
On Negation, Completeness andConsistencyArnon AvronDepartment of Computer ScienceSackler Faculty of Exact SciencesTel Aviv University, Ramat Aviv, Israel 699781 IntroductionIn this paper we try to understand negation from two di�erent points of view:a syntactical one and a semantic one. Accordingly, we identify two di�erenttypes of negation. The same connective of a given logic might be of bothtypes, but this might not always be the case.The syntactical point of view is an abstract one. It characterizes connec-tives according to the internal role they have inside a logic, regardless of anymeaning they are intended to have (if any). With regard to negation ourmain thesis is that the availability of what we call below an internal negationis what makes a logic essentially multiple-conclusion.The semantic point of view, in contrast, is based on the intuitive meaningof a given connective. In the case of negation this is simply the intuition thatthe negation of a proposition A is true if A is not, and not true if A is true.11We have avoided here the term \false", since we do not want to commit ourselves tothe view that A is false precisely when it is not true. Our formulation of the intuition istherefore obviously circular, but this is unavoidable in intuitive informal characterizationsof basic connectives and quanti�ers. 1



Like in most modern treatments of logics (see, e.g., [Sc74a,b], [Ha79],[Ga81], [Ur84], [Wo88], [Ep95], [Av91a], [Cl91], [FHV92]), our study of nega-tion will be in the framework of Consequence Relations (CRs). Following[Av91a], we use the following rather general meaning of this term:De�nition.(1) A Consequence Relation (CR) on a set of formulas is a binary relation `between (�nite) multisets of formulas s.t.:(I) Reexivity: A ` A for every formula A.(II) Transitivity, or \Cut": if �1 ` �1, A and A;�2 ` �2, then �1;�2 `�1;�2.(III) Consistency: ; 6` ; (where ; is the empty multiset).(2) A single-conclusion CR is a CR ` such that � ` � only if � consists ofa single formula.The notion of a (multiple-conclusion) CR was introduced in [Sc74a] and[Sc74b]. It was a generalization of Tarski's notion of a consequence rela-tion, which was single-conclusion. Our notions are, however, not identicalto the original ones of Tarski and Scott. First, they both considered sets(rather than multisets) of formulas. Second, they impose a third demand onCRs: monotonicity. We shall call a (single-conclusion or multiple-conclusion)CR which satis�es these two extra conditions ordinary. A single-conclusion,ordinary CR will be called Tarskian.2The notion of a \logic" is in practice broader than that of a CR, sinceusually several CRs are associated with a given logic. Given a logic L there2What we call a Tarskian CR is exactly Tarski's original notion. In [Av94] we argueat length why the notion of a proof in an axiomatic system naturally leads to our notionof single-conclusion CR, and why the further generalization to multiple-conclusion CR isalso very reasonable. 2



are in most cases two major single-conclusion CRs which are naturally asso-ciated with it: the external CR `eL and the internal CR `iL. For example, if Lis de�ned by some axiomatic systemAS then A1; � � � ; An `eL B i� there existsa proof in AS of B from A1; � � �An (according to the most standard meaningof this notion as de�ned in undergraduate textbooks on mathematical logic),while A1; � � � ; An `iL B i� A1 ! (A2 ! � � � ! (An ! B) � � � ) is a theorem ofAS (where ! is an appropriate \implication" connective of the logic). Sim-ilarly if L is de�ned using a Gentzen-type system G then A1; � � � ; An `iL B ifthe sequent A1; � � � ; An ) B is provable in G, while A1; � � �An `eL B i� thereexists a proof in G of ) B from the assumptions ) A1; � � � ;) An (perhapswith cuts). `eL is always a Tarskian relation, `iL frequently is not. The exis-tence (again, in most cases) of these two CRs should be kept in mind in whatfollows. The reason is that semantic characterizations of connectives are al-most always done w.r.t. Tarskian CRs (and so here `eL is usually relevant).This is not the case with syntactical characterizations, and here frequently`iL is more suitable.2 The syntactical point of view2.1 Classi�cation of basic connectivesOur general framework allows us to give a completely abstract de�nition,independent of any semantic interpretation, of standard connectives. Thesecharacterizations explain why these connectives are so important in almostevery logical system.In what follows ` is a �xed CR. All de�nitions are taken to be relative to` (the de�nitions are taken from [Av91a]).We consider two types of connectives. The internal connectives, whichmake it possible to transform a given sequent into an equivalent one that hasa special required form, and the combining connectives, which allow us to3



combine (under certain circumstances) two sequents into one which containsexactly the same information. The most common (and useful) among theseare the following connectives:Internal Disjunction: + is an internal disjunction if for all �;�; A;B:� ` �; A;B i� � ` �; A+B :Internal Conjunction: 
 is an internal conjunction if for all �;�; A;B:�; A;B ` � i� �; A
B ` � :Internal Implication: ! is an internal implication if for all �;�; A;B:�; A ` B;� i� � ` A! B;� :Internal Negation: : is an internal negation if the following two conditionsare satis�ed by all �;� and A:(1) A;� ` � i� � ` �;:A(2) � ` �; A i� :A;� ` � :Combining Conjunction: ^ is a combining conjunction i� for all �;�; A;B:� ` �; A ^ B i� � ` �; A and � ` �; B :Combining Disjunction: _ is a combining disjunction i� for all �;�; A;BA _B;� ` � i� A;� ` � and B;� ` � :Note: The combining connectives are called \additives" in Linear logic (see[Gi87]) and \extensional" in Relevance logic. The internal ones correspond,respectively, to the \multiplicative" and the \intensional" connectives.Several well-known logics can be de�ned using the above connectives:4



LLm | Multiplicative Linear Logic (without the propositional con-stants): This is the logic which corresponds to the minimal (multiset) CRwhich includes all the internal connectives.LLma | Propositional Linear Logic (without the \exponentials" andthe propositional constants): This corresponds to the minimal consequencerelation which contains all the connectives introduced above.Rm | the Intensional Fragment of the Relevance Logic R:3 Thiscorresponds to the minimal CR which contains all the internal connectivesand is closed under contraction.R without Distribution: This corresponds to the minimal CR which con-tains all the connectives which were described above and is closed undercontraction.RMIm | the Intensional Fragment of the Relevance Logic RMI:4This corresponds to the minimal sets-CR which contains all the internalconnectives.Classical Proposition Logic: This of course corresponds to the minimalordinary CR which has all the above connectives. Unlike the previous log-ics there is no di�erence in it between the combining connectives and thecorresponding internal ones.In all these examples we refer, of course, to the internal consequencerelations which naturally correspond to these logics (In all of them it can bede�ned by either of the methods described above).2.2 Internal Negation and Strong SymmetryAmong the various connectives de�ned above only negation essentially de-mands the use of multiple-conclusion CRs (even the existence of an internaldisjunction does not force multiple-conclusions, although its existence is triv-3see [AB75] or [Du86].4see [Av90a], [Av90b]. 5



ial otherwise.). Moreover, its existence creates full symmetry between the twosides of the turnstyle. Thus in its presence, closure under any of the struc-tural rules on one side entails closure under the same rule on the other, theexistence of any of the binary internal connectives de�ned above implies theexistence of the rest, and the same is true for the combining connectives.To sum up: internal negation is the connective with which \the hiddensymmetries of logic" ([Gi87]) are explicitly represented. We shall call, there-fore, any multiple-conclusion CR which possesses it strongly symmetric.Some alternative characterizations of an internal negation are given inthe following easy proposition.Proposition 1 The following conditions on ` are all equivalent:(1) : is an internal negation for `.(2) � ` �; A i� �;:A ` �(3) A;� ` � i� � ` �;:A(4) A;:A ` and ` :A;A(5) ` is closed under the rules:A;� ` �� ` �;:A � ` �; A:A;� ` � :Our characterization of internal negation and of symmetry has been donewithin the framework of multiple-conclusion relations. Single-conclusion CRsare, however, more natural. We proceed next to introduce correspondingnotions for them.De�nition.(1) Let `L be a single-conclusion CR (in a language L), and let : be a unaryconnective of L. `L is called strongly symmetric w.r.t. to :, and : is calledan internal negation for `L, if there exists a multiple-conclusion CR `�L withthe following properties:(i) � `�L A i� � `L A 6



