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Abstract. We show by way of example how one can provide in a lot of cases
simple modular semantics for rules of inference, so that the semantics of a
system is obtained by joining the semantics of its rules in the most straightfor-
ward way. Our main tool for this task is the use of finite Nmatrices, which are
multi-valued structures in which the value assigned by a valuation to a com-
plex formula can be chosen non-deterministically out of a certain nonempty
set of options. The method is applied in the area of logics with a formal con-
sistency operator (known as LFIs), allowing us to provide in a modular way
effective, finite semantics for thousands of different LFIs.
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1. Introduction

It is well known that every propositional logic satisfying certain minimal conditions
can be characterized semantically using a multi-valued matrix ([18]). However,
there are many important decidable logics whose characteristic matrices necessarily
consist of an infinite number of truth values. In such a case it might be quite
difficult to find any of these matrices, or to use one when it is found. Even in case
a logic does have a finite characteristic matrix it might be difficult to discover
this fact, or to find such a matrix. The deep reason for these difficulties is that
in an ordinary multi-valued semantics the rules and axioms of a system should
be considered as a whole, and there is no method for separately determining the
semantic effects of each rule or axiom alone.

In this paper we show how one can provide in a lot of cases simple modular
semantics for rules of inference, so that the semantics of a system is obtained
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by joining the semantics for its rules in the most straightforward way. Our main
tool for this task is the use of finite Nmatrices ([6, 4]. Nmatrices are multi-valued
structures in which the value assigned by a valuation to a complex formula can be
chosen non-deterministically out of a certain nonempty set of options. The use of
finite structures of this sort has the benefit of preserving all the advantages of logics
with ordinary finite-valued semantics (in particular: decidability and compactness),
while it is applicable to a much larger family of logics. The central idea in using
Nmatrices for providing semantics for rules is that the main effect of a “normal”
rule is to reduce the degree of non-determinism of operations, by forbidding some
options (in non-deterministic computations of truth values) which we could have
had otherwise. This idea was first applied in [7, 6] for a very special (though
extremely important) type of rules (which was called there “canonical rules”).
For that type of rules 2-valued Nmatrices suffice. In this paper we show how by
employing more than two values we can apply the method for a much larger class
of rules. As a case study we have chosen the class of paraconsistent logics knows
as LFIs, described in [11, 12] 1. In what follows we use our method in order to
modularly provide effective, finite semantics for thousands of different LFIs.

2. Preliminaries

2.1. Consequence Relations, Logics, and Pure Rules

Definition 2.1.

1. A Scott consequence relation (scr for short) for a language L is a binary
relation ` between sets of formulas of L that satisfies the following conditions:

s-R strong reflexivity: if Γ ∩∆ 6= ∅ then Γ ` ∆.
M monotonicity: if Γ ` ∆ and Γ ⊆ Γ′, ∆ ⊆ ∆′ then Γ′ ` ∆′.
C Transitivity (cut): if Γ ` ψ,∆ and Γ′, ψ ` ∆′ then Γ,Γ′ ` ∆,∆′.

2. An scr ` for L is structural (or substitution-invariant) if for every uniform
L-substitution σ and every Γ and ∆, if Γ ` ∆ then σ(Γ) ` σ(∆). ` is finitary
if the following condition holds for all Γ,∆ ⊆ W: if Γ ` ∆ then there exist
finite Γ′ ⊆ Γ and ∆′ ⊆ ∆ such that Γ′ ` ∆′. ` is consistent (or non-trivial)
if there exist non-empty Γ and ∆ s.t. Γ 6` ∆. 2

3. A propositional logic is a pair 〈L,`〉, where L is a propositional language
and ` is an scr for L which is structural and consistent. The logic 〈L,`〉 is
finitary if ` is finitary.

Definition 2.2.

1. A pure rule in a propositional language L is any ordered pair 〈Γ,∆〉, where
Γ and ∆ are finite sets of formulas in L (We shall usually denote such a rule
by Γ ` ∆ rather than by 〈Γ,∆〉).

1The name “LFI” stands for “Logics of Formal Inconsistency”. In our opinion it would make
more sense to call them “logics of formal consistency”, since they are obtained from classical logic
by the addition of a new connective ◦, with the intended meaning of ◦ϕ being: ”ϕ is consistent”.
2See [7, 6] for the importance of the consistency property.
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2. Let 〈L,`1〉 be a propositional logic, and let S be a set of rules in a propo-
sitional language L′. By the extension of 〈L,`1〉 by S we mean the logic
〈L∗,`∗〉, where L∗ = L ∪ L′, and `∗ is the least structural scr ` such that
Γ ` ∆ whenever Γ `1 ∆ or 〈Γ,∆〉 ∈ S.

Remark 2.3. Obviously, the extension of 〈L,`1〉 by S is well-defined (i.e. a logic)
only if `∗ is consistent. In all the cases we consider below this will easily be
guaranteed by the semantics we provide (and so we shall not even mention it).

Remark 2.4. It is easy to see that `∗ is the closure under cuts and weakenings
of the set of all pairs 〈σ(Γ), σ(∆)〉, where σ is a uniform substitution in L∗, and
either Γ `1 ∆ or 〈Γ,∆〉 ∈ S. This in turn implies that an extension of a finitary
logic by a set of pure rules is again finitary.

Remark 2.5. Most standard rules used in Gentzen-type systems are equivalent to
finite sets of pure rules in the sense of Definition 2.2. For example, the usual (⊃⇒)
rule of classical logic is equivalent (using cuts, weakenings, and the reflexivity
axioms ϕ ` ϕ) to the pure rule ϕ,ϕ ⊃ ψ ` ψ, while the classical (⇒⊃) rule is
equivalent to the set {ψ ` ϕ ⊃ ψ, ` ϕ,ϕ ⊃ ψ}.

2.2. Non-deterministic Matrices

Our main semantical tool in what follows will be the following generalization from
[7, 6] of the concept of a matrix: 3

Definition 2.6.

1. A non-deterministic matrix (Nmatrix for short) for a propositional language
L is a tuple M = 〈V,D,O〉, where:
(a) V is a non-empty set of truth values.
(b) D is a non-empty proper subset of V.
(c) For every n-ary connective � of L, O includes a corresponding n-ary

function �̃ from Vn to 2V − {∅}.
We say that M is (in)finite if so is V.

