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1 Introduction

In this paper we try to understand negation from two different points of view:
a syntactical one and a semantic one. Accordingly, we identify two different
types of negation. The same connective of a given logic might be of both
types, but this might not always be the case.

The syntactical point of view is an abstract one. It characterizes connec-
tives according to the internal role they have inside a logic, regardless of any
meaning they are intended to have (if any). With regard to negation our
main thesis is that the availability of what we call below an internal negation
is what makes a logic essentially multiple-conclusion.

The semantic point of view, in contrast, is based on the intuitive meaning
of a given connective. In the case of negation this is simply the intuition that

the negation of a proposition A is true if A is not, and not true if A is true.!

'We have avoided here the term “false”, since we do not want to commit ourselves to
the view that A is false precisely when 1t 1s not true. Our formulation of the intuition is
therefore obviously circular, but this is unavoidable in intuitive informal characterizations
of basic connectives and quantifiers.



Like in most modern treatments of logics (see, e.g., [Sc74a,b], [Ha79],
[Ga81], [Ur84], [Wo88], [Ep95], [AvIlal, [C191], [FHV92]), our study of nega-
tion will be in the framework of Consequence Relations (CRs). Following

[Av9la], we use the following rather general meaning of this term:

Definition.
(1) A Consequence Relation (CR) on a set of formulas is a binary relation F

between (finite) multisets of formulas s.t.:
(I) Reflexivity: At A for every formula A.

(IT) Transitivity, or “Cut”: if I'y Ay, A and A, 'y B Ay, then 'y, 'y F
Ay, A,

(IIT) Consistency: @ I/ 0 (where ) is the empty multiset).

(2) A single-conclusion CR is a CR F such that I' F A only if A consists of

a single formula.

The notion of a (multiple-conclusion) CR was introduced in [Sc74a] and
[Sc74b]. It was a generalization of Tarski’s notion of a consequence rela-
tion, which was single-conclusion. Our notions are, however, not identical
to the original ones of Tarski and Scott. First, they both considered sets
(rather than multisets) of formulas. Second, they impose a third demand on
CRs: monotonicity. We shall call a (single-conclusion or multiple-conclusion)
CR which satisfies these two extra conditions ordinary. A single-conclusion,
ordinary CR will be called Tarskian.?

The notion of a “logic” is in practice broader than that of a CR, since

usually several CRs are associated with a given logic. Given a logic L there

What we call a Tarskian CR is exactly Tarski’s original notion. In [Av94] we argue
at length why the notion of a proof in an axiomatic system naturally leads to our notion
of single-conclusion CR, and why the further generalization to multiple-conclusion CR is
also very reasonable.



are in most cases two major single-conclusion CRs which are naturally asso-
ciated with it: the external CR % and the internal CR . For example, if £
is defined by some axiomatic system AS then Ay, ---, A, ¢ B iff there exists
a proof in AS of B from Ay, --- A, (according to the most standard meaning
of this notion as defined in undergraduate textbooks on mathematical logic),
while A;,--+, A, F. Biff Ay = (Ay — -+ — (A, — B)---) is a theorem of
AS (where — is an appropriate “implication” connective of the logic). Sim-
ilarly if £ is defined using a Gentzen-type system G then A;,---, A, % B if
the sequent Ay,---, A, = B is provable in G, while A,,--- A, F% B iff there
exists a proof in G of = B from the assumptions = Ay,---,= A, (perhaps
with cuts). ¢ is always a Tarskian relation, % frequently is not. The exis-
tence (again, in most cases) of these two CRs should be kept in mind in what
follows. The reason is that semantic characterizations of connectives are al-
most always done w.r.t. Tarskian CRs (and so here % is usually relevant).
This is not the case with syntactical characterizations, and here frequently

 is more suitable.

2 The syntactical point of view

2.1 Classification of basic connectives

Our general framework allows us to give a completely abstract definition,
mdependent of any semantic interpretation, of standard connectives. These
characterizations explain why these connectives are so important in almost
every logical system.

In what follows I is a fixed CR. All definitions are taken to be relative to
- (the definitions are taken from [Av9la]).

We consider two types of connectives. The internal connectives, which
make it possible to transform a given sequent into an equivalent one that has

a special required form, and the combining connectives, which allow us to



combine (under certain circumstances) two sequents into one which contains
exactly the same information. The most common (and useful) among these
are the following connectives:

Internal Disjunction: + is an internal disjunction if for all I', A, A, B:
I'-AAB iff THFAA+B.

Internal Conjunction: ® is an internal conjunction if for all I', A, A, B:
I'N'AJBFA if TVA®@BFA.

Internal Implication: — is an internal implication if for all ', A, A, B:
I'A-B,A iff THFA— B,A.

Internal Negation: — is an internal negation if the following two conditions

are satisfied by all I',; A and A:

(1) ATFA iff THA -A
(2) T'EAA iff —ATFA.

Combining Conjunction: A isa combining conjunction iff for all ', A, A, B:
'-AJAAB it TEFAJA and T'HFA,B.

Combining Disjunction: V is a combining disjunction iff for all ', A, A, B
AvB,THFA iff ATFA and B, I'FA.

Note: The combining connectives are called “additives” in Linear logic (see
[Gi87]) and “extensional” in Relevance logic. The internal ones correspond,
respectively, to the “multiplicative” and the “intensional” connectives.

