g., MPT;V and MPV;T as follows:MPT;V def= �'; : o:�t : (T (� ')):�s : (V '):(MPT;T t (C s))MPV;T def= �'; : o:�t : (T (� ')):�s : (V '):(MPT;T (C t) s)12

� Judgements Ta; V : o! Type;� Rules �-I : Y'; :o((Ta ')! (Ta))! (Ta(� '));2Ta-I :Y':o(Ta ')! (V 2'); �-ETa;Ta : Y'; :o(Ta(� '))! (Ta ')! (Ta);2V -I :Y':o (V ')! (V 2'); �-EV;Ta : Y'; :o(V (� '))! (Ta ')! (V);�-ETa;V :Y'; :o(Ta(� '))! (V ')! (V); �-EV;V :Y'; :o(V (� '))! (V ')! (V);�2-E : Y'; :o(Ta 2(� '))! (Ta 2')! (Ta 2)2-E :Y':o (Ta 2')! (Ta ') 22-I :Y':o(Ta 2')! (Ta 22')23-I :Y':o (Ta 3')! (Ta 23') 2�-E :Y':o(Ta 2(� (2') '))! (Ta 2')Figure 7: �2j(NK0) and its extensions for NK4',. . .Similar treatment can be given to any rule of derivation. This approach has the advantagethat we can require J (in Corollary 4.7 and Theorem 4.8) to be simply T , which is ratherintuitive. The disadvantage is that we lose the bijection between proofs and terms: there issome amount of freedom concerning where to apply C, and so more than one term corre-sponds to a given proof. This can be remedied, e.g., by requiring that in canonical terms Cwill be applied as late as possible.5 Encodings of Natural Deduction-style systemsThoroughout this section, we shall encode only the \minimal" fragment of the modal logics.It should be straightforward to extend the signatures to the full systems.5.1 Systems for validityWe use an extension of the two-judgements technique seen above. In Fig.7 we give thesignature �2j(NK0) and its extension for systems NK4', NKT',Given � � � with FV(�) � X , we de�ne the LF context Ta(�) as follows:Ta(�) def= � hi if � � ;Ta(�0); v' : (Ta "X(')) if � � �0; ' and v' fresh for Ta(�0)Theorem 5.1 For X � �a, � � �X , ' 2 �X :� There exists a compositional bijection between proofs �, such that (X;�) j=NK0 � : ',and canonical terms p, such that �X ; Ta(�) `�2j(NK)0 p : (Ta "X(')).� There exists a compositional bijection between proofs �, such that (X;�) jj=NK0 � : ',and canonical terms p, such that �X ; Ta(�) `�2j(NK)0 p : (V "X(')).
13

Special system for NS4. We can get an alternative Natural Deduction-style systemNS4' for NKT4', closer in spirit to Prawitz' system for S4 [18], by replacing �2-E and22-I by the rule �2-I �;2' `̀ � `̀ 2' � The resulting system is NS40 def= NC + �2-I + 2-E. In this system, �2 and 22-I arederivable on the level of `̀ , not `.The encoding of system NS4' is straightforward, and we get a compositional bijection.This is an improvement of the encoding used in [2, Section 4.2].One can get an analogue of Prawitz' second system for S4 by using the rule�EM -I �; ' `̀ � `̀ 2' � ' is essentially-modalThe side condition can be handled, like in [2], by introducing a special judgement, EM :o! Type, which corresponds to the property of being \essentially modal".5.2 Systems for truthWe present two general solutions for handling the necessitation rule in the classical systemspresented in Section 1.4: the �rst is based on world parameters, the second makes use of a\closed assumption"-judgement. These solutions extend the corresponding ones introducedfor the Hilbert-style case. In Section 5.2.5 we sketch also yet another general solution whichmakes use of three judgements on formul�. Strictly speaking, this is an encoding of novelmultiple CR systems for the truth CR of Modal Logics.For the special system NS4 introduced by Prawitz [18], we consider two more encodings.These adopt an auxiliary judgement on proofs for enforcing Prawitz's conditions (\boxedassumptions" and \boxed-fringe", respectively). Also in this section, we restrict ourselvesto the \minimal" fragment of modal logic.5.2.1 World parametersIn Fig.8 we give the signature �w(NK) and its extensions for the other systems (NK4, . . .).The encoding function "�w(NK)X;�;! is de�ned on the structure of proofs of NK: given a proof� : � `NK ', "�w(NK)X;�;! (�) is the proof term corresponding to �."�w(NK)X;�;! (') def= v' ; if ' 2 �"�w(NK)X;�;! (20-I'(�0)) def= 2-I "X(') (�!0 : U:"�w(NK)X;;;!0 (�0)) !"�w(NK)X;�;! (�-I' (�0)) def= �-I "X(') "X() !(�v' : (T!"X(')):"�w(NK)X;(�;');!(�0))"�w(NK)X;�;! (�-E' (�0; �00)) def= �-E "X(') "X() ! "�w(NK)X;�;! (�0) "�w(NK)X;�;! (�00)"�w(NK)X;�;! (�2-E' (�0; �00)) def= �2-E "X(') "X() ! "�w(NK)X;�;! (�0) "�w(NK)X;�;! (�00)Theorem 5.2 The function "�w(NK)X;�;! is a compositional bijection between proofs �, such that(X;�) j=NK � : '; and canonical terms t; such that �X ; !(�) `�w(NK) t : (T ! "X(')):
14

� Syntactic Categories U : Type;� Judgements T : U ! o! Type;� Axioms and Rules�-I : Y'; :o;!:U((T ! ')! (T !))! (T!(� '));�-E : Y'; :o;!:U(T !(� '))! (T ! ')! (T !);�2-E : Y'; :o;!:U(T ! 2(� '))! (T ! 2')! (T!2);20-I :Y':o Y!:U(T ! ')!!Y!:U(T ! (2'))
2-E : Y':o;!:U(T ! 2')! (T ! ')22-I : Y':o;!:U(T ! 2')! (T ! 22')23-I : Y':o;!:U(T ! 3')! (T ! 23')2�-E : Y':o;!:U(T ! 2(� (2') '))! (T ! 2')Figure 8: �w(NK) and its extensions for NK4,. . .5.2.2 \Closed Assumptions"-judgementIn Fig.9 we give the signature �Cl(NK) and its extensions for the other truth systems (NK4,NKT, . . .). Notice that there is a rule for establishing the \closed assumption"-judgementcorresponding to each proof constructor, i.e. for each rule in NK.The existence and de�nition of the encoding function relies upon two technical lemmata:Lemma 5.3 8p canonical form, if �X ;� `�Cl(NK) p : (T t) then 9c:�X ;�;�p(�) `�Cl(NK)c : (Cl t p), where �p(�) def= fc:(Cl t x) j x 2 FV(p) ^ (x:(T t)) 2 �g.Lemma 5.3 de�nes naturally a function from canonical proof forms p : (T t) to canonicalforms of type (Cl t p), in the same environment expanded with the \closed assumptions"for the free variables of p. Let us denote such function by �.Lemma 5.4 8c canonical form, if �X ;�;� `�Cl(NK) c:(Cl t p) then �X ;�0;� `�Cl(NK)c:(Cl t p), where � contains all and only the Cl assertions, and �0 = fx:(T t)j(Cl t x) 2=(�)g.We can now de�ne the encoding function "�Cl(NK)X;� , which relies on the � abovementioned."�Cl(NK)X;� (') def= v' ; if ' 2 �"�Cl(NK)X;� (�-I'; (�)) def= �-I "X(') "X() (�v':(T "X(')):"�Cl(NK)X;(�;') (�))"�Cl(NK)X;� (�-E'; (�0; �00)) def= �-E "X(') "X() "�Cl(NK)X;� (�0) "�Cl(NK)X;� (�00)"�Cl(NK)X;� (�2-E'; (�0; �00)) def= �2-E "X(') "X() "�Cl(NK)X;� (�0) "�Cl(NK)X;� (�00)"�Cl(NK)X;� (20-I'(�)) def= 20-I "X(') "�Cl(NK)X;; (�) � �"�Cl(NK)X;; (�)�Theorem 5.5 The function "�Cl(NK)X;� is a compositional bijection between proofs �, suchthat (X;�) j=NK �:', and canonical terms t, such that �X ; T (�) `�Cl(NK) t:(T "X(')).5.2.3 \Boxed Assumptions"-judgementIn Fig.10 we give the signature �2(NS4), which adopts a special technique for implementingPrawitz' system NS4 [18]. 15

