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1 Introduction

In this paper we look at negation from two different points of view: a syntac-
tical one and a semantical one. Accordingly, we identify two different types
of negation. The same connective of a given logic might be of both types,
but this might not always be the case.

The syntactical point of view is an abstract one. It characterizes connec-
tives according to the internal role they have inside a logic, regardless of any
meaning they are intended to have (if any). With regard to negation our
main thesis is that the availability of what we call below an internal negation
is what makes a logic essentially multiple-conclusion.

The semantic point of view, in contrast, is based on the intuitive meaning
of a given connective. In the case of negation this is simply the intuition that
the negation of a proposition A is true if A is not, and not true if A is true.!

Like in most modern treatments of logics (see, e.g., [Sc74], [HaT9], [Ga81],
[Ur84], [Wo88], [Ep90], [Av9lal, [CI91], [FHV92]), our study of negation will

'We have avoided here the term “false”, since we do not want to commit ourselves to
the view that A is false precisely when 1t 1s not true. Our formulation of the intuition is
therefore obviously circular, but this is unavoidable in intuitive informal characterizations
of basic connectives and quantifiers.



be in the framework of Consequence Relations (CRs). Following [Av9la], we

use the following rather general meaning of this term:

Definition.
(1) A Consequence Relation (CR) on a set of formulas is a binary relation F

between (finite) multisets of formulas s.t.:
(I) Reflexivity: At A for every formula A.

(IT) Transitivity, or “Cut”: if I'y F Ay, A and A, 'y B Ay, then ',y F
Ay, A,

(IIT) Consistency: @ I/  (where ) is the empty multiset).

(2) A single-conclusion CR is a CR  such that I' H A only if A consists of

a single formula.

The notion of (multiple-conclusion) CR was introduced in [Sc74a] and
[Sc74b]. It was a generalization of Tarski’s notion of a consequence rela-
tion, which was single-conclusion. Our notions are, however, not identical
to the original ones of Tarski and Scott. First, they both considered sets
(rather than multisets) of formulas. Second, they impose a third demand on
CRs: monotonicity. We shall call a (single-conclusion or multiple-conclusion)
CR which satisfies these two extra conditions ordinary. A single-conclusion,
ordinary CR will be called Tarskian.?

The notion of a “logic” is in practice broader then that of a CR, since
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usually several CRs are associated with a given logic.” Given a logic L

there are in most cases two major single-conclusion CRs which are naturally

*What we call a Tarskian CR is exactly Tarski’s original notion. In [Av94] we argue
at length why the notion of a proof in an axiomatic system naturally leads to our notion
of single-conclusion CR, and why the further generalization to multiple-conclusion CR is
also very reasonable.

3This is true even about classical logic: see [Av9la] or [Av94], which contains many
other examples (see also section 3 below).



associated with it: the external % and the internal F%. For example, if £ is
defined by some axiomatic system AS then Ay,---, A, F% B iff there exists
a proof in AS of B from Ay, --- A, (according to the most standard meaning
of this notion as defined in undergraduate textbooks on mathematical logic),
while Ay,---, A, F. Biff Ay — (A; — -+ — (A, — B)---) is a theorem
of AS (where — is an appropriate “implication” connective of the logic).
Similarly if £ is defined using a Gentzen-type system G then Ay,---, A, F% B
if the sequent A;,---, A, = B is provable in G, while A;,--- A, F; B iff
there exists a proof in G of = B from the assumptions = Aq,---,= A,
(perhaps with cuts). F% is always a Tarskian relation, F% frequently not.
The existence (again, in most cases) of these two CRs should be kept in
mind in what follows. The reason is that semantical characterizations of
connectives (in particular of negation in this work) is almost always done
w.r.t. Tarskian CRs (and so here % is usually relevant). This is not the case
with syntactical characterizations, and here frequently I is more suitable.?

A final note: in order to give the global picture, we have omitted almost
all proofs. Most of them are straightforward anyway. Those which are not,

are (or will be) given elsewhere.

2 The syntactical point of view

2.1 Classification of basic connectives

Our general framework allows us to give a completely abstract definition,
independent of any semantical interpretation, of standard connectives. These
characterizations explain why these connectives are so important in almost
every logical system.

In what follows I is a fix CR. All definitions are taken to be relative to

“I have first introduced the notations -’ and ¢ in [Av88] with respect to Linear Logic.
The distinction between % ; and 7, will be of importance also in this paper.



F (the definitions are taken from [Av9la]).