(ii) : is an internal negation for `�L(2) A single-conclusion CR `L is called essentially multiple-conclusion i� ithas an internal negation.Obviously, if a CR `�L like in the last de�nition exists then it is unique.We now formulate su�cient and necessary conditions for its existence.Theorem 2 `L is strongly symmetric w.r.t. : i� the following conditionsare satis�ed:(i) A `L ::A(ii) ::A `L A(iii) If �; A `L B then �;:B `L :A.Proof: The conditions are obviously necessary. Assume, for the converse,that `L satis�es the conditions. De�ne: A1; � � � ; An `sL B1; � � � ; Bk i� forevery 1 � i � n and 1 � j � k:A1; � � � ; Ai�1;:B1; � � � ;:Bk; Ai+1; � � � ; An ` :AiA1; � � � ; An;:B1; � � � ;:Bj�1;:Bj+1; � � � ;:Bk ` Bj :It is easy to check that `sL is a CR whenever `L is a CR (whether single-conclusion or multiple-conclusion), and that if � `sL A then � `L A. The�rst two conditions imply (together) that : is an internal negation for `sL(in particular: the second entails that if A;� `sL � then � `sL �;:A and the�rst that if � `sL �; A then :A;� `sL �). Finally, the third condition entailsthat `sL is conservative over `L. 2Examples of logics with an internal negation.1. Classical logic. 7



2. Extensions of classical logic, like the various modal logics.3. Linear logic and its various fragments.4. The various Relevance logics (like R and RM (see [AB75], [Du86],[AB92]) or RMI ([Av90a,b])) and their fragments.5. The various many-valued logics of  Lukasiewicz, as well as Soboci�nski3-valued logic ([So52]).Examples of logics without an internal negation.1. Intuitionistic logic.2. Kleene's 3-valued logic and its extension LPF ([Jo86]).Note: Again, in all these examples above it is the internal CR which is essen-tially multiple-conclusion (or not) and has an internal negation. This is trueeven for classical predicate calculus: There, e.g., 8xA(x) follows from A(x)according to the external CR, but :A(x) does not follow from :8xA(x).5All the positive examples above are instances of the following proposition,the easy proof of which we leave to the reader:Proposition 3 Let L be any logic in a language containing : and !. Sup-pose that the set of valid formulae of L includes the set of formulae in thelanguage of f:;!g which are theorems of Linear Logic,6 and that it is closedunderMP for!. Then the internal consequence relation of L (de�ned using! as in the introduction) is strongly symmetric (with respect to :).5The internal CR of classical logic has been called the \truth" CR in [Av91a] and wasdenoted there by `t, while the external one was called the \validity" CR and was denotedby `v. On the propositional level there is no di�erence between the two.6Here : should be translated into linear negation, ! { into linear implication.8



The next two theorems discuss what properties of `L are preserved by`sL. The proofs are straightforward.Theorem 4 Assume `L is essentially multiple-conclusion.1. `sL is monotonic i� so is `L.2. `sL is closed under expansion (the converse of contraction) i� so is `L.3. ^ is a combining conjunction for `sL i� it is a combining conjunctionfor `L.4. ! is an internal implication for `sL i� it is an internal implication for`L.Notes:1) Because `sL is strongly symmetric, Parts (3) and (4) can be formulatedas follows: `sL has the internal connectives i� `L has an internal implicationand it has the combining connectives i� `L has a combining conjunction.2) In contrast, a combining disjunction for `L is not necessarily a combiningdisjunction for `sL. It is easy to see that a necessary and su�cient condi-tion for this to happen is that `L :(A _ B) whenever `L :A and `L :B.An example of an essentially multiple-conclusion system with a combiningdisjunction which does not satisfy the above condition is RMI of [Av90a,b].That system indeed does not have a combining conjunction. This showsthat a single-conclusion logic L with an internal negation and a combiningdisjunction does not necessarily have a combining conjunction (unless L ismonotonic). The converse situation is not possible, though: If : is an inter-nal negation and ^ is a combining conjunction then :(:A ^ :B) de�nes acombining disjunction even in the single-conclusion case.3) An internal conjunction 
 for `L is also not necessarily an internal con-junction for `sL. We need here the extra condition that if A `L :B then9



`L :(A 
 B). An example which shows that this condition does not nec-essarily obtain even if `L is an ordinary CR, is given by the following CR`triv: A1; � � � ; An `triv B i� n � 1 :It is obvious that `triv is a Tarskian CR and that every unary connective ofits language is an internal negation for it, while every binary connective isan internal conjunction. The condition above fails, however, for `triv.4) The last example shows also that `sL may not be closed under contractionwhen `L does, even if `L is Tarskian. Obviously, � `striv � i� j� [ �j � 2.Hence `striv A;A but 0 strivA. The exact situation about contraction is givenin the next proposition.Proposition 5 If `L is essentially multiple-conclusion then `sL is closed un-der contraction i� `L is closed under contraction and satis�es the followingcondition: If A `L B and :A `L B then `L B.In case `L has a combining disjunction this is equivalent to:`L :A _ A :Proof: Suppose �rst that `L is closed under contraction and satis�es thecondition. Assume that � `sL �; A;A. If either � or � is not empty thenthis is equivalent to :A;:A;�� `L B for some �� and B. Since `L is closedunder contraction, this implies that :A;�� `L B, and so � `sL �; A. If both� and � are empty then we have :A `L A. Since also A `L A, the conditionimplies that `L A, and so `sL A.For the converse, suppose `sL is closed under contraction. This obviouslyentails that so is also `L. Assume now that A `L B and :A `L B. ThenA `sL B and `sL B;A. Applying cut we get that `sL B;B, and so `sL B. Itfollows that `L B. 210



3 The semantic point of viewWe turn in this section to the semantic aspect of negation.3.1 The General FrameworkA \semantics" for a logic consists of a set of \models". The main propertyof a model is that every sentence of a logic is either true in it or not (andnot both). The logic is sound with respect to the semantics if the set ofsentences which are true in each model is closed under the CR of the logic,and complete if a sentence ' follows (according to the logic) from a set T ofassumptions i� every model of T is a model of '. Such a characterization is,of course, possible only if the CR we consider is Tarskian. In this section weassume, therefore, that we deal only with Tarskian CRs. For logics like LinearLogic and Relevance logics this means that we consider only the external CRswhich are associated with them (see the Introduction).Obviously, the essence of a \model" is given by the set of sentences whichare true in it. Hence a semantics is, essentially, just a set S of theories.Intuitively, these are the theories which (according to the semantics) providea full description of a possible state of a�airs. Every other theory can beunderstood as a partial description of such a state, or as an approximation ofa full description. Completeness means, then, that a sentence ' follows froma theory T i� ' belongs to every superset of T which is in S (in other words:i� ' is true in any possible state of a�airs of which T is an approximation).Now what constitutes a \model" is frequently de�ned using some kind ofalgebraic structures. Which kind (matrices with designated values, possibleworlds semantics and so on) varies from one logic to another. It is di�cult,therefore, to base a general, uniform theory on the use of such structures.Semantics (= a set of theories!) can also be de�ned, however, purely syn-tactically. Indeed, below we introduce several types of syntactically de�ned11