2. Let W be the set of formulas of L. A (legal) valuation in an Nmatrix M is
a function v : W → V that satisfies the following condition for every n-ary
connective � of L and ψ1, . . . , ψn ∈ W:

v(�(ψ1, . . . , ψn)) ∈ �̃(v(ψ1), . . . , v(ψn))

3. A valuation v in an Nmatrix M is a model of (or satisfies) a formula ψ in M
(notation: v |=M ψ) if v(ψ) ∈ D. v is a model in M of a set Γ of formulas
(notation: v |=M Γ) if it satisfies every formula in Γ.

4. `M, the consequence relation induced by the Nmatrix M, is defined by:
Γ `M ∆ if for every v such that v |=M Γ, there is ϕ ∈ ∆ such that v |=M ϕ.

3A special two-valued case of this definition was essentially introduced in [9]. Another particular
case of the same idea, using a similar name, was used in [13]. It should also be noted that
Carnielli’s “possible-translations semantics” (see [10]) was originally called “non-deterministic
semantics”, but later the name was changed to the present one.



4 Arnon Avron

5. A logic L = 〈L,`L〉 is sound for an Nmatrix M (where L is the language of
M) if `L ⊆ `M. L is complete for M if `L ⊇ `M. M is characteristic for
L if L is both sound and complete for it (i.e.: if `L = `M). M is weakly-
characteristic for L if for every formula ϕ of L, `L ϕ iff `M ϕ.

Remark 2.7. We shall identify an ordinary (deterministic) matrix with an Nmatrix
whose functions in O always return singletons.

Theorem 2.8 ([6]). A logic which has a finite characteristic Nmatrix is finitary and
decidable.

Definition 2.9. Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nmatrices for
a language L.

1. A reduction of M1 to M2 is a function F : V1 → V2 such that:
(a) For every x ∈ V1, x ∈ D1 iff F (x) ∈ D2 (i.e. D1 = F−1[D2]).
(b) F (y) ∈ �̃M2(F (x1), . . . , F (xn)) for every n-ary connective � of L and

every x1, . . . , xn, y ∈ V1 such that y ∈ �̃M1(x1, . . . , xn) (in other words:
�̃M1(x1, . . . , xn) ⊆ F−1[�̃M2(F (x1), . . . , F (xn))]).

2. A reduction of M1 to M2 is called exact if it has the following properties:
(a) F is onto V2.
(b) For every n-ary connective � of L and every x1, . . . , xn, y ∈ V1:

F (y) ∈ �̃M2(F (x1), . . . , F (xn)) iff y ∈ �̃M1(x1, . . . , xn)

(equivalently: if �̃M1(x1, . . . , xn) = F−1[�̃M2(F (x1), . . . , F (xn))]).
3. M1 is a refinement of M2 if there exists a reduction of M1 to M2. It is an

exact refinement of M2 if this reduction is exact.
Theorem 2.10.

1. If M1 is a refinement of M2 then `M2⊆ `M1 .
2. If M1 is an exact refinement of M2 then `M2= `M1 .

Proof. For the first part, assume that F is a reduction of M1 to M2. We show that
if v is a legal valuation inM1 then v′ = F ◦v (the composition of F and v) is a legal
valuation in M2. Indeed, let � be an n-ary connective of L, and let ϕ1, . . . , ϕn be n
formulas of L. We show that v′(�(ϕ1, . . . , ϕn)) ∈ �̃M2(v

′(ϕ1), . . . , v′(ϕn)). Let y =
v(�(ϕ1, . . . , ϕn)), and xi = v(ϕi) (i = 1, . . . , n). Then y ∈ �̃M1(x1, . . . , xn), and so
F (y) ∈ �̃M2(F (x1), . . . , F (xn)). Since v′(�(ϕ1, . . . , ϕn) = F (y) and v′(ϕi) = F (xi)
(i = 1, . . . , n), our claim follows.

Now assume that Γ `M2 ∆. We show that Γ `M1 ∆ as well. So let v be a
model of Γ in M1. Then v(ϕ) ∈ D1 for every ϕ ∈ Γ. Hence F (v(ϕ)) ∈ D2 for every
ϕ ∈ Γ. Since F ◦v is a legal valuation in M2, this means that F ◦v is a model of Γ
in M2, and so F (v(ψ)) = (F ◦ v)(ψ) ∈ D2 for some ψ ∈ ∆. Since F is a reduction
function, this implies that v(ψ) ∈ D1 for some ψ ∈ ∆, as required.
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For the second part note that if F is an exact reduction of M1 to M2, then
every right inverse G of F 4 can easily be shown to be a reduction of M2 to M1.
Thus by the first part `M1⊆ `M2 too, and so `M2= `M1 . �

Remark 2.11. An important case in which M1 = 〈V1,D1,O1〉 is a refinement of
M2 = 〈V2,D2,O2〉 is when V1 ⊆ V2, D1 = D2 ∩ V1, and �̃M1(~x) ⊆ �̃M2(~x) for
every n-ary connective � of L and every ~x ∈ Vn

1 . It is easy to see that the identity
function on V1 is in this case a reduction of M1 to M2. A refinement of this sort
will be called simple.5

2.3. Positive Classical Logic

Definition 2.12. Let CL+ = 〈L+
cl,`

+
cl〉, where L+

cl = {∧,∨,⊃}, and `+
cl is the

classical consequence relation in the language L+
cl (i.e.: Γ `+

cl ∆ iff every classical
two-valued model of Γ is a model of at least one formula in ∆).

Remark 2.13. For any pure rule in a propositional language containing L+
cl it is

possible to find an equivalent rule of the form ` ϕ (by translating the condition
ϕ1, . . . , ϕn ` ψ1, . . . , ψk into ` ϕ1 ∧ . . . ∧ ϕn ⊃ ψ1 ∨ . . . ∨ ψk in case k > 0, and
to ` ϕ1 ∧ . . . ∧ ϕn ⊃ q, where q is an atomic formula not occurring in ϕ1, . . . , ϕn,
in case k=0. Hence it is possible to construct a sound and complete Hilbert-type
system (with MP as the sole rule of inference) for any extension of CL+ by a finite
set of pure rules. On the other hand any pure rule is equivalent above CL+ to a
finite set of rules in which none of the formulas has either ∨,∧ or ⊃ as its principal
connective. For example, a condition of the form ϕ ∧ ψ,Γ ` ∆ can be replaced by
ϕ,ψ,Γ ` ∆, while Γ ` ∆, ϕ ∧ ψ can be replaced by {Γ ` ∆, ϕ , Γ ` ∆, ψ}.

