
Formal Aspects of Computing (2001) 3: 1{000c 2001 BCS
Stability, Sequentiality and DemandDriven Evaluation in DataowArnon Avron and Nada SassonTel Aviv University, IsraelKeywords: Dataow; Stability; Sequentiality.Abstract. We show that a given dataow language l has the property that forany program P and any demand for outputs D (which can be satis�ed) thereexists a least partial computation of P which satis�es D, i� all the operators ofl are stable. This minimal computation is the demand-driven evaluation of P .We also argue that in order to actually implement this mode of evaluation, theoperators of l should be further restricted to be e�ectively sequential ones.1. IntroductionDataow machines are a method of implementing functional languages, which isespecially suited to exploit parallelism in programs (see [Iee82]). For this theyusually incorporate streams, which are in�nite data objects. On the other hand,they are designed for data-driven evaluation of programs: operations on elementsof streams can execute as soon as their inputs are available. It was observed(e.g. in [PiA85]) that the combination of these two properties might generatean in�nite amount of useless computations. Hence a demand-driven (or \lazy")paradigm is preferable.The papers [PiA85, Pin86] are devoted to a thorough study of demand-drivenevaluation in dataow computations. Still, Arvind and Pingali (A&P) have leftseveral theoretical gaps in their work:� The central notion of a demand-driven evaluation of a program P has neverbeen de�ned in complete generality. More precisely, A&P de�ned it to beCorrespondence and o�print requests to: Arnon Avron and Nada Sasson, Raymond and BeverlySackler Faculty of Exact Sciences, Computer Science Department, Tel Aviv University, Ramat-Aviv 69978 Israel. Email: aa@taurus.bitnet.

2 Arnon Avron and Nada Sassonthe minimal element (if such exists) in the set of \legal valuations for P"which satisfy the demand. A&P gave, however, no general de�nition of a\legal valuation for P" (which intuitively is a description of a state whichcan be reached during a data-driven evaluation of P). Instead they gavetwo conditions that any such valuation should obviously satisfy, but theygave themselves an example in which these conditions are intuitively notsu�cient for \legality". A&P restricted themselves then to the case in whichall the operations involved in a program are sequential. Obviously they wereassuming that in this special case their two conditions are su�cient. Noattempt to justify this belief was made, though.� For the sequential case A&P were able to show (granting the above assump-tion) that a minimal \legal" valuation meeting a given demand always exists(unless the demand is unsatis�able). Here however, it is not clear whetherthe condition of sequentiality is necessary, and A&P made no attempt todetermine the exact range of programs for which one can meaningfully talkabout demand-driven evaluation.� From a practical point of view, A&P suggested a method of implementingthe demand-driven evaluation of a program within a certain restricted classof operations. It is clear that the method is applicable to a much larger class,but no attempt to determine its range of applicability was made.Our goal in this paper is to �ll in the above gaps and to put the subject in amore general framework. Our main result is that from an abstract point of view,the largest class of operations which allows demand-driven evaluation in dataowis that of stable operations (which contain the sequential ones). It is ratherinteresting that the class of stable functions which was originally introduced byG. Berry (see [Ber76, Ber78a, Ber78b, Ber79]), has an important role in ourwork. What we actually show is that the following two properties are equivalentfor a given set S of operations on streams of data tokens from at domains:1. Given any program P which is based on S and any demand D which P cansatisfy, there exists a least legal valuation for P whichsatis�es D.2. All the operations in S are stable.The notions of a \legal valuation" and a \demand" in the above characteri-zation are de�ned in rather general terms, with no extra assumptions about theoperations in S (except that they are continuous). We show, however, that forstable operations the two conditions of A&P are indeed su�cient and necessaryfor legality.When it comes to practical implementation of demand-driven evaluation, theset of stable operations is apparently too large. We illustrate this by an example.We argue then that for this goal even the set of sequential operations 1 is toolarge, and that one should limit oneself to the subset of e�ectively sequentialoperations. We outline the obvious method of doing the implementation in sucha case (which is essentialy A&P's method, put in a general form), and concludethat at least for one especially important type of demands (in fact, the only onesdisscussed in [PiA85]), the e�ective sequentiality condition is indeed su�cientfor the applicability of the method.1 These are the only operations studied by A&P.

Stability, Sequentialy and Demands in Dataow 3The structure of the rest of the paper is as follows. In section 2 we presentthe general syntax of basic stream languages and describe denotational and op-erational semantics for data-driven evaluations of their programs. In section 3 wepresent a denotational semantics for demand-driven evaluations of such programsand show that stability of the language's operators is a necessary and su�cientcondition for its applicability. Finally, in Section 4 we describe a correspond-ing operational semantics and explain why the stronger condition of e�ectivesequentiality is needed to make it work.Two important remarks: First, although the speci�c target of the presentpaper is to improve theoretical results of Arvind and Pingali ([PiA85, Pin86],the topic of demand-driven dataow should be framed in the wider context ofinterpreting applicative languages ([Tur79]). The idea has indeed been tested byRichmond's implementation ([Ric82]) of Turner's Sasl language, running on theManchester dataow hardware. Second, despite the fact that the paper heavilydraws on these works of A&P, we have made a great e�ort to make it self-contained, and so no acquaintance with A&P's work is needed in order to readit.2. Basic Stream LanguagesIn this section, we will present the syntax and semantics of basic stream languagesfor stream processing. We will call these languages ST languages.2.1. Syntax of an ST Language2.1.1. Alphabet and TypesThere are four sets of symbols:� T { The set of simple Types.� C { The set of Constants.� V R { The set of Variables.� F { The set of Function Symbols.If �1; : : : ; �n+1 are elements of T then �1 stream�: : :��n stream! �n+1 streamis a complex type (this includes the case n = 0). Together the simple and thecomplex types form the category of types. Any other construct of the languagehas a unique type. In particular, each element of C and V R has a complex type ofthe form � stream for some ��T , while each f�F has a complex type of the form�1 stream � : : : � �n stream! �n+1 stream where n > 0 and �1; : : : ; �n+1�T .Note: In the intended semantics elements of simple types are what is calledin [PiA85] scalar values. Note that we do not include in the language constantsfor such values. On the other hand we put no restriction on the form of the con-stants in C. Thus a typical constant of type integer stream (where integer�T)which we use below is [1; 2; 3; : : :]. This form reects the obvious intended mean-ing, but its \components" (like \1") are not part of the language. Of course,in a concrete implementation such constants of C will be represented by �niteterms of some auxiliary language, which most probably will contain (among otherthings) constants for scalar values.