We consider two types of connectives. The first, which we call internal
connectives, makes it possible to transform a given sequent to an equivalent
one that has a special required form. The second, which we call combining
connectives allows us to combine (under certain circumstances) two sequents
into one which contain exactly the same information.

The most common (and useful) connectives are the following:

Internal Disjunction: + is an internal disjunction if for all I', A, A, B:
'-AAB iff THFAA+B.
Internal Conjunction: ® is an internal conjunction if for all I', A, A, B:
INA/BFA if A@BFA.
Internal Implication: — is an internal implication if for all I', A, A, B:
AR B,A ff THA— B/A.

Internal Negation: — is an internal negation if the following two conditions

are satisfied by all I') A and A:

(1) ATFA iff THA-A
(2) THAA iff —=ATFA.

Combining Conjunction: We call a connective A a combining conjunction

iff for all I' A, A, B:
Fr'EAJAANB it TEFAA and THFAB.

Combining Disjunction: We call a connective V a combining disjunction

iff for all ', A, A, B
AvB,I'FA it ATFA and B, I'FA.
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Note: The combining connectives are called “additives” in Linear logic (see
[Gi87]) and “extensional” in Relevance logic. The internal ones correspond,
respectively, to the “multiplicatives” and the “intensional” connectives.
Several well-known logics can be defined using the above connectives:
Multiplicative Linear Logic: This is the logic which corresponds to the
minimal (multiset) CR which includes all the internal connectives.
Propositional Linear Logic: (without the “exponentials” and the propo-
sitional constants). This corresponds to the minimal consequence relation
which contains all the connectives introduced above.
R~ the Intensional Fragment of the Relevance Logic R:® This corre-
sponds to the minimal CR which contains all the internal connectives and is
closed under contraction.
R without Distribution: This corresponds to the minimal CR which con-
tains all the connectives which were described above and is closed under
contraction.
RMI.:® This corresponds to the minimal sets-CR which contains all the
internal connectives.
Classical Proposition Logic: This of course corresponds to the minimal
ordinary CR which has all the above connectives. Unlike the previous log-
ics there is no difference in it between the combining connectives and the

corresponding internal ones.

2.2 Internal negation and strong symmetry

Among the various connectives defined above only negation essentially de-
mands the use of multiple-conclusion CRs (even the existence of an internal
disjunction does not force multiple-conclusions, although its existence is triv-

ial otherwise.). Moreover, its existence creates full symmetry between the two

Ssee [AB75] or [Du86].
fsee [Av90a], [AvIOD].



sides of the turnstyle. Thus in its presence, closure under any of the struc-
tural rules on one side entails closure under the same rule on the other, the
existence of any of the binary internal connectives defined above implies the
existence of the rest, and the same is true for the combining connectives.

To sum up: internal negation is the connective with which “the hidden
symmetries of logic” [Gi87] are explicitly represented. We shall call, therefore,
any multiple-conclusion CR which possesses it strongly symmetrical.

Some alternative characterizations of internal negation are given in the

following proposition.

Proposition 1 The following conditions on - are all equivalent:

(1) = is an internal negation for F.
(2) THFAJAG T,-AFA
(3) ATFA ffTHFA-A
(4) A,—AF andF —A A
(5) F is closed under the rules:
ATEA 'EAA

Our characterization of internal negation and of symmetry has been done
within the framework of multiple-conclusion relations. Single-conclusion CRs
are, however, more natural. We proceed next to introduce corresponding

notions for them.

Definition.

(1) Let k¢ be a single-conclusion CR (in a language £), and let = be a unary
connective of L. k- is called strongly symmetric w.r.t. to =, and — is called
an internal negation for -, if there exists a multiple-conclusion CR 7} with

the following properties:
() TFr AffT A

(ii) — is an internal negation for 7%



(2) A single-conclusion CR F is called essentially multiple-conclusion iff it
has an internal negation.
Obviously, if a CR F7 like in the last definition exists then it is unique.

We now formulate sufficient and necessary conditions for its existence.

Theorem 2  is strongly symmetric w.r.t. — iff the following conditions

are satisfied:
(i) Az —-—A
(ii) Ak, A

(iii) If T, Atg B then I, =B b, —A.

Proof: The conditions are obviously necessary. Assume, for the converse,
that . satisfies the conditions. Define: Ay,--- A, F% By,---, By iff for
every ] <i:<mnand 1 <5 <k

Alv"'7Ai—17_'B17'"7_'Bk7Ai-|—17"'7An|_ _‘Ai
Alv"'7An7_'B17"'7_Bj—17_' j+17"'7_'Bk|_Bj .