semantics which are very natural for every logic with \negation". Our inves-tigations will be based on these types.Our description of the notion of a model reveals that externally it is basedon two classical \laws of thought": the law of contradiction and the law ofexcluded middle. When this external point of view is reected inside thelogic with the help of a unary connective : we call this connective a (strong)semantic negation. Its intended meaning is that :A should be true preciselywhen A is not. The law of contradiction means then that only consistenttheories may have a model, while the law of excluded middle means thatthe set of sentences which are true in some given model should be negation-complete. The sets of consistent theories, of complete theories and of normaltheories (theories that are both) have, therefore a crucial importance whenwe want to �nd out to what degree a given unary connective of a logic can betaken as a semantic negation. Thus complete theories reect a state of a�airsin which the law of excluded middle holds. It is reasonable, therefore, to saythat this law semantically obtains for a logic L if its consequence relation `Lis determined by its set of complete theories. Similarly, L (strongly) satis�esthe law of contradiction i� `L is determined by its set of consistent theories,and it semantically satis�es both laws i� `L is determined by its set of normaltheories.The above characterizations might seem unjusti�ably strong for logicswhich are designed to allow non-trivial inconsistent theories. For such logicsthe demand that `L should be determined by its set of normal theories isreasonable only if we start with a consistent set of assumptions (this is calledstrong c-normality below). A still weaker demand (c-normality) is that anyconsistent set of assumptions should be an approximation of at least onenormal state of a�airs (in other words: it should have at least one normalextension).It is important to note that the above characterizations are independentof the existence of any internal reection of the laws (for example: in the12



forms :(:A^A) and :A_A, for suitable ^ and _). There might be strongconnections, of course, in many important cases, but they are neither neces-sary nor always simple.We next de�ne our general notion of semantics in precise terms.De�nition. Let L be a logic in L and let `L be its associated CR.1. A setup for `L is a set of formulae in L which is closed under `L. Asemantics for `L is a nonempty set of setups which does not includethe trivial setup (i.e., the set of all formulae).2. Let S be a semantics for `L. An S-model for a formula A is any setupin S to which A belongs. An S-model of a theory T is any setup in Swhich is a superset of T . A formula is called S-valid i� every setup inS is a model of it. A formula A S-follows from a theory T (T `SL A) i�every S-model of T is an S-model of A.Proposition 6 `SL is a (Tarskian) consequence relation and `L�`SL.Notes:1. `SL is not necessarily �nitary even if ` is.2. `L is just `S(L)L where S(L) is the set of all setups for `L.3. If S1 � S2 then `S2L �`S1L .Examples:1. For classical propositional logic the standard semantics consists of thesetups which are induced by some valuation in ft; fg. These setups canbe characterized as theories T such that(i) :A 2 T i� A =2 T (ii) A ^B 2 T i� both A 2 T and B 2 T(and similar conditions for the other connectives).13



2. In classical predicate logic we can de�ne a setup in S to be any set of for-mulae which consists of the formulae which are true in some given �rst-order structure relative to some given assignment. Alternatively we cantake a setup to consist of the formulae which are valid in some given�rst-order structure. In the �rst case `S=`t, in the second `S=`v,where `t and `v are the \truth" and \validity" consequence relationsof classical logic (see [Av91a] for more details).3. In modal logics we can de�ne a \model" as the set of all the formulaewhich are true in some world in some Kripke frame according to somevaluation. Alternatively, we can take a model as the set of all formulaewhich are valid in some Kripke frame, relative to some valuation. Againwe get the two most usual consequence relations which are used inmodal logics (see [Av91a] or [FHV92]).From now on the following two conditions will be assumed in all ourgeneral de�nitions and propositions:1. The language contains a negation connective :.2. For no A are both A and :A theorems of the logic.De�nition. Let S be a semantics for a CR `L1. `L is strongly complete relative to S if `SL=`L.2. `L is weakly complete relative to S if for all A, `L A i� `SL A.3. `L is c-complete relative to S if every consistent theory of `L has amodel in S.4. `L is strongly c-complete relative to S if for every A and every consis-tent T , T `SL A i� T `L A. 14



Notes:1. Obviously, strong completeness implies strong c-completeness, whilestrong c-completeness implies both c-completeness and weak complete-ness.2. Strong completeness means that deducibility in `L is equivalent to se-mantic consequence in S. Weak completeness means that theoremhoodin `L (i.e., derivability from the empty set of assumptions) is equivalentto semantic validity (= truth in all models). c-completeness means thatconsistency implies satis�ability. It becomes identity if only consistentsets can be satis�able, i.e., if f:A;Ag has a model for no A. This is ob-viously too strong a demand for paraconsistent logics. Finally, strongc-completeness means that if we restrict ourselves to normal situations(i.e., consistent theories) then `L and `SL are the same. This mightsometimes be weaker than full strong completeness.The last de�nition uses the concepts of \consistent" theory. The nextde�nition clari�es (among other things) the meaning of this notion as we aregoing to use in it this paper.De�nition. Let L and `L be as above. A theory in L consistent if for no Ait is the case that T `L A and T `L :A, complete if for all A, either T `L Aor T `L :A, normal if it is both consistent and complete. CSL, CPL andNL will denote, respectively, the sets of its consistent, complete and normaltheories.Given `L, the three classes, CSL, CPL and NL, provide 3 di�erent syntac-tically de�ned semantics for `L, and 3 corresponding consequence relations`CSLL , `CPLL and `NLL . We shall henceforth denote these CRs by `CSL , `CPLand `NL , respectively. Obviously, `CSL �`NL and `CPL �`NL . In the rest of thissection we investigate these relations and the completeness properties theyinduce. 15



Let us start with the easier case: that of `CSL . It immediately followsfrom the de�nitions (and our assumptions) that relative to it every logic isstrongly c-complete (and so also c-complete and weakly complete). Hencethe only completeness notion it induces is the following:De�nition. A logic L with a consequence relation `L is strongly consistentif `CSL =`L.`CSL is not a really interesting CR. As the next theorem shows, what itdoes is just to trivialize inconsistent `L-theories. Strong consistency, accord-ingly, might not be a desirable property, certainly not a property that anylogic with negation should have.Proposition 71. T `CSL A i� either T is inconsistent in L or T `L A. In particular, Tis `CSL -consistent i� it is `L-consistent.2. L is strongly consistent i� :A;A `L B for all A;B (i� T is consistentwhenever T 0A).3. Let LCS be obtained from L by adding the rule: from :A and A inferB. Then `CSL =`LCS . In particular: if `L is �nitary then so is `CSL .4. `CSL is strongly consistent.We turn now to `CP and `N . In principle, each provides 4 notions of com-pleteness. We don't believe, however, that considering the two notions of c-consistency is natural or interesting in the framework of `CP (c-completeness,e.g., means there that every consistent theory has a complete extension, butthat extension might not be consistent itself). Accordingly we shall deal withthe following 6 notions of syntactical completeness.77In [AB75] the term \syntactically complete" was used for what we call below \stronglyc-normal". 16



De�nition.Let L be a logic and let `L be its consequence relation.1. L is strongly complete if it is strongly complete relative to CP .2. L is weakly complete if it is weakly complete relative to CP .3. L is strongly normal if it is strongly complete relative to N .4. L is weakly normal if it is weakly complete relative to N .5. L is c-normal if it is c-complete relative to N .6. L is strongly c-normal if it is strongly c-complete relative to N (this iseasily seen to be equivalent to `NL =`CSL ).For the reader's convenience we repeat what these de�nitions actually mean:1. L is strongly complete i� whenever T 0 LA there exists a completeextension T � of T such that T � 0 LA.2. L is weakly complete i� whenever A is not a theorem of L there existsa complete T � such that T � 0 LA.3. L is strongly normal i� whenever T 0 LA there exists a complete andconsistent extension T � of T such that T � 0 LA.4. L is weakly normal i� whenever A is not a theorem of L there exists acomplete and consistent theory T � such that T � 0 LA.5. L is c-normal if every consistent theory of L has a complete and con-sistent extension.6. L is strongly c-normal i� whenever T is consistent and T 0 LA thereexists a complete and consistent extension T � of T such that T � 0 LA.17