Several well-known logics can be defined using the above connectives:

4



LL,, — Multiplicative Linear Logic (without the propositional con-
stants): This is the logic which corresponds to the minimal (multiset) CR
which includes all the internal connectives.
LL,,, — Propositional Linear Logic (without the “exponentials” and
the propositional constants): This corresponds to the minimal consequence
relation which contains all the connectives introduced above.
R,, — the Intensional Fragment of the Relevance Logic R:® This
corresponds to the minimal CR which contains all the internal connectives
and is closed under contraction.
R without Distribution: This corresponds to the minimal CR which con-
tains all the connectives which were described above and is closed under
contraction.
RMI, — the Intensional Fragment of the Relevance Logic RMI:*
This corresponds to the minimal sets-CR which contains all the internal
connectives.
Classical Proposition Logic: This of course corresponds to the minimal
ordinary CR which has all the above connectives. Unlike the previous log-
ics there is no difference in it between the combining connectives and the
corresponding internal ones.

In all these examples we refer, of course, to the internal consequence
relations which naturally correspond to these logics (In all of them it can be
defined by either of the methods described above).

2.2 Internal Negation and Strong Symmetry

Among the various connectives defined above only negation essentially de-
mands the use of multiple-conclusion CRs (even the existence of an internal

disjunction does not force multiple-conclusions, although its existence is triv-

3see [ABT75] or [Du86].
1see [Av90a], [AvI0D).



ial otherwise.). Moreover, its existence creates full symmetry between the two
sides of the turnstyle. Thus in its presence, closure under any of the struc-
tural rules on one side entails closure under the same rule on the other, the
existence of any of the binary internal connectives defined above implies the
existence of the rest, and the same is true for the combining connectives.
To sum up: internal negation is the connective with which “the hidden
symmetries of logic” ([Gi87]) are explicitly represented. We shall call, there-
fore, any multiple-conclusion CR which possesses it strongly symmetric.
Some alternative characterizations of an internal negation are given in

the following easy proposition.

Proposition 1 The following conditions on - are all equivalent:

(1) - is an internal negation for .
(2) THFAAGf T,-AFA
(3) ATFA f TFA-A
(4) A,—~AF andl —AA
(5) s closed under the rules:
ATEA I'EAA

Our characterization of internal negation and of symmetry has been done
within the framework of multiple-conclusion relations. Single-conclusion CRs
are, however, more natural. We proceed next to introduce corresponding
notions for them.

Definition.

(1) Let k¢ be a single-conclusion CR (in a language £), and let = be a unary
connective of L. F is called strongly symmetric w.r.t. to -, and — is called
an internal negation for -, if there exists a multiple-conclusion CR 7. with

the following properties:

()T F% Aiff Tz A



(ii) — is an internal negation for 7%

(2) A single-conclusion CR F is called essentially multiple-conclusion iff it
has an internal negation.
Obviously, if a CR F7 like in the last definition exists then it is unique.

We now formulate sufficient and necessary conditions for its existence.

Theorem 2 . is strongly symmetric w.r.t. — iff the following conditions

are satisfied:
(i) Abg——A
(ii) ~—AFc A

(iii) If ', Atz B then I, ~B b, —A.

Proof: The conditions are obviously necessary. Assume, for the converse,
that F satisfies the conditions. Define: Ay,---, A, F7 By,---, By iff for
every ] <i<mand1l<j<k:

Ay A, m By, 0B Ay A B A
Al)"'aAna_'Bla"'7_' j—1y " j+17"'7_'Bk|_Bj .

It is easy to check that F% is a CR whenever k¢ is a CR (whether single-
conclusion or multiple-conclusion), and that if I' F% A then I' -z A. The
first two conditions imply (together) that — is an internal negation for .
(in particular: the second entails that if A,I' F% A then I' % A, = A and the
first that if I' F% A, A then = A, ' F% A). Finally, the third condition entails

that % is conservative over . O

Examples of logics with an internal negation.

1. Classical logic.



2. Extensions of classical logic, like the various modal logics.
3. Linear logic and its various fragments.

4. The various Relevance logics (like R and RM (see [ABT75], [Du86],
[AB92]) or RMI ([Av90a,b])) and their fragments.

5. The various many-valued logics of Lukasiewicz, as well as Sobocinski

3-valued logic ([S052]).

Examples of logics without an internal negation.

1. Intuitionistic logic.

2. Kleene’s 3-valued logic and its extension LPF ([Jo86]).

Note: Again, in all these examples above it is the internal CR which is essen-
tially multiple-conclusion (or not) and has an internal negation. This is true
even for classical predicate calculus: There, e.g., Ve A(z) follows from A(z)

according to the external CR, but —=A(z) does not follow from —VzA(z).?

All the positive examples above are instances of the following proposition,

the easy proof of which we leave to the reader:

Proposition 3 Let L be any logic in a language containing — and —. Sup-
pose that the set of valid formulae of L wncludes the set of formulae in the
language of {—, —} which are theorems of Linear Logic,® and that it is closed
under M P for —. Then the internal consequence relation of L (defined using

— as in the introduction) is strongly symmetric (with respect to —).

>The internal CR of classical logic has been called the “truth” CR in [Av91a] and was
denoted there by F, while the external one was called the “validity” CR and was denoted
by F¥. On the propositional level there is no difference between the two.

SHere — should be translated into linear negation, — — into linear implication.



The next two theorems discuss what properties of k. are preserved by

F%. The proofs are straightforward.

Theorem 4 Assume . 1s essentially multiple-conclusion.
1. F7 is monotonic iff so is .
2. b5 s closed under ezpansion (the converse of contraction) iff so is .

3. A is a combining conjunction for -7 iff it is a combining conjunction

for ..

. — 1§ an wnilernalt implication jor Yy it 1§ an iniernai tmpiiicaiion jor

Fe.

Notes:

1) Because F% is strongly symmetric, Parts (3) and (4) can be formulated
as follows: F7 has the internal connectives iff ¢ has an internal implication
and it has the combining connectives iff -z has a combining conjunction.

