Formal Aspects of Computing (2001) 3: 1-000
© 2001 BCS

Stability, Sequentiality and Demand
Driven Evaluation in Dataflow

Arnon Avron and Nada Sasson

Tel Aviv University, Israel

Keywords: Dataflow; Stability; Sequentiality.

Abstract. We show that a given dataflow language | has the property that for
any program P and any demand for outputs D (which can be satisfied) there
exists a least partial computation of P which satisfies D, iff all the operators of
| are stable. This minimal computation is the demand-driven evaluation of P.
We also argue that in order to actually implement this mode of evaluation, the
operators of [ should be further restricted to be effectively sequential ones.

1. Introduction

Dataflow machines are a method of implementing functional languages, which is
especially suited to exploit parallelism in programs (see [Iee82]). For this they
usually incorporate streams, which are infinite data objects. On the other hand,
they are designed for data-driven evaluation of programs: operations on elements
of streams can execute as soon as their inputs are available. It was observed
(e.g. in [PiA85]) that the combination of these two properties might generate
an infinite amount of useless computations. Hence a demand-driven (or “lazy”)
paradigm is preferable.

The papers [PiA85, Pin86] are devoted to a thorough study of demand-driven
evaluation in dataflow computations. Still, Arvind and Pingali (A&P) have left
several theoretical gaps in their work:

e The central notion of a demand-driven evaluation of a program P has never
been defined in complete generality. More precisely, A&P defined it to be
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the minimal element (if such exists) in the set of “legal valuations for P”
which satisfy the demand. A&P gave, however, no general definition of a
“legal valuation for P” (which intuitively is a description of a state which
can be reached during a data-driven evaluation of P). Instead they gave
two conditions that any such valuation should obviously satisfy, but they
gave themselves an example in which these conditions are intuitively not
sufficient for “legality”. A&P restricted themselves then to the case in which
all the operations involved in a program are sequential. Obviously they were
assuming that in this special case their two conditions are sufficient. No
attempt to justify this belief was made, though.

e For the sequential case A&P were able to show (granting the above assump-
tion) that a minimal “legal” valuation meeting a given demand always exists
(unless the demand is unsatisfiable). Here however, it is not clear whether
the condition of sequentiality is necessary, and A&P made no attempt to
determine the exact range of programs for which one can meaningfully talk
about demand-driven evaluation.

e From a practical point of view, A&P suggested a method of implementing
the demand-driven evaluation of a program within a certain restricted class
of operations. It is clear that the method is applicable to a much larger class,
but no attempt to determine its range of applicability was made.

Our goal in this paper is to fill in the above gaps and to put the subject in a
more general framework. Our main result is that from an abstract point of view,
the largest class of operations which allows demand-driven evaluation in dataflow
is that of stable operations (which contain the sequential ones). It is rather
interesting that the class of stable functions which was originally introduced by
G. Berry (see [Ber76, Ber78a, Ber78b, Ber79]), has an important role in our
work. What we actually show is that the following two properties are equivalent
for a given set S of operations on streams of data tokens from flat domains:

1. Given any program P which is based on S and any demand D which P can
satisfy, there exists a least legal wvaluation for P  which
satisfies D.

2. All the operations in S are stable.

The notions of a “legal valuation” and a “demand” in the above characteri-
zation are defined in rather general terms, with no extra assumptions about the
operations in S (except that they are continuous). We show, however, that for
stable operations the two conditions of A&P are indeed sufficient and necessary
for legality.

When it comes to practical implementation of demand-driven evaluation, the
set of stable operations is apparently too large. We illustrate this by an example.
We argue then that for this goal even the set of sequential operations ! is too
large, and that one should limit oneself to the subset of effectively sequential
operations. We outline the obvious method of doing the implementation in such
a case (which is essentialy A&P’s method, put in a general form), and conclude
that at least for one especially important type of demands (in fact, the only ones
disscussed in [PiA85]), the effective sequentiality condition is indeed sufficient
for the applicability of the method.

I These are the only operations studied by A&P.
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The structure of the rest of the paper is as follows. In section 2 we present
the general syntax of basic stream languages and describe denotational and op-
erational semantics for data-driven evaluations of their programs. In section 3 we
present a denotational semantics for demand-driven evaluations of such programs
and show that stability of the language’s operators is a necessary and sufficient
condition for its applicability. Finally, in Section 4 we describe a correspond-
ing operational semantics and explain why the stronger condition of effective
sequentiality is needed to make it work.

Two important remarks: First, although the specific target of the present
paper is to improve theoretical results of Arvind and Pingali ([PiA85, Pin86],
the topic of demand-driven dataflow should be framed in the wider context of
interpreting applicative languages ([Tur79]). The idea has indeed been tested by
Richmond’s implementation ([Ric82]) of Turner’s SASL language, running on the
Manchester dataflow hardware. Second, despite the fact that the paper heavily
draws on these works of A&P, we have made a great effort to make it self-
contained, and so no acquaintance with A&P’s work is needed in order to read
it.

2. Basic Stream Languages

In this section, we will present the syntax and semantics of basic stream languages
for stream processing. We will call these languages ST languages.

2.1. Syntax of an ST Language
2.1.1. Alphabet and Types

There are four sets of symbols:

T — The set of simple Types.

C — The set of Constants.

V R — The set of Variables.

F — The set of Function Symbols.

Ifoy,...,0n41 are elements of T then oy _streamsx. . .xo,,_stream — 0,11 _stream
is a complex type (this includes the case n = 0). Together the simple and the
complex types form the category of types. Any other construct of the language
has a unique type. In particular, each element of C' and V' R has a complex type of
the form o_stream for some oeT', while each feF has a complex type of the form

o1-_stream x ... % on_stream — on41-stream where n > 0 and o01,...,0,41€T.