� Judgements T : o! Type; Cl :Y':o(T ')! Type;� Axioms and Rules �2-E : Y'; :o(T 2(� '))! (T 2')! (T 2);�-I : Y'; :o((T ')! (T))! (T (� ')); �-E : Y'; :o(T (� '))! (T ')! (T);20-I : Y':o Yd:(T ')(Cl ' d)! (T (2')); Cl20-I :Y':o Yd1:(T ') Yc1:(Cl ' d1)(Cl (2') (20-I ' d1 c1))Cl�-I : Y'; :o Yd:(T ')!(T)0@ Yx:(T ')(Cl ' x)! (Cl dx)1A! (Cl (�-I ' d));Cl�-E : Y'; :o Yd1:(T (� ')) Yd2:(T ')(Cl ' d2)! (Cl (� ') d1)! (Cl (�-E ' d1 d2));Cl�2-E :Y'; :o Yd1:(T 2(�')) Yd2:(T 2')(Cl 2(� ') d1)! (Cl 2' d2)! (Cl 2 (�2-E ' d1 d2))2-E :Y':o(T 2')! (T '); Cl2-E :Y':o Yd:(T 2')(Cl 2' d)! (Cl ' (2-E ' d)); : : : ; : : : ;Figure 9: �Cl(NK) and its extensions for NK4,Given � � � with FV(�) � X , we de�ne the LF context 2(�) as follows:2(�) def= 8><>: hi if � � ;2(�0); v' : (T"X(')) if � � �0; ', ' is not boxed and v' fresh for 2(�0)2(�0); v' : (T"X(')); if � � �0; ', ' is boxed and v'; vb' fresh for 2(�0)vb' : (Bx"X(')v')The long proof of adequacy relies upon some very technical lemmata. We report hereonly those needed for de�ning the encoding function; the others are in Section A.3.8. Forsake of simplicity, we adopt the following de�nition: for p term and � context, we de�neC(p;�) def= for all v 2 FV(p); if (v :(T "X())) 2 � then (vb :(Bx "X() v)) 2 �Lemma 5.6 Given a canonical term p such that �X ; 2(�) `�2(NS4) p : (T t), if C(p; 2(�))holds then there is a canonical term b such that �X ; 2(�) `�2(NS4) b : (Bx t p):A consequence of this lemma is the existence of a function �� which maps proof termsp whose free variables are \boxed," to proofs b of (Bx ' p); this \rei�es" the fact that prepresents a proof which depends only on boxed assumptions. This function is inductivelyde�ned as follows.��(v') def= vb' ; if ' 2 � and ' boxed��(�-I t t0(�v1:(T t):p)) def= (Bx�-I t t0 (�v1:(T t):p)(�v1:(T t)�vb1:(Bx t v1):��;�X(t)(p)))��(�-E t t0 p1 p2) def= (Bx�-E t t0 p1 p2 ��(p1) ��(p2))��(2-I t p b) def= (Bx2-I t p b)��(2-E t p) def= (Bx2-E t p ��(p))��(�2-I t t0 p2) def= (Bx�2-I t t0 p2(�v1:(T t)�v2:(Bx t v1):��;�X (A)(p)))where p def= �v1:(T t)�v2:(Bx t v1):p 16

� Judgements T : o! Type; Bx :Y':o(T')! Type;� Axioms and Rules �2-I : Y'; :o0@ Yd:(T 2')(Bx 2' d)! (T)1A! (T (� 2'));�-I : Y'; :o((T ')! (T))! (T (� ')); �-E : Y'; :o(T (� '))! (T ')! (T);2-I :Y':o Yd:(T ')(Bx ' d)! (T (2')); 2-E :Y':o (T (2'))! (T ');Bx�2-I : Y'; :o Yd:(Qa:(T 2')(Bx 2' a)!(T))0@ Ya:(T2') Yb:(Bx 2' a)(Bx (d a b))1A! (Bx(� 2')(�2-I ' d));Bx�-I : Y'; :o Yd:(T ')!(T)0@ Ya:(T ')(Bx ' a)! (Bx (da))1A! (Bx(� ')(�-I ' d));Bx�-E : Y'; :o Yd1:(T (� ')) Yd2:(T ')(Bx(� ') d1)! (Bx ' d2)! (Bx (�-E ' d1 d2));Bx2-I :Y':o Yd:(T') Yb:(Bx' d)(Bx2'(2-I' d b)); Bx2-E :Y':o Yd:(T 2')(Bx 2' d)! (Bx ' (2-E' d))Figure 10: �2(NS4).Lemma 5.7 8X;�; ', if (X;�) j=NS4 � : ' then there exists a canonical form p such that�X ; 2(�) `�2(NS4) p : (T "X(')).A consequence of this lemma is the existence of the function "�2(NS4)X;� , which maps proofsof NS4 to canonical proof terms. This function is inductively de�ned as follows."�2(NS4)X;� (') def= v' ; if ' 2 �"�2(NS4)X;� (�-I' (�0)) def= 8><>: (�2-I "X(') "X()(�v':(T"X('))�vb':(Bx"X (')v'):"�2(NS4)X;�;' (�0))) if ' boxed(�-I "X(') "X() (�v':(T"X(')):"�2(NS4)X;�;' (�0))) if ' : boxed"�2(NS4)X;� (�-E'; (�0; �00)) def= (�-E "X(') "X() "�2(NS4)X;� (�00) "�2(NS4)X;� (�0))"�2(NS4)X;� (2-I'(�0)) def= (2-I "X(') "X;�(�0) ��("�2(NS4)X;� (�0)))"�2(NS4)X;� (2-E'(�0)) def= (2-E "X(') "�2(NS4)X;� (�0))Theorem 5.8 The function "�2(NS4)X;� is a compositional bijection between proofs �, suchthat (X;�) j=NS4 � : ', and canonical terms t, such that �X ; 2(�) `�2(NS4) t : (T "X(')):In this signature, besides a rule for establishing the \boxed assumption"-judgement cor-responding to each rule in NS4, there is also an extra rule, namely �2-I. This subtle rule isnecessary in order to discharge \boxed assumption"-judgements: see the following example.Example 5.1 We show the derivation of axiom 4 : 2' � 22', both in NS4 and in LF17

� Judgements T : o! Type; BF :Y':o (T ')! Type;� Axioms and Rules �2-I : Y'; :o0@ Yd:(T 2')(BF 2' d)! (T)1A! (T (� 2'));�-I : Y'; :o((T ')! (T))! (T (� ')); �-E : Y'; :o(T (� '))! (T ')! (T);2-I :Y':o Yd:(T ')(BF ' d)! (T (2')); 2-E :Y':o(T (2'))! (T ');BF�2-I : Y'; :o Yd:Qa:(T 2')(BF 2' a)!(T)0@ Ya:(T2') Yb:(BF 2' a)(BF (d a b))1A! (BF (� 2')(�2-I ' d));BF�-I : Y'; :o Yd:(T ')!(T)0@ Ya:(T ')(BF ' a)! (BF (d a))1A! (BF (� ') (�-I ' d));BF�-E : Y'; :o Yd1:(T (� ')) Yd2:(T ')(BF (� ') d1)! (BF ' d2)! (BF (�-E ' d1 d2));BF 0�-E : Y'; :o Yd1:(T (� ' 2)) Yd2:(T ')(BF 2 (�-E ' 2 d1 d2));BF2-I :Y':o Yd:(T') Yb:(BF' d)(BF 2' (2-I' d b)); BF2-E :Y':o Yd:(T 2')(BF ' (2-E ' d))Figure 11: �Fr(NS4).(for typographical reasons, we omit the function "X).
2' ` 2'2' ` 22'2-I` 2' � 22' �-I