4 Arnon Avron and Nada Sasson2.1.2. Terms and their TypesThe set of terms over (T ,C,V R,F) is divided into atoms and applications. Eachterm is associated with a type.� Atoms: constants and variables.� Applications:If f�F is of type �1 stream� : : :��n stream! �n+1 stream and X1; : : : ; Xnare atoms of types �1 stream; : : : ; �n stream respectively, then f(X1; : : : ; Xn)is a term of type �n+1 stream.2.1.3. The Syntax of Programs in ST Languages over (T ,C,V R,F)A program in an ST language consists of two parts: Graph, a set of n � 1equations of the form Xi = ti, and Input , a set of m � 0 equations of the formIj = cj , such that:� X1; : : : ; Xn; I1; : : : ; Im are n+m di�erent variables from V R.� c1; : : : ; cm �C.� The ti's (i = 1; : : : ; n) are applications of the form fi(Yi1 ; : : : ; Yik(i)) whereYij �fX1; : : : ; Xn; I1; : : : ; Img for j = 1; : : : ; k(i).� The types in an equation should match.� Every variable occurs exactly once on the left hand side of one of the equa-tions.I1; : : : ; Im are called Input Variables. All the other variables are internalVariables. Some of them are determined in advance as Output Variables (eitherby declaring them as such or by using some convention of the kind we use below).2 We shall now introduce conventions regarding the names of the variables ofa program in an ST language:� The input variables and only them will begin with the letters I or i.� The output variables and only them will begin with the letters Oor o.2.1.4. Representing a Program in an ST Language as a Directed GraphAn alternative way to represent a program in an ST language, which is exten-sively used in [PiA85, Pin86], is as a directed graph (see example 2.1 below).There is an obvious correspondence between the two representations: each nodeof the directed graph represents one of the applications appearing in the Graphpart of the textual program. The incoming arcs of the node represent the inputsof the application, and the outgoing arc represents the output of the application.2 Note that output variables may occur on the r.h.s. of an equation, and so they cannot bedistinguished from other variables by just inspecting the program.

Stability, Sequentialy and Demands in Dataow 5Example 2.1.Program P :Graph : X = Sadd(I1; I2)O = cons(I1; X)Input : I1 = [1; 2; 3; : : :]I2 = [1; 2; 3; : : :]Remark: As we have already explained above, the constant [1; 2; 3; : : :] is con-sidered to be a single data object. Later on an obvious semantics will be givento it.The graph representation of P : [1; 2; 3; : : :]I1 [1; 2; 3; : : :]I2
? ?Saddr

? X?cons
?O2.2. Denotational SemanticsWe assume that the reader is acquainted with the basic theory of CompletePartial Order Sets (see [LoS84, MiS76, ScB69, Sco70, Sto77]).In order to give denotational semantics for ST languages, we �rst need somede�nitions: Let D be a at domain. (I.e. D is a set which is equipped with apartial order � , so that it contains a least element ?, and all its other elementsare incomparable). Denote by
D the set of all in�nite sequences of elementsfrom D, and by �D the subset of
D of proper sequences . (A sequence is calledproper if whenever one of its elements is equal to ?, then so are all its successors).De�ne, for X1; X2�
D, X1 � X2 i� 8i > 0, X1[i] � X2[i] inD. (X [i] denotesthe i`th element of X). This makes both �D and
D cpos with a least element

6 Arnon Avron and Nada Sasson[] (a sequence in which every element is ?). 3Notation: When writing down a sequence from �D or
D which has ? fromone place onwards, we will omit its rightmost ? elements (as we just have donein the case of []).We follow [Pin86] in presenting two types of denotational semantics for STlanguages: semantics of type L and semantics of type L-tagged.De�nition 2.1.Let l be an ST language. A function IN is called an interpretation for l oftype L / L-tagged if:1. for ��T , IN(�) = D� where D� is a at domain. 42. for ��T , IN(� stream) = E� , where:(a) For type L: E� = �D� .(b) For type L-tagged: E� =
D� .3. IN(c�)�E� in case ��T and c��C is a constant of type � stream.4. For �1; : : : ; �n+1�T , IN(�1 stream � : : : ��n stream! �n+1 stream) is thedomain of continuous functions from E�1 � : : : �E�n to E�n+1 .5. For f�F , IN(f)�IN(�) where � is the type of f .De�nition 2.2.Let l and IN be as above. Let P be a program in l. De�ne:V = [��T E�� A valuation v for P (relative to IN) is a type-respecting assignment of anelement of V for each of the variables of P .Notation: We denote by vX the element of V which v assigns to X .� If v1 and v2 are valuations for P , then v1 � v2 i� for any variable X in P ,v1X � v2X . (Notice that the valuations of P are elements of a cpo which isa product domain of cpos).De�nition 2.3.Let l, IN and P be as above. De�ne a function �P from valuations to valua-tions (for P) as follows:1. For any input variable I : �P (v)I = vI .3 We prefer to follow [Pin86] in using these cpos rather than Kahn's cpo D! (see [Kah74])which was adopted in [PiA85]. The reason is that it makes the expression X[i] meaningful forevery X and i, and so allows a more uni�ed treatment of the two types of semantics givenbelow.4 By convention, the at domains Dinteger ; Dboolean etc. will be given their usual interpre-tations. (e.g. : Dinteger = f?; 1; 2; : : :g).

Stability, Sequentialy and Demands in Dataow 72. For any internal variable X , which is the output of a function symbol f withinputs Y; Z; : : : : �P (v)X = IN(f)(vY; vZ; : : :).Note: For convenience, we shall use from now on the same symbol for denotinga function symbol in the language and its associated function (unless there is adanger of confusion).Given l, IN and P , it is easy to see that �P is a monotonic and continuousfunction from a product of sequence domains to the same product domain. NowP can be viewed as a set of equations over cpos. It is well known that such aset of equations has a least solution, which is the least upper bound (lub) of thechain f�kP (v0)g1k=0 where:� for any input variable I with the equation I = c in P : v0I = c.� for any internal variable X : v0X = [].For more information see [Sto77].This least solution is called in [PiA85, Pin86] the meaning of P (relative toIN), and is denoted by HP .Example 2.2.1. Standard interpretations of type L for the function symbols given in example2.1:(a) cons : �Dinteger ��Dinteger ! �Dintegercons([]; [x1; x2; : : :]) = []cons([a1; : : :]; [x1; x2; : : :]) = [a1; x1; x2; : : :])(a1 6=?)(b) Sadd : �Dinteger ��Dinteger ! �DintegerSadd(X; []) = Sadd([]; Y) = []Sadd([x1; x2; : : :]; [y1; y2; : : :]) = cons([x1 + y1]; Sadd([x2; : : :]; [y2; : : :]))2. It is easy to see, that under the interpretations of part (1), for the programgiven in example 2.1:I1 I2 X OHP = ([1; 2; 3; : : :]; [1; 2; 3; : : :]; [2; 4; 6; : : :]; [1; 2; 4; 6; : : :])2.3. Computational Models (Operational Semantics) for STLanguagesWe will only briey present this subject. For detailed information refer to [ArG77].We can refer to the graphical representation of a program in an ST language asa dataow graph. Its arcs represent data lines with data streams owing alongthem, and its nodes represent dataow operators which process the data streams.The streams are implemented as sequences of data tokens, holding data valuesof simple types. The behaviour of the dataow operators is determined by �ringrules which describe how the operators consume their input tokens and how theyproduce output tokens.There is a di�erence between the computational models of semantics of typesL and L-tagged. For semantics of type L, a queued / piped dataow model isused. In this case, the data lines of the graph represent unbounded FIFO bu�ers