Note: In the intended semantics elements of simple types are what is called
in [PiA85] scalar values. Note that we do not include in the language constants
for such values. On the other hand we put no restriction on the form of the con-
stants in C. Thus a typical constant of type integer_stream (where integereT)
which we use below is [1,2,3,...]. This form reflects the obvious intended mean-
ing, but its “components” (like “1”) are not part of the language. Of course,
in a concrete implementation such constants of C' will be represented by finite
terms of some auxiliary language, which most probably will contain (among other
things) constants for scalar values.
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2.1.2. Terms and their Types

The set of terms over (T',C,V R,F) is divided into atoms and applications. Each
term is associated with a type.

e Atoms: constants and variables.

¢ Applications:
If feF is of type o1 _stream*.. .%o, _stream — 0,41 _stream and Xy, ..., X,
are atoms of types oy _stream, . .., op_stream respectively, then f(Xq,..., X},)
is a term of type Un+1_stream.

2.1.8. The Syntaz of Programs in ST Languages over (T ,C,VR,F)

A program in an ST language consists of two parts: Graph, a set of n > 1
equations of the form X; = t;, and Input, a set of m > 0 equations of the form
I; = ¢;, such that:

o Xi,..., X, I1,..., I, are n + m different variables from V R.

e cy,...,cp eC.

e Thet;’s (i =1,...,n) are applications of the form f;(V;,,..., Yik(,-)) where
Yi].e{Xl,...,Xn,Il,...,Im} for j=1,...,k(2).

e The types in an equation should match.

e Every variable occurs exactly once on the left hand side of one of the equa-

tions.

I,...,I, are called Input Variables. All the other variables are internal
Variables. Some of them are determined in advance as Output Variables (either
by declaring them as such or by using some convention of the kind we use below).
2

We shall now introduce conventions regarding the names of the variables of
a program in an ST language:

e The input variables and only them will begin with the letters I or i.

e The output variables and only them will begin with the letters O
or o.

2.1.4. Representing a Program in an ST Language as a Directed Graph

An alternative way to represent a program in an ST language, which is exten-
sively used in [PiA85, Pin86], is as a directed graph (see example 2.1 below).
There is an obvious correspondence between the two representations: each node
of the directed graph represents one of the applications appearing in the Graph
part of the textual program. The incoming arcs of the node represent the inputs
of the application, and the outgoing arc represents the output of the application.

2 Note that output variables may occur on the r.h.s. of an equation, and so they cannot be
distinguished from other variables by just inspecting the program.
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Example 2.1.

Program P:
Graph: X = Sqqa(I1,I2)
O = cons(l1,X)
Imput: I, = [1,2,3,..]
I, = [1,2,3,..]
Remark: As we have already explained above, the constant [1,2,3,...] is con-

sidered to be a single data object. Later on an obvious semantics will be given
to it.

The graph representation of P:
1,2,3,..] [1,2,3,..]

I I

Sadd

HX

cons

2.2. Denotational Semantics

We assume that the reader is acquainted with the basic theory of Complete
Partial Order Sets (see [LoS84, MiS76, ScB69, Sco70, Sto77]).

In order to give denotational semantics for ST languages, we first need some
definitions: Let D be a flat domain. (I.e. D is a set which is equipped with a
partial order C , so that it contains a least element |, and all its other elements
are incomparable). Denote by Qp the set of all infinite sequences of elements
from D, and by ®p the subset of Qp of proper sequences. (A sequence is called
proper if whenever one of its elements is equal to L, then so are all its successors).

Deﬁne, for Xl,XQEQD, X1 g Xg iff Vi > 0, Xl['L] g XQ[Z] inD. (X[Z] denotes
the i‘th element of X). This makes both & and Qp cpos with a least element
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[ ] (a sequence in which every element is 1). 3

Notation: When writing down a sequence from ®p or Qp which has | from
one place onwards, we will omit its rightmost L elements (as we just have done
in the case of [ ]).

We follow [Pin86] in presenting two types of denotational semantics for ST
languages: semantics of type L and semantics of type L-tagged.

Definition 2.1.

Let I be an ST language. A function IN is called an interpretation for [ of
type L / L-tagged if:

1. for 0€T, IN(0) = D’ where D° is a flat domain. *
2. for oeT, IN (o_stream) = E?, where:
(a) For type L: £° = ®po.
(b) For type L-tagged: E7 = Qp..
3. IN(c”)eE” in case o€l and ¢”eC is a constant of type o_stream.

4. For o1,...,0p41€T, IN(o1_stream * . ..x o,_stream — o,41-stream) is the
) ) + ) +
domain of continuous functions from FE%' x...x E°" to FE%~+!,

5. For feF, IN(f)eIN(a) where « is the type of f.
Definition 2.2.

Let [ and IN be as above. Let P be a program in [. Define:
V=|JE°
oeT

e A waluation v for P (relative to IN) is a type-respecting assignment of an
element of V for each of the variables of P.

Notation: We denote by vX the element of ¥V which v assigns to X.

e If v; and vy are valuations for P, then v; C vy iff for any variable X in P,
11X Cv9X. (Notice that the valuations of P are elements of a cpo which is
a product domain of cpos).

Definition 2.3.

Let I, IN and P be as above. Define a function 7p from valuations to valua-
tions (for P) as follows:

1. For any input variable I: 7p(v)I = vl.

3 We prefer to follow [Pin86] in using these cpos rather than Kahn’s cpo D (see [Kah74])
which was adopted in [PiA85]. The reason is that it makes the expression X[i] meaningful for
every X and i, and so allows a more unified treatment of the two types of semantics given
below.

4 By convention, the flat domains Dinteger pboolean otc will be given their usual interpre-
tations. (e.g. : Dinteger — {1 1,2, ...}).
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2. For any internal variable X, which is the output of a function symbol f with
inputs Y, Z,...: 7p(v)X = IN(f)(vY,vZ,...).