2) In contrast, a combining disjunction for ¢ is not necessarily a combining
disjunction for Fz. It is easy to see that a necessary and sufficient condi-
tion for this to happen is that Fz =(A V B) whenever -z =A and . —B.
An example of an essentially multiple-conclusion system with a combining
disjunction which does not satisfy the above condition is RMI of [Av90a,b].
That system indeed does not have a combining conjunction. This shows
that a single-conclusion logic £ with an internal negation and a combining
disjunction does not necessarily have a combining conjunction (unless £ is
monotonic). The converse situation is not possible, though: If = is an inter-
nal negation and A is a combining conjunction then =(=A A =B) defines a
combining disjunction even in the single-conclusion case.

3) An internal conjunction @ for ¢ is also not necessarily an internal con-

junction for Fz. We need here the extra condition that if A Fz —~B then



Fc =(A® B). An example which shows that this condition does not nec-
essarily obtain even if k. is an ordinary CR, is given by the following CR
Firiv:

Ay, A by B it n> 1.

It is obvious that F;,.;, i1s a Tarskian CR and that every unary connective of
its language is an internal negation for it, while every binary connective is
an internal conjunction. The condition above fails, however, for F,.;,.

4) The last example shows also that 2. may not be closed under contraction

when ¢ does, even if k. is Tarskian. Obviously, I' F7 . Al [’ U A| > 2.

triv

Hence +5,;, A, A but 07,,,A. The exact situation about contraction is given

in the next proposition.

Proposition 5 Ifl. us essentially multiple-conclusion then &% is closed un-
der contraction iff . 1s closed under contraction and satisfies the following
condition:

If AFr B and -A bt B then -, B.

In case bz has a combining disjunction this is equivalent to:
Fe AV A.

Proof: Suppose first that ¢ is closed under contraction and satisfies the
condition. Assume that I' 2 A A, A. If either I' or A is not empty then
this is equivalent to = A, —A,['™* ¢ B for some I'* and B. Since ¢ is closed
under contraction, this implies that A, I, B, and so I' =3 A, A. If both
I' and A are empty then we have =A -, A. Since also A ¢ A, the condition
implies that ¢ A, and so F7 A.

For the converse, suppose 7 is closed under contraction. This obviously
entails that so is also k.. Assume now that A+, B and A+, B. Then
A F% B and F7 B, A. Applying cut we get that % B, B, and so - B. It
follows that -, B. O
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3 The semantic point of view

We turn in this section to the semantic aspect of negation.

3.1 The General Framework

A “semantics” for a logic consists of a set of “models”. The main property
of a model is that every sentence of a logic is either true in it or not (and
not both). The logic is sound with respect to the semantics if the set of
sentences which are true in each model is closed under the CR of the logic,
and complete if a sentence ¢ follows (according to the logic) from a set T' of
assumptions iff every model of T is a model of ¢. Such a characterization is,
of course, possible only if the CR we consider is Tarskian. In this section we
assume, therefore, that we deal only with Tarskian CRs. For logics like Linear
Logic and Relevance logics this means that we consider only the external CRs
which are associated with them (see the Introduction).

Obviously, the essence of a “model” is given by the set of sentences which
are true in it. Hence a semantics is, essentially, just a set S of theories.
Intuitively, these are the theories which (according to the semantics) provide
a full description of a possible state of affairs. Every other theory can be
understood as a partial description of such a state, or as an approximation of
a full description. Completeness means, then, that a sentence ¢ follows from
a theory T iff ¢ belongs to every superset of T' which is in S (in other words:
iff ¢ is true in any possible state of affairs of which T is an approximation).

Now what constitutes a “model” is frequently defined using some kind of
algebraic structures. Which kind (matrices with designated values, possible
worlds semantics and so on) varies from one logic to another. It is difficult,
therefore, to base a general, uniform theory on the use of such structures.
Semantics (= a set of theories!) can also be defined, however, purely syn-

tactically. Indeed, below we introduce several types of syntactically defined
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semantics which are very natural for every logic with “negation”. Our inves-
tigations will be based on these types.

Our description of the notion of a model reveals that ezternally it is based
on two classical “laws of thought”: the law of contradiction and the law of
excluded middle. When this external point of view is reflected inside the
logic with the help of a unary connective — we call this connective a (strong)
semantic negation. Its intended meaning is that = A should be true precisely
when A is not. The law of contradiction means then that only consistent
theories may have a model, while the law of excluded middle means that
the set of sentences which are true in some given model should be negation-
complete. The sets of consistent theories, of complete theories and of normal
theories (theories that are both) have, therefore a crucial importance when
we want to find out to what degree a given unary connective of a logic can be
taken as a semantic negation. Thus complete theories reflect a state of affairs
in which the law of excluded middle holds. It is reasonable, therefore, to say
that this law semantically obtains for a logic £ if its consequence relation ¢
is determined by its set of complete theories. Similarly, £ (strongly) satisfies
the law of contradiction iff . is determined by its set of consistent theories,
and it semantically satisfies both laws iff -, is determined by its set of normal
theories.

The above characterizations might seem unjustifiably strong for logics
which are designed to allow non-trivial inconsistent theories. For such logics
the demand that -, should be determined by its set of normal theories is
reasonable only if we start with a consistent set of assumptions (this is called
strong e-normality below). A still weaker demand (e-normality) is that any
consistent set of assumptions should be an approximation of at least one
normal state of affairs (in other words: it should have at least one normal
extension).

It is important to note that the above characterizations are independent

of the existence of any internal reflection of the laws (for example: in the
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forms =(=A AN A) and AV A, for suitable A and V). There might be strong
connections, of course, in many important cases, but they are neither neces-
sary nor always simple.

We next define our general notion of semantics in precise terms.

Definition. Let £ be a logic in L and let F¢ be its associated CR.