It is easy to check that F% is a CR whenever k-, is a CR (whether single-
conclusion or multiple-conclusion), and that if I' F% A then I' -z A. The
first two conditions imply (together) that — is an internal negation for 7.
(in particular: the second entails that if A,I' F% A then I' F% A, = A and the
first that if I' F% A, A then = A, ' F% A). Finally, the third condition entails

that % is conservative over . O

Proposition 3 Let L be any logic in a language containing = and —. Sup-
pose that the set of valid formulae of L includes the set of formulae in the
{=,—1} language which are theorems of Linear Logic,” and that it is closed
under M P for —. Then the internal consequence relation of L (defined using

— as in the introduction) is strongly symmetrical (with respect to —).

"Here — should be translated into linear negation, — — into linear implication.



Examples.
1. Classical logic.
2. Extensions of classical logic, like the various modal logics.

3. Linear logic and its various fragments.

4. The various Relevance logics (like R and RM (see [ABT75], [Du86],
[AB92]) or RM I ([Av90])) and their fragments.

5. The various many-valued logics of Lukasiewicz.

All the systems above have, therefore, an internal negation. A major sys-
tem which does not have one is intuitionistic logic. Other examples (positive
and negative) will be encountered below.

Note. In all these logics it is the internal CR which is essentially multiple-
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conclusion and has an internal negation.® This is true even for classical

predicate calculus: There, e.g. VaA(x) follows from A(x) according to the
external CR, but =A(x) does not follow from =VxA(x).?

We next discuss what properties of I, are preserved by 7.

Theorem 4 Assume b, is essentially multiple-conclusion.
1. F7% is monotonic iff so is .

2. b5 is closed under expansion (= the converse of contraction) iff so is

Fe.

8The definition of this internal CR depends on the choice of the implication connective.
However, the same CR, is obtained from the standard Gentzen-type formulations of these
logics (and most of them have one) by the method described in the introduction.

°The internal CR of classical logic has been called the “truth” CR in [Av91a] and was
denoted by ', while the external one was called the “validity” CR and was denoted by
FY. On the propositional level there i1s no difference between the two.



3. N is a combining conjunction for =4 iff it ts a combining conjunction

for ..

4. — is an internal timplication for =5 iff it is an internal implication for

Fe.

Notes.

1) Because k% has a symmetrical negation, Parts (3) and (4) can be for-
mulated as follows: % has the internal connectives iff F, has an internal
implication and it has the combining connectives iff -, has a combining con-
junction.

2) In contrast, a combining disjunction for -, is not necessarily a combining
disjunction for F7. It is easy to see that a necessary and sufficient condi-
tion for this to happen is that -z =(A V B) whenever -, =A and -, —B.
An example of an essentially multiple-conclusion system with a combining
disjunction which does not satisfy the above condition is RMI of [Av90].
That system indeed does not have a combining conjunction. This shows
that a single-conclusion logic £ with an internal negation and combining
disjunction does not necessarily have a combining conjunction (unless £ is
monotonic). The converse situation is not possible, though: If = is an inter-
nal negation and A is a combining conjunction then =(=A A =B) defines a
combining disjunction even in the single-conclusion case.

3) An internal conjunction @ for - is also not necessarily an internal con-
junction for F%. We need the extra condition that if A -, =B then .
—(A® B). An example which shows that this condition does not necessarily
obtain even if k-~ is an ordinary CR, is given by the following CR Fy,,:

Alv"'vAnFtM'vB iff n>1.

It is obvious that F;,;, 1s a Tarskian CR and that every unary connective of

its language is a symmetrical negation for it, while every binary connective



is an internal conjunction. The condition above fails, however, for .
4) The last example shows also that % may not be closed under contraction
when . does, even if k. is Tarskian. Obviously, I' F2 . Aiff [T'U A| > 2.

triv
Hence *

siw Ay Abut K3 A The exact situation about contraction is given

triv

in the next proposition.

Proposition 5 [fl. is essentially multiple-conclusion then &% is closed un-
der contraction iff b is closed under contraction and satisfies the following
condition:

If Ab; B and -At; B then b B.

In case bz has a combining disjunction this is equivalent to:

Fe AV A.

Note. From the syntactical point of view, therefore, the law of excluded

middle is just an internal representation of the structural law of contraction!

2.3 Weak internal negation and symmetry

The strong symmetry conditions are really strong. We now consider what
happens if we relax them.

We start with some general observations (part of which have already been
made in the proof of Theorem 2, others are generalizations of results of the

previous subsection):'°

Proposition 6 (1) If = is a unary connective of b then &%, as defined in

the proof of Theorem 2 is a (multiple-conclusion) CR. Moreover:
(i) If T'F% A then I' k. A.