Note: For convenience, we shall use from now on the same symbol for denoting
a function symbol in the language and its associated function (unless there is a
danger of confusion).

Given I, IN and P, it is easy to see that 7p is a monotonic and continuous
function from a product of sequence domains to the same product domain. Now
P can be viewed as a set of equations over cpos. It is well known that such a
set of equations has a least solution, which is the least upper bound (lub) of the
chain {75 (v0)}32, where:

e for any input variable I with the equation I = cin P: vgl =c.
e for any internal variable X: vgX = [].

For more information see [Sto77].
This least solution is called in [PiA85, Pin86] the meaning of P (relative to
IN), and is denoted by Hp.

Example 2.2.

1. Standard interpretations of type L for the function symbols given in example
2.1:

(a) cons: ®pinteger % Bpinteger — P pinteger
cons([ ], [z1,22,...]) =[]
cons(lay, .. ], [z1,22,...]) = [a1,x1, 22, ...]) (a1 #L)
(b) Sadd : D pinteger * Ppinteger = Ppinteger
Sadd(X,[]) = Saaa([[,Y) =[]
Sadd([wl,azg, .. .], [yl,yg, .. ]) = cons([azl + yl], Sadd([wg, .. .], [yg, .. ]))

2. Tt is easy to see, that under the interpretations of part (1), for the program
given in example 2.1:

I I X O
Hp = ([1,2,3,..], [1,2,3,..], [2,4,6,..], [1,2,4,6,...])

2.3. Computational Models (Operational Semantics) for ST
Languages

We will only briefly present this subject. For detailed information refer to [ArGT77].
We can refer to the graphical representation of a program in an ST language as
a dataflow graph. Its arcs represent data lines with data streams flowing along
them, and its nodes represent dataflow operators which process the data streams.
The streams are implemented as sequences of data tokens, holding data values
of simple types. The behaviour of the dataflow operators is determined by firing
rules which describe how the operators consume their input tokens and how they
produce output tokens.

There is a difference between the computational models of semantics of types
L and L-tagged. For semantics of type L, a queued / piped dataflow model is
used. In this case, the data lines of the graph represent unbounded FIFO buffers
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in which the tokens are kept. For semantics of type L-tagged, the data streams
can have “holes” in them, so in this case a tagged dataflow model is used °.
In addition to its data value, each token has a tag which identifies its position
number on the data line. This is necessary because a token at position ¢ can
be produced on a data line even if a token at position j < i had never been
produced. The firing rules of the dataflow operators relate to the tags of the
tokens as well as their data.

If a “fair” algorithm for scheduling operators for execution is used (i.e. every
operator that can fire will eventually be scheduled), the behaviour of the graph is
independent of the scheduling policy, and for any program (in any ST language
with semantics of type L or L-tagged) the streams produced on the lines of the
dataflow graph of the program and the values of the appropriate variables in
the least solution of the program are identical. This fact is known as the Kahn
Principle and is usually expressed by saying that the operational semantics is
congruent with the denotational semantics. (Proofs of the Kahn Principle in
similar setups are given in [Fau82, LiS89]).

3. Demand Driven Evaluation for ST Languages

3.1. Data Driven Evaluation Versus Demand Driven
Evaluation

The valuation Hp represents a data driven evaluation for P. This comes from
the fact that in the dataflow graph of P, operators can execute as soon as the
data tokens needed for their operation are available on their input lines. The
problem with this method of evaluation is that in many cases it is very wasteful.
Frequently, programers are only interested in the outputs of the program or even
in part of the outputs. However, in a data driven evaluation, any data token that
can be produced on the lines of the program'‘s graph will eventually be produced,
whether or not its value is actually needed for producing the wanted outputs.
Therefore, on the lines of the graph, a large or even an unbounded (in the case
of infinite data streams) amount of unnecessary data tokens might be produced.

Example 3.1.

In the program given in example 2.1, an unbounded number of data tokens
are computed on lines X and O, even if the programer is only interested in the
values of the first N data tokens.

Since a data driven evaluation for programs is not sufficiently efficient, a need
arises for a demand driven evaluation in which only data tokens which are needed
for computing the demanded outputs of a program are produced on its dataflow
graph.

5 It should be noted that, although Qp provides an elegant basis for describing streams
of tagged-tokens (in the style of the UI interpreter of [ArG77]), the semantics of actual
tagged-dataflow systems are inherently more complex (cf., e.g., the Manchester machine
[Oli84, Jon&7]).
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Example 3.2.

Intuitively, a demand driven evaluation for producing the first 3 data tokens on
the output line of program P from example 2.1, is represented by the following
valuation v:

I I X @)
v=([1,2], [1,2], [2,4], [1,2,4])

It is easy to see that the computation represented by v is sufficient to produce the
demanded outputs, and that any attempt to produce these outputs by performing
less computations will fail.

3.2. Computations and Legal Valuations

The previous example raises the question, whether it is possible to give a precise
definition of the concept “a demand driven evaluation” for any program P in any
ST language and any demands for outputs of P. Intuitively, if such an evaluation
does exist, it has to be a minimal computation performed on the dataflow graph
of P, that can still satisfy the demand for outputs.

First we should define the notion of a “computation performed on the dataflow
graph of P”. Obviously, from an external point of view, a computation is rep-
resented by the data streams produced on the dataflow graph while performing
that computation. In other words, we can represent a computation performed
on the dataflow graph of P, as a valuation for P (as we did in example 3.2).
However, it is clear that not every valuation for P represents such a computa-
tion. Intuitively, a valuation representing a computation for P must satisfy the
following two conditions:

1. The streams it assigns to the input lines of P are partial to the actual input
streams of P, as determined by the interpretation.