1. A setup for . is a set of formulae in L which is closed under Fz. A
semantics for F, is a nonempty set of setups which does not include

the trivial setup (i.e., the set of all formulae).

2. Let S be a semantics for Fz. An S-model for a formula A is any setup
in S to which A belongs. An S-model of a theory T is any setup in S
which is a superset of T'. A formula is called S-valid iff every setup in

S is a model of it. A formula A S-follows from a theory T (T 7 A) iff
every S-model of T' is an S-model of A.

Proposition 6 7 is a (Tarskian) consequence relation and FoC F7.

Notes:

1. 7 is not necessarily finitary even if  is.
2. b is just l—i(ﬁ) where S(L) is the set of all setups for k.
3. If §; C S, then FR2CF2!.

Examples:

1. For classical propositional logic the standard semantics consists of the
setups which are induced by some valuation in {¢, f}. These setups can

be characterized as theories T such that
(1) "AeT itA¢T (it) ANBET iffbothAcTand BeT

(and similar conditions for the other connectives).
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2. In classical predicate logic we can define a setup in S to be any set of for-

mulae which consists of the formulae which are true in some given first-
order structure relative to some given assignment. Alternatively we can
take a setup to consist of the formulae which are walid in some given
first-order structure. In the first case F°=F, in the second F¥=F",
where F* and FY are the “truth” and “validity” consequence relations

of classical logic (see [Av9la] for more details).

In modal logics we can define a “model” as the set of all the formulae
which are true in some world in some Kripke frame according to some
valuation. Alternatively, we can take a model as the set of all formulae
which are valid in some Kripke frame, relative to some valuation. Again

we get the two most usual consequence relations which are used in

modal logics (see [Av9la] or [FHV92]).

From now on the following two conditions will be assumed in all our

general definitions and propositions:

1.

2.

The language contains a negation connective —.

For no A are both A and —A theorems of the logic.

Definition. Let S be a semantics for a CR F.

1.

2.

¢ is strongly complete relative to S if FZ=F.
¢ is weakly complete relative to S if for all A, o A iff F2 A.

k¢ is c-complete relative to S if every consistent theory of . has a

model in S.

k¢ is strongly c-complete relative to S if for every A and every consis-

tent T,TF7 Aiff THp A

14



Notes:

1. Obviously, strong completeness implies strong e-completeness, while
strong c-completeness implies both e-completeness and weak complete-

ness.

2. Strong completeness means that deducibility in F. is equivalent to se-
mantic consequence in S. Weak completeness means that theoremhood
in F¢ (i.e., derivability from the empty set of assumptions) is equivalent
to semantic validity (= truth in all models). ¢-completeness means that
consistency implies satisfiability. It becomes identity if only consistent
sets can be satisfiable, i.e., if {=A, A} has a model for no A. This is ob-
viously too strong a demand for paraconsistent logics. Finally, strong
c-completeness means that if we restrict ourselves to normal situations
(i.e., consistent theories) then F and 2 are the same. This might

sometimes be weaker than full strong completeness.

The last definition uses the concepts of “consistent” theory. The next
definition clarifies (among other things) the meaning of this notion as we are

going to use in it this paper.

Definition. Let £ and k. be as above. A theory in L consistent if for no A
it is the case that T Fz A and T F, —A, complete if for all A, either T, A
or T kg —A, normal if it is both consistent and complete. CS¢, C P and
N will denote, respectively, the sets of its consistent, complete and normal

theories.

Given ¢, the three classes, CSg, C Pc and Ng, provide 3 different syntac-
tically defined semantics for 2, and 3 corresponding consequence relations
FC%e FCPe and FE%. We shall henceforth denote these CRs by F&5, FGP
and F¥, respectively. Obviously, F¢*CHY and F¢PCHY. In the rest of this
section we investigate these relations and the completeness properties they

induce.
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Let us start with the easier case: that of F&°. It immediately follows
from the definitions (and our assumptions) that relative to it every logic is
strongly e-complete (and so also c-complete and weakly complete). Hence

the only completeness notion it induces is the following:

Definition. A logic £ with a consequence relation ¢ is strongly consistent

if G =t

G5 is not a really interesting CR. As the next theorem shows, what it
does is just to trivialize inconsistent -g-theories. Strong consistency, accord-
ingly, might not be a desirable property, certainly not a property that any

logic with negation should have.

Proposition 7

1. T +G5 A iff either T is inconsistent in L or T Fp A. In particular, T

is 05 -consistent iff it is b -consistent.

2. L is strongly consistent iff ~A, At B for all A, B (iff T is consistent
whenever T 0 A).

3. Let LY be obtained from L by adding the rule: from —A and A infer

B. Then FC¥=F os. In particular: if b is finitary then so is FC°.
4. FS° is strongly consistent.

FEP and FV. In principle, each provides 4 notions of com-

We turn now to
pleteness. We don’t believe, however, that considering the two notions of e-
consistency is natural or interesting in the framework of F“% (c-completeness,
e.g., means there that every consistent theory has a complete extension, but
that extension might not be consistent itself). Accordingly we shall deal with

the following 6 notions of syntactical completeness.”

“In [AB75] the term “syntactically complete” was used for what we call below “strongly
c-normal”.

16



Definition.

Let £ be a logic and let ¢ be its consequence relation.

1. L is strongly complete if it is strongly complete relative to C P.
2. L is weakly complete if it is weakly complete relative to C P.

3. L is strongly normal if it is strongly complete relative to N.

4. L is weakly normal if it is weakly complete relative to N.

5. L is c-normal if it is c-complete relative to N.

6. L is strongly c-normal if it is strongly e-complete relative to N (this is

easily seen to be equivalent to FY=F%%).