` �X ; 2(2')z }| {v2' : (T (2')); vb2' : (Bx (2')v2')�X ; (2') ` (2-I (2') v2' vb2')| {z }d1 : (T (22'))app(2-I)�X ` (�v2' : (T (2'))�vb2' : (Bx (2') v2'):d1)| {z }d2 :(Qv2':(T (2'))Qvb2':(Bx (2') v2')(T (22'))) 2� abs�X ` (�2-I ' (22')d2) : (T (2' � 22')) app(�2-I)5.2.4 \Boxed Fringe"-judgementFor the sake of completeness we sketch here how to encode Prawitz's third version of systemNS4 [18]. The signature �Fr(NS4) appears in Fig.11.The judgement BF : Q':o(T ') ! Type holds only on proofs with a fringe of boxedformul� (in the minimal fragment of modal logic, boxed formul� are all the essentiallymodal formul�). In the system there are rules for establishing the \boxed fringe" judgementcorresponding to each rule in NS4. Additional rules for BF can be induced by eliminationrules whenever the inferred formula is boxed (and hence belongs to the fringe). This is thecase, e.g., of �-E.
18

�2j(NK0) + � Judgements Ta; V; T : o! Type;� Axioms and Rules C :Y':o(V ')! (T ')�T -I : Y'; :o((T ')! (T))! (T (� ')); �T -E : Y'; :o(T (� '))! (T ')! (T);. . . similarly for negation and �.2-E :Y':o (Ta 2')! (Ta ') 22-I :Y':o(Ta 2')! (Ta 22')23-I :Y':o (Ta 3')! (Ta 23') 2�-E :Y':o(Ta 2(� (2') '))! (Ta 2')Figure 12: �3j(NK00) and its extensions for NK4",. . . .5.2.5 Three-judgementsWe can introduce ND-style systems for \truth" based on the multiple CR ND-style systemNK' for validity. We need only to add a third consequence relation, namely `̀̀ , with exactlythe same rules as `, and in addition the rule Embed'. The whole system is called NK":NK00 def= NK0 + �T -I �; ' `̀̀ � `̀̀ ' � �T -E � `̀̀ ' � � `̀̀ '� `̀̀ RaaT �;:' `̀̀ �� `̀̀ '�; ' `̀̀ ' �T -I � `̀̀ ' � `̀̀ :'� `̀̀ � �T -E � `̀̀ �� `̀̀ ' Embed' `̀ '`̀̀ 'Soundness of NK" is obvious; completeness follows from the fact that '1; : : : ; 'n j= 'i� '1 � : : : � 'n � ' is valid.In order to encode this system we add a judgement T : o ! Type, whose constructorsare like those of Ta plus a constant C which represents the Embed' rule (Fig.12). We canprove thenTheorem 5.9 There is a compositional bijection between proofs � : � `NK00 ' with FV(�) �X and canonical terms t such that �X ; T (�) `�3j(NK00) t : (T "X(')):Again, similarly to the case of two-judgement system for K (see Section 4.2.3), theresulting system is more powerful than this result points out, since it can deal with bothtruth and tautology notions, at the same time. Let de�ne the triple semantic consequencerelation for K as follows:�; � j= '() 8M 2M:8s 2M:(j=M � ^ s j=M �)) s j=M 'This semantic consequence relation combines tautuologies and truth CR, just as is done byNK" in a syntactical manner:Theorem 5.10 For X � �a, �;� � �X , ' 2 �X , the following are equivalent:1. 9t canonical term such that �X ; Ta(�); T (�) `�2(NK) t : (T "X('));2. �;� j= '. 19

6 Cross soundnessAs we have seen, di�erent techniques can be used for encoding the same system; for in-stance, K can be encoded by using either \world parameters" (�w(K)) or \no assumption"-judgements (�Na(K)), or \two-judgments" (�2j(K)). Morally, these techniques are closelyrelated: for instance, (the encoding of) a proof has no assumptions (in �Cl(NK)) i� it canbe carried out from no assumptions (in �w(NK)).Theorem 6.1 (Cross-soundness for K) For X � �a, � � �X , ' 2 �X , the followingare equivalent:1. 9t:�X ; !(;) `�w(K) t : (T ! ')2. 9t0; n:�X ; T (�) `�Na(K) n : (Na ' t0)3. 9v:�X ; T (�) `�2j (K) v : (V ')Theorem 6.2 (Cross-soundness for NK) For X � �a, � � �X , ' 2 �X , the followingare equivalent:1. 9t:�X ; !(;) `�w(NK) t : (T ! ')2. 9t0; n:�X ; T (�) `�Cl(NK) n : (Cl ' t0)3. 9v:�X ; Ta(�) `�3j (NK) v : (V ')These results can be seen as \internal proofs" of adequacy of the encodings. Similar con-nections can be formulated with respect to other techniques appearing in this paper. Thesemetatheoretic results could be proved formally within some Logical Framework, e.g. Coq.7 Final RemarksApplications. Modalities are a common feature of most program logics [6, 8, 19], hence,the techniques we have presented here can be fruitfully employed in developing proof as-sistants for program logics. The \world parameter" technique was used for encoding aND-style system for Dynamic Logic [9]. Applications of the other techniques presented inthis papers deserve further investigations.Related Work. A purely semantical approach to the implementation of Modal Logics,alternative to ours, has been studied in [3]. There, the Kripke semantics is built-in thecalculus: worlds are rei�ed, and a �rst order proposition R over worlds is introduced inorder to represent the accessibility relation. Introduction of modalities is then reduced toa quanti�cation over accessible worlds; di�erent axiomatizations of R are used to representthe various logics. Although such systems may be easy to implement and use, they forcethe user to deal directly with speci�c semantic notions.References[1] A. Avron. Simple consequence relations. Information and Computation, 92:105{139, Jan. 1991.[2] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using Typed Lambda Calculus to implementformal systems on a machine. Journal of Automated Reasoning, 9:309{354, 1992.20

[3] D. Basin, S. Matthews, and L. Vigan�o. A modular presentation of modal logics in a logicalframework. To Appear.[4] T. Coquand and G. Huet. The calculus of constructions. Information and Control, 76:95{120,1988.[5] M. Fitting. Proof Methods for Modal and Intuitionistic Logic, volume 109 of Synthese Library.Reidel, 1983.[6] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook of PhilosophicalLogic, volume II, pages 497{604. Reidel, 1984.[7] R. Harper, F. Honsell, and G. Plotkin. A framework for de�ning logics. J. ACM, 40(1):143{184,Jan. 1993.[8] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. Journal ofACM, 32:137{162, 1985.[9] F. Honsell and M. Miculan. A natural deduction approach to dynamic logics. In Proc. TY-PES'95, Lecture Notes in Computer Science, Turin, 1996. Springer-Verlag.[10] G. E. Hughes and M. J. Cresswell. A companion to Modal Logic. Methuen, London, 1984.[11] INRIA, Rocquencourt. The Coq Proof Assistant Reference Manual - Version 5.10, July 1995.[12] Z. Luo, R. Pollack, and P. Taylor. How to use LEGO (A Preliminary User's Manual). De-partment of Computer Science, University of Edinburgh, Oct. 1989.[13] P. Martin-L�of. On the meaning of the logical constants and the justi�cations of the logiclaws. Technical Report 2, Scuola di Specializzazione in Logica Matematica, Dipartimento diMatematica, Universit�a di Siena, 1985.[14] S. Martini and A. Masini. A computational interpretation of modal proofs. In H. Wansing,editor, Proof theory of Modal Logics. Kluwer, 1994.[15] A. Masini. 2-sequent calculus: A proof theory of modalities. Annals of Pure and Applied Logic,58:229{246, 1992.[16] B. Nordstr�om, K. Petersson, and J. M. Smith. Programming in Martin-L�of's Type Theory:An Introduction, volume 7 of International Series of Monograph on Computer Science. OxfordUniversity Press, 1990.[17] F. Pfenning and H.-C. Wong. On a modal �-calculus for S4. In Proc. MFPS'95, 1995.[18] D. Prawitz. Natural Deduction. Almqvist & Wiksell, Stockholm, 1965.[19] C. Stirling. Modal and Temporal Logics. In S. Abramsky, D. Gabbay, and T. Maibaum,editors, Handbook of Logic in Computer Science, volume 2, pages 477{563. Oxford UniversityPress, 1992.[20] J. van Benthem. Modal logic and classical logic, volume 3 of Monographs in philosophical logicand formal linguistics. Bibliopolis, Napoli, 1983.[21] H. Wansing. Sequent calculi for normal modal propositional logics. Journal of Logic andComputation, 4(2):125{142, Apr. 1994.[22] B. Werner. Une th�eorie des constructions inductives. PhD thesis, Universit�e Paris 7, 1994.A ProofsA.1 Proof of Theorems of Section 3A.1.1 Proof of Theorem 3.1The encoding function "X is clearly injective. It is easy to show by induction on the structureof formul� that "X yields a canonical form of the appropriate type. Surjectivity is established21