2. There are no “guesses” in the valuation: data items are produced only if this
is dictated by P.

We will call a valuation for P, which intuitively satisfies these two conditions,
a legal valuation for P and identify the concept of “computation performed on
the dataflow graph of P” with the concept of “legal valuation for P”. Our first
task is therefore to provide a formal definition of the concept of legal valuations
for programs.

Let v be a valuation for a program P. It is easy to formally express condition
(1): for any input line I of P, with the equation I = ¢ appearing in the input
part of P, the following condition should hold: vI C e.

It is more difficult to define the absence of guesses in v (condition (2)). On the
face of it, it seems as if we should only check that for any operator f of P with
inputs X,...,X,, and output V', vY C f(vXy,...,vX,). This is undoubtfully
a necessary condition for the legality of v, but the next example (taken from
[Pin86]) shows that this condition is not sufficient.
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Example 3.3.

Let us look at the following program P:
(The definition of the S,44 operator is given in example 2.2).

[0]
I

Sadd

@)

No data tokens can be produced on line O and the least solution of P is
Hp = ([0],[ ])- In the valuation v = ([0],[1]), the value 1 is clearly a guess but
the condition [1] = vO C Syq44(vI,v0O) = [1] still holds!

The conclusion from this example is that we cannot determine whether there
are guesses in a valuation v or not, merely by checking the values of the lines of
P in v. We must perform a more serious check. What we should do is to start
with a state in which v/ appears on each input line I of the dataflow graph of
P, and on the other lines there are no data tokens at all. We should then check
if we can produce on each line X the stream vX, without guessing the value of
any of the data tokens.

Given a valuation v, let us define a valuation v; that represents the initial
state: for any input line I, v1I = vI and for any other line X, v; X = []. Now let
us execute each of the operators of the dataflow graph that can fire. As a result,
on each line of the graph, a new stream of data tokens will appear. For each line
X, let us remove from the new stream all the data tokens which do not appear in
vX. We do this because v represents a computation in which those data tokens
are not produced. As a result of our actions, we receive a new valuation — vs.

Now, let us perform on v, the same actions we performed on v; and call the
resulting new valuation v3. We can go on performing the same actions on v3 etc..

It is easy to see that {v;}$°, is an increasing chain of valuations and that
Vi, wv; C v. This chain of valuations represents a series of steps in a compu-
tation that can be performed on the dataflow graph of P. The way we create
the valuations ensures that only data tokens which can actually be produced by
that computation appear in these valuations — so there are no guesses in any
of them. The [ub of the chain is the result of the computation, and intuitively
it contains all the data tokens of v that can be created without guessing their
values. (Each of them can be computed from the input streams and therefore
will appear somewhere along the chain). Hence, there are no guesses in v iff it is
equal to the [ub of the chain. It is very reasonable, therefore, to formally define
the concept of a legal valuation using this chain of valuations.
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From now on, [ will be some fixed ST language and I N some fixed interpre-
tation for [ of type L or L-tagged. All the definitions below are done relative to
land IN.

Definition 3.1.

Let P be an [-program and let v be a valuation for P.

1. The projected chain of P and v is the chain vy C vy C ... C where:
(a) For any input variable I: v I = vl
(b) For any internal variable X: v; X =[]
(c) For i > 0: vip1 = glb{rp(vi),v)}.

2. v is a legal valuation for P iff the following two conditions hold:
(a) For any equation I = c¢ appearing in P, vI C IN(c).
(b) The lub of the projected chain of P and v is v.

Remark: it is easy to see that Hp is a legal valuation for P.

3.3. On Demands and Legal Valuations

We now give several other definitions which are needed in order to achieve our
goal of defining the concept of a demand driven evaluation for a program in
precise terms.

Definition 3.2.

Let P be an [-program.

1. A demand D for outputs of P is a function D: O — 9N where O denotes the
set of output variables of P.

2. Given a valuation v and a demand D, we say that token vO[i] is demanded
by D iff ieD(O).

3. A v[a]luation v for P is output-complete with respect to D iff VOeO, ieD(0) =
vOli] #L.

Example 3.4.

1. D(O) = {i| HpO[i] #1}. 8

2. D(O)={i|1<i<n}".

3. Let HpOJi] be the first element of HpO whose value is =, <, <, > or > than
some fixed value val. Take D(O) ={j| j <i A HpO[j] #L}.

6 Hp is the only legal valuation which satisfies this demand. Satisfying it amounts therefore
to data-driven evaluation.

7 For languages of type L. only demands of this particular form are considered in [PiA85, Pin86].
For languages of type L-tagged the possibility of “holes” is also allowed in [Pin86].
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Definition 3.3.

Let P be an [-program and let D be a demand for outputs of P.

1. The set Spp denotes the set of all the legal valuations for P, which are
output-complete w.r.t to D.

2. The D-driven evaluation of P is the least element of Sp p (if such exists).

The set Sp,p contains all the valuations which represent computations that
can be produced on the dataflow graph of P and contain the demanded outputs.
(Obviously, a demand driven computation should be minimal among them).

A crucial question now is whether for any IN, P and D, Spp actually has
a least element. A positive answer to this question would have meant that the
concept of the demand driven evaluation is always meaningful. Unfortunately,
the answer to this question is in general negative, as the next example from
[Pin86] shows.

Example 3.5.