For the reader’s convenience we repeat what these definitions actually mean:

1. £ is strongly complete iff whenever T'0 A there exists a complete
extension T* of T such that 70 ¢ A.

2. L is weakly complete iff whenever A is not a theorem of £ there exists

a complete T* such that T*0 ¢ A.

3. L is strongly normal iff whenever T'0 A there exists a complete and

consistent extension T of T such that 7*0 o A.

4. L is weakly normal iff whenever A is not a theorem of L there exists a

complete and consistent theory T such that T*0 ¢ A.

5. L is c-normal if every consistent theory of £ has a complete and con-

sistent extension.

6. L is strongly e-normal iff whenever T is consistent and T'0 A there

exists a complete and consistent extension T* of T' such that T™0 ¢ A.
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Our next proposition provides simpler syntactical characterizations of

some of these notions in case . is finitary.

Proposition 8 Assume that -, is finitary.

1. L is strongly complete off for all T, A and B:
() T,AtgB and T,-At.B imply Tt B

In case L has a combining disjunction \V then (x) is equivalent to the

theoremhood of ~AV A (excluded middle).

2. L 1s strongly normal of for all T and A:

(#x) TrFgA off TU{=A} 1isinconsistent.

3. L is strongly c-normal iff (+*) obtains for every consistent T'.

4. L is c-normal iff for every consistent T and every A either T U {A} or
T U{—-A} is consistent.

Proof: Obviously, strong completeness implies (x). For the converse, as-
sume that T'0 B. Using (*), we extend T' in stages to a complete theory such
that T*0 B. This proves part 1. The other parts are straightforward. a

Corollaries:

1. If £ is strongly normal then it is strongly symmetric w.r.t. =. Moreover:

% is an ordinary multiple-conclsion CR.

2. If £ is strongly symmetric w.r.t. — then it is strongly complete iff %

is closed under contraction.

18



Proof: These results easily follows from the last proposition and Theorems
2, 4 and 5 above. O

In the figure below we display the obvious relations between the seven
properties of logics which were introduced here (where an arrow means “con-

tained in”). The next theorem shows that no arrow can be added to it:

weak completeness

T~

weak normality c-normality

\/

strong completeness strong c-normality strong consistency

strong normality

Theorem 9 A logic can be:
1. strongly consistent and c-normal without even being weakly complete

2. strongly complete and strongly c-normal without being strongly consis-

tent (and so without being strongly normal)
3. strongly consistent without being c-normal

4. strongly complete, weakly normal and c-normal without being strongly

c-normal

5. strongly complete and c-normal without being weakly normal
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6. strongly consistent, c-normal and weakly normal without being strongly

c-normal (=strongly normal in this case, because of strong consistency)

7. strongly complete without being c-normal.®

Proof: Appropriate examples for 1-6 are given below, respectively, in the-
orems 12, 18, 32, 19, 34 and the corollary to theorem 19. As for the last part,
let £ be the following system in the language of {—, —}:?

Azl: A— (B— A)

Az2: A—-(B—-C)—-(A—-B)—(A—=0C)

Az3: (-A— B) — ((A— B) — B)

A A— B
vpy A A=B

Obviously, the deduction theorem for — holds for this system, since M P
is the only rule of inference, and we have Azl and Az2. This fact, Az3 and
proposition 8 guarantee that it is strongly complete. To show that it is not
e-normal, we consider the theory To = {p = ¢, p = —q, -p — r, =p — —r}.
Obviously, Ty has no complete and consistent extension. We show that it is

consistent nevertheless. For this we use the following structure:

3 -3

8Hence the two standard formulations of the “strong consistency” of classical logic are
not equivalent in general.

Classical logic is obtained from it by adding =A — (A — B) as axiom (see [Ep95,
Ch.2L]).

20



Define in this structure a — b as t if a < b, b otherwise, —z as f if ¢ = ¢,
tif x = f and —z otherwise. It is not difficult now to show that if T A in
the present logic for some T" and A, and v is a valuation in this structure such
that v(B) =t for all B € T, then v(A) = t. Take now v(p) = 3, v(q) = 1,
v(r) = 2. Then v(B) = t for all B € T, but obviously there is no A such
that v(A) = v(=A) = t. Hence T is consistent. O

We end this introductory subsection with a characterization of F&* and

F¥. The proofs are left to the reader.

Proposition 10

1. FGP s strongly complete, and is contained in any strongly complete

extension of F..

2. Suppose . is finitary. T +GT A 4ff for some By,...,B, (n > 0) we
have that T U{Bf{,...,B*} ¢ A for every set {B},..., B’} such that
B* = B; or Bf = B, for dll 1.

8. If - is finitary, then so is FGT.
Proposition 11

1. % is strongly normal, and is contained in every strongly normal ez-

tension of ..

2. If b, is finitary then T FY A iff for some By,..., B, we have that
for all {B3,...,B*} where Bf € {B;,~B;} (i =1,...,n), either T U
{Bf,..., B!} is inconsistent or TU{By,...,B,} Fc A

3. Y is finitary if b is.
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3.2 Classical and Intuitionistic Logics

Obviously, classical propositional logic is strongly normal. In fact, most of the
proofs of the completeness of classical logic relative to its standard two-valued
semantics begin with demonstrating the condition (#x*) in Proposition 8, and
are based on the fact that every complete and consistent theory determines a
unique valuation in {¢, f} - and vice versa. In other words: N here is exactly
the usual semantics of classical logic, only it can be characterized also using
especially simple algebraic structure (and valuations in it). One can argue
that this strong normality characterizes classical logic. To be specific, it is

not difficult to show the following claims:

1. classical logic is the only logic in the language of {—, A}which is strongly
normal w.r.t. = and for which A is an internal conjunction. Similar
claims hold for the {—, —} language, if we demand — to be an inter-
nal implication and for the {—,V} language, if we demand V to be a

combining disjunction.