8 Arnon Avron and Nada Sassonin which the tokens are kept. For semantics of type L-tagged, the data streamscan have \holes" in them, so in this case a tagged dataow model is used 5.In addition to its data value, each token has a tag which identi�es its positionnumber on the data line. This is necessary because a token at position i canbe produced on a data line even if a token at position j < i had never beenproduced. The �ring rules of the dataow operators relate to the tags of thetokens as well as their data.If a \fair" algorithm for scheduling operators for execution is used (i.e. everyoperator that can �re will eventually be scheduled), the behaviour of the graph isindependent of the scheduling policy, and for any program (in any ST languagewith semantics of type L or L-tagged) the streams produced on the lines of thedataow graph of the program and the values of the appropriate variables inthe least solution of the program are identical. This fact is known as the KahnPrinciple and is usually expressed by saying that the operational semantics iscongruent with the denotational semantics. (Proofs of the Kahn Principle insimilar setups are given in [Fau82, LiS89]).3. Demand Driven Evaluation for ST Languages3.1. Data Driven Evaluation Versus Demand DrivenEvaluationThe valuation HP represents a data driven evaluation for P . This comes fromthe fact that in the dataow graph of P , operators can execute as soon as thedata tokens needed for their operation are available on their input lines. Theproblem with this method of evaluation is that in many cases it is very wasteful.Frequently, programers are only interested in the outputs of the program or evenin part of the outputs. However, in a data driven evaluation, any data token thatcan be produced on the lines of the program`s graph will eventually be produced,whether or not its value is actually needed for producing the wanted outputs.Therefore, on the lines of the graph, a large or even an unbounded (in the caseof in�nite data streams) amount of unnecessary data tokens might be produced.Example 3.1.In the program given in example 2.1, an unbounded number of data tokensare computed on lines X and O, even if the programer is only interested in thevalues of the �rst N data tokens.Since a data driven evaluation for programs is not su�ciently e�cient, a needarises for a demand driven evaluation in which only data tokens which are neededfor computing the demanded outputs of a program are produced on its dataowgraph.5 It should be noted that, although
D provides an elegant basis for describing streamsof tagged-tokens (in the style of the UI interpreter of [ArG77]), the semantics of actualtagged-dataow systems are inherently more complex (cf., e.g., the Manchester machine[Oli84, Jon87]).

Stability, Sequentialy and Demands in Dataow 9Example 3.2.Intuitively, a demand driven evaluation for producing the �rst 3 data tokens onthe output line of program P from example 2.1, is represented by the followingvaluation v: I1 I2 X Ov = ([1; 2]; [1; 2]; [2; 4]; [1; 2; 4])It is easy to see that the computation represented by v is su�cient to produce thedemanded outputs, and that any attempt to produce these outputs by performingless computations will fail.3.2. Computations and Legal ValuationsThe previous example raises the question, whether it is possible to give a precisede�nition of the concept \a demand driven evaluation" for any program P in anyST language and any demands for outputs of P . Intuitively, if such an evaluationdoes exist, it has to be a minimal computation performed on the dataow graphof P , that can still satisfy the demand for outputs.First we should de�ne the notion of a \computation performed on the dataowgraph of P". Obviously, from an external point of view, a computation is rep-resented by the data streams produced on the dataow graph while performingthat computation. In other words, we can represent a computation performedon the dataow graph of P , as a valuation for P (as we did in example 3.2).However, it is clear that not every valuation for P represents such a computa-tion. Intuitively, a valuation representing a computation for P must satisfy thefollowing two conditions:1. The streams it assigns to the input lines of P are partial to the actual inputstreams of P , as determined by the interpretation.2. There are no \guesses" in the valuation: data items are produced only if thisis dictated by P .We will call a valuation for P , which intuitively satis�es these two conditions,a legal valuation for P and identify the concept of \computation performed onthe dataow graph of P" with the concept of \legal valuation for P". Our �rsttask is therefore to provide a formal de�nition of the concept of legal valuationsfor programs.Let v be a valuation for a program P . It is easy to formally express condition(1): for any input line I of P , with the equation I = c appearing in the inputpart of P , the following condition should hold: vI � c.It is more di�cult to de�ne the absence of guesses in v (condition (2)). On theface of it, it seems as if we should only check that for any operator f of P withinputs X1; : : : ; Xn and output Y , vY � f(vX1; : : : ; vXn). This is undoubtfullya necessary condition for the legality of v, but the next example (taken from[Pin86]) shows that this condition is not su�cient.

10 Arnon Avron and Nada SassonExample 3.3.Let us look at the following program P :(The de�nition of the Sadd operator is given in example 2.2).[0]I?Sadd
?O r ?

No data tokens can be produced on line O and the least solution of P isHP = ([0]; []). In the valuation v = ([0]; [1]), the value 1 is clearly a guess butthe condition [1] = vO � Sadd(vI; vO) = [1] still holds!The conclusion from this example is that we cannot determine whether thereare guesses in a valuation v or not, merely by checking the values of the lines ofP in v. We must perform a more serious check. What we should do is to startwith a state in which vI appears on each input line I of the dataow graph ofP , and on the other lines there are no data tokens at all. We should then checkif we can produce on each line X the stream vX , without guessing the value ofany of the data tokens.Given a valuation v, let us de�ne a valuation v1 that represents the initialstate: for any input line I , v1I = vI and for any other line X, v1X = []. Now letus execute each of the operators of the dataow graph that can �re. As a result,on each line of the graph, a new stream of data tokens will appear. For each lineX , let us remove from the new stream all the data tokens which do not appear invX . We do this because v represents a computation in which those data tokensare not produced. As a result of our actions, we receive a new valuation { v2.Now, let us perform on v2 the same actions we performed on v1 and call theresulting new valuation v3. We can go on performing the same actions on v3 etc..It is easy to see that fvig1i=1 is an increasing chain of valuations and that8i, vi � v. This chain of valuations represents a series of steps in a compu-tation that can be performed on the dataow graph of P . The way we createthe valuations ensures that only data tokens which can actually be produced bythat computation appear in these valuations { so there are no guesses in anyof them. The lub of the chain is the result of the computation, and intuitivelyit contains all the data tokens of v that can be created without guessing theirvalues. (Each of them can be computed from the input streams and thereforewill appear somewhere along the chain). Hence, there are no guesses in v i� it isequal to the lub of the chain. It is very reasonable, therefore, to formally de�nethe concept of a legal valuation using this chain of valuations.