Definition 2.14. Let M = 〈V,D,O〉 be an Nmatrix for a language which includes
L+

cl. We say that M is suitable for CL+ if the following conditions are satisfied:

• If a ∈ D and b ∈ D then a∧̃b ⊆ D
• If a 6∈ D then a∧̃b ⊆ V −D
• If b 6∈ D then a∧̃b ⊆ V −D

• If a ∈ D then a∨̃b ⊆ D
• If b ∈ D then a∨̃b ⊆ D
• If a 6∈ D and b 6∈ D then a∨̃b ⊆ V −D

• If a 6∈ D then a⊃̃b ⊆ D
• If b ∈ D then a⊃̃b ⊆ D
• If a ∈ D and b 6∈ D then a⊃̃b ⊆ V −D

4By this one means a function G : V2 → V1 such that F (G(x)) = x for every x ∈ V2. Such a
function G exists here, since F is onto V2.
5What we call here “a simple refinement” is what was called “a refinement” in [2]. The present
definition of “a refinement” is a refinement of the definition given to that concept there.
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Theorem 2.15. Suppose M = 〈V,D,O〉 is suitable for CL+. Let M′ = 〈V,D,O′〉,
where O′ is the subset of O which corresponds to the connectives of L+

cl. Then
`+

cl = `M′ . Hence σ(Γ) `M σ(∆) whenever Γ `+
cl ∆ and σ is a substitution in the

language of M.

Proof. Let MCL+ be the classical two-valued matrix, where the two truth values
are t and f . Since M is suitable for CL+, the function

λx ∈ V.
{

t x ∈ D
f x 6∈ D

is a reduction of M′ to MCL+ . Hence `+
cl ⊆ `M′ . That `+

cl = `M′ follows from
the well-known fact that CL+ is a maximal nontrivial logic in its language. �

2.4. Formal Systems with a Formal Consistency Operation

2.4.1. The Basic Logic. Let Lcl = {∧,∨,⊃,¬}. Lcl is the standard language of the
classical propositional logic CL. The latter may be characterized as the extension
of CL+ by the rules ¬ϕ,ϕ ` and ` ¬ϕ,ϕ. The two main ideas of da-Costa’s school
of paraconsistent logics ([14, 11, 12]) are to limit the applicability of the first of
these two rules (which amounts to “a single contradiction entails everything”) to
the case where ϕ is “consistent”, and to express the assumption of this consistency
of ϕ within the language. The easiest way to implement these ideas is to add to
the language of CL a new connective ◦, with the intended meaning of ◦ϕ being “ϕ
is consistent”. Then one can explicitly add the assumption of the consistency of ϕ
to the problematic (from a paraconsistent point of view) classical rule concerning
¬. This leads to the basic system B described below.6

Definition 2.16. Let LC = {∧,∨,⊃,¬, ◦}.
Definition 2.17. The logic B is the minimal logic in LC which extends CL+ and
satisfies the following two conditions:

(t): ` ¬ϕ,ϕ
(b): ◦ϕ,¬ϕ,ϕ `

Lemma 2.18. Let LK be the standard Gentzen calculus for classical propositional
logic, and let GB be obtained from LK by replacing the (¬ ⇒) rule by:

(◦,¬ ⇒)
Γ ⇒ ∆, ϕ

◦ϕ,¬ϕ,Γ ⇒ ∆

Then for every finite Γ and ∆, Γ `B ∆ iff Γ ⇒ ∆ has a cut-free proof in GB.

Proof. Using cuts, it is straightforward to show that for every finite Γ and ∆,
Γ `B ∆ iff Γ ⇒ ∆ has a proof in GB. The cut-elimination theorem can then be
proved for GB by the usual syntactic method of Gentzen (i.e. by using double
induction on the complexity of the cut formula and on the height of the cut). �

6The logic B is called mbC in [12]. We prefer to use here a shorter name.
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Remark 2.19. By Remark 2.13, a Hilbert-type system which is sound and complete
for B can be obtained by adding the following two axioms to some standard
Hilbert-type system for CL+ having MP as the sole rule of inference:

(t): ¬ϕ ∨ ϕ
(b): (◦ϕ ∧ ¬ϕ ∧ ϕ) ⊃ ψ

The main property of B is given in the next theorem from [11, 12]:

Theorem 2.20. Let `cl be the classical consequence relation (in the language Lcl).
Then Γ `cl ∆ iff there exists a subset Σ of the set of subformulas of Γ ∪∆ such
that ◦Σ,Γ `B ∆ (where ◦Σ = {◦ψ | ψ ∈ Σ}).

Proof. Suppose Γ `cl ∆. Then there are finite subsets Γ′ and ∆′ of Γ and ∆
(respectively) such that the sequent Γ′ ⇒ ∆′ has a cut-free proof in LK. Replace in
this proof any application of the classical (¬ ⇒) rule by an application of (◦,¬ ⇒).
The result will be a cut-free proof in GB of a sequent of the form ◦Σ,Γ′ ⇒ ∆′,
where Σ is a subset of the set of subformulas of Γ′ ⇒ ∆′. Hence ◦Σ,Γ `B ∆.

For the converse, assume that ◦Σ,Γ `B ∆. Then there are finite subsets Γ′ of
Γ, ∆′ of ∆, and Σ′ of Σ, such that ◦Σ′,Γ′ ⇒ ∆′ has a cut free-proof in GB. Replace
in that proof every application of (◦,¬ ⇒) by an application of the classical (¬ ⇒).
Since ◦ does not occur in Γ′ ⇒ ∆′, the result is a proof in LK of this sequent. It
follows that Γ `cl ∆. �

2.4.2. Other Logics with a Formal Consistency Operation. Rule (b) provides the
most basic property expected of ◦. There are of course many others which might
seem plausible to assume. The next two definitions provide a list of rules and
systems (not all!) that have been considered in the literature on LFIs.7

Definition 2.21. Let RULES be the set consisting of the following 10 rules:

(c): ¬¬ϕ ` ϕ
(e): ϕ ` ¬¬ϕ
(k1): ` ◦ϕ,ϕ
(k2): ` ◦ϕ,¬ϕ
(i1): ¬◦ϕ ` ϕ
(i2): ¬◦ϕ ` ¬ϕ
(a¬): ◦ϕ ` ◦(¬ϕ)
(a]): ◦ϕ, ◦ψ ` ◦(ϕ]ψ) (] ∈ {∧,∨,⊃})

Definition 2.22. For S ⊆ RULES, B[S] is the extension of B by the rules in S.