Let program P (represented as a directed graph) be:

[true] [true] [true] [true]
L I, I3 I
and or
X | %

|

parallel L or

@)

and consider the following demand D for P: D(O) = {1}. Examine now the
following two valuations for P:

L I I3 1, X Y 0]
vy = ([true], [true], [], [],  [truel, []  [true])
vy = (1, [, [true], [true], [] [true], [true])

The output of P can be produced either by computing the left input of the
parallel-or (v;), or by computing its right input (v;). Since we can compute
the required output by following two different pathes in the graph, we can-
not compare the two computations. Indeed, it is easy to see that v; and v,
are both legal valuations of P and output-complete w.r.t D, but the only legal
valuation that is smaller than both of them (the valuation that matches the
value [ ] to every line), is not output-complete w.r.t D. Hence, for this program
P, Sp,p does not contain a least element.
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Note: The operators and, or and parallel-or perform the usual operations (with
the same names) on pairs of data tokens with identical position numbers. For the
reader convenience we include here the truth table of the parallel-or operation:

| L | false | true

1 1 1 true
false | L | false | true
true | true | true | true

In spite of the previous example, there are many cases in which Sp p does
indeed contain a least element. Our next goal is to identify the set of interpreta-
tions of types L and L-tagged, for which for any program P and any demand D
for outputs of P (or at least a “reasonable” class of such demands) the set Sp p
is either empty or contains a least element.

3.4. Stable Functions and Demand Driven Computations

The failure in example 3.5 is obviously due to the use of a truely parallel func-
tion (parallel-or). It seems reasonable, therefore, to conjecture that if we employ
only sequential functions (see [Cur85, KaP, Mil77, Pin86, Vui73]) then such a
phenomenon will not happen.

Formally, a function f : Qpoi % ... % Qpon — Qpont1 is sequential iff for
every X = (Xy,...,X,) and every k such that f(X)[k] =L, there exist some
1 <i < n and j such that X;[j] =L and

VY = (V... Ya) O X, f(V)[K] £L= Vilj] AL ®

(The intuition behind this definition is that a function f from streams to streams
is sequential at X if for each empty position k at f(X) we can identify some
unfilled position in the input X which is “critical” — i.e. unless this position in
the input is filled, position k in the output cannot be filled.)

Basically, the above conjecture concerning sequential functions is proved in
[Pin86] ¥. It turns out, however, that the condition of sequentiality is only suffi-
cient for the existence of a least element in Sp p. A larger class of functions will
in fact do: that of stable functions ([Ber76, Ber78a, Ber78b, Ber79]).

Definition 3.4.

Let Dy and D> be cpos and let f : D; — Dy be a continuous function. We call
f stable iff for every xzeD¢ and yeDs where y C f(x), there exists M (f, x,y)eD;
such that Vz Cz, y C f(2) © M(f,z,y) C =.

It is easy to show that sequentiality implies stability in the cpos we consider
here. The converse is false, however (see references above).

8 For ® po the definiton is similar except that k and j must be, respectively, the first unfilled
positions in f(X) and Xj;.

9 Except that no general definition of a legal valuation, which does not a priori assume that
only sequential functions are used, is given.
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Theorem 3.1. The Characterization Theorem

The following two properties are equivalent for any interpretation I N of type L
or L-tagged (for a given ST language [):

1. For any l-program P and any demand D for outputs of P, the set Spp is
either empty or contains a least element.

2. IN uses only stable functions.

In order to prove this theorem we first need several lemmas.

Lemma 3.1. If TN uses only stable functions, then for any [-program P the
corresponding function 7p is stable.

Proof. Since the f;‘s are stable functions by assumption, and Prj, is always a
stable function for any &, the definition of 7p implies that all its projections are
stable. Hence 7p is also stable (See [Ber79]). O

Lemma 3.2. Let P be an [-program and let v be a legal valuation for P. Then,
v C Hp and v C 7p(v).

Proof. Let us look at the projected chain of P and v: {v;}2,.
1. By definition 3.1, Vi > 1 wiz1 = glb{rp(v;),v}. Therefore,

Vi > 1 viy1 C 7p(v;). From this and from the fact that Vi > 1 v; C v
(property of the chain), we can derive that Vi > 0 v;41 C 7p(v) (7p is mono-
tonic). Since v = lub{v;}$2; (legality of v), it follows that v C 7p(v).

2. Let {w;}2, be the chain defined by:

| HpX if X is an input variable of P
1= otherwise

wist = th(wn)(= Tp(ws) (i > 1)

lub{w;} = Hp by definition of Hp. Also, Vi > 1 v; C w; (by induction on i).
Therefore, v = lub{v;} C lub{w;} = Hp.

O

Lemma 3.3. If TN uses only stable functions, then for any [-program P and
any valuation v for P: (i) v C Hp and (ii) v C 7p(v) = wv is a legal valuation
for P.

Proof. Assume otherwise. Let {v;}52, be the projected chain of P and v and
define v’ = lub{v;}3°,. Then v’ C v but v’ # v. Let C' be the set of cells in
which there is a value #1 in v but not in v’ (Recall that the basic values are
taken from flat domains). Intuitively, the cells in C' are those whose values were
determined in v by a guess. They have the following two properties:

(1) VeeC p(v)(c) = v(e)
(2) For every ceC tp(v')(c) = L.

The first property is because v C 7p(v). The second — because v'(c) =1=
Yu; vi(c) =L = Yu; 7p(v;)(c) =L = 7p(v")(¢) =L (since 7p is continuous).

Let us now define the chain {w;}$2; as in lemma 3.2 (part 2). The lub of
this chain is Hp. In w; the cells in C contain 1, but since v C Hp, they all
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contain values #1 in Hp. Hence, there exists a last valuation v" in {w;}32, for
which all the cells in C contain L. Then there exists coeC s.t 7p(v")(co) = v(co)
(#.L1). Define a valuation z = lub{v,v"} (x is well defined since both v and
v" are bounded by Hp). Since 7p is monotonic, we can easily conclude that
7p(z)(co) = 7P (v")(co)-

Define next another valuation y by: y(co) = v(co), y(c) =L otherwise. Obvi-
ously, y C 7p(z) and so by stability of 7p (see lemma 3.1) we conclude:

(3) Let m = M (7p,z,y). Thenfor all zC z: y C 7p(2) ©m C z.