(ii) F% A iff bz A (in other words: b5 and t-; have the same set of valid

sentences, and differ “only” w.r.t. their consequence relations).

0Propositions 7, 8 and 10 are from [Av91b].
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(2) k% is a conservative extension of b iff condition (iii) of Theorem 2

obtains.

% is the natural CR which is induced by trying to view the connective

— of I, as negation. Accordingly we define:

Definition.

1. A unary connective = of k. is called (weakly) symmetrical if it is an

internal negation of 7.

2. If = is symmetrical then we call =7 the symmetrical version of .

Proposition 7 — is symmeltrical in - if the first two conditions of Theorem

2 are satisfied (A gz ~—=A and =—A s A).

Definition.

1. A combining conjunction A for k-, is called symmetrical if F is closed
under the rules:

I,=Ab:A T,-BF:;A The A A I'Fe A, B
T, ~(AAB)Fc A Th: A, ~(AANB) Th; A ~(AAB)

2. A combining disjunction V for -, is called symmetrical if I is closed

under the dual rules.

Proposition 8 A symmetrical combining conjunction (disjunction) for .

is a combining conjunction (disjunction) for k5.

Proposition 9 (1) k% is monotonic iff b, is monotonic and -A, A k. B
for every A, B.
(2) F% is closed under expansion iff b is closed under expansion, and for all

A: A, -AbL A and A,—A bz A (in particular, if F¢ is monotonic then 7

11



is closed under expansion).
(3) (a) If b is Tarskian with a symmetrical combining disjunction V then
F% is closed under contraction iff b =AV A for all A.

(b) If b is Tarskian and condition (iii) of Theorem 2 is satisfied (and so
F4 is a conservative extension of -1 ) then F% is closed under contraction iff

forall1'A,B: if ILJAbF, B and I',=Aby B then I' -, B.

Note. The conditions in the definitions of symmetrical conjunction and
disjunction were formulated for arbitrary CRs since k% is defined (and has
all the properties described so far in this subsection) even in case b is
multiple-conclusion.

We next turn our attention to the problem of having an internal impli-
cation for 5. If — is such a connective then 7 A — B iff A . B iff
AF, Band =B F; —~A. Suppose now that -, has an internal implication D
and a combining conjunction A. Then the last two conditions are together
equivalent to -z (A D B) A (=B D —A). This, in turn, is equivalent to
F. (A D B) A (=B D —A). Hence the last formula provides an obvious

candidate for defining —.

Proposition 10 Suppose A is a symmetrical combining conjunction for b,
D is an internal implication for Fp and b ts closed under the following rules:
A, -BF: A I AA Tobp Ay =B
[L~(ADB)F: A Ty, Toks AL Ay ~(ADB)

(These two rules will be called below the symmetry conditions for implication.)
Define:

Then — is an internal implication for 5.

The various propositions of this section naturally lead to several interest-
ing systems which have symmetrical negation. First, by collecting the various

conditions above on =,V and A we get the following basic system BS:

12



Axiloms:

A= A.
Rules:
A=A '=AA
r-—A=A '=A--4
NNA=A I'B=A '=AA I'=A.B
IAvB=A I'=AAVBT'=AAVEB
r-A=A r,-B=A '=A-A I's A,-B
I''-(AVB)=A T -(AVB)=A I'= A, =(AV B)
A=A rB=A I'sAA I'sAB
INMAANB=AT,ANB=A I'=AANB
r-A=A I'-B=A = A-A I'=A,-B
I''-(AAB)= A ' = A-(AANB) I'= A, -~(AAB)

It is easy to see that only sequents of the form A = B are provable
in BS and that BS admits cut-elimination. Moreover: BS is essentially
multiple-conclusion since it satisfies condition (iii) of Theorem 2.

Another interesting fact about BS is:
Proposition 11 F4.= LL, (the purely additive fragment of Linear Logic).

The next step is to extend g to an ordinary CR by adding the structural
rules. It does not really matter here if we add them on both sides (getting
an ordinary multiple-conclusion CR) or only on the Lh.s. (getting a Tarskian
CR), since we get the same single-conclusion fragment in both cases, and so
the same symmetrical version. Let us call the resulting system FDE. FDE
is not a conservative extension of B.S since AN (BVC)= (AANB)V(AAC)
is provable in it, but not in BS. It is well known that Fppg Ay,---, A, =
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By, By it AANASAN---NA, — BV By V.-V B, is a “first-degree-
entailment” of the standard relevance logics like R (see [AB75], [Du86]).