Stability, Sequentialy and Demands in Dataow 11From now on, l will be some �xed ST language and IN some �xed interpre-tation for l of type L or L-tagged. All the de�nitions below are done relative tol and IN .De�nition 3.1.Let P be an l-program and let v be a valuation for P .1. The projected chain of P and v is the chain v1 � v2 � : : : � where:(a) For any input variable I : v1I = vI(b) For any internal variable X : v1X = [](c) For i > 0: vi+1 = glbf�P (vi); v)g.2. v is a legal valuation for P i� the following two conditions hold:(a) For any equation I = c appearing in P , vI � IN(c).(b) The lub of the projected chain of P and v is v.Remark: it is easy to see that HP is a legal valuation for P .3.3. On Demands and Legal ValuationsWe now give several other de�nitions which are needed in order to achieve ourgoal of de�ning the concept of a demand driven evaluation for a program inprecise terms.De�nition 3.2.Let P be an l-program.1. A demand D for outputs of P is a function D: O ! 2N where O denotes theset of output variables of P .2. Given a valuation v and a demand D, we say that token vO[i] is demandedby D i� i�D(O).3. A valuation v for P is output-complete with respect toD i� 8O�O, i�D(O))vO[i] 6=?.Example 3.4.1. D(O) = fij HPO[i] 6=?g. 62. D(O) = fij 1 � i � ng 7.3. Let HPO[i] be the �rst element of HPO whose value is =; <;�; > or � thansome �xed value val. Take D(O) = fjj j < i ^ HPO[j] 6=?g.6 HP is the only legal valuation which satis�es this demand. Satisfying it amounts thereforeto data-driven evaluation.7 For languages of type L only demands of this particular form are considered in [PiA85, Pin86].For languages of type L-tagged the possibility of \holes" is also allowed in [Pin86].

12 Arnon Avron and Nada SassonDe�nition 3.3.Let P be an l-program and let D be a demand for outputs of P .1. The set SP;D denotes the set of all the legal valuations for P , which areoutput-complete w.r.t to D.2. The D-driven evaluation of P is the least element of SP;D (if such exists).The set SP;D contains all the valuations which represent computations thatcan be produced on the dataow graph of P and contain the demanded outputs.(Obviously, a demand driven computation should be minimal among them).A crucial question now is whether for any IN , P and D, SP;D actually hasa least element. A positive answer to this question would have meant that theconcept of the demand driven evaluation is always meaningful. Unfortunately,the answer to this question is in general negative, as the next example from[Pin86] shows.Example 3.5.Let program P (represented as a directed graph) be:[true] [true]I3 I4? ?or Y?
[true] [true]I1 I2? ?andX ?parallel� or?Oand consider the following demand D for P : D(O) = f1g. Examine now thefollowing two valuations for P :I1 I2 I3 I4 X Y Ov1 = ([true]; [true]; []; []; [true]; [] [true])v2 = ([]; []; [true]; [true]; [] [true]; [true])The output of P can be produced either by computing the left input of theparallel-or (v1), or by computing its right input (v2). Since we can computethe required output by following two di�erent pathes in the graph, we can-not compare the two computations. Indeed, it is easy to see that v1 and v2are both legal valuations of P and output-complete w.r.t D, but the only legalvaluation that is smaller than both of them (the valuation that matches thevalue [] to every line), is not output-complete w.r.t D. Hence, for this programP , SP;D does not contain a least element.

Stability, Sequentialy and Demands in Dataow 13Note: The operators and, or and parallel-or perform the usual operations (withthe same names) on pairs of data tokens with identical position numbers. For thereader convenience we include here the truth table of the parallel-or operation:? false true? ? ? truefalse ? false truetrue true true trueIn spite of the previous example, there are many cases in which SP;D doesindeed contain a least element. Our next goal is to identify the set of interpreta-tions of types L and L-tagged, for which for any program P and any demand Dfor outputs of P (or at least a \reasonable" class of such demands) the set SP;Dis either empty or contains a least element.3.4. Stable Functions and Demand Driven ComputationsThe failure in example 3.5 is obviously due to the use of a truely parallel func-tion (parallel-or). It seems reasonable, therefore, to conjecture that if we employonly sequential functions (see [Cur85, KaP, Mil77, Pin86, Vui73]) then such aphenomenon will not happen.Formally, a function f :
D�1 � : : : �
D�n !
D�n+1 is sequential i� forevery X = (X1; : : : ; Xn) and every k such that f(X)[k] =?, there exist some1 � i � n and j such that Xi[j] =? and8Y = (Y1; : : : Yn) � X; f(Y)[k] 6=?) Yi[j] 6=? 8(The intuition behind this de�nition is that a function f from streams to streamsis sequential at X if for each empty position k at f(X) we can identify someun�lled position in the input X which is \critical" { i.e. unless this position inthe input is �lled, position k in the output cannot be �lled.)Basically, the above conjecture concerning sequential functions is proved in[Pin86] 9. It turns out, however, that the condition of sequentiality is only su�-cient for the existence of a least element in SP;D. A larger class of functions willin fact do: that of stable functions ([Ber76, Ber78a, Ber78b, Ber79]).De�nition 3.4.Let D1 and D2 be cpos and let f : D1 ! D2 be a continuous function. We callf stable i� for every x�D1 and y�D2 where y � f(x), there exists M(f; x; y)�D1such that 8z � x, y � f(z) ,M(f; x; y) � z.It is easy to show that sequentiality implies stability in the cpos we considerhere. The converse is false, however (see references above).8 For �D� the de�niton is similar except that k and j must be, respectively, the �rst un�lledpositions in f(X) and Xi.9 Except that no general de�nition of a legal valuation, which does not a priori assume thatonly sequential functions are used, is given.

