
NEGATION: TWO POINTS OF VIEWArnon AvronDepartment of Computer ScienceSackler Faculty of Exact SciencesTel Aviv University, Ramat Aviv, Israel 699781 IntroductionIn this paper we look at negation from two di�erent points of view: a syntac-tical one and a semantical one. Accordingly, we identify two di�erent typesof negation. The same connective of a given logic might be of both types,but this might not always be the case.The syntactical point of view is an abstract one. It characterizes connec-tives according to the internal role they have inside a logic, regardless of anymeaning they are intended to have (if any). With regard to negation ourmain thesis is that the availability of what we call below an internal negationis what makes a logic essentially multiple-conclusion.The semantic point of view, in contrast, is based on the intuitive meaningof a given connective. In the case of negation this is simply the intuition thatthe negation of a proposition A is true if A is not, and not true if A is true.1Like in most modern treatments of logics (see, e.g., [Sc74], [Ha79], [Ga81],[Ur84], [Wo88], [Ep90], [Av91a], [Cl91], [FHV92]), our study of negation will1We have avoided here the term \false", since we do not want to commit ourselves tothe view that A is false precisely when it is not true. Our formulation of the intuition istherefore obviously circular, but this is unavoidable in intuitive informal characterizationsof basic connectives and quanti�ers. 1



be in the framework of Consequence Relations (CRs). Following [Av91a], weuse the following rather general meaning of this term:De�nition.(1) A Consequence Relation (CR) on a set of formulas is a binary relation `between (�nite) multisets of formulas s.t.:(I) Reexivity: A ` A for every formula A.(II) Transitivity, or \Cut": if �1 ` �1, A and A;�2 ` �2, then �1;�2 `�1;�2.(III) Consistency: ; 6` ; (where ; is the empty multiset).(2) A single-conclusion CR is a CR ` such that � ` � only if � consists ofa single formula.The notion of (multiple-conclusion) CR was introduced in [Sc74a] and[Sc74b]. It was a generalization of Tarski's notion of a consequence rela-tion, which was single-conclusion. Our notions are, however, not identicalto the original ones of Tarski and Scott. First, they both considered sets(rather than multisets) of formulas. Second, they impose a third demand onCRs: monotonicity. We shall call a (single-conclusion or multiple-conclusion)CR which satis�es these two extra conditions ordinary. A single-conclusion,ordinary CR will be called Tarskian.2The notion of a \logic" is in practice broader then that of a CR, sinceusually several CRs are associated with a given logic.3 Given a logic Lthere are in most cases two major single-conclusion CRs which are naturally2What we call a Tarskian CR is exactly Tarski's original notion. In [Av94] we argueat length why the notion of a proof in an axiomatic system naturally leads to our notionof single-conclusion CR, and why the further generalization to multiple-conclusion CR isalso very reasonable.3This is true even about classical logic: see [Av91a] or [Av94], which contains manyother examples (see also section 3 below). 2



associated with it: the external `eL and the internal `iL. For example, if L isde�ned by some axiomatic system AS then A1; � � � ; An `eL B i� there existsa proof in AS of B from A1; � � �An (according to the most standard meaningof this notion as de�ned in undergraduate textbooks on mathematical logic),while A1; � � � ; An `iL B i� A1 ! (A2 ! � � � ! (An ! B) � � � ) is a theoremof AS (where ! is an appropriate \implication" connective of the logic).Similarly if L is de�ned using a Gentzen-type systemG thenA1; � � � ; An `iL Bif the sequent A1; � � � ; An ) B is provable in G, while A1; � � �An `eL B i�there exists a proof in G of ) B from the assumptions ) A1; � � � ;) An(perhaps with cuts). `eL is always a Tarskian relation, `iL frequently not.The existence (again, in most cases) of these two CRs should be kept inmind in what follows. The reason is that semantical characterizations ofconnectives (in particular of negation in this work) is almost always donew.r.t. Tarskian CRs (and so here `eL is usually relevant). This is not the casewith syntactical characterizations, and here frequently `iL is more suitable.4A �nal note: in order to give the global picture, we have omitted almostall proofs. Most of them are straightforward anyway. Those which are not,are (or will be) given elsewhere.2 The syntactical point of view2.1 Classi�cation of basic connectivesOur general framework allows us to give a completely abstract de�nition,independent of any semantical interpretation, of standard connectives. Thesecharacterizations explain why these connectives are so important in almostevery logical system.In what follows ` is a �x CR. All de�nitions are taken to be relative to4I have �rst introduced the notations `i and `e in [Av88] with respect to Linear Logic.The distinction between `iLL and `eLL will be of importance also in this paper.3



` (the de�nitions are taken from [Av91a]).We consider two types of connectives. The �rst, which we call internalconnectives, makes it possible to transform a given sequent to an equivalentone that has a special required form. The second, which we call combiningconnectives allows us to combine (under certain circumstances) two sequentsinto one which contain exactly the same information.The most common (and useful) connectives are the following:Internal Disjunction: + is an internal disjunction if for all �;�; A;B:� ` �; A;B i� � ` �; A+B :Internal Conjunction: 
 is an internal conjunction if for all �;�; A;B:�; A;B ` � i� A
B ` � :Internal Implication: ! is an internal implication if for all �;�; A;B:�; A `; B;� i� � ` A! B;� :Internal Negation: : is an internal negation if the following two conditionsare satis�ed by all �;� and A:(1) A;� ` � i� � ` �;:A(2) � ` �; A i� :A;� ` � :Combining Conjunction: We call a connective ^ a combining conjunctioni� for all �;�; A;B:� ` �; A ^ B i� � ` �; A and � ` �; B :Combining Disjunction: We call a connective _ a combining disjunctioni� for all �;�; A;BA _B;� ` � i� A;� ` � and B;� ` � :4