by de�ning a decoding map �X that is left-inverse to "X : The decoding �X is de�ned byinduction on the structure of the canonical forms as follows:�X(') def= ' ; if ' 2 dom(�X) �X(:') def= :�X(')�X(2') def= 2�X(') �X(� ') def= �X(') � �X()Such �X is total, for [7, Lemma 2.4.4] and inspection of �(�) and �X :The compositionality property is established by a straightforward induction on the struc-ture of modal formul� (omitted). utA.2 Proofs of Theorems of Section 4A.2.1 Proof of Theorem 4.1It is straightforward to verify by induction on the structure of proofs that, given the hy-pothesis of the theorem, "�(K0)X;� (�) is a canonical term of type (V "X(')) in �(K0) and�X ; V (�). It is a routine matter to show by induction on proofs that "�(K0)X;� is injective. Toestablish surjectivity we exhibit a left-inverse ��(K0)X;� de�ned by induction on the structureof the canonical forms as follows:��(K0)X;� (v') def= '; if v' 2 dom(V (�)):��(K0)X;� (A1 t0 t00) def= A1�X (t0);�X(t00); analogously for A2; A3;K:��(K0)X;� (NEC t p) def= Nec�X (t) ���(K0)X;� (p)���(K0)X;� (MP t t0 p p0) def= MP�X(t);�X (t0) ���(K0)X;� (p); ��(K0)X;� (p0)�This function is clearly total and well-de�ned. It remains to show that ��(K0)X;� �"�(K0)X;� (�)� =� and compositionality of the encoding; this is established by induction on the proofs. utA.2.2 Proof of Theorem 4.2We verify by induction on the structure of proofs that "�w(K)X;�;! (�) is a canonical term of type(T ! "X(')) in �w(K) and �X ; !(�).Base Step. We have two cases. If � is instance of an axiom, say � = A1 ;#, then it isstraightforward to prove that �X ; !(�) `�w(K) "�w(K)X;�;! (A1 ;#): (T ! "X(� (# �))) :The cases of A2; A3;K are similar.Otherwise, ' 2 � is an assumption. Since "�w(K)X;�;! (') = v' 2 !(�), immediately�X ; !(�) `�w(K) p:(T ! "X(')).Inductive Step. By cases on the last rule applied.If � �MP ;'(�0; �00); then �0; �00 are respectively valid proofs of � '; w.r.t. (X;�).By IH, �X ; !(�) `�w(K) "�w(K)X;�;! (�0) : (T ! "X()) and�X ; !(�) `�w(K) "�w(K)X;�;! (�00) : (T ! "X(� ')). Therefore, we have immediately,�X ; !(�) `�w(K) �MP "X() "X(') ! "�w(K)X;�;! (�0) "�w(K)X;�;! (�00)� :(T ! "X(')):Otherwise, � � Nec'(�0); then �0 is a valid proof of ' w.r.t. (X; ;). By IH, �X ; !(;) `�w(K)"�w(K)X;;;! (�0) : (T ! "X(')). 22

By abstracting on ! we have �X `�w(K) ��!0:U:"�w(K)X;;;!0 (�0)� : Y!0:U(T !0 "X(')). Therefore,we have immediately�X ; !(;) `�w(K) �NEC "X(')(�!0:U:"�w(K)X;;;!0 (�0))�!:(T ! 2"X(')):By the above steps, it is easy to show that "�w(K)X;�;! is injective. Surjectivity is establishedby exhibiting a left-inverse ��w(K)X;�;! , de�ned by induction on the structure of the canonicalforms as follows:��w(K)X;�;! (v') def= '; if v' 2 dom(!(�))��w(K)X;�;! (A1 t t0 !) def= A1�X (t);�X(t0); similarly for A2; A3;K��w(K)X;�;! (MP t t0 ! p p0) def= MP�X (t);�X(t0) ���w(K)X;�;! (p); ��w(K)X;�;! (p0)���w(K)X;�;! (NEC t (�!0:U:p) !) def= Nec�X (t) ���w(K)X;;;! (p)�The decoding map ��w(K)X;�;! is total and well-de�ned by the de�nition of canonical formsand inspection of the signature �w(K). By the lemma of characterization, a canonical formp of type (T ! t) must have the shape (�M1 : : :Mk), where k is the arity of �. By inspectionof �w(K) and �X ; !(�) we see that the only choices are � 2 fv'; A1; A2; A3;K;MP;NECg:Base Step. We have two cases. If p � v' : (T ! "X(')) then, taken � = ' we have a validproof of ' w.r.t. (X;�): Otherwise, p 2 fA1; A2; A3;Kg, say t � A1 t0 t00 ! : (T !(� t0(�t00t0)). Then we consider � = A1�X(t0);�X(t00): Similarly in the case p is A2; A3;K:Inductive Step. We have two cases. If p � (MP t0 t00 ! p0 p00):(T ! t00), since p is well-typed, we have that �X ; !(�) `�w(K) p0:(T ! t0) and �X ; !(�) `�w(K) p00:(T ! (�t0 t00)): By IH there are two proofs such that (X;�) j=K ��w(K)X;�;! (p0):�X(t0) and (X;�) j=K��w(K)X;�;! (p00):�X(� t0 t00): Therefore by applying MP we obtain (X;�) j=K �:�X(t00):Otherwise, p � (NEC t0 (�!0 : U:p0)!) : (T ! (2t0)). Since p is well-typed, we havethat �X ; !(�) `�w(K) (�!0:U:p0):Q!0:U (T!0t0). Notice that each canonical term p of type(T w t) has exactly one free variable of type U , namely w. This can be proved by inductionon the structure of p (look at the previous steps). Hence, (�!0:U:p0) has no free variableof type U . We can drop therefore the hypotheses !(�), since if they appear free in pthere should be two free variables of type U in p0 | a contradiction. Hence, �X `�w(K)(�!0:U:p0):Q!0:U (T !0 t0), that is �X ; !0:U `�w(K) p0:(T w0 t0). By IH there is a valid proof(X; ;) j=K ��w(K)X;;;!0 (p0):�X(t0). Hence by applying Nec we obtain (X;�) j=�w(K) �:�X(2t0).It remains to show that ��w(K)X;�;! �"�w(K)X;�;! (�)� = �, and that "�w(K)X;�;! is compositional. Thisis proved by induction on the structure of �, following the steps above. utA.2.3 Proof of Lemma 4.3By lemma of characterization, a canonical form p of type (T t) must have the form �M1 : : :Mk,where k is the arity of �. By inspection of �Na(K) and �X we see that the only choices for� are � 2 fA1; A2; A3;K;MP;NECg:Base Step: p is an instance of an axiom scheme; say p � (A1 t t0); we take n = (NaA1 t t0):The cases of schemata A2; A3;K are similar.Inductive Step. We have two cases.If p � (MP t t0 p0 p00), since p is well-typed we have that �X `�Na(K) p0:(T (� t t0))and �X `�Na(K) p00:(T t). By IH there are n0; n00 such that �X `�Na(K) n0:(Na (�23