From (1) it follows that y C 7p(v). Hence m C v. On the other hand y C 7p(v"")

implies that m C v". Hence m C glb(v,v") and so YceC m(c) =L. Therefore

m C o' (v is exactly as v except that the cells of C' contain L in it). From this,

from (2) and from the fact that 7p is monotonic it follows that VceC 7p(m) =L.

On the other hand y C 7p(m) (from (3)) and so 7p(m)(co) #L. A contradiction.
O

Corollary 3.1.

Suppose IN uses only stable functions and let P be an I-program. Then a valu-
ation v for P is legal iff (i) v C Hp and (ii) v C 7p(v).

3.5. Proof of the Characterization Theorem (theorem 3.1)

(=) Suppose IN uses only stable functions.
Let P be any [-program and let D be any demand for outputs of P.

Assume first that there is an output line O and a demand for data token i on
O, but HpO[i] =L. For any legal valuation v of P, v C Hp (see lemma 3.2). In
particular, vO C HpO. Hence vO[i] =L. Therefore, none of the legal valuations
for P is output-complete w.r.t. D. Hence Sp p is empty.

Next, consider the case that for all the output lines of P, all the demanded
data tokens appear in Hp. The set Sp p is then not empty, because Hp belongs
to it. Obviously, Sp,p is a subset of a domain C' which is a product of sequence
domains. It is easy to see that any nonempty subset of C' has a glb in C'. Let us
denote the glb of Sp,p by v'. We will finish by showing that v'eSp p.

Now, the fact that v C Hp and v is output-complete VveSp p, implies that
v’ has the same properties. By lemma 3.3, it remains to show that v’ C 7p(v').
Assume otherwise. Since v' C Hp, we have 7p(v') C 7p(Hp) C Hp (7p is mono-
tonic). Therefore, both v’ and 7p(v') are bounded by Hp, and so our assumption
that v' € 7p(v') entails:

(1) there is a cell ¢ in C that contains a value #.1 in v’ and L in 7p(v').
By lemma 3.2, YveSpp v' C v C 7p(v). Hence:
(2) YveSp, p, the cell ¢ contains value #.L in 7p(v) (equal to its value in v').

Define now y as follows: y(¢) = v'(c¢) and y(a) =L otherwise. Sincey C 7p(Hp) C
Hp and 7p is stable by lemma 3.1, we can conclude:
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(3) Let m = M(rp,Hp,y). Then V2 C Hp: y C7p(2) & m C .

From (2) it follows that YveSp,p,v C Hp and y C 7p(v). This fact together
with (3) imply that m is a lower bound of Sp p. Hence m C ¢'. From this and
from (3) we conclude that y C 7p(v'). Hence the definition of y implies that cell
¢ contains a value #.1 in 7p(v'). This contradicts (1).

(<) Let us assume that for any /-program P and any demand D for outputs,
Sp,p is either empty or contains a least element. We show that IN uses only
stable functions.

Assume otherwise. Then for some f of type oy -stream — oa_stream, IN(f)
is an unstable function of type E* — E?2. (For IN(f) : E7* x...x E7» — En+1
the proof is similar). For convenience we shall denote IN(f) simply by f. From
definition 3.4, it follows that there exist Ae ' and BeE?2 such that B C f(A),
but the set U = {z| 2 C A and B C f(z)} does not contain a least element.
Now, let us look at the following /-program P :

Graph: O F(
Input: I A

Obviously, Hp = (4, f(A)).

Next, define D(O) = {i| B[i] #L}. The fact that B C f(A) entails that Hp
is output-complete w.r.t. D, and so Sp,p is not empty. Hence, by assumption,
Sp,p contains a least element.

Now, (vI,v0) is a legal valuation of P iff :

1.vICA
2. The lub of the projected chain {v;}32, of P and (vI,v0) is (vI,vO).
In the present case, this sequence is defined as follows:
vi = (vl,[]),
for j > 1: v; = glb{rp(vj—1), (vI,v0)} = glb{(vI, f(vI)), (vI,vO)} Hence
lub{v;}32, = (vI,v0) iff vO C f(vI).

On the other hand, a legal valuation (vI,v0) for P is output-complete w.r.t
D iff: Vi > 0, B[i] #.L1= vO[i] #.L. Since B and vO are bounded by f(A) (from
1, 2 and the fact that f is monotonic), this is equivalent to B C vO. It follows
that:

Sp,p = {(vI,v0)| vI C A and B CvO C f(vI)}.
Let (vI',v0") denote the least element of Sp p. We have:

o (vI',v0")eSpp = vI' CAand B CvO' C f(vl') = vl'eU.
o VzeU, 2 C Aand B C f(z) = VzeU, (z, f(2))eSp,p = VzeU vl' C 2.

It follows that vI’ is the least element of U. This contradicts our assumption
that U does not contain a least element.

3.6. On Pingali Conditions for Legality of Valuations

Corollary 3.1 above, enables us to check legality of valuations by using conditions
(i) and (ii). This is much easier than checking it directly by definition 3.1.
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For the sequential case legality is actually defined in [Pin86] by these two
conditions. No attempt to justify the definition is made, though. Corollary 3.1
formalizes Pingali‘s intuition: in the sequential case a valuation satisfies the two
conditions iff it is a legal valuation. In fact, the corollary shows this for a larger
class of functions — the class of the stable ones. It should be noted that Pingali
himself has given in [Pin86] an example which shows that conditions (i) and (ii)
are not sufficient for legality in the general case. His example contains indeed an
unstable function — parallel-or.

4. Effectively Sequential Functions and Effective Demand
Driven Evaluation

In the previous section, we gave a denotational semantics for demand driven
evaluations of programs in ST languages, relative to interpretations of types L
or L-tagged which use only stable functions. From now on all the interpretations
we discuss are assumed to have this property, unless we say otherwise.

Our next goal is to look for an operational semantics for demand driven
evaluations. Namely, the question is how can a demand driven evaluation of an
ST-program actually be performed.