Note: The combining connectives are called \additives" in Linear logic (see[Gi87]) and \extensional" in Relevance logic. The internal ones correspond,respectively, to the \multiplicatives" and the \intensional" connectives.Several well-known logics can be de�ned using the above connectives:Multiplicative Linear Logic: This is the logic which corresponds to theminimal (multiset) CR which includes all the internal connectives.Propositional Linear Logic: (without the \exponentials" and the propo-sitional constants). This corresponds to the minimal consequence relationwhich contains all the connectives introduced above.R�! the Intensional Fragment of the Relevance Logic R:5 This corre-sponds to the minimal CR which contains all the internal connectives and isclosed under contraction.R without Distribution: This corresponds to the minimal CR which con-tains all the connectives which were described above and is closed undercontraction.RMI�!:6 This corresponds to the minimal sets-CR which contains all theinternal connectives.Classical Proposition Logic: This of course corresponds to the minimalordinary CR which has all the above connectives. Unlike the previous log-ics there is no di�erence in it between the combining connectives and thecorresponding internal ones.2.2 Internal negation and strong symmetryAmong the various connectives de�ned above only negation essentially de-mands the use of multiple-conclusion CRs (even the existence of an internaldisjunction does not force multiple-conclusions, although its existence is triv-ial otherwise.). Moreover, its existence creates full symmetry between the two5see [AB75] or [Du86].6see [Av90a], [Av90b]. 5



sides of the turnstyle. Thus in its presence, closure under any of the struc-tural rules on one side entails closure under the same rule on the other, theexistence of any of the binary internal connectives de�ned above implies theexistence of the rest, and the same is true for the combining connectives.To sum up: internal negation is the connective with which \the hiddensymmetries of logic" [Gi87] are explicitly represented. We shall call, therefore,any multiple-conclusion CR which possesses it strongly symmetrical.Some alternative characterizations of internal negation are given in thefollowing proposition.Proposition 1 The following conditions on ` are all equivalent:(1) : is an internal negation for `.(2) � ` �; A i� �;:A ` �(3) A;� ` � i� � ` �;:A(4) A;:A ` and ` :A;A(5) ` is closed under the rules:A;� ` �� ` �;:A � ` �; A:A;� ` � :Our characterization of internal negation and of symmetry has been donewithin the framework of multiple-conclusion relations. Single-conclusion CRsare, however, more natural. We proceed next to introduce correspondingnotions for them.De�nition.(1) Let `L be a single-conclusion CR (in a language L), and let : be a unaryconnective of L. `L is called strongly symmetric w.r.t. to :, and : is calledan internal negation for `L if there exists a multiple-conclusion CR `�L withthe following properties:(i) � `�L A i� � ` A(ii) : is an internal negation for `�L6



(2) A single-conclusion CR `L is called essentially multiple-conclusion i� ithas an internal negation.Obviously, if a CR `�L like in the last de�nition exists then it is unique.We now formulate su�cient and necessary conditions for its existence.Theorem 2 `L is strongly symmetric w.r.t. : i� the following conditionsare satis�ed:(i) A `L ::A(ii) ::A `L A(iii) If �; A `L B then �;:B `L :A.Proof: The conditions are obviously necessary. Assume, for the converse,that `L satis�es the conditions. De�ne: A1; � � � ; An `sL B1; � � � ; Bk i� forevery 1 � i � n and 1 � j � k:A1; � � � ; Ai�1;:B1; � � � ;:Bk; Ai+1; � � � ; An ` :AiA1; � � � ; An;:B1; � � � ;�Bj�1;:Bj+1; � � � ;:Bk ` Bj :It is easy to check that `sL is a CR whenever `L is a CR (whether single-conclusion or multiple-conclusion), and that if � `sL A then � `L A. The�rst two conditions imply (together) that : is an internal negation for `sL(in particular: the second entails that if A;� `sL � then � `sL �;:A and the�rst that if � `sL �; A then :A;� `sL �). Finally, the third condition entailsthat `sL is conservative over `L. 2Proposition 3 Let L be any logic in a language containing : and !. Sup-pose that the set of valid formulae of L includes the set of formulae in thef:;!g language which are theorems of Linear Logic,7 and that it is closedunder MP for!. Then the internal consequence relation of L (de�ned using! as in the introduction) is strongly symmetrical (with respect to :).7Here : should be translated into linear negation, ! { into linear implication.7