Our next proposition provides simpler syntactical characterizations ofsome of these notions in case `L is �nitary.Proposition 8 Assume that `L is �nitary.1. L is strongly complete i� for all T;A and B:(�) T;A `L B and T;:A `L B imply T `L BIn case L has a combining disjunction _ then (�) is equivalent to thetheoremhood of :A _ A (excluded middle).2. L is strongly normal if for all T and A:(��) T `L A i� T [ f:Ag is inconsistent:3. L is strongly c-normal i� (��) obtains for every consistent T .4. L is c-normal i� for every consistent T and every A either T [ fAg orT [ f:Ag is consistent.Proof: Obviously, strong completeness implies (�). For the converse, as-sume that T 0B. Using (�), we extend T in stages to a complete theory suchthat T � 0B. This proves part 1. The other parts are straightforward. 2Corollaries:1. IfL is strongly normal then it is strongly symmetric w.r.t. :. Moreover:`sL is an ordinary multiple-conclsion CR.2. If L is strongly symmetric w.r.t. : then it is strongly complete i� `sLis closed under contraction. 18



Proof: These results easily follows from the last proposition and Theorems2, 4 and 5 above. 2In the �gure below we display the obvious relations between the sevenproperties of logics which were introduced here (where an arrow means \con-tained in"). The next theorem shows that no arrow can be added to it:
weak completenessstrong completenessweak normality strong c-normalitystrong normality c-normalitystrong consistencyTheorem 9 A logic can be:1. strongly consistent and c-normal without even being weakly complete2. strongly complete and strongly c-normal without being strongly consis-tent (and so without being strongly normal)3. strongly consistent without being c-normal4. strongly complete, weakly normal and c-normal without being stronglyc-normal5. strongly complete and c-normal without being weakly normal19



6. strongly consistent, c-normal and weakly normal without being stronglyc-normal (=strongly normal in this case, because of strong consistency)7. strongly complete without being c-normal.8Proof: Appropriate examples for 1-6 are given below, respectively, in the-orems 12, 18, 32, 19, 34 and the corollary to theorem 19. As for the last part,let L be the following system in the language of f:;!g:9Ax1: A! (B ! A)Ax2: A! (B ! C) ! (A! B) ! (A! C)Ax3: (:A! B) ! ((A! B) ! B)(MP) A A! BB .Obviously, the deduction theorem for ! holds for this system, since MPis the only rule of inference, and we have Ax1 and Ax2. This fact, Ax3 andproposition 8 guarantee that it is strongly complete. To show that it is notc-normal, we consider the theory T0 = fp! q; p! :q; :p! r; :p! :rg.Obviously, T0 has no complete and consistent extension. We show that it isconsistent nevertheless. For this we use the following structure� � � ���� �1 �1 2 �2�33
tf8Hence the two standard formulations of the \strong consistency" of classical logic arenot equivalent in general.9Classical logic is obtained from it by adding :A ! (A ! B) as axiom (see [Ep95,Ch.2L]). 20



De�ne in this structure a! b as t if a � b, b otherwise, :x as f if x = t,t if x = f and �x otherwise. It is not di�cult now to show that if T ` A inthe present logic for some T and A, and v is a valuation in this structure suchthat v(B) = t for all B 2 T , then v(A) = t. Take now v(p) = 3, v(q) = 1,v(r) = 2. Then v(B) = t for all B 2 T0, but obviously there is no A suchthat v(A) = v(:A) = t. Hence T0 is consistent. 2We end this introductory subsection with a characterization of `CPL and`NL . The proofs are left to the reader.Proposition 101. `CPL is strongly complete, and is contained in any strongly completeextension of `L.2. Suppose `L is �nitary. T `CPL A i� for some B1; : : : ; Bn (n � 0) wehave that T [ fB�1; : : : ; B�ng `L A for every set fB�1; : : : ; B�ng such thatB�i = Bi or B�i = :Bi for all i.3. If `L is �nitary, then so is `CPL .Proposition 111. `NL is strongly normal, and is contained in every strongly normal ex-tension of `L.2. If `L is �nitary then T `NL A i� for some B1; : : : ; Bn we have thatfor all fB�1; : : : ; B�ng where B�i 2 fBi;:Big (i = 1; : : : ; n), either T [fB�1; : : : ; B�ng is inconsistent or T [ fB1; : : : ; Bng `L A3. `NL is �nitary if `L is. 21



3.2 Classical and Intuitionistic LogicsObviously, classical propositional logic is strongly normal. In fact, most of theproofs of the completeness of classical logic relative to its standard two-valuedsemantics begin with demonstrating the condition (��) in Proposition 8, andare based on the fact that every complete and consistent theory determines aunique valuation in ft; fg - and vice versa. In other words: N here is exactlythe usual semantics of classical logic, only it can be characterized also usingespecially simple algebraic structure (and valuations in it). One can arguethat this strong normality characterizes classical logic. To be speci�c, it isnot di�cult to show the following claims:1. classical logic is the only logic in the language of f:;^gwhich is stronglynormal w.r.t. : and for which ^ is an internal conjunction. Similarclaims hold for the f:;!g language, if we demand ! to be an inter-nal implication and for the f:;_g language, if we demand _ to be acombining disjunction.2. Any logic which is strongly normal and has either an internal impli-cation, or an internal conjunction or a combining disjunction containsclassical propositional logic.The next proposition summarizes the relevant facts concerning intuition-istic logic. The obvious conclusion is that although the o�cial intuitionisticnegation has some features of negation, it still lacks most. Hence, it cannotbe taken as a real negation from our semantic point of view.Proposition 12 Intuitionistic logic is strongly consistent and c-normal, butit is not even weakly complete.Proof: Strong consistency follows from part 3 of Proposition 7. c-normalityfollows from part 4 of Proposition 8, since in intuitionistic logic if both T[fAg22



and T [ f:Ag are inconsistent then T `H :A and T `H ::A, and so T isinconsistent. Finally, :A _ A belongs to every complete setup, but is notintuitionistically valid. 2Note: Intuitionistic logic and classical logic have exactly the same consistentand complete setups, since any complete intuitionistic theory is closed underthe elimination rule of double negation. Hence any consistent intuitionistictheory has a classical two-valued model.What about fragments (with negation) of Intuitionistic Logic? Well, theyare also strongly consistent and c-normal, by the same proof. Moreover,((A ! B) ! A) ! A is another example of a sentence which belongs toevery complete setup (since A `H ((A! B) ! A) ! A and :A `H ((A!B) ! A) ! A), but is not provable. The set of theorems of the pure f:;^gfragment, on the other hand, is identical to that of classical logic, as is wellknown. This fragment is, therefore, easily seen to be weakly normal. It isstill neither strongly complete nor strongly c-normal, since ::A `CPH A. 2Finally, we note the important fact that classical logic can be viewed asthe completion of intuitionistic logic. More precisely:Proposition 131. `CSH =`H2. `CPH =`NH= classical logic.Proof:2. `CPL =`NL whenever L is strongly consistent (i.e., all nontrivial theoriesare consistent). In the proof of the previous proposition we have seenalso that `CPH :A_A and `CPH ((A! B) ! A) ! A. It is well known,however, that by adding either of this schemes to intuitionistic logicwe get classical logic. Hence classical logic is contained in `CPH . Since23