7In [11, 12] what is considered instead of (i1) and (i2) is actually their combination, the rule
(i): ¬◦ϕ ` ϕ ∧ ¬ϕ. This rule has been split here into two rules as described in Remark 2.13.
Conditions (k1) and (k2) were not considered in [11, 12], but they are natural weaker versions
of (i1) and (i2) (respectively).



8 Arnon Avron

3. Semantics for the Basic System

The system B treats the positive classical connectives exactly as classical logic
does. Hence an Nmatrix for B should most naturally be sought among the Nma-
trices which are suitable for CL+. In such Nmatrices the answer to the question
whether a sentence of the form ϕ]ψ (] ∈ {∨,∧,⊃}) is true or not relative to a
given valuation v (i.e. whether v(ϕ]ψ) ∈ D or not) is completely determined by
the answers to the same question for ϕ and ψ. The situation with respect to the
unary connectives ¬ and ◦ is different. The truth/falsity of ¬ϕ or ◦ϕ is not com-
pletely determined by the truth/falsity of ϕ. More data is needed for this. Now the
central idea of the semantics we are about to present is to include all the relevant
data concerning a sentence ϕ in the truth value from V which is assigned to ϕ. In
our case the relevant data beyond the truth/falsity of ϕ is the truth/falsity of ¬ϕ
and ◦ϕ. This leads to the use of elements from {0, 1}3 as our truth values, where
the intended intuitive meaning of v(ϕ) = 〈x, y, z〉 is the following:

• x = 1 iff ϕ is “true” (i.e. v(ϕ) ∈ D ).
• y = 1 iff ¬ϕ is “true” (i.e. v(¬ϕ) ∈ D).
• z = 1 iff ◦ϕ is “true” (i.e. v(◦ϕ) ∈ D).

However, because of the special principles of B not all triples can be used. Thus
rule (t) means that at least one element of the pair {ϕ,¬ϕ} should be true. Hence
the truth-values 〈0, 0, 1〉 and 〈0, 0, 0〉 should be rejected. Similarly, rule (b) means
that ϕ, ¬ϕ, and ◦ϕ cannot all be true. Hence 〈1, 1, 1〉 should be rejected. We are
left with 5 truth-values. Among them those which are designated are those which
can be assigned to true formulas, i.e. those whose first component is 1. Then we
define the operations in the most liberal way which is coherent with the intended
meaning of the truth-values, and with the need to use an Nmatrix suitable for
CL+. The resulting Nmatrix is described in the next definition.

Definition 3.1. The Nmatrix MB
5 = 〈V5,D5,OB

5 〉 is defined as follows:

• V5 = {t, tI , I, fI , f} where:

t = 〈1, 0, 1〉
tI = 〈1, 0, 0〉
I = 〈1, 1, 0〉
f = 〈0, 1, 1〉
fI = 〈0, 1, 0〉

• D5 = {t, I, tI} (= {〈x, y, z〉 ∈ V5 | x = 1}).
• Let D = D5, F = V5 −D. The operations in OB

5 are defined by:

a∨̃b =
{
D if either a ∈ D or b ∈ D,
F if a, b ∈ F

a⊃̃b =
{
D if either a ∈ F or b ∈ D
F if a ∈ D and b ∈ F
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a∧̃b =
{
D if a ∈ D and b ∈ D
F if either a ∈ F or b ∈ F

¬̃a =
{
D if a ∈ {I, f, fI}
F if a ∈ {t, tI}

◦̃a =
{
D if a ∈ {t, f}
F if a ∈ {I, tI , fI}

An Explanation. The rules in B related to the positive classical connectives impose
no constraints on the truth/falsity of ¬ϕ or ◦ϕ. Hence they affect only the first
component of truth-values. Thus if the first component of v(ϕ) is 1 (i.e. if v(ϕ) is
in D5) then also the first component of v(ψ ⊃ ϕ) should be 1, but there are no
limitations in this case on the other two components of v(ψ ⊃ ϕ). Hence v(ψ ⊃ ϕ)
may in this case be any element of D5. This implies that a⊃̃b should be D5 in case
b ∈ D5 = {t, tI , I}. The other parts of the definitions of ⊃̃, ∨̃, and ∧̃ are derived
similarly. The truth-value of ¬ϕ, on the other hand, is dictated by the second
component of v(ϕ). If it is 1 then ¬ϕ should be true, implying that v(¬ϕ) should
be an element of D5. Since B imposes no further constraints on v(¬ϕ) in this case,
we get the condition that ¬̃a should be D5 in case a ∈ {I, f, fI}. The other parts
of the definitions of ¬̃ and ◦̃ are derived similarly (note that in the case of ◦ the
relevant component is the third).

The five-valued MB
5 is our basic Nmatrix. In the next section we shall obtain

semantics for a lot of extensions of B by refining this Nmatrix (where our refine-
ments will be of the special type described in Remark 2.11). However, in many of
the systems we discuss (including B itself), one needs to include in the truth-value
assigned to a formula ϕ only information concerning the truth/falsity of ϕ and
¬ϕ. Hence a 3-valued Nmatrix consisting of pairs from {0, 1}2 (where the pair
〈0, 0〉 is rejected because of rule (t)) would suffice. The basic 3-valued Nmatrix
corresponding to B is given in the next Definition.

Definition 3.2. The Nmatrix MB
3 = 〈V3,D3,OB

3 〉 is defined as follows:
• V3 = {t, I, f} where:

t = 〈1, 0〉
I = 〈1, 1〉
f = 〈0, 1〉

• D3 = {t, I} (= {〈x, y〉 ∈ V3 | x = 1}).
• Let this time D = D3, F = V3 − D = {f}. The operations in OB

3 corre-
sponding to ∧,∨ and ⊃ are defined like in MB

5 . The other two operations
are defined as follows:

¬̃a =
{
F if a ∈ {t}
D if a ∈ {I, f}

◦̃a =
{
V3 if a ∈ {t, f}
F if a = I
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Lemma 3.3. `B ⊆ `MB
3

Proof. MB
3 is suitable for CL+. Hence by Theorem 2.15 it suffices to check that

rules (t) and (b) are satisfied by `MB
3
. This is easy. �

Lemma 3.4. `MB
3
⊆ `MB

5
.