Examples.1. Classical logic.2. Extensions of classical logic, like the various modal logics.3. Linear logic and its various fragments.4. The various Relevance logics (like R and RM (see [AB75], [Du86],[AB92]) or RMI ([Av90])) and their fragments.5. The various many-valued logics of Lukasiewicz.All the systems above have, therefore, an internal negation. A major sys-tem which does not have one is intuitionistic logic. Other examples (positiveand negative) will be encountered below.Note. In all these logics it is the internal CR which is essentially multiple-conclusion and has an internal negation.8 This is true even for classicalpredicate calculus: There, e.g. 8xA(x) follows from A(x) according to theexternal CR, but :A(x) does not follow from :8xA(x).9We next discuss what properties of `L are preserved by `sL.Theorem 4 Assume `L is essentially multiple-conclusion.1. `sL is monotonic i� so is `L.2. `sL is closed under expansion (= the converse of contraction) i� so is`L.8The de�nition of this internal CR depends on the choice of the implication connective.However, the same CR is obtained from the standard Gentzen-type formulations of theselogics (and most of them have one) by the method described in the introduction.9The internal CR of classical logic has been called the \truth" CR in [Av91a] and wasdenoted by `t, while the external one was called the \validity" CR and was denoted by`v. On the propositional level there is no di�erence between the two.8



3. ^ is a combining conjunction for `sL i� it is a combining conjunctionfor `L.4. ! is an internal implication for `sL i� it is an internal implication for`L.Notes.1) Because `sL has a symmetrical negation, Parts (3) and (4) can be for-mulated as follows: `sL has the internal connectives i� `L has an internalimplication and it has the combining connectives i� `L has a combining con-junction.2) In contrast, a combining disjunction for `L is not necessarily a combiningdisjunction for `sL. It is easy to see that a necessary and su�cient condi-tion for this to happen is that `L :(A _ B) whenever `L :A and `L :B.An example of an essentially multiple-conclusion system with a combiningdisjunction which does not satisfy the above condition is RMI of [Av90].That system indeed does not have a combining conjunction. This showsthat a single-conclusion logic L with an internal negation and combiningdisjunction does not necessarily have a combining conjunction (unless L ismonotonic). The converse situation is not possible, though: If : is an inter-nal negation and ^ is a combining conjunction then :(:A ^ :B) de�nes acombining disjunction even in the single-conclusion case.3) An internal conjunction 
 for `L is also not necessarily an internal con-junction for `sL. We need the extra condition that if A `L :B then `L:(A
B). An example which shows that this condition does not necessarilyobtain even if `L is an ordinary CR, is given by the following CR `triv:A1; � � � ; An `triv B i� n � 1 :It is obvious that `triv is a Tarskian CR and that every unary connective ofits language is a symmetrical negation for it, while every binary connective9



is an internal conjunction. The condition above fails, however, for `triv.4) The last example shows also that `sL may not be closed under contractionwhen `L does, even if `L is Tarskian. Obviously, � `striv � i� j� [ �j � 2.Hence `striv A;A but 0 strivA. The exact situation about contraction is givenin the next proposition.Proposition 5 If `L is essentially multiple-conclusion then `sL is closed un-der contraction i� `L is closed under contraction and satis�es the followingcondition: If A `L B and :A `L B then `L B.In case `L has a combining disjunction this is equivalent to:`L :A _ A :Note. From the syntactical point of view, therefore, the law of excludedmiddle is just an internal representation of the structural law of contraction!2.3 Weak internal negation and symmetryThe strong symmetry conditions are really strong. We now consider whathappens if we relax them.We start with some general observations (part of which have already beenmade in the proof of Theorem 2, others are generalizations of results of theprevious subsection):10Proposition 6 (1) If : is a unary connective of `L then `sL, as de�ned inthe proof of Theorem 2 is a (multiple-conclusion) CR. Moreover:(i) If � `sL A then � `L A.(ii) `sL A i� `L A (in other words: `sL and `L have the same set of validsentences, and di�er \only" w.r.t. their consequence relations).10Propositions 7, 8 and 10 are from [Av91b].10



(2) `sL is a conservative extension of `L i� condition (iii) of Theorem 2obtains.`sL is the natural CR which is induced by trying to view the connective: of `L as negation. Accordingly we de�ne:De�nition.1. A unary connective : of `L is called (weakly) symmetrical if it is aninternal negation of `sL.2. If : is symmetrical then we call `sL the symmetrical version of `L.Proposition 7 : is symmetrical in `L if the �rst two conditions of Theorem2 are satis�ed (A `L ::A and ::A `L A).De�nition.1. A combining conjunction ^ for `L is called symmetrical if `L is closedunder the rules:�;:A `L � �;:B `L ��;:(A ^B) `L � � `L �;:A� `L �;:(A ^ B) � `L �;:B� `L �;:(A ^B)2. A combining disjunction _ for `L is called symmetrical if `L is closedunder the dual rules.Proposition 8 A symmetrical combining conjunction (disjunction) for `Lis a combining conjunction (disjunction) for `sL.Proposition 9 (1) `sL is monotonic i� `L is monotonic and :A;A `L Bfor every A;B.(2) `sL is closed under expansion i� `L is closed under expansion, and for allA: A;:A `L A and A;:A `L :A (in particular, if `L is monotonic then `sL11