classical logic is already strongly complete,`CPH is exactly classical logic.(Note that this is true for any fragment of the language which includesnegation.) 23.3 Linear Logic (LL)In the next 3 subsections we are going to investigate some known substruc-tural logics ([SD93]). Before doing it we must emphasize again that in thissection it is only the external, Tarskian consequence relation of these log-ics which can be relevant. This consequence relation can very naturallybe de�ned by using the standard Hilbert-type formulations of these logics:A1; : : : ; An `eL B (L = LL;R;RM;RMI, etc.) i� there exists an ordinarydeduction of B from A1; : : : ; An in the corresponding Hilbert-type system.This de�nition is insensitive to the exact choice of axioms (or even rules),provided we take all the rules as rules of derivation and not just as rules ofproof. In the case of Linear Logic one can use for this the systems given in[Av88] or in [Tr90]. An alternative equivalent de�nition of the various ex-ternal CRs can be given using the standard Gentzen-types systems for theselogics (in case such exist), as explained in the introduction. Still anothercharacterization in the case of Linear Logic can be given using the phasesemantics of [Gi87]: A1; : : : ; An `eLL B i� B is true in every phase model ofA1; : : : ; An. In what follows we shall omit the superscript \e" and write just`LL, `LLm , etc.Unlike in [Gi87] we shall take below negation as one of the connectivesof the language of linear logic and write :A for the negation of A (this cor-responds to Girard's A?). As in [Av88] and in the relevance logic literature,we use arrow (!) for linear implication.We show now that linear logic is incomplete with respect to our variousnotions.Proposition 14 LLm (LLma; LL) is not strongly consistent.24



Proposition 15 LLm (LLma; LL) is neither strongly complete nor c-normal.Proof: Consider the following theory:T = fp! :p ; :p! pg :From the characterization of `LLm given in [Av92] it easily follows that hasT been inconsistent then there would be a provable sequent of the form::p ! p; :p ! p; : : : ;:p ! p; p ! :p; : : : ; p ! :p ). But in any cut-freeproof of such a sequent the premises of the last applied rule should have anodd number of occurrences of p, which is impossible in a provable sequentof the purely multiplicative linear logic. Hence T is consistent. Obviously,every complete extension of T proves p and :p and so is inconsistent. Thisshows that LLm is not c-normal. It also shows that p is not provable fromT , although it is provable from any complete extension of it, and so LLm isnot strongly complete. 2Proposition 16 LLma (and so also LL) is not weakly complete.Proof: � A � A is not a theorem of linear logic, but it belongs to anycomplete theory. 2It follows that Linear logic (and its multiplicative-additive fragment) hasnone of the properties we de�ne in this section. Its negation is therefore notreally a negation from our present semantic point of view.Our results still leave the possibility that LLm might be weakly com-plete or even weakly normal. We conjecture that it is not, but we have nocounterexample.We end this section by giving axiomatizations of `CPLL and `NLL.Proposition 17 1. Let LLCP be the full Hilbert-type system for linearlogic (as given in [Av88]) together with the rule: from !A ! B and!:A! B infer B. Then `CPLL =`LLCP .25



2. Let LLN be LLCP together with the disjunctive syllogism for � (from:A and A�B infer B). Then `NLL=`LLN .Proof:1. The necessitation rule (from A infer !A) is one of the rules of LL.10It follows therefore that B should belong to any complete setup whichcontains both !A! B and !:A! B. Hence the new rule is valid for`CPLL and `LLCP�`CPLL .For the converse, assume T `CPLL A. Then there exist B1; : : : ; Bn like inproposition 10(2). We prove by induction on n that T `LLCP A. Thecase n = 0 is obvious. Suppose the claim is true for n� 1. We show itfor n. By the deduction theorem for LL, !B�1; : : : ; !B�n ) A is derivablefrom T in LLCP .11 More precisely: !B�1
!B�2 : : :
!B�n ! A is deriv-able from T for any choice of B�1 ; : : : ; B�n. Since !C
!D$!(C&D) is atheorem of LL, this means that both !Bn ! (!(B�1& : : :&B�n�1) ! A)and !:Bn ! (!(B�1& : : :&B�n�1) ! A). By the new rule of LLCP weget therefore that T `LLCP !(B�1& : : :&B�n�1) ! A, and so T `LLCP!B�1
!B�2 
 : : :
!B�n�1 ! A for all choices of B�1 ; : : : ; B�n�1. An appli-cation of the induction hypothesis gives T `LLCP A.2. The proof is similar, only this time we should have (by proposition11) that T [ fB�1; : : : ; B�ng is either inconsistent in LN or proves Athere. In both cases it proves A � ? in LLCP . The same argumentas before will show that T `LLCP A � ?. Since `LL : ?, one appli-cation of the disjunctive syllogism will give T `LLCP A. It remainsto show that the disjunctive syllogism is valid for `NLL. This is easy,since f:A; A�B; :Bg is inconsistent in LL, and so any complete andconsistent extension of f:A; A�Bg will necessarily contain B. 210Note again that we are talking here about `eLL!11In fact, at the beginning it is derivable from T in LL, but for the induction to gothrough we need to assume derivability in LLCP at each step.26



3.4 The Standard Relevance Logic R and its RelativesIn this section we investigate the standard relevance logic R of Anderson andBelnap ([AB75], [Du86]) and its various extensions and fragments. Beforedoing this we should again remind the reader what consequence relation wehave in mind: the ordinary one which is associated with the standard Hilbert-type formulations of these logics. As in the case of linear logic, this meansthat we take both rules of R (MP and adjunction) as rules of derivation andde�ne T `R A in the most straightforward way.Let us begin with the purely intensional (=multiplicative) fragment of R:Rm. We state the results for this system, but they hold for all its nonclassicalvarious extensions (by axioms) which are discussed in the literature.Theorem 18 Rm is not strongly consistent, but it is strongly complete andstrongly c-normal.Proof: It is well-known that Rm is not strongly consistent in our sense.Its main property that we need for the other claims is that T;A `Rm B i�either T `Rm B or T `Rm A ! B. The strong completeness of Rm followsfrom this property by the provability of (:A! B) ! ((A! B) ! B) andproposition 8(1).To show strong c-normality, we note �rst that a theory T is inconsistentin Rm i� T `Rm :(B ! B) for some B (because `Rm :B ! (B ! :(B !B))). Suppose now that T is consistent and T 0RmA. Were T [ f:Aginconsistent then by the same main property and the consistency of T wewould have that T `Rm :A ! :(B ! B) for some B, and so that T `Rm(B ! B) ! A and T `Rm A. A contradiction. Hence T [f:Ag is consistentand we are done by proposition 8(3). 2The last theorem is the optimal theorem concerning negation that onecan expect from a logic which was designed to be paraconsistent. It showsthat with respect to normal \situations" (i.e., consistent theories) the nega-tion connective of Rm behaves exactly as in classical logic. The di�erence,27