Such an operational semantics was given by A&P in [PiA85, Pin86] for a
small subset of the allowed interpretations. As we explain below, their method
is the most natural one, and we want to determine the largest possible set of
interpretations to which it applies.

In section 4.1 below we motivate, explain and generalize the approach of A&P.
In 4.2 we determine the scope of its applicability. Here the notion of effective
sequentiality will take the role of stability in the previous sections.

4.1. The Basic Idea of Pingali and Arvind for Performing
Demand Driven Evaluations Presented in a General
Setting

Let I, IN, P and D be as above. We want that only the data tokens the values of
which are needed for producing the requested outputs of P be created on the lines
of its dataflow graph. To accomplish this goal, we need some way of informing the
system about which data tokens are required to appear on the output lines of P.
Then, each operator which produces data tokens on an output line of P, should
produce the requested data tokens and only them. To do that, such an operator
needs to have certain data tokens on its input lines. Therefore, the demands
for outputs of an operator should be propagated in some way into demands for
the outputs of the operators which produce the inputs of that operator. Such
demands, in turn, will be satisfied if appropriate demands are propagated for
outputs of other operators (the ones which produce data tokens on those lines),
and so on. This means that there should be a propagation of demands in the
direction opposite to the flow of data tokens in the dataflow graph of P. This
propagation of demands can most naturally be implemented by using a dataflow
graph in which there is a flow of data values of a new type, representing demands,
in the direction opposite to the flow of the data tokens required for producing
the wanted outputs.
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These considerations led A&P in [PiA85, Pin86] to the idea of defining an
operational semantics for the D-driven evaluation of P, by the operational se-
mantics for the data driven evaluation of another program P’, which is obtained
from P and D by expansion of P with lines for demand propagation. There is a
one to one correspondence between the operators of P and some of the operators
of P’, and between the lines of P and some of the lines in P’. The connections
between the operators and the lines in P remain for the corresponding operators
and lines in P’. The demand D is translated into input streams of P’, which are
propagated through the “demand lines” of P’ into demands for the operators
of P'. The data driven evaluation of P’ creates, on the data lines of P’ that
correspond to the lines of P, the D-driven evaluation of P.

We next briefly and informally describe how to transform the directed graph
of P, in order to get the directed graph of P’. For examples refer to [PiA85,
Pin86].

First, we define a demand token as a data token with a special value of a
new type demand. We define a demand line as a line on which there is a flow of
demand tokens, and call the series of their values - a demand stream.

For each data line X in P, we create in P’ a data line X and a demand line
DX. On DX there is a flow of demand tokens that describe which data tokens
should be produced on X: the occurrence of a demand token number i on DX,
means that there is a demand for data token number i on line X. To each output
line O in P, line O is an output line of P’ and line DO is an input line of P’
The input to line DO is a demand stream that describes the request D from line
0.

The essence of the transformation is to propagate the demands for the outputs
of the operators of P’ into demands for the data tokens the values of which are
needed for producing those outputs. To do that, a code for demand propagation is
added in P’ to each of the operators of P. This code gets demands for the outputs
of the operator, and propagates them into demands for its inputs. Therefore, if in
P there is an operator F' with inputs X4,..., X,, and outputs Y7,...,Y,, then in
P’ there is an operator F'D with inputs Xq,...,X,,DY1,...,DY,, , and outputs
DXy,...,DX,,Yy,...,Y,.

In view of the names of the input and output lines of the various F'D oper-
ators, it is clear that if in P line X is an output line of an operator F' and an
input line of an operator GG, then in P’ line X is an output line of F'D and an
input line of GD, and line DX is an output line of GD and an input line of F'D.
In this way, GD can produce on DX demands for the data tokens it needs on
X in order to produce its demanded outputs.

It must be ensured that only input tokens that are requested by the operators
of P', will be allowed to flow on the lines of P’. For that purpose, a new operator
called Gate is used. This operator receives as inputs a data stream X and a
demand stream D, and creates an output data stream in which for all ¢ > 0 :

o[ :{ i([i] ;fﬂ)li[rzv]viel and D[i] #L

The Gate operators are used to limit the flow of input data tokens on the
lines of P’ in the following manner: if T is an input line of P, then a new line .7 is
an input line of P’ and an input of a Gate operator. Line DI is the second input
of the Gate. Line I is the output of the Gate. The Gate operator transfers to line
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I only data tokens which are needed by the operators of P’, and so unnecessary
input data tokens are not used in P’.

Remark: Sometimes, a line in the dataflow graph of P is an input of several
operators. In that case, a fork; operator is used: it replicates the input line to
j output lines. Fork; operators are represented in dataflow graphs as thick dots
(see example 2.1). In the dataflow graph of P, the inputs and outputs of fork;
operators have the same names, but before transforming P into P’, a different
name should be given to each of the lines.

Example 4.1.

The graph representation of the graph part of program P’ which corresponds
to the program P of example 2.1:
(Gate operators are marked as small empty squares).

LJ I,J

e, [
L DI, I DI,

forkD
Iis DIy,
In Dln SaddD
X] DX
consD
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Remarks on the transformed programs:

1. In the original programs, any operator (except fork;) has only one output
line. This can be a property of the transformed programs as well. Any F'D op-
erator can be divided into several operators, where each has only one output
line. Therefore, from now on we will call F'D a generalized operator.

2. The method described here for performing demand driven evaluations treats
only one way of specifying a demand for output: that which specifies exactly
which are the needed data tokens (and not, e.g., that which requires that
data tokens will be produced until a certain condition is satisfied). From now
on we will only treat this case.

Example 4.2.

This example from [Pin86] describes a generalized operator consD for the cons
operator defined in example 2.2.

X1 X
DX1 DX2
cons first rest
Y
DY

The definitions of the first and rest operators are as follows:

first([z1, z2,...]) = [z1]
rest([zy,za,...]) = [z2,...]