is closed under expansion).(3) (a) If `L is Tarskian with a symmetrical combining disjunction _ then`sL is closed under contraction i� `L :A _A for all A.(b) If `L is Tarskian and condition (iii) of Theorem 2 is satis�ed (and so`sL is a conservative extension of `L) then `sL is closed under contraction i�for all �; A;B: if �; A `L B and �;:A `L B then � `L B.Note. The conditions in the de�nitions of symmetrical conjunction anddisjunction were formulated for arbitrary CRs since `sL is de�ned (and hasall the properties described so far in this subsection) even in case `L ismultiple-conclusion.We next turn our attention to the problem of having an internal impli-cation for `sL. If ! is such a connective then `sL A ! B i� A `sL B i�A `L B and :B `L :A. Suppose now that `L has an internal implication �and a combining conjunction ^. Then the last two conditions are togetherequivalent to `L (A � B) ^ (:B � :A). This, in turn, is equivalent to`sL (A � B) ^ (:B � :A). Hence the last formula provides an obviouscandidate for de�ning !.Proposition 10 Suppose ^ is a symmetrical combining conjunction for `L,� is an internal implication for `L and `L is closed under the following rules:�; A;:B `L ��;:(A � B) `L � �1 `L �1; A �2 `L �2;:B�1;�2 `L �1;�2;:(A � B) :(These two rules will be called below the symmetry conditions for implication.)De�ne: A! B = Df (A � B) ^ (:B � :A) :Then ! is an internal implication for `sL.The various propositions of this section naturally lead to several interest-ing systems which have symmetrical negation. First, by collecting the variousconditions above on :;_ and ^ we get the following basic system BS:12



Axioms: A) A :Rules: �; A) ��;::A) � �) �; A� ) �;::A�; A) � �; B ) ��; A _ B ) � �) �; A� ) �; A _ B � ) �; B� ) �; A _B�;:A) ��;:(A _B)) � �;:B ) ��;:(A _ B)) � � ) �;:A � ) �;:B�) �;:(A _B)�; A) ��; A ^B ) � �; B ) ��; A ^ B ) � � ) �; A �) �; B� ) �; A ^ B�;:A) � �;:B ) ��;:(A ^B)) � �) �;:A� ) �;:(A ^B) �) �;:B�) �;:(A ^B)It is easy to see that only sequents of the form A ) B are provablein BS and that BS admits cut-elimination. Moreover: BS is essentiallymultiple-conclusion since it satis�es condition (iii) of Theorem 2.Another interesting fact about BS is:Proposition 11 `sBS= LLa (the purely additive fragment of Linear Logic).The next step is to extend `BS to an ordinary CR by adding the structuralrules. It does not really matter here if we add them on both sides (gettingan ordinary multiple-conclusion CR) or only on the l.h.s. (getting a TarskianCR), since we get the same single-conclusion fragment in both cases, and sothe same symmetrical version. Let us call the resulting system FDE. FDEis not a conservative extension of BS since A^ (B _C)) (A^B)_ (A^C)is provable in it, but not in BS. It is well known that `FDE A1; � � � ; An )13



B1; � � � ; Bm i� A1 ^ A2 ^ � � � ^ An ! B1 _ B2 _ � � � _ Bm is a \�rst-degree-entailment" of the standard relevance logics like R (see [AB75], [Du86]).Moreover FDE has the following 4-valued characteristic matrix:
t

fwhere :t = f , :f = t, :? = ?, :> = >, _ and ^ are the lattice operationsand D = ft;>g is the set of the designated values. In fact `FDE � ) � i�whenever v is a valuation in this matrix s.t. v(A) 2 D for every A 2 �, wehave v(B) 2 D for some B 2 �.What can we say about `sFDE? According to the above propositions it isclosed under expansion, but not under contraction or weakening. It has :as an internal negation and ^;_ as combining conjunction and disjunction,respectively. Another important property is the following semantic charac-terization.Proposition 12 `sFDE � ) � if for every valuation v in the above four-valued matrix, either v(A) = f for some A 2 �, or v(B) = t for some B 2 �,or v(A) = > for every A 2 � [ � or v(A) = v(B) = ? for two di�erentoccurrences of formulae A;B of �;�.Proposition 9 suggests two natural methods of extending FDE. The �rstis to add to it the axioms :A;A ) B. This corresponds, in the multiple-conclusion version, to adding :A;A) and the structural rules on the right.14



(Again the multiple-conclusion version is cut-free and a conservative exten-sion of the Tarskian one.) The resulting system is, in fact, exactly Kleene's3-valued logic (of ft; f;?g) and so has been called Kl in [Av91b]. By Propo-sition 9 `sKl is monotonic, but not closed under contraction. It is shown in[Av91b] that A1; � � � ; An `sKl B i� A1 ! (A1 ! � � � ! (An ! B) is valid inLukasiewicz' 3-valid logic L3.The second natural addition to FDE is by the axioms ) :A _ A. Inthe multiple-conclusion case this corresponds to adding ) :A;A as axiomsand the structural rules on the right (again we get a conservative, cut-freeversion). This time the resulting logic, Pac, is sound and complete w.r.t. the3-valued logic of ft; f;>g (also known as J3-see [dC74], [DO85], [Ep90]). Ithas the same set of valid formulae as classical logic, but it is paraconsistent(:p; p0 q). `sPac is this time closed under contraction and its converse, butnot under weakening. It corresponds to the f:;_;^g-fragment of the 3-valued logicRM3 ([AB75]) in the same way as `sKl corresponds to LukasiewiczL3 (see [Av91b]).By making both additions we get, of course, classical logic.Things get more complicated when we add to the language a symmetricalimplication. Thus by adding to BS the rules:�) �; A B;�) ��; A � B ) � �; A) �; B� ) �; A � B�; A;:B ) ��;:(A � B)) � � ) �; A �) �;:B�) �;:(A � B)we get a system, BSI, which does not have property (iii) of Theorem 2, andnot only sequents of the form A ) B are provable in it. BSI is still onlysingle-conclusion though. As for `sBSI , the best we can tell about it at presentis that its f:;_;^;!g-fragment (where A! B = (A � B)^ (:B � :A), asabove) is at least as strong as the multiplicative-additive fragment of LinearLogic (without the propositional constants).A more signi�cant change is made when we add to BSI the standard15