t t0) p0) and �X `�Na(K) n00:(Na t p00): Then, �X `�Na(K) (NaMP t t0 p00 p0 n00 n0) :(Na t (MP t t0 p0 p00)).Otherwise, p � (NEC t p0 n); since p is well-typed we have that �X `�Na(K) p0:(T t) and�X `�Na(K) n:(Na t p0). Then �X `�Na(K) (NaNEC t p0 n):(Na 2t (NEC t p0 n)). utA.2.4 Proof of Theorem 4.4It is straightforward to verify by induction on the structure of proofs that "�Na(K)X;� (�) is acanonical term of type (T "X(')) in �Na(K) and �X ; T (�).Base Step. We have two cases. If ' is an axiom instance, say � � A1 ;#, then we takep = "�Na(K)X;� (A1 ;#); it is straightforward to prove that �X ; T (�) `�Na(K) p:(T "X(�(# �))). Similarly in the cases A2; A3;K.Otherwise, ' is an assumption, say � = ' con ' 2 �; then we take p = v' = "�Na(K)X;� (').It is straightforward to prove that �X ; T (�) `�Na(K) p:(T "X(')):Inductive Step. By cases on the last rule applied.If � � MP ;'(�0; �00), then �0; �00 are respectively valid proofs of � '; w.r.t.(X;�). By IH there are two canonical terms such that �X ; T (�) `�Na(K) "�Na(K)X;� (�0) :(T"X(� ')) and �X ; T (�) `�Na(K) "�Na(K)X;� (�00):(T!"X()): Therefore, we have imme-diately, �X ; T (�) `�Na(K) MP "X() "X(') "�Na(K)X;� (�00) "�Na(K)X;� (�0):(T "X(')):Otherwise, � � Nec'(�0); then, we have that �0 is a valid proof of ' w.r.t. (X; ;). Soby IH, �X ; T (;) `�Na(K) "�Na(K)X;; (�0) : (T "X(')). Now, by Lemma 4.3 we obtain thatthere exists a term n such that �X `�Na(K) n : �Na "X(') "�Na(K)X;; (�0)� : Then we have�X ; (�) `�Na(K) �NEC "X(') "�Na(K)X;; (�0) n� : (T 2"X(')).By above, "�Na(K)X;� is injective. Surjectivity is established by exhibiting a left-inverse��Na(K)X;� , de�ned by induction on canonical forms as follows:��Na(K)X;� (v') def= '; if v' 2 dom(T (�)):��Na(K)X;� (A1 t0 t00) def= A1�X (t0);�X (t00); similarly for A2; A3;K:��Na(K)X;� (NEC t p n) def= Nec�X(t) (�(n))��Na(K)X;� (MP t t0 p p0) def= MP�X (t);�X(t0) ���Na(K)X;� (p); ��Na(K)X;� (p0)�The decoding map ��Na(K)X;� is total and well-de�ned follows from the de�nition of canonicalforms and inspection of the signature �Na(K). By lemma of characterization, a canonicalform p of type (T t) must have the form �M1 : : :Mk, where k is the arity of �. By inspection of�Na(K) and �X ; T (�) we see that the only choices are � 2 fv'; A1; A2; A3;K;MP;NECg:Base Step. We have two cases. If ' is an assumption, say p � v':(T ! "X(')), then, taken� = ' we have a valid proof of ' w.r.t. (X;�):Otherwise, p 2 fA1; A2; A3;Kg; say p � (A1 t0 t00):(T (� t0(� t00t0)). Then we take� = A1�X (t0);�X(t00): Similarly in the other cases.Inductive Step. We have two cases.If p � (MP t0 t00 p0 p00):(T ! t00), since p is well-typed, �X ; T (�) `�Na(K) p0:(T (�t0 t00)) and �X ; T (�) `�Na(K) p00:(T t0). By IH there are two proofs such that (X;�) j=K��Na(K)X;� (p0) : �X(� t0 t00) and (X;�) j=K ��Na(K)X;� (p00) : �X(t0). By applying MP we obtain(X;�) j=K �:�X(t00). 24

Otherwise, p � (NEC t0 p0 n) : (T (2t0)); then, since p is well-typed, �X ; T (�) `�Na(K)p0:(T t0) and �X ; T (�) `�Na(K) n:(Na t0 p0). Here we need a technical lemma (LemmaA.1) which relates Na and derivations from the empty set of assumptions; it appears below.So, for this lemma, there is �0 such that (X; ;) j=K �0 : �X(t0). By applying Nec to �0 weobtain (X;�) j=K �:�X(2t0).It remains to show that ��Na(K)X;� �"�Na(K)X;� (�)� = �, and that "�Na(K)X;� is compositional.This is proved by induction on the structure of proofs. utLemma A.1 8n canonical: �X ; T (�) `�Na(K) n : (Na t p)) 9�:(X; ;) j=K � : �X(t).Proof. By lemma of characterization, a canonical form p of type (Na t p) must have theform �M1 : : :Mk; where k is the arity of �. By inspection of �Na(K) and �X ; T (�) we seethat the only choices are � 2 fNaA1 ; NaA2 ; NaA3 ; NaK ; NaMP ; NaNECg:Base Step: n is one of NaA1 ; NaA2 ; NaK , say n = (NaA1 t t0). Then, �X ; T (�) `�Na(K)n:(Na (� t (� t0 t)) (A1 t t0)); hence we take � = A1�X(t);�X (t). The cases of other schemataare similar.Inductive Step. We have two cases.If n � (NaMP t t0 p p0 n0 n00), then since n is well-typed we have that �X ; T (�) `�Na(K)n0 : (Na t p) and �X ; T (�) `�Na(K) n00:(Na (� t t0) p0). By IH (X; ;) j=K �0:�X(t) and(X; ;) j=K �00:�X(� t t0). Then we take � =MP�X (t);�X(t0)(�0; �00) with (X; ;) j=K �:�X (t0):Otherwise, n � (NaNEC t p n0); since n is well-typed we have that �X ; T (�) `�Na(K)n0:(Na t p). By IH, (X; ;) j=K �0:�X(t); then we take � = Nec�X (t)(�0) with (X; ;) j=K�:�X(2t). utA.2.5 Proof of Theorem 4.6Similar to that of Theorem 4.1. utA.3 Proofs of Theorems of Section 5A.3.1 Proof of Theorem 5.1The proof follows the standard methodology of [7]. We exhibit the encoding function, andits inverse, for the ` CR (the case of validity CR is similar). These functions are de�ned byinduction on the proofs in NK0 and on the terms of �2j(NK0) respectively.��2j (NK0)X;� (') def= v' ; if ' 2 ���2j (NK0)X;� (�-I'; (�)) def= �-I "X(') "X() ��2j (NK0)X;(�;') (�)��2j (NK0)X;� (�-E'; (�0; �00)) def= �-ETa;Ta "X(') "X() ��2j (NK0)X;� (�0) ��2j (NK0)X;� (�00)��2j (NK0)X;� (�2-E'; (�0; �00)) def= �2-E "X(') "X() ��2j (NK0)X;� (�0) ��2j (NK0)X;� (�00)��2j (NK0)X;� (v') def= ' ; if v' 2 dom(Ta(�))��2j (NK0)X;� (�-I t t0 p) def= �-I�X (t);�X (t0)(��2j (NK0)X;(�;�X(t))(p))��2j (NK0)X;� (�-ETa;Ta t t0 p p0) def= �-E�X (t);�X(t0)(��2j (NK0)X;� (p); ��2j (NK0)X;� (p0))��2j (NK0)X;� (�2-E t t0 p p0) def= �2-E�X(t);�X (t0)(��2j (NK0)X;� (p); ��2j (NK0)X;� (p0)) ut25