14 Arnon Avron and Nada SassonTheorem 3.1. The Characterization TheoremThe following two properties are equivalent for any interpretation IN of type Lor L-tagged (for a given ST language l):1. For any l-program P and any demand D for outputs of P , the set SP;D iseither empty or contains a least element.2. IN uses only stable functions.In order to prove this theorem we �rst need several lemmas.Lemma 3.1. If IN uses only stable functions, then for any l-program P thecorresponding function �P is stable.Proof. Since the fi`s are stable functions by assumption, and Prk is always astable function for any k, the de�nition of �P implies that all its projections arestable. Hence �P is also stable (See [Ber79]).Lemma 3.2. Let P be an l-program and let v be a legal valuation for P . Then,v � HP and v � �P (v).Proof. Let us look at the projected chain of P and v: fvig1i=1.1. By de�nition 3.1, 8i � 1 vi+1 = glbf�P (vi); vg. Therefore,8i � 1 vi+1 � �P (vi). From this and from the fact that 8i � 1 vi � v(property of the chain), we can derive that 8i � 0 vi+1 � �P (v) (�P is mono-tonic). Since v = lubfvig1i=1 (legality of v), it follows that v � �P (v).2. Let fwig1i=0 be the chain de�ned by:w1 = � HPX if X is an input variable of P[] otherwisewi+1 = � iP (w1)(= �P (wi)) (i � 1)lubfwig = HP by de�nition of HP . Also, 8i � 1 vi � wi (by induction on i).Therefore, v = lubfvig � lubfwig = HP .Lemma 3.3. If IN uses only stable functions, then for any l-program P andany valuation v for P : (i) v � HP and (ii) v � �P (v)) v is a legal valuationfor P .Proof. Assume otherwise. Let fvig1i=1 be the projected chain of P and v andde�ne v0 = lubfvig1i=1. Then v0 � v but v0 6= v. Let C be the set of cells inwhich there is a value 6=? in v but not in v0 (Recall that the basic values aretaken from at domains). Intuitively, the cells in C are those whose values weredetermined in v by a guess. They have the following two properties:(1) 8c�C �P (v)(c) = v(c)(2) For every c�C �P (v0)(c) = ?.The �rst property is because v � �P (v). The second { because v0(c) =?)8vi vi(c) =?) 8vi �P (vi)(c) =?) �P (v0)(c) =? (since �P is continuous).Let us now de�ne the chain fwig1i=1 as in lemma 3.2 (part 2). The lub ofthis chain is HP . In w1 the cells in C contain ?, but since v � HP , they all

Stability, Sequentialy and Demands in Dataow 15contain values 6=? in HP . Hence, there exists a last valuation v00 in fwig1i=1 forwhich all the cells in C contain ?. Then there exists c0�C s.t �P (v00)(c0) = v(c0)(6=?). De�ne a valuation x = lubfv; v00g (x is well de�ned since both v andv00 are bounded by HP). Since �P is monotonic, we can easily conclude that�P (x)(c0) = �P (v00)(c0).De�ne next another valuation y by: y(c0) = v(c0), y(c) =? otherwise. Obvi-ously, y � �P (x) and so by stability of �P (see lemma 3.1) we conclude:(3) Let m =M(�P ; x; y). Then for all z � x : y � �P (z), m � z.From (1) it follows that y � �P (v). Hence m � v. On the other hand y � �P (v00)implies that m � v00. Hence m � glb(v; v00) and so 8c�C m(c) =?. Thereforem � v0 (v0 is exactly as v except that the cells of C contain ? in it). From this,from (2) and from the fact that �P is monotonic it follows that 8c�C �P (m) =?.On the other hand y � �P (m) (from (3)) and so �P (m)(c0) 6=?. A contradiction.Corollary 3.1.Suppose IN uses only stable functions and let P be an l-program. Then a valu-ation v for P is legal i� (i) v � HP and (ii) v � �P (v).3.5. Proof of the Characterization Theorem (theorem 3.1)()) Suppose IN uses only stable functions.Let P be any l-program and let D be any demand for outputs of P .Assume �rst that there is an output line O and a demand for data token i onO, but HPO[i] =?. For any legal valuation v of P , v � HP (see lemma 3.2). Inparticular, vO � HPO. Hence vO[i] =?. Therefore, none of the legal valuationsfor P is output-complete w.r.t. D. Hence SP;D is empty.Next, consider the case that for all the output lines of P , all the demandeddata tokens appear in HP . The set SP;D is then not empty, because HP belongsto it. Obviously, SP;D is a subset of a domain C which is a product of sequencedomains. It is easy to see that any nonempty subset of C has a glb in C. Let usdenote the glb of SP;D by v0. We will �nish by showing that v0�SP;D.Now, the fact that v � HP and v is output-complete 8v�SP;D, implies thatv0 has the same properties. By lemma 3.3, it remains to show that v0 � �P (v0).Assume otherwise. Since v0 � HP , we have �P (v0) � �P (HP) � HP (�P is mono-tonic). Therefore, both v0 and �P (v0) are bounded by HP , and so our assumptionthat v0 6� �P (v0) entails:(1) there is a cell c in C that contains a value 6=? in v0 and ? in �P (v0).By lemma 3.2, 8v�SP;D v0 � v � �P (v). Hence:(2) 8v�SP;D, the cell c contains value 6=? in �P (v) (equal to its value in v0).De�ne now y as follows: y(c) = v0(c) and y(a) =? otherwise. Since y � �P (HP) �HP and �P is stable by lemma 3.1, we can conclude:

16 Arnon Avron and Nada Sasson(3) Let m =M(�P ; HP ; y). Then 8z � HP : y � �P (z), m � z.From (2) it follows that 8v�SP;D; v � HP and y � �P (v). This fact togetherwith (3) imply that m is a lower bound of SP;D. Hence m � v0. From this andfrom (3) we conclude that y � �P (v0). Hence the de�nition of y implies that cellc contains a value 6=? in �P (v0). This contradicts (1).(() Let us assume that for any l-program P and any demand D for outputs,SP;D is either empty or contains a least element. We show that IN uses onlystable functions.Assume otherwise. Then for some f of type �1 stream! �2 stream, IN(f)is an unstable function of type E�1 ! E�2 . (For IN(f) : E�1 � : : :�E�n ! E�n+1the proof is similar). For convenience we shall denote IN(f) simply by f . Fromde�nition 3.4, it follows that there exist A�E�1 and B�E�2 such that B � f(A),but the set U = fzj z � A and B � f(z)g does not contain a least element.Now, let us look at the following l-program P :Graph : O = f(I)Input : I = AObviously, HP = (A; f(A)).Next, de�ne D(O) = fij B[i] 6=?g. The fact that B � f(A) entails that HPis output-complete w.r.t. D, and so SP;D is not empty. Hence, by assumption,SP;D contains a least element.Now, (vI; vO) is a legal valuation of P i� :1. vI � A2. The lub of the projected chain fvig1i=1 of P and (vI; vO) is (vI; vO).In the present case, this sequence is de�ned as follows:v1 = (vI; []),for j > 1 : vj = glbf�P (vj�1); (vI; vO)g = glbf(vI; f(vI)); (vI; vO)g Hencelubfvig1i=1 = (vI; vO) i� vO � f(vI).On the other hand, a legal valuation (vI; vO) for P is output-complete w.r.tD i�: 8i > 0; B[i] 6=?) vO[i] 6=?. Since B and vO are bounded by f(A) (from1, 2 and the fact that f is monotonic), this is equivalent to B � vO. It followsthat: SP;D = f(vI; vO)j vI � A and B � vO � f(vI)g.Let (vI 0; vO0) denote the least element of SP;D. We have:� (vI 0; vO0)�SP;D) vI 0 � A and B � vO0 � f(vI 0)) vI 0�U .� 8z�U; z � A and B � f(z)) 8z�U; (z; f(z))�SP;D) 8z�U vI 0 � z.It follows that vI 0 is the least element of U . This contradicts our assumptionthat U does not contain a least element.3.6. On Pingali Conditions for Legality of ValuationsCorollary 3.1 above, enables us to check legality of valuations by using conditions(i) and (ii). This is much easier than checking it directly by de�nition 3.1.

Stability, Sequentialy and Demands in Dataow 17For the sequential case legality is actually de�ned in [Pin86] by these twoconditions. No attempt to justify the de�nition is made, though. Corollary 3.1formalizes Pingali`s intuition: in the sequential case a valuation satis�es the twoconditions i� it is a legal valuation. In fact, the corollary shows this for a largerclass of functions { the class of the stable ones. It should be noted that Pingalihimself has given in [Pin86] an example which shows that conditions (i) and (ii)are not su�cient for legality in the general case. His example contains indeed anunstable function { parallel-or.4. E�ectively Sequential Functions and E�ective DemandDriven EvaluationIn the previous section, we gave a denotational semantics for demand drivenevaluations of programs in ST languages, relative to interpretations of types Lor L-tagged which use only stable functions. From now on all the interpretationswe discuss are assumed to have this property, unless we say otherwise.Our next goal is to look for an operational semantics for demand drivenevaluations. Namely, the question is how can a demand driven evaluation of anST-program actually be performed.Such an operational semantics was given by A&P in [PiA85, Pin86] for asmall subset of the allowed interpretations. As we explain below, their methodis the most natural one, and we want to determine the largest possible set ofinterpretations to which it applies.In section 4.1 below we motivate, explain and generalize the approach of A&P.In 4.2 we determine the scope of its applicability. Here the notion of e�ectivesequentiality will take the role of stability in the previous sections.4.1. The Basic Idea of Pingali and Arvind for PerformingDemand Driven Evaluations Presented in a GeneralSettingLet l, IN , P and D be as above. We want that only the data tokens the values ofwhich are needed for producing the requested outputs of P be created on the linesof its dataow graph. To accomplish this goal, we need some way of informing thesystem about which data tokens are required to appear on the output lines of P .Then, each operator which produces data tokens on an output line of P , shouldproduce the requested data tokens and only them. To do that, such an operatorneeds to have certain data tokens on its input lines. Therefore, the demandsfor outputs of an operator should be propagated in some way into demands forthe outputs of the operators which produce the inputs of that operator. Suchdemands, in turn, will be satis�ed if appropriate demands are propagated foroutputs of other operators (the ones which produce data tokens on those lines),and so on. This means that there should be a propagation of demands in thedirection opposite to the ow of data tokens in the dataow graph of P . Thispropagation of demands can most naturally be implemented by using a dataowgraph in which there is a ow of data values of a new type, representing demands ,in the direction opposite to the ow of the data tokens required for producingthe wanted outputs.

18 Arnon Avron and Nada SassonThese considerations led A&P in [PiA85, Pin86] to the idea of de�ning anoperational semantics for the D-driven evaluation of P , by the operational se-mantics for the data driven evaluation of another program P 0, which is obtainedfrom P and D by expansion of P with lines for demand propagation. There is aone to one correspondence between the operators of P and some of the operatorsof P 0, and between the lines of P and some of the lines in P 0. The connectionsbetween the operators and the lines in P remain for the corresponding operatorsand lines in P 0. The demand D is translated into input streams of P 0, which arepropagated through the \demand lines" of P 0 into demands for the operatorsof P 0. The data driven evaluation of P 0 creates, on the data lines of P 0 thatcorrespond to the lines of P , the D-driven evaluation of P .We next briey and informally describe how to transform the directed graphof P , in order to get the directed graph of P 0. For examples refer to [PiA85,Pin86].First, we de�ne a demand token as a data token with a special value of anew type demand. We de�ne a demand line as a line on which there is a ow ofdemand tokens, and call the series of their values - a demand stream.For each data line X in P , we create in P 0 a data line X and a demand lineDX . On DX there is a ow of demand tokens that describe which data tokensshould be produced on X : the occurrence of a demand token number i on DX ,means that there is a demand for data token number i on line X . To each outputline O in P , line O is an output line of P 0 and line DO is an input line of P 0.The input to line DO is a demand stream that describes the request D from lineO. The essence of the transformation is to propagate the demands for the outputsof the operators of P 0 into demands for the data tokens the values of which areneeded for producing those outputs. To do that, a code for demand propagation isadded in P 0 to each of the operators of P . This code gets demands for the outputsof the operator, and propagates them into demands for its inputs. Therefore, if inP there is an operator F with inputs X1; : : : ; Xn and outputs Y1; : : : ; Ym then inP 0 there is an operator FD with inputs X1; : : : ; Xn; DY1; : : : ; DYm , and outputsDX1; : : : ; DXn; Y1; : : : ; Ym.In view of the names of the input and output lines of the various FD oper-ators, it is clear that if in P line X is an output line of an operator F and aninput line of an operator G, then in P 0 line X is an output line of FD and aninput line of GD, and line DX is an output line of GD and an input line of FD.In this way, GD can produce on DX demands for the data tokens it needs onX in order to produce its demanded outputs.It must be ensured that only input tokens that are requested by the operatorsof P 0, will be allowed to ow on the lines of P 0. For that purpose, a new operatorcalled Gate is used. This operator receives as inputs a data stream X and ademand stream D, and creates an output data stream in which for all i > 0 :O[i] = � X [i] if X [i] 6=? and D[i] 6=?? otherwiseThe Gate operators are used to limit the ow of input data tokens on thelines of P 0 in the following manner: if I is an input line of P , then a new line IJ isan input line of P 0 and an input of a Gate operator. Line DI is the second inputof the Gate. Line I is the output of the Gate. The Gate operator transfers to line