structural rules. Here it does matter whether we do it on both sides or onlyon the l.h.s., since the single-conclusion fragment of the system BL which weget by the �rst option is a proper extension of the system N� which we getby the second one. In fact, the purely positive fragment of BL is identical tothat of classical logic, while that of N� { to the corresponding intuitionisticfragment.11Semantically, BL corresponds to the logic we get from ft; f;>;?g if wede�ne a � b to be t if a 62 D, b otherwise (see [AA94]). N�, on the other handcorresponds to Kripke-style structures which are based on this four-valuedlogic (see, e.g., [Wa93]). Both systems admit cut-elimination.It follows from the propositions above that the symmetrical versions of`BL and `N� (`sBL and `sN�) are neither monotonic nor closed under contrac-tion, but they have all the internal and combining connectives (the internalimplication is again ! as de�ned above). The f:;^;_;!g fragment of `sN�is at least as strong as (and might be identical to) the multiplicative-additivefragment of Linear Logic, strengthened by the expansion rule and the dis-tribution axiom (i.e. R where contraction is replaced by its converse). For`sBL, on the other hand, we have exactly the same semantic characterizationas given in Proposition 12.By adding :A;A) B as axioms to BL (or, alternatively, :A;A)) weagain get the 3-valued logic of ft; f;?g, with the above de�nition of �. Thisis exactly the system LPF of [BCJ84] (see also [Jo86], [Av91b]). By addingthe same axiom to N� we get N (Nelson's strong system of constructivenegation). Semantically, N corresponds to Kripke-style structures which arebased on this 3-valued logic (see, e.g., [Wa93]). The symmetrical versionsof both systems are now monotonic, but still not closed under contraction.11BL was introduced, under a di�erent name, in [Av91b]. It is investigated and shownto be the logic of logical bilattices in [AA96] (see also [AA94]). N� is Nelson's weaksystem of constructive negation. This system and the full system N (see below) wereindependently introduced by Nelson (see [AN84]) and Kutschera ([Ku69]). See [Wa93] fordetails on both systems. 16



`sLPF is shown in [Av91b] to be identical to Lukasiewicz' 3-valued logic.Its internal implication ! is, in fact, exactly Lukasiewicz' implication. `sNmight correspond to the substructural system BCK of Grishin (see [OK85]and [SD93] for descriptions and references).In contrast to what happens when we add :A;A ) B to N� and BL,when we add ) :A _ A to both we do get equivalent systems (this is dueto the fact that :(A � B) _ (A � B) `N� ((A � B) � A) � A, and sowe get the full classical positive fragment). It is more natural, therefore, towork here within the multiple-conclusion version, where by adding ) :A;Ainstead we get an equivalent cut-free formulation. The resulting logic is thistime the logic of ft; f;>g (again, with the above de�nition of �). Thislogic was introduced independently in [DO85], [Av86] and [Ro89]. In [DO85]it is called J3 (see also [Ep90]). Its most important property is that is is amaximal paraconsistent logic in its language (see [Av86]), and the strongest inthe family of the paraconsistent logics of da-Costa ([dC74]). Its symmetricalversion `sJ3 is this time closed under contraction and its converse, but it isnot monotonic. In [Av91b] it is shown that it is identical to RM3-the unique3-valued extension of RM , and the strongest logic in the family of relevantand semirelevant logics. Its internal implication ! is this time exactly theSoboci�nski implication [So52].Again by making both types of additions to BL or to N� we get classicalpropositional logic.3 The semantic point of viewWe turn in this section to the semantic aspect of negation.A \semantics" for a logic consists of a set of \models". The main propertyof a model is that every sentence of a logic is either true in it or not (andnot both). The logic is sound with respect to the semantics if the set ofsentences which are true in each model is closed under the CR of the logic,17



and complete if a sentence ' follows (according to the logic) from a set T ofassumptions i� every model of T is a model of '. Such a characterization is,of course, possible only if the CR we consider is Tarskian. In this section weassume, therefore, that we deal only with Tarskian CRs. For logics like LinearLogic and Relevance logics this means that we consider only the external CRswhich are associated with them (see the Introduction).Obviously, the essence of a \model" is given by the set of sentences whichare true in it. Hence a semantics is, essentially, just a set S of theories.Intuitively, these are the theories which (according to the semantics) providea full description of a possible state of a�airs. Every other theory can beunderstood as a partial description of such a state, or as an approximation ofa full description. Completeness means, then, that a sentence ' follows froma theory T i� ' belongs to every superset of T which is in S (in other words:i� ' is true in any possible state of a�airs of which T is an approximation).Now what constitutes a \model"" is frequently de�ned using some kind ofalgebraic structures. Which kind (matrices with designated values, possibleworlds semantics and so on) varies from one logic to another. It is di�cult,therefore, to base a general, uniform theory on the use of such structures.Semantics (= a set of theories!) can also be de�ned, however, purely syn-tactically. Indeed, below we introduce several types of syntactically de�nedsemantics which are very natural for every logic with \negation". Our inves-tigations will be based on these types.Our description of the notion of a model reveals that externally it is basedon two classical \laws of thought": the law of contradiction and the law ofexcluded middle. When this external point of view is internally reectedinside the logic with the help of a unary connective : we call this connectivea (strong) semantic negation. Its intended meaning is that :A should betrue precisely when A is not. The law of contradiction internally means thenthat only consistent theories may have a model, while the law of excludedmiddle internally means that the set of sentences which are true in some18