Moreover F'DFE has the following 4-valued characteristic matrix:

t

where =t = f, -f =t, -— = —, =T = T,V and A are the lattice operations
and D = {¢, T} is the set of the designated values. In fact Fppp I' = A iff
whenever v is a valuation in this matrix s.t. v(A) € D for every A € T, we
have v(B) € D for some B € A.

What can we say about F3,,I" According to the above propositions it is
closed under expansion, but not under contraction or weakening. It has —
as an internal negation and A,V as combining conjunction and disjunction,
respectively. Another important property is the following semantic charac-

terization.

Proposition 12 F.pp I' = A if for every valuation v in the above four-
valued matriz, either v(A) = f for some A € ', orv(B) =1 for some B € A,
or v(A) = T for every A € TUA orv(A) = v(B) = — for two different
occurrences of formulae A, B of I', A.

Proposition 9 suggests two natural methods of extending FFDFE. The first
is to add to it the axioms =A, A = B. This corresponds, in the multiple-

conclusion version, to adding =A, A = and the structural rules on the right.
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(Again the multiple-conclusion version is cut-free and a conservative exten-
sion of the Tarskian one.) The resulting system is, in fact, exactly Kleene’s
3-valued logic (of {t, f,—}) and so has been called K[in [Av91b]. By Propo-
sition 9 I, 1s monotonic, but not closed under contraction. It is shown in
[AvOlb] that Aq,---, A, b, Biff Ay — (41 — -+ — (A, — B) is valid in
Lukasiewicz’ 3-valid logic Ls.

The second natural addition to FDFE is by the axioms = —-AV A. In
the multiple-conclusion case this corresponds to adding = —A, A as axioms
and the structural rules on the right (again we get a conservative, cut-free
version). This time the resulting logic, Pac, is sound and complete w.r.t. the
3-valued logic of {t, f, T} (also known as Js-see [dCT74], [DO85], [Ep90]). It
has the same set of valid formulae as classical logic, but it is paraconsistent
(=p,p¥ q). Fp,. is this time closed under contraction and its converse, but
not under weakening. It corresponds to the {—,V, A}-fragment of the 3-
valued logic RM5 ([AB75]) in the same way as 3, corresponds to Lukasiewicz
L3 (see [Av91b]).

By making both additions we get, of course, classical logic.

Things get more complicated when we add to the language a symmetrical

implication. Thus by adding to BS the rules:
'=AA B I'=A A= AB

N'A>B=A I's=AADB
A, -B= A '=AA I'sA,-B
I,=(ADB)= A I'= A,-(ADB)

we get a system, BST, which does not have property (iii) of Theorem 2, and
not only sequents of the form A = B are provable in it. BST is still only
single-conclusion though. As for %47, the best we can tell about it at present
is that its {—, V, A, — }-fragment (where A - B = (A D B)A (=B D —A), as
above) is at least as strong as the multiplicative-additive fragment of Linear
Logic (without the propositional constants).

A more significant change is made when we add to BSI the standard
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structural rules. Here it does matter whether we do it on both sides or only
on the l.h.s., since the single-conclusion fragment of the system BL which we
get by the first option is a proper extension of the system N~ which we get
by the second one. In fact, the purely positive fragment of BL is identical to
that of classical logic, while that of N~ — to the corresponding intuitionistic
fragment.!!

Semantically, BL corresponds to the logic we get from {¢, f, T, —} if we
define a D btobetifa & D, botherwise (see [AA94]). N~, on the other hand
corresponds to Kripke-style structures which are based on this four-valued
logic (see, e.g., [Wa93]). Both systems admit cut-elimination.

It follows from the propositions above that the symmetrical versions of
Fpr and Fy- (F%; and F3,_) are neither monotonic nor closed under contrac-
tion, but they have all the internal and combining connectives (the internal
implication is again — as defined above). The {—, A, Vv, —} fragment of F3,_
is at least as strong as (and might be identical to) the multiplicative-additive
fragment of Linear Logic, strengthened by the expansion rule and the dis-
tribution axiom (i.e. R where contraction is replaced by its converse). For
%, on the other hand, we have exactly the same semantic characterization
as given in Proposition 12.

By adding =A, A = B as axioms to BL (or, alternatively, ~A, A =) we
again get the 3-valued logic of {t, f,—}, with the above definition of D. This
is exactly the system LPF of [BCJ84] (see also [Jo86], [Av9lb]). By adding
the same axiom to N~ we get N (Nelson’s strong system of constructive
negation). Semantically, N corresponds to Kripke-style structures which are
based on this 3-valued logic (see, e.g., [Wa93]). The symmetrical versions

of both systems are now monotonic, but still not closed under contraction.