Stability, Sequentialy and Demands in Dataow 19I only data tokens which are needed by the operators of P 0, and so unnecessaryinput data tokens are not used in P 0.Remark: Sometimes, a line in the dataow graph of P is an input of severaloperators. In that case, a forkj operator is used: it replicates the input line toj output lines. Forkj operators are represented in dataow graphs as thick dots(see example 2.1). In the dataow graph of P , the inputs and outputs of forkjoperators have the same names, but before transforming P into P 0, a di�erentname should be given to each of the lines.Example 4.1.The graph representation of the graph part of program P 0 which correspondsto the program P of example 2.1:(Gate operators are marked as small empty squares).I1J?I1 ? forkD� DI1 I2J?I2
?
� DI2

?I11 6DI11
consD
?O 6DO

?I12 6DI12SaddDX� 6DX

20 Arnon Avron and Nada SassonRemarks on the transformed programs:1. In the original programs, any operator (except forkj) has only one outputline. This can be a property of the transformed programs as well. Any FD op-erator can be divided into several operators, where each has only one outputline. Therefore, from now on we will call FD a generalized operator.2. The method described here for performing demand driven evaluations treatsonly one way of specifying a demand for output: that which speci�es exactlywhich are the needed data tokens (and not, e.g., that which requires thatdata tokens will be produced until a certain condition is satis�ed). From nowon we will only treat this case.Example 4.2.This example from [Pin86] describes a generalized operator consD for the consoperator de�ned in example 2.2.X1? X2?cons
?Y

6DX1first6
6DX2rest6r6DYThe de�nitions of the first and rest operators are as follows:first([x1; x2; : : :]) = [x1]rest([x1; x2; : : :]) = [x2; : : :]Remark: Recall that the dataow operators in the operational semantics ofST languages are stable (namely correspond to stable functions). That is notnecessary for the generalized operatos. They should only be continuous (thatis, correspond to continuous functions). This is due to the fact that for STDprograms we are only interested in data driven evaluations and not in demanddriven ones.

Stability, Sequentialy and Demands in Dataow 214.2. The Need to Use only E�ectively Sequential Functionswhen Performing Demand Driven EvaluationsThe question which naturally arises now is whether every stable dataow op-erator F has a compatible continuous generalized operator FD. If so, then thedenotational semantics for demand driven evaluations given above is equivalentto the operational semantics described in 4.1. We give now an example that in-tuitively shows that this is not the case, i.e. that such a generalized operatordoes not always exist.Example 4.3.De�ne a stable operator F with input lines I1; I2; I3 and output line O by:F ([x1; x2; : : :]; [y1; y2; : : :]; [z1; z2; : : :]) = [f(x1; y1; z1); f(x2; y2; z2); : : :]where f is Berry's stable function ([Ber79]), de�ned as the minimal monotonicfunction satisfying:f(?; true; false) = f(false;?; true) = f(true; false;?) = trueIf a corresponding generalized operator FD exists it has inputs I1; I2; I3 andDO, and outputs DI1; DI2; DI3 and O. When there is a demand for an outputdata token number i, FD should identify which of the three input data tokensnumbered i are needed in order to produce the demanded output. Since FD hasno way of knowing a priori the values of those input data tokens, it will alwayshave to propagate demands for all three of them. That is due to the fact thatthere are cases in which the value of the output data token cannot be calculatedif only two input data tokens are demanded, no matter from which two inputlines those tokens were demanded. (E.g. assume FD propagates demands fordata tokens numbered i from lines I1 and I2. If the value of those two tokens istrue, FD will not be able to produce the output data token without knowingthe value of data token number i on line I3, since f(true; true; false) = trueand f(true; true; true) =?).On the other hand, if FD does propagate the demand for output into de-mands for each of the three input lines I1; I2; I3, then there are cases in which itdemands unnecessary data tokens. (E.g. if the values of data tokens numbered ion I1 and I2 are true and false respectively, then knowing their values is suf-�cient for determining the value of the output data token, no matter what thevalue of data token numbere i on I3 is. Hence, in a demand driven evaluationthere is no need to produce it!)An analysis of the previous example indicates that in order to do its job, thegeneralized FD operators should not, under any circumstances, propagate de-mands for unnecessary data tokens. Therefore each output data token must havecritical input data tokens, namely data tokens that must be produced in orderto calculate the value of the demanded output. This implies that the originalF operators should be sequential (namely, correspond to sequential functions).Moreover, it is not enough that critical input data tokens exist for every outputdata token. There should also be an algorithm that can identify those criti-cal data tokens! In other words: the only functions to be used are functionsf :
D�1 � : : : �
D�n !
D�n+1 for which there exists an algorithm which givenX = (X1; : : : ; Xn) and k such that f(X)[k] =?, computes some 1 � i � n and

22 Arnon Avron and Nada Sassonj for which Xi[j] =? and 8Y � X 8k f(Y)[k] 6=?) Yi[j] 6=? 10. Such functionsare known as e�ectively sequential ([Tra75, Tra85]). Obviously, every e�ectivelysequential function is sequential. The converse, however, fails (a counterexampleis given in [Tra85, pp. 17{19]).In each of the examples of A&P given in [PiA85, Pin86] of operators whichhave corresponding compatible generalized operators, only e�ectively sequentialoperators have indeed been used. On the other hand, the operator F from exam-ple 4.3 is not sequential (See [Ber79]). We conjecture that this is not an accident,and that the e�ectively sequential operators are exactly those opearators whichhave corresponding generalized continuous operators.Let us informally describe how to create generalized operators for e�ectivelysequential operators: If F is such an operator with inputs I1; : : : ; In and outputline O, then a correspondig generalized operator FD for F includes:� The operator F itself with input lines I1; : : : ; In and output line O0.� A gate operator with input lines O0 and DO and output line O.� A generalized operator FD0, with input line DO and some inputs fromI1; : : : ; In, and output lines DI1; : : : ; DIn. This operator reads demands foroutput data tokens and implements the algorithm for identifying the criti-cal inputs data tokens, in order to propagate the demands for outputs intodemands for inputs.The Gate operator in FD on the output of F is needed because there are casesin which data tokens that were created in order to satisfy demands for certainoutputs, cause the creation of other unneccessary ones. (For example the e�ec-tively sequential operator F ([a1; a2; : : :]) = [a1; a1; a2; a2; : : :] will always produceoutputs i and i+ 1 even if only one of them is needed).An example of a generalized operator which has been constracted in this wayis given in example 4.2 { the consD operator (but note that in this particularcase the Gate operator on the output of the cons operator is unnecessary andwas therefore ommited).5. Conclusion and Suggested Further ResearchOur conclusion is that although the denotational de�nition of demand drivenevaluation (given in de�nition 3.3) for ST programs (with semantics of types Lor L-tagged) exists whenever the semantics use only stable functions, the naturalway for actually performing such evaluation can only be used when we employa subclass of the stable functions { the e�ectively sequential ones.What remains to be done is to show this formally, by de�ning, given an e�ec-tively sequential operator F , the associated generalized operator FD in preciseterms, and then to prove that it is actually compatible with F .Another line of investigation is to see how much of the above theory is applica-ble to nondeterministic dataow graphs, the semantics of which has received con-siderable attention in the dataow literature (see, e.g. [Kon78, Kel78, BrB84]).Our �rst impression is that it is applicable, but only further study can con�rm it.10 For �D� the de�niton is similar except that k and j must be, respectively, the �rst un�lledpositions in f(X) and Xi.