Proof. The function f defined by f(〈x, y, z〉) = 〈x, y〉 is easily seen to be a reduc-
tion of MB

5 to MB
3 . Hence the lemma follows from Theorem 2.10. �

Lemma 3.5. `MB
5
⊆ `B.

Proof. Suppose Γ 6`B ∆. We construct a model of Γ in MB
5 which is not a model

of any formula in ∆. For this extend Γ to a maximal set Γ∗ of formulas such that
Γ∗ 6`B ∆. Γ∗ has the following properties:

1. ϕ 6∈ Γ∗ iff Γ∗, ϕ `B ∆.
2. ϕ ∨ ψ ∈ Γ∗ iff either ϕ ∈ Γ∗ or ψ ∈ Γ∗.
3. ϕ ∧ ψ ∈ Γ∗ iff both ϕ ∈ Γ∗ and ψ ∈ Γ∗.
4. ϕ ⊃ ψ ∈ Γ∗ iff either ϕ 6∈ Γ∗ or ψ ∈ Γ∗.
5. For every sentence ϕ of LC either ϕ ∈ Γ∗ or ¬ϕ ∈ Γ∗.
6. If ¬ϕ and ϕ are both in Γ∗ then ◦ϕ 6∈ Γ∗.

The first property in this list follows from the maximality property of Γ∗.
The last from rule (b). To show the second property, assume first that ϕ∨ψ 6∈ Γ∗.
Then Γ∗, ϕ ∨ ψ `B ∆. Since also ϕ `B ϕ ∨ ψ, we get that Γ∗, ϕ `B ∆, and so
ϕ 6∈ Γ∗. Similarly, also ψ 6∈ Γ∗ in this case. Now assume that neither ϕ ∈ Γ∗ nor
ψ ∈ Γ∗. Then Γ∗, ϕ `B ∆, and Γ∗, ψ `B ∆. Since also ϕ ∨ ψ `B ϕ,ψ (since `B is
an extension of `+

cl), we get that Γ∗, ϕ ∨ ψ `B ∆, and so ϕ ∨ ψ 6∈ Γ∗.
The proofs of the other parts are similar (for the fifth property we use the

fact that `B satisfies rule (t)).
Define now a valuation v by v(ϕ) = 〈x(ϕ), y(ϕ), z(ϕ)〉, where:

x(ϕ) =
{

1 ϕ ∈ Γ∗

0 ϕ 6∈ Γ∗ y(ϕ) =
{

1 ¬ϕ ∈ Γ∗

0 ¬ϕ 6∈ Γ∗ z(ϕ) =
{

1 ◦ϕ ∈ Γ∗

0 ◦ϕ 6∈ Γ∗

It is easy to check that the above properties of Γ∗ imply that v is a legal valuation
in MB

5 . Obviously, v is a model of Γ which is not a model of any formula in ∆. �

Theorem 3.6. Both MB
5 and MB

3 are characteristic Nmatrices for B.

Proof. This is immediate from the last three lemmas. �

Corollary 3.7. B is decidable.

Proof. This follows from Theorems 3.6 and 2.8. �
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4. Semantics for the Extensions of B Induced by RULES

One of the main virtues of our semantics is that for many syntactic conditions
concerning ¬ and ◦, it is easy to compute corresponding semantic conditions on
simple refinements (Remark 2.11) of MB

5 . In the next definition we list the seman-
tic conditions induced by the rules in RULES (Definition 2.21).

Definition 4.1.

1. The refining conditions induced by the conditions in RULES are:
C(c): If x ∈ {f, fI} then ¬̃x ⊆ {t, tI}.
C(e): ¬̃I = {I}
C(k1): fI should be deleted.
C(k2): tI should be deleted.
C(a¬): {t, f} is closed under ¬̃ (implying ¬̃t = {f}, ¬̃f = {t}).
C(a]): {t, f} is closed under ]̃.
C(i1): fI should be deleted, and ◦̃(f) ⊆ {t, tI}
C(i2): tI should be deleted, and ◦̃(t) = {t}

2. For S ⊆ RULES, let C(S) = {Cr | r ∈ S}

Here are some examples of how these conditions have been derived:

Notation. Let P1(〈a, b, c〉) = a, P2(〈a, b, c〉) = b, P3(〈a, b, c〉) = c.
C(c): A refutation of this rule is a valuation v in MB

5 such that v(ϕ) 6∈ D5 (i.e.
P1(v(ϕ)) = 0), but v(¬¬ϕ) ∈ D5 (i.e. P2(v(¬ϕ)) = 1). This will be impossible
iff for every x ∈ V5 such that P1(x) = 0 (i.e. for every x ∈ {f, fI}), it is the
case that if y ∈ ¬̃x then P2(y) = 0 (i.e. y ∈ {t, tI}).

C(e): A refutation of this rule is a valuation v in MB
5 such that v(ϕ) ∈ D5 (i.e.

P1(v(ϕ)) = 1), but v(¬¬ϕ) 6∈ D5 (i.e. P2(v(¬ϕ)) = 0). This will be impossible
iff for every x ∈ V5 such that P1(x) = 1 (i.e. for every x in {t, tI , I}), if y ∈ ¬̃x
then also P2(y) = 1. For x ∈ {t, tI} this is already true in MB

5 . For x = I
the only element y in ¬̃Bx which satisfies this condition is y = I (where ¬̃B

is the interpretation of ¬ in MB
5 ).

C(k1): A refutation of this rule is a valuation v in MB
5 for which both v(ϕ) and

v(◦ϕ) are not in D5. This will be impossible iff fI is not available.
C(a]): A refutation of this rule is a valuation v in MB

5 s.t. P3(v(ϕ)) = 1,
P3(v(ψ)) = 1, and P3(v(ϕ]ψ)) = 0 (i.e. v(ϕ) ∈ {t, f}, v(ψ) ∈ {t, f}, but
v(ϕ]ψ) 6∈ {t, f}). This will be impossible iff {t, f} is closed under ].

C(i2): A refutation of this rule is a valuation v in MB
5 s.t. v(¬ϕ) 6∈ D5 (i.e.

P2(v(ϕ)) = 0), but v(¬◦ϕ) ∈ D5 (i.e. P2(v(◦ϕ)) = 1). This will be impossible
iff for every x ∈ V5 such that P2(x) = 0, also P2(◦̃x) = 0. In other words: iff
for every x ∈ {t, tI}, ◦̃x ⊆ {t, tI}. For x = tI this is incoherent with the value
of ◦̃(tI) in MB

5 . Hence tI should be deleted, and so necessarily ◦̃(t) = {t}.