A.3.2 Proof of Theorem 5.2Very similar to Theorem 4.2. We have only to take care of the �-I rule, which envolves adischargement, as a new case of inductive steps.If � � �-I'; (�0), then (X; (�; ')) j=NK �0: . By IH, we have �X ; !(�; ') `�w(NK)"�w(NK)X;(�;');!(�0) : (T ! "X()). By abstracting on v', we obtain�X ; !(�) `�w(NK) (�v':(T ! "X(')):"�w(NK)X;(�;');!(�0)) : Yv':(T ! "X ('))(T ! "X()):By applying the constant �-I, we obtain�X ; !(�) `�w(NK) �-I "X(') "X() ! (�v' : (T ! "X(')):"�w(NK)X;(�;');!(�0)) : (T ! "X(� ')):The rest of the proof follows closely that of Theorem 4.2. We show just the left-inverse:��w(NK)X;�;! (v') def= ' ; if v' 2 dom(!(�))��w(NK)X;�;! (�-I t t0 !(�p : (T ! t):p0)) def= �-I�X (t);�X(t0) ���w(NK)X;(�;�X(t));!(p0)���w(NK)X;�;! (�2-E t t0 ! p p0) def= �2-E�X(t);�X (t0) ���w(NK)X;�;! (p); ��w(NK)X;�;! (p0)���w(NK)X;�;! (�-E t t0 ! p p0) def= �-E�X (t);�X(t0) ���w(NK)X;�;! (p); ��w(NK)X;�;! (p0)���w(NK)X;�;! (20-I t (�!0:U:p) !) def= 20-I�X(t) ���w(NK)X;;;! (p)� utA.3.3 Proof of Lemma 5.3By lemma of characterization, a canonical form p of type (T t) must be �M1 : : :Mk; wherek is the arity of �. By inspection of �Cl(NK) and �X ; T (�), we see that the only choicesfor � are � 2 fv';�-I;�-E;20-I;�2-E : : :g.Base Step. If p is an assumption of type (p:(T t)) 2 � then we have p 2 FV(p) and hencec:(Cl t p) 2 �p(�).Inductive Step. By cases on the last rule applied. We will see only some signi�cant cases,the other being similar.�p � (�-E t t0 p0 p00): since p is well-typed we have that �X ;� `�Cl(NK) p0:(T (� t t0))and �X ;� `�Cl(NK) p00:(T t): By IH, �X ;�;�p0(�) `�Cl(NK) c0:(Cl (� t t0) p0) and�X ;�;�p00 (�) `�Cl(NK) c00:(Cl t p00). Since �p(�) � �p0(�);�p00 (�), then�X ;�;�p(�) `�Cl(NK) (Cl�-E t t0 p0 p00 c00 c0) : (Cl t0 (�-Et t0 p0 p00)):�p � (�-I t t0 p0): since p is well-typed we have �X ;� `�Cl(NK) p0:(T t)! (T t0): Sincep0 is a canonical form, it must be p0 = �x : (T t):p00, where �X ;�; x:(T t) `�Cl(NK) p00 :(T t0). By IH, �X ;�; x:(T t);�p00(�; x:(T t)) `�Cl(NK) c00:(Cl t0 p00): Now we have that�p00 (�; x:(T t)) � �p00(�); c0:(Cl t x); then by abstracting on c0 and x we obtain�X ;�;�p00(�) `�Cl(NK) (�x:(T t):�c0:(Cl t x):c00) : Yx:(T t)(Cl t x)! (Cl t0 p00):Moreover we have that �p(�) = �p00 (�) because FV(p) = FV(p00) n fxg and x:(T t) 62 �(otherwise �; x:(T t) would be not a valid context). Then, de�ning t1 def= (�x:(T t)�c0:(Cl t x):c00),we have �X ;�;�p(�) `�Cl(NK) t1 : Qx:(T t)(Cl t x) ! (Cl t0 p00). We apply now Cl�-Iobtaining �X ;�;�p(�) `�Cl(NK) (Cl�-I t t0 p0 t1) : (Cl t0 (�-I t t0 p0)).26

�p � (20-I t p0 c0): since p is well-typed we have �X ;� `�Cl(NK) p0 : (T t) and�X ;� `�Cl(NK) c0 : (Cl t p0): Then we apply20-I obtaining �X ;�(�) `�Cl(NK) (Cl20-I t p0 c0) :(Cl (2t)(20-I t p0 c0)); and therefore�X ;�(�);�p(�) `�Cl(NK) (Cl20-I t p0 c0):(Cl (2t) (20-I t p0 c0)):utA.3.4 Proof of Lemma 5.4By lemma of characterization, c of type (Cl t p) is of the form �M1 : : :Mk, where k isthe arity of �. By inspection of �Cl(NK) and �X ; T (�) we see that the only choices are� 2 dom(�) [fCl�-I; Cl�-E; Cl20-I; Cl�2-E : : :g.Base Step: c:(Cl t0 p)) 2 �; then, the claim is trivial.Inductive Step: by cases on the top constructor. We see only some signi�cant cases, theother being similar.�c � (Cl�-I t t0 p t00) : (Cl t0 (�-I t t0 p)): since c is well-typed we have that�X ;�;� `�Cl(NK) p:(T t)! (T t0) and �X ;�;� `�Cl(NK) t00 :Qx:t(Cl t x)! (Cl t0 (p x)).Since t00 is a canonical form then it must be t00 = �x:(T t)�c0:(Cl t x):t000: Then by someintroductions we obtain �X ;�; x:(T t);�; c0:(Cl t x) `�Cl(NK) t000:(Cl t0 (p x)). By the IHwe know �X ;�00;�; c0:(Cl t x) `�Cl(NK) t000:(Cl t0 (p x)); where �00 def= fp:(T t0)j(Cl t0 p) 2=(�; c0:(Cl t x))g = �0[fx:(T t)g:Then, by abstracting on x; c0 we �nd that �X ;�0;� `�Cl(NK)t00 :Qx:(T t)(Cl t x)! (Cl t0 (p x)). Finally, by applying Cl�-I we obtain �X ;�0;� `�Cl(NK)(Cl�-I t t0 p t00):(Cl t0 (�-I t t0 p)):�c � (Cl20-I t p c0) : (Cl 2t (20-I t p c0)): since c is well-typed we have that�X ;�;� `�Cl(NK) p:(T t) and �X ;�;� `�Cl(NK) c0:(Cl t p): By IH we have that�X ;�0;� `�Cl(NK) c0:(Cl t p). Hence, �X ;�0;� `�Cl(NK) p:(T t): Then we apply Cl20-Iobtaining �X ;�0;� `�Cl(NK) (Cl20-I t p c0) : (Cl 2t (20-I t p c0)).�c � (Cl�2-E t t0 p p0 c0 c00): an immediate application of IH on c0; c00. utA.3.5 Proof of Theorem 5.5It is straightforward to verify by induction on the structure of proofs that, given the hypo-thesis of the theorem, "�Cl(NK)X;� (�) is a canonical term of type (T "X(')) in �Cl(NK) and�X ; T (�).Base Step: ' is an assumption, i.e. � = ' 2 �. Then immediately �X ; T (�) `�Cl(NK)v':(T "X(')).Inductive Step. By cases on the last rule applied. We see only some signi�cant cases, theother being similar.�� � �-I'; (�0): then (X; (�; ')) j=NK �0: . By IH we have that�X ; T (�; ') `�Cl(NK) t0:(T "X()). Let t00 def= �v':(T "X(')):t0; then �X ; T (�) `�Cl(NK)t00 :Qv':(T "X ('))(T "X()). By applying �-I we obtain�X ; T (�) `�Cl(NK) (�-I "X(') "X() t00):(T (� "X(') "X())).�� � �-E'; (�0; �00): then (X;�) j=NK �0 : ' � and (X;�) j=NK �00 : '. By IH,�X ; T (�) `�Cl(NK) t0 : (T "X(' �)) and �X ; T (�) `�Cl(NK) t00 : (T "X(')). Thereforeby applying �-E we obtain �X ; T (�) `�Cl(NK) (�-E "X(') "X() t0 t00):(T "X()).�� � 20-I'(�0): then (X; ;) j=NK �0 : '. By IH, �X `�Cl(NK) t1 : (T "X(')), and henceby Lemma 5.3 there is a term ct1 such that �X `�Cl(NK) ct1 :(Cl "X(') t1). Therefore, byapplying 20-I, we obtain �X ; T (�) `�Cl(NK) (20-I "X(') t1 ct1) : (T 2"X(')).By the above steps, it is easy to see that "�Cl(NK)X;� is injective. Surjectivity is estabilishedby exhibiting a left-inverse ��Cl(NK)X;� , de�ned by induction on the structure of the canonical27