Stability, Sequentialy and Demands in Dataow 23AcknowledgementWe would like to thank Boris A. Trakhtenbrot and Alexander Rabinovitz forintroducing us to the subject and for their helpful comments on preliminaryversions of this paper.References[ArG77] Arvind and Gostelow K.P.: Some Relationships Between Asynchronous Inter-preters of a Dataow Language. Proceedings of the IFIP WG2.2 Conference onFormal Description of Programming Languages, St. Andrews, Canada, 1977.[Ber76] Berry G.: Bottom-up Computation of Recursive Programs. R.A.I.R.O. Informa-tique Theorique vol. 10 no. 3, pp. 47{82 mars 1976,.[Ber78a] Berry G.: Sequentialit�e de l'Evaluation Formelle des �-expressions. Proc. 3rd In-ternational Colloquium on Programming, Paris, March 28{30, 1978, DUNOD.[Ber78b] Berry G.: Stable Models of typed lambda - calculi. Proc. 5th Coll. on Automata,Languages and Programming, July 1978, pp. 72{89.[Ber79] Berry G.: Mod�eles compl�etement ad�equateet Stable des �-calculus typ�es. Th�ese deDoctorat d`�Etat, Universit�e Paris VII, 1979.[BrB84] Broy M. and Bauer F.L.: A Systematic Approach to Language Constructs forConcurrent Programs. Science of Computer Programming 4, pp. 103{139, North-Holland Publishing Company, 1984.[Cur85] Curien P.: Categorical Combinators, Sequential Algorithms and Func-tional Programming. Ph.D Thesis, Univesite Paris 7, Paris, 1985.[Fau82] Faustini A.: The equivalence of an Operational and Denotational Semantics forPure Dataow. Ph.D Thesis, University of Warwick, 1982.[Iee82] IEEE. Special issue on Dataow Systems. IEEE Comput. 15, 2 Feb 1982.[Jon87] Jones K.: A Formal Semantics for a Dataow Machine | Using VDM. LectureNotes in Computer Science 254, pp. 331{335, 1987 (reprinted in Shaw R.C., JonesC.B.: Case Studies in Systematic Software Development. Prentice-Hall, 1990).[Kah74] Kahn G.: The Semantics of a Simple Language for a Parallel Programming. Pro-ceeding of the IPIF Congress 74, pp. 471{475, 1974.[KaP] Kahn G. and Plotkin G.: Structures de donn�ees concr�etes. Rapport IRIA - LA-BORIA 336 (D).[Kel78] Keller R.M.: Denotatinal Models for Parallel Programs with Indeterminate Op-erators. Formal Descriptions of Programming Concepts, E.J. Neuhold (ed.), pp.337{366, North Holland, 1978.[Kon78] Kosinski P.R.: A Straightforward Denotational Semantics for Non-determinateData Flow Programs. Conf. Record of the 5th Annual ACM Symposium on Prin-ciples of Programming Languages, pp. 214{221, 1978.[LiS89] Linch Nancy A. and Stark E.W.:A Proof of the Kahn Principle for I/O Automata.Information and Computation 82, pp. 81{92, 1989.[LoS84] Loeckx Jacques and Sieber Kurt.: The Foundations of program Veri�cation. Teub-ner, 1984.[MiS76] Milne R. and Strachey C.: A Theory of Programming Language Semantics.Chaprmand and Hall, 1976.[Mil77] Milner R.: Fully Abstract Models of Typed �-calculi. Theoret. Comput. Sci., vol4, no 1, pp. 1{23, Feb 1977.[Oli84] Oliveira J.N.: The Formal Semantics of Deterministic Dataow Programs. Ph.D.Thesis, Department of Computer Science, University of Manchester, February1984.[PiA85] Pingali K. and Arvind: E�cient Demand-Driven Evaluation part 1. ACM Trans.on Prog. Lang. and Sys. vol 7, no 2, pp. 311{333, April 1985.[Pin86] Pingali K.:Demand Driven Evaluation on Dataow Machines. Ph.D Thesis, 1986.[Ric82] Richmond G.: A Dataow Implementation of SASL. M.Sc. thesis, Department ofComputer Science, University of Manchester, 1982.[ScB69] Scott D. and de Bakkar J.W.: A Theory of Programs. IBM Seminar unpublishednotes, 1969.

24 Arnon Avron and Nada Sasson[Sco70] Scott D.:Outlines of Mathematical Theory of Computation. 4th Annual PrincetonConf. Inform. Sc. and Sys. pp. 169{176, 1970.[Sto77] Stoy J.: Denotational Semantics: The Scott-Strachey Approach to Pro-gramming Language Semantics. M.I.T press, 1977.[Tra75] Trakhtenbrot A.: On Representation of Sequential and Parallel Functions. Pro-ceeding of 4th Symposium on Mathematical Foundations of Comp. Sci., vol 32,pp. 411{417, 1975.[Tra85] Trakhtenbrot B.: Topics in Typed Programming Languages, Lecture Notes. CMU,Dep. of Comp. Sci., Fall Term, 1985.[Tur79] Turner D.: A New Implementation Technique for Applicative Languages. Software| Practice & Experience, 9(1), pp. 31{39, 1979.[Vui73] Vuillemin J.: Proof Techniques for Recursive Programs. Ph.D Thesis, Stan-ford University, 1973.