Definition 4.2. For S ⊆ RULES, let MS be the weakest simple refinement (Re-
mark 2.11) of MB

5 in which the conditions in C(S) are all satisfied. In other words:
MS = 〈VS ,DS ,OS〉, where VS is the set of values from V5 which are not deleted
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by any condition in S, DS = D5 ∩ VS , and for any connective � ∈ O and any
~x ∈ Vn

S (where n is the arity of �), the interpretation in OS of � assigns to ~x the
set �̃MS

(~x) of all the values in �̃B(~x) which are not forbidden by any condition in
C(S) (where �̃B is the interpretation of � in MB

5 ).

An Example. Let S = {(i1), (a¬)}. Then MS = 〈VS ,DS ,OS〉, where:
• VS = {t, tI , I, f}
• DS = {t, I, tI}
• ∨̃, ∧̃ and ⊃̃ are defined like in the case of MB

5 (but now F = {f}).
• ¬̃t = ¬̃tI = {f} ¬̃I = DS ¬̃f = {t}
• ◦̃t = DS ◦̃tI = ◦̃I = {f} ◦̃f = {t, tI}

Remark 4.3. It is not difficult to see that for all S ⊆ RULES, {t, f, I} ⊆ VS ,
{t, I} ⊆ DS , and �̃MS

(~x) is never empty (in fact, �̃MS
(~x) ∩ {t, f, I} is never

empty). Hence MS is a well-defined Nmatrix.

Remark 4.4. It can easily be checked that in any simple refinement of MB
5 which

satisfies C(a¬), ¬̃ behaves on {t, f} like classical negation (i.e. ¬̃t = {f}, ¬̃f = {t}).
Similarly, if ] ∈ {∨,∧,⊃} then in simple refinements of MB

5 which satisfy C(a]),
]̃ behaves on {t, f} like the classical ].

Theorem 4.5. For all S ⊆ RULES, MS is a characteristic Nmatrix for B[S].

Proof. It is easy to verify, that for any r ∈ RULES, the satisfaction of C(r) in
some simple refinement ofMB

5 guarantees the validity of r in that refinement. This
entails the soundness of B[S] with respect to MS . For completeness we repeat the
construction done in the proof of Lemma 3.5. It is not difficult to show that the
rules of S force the resulting valuation to be a legal valuation in MS . We do
here the case where S = {(i1), (a¬)} as an example. So suppose that Γ 6`B[S] ∆.
Construct the set Γ∗ and the valuation v like in the proof of Lemma 3.5, using
B[S] instead of B. This v is legal for MB

5 , and it is a model of Γ which is not a
model of any formula in ∆. Now the presence of (i1) implies that v(ϕ) 6= fI for
every ϕ (because there can be no formula ϕ such that both ϕ 6∈ Γ∗ and ◦ϕ 6∈ Γ∗.
Indeed: if ϕ 6∈ Γ∗ then because of (i1) ¬◦ϕ 6∈ Γ∗, and so ◦ϕ ∈ Γ∗). Hence v is
actually a valuation in VS . It remains to show that it is legal for MS . Since v is
legal for MB

5 , it suffices to show that it respects the conditions imposed by (i1)
and (a¬):

C(i1): Since fI is not used by v, respecting C(i1) amounts in the present case to
v(◦ϕ) being in {t, tI} in case v(ϕ) = f . But here v(ϕ) = f iff ϕ 6∈ Γ∗, and the
latter implies (because of (i1)) that ¬◦ϕ 6∈ Γ∗, which means (by definition of
v) that indeed v(◦ϕ) ∈ {t, tI}.

C(a¬): Again since fI is not used by v, respecting C(a¬) amounts in the present
case to v(¬ϕ) = t in case v(ϕ) = f . But v(ϕ) = f iff ϕ 6∈ Γ∗, ¬ϕ ∈ Γ∗,
and ◦ϕ ∈ Γ∗. Because of (a¬) the latter implies that ◦¬ϕ ∈ Γ∗. Since also
¬ϕ ∈ Γ∗, necessarily v(¬ϕ) = t. �
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5. Applications

5.1. Decidability

A first important corollary of our semantics is the following:

Corollary 5.1. B[S] is decidable for any S ⊆ RULES.

Proof. Immediate from Theorems 4.5 and 2.8. �

5.2. Dependencies between the Conditions

Not all the 1024 systems of the form B[S] (where S ⊆ RULES) are different from
each other. Using Theorem 4.5 it is a mechanical matter to check the relations
among them, finding what rules in RULES follow from what subsets of the other
rules in RULES. The next theorem sums up all existing dependencies:

Theorem 5.2. The following is an exhaustive list of all the dependencies among
the rules in RULES:
• (k1) follows from (i1).
• (k2) follows from (i2).
• (c) follows from {(a¬), (k1)} (and from {(a¬), (i1)}).
• (a¬) follows from {(c), (k1), (k2)} (and of course also from {(c), (k1), (i2)},
{(c), (i1), (k2)}, and {(c), (i1), (i2)}).

Proof. The first two items on this list trivially follow from the corresponding se-
mantic conditions. For the third, note that without fI (i.e.: in the presence of (k1)
or (i1)), condition C(c) reduces to ¬̃f ⊆ {t, tI} and this condition immediately
follows from C(a¬). Finally, the forth clause is immediate from the fact that if t,
f , and I are the only available truth-values, then F = {f}, and both conditions
C(c) and C(a¬) reduce to ¬̃f = {t}.

A not too difficult examination of the corresponding 10 conditions given in
Definition 4.1 (together with the Definition of MB

5 ) reveals that the above list is
indeed exhaustive. �

Corollary 5.3. Rules (c) and (a¬) are equivalent in the presence of rules (k1)
and (k2). In particular, they are equivalent in the system Bi, obtained from B by
adding the following schema from [11, 12]:

(i): ¬◦ϕ ` ϕ ∧ ¬ϕ

5.3. Cases Where 3-valued Nmatrices Suffice

In Section 3 We have seen that for the basic system B a three-valued reduction
of MB

5 (in which the truth-values include information only on the truth/falsity
of a sentence and its negation) suffices. The argument remains almost the same if
either (c), (e) or both are added to B, since these rules do not involve ◦. In the
corresponding refinements of MB

3 we should have ¬̃f = {t} in case (c) is added,
and ¬̃I = {I} in case (e) is added.