Remark: Recall that the dataflow operators in the operational semantics of
ST languages are stable (namely correspond to stable functions). That is not
necessary for the generalized operatos. They should only be continuous (that
is, correspond to continuous functions). This is due to the fact that for STD
programs we are only interested in data driven evaluations and not in demand
driven ones.



Stability, Sequentialy and Demands in Dataflow 21

4.2. The Need to Use only Effectively Sequential Functions
when Performing Demand Driven Evaluations

The question which naturally arises now is whether every stable dataflow op-
erator F' has a compatible continuous generalized operator F'D. If so, then the
denotational semantics for demand driven evaluations given above is equivalent
to the operational semantics described in 4.1. We give now an example that in-
tuitively shows that this is not the case, i.e. that such a generalized operator
does not always exist.

Example 4.3.

Define a stable operator F' with input lines Iy, I, I3 and output line O by:
F([mlvaa .. ] [y1=y27 .. ']a [217Z2: .. ]) = [f(mlvylzZl)af(w27y2=22)= .. ]

where f is Berry’s stable function ([Ber79]), defined as the minimal monotonic
function satisfying:

f(L true, false) = f(false, L,true) = f(true, false, L) = true

If a corresponding generalized operator F'D exists it has inputs I, I5, I3 and
DO, and outputs DIy, DI, DI3 and O. When there is a demand for an output
data token number i, F'D should identify which of the three input data tokens
numbered ¢ are needed in order to produce the demanded output. Since F'D has
no way of knowing a priori the values of those input data tokens, it will always
have to propagate demands for all three of them. That is due to the fact that
there are cases in which the value of the output data token cannot be calculated
if only two input data tokens are demanded, no matter from which two input
lines those tokens were demanded. (E.g. assume F'D propagates demands for
data tokens numbered 7 from lines I; and I». If the value of those two tokens is
true, F'D will not be able to produce the output data token without knowing
the value of data token number i on line I3, since f(true,true, false) = true
and f(true,true,true) =1).

On the other hand, if FD does propagate the demand for output into de-
mands for each of the three input lines Iy, I, I3, then there are cases in which it
demands unnecessary data tokens. (E.g. if the values of data tokens numbered i
on I; and I are true and false respectively, then knowing their values is suf-
ficient for determining the value of the output data token, no matter what the
value of data token numbere ¢ on I3 is. Hence, in a demand driven evaluation
there is no need to produce it!)

An analysis of the previous example indicates that in order to do its job, the
generalized F'D operators should not, under any circumstances, propagate de-
mands for unnecessary data tokens. Therefore each output data token must have
critical input data tokens, namely data tokens that must be produced in order
to calculate the value of the demanded output. This implies that the original
F operators should be sequential (namely, correspond to sequential functions).
Moreover, it is not enough that critical input data tokens exist for every output
data token. There should also be an algorithm that can identify those criti-
cal data tokens! In other words: the only functions to be used are functions
f:Qpe1 *... % Qpen — Qponys for which there exists an algorithm which given
X =(Xy,...,X,) and k such that f(X)[k] =L, computes some 1 < i < n and
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j for which X;[j] =L and VY D X Vk f(V)[k] #L= Yi[j] #L '°. Such functions
are known as effectively sequential ([Tra75, Tra85]). Obviously, every effectively
sequential function is sequential. The converse, however, fails (a counterexample
is given in [Tra85, pp. 17-19]).

In each of the examples of A&P given in [PiA85, Pin86] of operators which
have corresponding compatible generalized operators, only effectively sequential
operators have indeed been used. On the other hand, the operator F' from exam-
ple 4.3 is not sequential (See [Ber79]). We conjecture that this is not an accident,
and that the effectively sequential operators are exactly those opearators which
have corresponding generalized continuous operators.

Let us informally describe how to create generalized operators for effectively
sequential operators: If F' is such an operator with inputs Iy, ..., I, and output
line O, then a correspondig generalized operator F'D for F' includes:

e The operator F itself with input lines I, ..., I,, and output line O'.
e A gate operator with input lines O’ and DO and output line O.

e A generalized operator F'D', with input line DO and some inputs from
I,...,I,, and output lines DIy,...,DI,. This operator reads demands for
output data tokens and implements the algorithm for identifying the criti-
cal inputs data tokens, in order to propagate the demands for outputs into
demands for inputs.

The Gate operator in F'D on the output of F' is needed because there are cases
in which data tokens that were created in order to satisfy demands for certain
outputs, cause the creation of other unneccessary ones. (For example the effec-
tively sequential operator F'([a1,as,...]) = [a1, a1, a2, as,...] will always produce
outputs ¢ and i + 1 even if only one of them is needed).

An example of a generalized operator which has been constracted in this way
is given in example 4.2 — the consD operator (but note that in this particular
case the Gate operator on the output of the cons operator is unnecessary and
was therefore ommited).

5. Conclusion and Suggested Further Research

Our conclusion is that although the denotational definition of demand driven
evaluation (given in definition 3.3) for ST programs (with semantics of types L
or L-tagged) exists whenever the semantics use only stable functions, the natural
way for actually performing such evaluation can only be used when we employ
a subclass of the stable functions — the effectively sequential ones.

What remains to be done is to show this formally, by defining, given an effec-
tively sequential operator F', the associated generalized operator F'D in precise
terms, and then to prove that it is actually compatible with F.

Another line of investigation is to see how much of the above theory is applica-
ble to nondeterministic dataflow graphs, the semantics of which has received con-
siderable attention in the dataflow literature (see, e.g. [Kon78, Kel78, BrB8&4]).
Our first impression is that it is applicable, but only further study can confirm it.

10 For & po the definiton is similar except that k and j must be, respectively, the first unfilled
positions in f(X) and Xj;.
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