2. Any logic which is strongly normal and has either an internal impli-
cation, or an internal conjunction or a combining disjunction contains

classical propositional logic.

The next proposition summarizes the relevant facts concerning intuition-
istic logic. The obvious conclusion is that although the official intuitionistic
negation has some features of negation, it still lacks most. Hence, it cannot

be taken as a real negation from our semantic point of view.

Proposition 12 Intuitionistic logic is strongly consistent and c-normal, but

it is not even weakly complete.

Proof: Strong consistency follows from part 3 of Proposition 7. e-normality

follows from part 4 of Proposition 8, since in intuitionistic logic if both TU{ A}
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and T'U {—A} are inconsistent then T by —A and T gy == A, and so T is
inconsistent. Finally, =A V A belongs to every complete setup, but is not

intuitionistically valid. a

Note: Intuitionistic logic and classical logic have exactly the same consistent
and complete setups, since any complete intuitionistic theory is closed under
the elimination rule of double negation. Hence any consistent intuitionistic

theory has a classical two-valued model.

What about fragments (with negation) of Intuitionistic LogicI' Well, they
are also strongly consistent and e¢-normal, by the same proof. Moreover,
(A —- B) - A) — A is another example of a sentence which belongs to
every complete setup (since Aty (A — B) - A) - Aand Aty (A —
B) — A) — A), but is not provable. The set of theorems of the pure {—=, A}
fragment, on the other hand, is identical to that of classical logic, as is well
known. This fragment is, therefore, easily seen to be weakly normal. It is

still neither strongly complete nor strongly e-normal, since =—A F4F A, O

Finally, we note the important fact that classical logic can be viewed as

the completion of intuitionistic logic. More precisely:

Proposition 13

1. FP =ty

2. F§P =+ = classical logic.
Proof:

2. FEP=FY whenever L is strongly consistent (i.e., all nontrivial theories
are consistent). In the proof of the previous proposition we have seen
also that F5" =AV A and F§¢' ((A — B) — A) — A. Tt is well known,
however, that by adding either of this schemes to intuitionistic logic

we get classical logic. Hence classical logic is contained in F$F. Since
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classical logic is already strongly complete, F&F is exactly classical logic.
(Note that this is true for any fragment of the language which includes

negation.) O

3.3 Linear Logic (LL)

In the next 3 subsections we are going to investigate some known substruc-
tural logics ([SD93]). Before doing it we must emphasize again that in this
section it is only the external, Tarskian consequence relation of these log-
ics which can be relevant. This consequence relation can very naturally
be defined by using the standard Hilbert-type formulations of these logics:
Ay,...,A, F. B (L =LL,R,RM,RMI, etc.) iff there exists an ordinary
deduction of B from Ay,..., A, in the corresponding Hilbert-type system.
This definition is insensitive to the exact choice of axioms (or even rules),
provided we take all the rules as rules of derivation and not just as rules of
proof. In the case of Linear Logic one can use for this the systems given in
[Av88] or in [Tr90]. An alternative equivalent definition of the various ex-
ternal CRs can be given using the standard Gentzen-types systems for these
logics (in case such exist), as explained in the introduction. Still another
characterization in the case of Linear Logic can be given using the phase
semantics of [Gi87]: Ay,..., A, b5, B iff B is true in every phase model of

“e” and write just

A, ..., A,. In what follows we shall omit the superscript
Frr, Frr,., ete.

Unlike in [Gi87] we shall take below negation as one of the connectives
of the language of linear logic and write = A for the negation of A (this cor-
responds to Girard’s A7). As in [Av88] and in the relevance logic literature,
we use arrow (—) for linear implication.

We show now that linear logic is incomplete with respect to our various

notions.
Proposition 14 LL,, (LL,,,,LL) is not strongly consistent.
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Proposition 15 LL,, (LL,,,, LL) is neither strongly complete nor c-normal.
Proof: Consider the following theory:

T={p— -p, -p—p}.

From the characterization of . given in [Av92] it easily follows that has
T been inconsistent then there would be a provable sequent of the form:
-p—p, P —=>P,...,7 P —>Pp,p— P,...,p — 7p =. But in any cut-free
proof of such a sequent the premises of the last applied rule should have an
odd number of occurrences of p, which is impossible in a provable sequent
of the purely multiplicative linear logic. Hence T' is consistent. Obviously,
every complete extension of T' proves p and —p and so is inconsistent. This
shows that LL,, is not c-normal. It also shows that p is not provable from
T, although it is provable from any complete extension of it, and so LL,, is

not strongly complete. a
Proposition 16 LL,,, (and so also LL) is not weakly complete.

Proof: ~ A& A is not a theorem of linear logic, but it belongs to any
complete theory. a

It follows that Linear logic (and its multiplicative-additive fragment) has
none of the properties we define in this section. Its negation is therefore not
really a negation from our present semantic point of view.

Our results still leave the possibility that LL,, might be weakly com-
plete or even weakly normal. We conjecture that it is not, but we have no
counterexample.

We end this section by giving axiomatizations of F¢T and +V, .

Proposition 17 1. Let LL“" be the full Hilbert-type system for linear
logic (as given in [Av88]) together with the rule: from !A — B and
'~A — B infer B. Then F§¢P=Fp cp.
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2. Let LLY be LLT together with the disjunctive syllogism for & (from
—A and A® B infer B). Then FY, =t ~.