Another obvious case in which a logic B[S] (S ⊆ RULES) has a characteristic
3-valued Nmatrix is when both (k1) and (k2) are derivable in it (i.e. if either (k1)
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or (i1) is in S, and also either (k2) or (i2) is in S). In this case Theorem 4.5
directly provides such an Nmatrix.
Conjecture. Except for the cases we have just described, no other system B[S]
(S ⊆ RULES) has any characteristic 3-valued Nmatrix.

What we can prove for all the systems considered here is the following:

Theorem 5.4. B[S] (S ⊆ RULES) does not have a characteristic 2-valued Nma-
trix.

Proof. Suppose M is a 2-valued Nmatrix for which B[S] is sound and complete.
We may assume that the two truth-values of M are 1 and 0, where 1 is designated
and 0 is not. Since condition (t) is valid in M, necessarily ¬̃0 = {1}. Hence it
suffices to consider the following 3 cases:
• Suppose ¬̃1 = {0}. Then ¬ϕ,ϕ `M for all ϕ. Since B[S] is paraconsistent

(because by assigning v(p) = v(¬p) = I we get a model of {p,¬p} in MS),
we get a contradiction.

• Suppose ◦̃1 = {0}. Then ◦ϕ,ϕ `M for all ϕ. However, assigning t to both p
and ◦p is legal in MS (for every S ⊆ RULES). Hence ◦ϕ,ϕ 6`B[S], and we
get a contradiction.

• Suppose that 1 is in both ¬̃1 and ◦̃1. Then assigning 1 to all the sentences in
{p,¬p, ◦p} is legal in M, contradicting the validity of (b) in M.

We got a contradiction in all possible cases. Hence no such Nmatrix exists. �

6. Other Plausible Extensions of the Basic System

In addition to the rules considered so far (that were basically taken from [11, 12]),
it is of course possible to consider many other rules that might seem plausible.
We consider now two natural groups of rules that may also be added to the basic
system B, and are very easy to handle in our framework.

6.1. Rules for Combinations of Negation with the Classical Connectives

(c) and (e) are just two of the standard classically valid rules concerning negation
which are derived from the classical equivalences of ¬¬ϕ with ϕ, ¬(ϕ ∧ ψ) with
¬ϕ∨¬ψ, ¬(ϕ∨ψ) with ¬ϕ∧¬ψ, and ¬(ϕ ⊃ ψ) with ϕ∧¬ψ. By splitting the last
3 equivalences into simple rules (see Remark 2.13) we get the following list:

Definition 6.1. Let DM be the set consisting of the following 9 rules:
(¬ ∧ 1): ¬ϕ ` ¬(ϕ ∧ ψ)
(¬ ∧ 2): ¬ψ ` ¬(ϕ ∧ ψ)
(¬ ∧ 3): ¬(ϕ ∧ ψ) ` ¬ϕ,¬ψ
(¬ ∨ 1): ¬(ϕ ∨ ψ) ` ¬ϕ
(¬ ∨ 2): ¬(ϕ ∨ ψ) ` ¬ψ
(¬ ∨ 3): ¬ϕ,¬ψ ` ¬(ϕ ∨ ψ)
(¬ ⊃ 1): ¬(ϕ ⊃ ψ) ` ϕ
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(¬ ⊃ 2): ¬(ϕ ⊃ ψ) ` ¬ψ
(¬ ⊃ 3): ϕ,¬ψ ` ¬(ϕ ⊃ ψ)

In [1] we have shown how to modularly provide 3-valued non-deterministic se-
mantics for these rules, where the basic logic is CLuN (which is the logic in Lcl

obtained from B by deleting the schema (b)). It is straightforward to adapt those
results to the present context, with B as the basic logic. All we need to do is to
find for the rules in DM equivalent semantic conditions on refinements of MB

5 ,
using considerations of the type applied for the rules in RULES. For this, one
should only note that for the rules in DM only the first two components of our
truth-values are relevant. We present here as an example the derived semantic con-
ditions which are equivalent to the rules corresponding to the equivalence between
¬(ϕ ∧ ψ) and ¬ϕ ∨ ¬ψ:

C(¬ ∧ 1): If x ∈ D then I∧̃x = {I}.
C(¬ ∧ 2): If x ∈ D then x∧̃I = {I}.
C(¬ ∧ 3): If x ∈ {t, tI} and y ∈ {t, tI} then x ∧ y ⊆ {t, tI}.

Like in Definition 4.2, We can now define MS for every S ⊆ RULES ∪DM . It is
then easy to prove the following generalization of Theorem 4.5:

Theorem 6.2. For all S ⊆ RULES ∪ DM , MS is a characteristic Nmatrix for
B[S].

Corollary 6.3.

1. (¬ ∧ 3) is derivable in B[{(k2), (a∧)}].
2. (¬ ∧ 3) and (a∧) are equivalent in any extension of B[{(k1), (k2)}]

Proof. In the presence of (k2) the truth-value tI is not available. Hence in this case
C(¬ ∧ 3) reduces to t∧̃t = {t}. This last condition follows from C(a∧), implying
the first part of the corollary. Now in the presence of (k1) only f is not in the set
D of designated values, and so in this case C(a∧) too reduces to t∧̃t = {t}. Hence
the equivalence in the second part. �

Remark 6.4. One of the principles behind the construction of da Costa’s C-systems
([14, 11]) has been that the consistent formulas should be closed under the classical
connectives. This has been the reason for including the schemes of the form (a])
in the systems. From Corollaries 5.3 and 6.3 it follows that under weak conditions
(which are satisfied, e.g., in the presence of axiom (i)), the axioms expressing the
applications of this principle to ¬ and ∧ can be replaced by well-known classical
tautologies in which ◦ is not mentioned.8

Remark 6.5. It is interesting to note that the semantics we get for the system
B[RULES ∪ DM ] itself (or just for the system B[DM ∪ {(c), (e), (i1), (i2)}]) is

8This fact might give some justification why also (c) (and not only (t)) has been included in the
original basic system C1 of da Costa ([14]).
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a characteristic 3-valued (ordinary, deterministic) matrix. This is the famous 3-
valued matrix characteristic for the paraconsistent logic called LFI1 in [11, 12],
to which B[RULES ∪DM ] is equivalent. 9

6.2. Rules Concerning ◦
Finally we turn to rules involving the connective ◦ but not ¬. We briefly consider
two types of rules of this sort.