" BL was introduced, under a different name, in [Av91b]. It is investigated and shown
to be the logic of logical bilattices in [AA96] (see also [AA94]). N~ is Nelson’s weak
system of constructive negation. This system and the full system N (see below) were

independently introduced by Nelson (see [AN84]) and Kutschera ([Ku69]). See [Wa93] for
details on both systems.
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F$ pp is shown in [Av9lb] to be identical to Lukasiewicz’ 3-valued logic.
Its internal implication — is, in fact, evactly Lukasiewicz” implication. F3
might correspond to the substructural system BCK of Grishin (see [OK85]
and [SD93] for descriptions and references).

In contrast to what happens when we add =4, A = B to N~ and BL,
when we add = =A V A to both we do get equivalent systems (this is due
to the fact that =(A D> B)V (A D B) Fy- ((A D B) D A) D A, and so
we get the full classical positive fragment). It is more natural, therefore, to
work here within the multiple-conclusion version, where by adding = —A, A
instead we get an equivalent cut-free formulation. The resulting logic is this
time the logic of {t,f, T} (again, with the above definition of D). This
logic was introduced independently in [DO85], [Av86] and [Ro89]. In [DO85]
it is called J5 (see also [Ep90]). Its most important property is that is is a
maximal paraconsistent logic in its language (see [Av86]), and the strongest in
the family of the paraconsistent logics of da-Costa ([dCT74]). Its symmetrical
version k3, is this time closed under contraction and its converse, but it is
not monotonic. In [Av91b] it is shown that it is identical to RMs-the unique
3-valued extension of RM, and the strongest logic in the family of relevant
and semirelevant logics. Its internal implication — is this time exactly the
Sobocinski implication [So52].

Again by making both types of additions to BL or to N~ we get classical

propositional logic.

3 The semantic point of view

We turn in this section to the semantic aspect of negation.

A “semantics” for a logic consists of a set of “models”. The main property
of a model is that every sentence of a logic is either true in it or not (and
not both). The logic is sound with respect to the semantics if the set of

sentences which are true in each model is closed under the CR of the logic,
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and complete if a sentence ¢ follows (according to the logic) from a set T' of
assumptions iff every model of 7" is a model of . Such a characterization is,
of course, possible only if the CR we consider is Tarskian. In this section we
assume, therefore, that we deal only with Tarskian CRs. For logics like Linear
Logic and Relevance logics this means that we consider only the external CRs
which are associated with them (see the Introduction).

Obviously, the essence of a “model” is given by the set of sentences which
are true in it. Hence a semantics is, essentially, just a set S of theories.
Intuitively, these are the theories which (according to the semantics) provide
a full description of a possible state of affairs. Every other theory can be
understood as a partial description of such a state, or as an approximation of
a full description. Completeness means, then, that a sentence ¢ follows from
a theory T'iff ¢ belongs to every superset of T" which is in S (in other words:
iff ¢ is true in any possible state of affairs of which T'is an approximation).

Now what constitutes a “model”” is frequently defined using some kind of
algebraic structures. Which kind (matrices with designated values, possible
worlds semantics and so on) varies from one logic to another. It is difficult,
therefore, to base a general, uniform theory on the use of such structures.
Semantics (= a set of theories!) can also be defined, however, purely syn-
tactically. Indeed, below we introduce several types of syntactically defined
semantics which are very natural for every logic with “negation”. Our inves-
tigations will be based on these types.

Our description of the notion of a model reveals that externally it is based
on two classical “laws of thought”: the law of contradiction and the law of
excluded middle. When this external point of view is internally reflected
inside the logic with the help of a unary connective = we call this connective
a (strong) semantic negation. Its intended meaning is that =A should be
true precisely when A is not. The law of contradiction internally means then
that only consistent theories may have a model, while the law of excluded

middle internally means that the set of sentences which are true in some
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given model should be negation-complete. The sets of consistent theories,
of complete theories and of normal theories (theories that are both) have,
therefore a crucial importance when we want to find out to what degree a
given unary connective of a logic can be taken as a semantic negation. Thus
complete theories reflect a state of affairs in which the law of excluded middle
holds. It is reasonable, therefore, to say that this law semantically obtains for
a logic L if its consequence relation by is determined by its set of complete
theories. Similarly, L (strongly) satisfies the law of contradiction iff Fp is
determined by its set of consistent theories, and it semantically satisfies both
laws iff k7, is determined by its set of normal theories.