Proof:

1. The necessitation rule (from A infer !A) is one of the rules of LL.Y
It follows therefore that B should belong to any complete setup which
contains both !A — B and !-A — B. Hence the new rule is valid for

Fgf and FLLCPQ Fgf

For the converse, assume T F¢¥ A. Then there exist By, ..., B, like in
proposition 10(2). We prove by induction on n that T Fyrcr A. The
case n = 0 is obvious. Suppose the claim is true for n — 1. We show it
for n. By the deduction theorem for LL, !Bf,... !B = A is derivable
from T in LLYF."" More precisely: 'Bi@!'By ... @!B* — A is deriv-
able from T for any choice of By, ..., B*. Since IC®!D «<!(C&D) is a
theorem of LL, this means that both !B, — ((Bf& ... &BX_;) — A)
and =B, — ((Br&...&B!_,) — A). By the new rule of LL“" we
get therefore that T Fprer!(Bf&...&B* ) — A, and so T Fprer
'BI@!By @ ...@!B%_;, — A for all choices of BY,...,B!_,. An appli-
cation of the induction hypothesis gives T' k- cr A.

2. The proof is similar, only this time we should have (by proposition
11) that T U {B},..., B’} is either inconsistent in LY or proves A
there. In both cases it proves A & — in LLCY. The same argument
as before will show that T' Fyppcr A& —. Since Frp = —, one appli-
cation of the disjunctive syllogism will give T' Fy;cpr A. It remains
to show that the disjunctive syllogism is valid for F}.. This is easy,
since {~A, A® B, =B} is inconsistent in LL, and so any complete and

consistent extension of {=A, A @ B} will necessarily contain B. O

%Note again that we are talking here about ¢ ;!
Tn fact, at the beginning it is derivable from T in LL, but for the induction to go
through we need to assume derivability in LL" at each step.
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3.4 The Standard Relevance Logic R and its Relatives

In this section we investigate the standard relevance logic R of Anderson and
Belnap ([AB75], [Du86]) and its various extensions and fragments. Before
doing this we should again remind the reader what consequence relation we
have in mind: the ordinary one which is associated with the standard Hilbert-
type formulations of these logics. As in the case of linear logic, this means
that we take both rules of R (M P and adjunction) as rules of derivation and
define T' Fr A in the most straightforward way.

Let us begin with the purely intensional (=multiplicative) fragment of R:
R,,. We state the results for this system, but they hold for all its nonclassical

various extensions (by axioms) which are discussed in the literature.

Theorem 18 R, s not strongly consistent, but it is strongly complete and

strongly c-normal.

Proof: It is well-known that R,, is not strongly consistent in our sense.
[ts main property that we need for the other claims is that T, A Fg,_ B iff
either T Fr, B or T kg, A — B. The strong completeness of R,, follows
from this property by the provability of (-4 — B) — ((A — B) — B) and
proposition 8(1).

To show strong c-normality, we note first that a theory T is inconsistent
in R, it T kg, =(B — B) for some B (because g, B — (B — =(B —
B))). Suppose now that T is consistent and T 0g,,A. Were T U {-A}
inconsistent then by the same main property and the consistency of T we
would have that T kg, A — —(B — B) for some B, and so that T tpg,,
(B— B)— Aand T p,, A. A contradiction. Hence T'U{—-A} is consistent
and we are done by proposition 8(3). O

The last theorem is the optimal theorem concerning negation that one
can expect from a logic which was designed to be paraconsistent. It shows
that with respect to normal “situations” (i.e., consistent theories) the nega-

tion connective of R, behaves exactly as in classical logic. The difference,
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therefore, is mainly w.r.t. inconsistent theories. Unlike classical logic they
are not necessarily trivial in R,,. Strong completeness means, though, that
excluded middle, at least, can be assumed even in the abnormal situations.

When we come to R as a whole the situation is not as good as for the
purely intensional fragments. Strong c-normality is lost. What we do have

is the following:

Theorem 19 R is strongly complete, c-normal and weakly normal, '* but it

1s neither strongly consistent nor strongly c-normal.

Proof: Obviously, R is not strongly consistent. It is also well known that
—p,pV q0Rrg. Still ¢ belongs to any complete and consistent extension of
the (even classically!) consistent theory {-p,p V ¢}, since {-p,p V ¢, q}
is not consistent in R. It follows that R is not strongly e-normal. On the
other hand, to any extension £ of R by axiom schemes it is true that if
T,Abe Cand T,Bt, C, then T,AV B C ([AB75]). Since Fr AV A,
this and proposition 8(1) entail that any such extension is strongly complete.
Suppose, next, that T is theory and A a formula such that T'U {A} and
T U {—A} are inconsistent (£ as above). Then for some B and C it is the
case that T, Atz -“BAB and T, Az -CAC. It follows that T, AV-A F¢
(=BAB)V(—-CAC). Since AV =A and =[(-B A B) V (=C A C)] are both
theorems of R, T is inconsistent in £. By proposition 8(4) this shows that
any such logic is e-normal. Suppose, finally, that i/ A. Had {-A} been
inconsistent, we would have that for some B, -A Fr =B A B. This, in
turn, entails that AV A tr AV (=B A B), and so that Fr AV (=B A B).
On the other hand, Fr =(=B A B). By the famous theorem of Meyer and
Dunn concerning the admissibility of the disjunctive syllogism in R ([AB75],
[Du86]) it would follow, therefore, that Fr A, contradicting our assumption.

Hence {—A} is consistent, and so, by the c-normality of R which we have just

12Weak normality is proved in [AB75] under the name “syntactical completeness”.
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proved, it has a consistent and complete extension which obviously does not

prove A. This shows that R is weakly normal (the proof for RM is identical).
O

Corollary: +%° is strongly consistent, c-normal and weakly normal, but it
is not strongly ¢-normal.

Note: A close examination of the proof of the last theorem shows that the
properties of R which are described there are shared by many of its relatives

(like RM, for example). We have, in fact, the following generalizations:

1. Every extension of R which is not strongly consistent is also not strongly

c-normal.