given model should be negation-complete. The sets of consistent theories,of complete theories and of normal theories (theories that are both) have,therefore a crucial importance when we want to �nd out to what degree agiven unary connective of a logic can be taken as a semantic negation. Thuscomplete theories reect a state of a�airs in which the law of excluded middleholds. It is reasonable, therefore, to say that this law semantically obtains fora logic L if its consequence relation `L is determined by its set of completetheories. Similarly, L (strongly) satis�es the law of contradiction i� `L isdetermined by its set of consistent theories, and it semantically satis�es bothlaws i� `L is determined by its set of normal theories.The above characterizations might seem unjusti�ably strong for logicswhich are designed to allow non-trivial inconsistent theories. For such logicsthe demand that `L should be determined by its set of normal theories isreasonable only if we start with a consistent set of assumptions (this is calledstrong c-normality below). A still weaker demand (c-normality) is that anyconsistent set of assumptions should be an approximation of at least onenormal state of a�airs (in other words: it should have at least one normalextension).It is important to note that the above characterizations are independentof the existence of any internal reection of the laws (for example: in theforms :(:A^A) and :A_A, for suitable ^ and _). There might be strongconnections, of course, in many important cases, but they are neither neces-sary nor always simple.We next de�ne our general notion of semantics in precise terms.De�nition. Let L be a logic in L and let `L be its associated (Tarskian)CR.1. A setup for `L is a set of formulae in L which is closed under `L. Asemantics for `L is a nonempty set of setups which does not includethe trivial setup (i.e., the set of all formulae).19



2. Let S be a semantics for `L. An S-model for a formula A is any setupin S to which A belongs. An S-model of a theory T is any setup in Swhich is a superset of T . A formula is called S-valid i� every setup inS is a model of it. A formula A S-follows from a theory T (T `SL A) i�every S-model of T is an S-model of A.Proposition 13 `SL is a consequence relation and `L�`SL.Note.1. `SL is not necessarily �nitary even if ` is.2. `L is just `S�L where S� is the set of all setups.3. If S1 � S2 then `S2L �`S1L .Examples:1. For classical propositional logic the standard semantics consists of thesetups which are induced by some valuation in ft; fg. These setups canbe characterized as theories T such that(i) :A 2 T i� A =2 T (ii) A ^B 2 T i� both A 2 T and B 2 T(and similar conditions for the other connectives).2. In classical predicate logic we can de�ne a setup in S to be any set of for-mulae which consists of the formulae which are true in some given �rst-order structure relative to some given assignment. Alternatively we cantake a setup to consist of the formulae which are valid in some given�rst-order structure. In the �rst case `S=`t, in the second `S=`v,where `t and `v are the \truth" and \validity" consequence relationsof classical logic (see [Av91a] for more details).20



>From now on the following two conditions will be assumed in all ourgeneral de�nitions and propositions:1. The language contains a negation connective :.2. For no A are both A and :A theorems of the logic.De�nition. Let S be a semantics for a CR `L1. `L is strongly complete relative to S if `SL=`L.2. `L is weakly complete relative to S if for all A, `L A i� `SL A.3. `L is c-complete relative to S if every consistent theory of `L has amodel in S.4. `L is strongly c-complete relative to S if for every A and every consis-tent T , T `SL A i� T `L A.Notes:1. Obviously, strong completeness implies strong c-completeness, whilestrong c-completeness implies both c-completeness and weak complete-ness.2. Strong completeness means that deducibility in `L is equivalent tosemantical consequence in S. Weak completeness means that theo-remhood in `L (i.e., derivability from the empty set of assumptions) isequivalent to semantical validity (= truth in all models). c-completenessmeans that consistency implies satis�ability. It becomes identity if onlyconsistent sets can be satis�able, i.e., if f:A;Ag has a model for noA. This is obviously too strong a demand for paraconsistent logics.Finally, strong c-completeness means that if we restrict ourselves tonormal situations (i.e., consistent theories) then `L and `SL are thesame. This might sometimes be weaker than full strong completeness.21



The last de�nition uses the concepts of \consistent" theory. The nextde�nition clari�es (among other things) the meaning of this notion as we aregoing to use in this paper.De�nition. Let L and `L be as above. A theory in L consistent if for no Ait is the case that T `L A and T `L :A, complete if for all A, either T `L Aor T `L :A, normal if it is both consistent and complete. CS, CP andN will denote, respectively, the sets of all consistent, complete and normaltheories.Given `L, the three classes, CS, CP and N , provide 3 di�erent syntac-tically de�ned semantics for `L, and 3 corresponding consequence relations`CSL , `CPL and `NL such that `CSL �`NL and `CPL �`NL . Accordingly, we getseveral notions of syntactical completeness of `L. In the rest of this sectionwe investigate these relations and the completeness properties they induce.Let us start with the easier case: that of `CSL . It immediately followsfrom the de�nitions (and our assumptions) that relative to it every logic isstrongly c-complete (and so also c-complete and weakly complete). Hencethe only completeness notion it induces is the following:De�nition. A logic L with a consequence relation `L is strongly consistentif `CSL =`L.Proposition 14 (1) T `CSL A i� either T is inconsistent in L or T `L A. Inparticular, T is `CSL -consistent i� it is `L-consistent, and for a `L-consistentT , T `CSL A i� T `L A.(2) L is strongly consistent i� :A;A `L B for all A;B (i� T is consistentwhenever T 0A).We next turn our attention to `CPL and `NL :De�nition. Let L be a logic and `L its consequence relation.22