Strengthening the closure rules: The rules of the form (a]) express the assump-
tion that if ϕ and ψ are consistent, then so is ϕ]ψ. Now it is plausible to con-
sider stronger assumptions. One alternative that is investigated in [11, 12]
is that ϕ]ψ should be consistent if either ϕ or ψ is consistent. There is no
problem to handle this stronger assumption within our framework by finding
corresponding semantic conditions. First, the assumption for ] split into the
following two rules:
• (o1

] ) ◦ ϕ ` ◦(ϕ]ψ)
• (o2

] ) ◦ ψ ` ◦(ϕ]ψ)
Now the first of them, for example, translates to the condition: if P3(x) = 1
then P3(x]̃y) = 1. In other words: If x ∈ {t, f} then x]̃y ∈ {t, f}. What this
implies in specific cases depends on the semantics of ]. Thus for ∧ we get:

C(o1
∧): f ∧̃y = {f} for every y, while t∧̃y = {t} for y 6= t.

Note that in the presence of k1+k2, C(o1
∧) reduces to t∧̃y = {t} for y ∈ {t, I}.

It is important to note that by using C(o1
∧), the rule (o1

∧) can be added
to RULES without essentially affecting the validity of Theorem 4.5. How-
ever a new situation arises if we consider (o1

∧) together with (¬∧2). C(¬∧2)
implies that t∧̃I = {I}, while C(o1

∧) implies that t∧̃I = {t}. This means that
we cannot use both t and I in constructing models for theories based on the
logic B′ = B[{(o1

∧), (¬∧2)}]. However, the combination of the corresponding
conditions does not decisively rule out any of these two truth-values. Hence
the framework we have developed here does not provide a unique character-
istic Nmatrix for B′. However, it can be shown that it does provide two finite
Nmatrices M1 and M2 such that `B′=`M1 ∩ `M2 .

Some common modal rules: We end with considering the effects of the counter-
parts for ◦ of the three modal axioms of the modal logic S4:

(K): ◦ϕ, ◦(ϕ ⊃ ψ) ` ◦ψ
(4): ◦ϕ ` ◦◦ϕ
(T): ◦ϕ ` ϕ

In the context of extensions of B (i.e. refinements of MB
5 ) the corresponding

semantic conditions can easily be found to be:
C(K): If x ∈ {t, f} and y ∈ {I, tI , fI} then x ⊃ y ⊆ {I, tI , fI}.

9This logic was originally introduced in [19]. Later it was reintroduced (together with its 3-valued
deterministic semantics) in [15, 16], and was called there J3 (see also [17]).
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C(4): If x ∈ {t, f} then ◦̃x = {t}
C(T): The truth-value f should be deleted.

Note that C(T) is in direct conflict with C(k1), since together they leave
no nondesignated element, implying that any formulas is a theorem of the
resulting logic (this can of course be verified directly, using a cut). A more
interesting observation is that the combined effect of C(k1), C(k2), and C(4)
is identical to the combined effect of C(i1) and C(i2). Hence the axioms (k1),
(k2), and (4) are together equivalent to the axiom (i) (which is standard in
C-systems — see [11]).

7. Conclusions and Further Research

We have presented an extensive study of the use of Nmatrices in deriving useful
semantic for thousands of extensions of one particular basic system: B. It should
be clear from this case-study that the method has a very large range of applications
(far beyond the framework of B). However, it is still necessary to formulate it in
exact, general terms, and to determine its scope. Another important task is to
develop extensions of the framework for cases in which the method used in this
paper is too weak. Two such cases (and related questions and tasks) are:

1. The primary constraint on rules to which our method applies seems to be
purity. A good example of a context in which this constraint is violated, is
provided by normal modal logics. As we have seen in the previous section,
the usual axioms used in these logics pose no real problem. However, the
necessitation rule, as it is used in modal logics, is impure: if ` is supposed to
be an extension of the classical consequence relation, then the necessitation
rule cannot be translated into ϕ ` 2ϕ. Indeed, in classical logic we have that
2ϕ ` ϕ ⊃ 2ϕ, and that ` ϕ,ϕ ⊃ 2ϕ. Together with ϕ ` 2ϕ these facts
entail ` ϕ ⊃ 2ϕ (using cuts). However, ϕ ⊃ 2ϕ is not valid in any inter-
esting modal logic. It seems therefore that extra machinery, like the use of
non-deterministic Kripke structures, should be added in order to handle rules
of this sort. Steps in this direction have been taken in [1, 2], where hybrid
semantics, employing both Nmatrices and Kripke structures, has been pro-
vided for many extensions of positive intuitionistic logic 10 (which is another
logic which employs impure rules).

2. Two common features of all the rules considered in this paper are that each
of them is concerned with at most two different connectives, and also the
nesting depth of each formula used in their schematic description is at most
two. An example of a rule which lacks both features is rule (l) from [11, 12]:

(l): ¬(ϕ ∧ ¬ϕ) ` ◦ϕ
Now in [3] it is shown that B[{(c), (l)}] (which is called there Cl) has no
finite characteristic Nmatrix. Hence at least one of the two features we have

10One of those extensions is da Costa’s basic paraconsistent system Cω from [14].
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mentioned should be essential. Which one? And what can be done in its
absence? Concerning the last question, it should be noted that Cl has also
been shown in [3] to have an infinite characteristic Nmatrix, which is simple
enough to yield a decision procedure. Can this fact be generalized?

Another natural (and important) line for further research is to use the seman-
tic ideas presented here for systematically producing tableaux-style proof-systems
for the various logics dealt with in this paper. Now general systems of this type
have in fact been developed in [5] for every logic which has finite characteristic
Nmatrix. However, the central idea of those systems is to use signed formulas,
where the signs are (essentially) the truth-values of the characteristic Nmatrix
(and so the number of signs equals the number of the truth-values of that Nma-
trix). Here it might be more effective to use 6 signs rather than 5, according to
the two possible values of the three components of each of the five truth-values (or
four signs in the cases where 3-valued versions suffice).

Finally, an obvious crucial line of further research is to extend the results and
methods of this paper to first-order languages. First steps in this direction have
been made in [8].
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Rendus de l’Academie de Sciences de Paris (A-B) 270 (1970), 1349–1353.

[16] I. L. M. D’Ottaviano, The completeness and compactness of a three-valued first-order
logic, Revista Colombiana de Matematicas, vol. XIX (1985), 31–42.

[17] R. L. Epstein, The semantic foundation of logic, vol. I: Propositional Logics, ch. IX,
Kluwer Academic Publisher, 1990.
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