The above characterizations might seem unjustifiably strong for logics
which are designed to allow non-trivial inconsistent theories. For such logics
the demand that . should be determined by its set of normal theories is
reasonable only if we start with a consistent set of assumptions (this is called
strong e-normality below). A still weaker demand (e-normality) is that any
consistent set of assumptions should be an approximation of at least one
normal state of affairs (in other words: it should have at least one normal
extension).

It is important to note that the above characterizations are independent
of the existence of any internal reflection of the laws (for example: in the
forms =(=A A A) and AV A, for suitable A and V). There might be strong
connections, of course, in many important cases, but they are neither neces-
sary nor always simple.

We next define our general notion of semantics in precise terms.
Definition. Let £ be a logic in L and let -, be its associated (Tarskian)
CR.

1. A setup for . is a set of formulae in L which is closed under F.. A
semantics for F, is a nonempty set of setups which does not include

the trivial setup (i.e., the set of all formulae).
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2. Let S be a semantics for Fz. An S-model for a formula A is any setup
in S to which A belongs. An S-model of a theory T is any setup in S
which is a superset of T'. A formula is called S-valid iff every setup in
S is a model of it. A formula A S-follows from a theory T' (T +2 A) iff
every S-model of T"is an S-model of A.

Proposition 13 % is a consequence relation and :CF2.

Note.

1. F2 is not necessarily finitary even if  is.
2. b is just ¥ where S* is the set of all setups.

3. If Sy C Sy then FRCF2.
Examples:

1. For classical propositional logic the standard semantics consists of the
setups which are induced by some valuation in {¢, f}. These setups can

be characterized as theories T such that
(1) ~AeT it A¢T (it) ANBET iffboth AcTand BeT
(and similar conditions for the other connectives).

2. In classical predicate logic we can define a setup in .S to be any set of for-
mulae which consists of the formulae which are true in some given first-
order structure relative to some given assignment. Alternatively we can
take a setup to consist of the formulae which are valid in some given
first-order structure. In the first case F°=F", in the second F =F",
where F* and FY are the “truth” and “validity” consequence relations

of classical logic (see [Av9la] for more details).
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JFrom now on the following two conditions will be assumed in all our

general definitions and propositions:

1.

2.

The language contains a negation connective —.

For no A are both A and —A theorems of the logic.

Definition. Let S be a semantics for a CR F,

1. k¢ is strongly complete relative to S if F2=F.

2. b is weakly complete relative to S if for all A, bz A iff H2 A.

3. k£ is c-complete relative to S if every consistent theory of . has a
model in 5.

4. F is strongly c-complete relative to S if for every A and every consis-
tent T, T 2 Aff T A,

Notes:

1. Obviously, strong completeness implies strong c¢-completeness, while
strong c-completeness implies both ¢-completeness and weak complete-
ness.

2. Strong completeness means that deducibility in F, is equivalent to

semantical consequence in 5. Weak completeness means that theo-
remhood in k. (i.e., derivability from the empty set of assumptions) is
equivalent to semantical validity (= truth in all models). e-completeness
means that consistency implies satisfiability. It becomes identity if only
consistent sets can be satisfiable, i.e., if {=A, A} has a model for no
A. This is obviously too strong a demand for paraconsistent logics.
Finally, strong c-completeness means that if we restrict ourselves to
normal situations (i.e., consistent theories) then b, and 2 are the

same. This might sometimes be weaker than full strong completeness.
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The last definition uses the concepts of “consistent” theory. The next
definition clarifies (among other things) the meaning of this notion as we are

going to use in this paper.

Definition. Let £ and F, be as above. A theory in L consistent if for no A
it is the case that T'F; A and T' . = A, complete if for all A, either T'F, A
or Tz = A, normal if it is both consistent and complete. C'S, C'P and
N will denote, respectively, the sets of all consistent, complete and normal

theories.

Given ., the three classes, ('S, C'P and N, provide 3 different syntac-
tically defined semantics for -, and 3 corresponding consequence relations
G5 FCP and FY such that FE9CHY and FGPCHY. Accordingly, we get
several notions of syntactical completeness of k. In the rest of this section
we investigate these relations and the completeness properties they induce.

Let us start with the easier case: that of FZ%. Tt immediately follows
from the definitions (and our assumptions) that relative to it every logic is
strongly e-complete (and so also c-complete and weakly complete). Hence

the only completeness notion it induces is the following:

Definition. A logic £ with a consequence relation . is strongly consistent

it G =t .