1. L is strongly (syntactically) complete if it is strongly complete relativeto CP .2. L is weakly (syntactically) complete if it is weakly complete relative toCP .3. L is strongly normal if it is strongly complete relative to N .4. L is weakly normal if it is weakly complete relative to N .5. L is c-normal if it is c-complete relative to N .6. L is strongly c-normal if it is strongly c-complete relative to N (this iseasily seen to be equivalent to `NL=`CSL ).For the reader's convenience we review what these de�nitions actuallymean:Proposition 15 (1) L is strongly complete i� whenever T 0 LA there existsa complete extension T � of T such that T � 0 LA.(2) L is weakly complete i� whenever A is not a theorem of L there exists acomplete T � such that T � 0 LA.(3) L is strongly normal i� whenever T 0 LA there exists a complete andconsistent extension T � of T such that T � 0 LA.(4) L is weakly normal i� whenever A is not a theorem of L there exists acomplete and consistent theory T � such that T � 0 LA.(5) L is c-normal if every consistent theory of L has a complete and consistentextension.(6) L is strongly c-normal i� whenever T is consistent and T 0 LA thereexists a complete and consistent extension T � of T such that T �0 LA.Proposition 16 IfLisfinitarythenL is strongly complete i� for all T;Aand B: (�) T;A `L B and T;:A `L B imply T `L B :23



In case L has a combining disjunction _ so that T;A _ B `L C i� bothT;A `L C and T;B `L C then (�) is equivalent to the theoremhood of :A_A.Propositions 14(2), 16 and 9 reveal the following interesting connectionsbetween `sL of the previous section and some of the semantic notions intro-duced here:Proposition 17 Let `L be Tarskian.(1) `L is strongly consistent i� `sL is monotonic.(2) If `sL is a conservative extension of `L or if `L has a combining disjunc-tion then `L is strongly complete i� `sL is closed under contraction.(3) Under the assumption in (2), `L is strongly normal i� `sL is ordinary.In Figure 1 we display the obvious relations between the seven propertiesof logics which we introduce above (where an arrow means \contained in").In [Av9?] it is shown that no arrow can be added to it:
weak completenessstrong completenessweak normality strong c-normalitystrong normality c-normalitystrong consistencyFigure 124



The next theorem summarizes the related properties of the main logicsstudied in this paper. For proofs we refer the reader to [Av9?]. It should beemphasized that for Linear Logic, relevance logics, etc. only the associatedexternal CR is considered, since the notion of semantic negation makes senseonly for Tarskian CRs.Theorem 18 1. Classical logic is strongly normal.2. The intensional (\multiplicative") fragment of the standard relevancelogics (like R�!; RMI�!; RM�!) is strongly complete and strongly c-normal,but not strongly consistent.3. The logics R, RMI and RM from the relevance family are stronglycomplete, c-normal and weakly normal. They are neither strongly c-normal nor strongly consistent. The same properties are shared by thef:;_;^g-fragment of the three-valued logic J3.4. The 3-valued logic J3 (together with the implication connectives � or!) is strongly complete and c-normal. It is not even weakly completethough (and not strongly consistent).5. Intuitionistic logic and Kleene's 3-valued logic are strongly consistentand c-normal, but not even weakly complete.6. The Logics N and LPF are strongly consistent but lack all the otherproperties of Figure 1.7. Linear Logic (i.e. `eLL and its various fragments) and N� lack all theproperties of Figure 1.4 ConclusionWe have seen two di�erent aspects of negation. From our two points of viewthe major conclusions are: 25



� The negation of classical logic is a perfect negation from both syntac-tical and semantic points of view.� Next come the intensional fragments of the standard relevance logics(R�!; RMI�!; RM�!). Their negation is an internal negation for theirassociated internal CR. Relative to the external one, on the other hand,it has the optimal properties one may expect a semantic negation tohave in a paraconsistent logic. In the full systems (R;RMI;RM) thesituation is similar, though less perfect (from the semantic point ofview).� The negation of Linear Logic is a perfect internal negation w.r.t. itsassociated internal CR. It is not, in any sense, a negation from thesemantic point of view.� The negation of intuitionistic logic is not really a negation from eitherpoint of view. References[AA94] Arieli O. and Avron A., Logical Bilattices and Inconsistent Data,Proceedinge of the 9th IEEE Annual Symp. on Logic in ComputerScience (1994), IEEE Press, pp. 468-476.[AA96] Arieli O. and Avron A., Reasoning with Logical Bilattices, Forthcom-ing in the Journal of Logic, Language and Information.[AB75] Anderson A.R. and Belnap N.D. Entailment vol. 1, Princeton Uni-versity Press, Princeton,N.J., 1975.[AB92] Anderson A.R. and Belnap N.D. Entailment vol. 2, Princeton Uni-versity Press, Princeton,N.J., 1992.26