therefore, is mainly w.r.t. inconsistent theories. Unlike classical logic theyare not necessarily trivial in Rm. Strong completeness means, though, thatexcluded middle, at least, can be assumed even in the abnormal situations.When we come to R as a whole the situation is not as good as for thepurely intensional fragments. Strong c-normality is lost. What we do haveis the following:Theorem 19 R is strongly complete, c-normal and weakly normal, 12 but itis neither strongly consistent nor strongly c-normal.Proof: Obviously, R is not strongly consistent. It is also well known that:p; p _ q 0Rq. Still q belongs to any complete and consistent extension ofthe (even classically!) consistent theory f:p; p _ qg, since f:p; p _ q;:qgis not consistent in R. It follows that R is not strongly c-normal. On theother hand, to any extension L of R by axiom schemes it is true that ifT;A `L C and T;B `L C, then T;A _ B `L C ([AB75]). Since `R A _ :A,this and proposition 8(1) entail that any such extension is strongly complete.Suppose, next, that T is theory and A a formula such that T [ fAg andT [ f:Ag are inconsistent (L as above). Then for some B and C it is thecase that T;A `L :B^B and T;:A `L :C^C. It follows that T;A_:A `L(:B ^B) _ (:C ^ C). Since A _ :A and :[(:B ^B) _ (:C ^ C)] are boththeorems of R, T is inconsistent in L. By proposition 8(4) this shows thatany such logic is c-normal. Suppose, �nally, that 6`R A. Had f:Ag beeninconsistent, we would have that for some B, :A `R :B ^ B. This, inturn, entails that A _ :A `R A _ (:B ^ B), and so that `R A _ (:B ^ B).On the other hand, `R :(:B ^ B). By the famous theorem of Meyer andDunn concerning the admissibility of the disjunctive syllogism in R ([AB75],[Du86]) it would follow, therefore, that `R A, contradicting our assumption.Hence f:Ag is consistent, and so, by the c-normality of R which we have just12Weak normality is proved in [AB75] under the name \syntactical completeness".28



proved, it has a consistent and complete extension which obviously does notprove A. This shows that R is weakly normal (the proof for RM is identical).2Corollary: `CSR is strongly consistent, c-normal and weakly normal, but itis not strongly c-normal.Note: A close examination of the proof of the last theorem shows that theproperties of R which are described there are shared by many of its relatives(like RM , for example). We have, in fact, the following generalizations:1. Every extension ofR which is not strongly consistent is also not stronglyc-normal.2. Every extension of R by axiom-schemes is both strongly complete andc-normal.3. Every extension of R by axiom schemes for which the disjunctive syl-logism is an admissible rule13 is weakly normal.In fact,(1){(3) are true (with similar proofs) also for many systems weakerthan R in the relevance family, like E.Our results show that `CPR =`R, but `NR 6=`CSR (since R is not stronglyc-normal). Hence `NR is a new consequence relation, and we turn next toaxiomatize it.De�nition. Let L be an extension of R by axiom schemes and let LN be thesystem which is obtained from L by adding to it the disjunctive syllogism() as an extra rule: from :A and A _B infer B.Theorem 20 `NL =`LN .Proof: To show that `LN�`NL it is enough to show that :A, A_B `NL B.This was already done, in fact, in the proof of the last theorem. For the13See [AB75] and [Du86] for examples and criteria when this is the case.29



converse, assume T `NL A. Since L is c-normal (see last note), T [ f:Agcannot be L-consistent. Hence T [ f:Ag `L :B ^ B for some B. Thisentails that T `L A_ (:B ^B) and that T `LN A exactly as in the proof ofthe weak normality of R. 23.5 The Purely Relevant Logic RMIThe purely relevant logicRMI was introduced in [Av90a,b]. Proof-theoreticallyit di�ers from R in that:(i) The converse of contraction (or, equivalently, the mingle axiom of RM)is valid in it. This is equivalent to the idempotency of the intensionaldisjunction + (=\par" of Girard). In the purely multiplicative fragmentRMIm it means also that assumptions with respect to ! can be takenas coming in sets (rather than multisets, as in LLm or Rm).(ii) The adjunction rule (B;C ` B ^ C) as well as the distribution axiom(A ^ (B _ C) ! (A ^ B) _ (A ^ C)) are accepted only if B and C are\relevant". This relevance relation can be expressed in the logic by thesentence R+(A;B) = (A! A) + (B ! B), which should be added asan extra premise to adjunction and distribution (this sentence is thecounterpart of the \mix" rule of [Gi87]).We start our investigation with the easier case of RMIm.Theorem 21 Exactly like Rm, RMIm is not strongly consistent, but it isboth strongly complete and strongly c-normal.Proof: Exactly like in the case of Rm. 2Like in classical logic, and unlike the case of Rm, these two main proper-ties of RMIm are strongly related to simple, intuitive, algebraic semantics.Originally, in fact, RMIm was designed to correspond to a class of structures30



which are called in [Av90a] \full relevant disjunctive lattices" (full r.d.l.). Afull r.d.l is a structure which results if we take a tree and attach to each nodeb its own two basic truth-values ftb; fbg. To a leaf b of the tree we can attachinstead a single truth-value Ib which is the negation of itself (its meaning is\both true and false" or \degenerate"). b is called abnormal in this case.Intuitively, the nodes of the tree represent \domains of discourse". Two do-mains are relevant to each other if they have a common branch, while b beingnearer than a to the root on a branch intuitively means that b has a higher\degree of reality" (or higher \degree of signi�cance") than a (we write a < bin this case). The operation of : (negation) is de�ned on a full r.d.l. Min the obvious way, while + (relevant disjunction) is de�ned as follows: Letjtaj = jfaj = jIaj = a, and let val(tb) = t, val(fb) = f and val(Ib) = I. De�nex�+y if either x = y or jxj < jyj or jxj = jyj and val(y) = t. (M;�+) isan upper semilattice. Let x + y = sup�+(x; y). An RMIm-model is a pair(M;v) where M is a full r.d.l. and v a valuation in it (which respects the op-erations). A sentence A is true in a model (M;v) if val(v(A)) 6=. Obviously,every model (M;v) determines an RMIm-setup of all the formulae which aretrue in it. Denote the collection of all these setups by RDLm.Proposition 22 CPRMIm = RDLmProof: It is shown in [Av90b] that the Lindenbaum algebra of any completeRMIm-theory determines a model in which exactly its sentences are true.This implies that CPRMIm � RDLm. The converse is obvious from thede�nitions. 2Corollary: ([Av90b]): RMIm is sound and complete for the semantics offull r.d.l.s. In other words: T `RMIm A i� A is true in every model of T .Proof: Checking soundness is straightforward, while completeness followsfrom the syntactic strong compleness of RMIm (theorem 21) and the lasttheorem. 231



The strong c-normality ofRMIm also has an interpretation in terms of thesemantics of full r.d.l.s. In order to describe it we need �rst some de�nitions:De�nition.1. A full r.d.l is consistent i� for every x in it val(x) 2 ft; fg (i.e., theintermediate truth-value I is not used in its construction). This isequivalent to: x 6= :x for all x.2. A model (M;v) is consistent i� M is consistent.3. CRDLm is the collection of the RMIm-setups which are determinedby some consistent model.Note:On every tree one can base exactly one consistent full r.d.l. (but in generalmany inconsistent ones).Proposition 23 NRMIm = CRDLm.Proof: In the construction from [Av90b] which is mentioned in the proof ofproposition 22, a complete and consistent theory is easily seen to determinea consistent model. The converse is obvious. 2In view of the last proposition, the strong c-normality of RMIm and itstwo obvious corollaries (weak normality and c-normality) can be reformulatedin terms of the algebraic models as follows:Proposition 241. If T is consistent then T `RMIm A i� A is true in any consistent modelof T .2. `RMIm A i� A is true in any consistent model.32



3. Every consistent RMIm-theory has a consistent model.It follows that if we restrict our attention to consistent RMIm-theories,we can also restrict our semantics to consistent full r.d.l.s, needing, therefore,only the classical two truth-values t and f , but not I.Exactly as in the case of R, when we pass to RMI things become morecomplicated. Moreover, although we are going to show that RMI has exactlythe same properties as R, the proofs are harder.Theorem 25 RMI is strongly complete.Proof: The proof is like the one for R given above, since RMI has therelevant properties of R which were used there (see [Av90b]). 2Like in the case of RMIm, the strong completeness of RMI is directlyconnected to the semantics of full r.d.l.s. This semantics is extended in[Av90a,b] to the full language by de�ning the operator ^ on a full r.d.l. asfollows: de�ne � on M by: x � y i� val(:x+y) 6= f . (M;�) is a lattice. Letx ^ y = inf�(x; y). The notions of an RMI-model, consistent RMI-modeland the truth of a formula A (of the language of RMI) in such models arede�ned as in the case of RMIm. The classes of setups RDL and CRDL arealso de�ned like their counterparts in the case of RMIm. Again we have:Proposition 261. CPRMI = RDL.2. NRMI = CRDL.Proof: Similar to the proofs of propositions 22 and 23. 2Again, theorem 25 and 26(1) entail the following: result of [Av90b]:Corollary: RMI is sound and complete for the semantics of full r.d.l.s.33