forms as follows:��Cl(NK)X;� (v') def= ' ; if v' 2 dom(T (�))��Cl(NK)X;� (20-I t p c) def= 20-I�X (t)(p)��Cl(NK)X;� (�-I t t0 (�p:(T t):p0)) def= �-I�X (t);�X(t0)(��Cl(NK)X;(�;�X(t))(p0))��Cl(NK)X;� (�-E t t0 p p0) def= �-E�X (t);�X(t0)(��Cl(NK)X;� (p); ��Cl(NK)X;� (p0))��Cl(NK)X;� (�2-E t t0 p p0) def= �2-E�X (t);�X(t0)(��Cl(NK)X;� (p); ��Cl(NK)X;� (p0))The ��Cl(NK)X;� is total and well-de�ned for the de�nition of canonical forms and inspection ofthe signature �Cl(NK). The application of 20-I is sound, for the presence of c : (Cl �X(t) p)and the fact that no Cl assumptions are made by the encoding of the context (T (�)).By lemma of characterization, a canonical form p of type (T t) must be �M1 : : :Mk,where k is the arity of �. By inspection of �Cl(NK);�X ; T (�) we see that the only choicesfor � are � 2 fv';20-I;�-I;�-E;�2-E : : :g.Base Step: p = v' 2 T (�), then we take � = '.Inductive Step: we see only some signi�cant cases.�p � 20-I t p0 c: since p is well-typed we have that �X ; T (�) `�Cl(NK) p0 : (T t) and�X ; T (�) `�Cl(NK) c : (Cl t p0). By Lemma 5.4, there is a term c such that �X ; ; `�Cl(NK)c : (Cl t p0); since c is well-typed, �X ; ; `�Cl(NK) p0:(T t). By the IH, we obtain that thereexists �0 such that (X; ;) j=NK �0 : �X(t) and hence we conclude � = 20-I�X (t)(�0).�p � �-I t t0 p0: since p is well-typed, �X ; T (�) `�Cl(NK) p0 : (T t) ! (T t0), then�X ; T (�); a : (T t) `�Cl(NK) p0a : (T t0): By IH there exists �0 such that (X; (�; �X(t))) j=NK�0:�X(t0); and hence we conclude taking � = �-I�X(t);�X (t0)(�0).�p � �-E t t0 p0 p00: since p is well-typed, �X ; T (�) `�Cl(NK) p0 : (T (� t t0)) and�X ; T (�) `�Cl(NK) p00:(T t). By IH there exist �0; �00 such that (X;�) j=NK �0 : �X(� t t0)and (X;�) j=NK �00 : �X(t). We conclude taking � = �-E�X (t);�X(t0)(�0; �00). utA.3.6 Proof of Lemma 5.6By the lemma of characterization, a canonical form p of type (T t) is �M1 : : :Mk, where kis the arity of �, which is � 2 fv';�-I;�-E;2-I;2-E;�2-I : : :g.Base Step: p � v�X (t) : (T t). By de�nition of 2, C(p; 2(�)) holds, then there isthe assumption (vb�X (t):(Bx t v�X (t))) 2 2(�). Hence, �X ; 2(�) `�2(NS4) vb�X(t) :(Bx t v�X(t)).Inductive Step: we see only some signi�cant cases.�p � (2-I t p1 b) : (T 2t). Since p is well-typed, we have �X ; 2(�) `�2(NS4) p1 : (T t)and �X ; 2(�) `�2(NS4) b : (Bx t p1). Hence �X ; 2(�) `�2(NS4) (Bx2-I t p1 b) :(Bx 2t (2-I t p1 b)).�p � (�-I t t0 (�v�X (t) : (T t):p1)) : (T (� t t0)): since p is well-typed, �X ; 2(�) `�2(NS4)(�v�X (t):(T t):p1) : (�v�X (t):(T t)(T t0)), that is �X ; 2(�); v�X (t) : (T t) `�2(NS4) p1 : (T t0).Moreover, chosen a fresh variable vb�X (t); C �p1; ((�); v�X (t):(T t); vb�X(t):(Bx t v�X (t)))�holds. Then, by IH there is b1 such that �X ; 2(�); v�X (t):(T t); vb�X(t):(Bx t v�X (t)) `�2(NS4)b1:(Bx t0 p1); and hence�X ; 2(�) `�2(NS4) t00 : Yv�X (t) :(T t) Yvb�X (t):(Bx t v�X (t))(Bx t0 p1);where t00 def= �v�X (t):(T t)�vb�X (t):(Bx t v�X (t)):b1. Then, �nally�X ; 2(�) `�2(NS4) (Bx�-I t t0 (�v�X (t):(T t):p1)t00) : (Bx (� t t0) (�-I t t0 (�v�X (t):(T t):p1))):28

�p � (�-E t t0p1 p2) : (T t0): since p is well-typed, �X ; 2(�) `�2(NS4) p1 : (T (� t t0))and �X ; 2(�) `�2(NS4) p2 : (T t). Since FV(p1);FV(p2) � FV(p); then both C(p1; 2(�))and C(p2; 2(�)) hold. Then, by IH there exist b1; b2 such that �X ; 2(�) `�2(NS4) b1 :(Bx (� t t0) p1) and �X ; 2(�) `�2(NS4) b2 : (Bx t p2). Therefore �X ; 2(�) `�2(NS4)(Bx�-E t t0 p1 p2 b1 b2) : (Bx t0 (�-E t t0 p1 p2)).�p � (�2-I t t0 (�v�X (2t):(T 2t)�vb�X (2t):(Bx 2t v�X (2t)):p1) : (T (� 2t t0))): since p iswell-typed, �X ; 2(�); v�X (2t):(T 2t); vb�X (2t):(Bx 2t v�X (2t)) `�2(NS4) p1 : (T t0). Moreo-ver C �p1; (2(�); v�X (2t):(T 2t); vb�X(2t):(Bx 2t v�X (2t)))� holds. Then by IH there existsb1 such that �X ; 2(�); v�X (2t):(T 2 t); vb�X (2t):(Bx 2t v�X (2t)) `�2(NS4) b1 : (Bx t0 p1).By abstracting we obtain�X ; 2(�) `�2(NS4) t00 : Yv�X (2t):(T 2t) Yvb�X (2t):(Bx 2t v�X (2t))(Bx t0 p1):where t00 def= �v�X (2t):(T 2t)�vb�X (2t):(Bx 2t v�X (2t)):b1. Then�X ; 2(�) `�2(NS4) (Bx�2-I t t0(�v�X (2t):(T 2t):�vb�X (2t):(Bx 2t v�X (2t)):p1)(t00)) :(Bx (� 2t t0) (�2-I t t0 (�v�X (2t):(T 2t)�vb�X (2t):(Bx 2t v�X (2t)):p1))):utA.3.7 Proof of Lemma 5.7By induction on the structure of �:Base Step: ' is an assumption, i.e. ' 2 �. Then we take p = v' 2 dom(2(�)).Inductive Step: by cases on the last rule applied. We see only some signi�cant cases, theother being similar.�� � �-I �(�0): then (X; (�;)) j=NS4 �0 : � and hence by IH there exists a canonicalterm p such that �X ; 2(�;) `�2(NS4) p : (T "X(�)): Now there are two cases, dependingon whether is boxed or not.� if is boxed, then 2(f g) = v :(T "X()); vb :(Bx "X() v): Then�X ; 2(�) `�2(NS4) t : Yv :(T "X ()) Yvb (Bx "X () v)(T "X(�))where t def= �v :(T "X()):�vb :(Bx "X() v):p. Hence�X ; 2(�) `�2(NS4) (�2-I "X() "X(�) t):(T (� "X(') "X(�)))� otherwise, is not boxed; then 2(f g) = v :(T "X()). Then �X ; 2(�) `�2(NS4)(�v :(T "X()):p) : (�v :(T "X())):(T "X(�)). Hence immediately�X ; 2(�) `�2(NS4) (�-I "X()"X(�)(�v :(T"X()):p)) : (T (� "X() "X(�))):�� � 2-I (�0); then (X;2�) j=NS4 �0 : . By IH there exists a canonical term p1 suchthat �X ; 2(2�) `�2(NS4) p1 : (T "X()). Since C(p1; 2(2�)) always holds, by Lemma5.6 there exists a canonical term b1 such that �X ; 2(2�) `�2(NS4) b1 : (Bx "X() p1).Hence �X ; 2(2�) `�2(NS4) (2-I "X() p1 b1) : (T 2"X()).�� � �-E ;'(�0; �00): then (X;�) j=NS4 �0 : and (X;�) j=NS4 �00 : � '. The-refore by IH there exist two canonical terms p1; p2 such that �X ; 2(2�) `�2(NS4) p1 :(T "X()) and �X ; 2(2�) `�2(NS4) p2 : (T "X(� ')). Then, �X ; 2(2�) `�2(NS4)(�-E "X() "X(') p2 p1) : (T"X(')) ut29