Proposition 14 (1) T FS5 A iff either T is inconsistent in £ or T Fz A. In
particular, T is ¢ -consistent iff it is - ¢-consistent, and for a b ¢-consistent
T, THFSS A ff Tk A,

(2) L is strongly consistent iff ~A, Atz B for all A, B (iff T is consistent
whenever T ¥ A).

We next turn our attention to F&¥ and F¥:

Definition. Let £ be a logic and F its consequence relation.
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1. L is strongly (syntactically) complete if it is strongly complete relative
to C'P.

2. L is weakly (syntactically) complete if it is weakly complete relative to
CP.

3. L is strongly normal if it is strongly complete relative to N.
4. L is weakly normal if it 1s weakly complete relative to V.
5. L is c-normal if it is c-complete relative to N.

6. L is strongly c-normal if it is strongly e-complete relative to N (this is

easily seen to be equivalent to FY=F29).

For the reader’s convenience we review what these definitions actually

mearn:

Proposition 15 (1) £ is strongly complete iff whenever T ¥ A there exists
a complete extension T of T such that T ¥ A.

(2) L is weakly complete iff whenever A is not a theorem of L there exists a
complete T such that T ¥ A.

(3) L is strongly normal iff whenever T ¥ ;A there exists a complete and
consistent extension T of T such that T* ¥ 0 A.

(4) L is weakly normal iff whenever A is not a theorem of L there exists a
complete and consistent theory T such that T ¥ ; A.

(5) L is c-normal if every consistent theory of L has a complete and consistent
extension.

(6) L is strongly c-normal iff whenever T is consistent and T ¥ ;A there

exists a complete and consistent extension T of T' such that T* ¥ A.

Proposition 16 [ fLisfinitarythenl is strongly complete iff for all T, A
and B:

() T,AtcB and T,-Ab;B imply TrF:B.
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In case L has a combining disjunction V so that T, ANV B k. C iff both
T, Aty CandT, Bt C then (x) is equivalent to the theoremhood of ~AV A.

Propositions 14(2), 16 and 9 reveal the following interesting connections

between =% of the previous section and some of the semantic notions intro-

duced here:

Proposition 17 Let b, be Tarskian.

(1) k¢ is strongly consistent iff b5 is monotonic.

(2) If K% is a conservative extension of Fp or if =z has a combining disjunc-
tion then Fr is strongly complete iff F7. is closed under contraction.

(3) Under the assumption in (2), b is strongly normal iff =5 is ordinary.

In Figure 1 we display the obvious relations between the seven properties
of logics which we introduce above (where an arrow means “contained in”).

In [Av9I] it is shown that no arrow can be added to it:

weak completeness

T~

weak normality c-normality

\/

strong completeness strong c-normality strong consistency

strong normality

Figure 1
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The next theorem summarizes the related properties of the main logics
studied in this paper. For proofs we refer the reader to [Av9I]. It should be
emphasized that for Linear Logic, relevance logics, etc. only the associated
external CR is considered, since the notion of semantic negation makes sense

only for Tarskian CRs.

Theorem 18 1. Classical logic is strongly normal.

2. The intensional (“multiplicative”) fragment of the standard relevance
logics (like Rn, RM I~, RM~) is strongly complete and strongly c-normal,

but not strongly consistent.

3. The logics R, RMI and RM from the relevance family are strongly
complete, c-normal and weakly normal. They are neither strongly c-
normal nor strongly consistent. The same properties are shared by the

{=,V, A}-fragment of the three-valued logic J3.

4. The 3-valued logic J5 (together with the implication connectives O or
— ) is strongly complete and c-normal. It is not even weakly complete

though (and not strongly consistent).

5. Intuitionistic logic and Kleene’s 3-valued logic are strongly consistent

and c-normal, but not even weakly complete.

6. The Logics N and LPF are strongly consistent but lack all the other
properties of Figure 1.

7. Linear Logic (i.e. F5; and its various fragments) and N~ lack all the
properties of Figure 1.

4 Conclusion

We have seen two different aspects of negation. From our two points of view

the major conclusions are:
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o The negation of classical logic is a perfect negation from both syntac-

tical and semantic points of view.

e Next come the intensional fragments of the standard relevance logics
(R~, RMI~, RM~). Their negation is an internal negation for their
associated internal CR. Relative to the external one, on the other hand,
it has the optimal properties one may expect a semantic negation to
have in a paraconsistent logic. In the full systems (R, RM I, RM) the
situation is similar, though less perfect (from the semantic point of

view).

e The negation of Linear Logic is a perfect internal negation w.r.t. its
associated internal CR. It is not, in any sense, a negation from the

semantic point of view.

e The negation of intuitionistic logic is not really a negation from either

point of view.
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