Theorem 271. `RMI A i� A is valid in all the consistent models.2. RMI is weakly normal.Proof:1. Suppose that 0RMIA. Then there is a model (M;v) in which A is nottrue. Let M 0 be the consistent full r.d.l based on TM (the tree on whichM is based). Let v0 be any valuation in M 0 which satis�es the followingconditions: (i) jv0(P )j = jv(P )j for every atomic P , (ii) v0(P ) = v(P )whenever jv(P )j is normal in M . It is easy to see that conditions (i)and (ii) are preserved if we replace P by any sentence. In particularv0(A) = v(A) and so A is not valid in the consistent model M 0.2. Immediate from part (1) and proposition 26(2) 2Theorem 281. RMI is c-normal.2. Every consistent RMI-Theory has consistent model.Proof: (1) By proposition 8(4) it su�ces to prove that if T is consistentand A a sentence then either T [ fAg or T [ f:Ag is consistent. This isnot so easy, however, since like in R, T [ fAg might be inconsistent even ifT 0:A, while unlike in R, () for _ is not sound for `NRMI .Suppose then that T [ fAg and T [ f:Ag are both inconsistent. Since:B, B `RMI :(B ! B), this means, by RMI deduction theorem for �14that there exist sentences B and C such that T `RMI A � :(B ! B),14See [Av90b]. The connective � is de�ned there by a � b = b _ (a! b).34



T `RMI :A � :(C ! C). In order to prove that T is inconsistent it isenough therefore to show that the following theory F0 is inconsistent:F0 = fA � :(B ! B) ; :A � :(C ! C)g :For this we show that the following sentence ' and its negation are theoremsof F0 (where a � b = :(:a+ :b)):' = (B _ [:A �R+ (A+ C;B)])^ (C _ [(A+ C) �R+ (A+B;C)]) :By the completeness theorem it su�ces to show that ' gets a neutralvalue (I) in every model of F0. Let (M;v) be such a model, and denote byR the relevance relation between the nodes of the tree on which M is based.It is easy to see that:a) jv(A)j 6< jv(B)j jv(A)j 6< jv(C)jb) If jv(A)j 6R jv(B)j or if v(A) is designated then v(B) is neutral.c) If jv(A)j 6R jv(C)j or if v(:A) is designated then v(C) is neutral.Denote, for convenience, v(A) by a, v(B) by b, v(C) by c, and the twoconjuncts of ' by '1 and '2 respectively. Then:(i) If jbj 6R (jaj_jcj) then v('1) = b. Also we have then that jcj � jaj_jcj <jaj_ jbj = ja+ bj (since always (jaj_ jbj)R (jaj_ jcj)). Hence jcjR ja+ bjand so v ('2) = tjaj_jbj_jcj. It follows that v (') = b and so v (') isneutral by b) above.(ii) If jbjR (jaj _ jcj) and either jaj < jaj _ jcj or val(a) = f then, bya), jbj � jaj _ jcj and either jaj 6R jcj or v(:A) is designated. Hence c isneutral by c). It follows (since either jaj 6R jcj or val(a) = f), that eitherjaj 6R jcj or jcj < jaj. In both cases v(A+C) = fjaj_jbj_jcj, v('2) = c, andv('1) = tjaj_jbj_jcj. Hence v(') = c, which is neutral.35



(iii) If jbjR (jaj _ jcj); jaj = jaj _ jcj and a is designated then, by a), jaj =jaj _ jbj _ jcj. If val(a) = I then also val(b) = I and val(c) = I, andso val(v(')) = I. If val(a) = t then by b) b is neutral and so jbj < jaj(jaj is normal!). Obviously jcj � jaj in this case, and so v('1) = b,v('2) = tjaj = a and v(') = b, which is neutral.(2) Immediate from (1) and proposition 26(2). 2Proposition 29 RMI is not strongly c-normal.Proof: Let  1 and  2 be the two elements of the theory F0 from the lastproof. Let T = f 1g, A = : 2. Then T is consistent (even classically!)and A is provable in every consistent and complete extension of T (since F0is inconsistent). Hence T `NRMI A. However, T 0RMIA since it is easy toconstruct a full model of  1 in which : 2 is not true. ( 1 is neutral in thismodel.) 2Like in the case of R, our results show that `NRMI is stronger than `RMIand `CSRMI. We now construct a formal system for this consequence relation.De�nition. The system RMIC is RMI strengthened by MT for �:A � B ; :B ` :A :Theorem 301. T `RMIC A i� T `NRMI A2. `RMIC A i� `RMI A.Proof:1. Obviously, if both A � B and :B are true in a consistent model(M;v) then so is :A. Hence if T `RMIC A then T `NRMI A. For the36



converse, suppose T `NRMI A. Then by Theorem 26 T [ f:Ag hasno consistent model. This means, by Theorem 28, that T [ f:Ag isinconsistent. Hence T `RMI :A � :(B ! B) for some B. Since also`RMI ::(B ! B), we have that T `RMIC ::A, by applying M.T.Hence T `RMIC A.2. Immediate from 1) and theorem 27(2). 2Notes:1. From 30(2) it is clear that the system RMI is closed under M.T. for�. By applying this rule to theories we can make, however, any in-consistent theory trivial. This resembles the status of () in R and E.Indeed () may be viewed as M.T. for the usual implication as de�nedin classical logic. A comparison of theorems 30 and 20 deepens theanalogy (note that RMI is not an extension of R and 20 fails for it!).2. Despite 30(2) RMI and RMIC are totally di�erent even for consistenttheories, as we have seen in prop. 29. It is important, however, to notethat theory T is consistent in RMI i� it is consistent in RMIC. Thisfollows easily from theorem 28.3.6 Three Valued LogicsLike in section 2, we consider here only the 3-valued logic which we call in[Av91b] \natural" (in fact, only those with Tarskian CR). All these logicshave the connectives f:;^;_g as de�ned by Kleene. The weaker ones haveonly these connectives as primitive. The stronger ones have also an implica-tion connective which reect their consequence relation.Suppose the truth-values are ft; f; Ig. t and f correspond to the classicaltruth values. Hence t is designated, f is not. The 3-valued logics are thereforenaturally divided into two main classes: those in which I is not designated,37



and those in which it is. The �rst type of logics can be understood as thosein which the law of contradiction is valid, but excluded middle is not. Thesecond type { the other way around.3.6.1 Kleene's basic 3-valued logicThis logic, which we denote by K`, has only t as designated and f:;_;^g asprimitives. It has no valid formula, but it does have a non-trivial consequencerelation, de�ned by the 3-valued semantics. A setup in this semantics is anyset of the form fA j v(A) = tg where v is a 3-valued valuation, and theconsequence relation `K` is de�ned by this semantics. A sound and stronglycomplete Gentzen-type or natural deduction formulations have been given inseveral places (see, e.g., [BCJ84] or [Av91b]).The properties of `K` which are relevant to the present paper are sum-marized in the following theorem:Theorem 311. Like intuitionistic logic, `K` is strongly consistent, c-normal but noteven weakly complete.2. `CPK` is classical logic.Proof:1. Since :A, A `K` B, `K` is strongly normal. Since `CPK` A _ :A but0K`A _ :A, `K` is not weakly complete.We turn now to c-normality. First we need a lemmaLemma. If T has a 3-valued model then it has also a classical, twovalued model.Proof of the lemma: It is enough to show that every �nite subset ofT has a two-valued model (by compactness of classical logic). So let �38