A.3.8 Proof of Theorem 5.8The result follows immediately from Lemma 5.7 and the following two technical Lemma A.2,A.3. For sake of simplicity, we adopt the following de�nitions: for p term and � context, wede�neC 0(p;�) def= for all c 2 FV(p); for all (c:(T t)) 2 �; there exists (b:(Bx t c)) 2 ��p(�) def= f' j (v':(T "X('))) 2 � and v' 2 FV(p)g:Intuitively, the set �p(�) contains the \active assumptions" in the context � for p.Lemma A.2 If there is a canonical term b such that �X ; 2(�) `�2(NS4) b : (Bx ' p) thenC 0(p; �(�)) holds.Proof. By lemma of characterization, a canonical form d of type (Bx ' p) must be�M1 : : :Mk, where k is the arity of �. By inspection of �2(NS4) and �X ; 2(�) we see thatthe only choises are � 2 fvb'; Bx�-I; Bx�-E; Bx2-I; Bx2-E; : : :g.Base Step: b = vb' 2 2(�); then, immediately, v' 2 2(�) and hence C 0(p; 2(�)) holds.Inductive Step: we see some signi�cant cases, the other being similar.�b � (Bx�-I t t0(�v�X (t):(T t):p1)(�v�X (t) : (T t)�vb�X (t):(Bx t v�X (t)):b1)): then�X ; 2(�) `�2(NS4) b : (Bx (� t t0) p). Since b is well-typed we have that�X ; 2(�); v�X (t) : (T t); vb�X (t) : (Bx t v�X (t)) `�2(NS4) b1 : (Bx t0 p1):By IH C 0(p1; (2(�); v�X (t) : (T t); vb�X (t) : (Bx t v�X (t)))). Since p � �-I t t0(�v�X (t) :(T t):p1), we have FV(p) = FV(p1) n fv�X (t)g, therefore C 0(p; (�)) holds.�b � (Bx�-E t t0 p1 p2 b1 b2): then �X ; 2(�) `�2(NS4) b : (Bx t0 p) where p def=(�-E t t0 p1 p2): Since b is well-typed we have that �X ; 2(�) `�2(NS4) b1 : (Bx (� t t0) p1)and �X ; 2(�) `�2(NS4) b2 : (Bx t p2). By IH, C 0(p1; 2(�)) and C 0(p2; 2(�)) hold; thenC 0(p; 2(�)) holds, since FV(p1) [FV(p2) = FV(p).�b � (Bx�2-I t t0 p1 p2), where p1 def= �v�X (2t):(T 2t):�vb�X (2t):(Bx 2t v�X (2t)):p01 andp2 def= �v�X (2t) : (T 2t):�vb�X (2t):(Bx 2t v�X (2t)):b1. Then �X ; 2(�) `�2(NS4) b : (Bx (�2t t0) p) where p � (�2-I t t0 p1). Since b is well-typed we have that�X ; 2(�); v�X (2t):(T 2t); vb�X (2t) : (Bx 2t v�X (t)) `�2(NS4) b1:(Bx t0 p01):By inductive hypothesis, C 0(p01; (2(�); v�X (2t):(T 2t); vb�X (2t) : (Bx 2t v�X (2t)))) holds,and then C 0(p1; 2(�)) holds too. Therefore C 0(p; 2(�)) holds.�b � (Bx2-I t p1 b1): then �X ; 2(�) `�2(NS4) b : (Bx (2t) p) with p � (2-I t p1 b1).Since b is well-typed we have �X ; 2(�) `�2(NS4) b1 : (Bx t p1), and hence by IH C 0(p1; (�))holds. Therefore C 0(p; (�)) holds as well, because the free variables in b1 are typed in (�)only by the Bx judgement. utLemma A.3 Given a canonical term p such that �X ; 2(�) `�2(NS4) p : (T t), there existsa proof � such that (X;�p(2(�))) j=NS4 � : �X(t):Proof. By lemma of characterization, a canonical form p of type (T t) must be �M1 : : :Mk,where k is the arity of �. By inspection of �2(NS4) e �X ; 2(�) we see that the onlychoices for � are � 2 fv';�-I;�-E;2-I;2-E;�2-I : : :g. We proceed by induction.Base Step: p = v�X (t). Then, �X ; 2(�) `�2(NS4) p : (T t) and moreover we have that�p(2(�)) = f�X(t)g. Taken � = �X(t), we obtain (X; �X(t)) j=NS4 � : �X(t).30

Inductive Step. We see only some signi�cant cases.�p � (�-E t t0 p1 p2): then �X ; 2(�) `�2(NS4) p : (T t0). Since p is well-typed we havethat �X ; 2(�) `�2(NS4) p1:(T (� t t0)) and �X ; 2(�) `�2(NS4) p2 : (T t): By IH thereexist �0; �00 such that (X;�p1(2(�))) j=NS4 �0 : �X(� t t0) and (X;�p2(2(�))) j=NS4�00 : �X(t). Then taken � = �-E�X (t);�X(t0)(�0; �00) we obtain that (X;�p(2(�))) j=NS4 � :�X(t0).�p � (�-I t t0(�v�X (t) : (T t):p1)): then, �X ; 2(�) `�2(NS4) p : (T (� t t0)). Since p iswell-typed we have that �X ; 2(�); v�X (t):(T t) `�2(NS4) p1 : (T t0)(i.e. �X ; 2(�; �X (t)) `�2(NS4) p1 : (T t0) because 2(�; �X(t)) � 2(�); v�X (t) : (T t)).By IH there exists �0 such that (X;�p1 (2(�; �X (t)))) j=NS4 �0:�X(t0). Moreover,�p1(2(�; �X (t))) � �p((�)); �X (t) since FV(p1) � FV(p) [fv�X (t)g. Then(X;�p(2(�)); �X (t)) j=NS4 �0:�X(t0); taken � = �-I�X (t);�X(t0)(�0), we �nally obtain(X;�p(2(�))) j=NS4 � : �X(� t t0).�p � (�2-I t t0 (�v�X (t):(T t)�vb�X (t):(Bx t v�X (t)):p1)): then �X ; 2(�) `�2(NS4) p :(T (� t t0)). Since p is well-typed we have�X ; 2(�); v�X (t):(T t); vb�X (t):(Bx t v�X (t)) `�2(NS4) p1 : (T t0):Moreover, since �X(t) is boxed, it is �X ; 2(�; �X(t)) `�2(NS4) p1 : (T t0): By IH there exists�0 such that (X;�p1(2(�; �X(t)))) j=NS4 �0:�X(t0). Now, �p1(2(�; �X (t))) � �p(2(�))[f�X(A)g; since FV(p1) � FV(p) [fv�X(t); vb�X(t)g. Then (X;�p(2(�)); �X (t)) j=NS4 �0 :�X(t0). Taken � = �2-I�X (t);�X(t0)(�0) we obtain that (X;�p(2(�))) j=NS4 � : �X(� t t0):�p � (2-I t p1 b1): then �X ; 2(�) `�2(NS4) p : (T (2t)). Since p is well-typed we have�X ; 2(�) `�2(NS4) b1 : (Bx t p1) and �X ; 2(�) `�2(NS4) p1 : (T t). By IH there exists�0 such that (X;�p1((�))) j=NS4 �0:�X(t). By the lemma A.2, C 0(p1; 2(�)) holds. Now,for each 2 �p1(2(�)), by de�nition of � there is an assumption (v :(T "X())) 2 2(�)such that v 2 FV(p1). Since C 0(p1; 2(�)) holds, we have that there is an assumption(vb : (Bx "X() v)) 2 2(�), but by de�nition of 2, this means that is boxed. Then�p1(2(�)) contains only boxed formul�. Then we can take � = 2-I�X (t)(�0) obtaining(X;�p(2(�))) j=NS4 � : 2�X(t). utFrom Lemma A.3 follows the de�nition of the decoding function ��2(NS4)X;� :��2(NS4)X;� (v') def= ' ; if v' 2 dom(2(�)):��2(NS4)X;� (�-E t t0 p1 p2) def= �-E�X (t);�X(t0)(��2(NS4)X;� (p1); ��2(NS4)X;� (p2))�X;�(�-I t t0(�v�X (t):(T t):p1)) def= �-I�X (t);�X(t0)(��2(NS4)X;�;�X(t)(p1))��2(NS4)X;� (�2-I t t0 (�v�X (t):(T t)�vb�X (t):(Bx t v�X (t)):p1))def= �2-I�X (t);�X(t0)(��2(NS4)X;�;�X(t)(p1))��2(NS4)X;� (2-I t p1 b1)def=2-I�X(t)(��2(NS4)X;� (p1))�X;�(2-E t p1) def= 2-E�X (t)(��2(NS4)X;� (p1))A.3.9 Proof of Theorem 6.1Actually, only some hints:� 1) 2: by induction on t.� 2) 3: by induction on n.� 3) 1: by induction on v. Alternatively, replace everywhere (V) by Qw:U (T w),and (T) by (T w). 31

� 3) 2: it is possible to express V in terms of Na, by means of �-types: (V ') =Px:(T ')(Cl ' x). Hence, proof of (V ') is, a proof of (T ') together with the proofthat it does not depend on any assumptions. This is not possible in LF but in somehigher-order logical framework, such as CIC. utA.3.10 Proof of Theorem 6.2Similar to Theorem 6.1.

32