[AN84] Almukdad, A. and Nelson, D., Constructible falsity and inexact pred-icates, Journal of Symbolic Logic 49 (1984), 231-333.[Av86] Avron A., On an Implication Connective of RM, Notre Dame Journalof Formal Logic, vol. 27 (1986), pp. 201-209.[Av88] Avron A., The Semantics and Proof Theory of Linear Logic, Journalof Theoretical Computer Science, vol. 57 (1988), pp. 161-184.[Av90a] Avron A., Relevance and Paraconsistency - A New Approach., Jour-nal of Symbolic Logic, vol. 55 (1990), pp. 707-732.[Av90b] Avron A., Relevance and Paraconsistency - A New Approach. PartII: the Formal systems, Notre Dame Journal of Formal Logic, vol 31(1990), pp. 169-202.[Av91a] Avron A., Simple Consequence relations, Information and Compu-tation, vol 92 (1991), pp. 105-139.[Av91b] Avron A., Natural 3-valued Logics| Characterization and ProofTheory, Journal of Symbolic Logic, vol 56 (1991), pp. 276-294.[Av9?] Avron A., On Negation, Consistency and Completeness, To appearin the second edition of the Handbook of Philosophical logic (edited byD. Gabbay and F. Guenthner).[Av94] Avron A., What is a Logical System?, in: What is a Logical Sys-tem?, ed. by D. Gabbay, Oxford Science Publications, ClarendonPress, Oxford, 1994.[BCJ84] Barringer H., Cheng J.H., and Jones C.B., A Logic Covering Unde-�ness in Program Proofs, Acta Informatica, vol 21., 1984, PP. 251-269.[Cl91] Cleave J. P., A Study of Logics, Oxford Logic Guides, ClarendonPress, Oxford, 1991. 27



[dC74] da-Costa N.C.A.,Theory of Inconsistent Formal Systems, Notre DameJournal of Formal Logic, vol 15 (1974), pp. 497-510.[DO85] D'Ottaviano I. M. L. , The completeness and compactness of a three-valued �rst-order logic, Revista Colombiana deMatematicas, XIX (1985),pp. 31-42.[Du86] Dunn J.M. Relevant logic and entailment, in: Handbook of Philo-sophical Logic, Vol III, ed. by D. Gabbay and F. Guenthner, Reidel:Dordrecht, Holland; Boston: U.S.A. (1986).[Ep90] Epstein R. L. The Semantic Foundations of Logic, vol. 1:Propositional Logics, Kluwer Academic Publishers, 1990.[FHV92] Fagin R., Halpern J.Y, and Vardi Y. What is an Inference Rule?Journal of Symbolic Logic, 57 (1992), pp. 1017-1045.[Ga81] Gabbay D. Semantical investigations in Heyting's intuitionis-tic logic , Reidel: Dordrecht, Holland; Boston: U.S.A. (1981).[Ga94] Gabbay D., editor, What is a Logical System? Oxford SciencePublications, Clarendon Press, Oxford, 1994.[Gi87] Girard J.Y., Linear Logic, Theoretical Computer Science, vol. 50(1987), pp. 1-101.[Ha79] Hacking I. What is logic? The journal of philosophy, vol. 76 (1979),pp. 285-318. Reprinted in [Ga94].[Jo86] Jones C.B., Systematic Software Development Using VDM,Journal of Symbolic Logic, vol. 24 (1959), p. 324.[Ku69] von Kutschera, F., Ein verallgemeinerter Widerlegungsbegri� furGentzenkalkule, Archiv fur Mathematische Logik und Grundlagenforschung12 (1969), 104-118. 28



[OK85] Ono H. and Komori, Y., Logics Without the Contraction Rule, TheJournal of Symbolic Logic 50 (1985) pp. 169-201.[Ro89] Rozonoer L. I., On Interpretation of Inconsistent Theories, Informa-tion Sciences, vol. 47 (1989), pp. 243-266.[Sc74a] Scott D. Rules and derived rules, in: Stenlund S. (ed.), Logicaltheory and semantical analysis, Reidel: Dordrecht (1974), pp. 147-161.[Sc74b] Scott D. Completeness and axiomatizability in many-valued logic, in:Proceeding of the Tarski Symposium, Proceeding of Symposia inPure Mathematics, vol. XXV, American Mathematical Society, RhodeIsland, (1974), pp. 411-435.[SD93] Schroeder-Heister, P and Do�sen K., editors: Substructural Logics,Oxford Science Publications, Clarendon Press, Oxford, 1993.[So52] Soboci�nski B.Axiomatization of partial system of three-valued calculusof propositions, The Journal of Computing Systems, vol 11. 1 (1952),pp. 23-55.[Ur84] Urquhart A. Many-valued Logic, in: Handbook of PhilosophicalLogic, Vol III, ed. by D. Gabbay and F. Guenthner, Reidel: Dordrecht,Holland; Boston: U.S.A. (1984).[Wa93] Wansing H., The Logic of Information Structures, LNAI 681,Springer-Verlag, 1993[Wo88] Wojcicki R., Theory of Logical Calculi, Synthese Library, vol.199, Kluwer Academic Publishers (1988).29