be a �nite set which has a 3-valued model. Since De-Morgan laws andthe double-negation laws are valid for the three-valued truth tables, wemay assume that all the formulas in � are in negation normal form. Weprove now the claim by induction on the number of ^ and _ in �. Ifall the formulas in � are either atomic or negations of atomic formula,then the claim is obvious. If � = �1 [ fA ^ Bg then � has a model i��1[fA;Bg has a model, and so we can apply the induction hypothesisto �1 [ fA;Bg. If � = �1 [ fA _ Bg then � has a model i� either�1 [ fAg or �1 [ fBg has, and we can apply the induction hypothesisto the one which does, getting by this a two-valued model for �.To complete the proof of the theorem, let T be a consistent `K`-theory.The de�nitions of consistency and of `K` imply in this case that it hassome 3-valued model. By the lemma it has also a two-valued model.Let T � be the set of all the formulae that are true in that two-valuedmodel. Then T � is a `K`-setup which is consistent (even classically),complete, and an extension of T .2. Since `CPK` :A _ A and :A _ C, A _ B `K` C _ B, it is easy toshow, using (for example) Shoen�eld's axiomatization of classical logicin [Sh67] that `C`�`CPK` . The converse is obvious, since `K`�`C` and`C` is strongly complete (by `C` we mean here classical logic). 23.6.2 LPF= L3LPF was developed in [BCJ84] for the VDM Project. As explained in[Av91b], it can be obtained from `K` by adding an internal implication �so that T;A `LPF B i� T `LPF A � B. The de�nition of � is: a � b = tif a 6= t, b if a = t. Alternatively one can add to the language  Lukasiewicz'simplication, or the operator � used in [BCJ84]. All these connectives arede�nable from one another with the help of :;^ and _.39



Theorem 321. `LPF is strongly consistent but neither weakly complete nor c-normal.2. `CPLPF is classical logic.Proof:1. That `LPF is strongly consistent but not weakly normal follows fromthe corresponding fact for `K`, since `LPF is a conservative extension of`K`. As for c-normality, it is enough to note that f(A_:A) � B; :Bgis consistent in LPF (take v(A) = I, v(B) = f) but obviously has noconsistent and complete extension.2. Again, take any axiomatization of classical logic in the LPF -languageand check that all the axioms and rules are valid in `CPLPF . 23.6.3 The Basic Paraconsistent 3-valued logic PACThis logic, which we call PAC in [Av91b] 15, has the same language (withthe same de�nitions of the connectives) as `K`. The di�erence is that hereboth t and I are designated. A setup in the intended semantics is, therefore,this time a set of the form fA j v(A) = t or v(A) = Ig,where v is a three-valued valuation. A sound and strongly complete (relative to the 3-valuedsemantics) Gentzen-type axiomatization is given in [Av91b].16Theorem 331. `PAC is strongly complete, weakly normal and c-normal. It is neitherstrongly consistent nor strongly c-normal.15It is a fragment of several logics which got several names in the literature { see nextsubsection.16Giving a faithful Hilbert-type system is somewhat a problem here, since the set ofvalid formulas is identical to that of classical logic, but the consequence relation is not.40



2. `NPAC is identical to classical logic.Proof:1. The strong completeness theorem for the Gentzen-type system entailsthat `PAC is �nitary. Hence to show strong syntactical completenessit is enough to show that the condition in 8(1) obtains. This is easy.Weak normality is immediate from the fact that `PAC A i� A is aclassical tautology (see [Av91b]) and that `PAC�`C`. c-normality isproved exactly as for R (it is easy to check that `PAC has all theproperties which are used in that proof). It is also easy to check that:p; p 0 PACq and that f:p; p _ qg is consistent, that :p; p _ q `NPAC qbut :p; p _ q 0 PACq (take v(p) = I, v(q) = f). Hence `PAC is notstrongly c-normal and not strongly consistent.2. Since all classical tautologies are valid in `PAC and MP for classicalimplication is valid for `NPAC , `C`�`NPAC . The converse is obvious,since `C` is strongly c-normal and `PAC�`C`. 23.6.4 RM3=J3This logic is obtained from PAC by the addition of certain connectives whilekeeping the same CR. There are two essential ways that this has been done(independently) in the literature (they were shown equivalent in [Av91b]):(i) Adding an implication !, de�ned as in [So52]. In this way we get thestrongest logic in the relevance family: the three-valued extension ofRM . It is in this way that this logic arose in the relevance literature.The corresponding matrix is called there M3 and the logic RM3. Itcan be axiomatized by adding to R the axioms A ! (A ! A) andA _ (A! B). 41



(ii) Adding an implication �, de�ned by (see [dC74]) a � b = t if a = f ,a � b = b otherwise. For this connective the deduction theorem holds.In this form the logic was called J3 in [DO85] (see also [Ep95]) 17. Itwas independently investigated also in [Av86] and in [Ro89]. Stronglycomplete Hilbert-type formulations with M.P. for � as the only ruleof inference were given in those papers, and a cut-free Gentzen-typeformulation can be found in [Av91b].In what follows we shall use the neutral name Pac� for the CR of PACin the extended language. The next theorem shows that the main di�erencebetween Pac� and PAC is that Pac� is not weakly normal.Theorem 34 1. Pac� is strongly complete and c-normal. It is neitherstrongly consistent nor weakly normal.2. `NPac� is identical to classical logic.Proof:1. Strong completeness and c-normality can easily be proved. Since `Pac�is a conservative extension of `Pac, it is not strongly consistent. Finally`NPac� A^ :A � B, since :(A^ :A � B) `Pac� A^:A, but 0 Pac�A^:A � B (the same argument applies to (A ^ :A! B)).2. It is provable in [Du70] that classical logic is the only proper extensionof RM3 in the language of f:;_;^;!g (from the point of view of the-oremhood). Since we have just seen that the set of valid sentences in`NPac� is such a proper extension, and since MP for ! is valid for it,`NPac� should be identical to `C` (in this language). The same argu-ment works for the f:;_;^;�g language using the results of [Av86].17[DO85] and [Ep95] consider a language with more connectives, but we shall not treatthem here. 42



Alternatively, it is not di�cult to show that by adding :A^A! B tothe Hilbert-type formulation of RM3 or :A ^ A � B to that of J3 weget classical logic in the corresponding languages. 24 ConclusionWe have seen two di�erent aspects of negation. From our two points of viewthe major conclusions are:� The negation of classical logic is a perfect negation from both syntac-tical and semantic points of view.� Next come the intensional fragments of the standard relevance logics(Rm; RMIm; RMm). Their negation is an internal negation for theirassociated internal CR. Relative to the external one, on the other hand,it has the optimal properties one may expect a semantic negation tohave in a paraconsistent logic. In the full systems (R;RMI;RM) thesituation is similar, though less perfect (from the semantic point ofview). It is even less perfect for the 3-valued paraconsistent logic.� The negation of Linear Logic is a perfect internal negation w.r.t. itsassociated internal CR. It is not, however, a negation from the semanticpoint of view. The same applies to  Lukasiewicz 3-valued logic.� The negations of intuitionistic logic and of Kleen's 3-valued logic arenot really negations from the two points of view presented here.In addition we have seen that within our general semantic framework,any consequence relation which is not strongly normal naturally induces oneor more derived consequence relations in which its negation better deservesthis name. We gave sound and complete axiomatic systems for these derivedrelations for all the substructural logics we have investigated.43
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