2. Every extension of R by axiom-schemes is both strongly complete and

c-normal.

3. Every extension of R by axiom schemes for which the disjunctive syl-

logism is an admissible rule'® is weakly normal.

In fact,(1)—(3) are true (with similar proofs) also for many systems weaker
than R in the relevance family, like E.

Our results show that F&T=Fg, but F¥#£ES (since R is not strongly
cnormal). Hence F¥ is a new consequence relation, and we turn next to

axiomadtize it.

Definition. Let £ be an extension of R by axiom schemes and let £ be the
system which is obtained from £ by adding to it the disjunctive syllogism
(v) as an extra rule: from =4 and AV B infer B.

Theorem 20 Y ="t x~.

Proof: To show that F,vCHY it is enough to show that -4, AV B +Y¥ B.
This was already done, in fact, in the proof of the last theorem. For the

13See [AB75] and [Du86] for examples and criteria when this is the case.
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converse, assume T ¥ A. Since £ is c-normal (see last note), T U {=A}
cannot be L-consistent. Hence T'U {-A} Fz =B A B for some B. This
entails that T k¢ AV (=B A B) and that T v A exactly as in the proof of
the weak normality of R. O

3.5 The Purely Relevant Logic RM1

The purely relevant logic RM I was introduced in [Av90a,b]. Proof-theoretically
it differs from R in that:

(i) The converse of contraction (or, equivalently, the mingle axiom of RM)
is valid in it. This is equivalent to the idempotency of the intensional
disjunction + (=“par” of Girard). In the purely multiplicative fragment
RM1,, it means also that assumptions with respect to — can be taken

as coming in sets (rather than multisets, as in LL,, or R,).

(ii) The adjunction rule (B,C F B A C) as well as the distribution axiom
(AN(BVC)— (ANB)V (ANCQ)) are accepted only if B and C are
“relevant”. This relevance relation can be expressed in the logic by the
sentence RY(A,B) = (A — A) + (B — B), which should be added as
an extra premise to adjunction and distribution (this sentence is the

counterpart of the “mix” rule of [Gi87]).

We start our investigation with the easier case of RMI,,.

Theorem 21 Ezactly ke R,,, RMI,, is not strongly consistent, but it is
both strongly complete and strongly c-normal.
Proof: Exactly like in the case of R,,. O

Like in classical logic, and unlike the case of R,,, these two main proper-
ties of RM1,, are strongly related to simple, intuitive, algebraic semantics.

Originally, in fact, RMI,, was designed to correspond to a class of structures
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which are called in [Av90a] “full relevant disjunctive lattices” (full r.d.1.). A
full r.d.lis a structure which results if we take a tree and attach to each node
b its own two basic truth-values {t;, f»}. To a leaf b of the tree we can attach
instead a single truth-value I, which is the negation of itself (its meaning is
“both true and false” or “degenerate”). b is called abnormal in this case.
Intuitively, the nodes of the tree represent “domains of discourse”. Two do-
mains are relevant to each other if they have a common branch, while b being
nearer than a to the root on a branch intuitively means that b has a higher
“degree of reality” (or higher “degree of significance”) than a (we write a < b
in this case). The operation of = (negation) is defined on a full r.d.l. M
in the obvious way, while + (relevant disjunction) is defined as follows: Let
lt.| = |fal = |1.] = a, and let val(t,) = ¢, val(fy) = f and val(l;) = I. Define
r< y if either z = y or |2| < |y| or |z| = |y| and val(y) = t. (M,<y) is
an upper semilattice. Let # +y = sup., (z,y). An RMI,-model is a pair
(M,v) where M is a full r.d.l. and v a valuation in it (which respects the op-
erations). A sentence A is true in a model (M, v) if val(v(A4)) #. Obviously,
every model (M, v) determines an RM I,,,-setup of all the formulae which are

true in it. Denote the collection of all these setups by RDL,,.
Proposition 22 CPgy;,, = RDL,,

Proof: It is shown in [Av90b] that the Lindenbaum algebra of any complete
RM]1I,,-theory determines a model in which exactly its sentences are true.
This implies that CPrp;;,, € RDL,,. The converse is obvious from the
definitions. O

Corollary: ([Av90b]): RMI,, is sound and complete for the semantics of
full r.d.l.s. In other words: T Fprarp,, A iff A is true in every model of T.

Proof: Checking soundness is straightforward, while completeness follows
from the syntactic strong compleness of RMI,, (theorem 21) and the last

theorem. O
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The strong c-normality of RM I,,, also has an interpretation in terms of the

semantics of Tull r.d.l.s. In order to describe it we need first some definitions:

Definition.

1. A full r.d.l is consistent iff for every @ in it val(z) € {¢t, f} (i.e., the
intermediate truth-value I is not used in its construction). This is

equivalent to:  # —z for all z.
2. A model (M,v) is consistent iff M is consistent.

3. CRDL,, is the collection of the RMI,,-setups which are determined

by some consistent model.

Note:

On every tree one can base exactly one consistent full r.d.l. (but in general

many inconsistent ones).
Proposition 23 Ngy, = CRDL,,.

Proof: In the construction from [Av90b] which is mentioned in the proof of
proposition 22, a complete and consistent theory is easily seen to determine
a consistent model. The converse is obvious. O

In view of the last proposition, the strong c¢-normality of RMI,, and its
two obvious corollaries (weak normality and e-normality) can be reformulated

in terms of the algebraic models as follows:

Proposition 24

1. If T 1s consistent then T Fryr, A off A is true in any consistent model
of T.

2. Fruir, A iff A is true in any consistent model.
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3. Every consistent RMI,,-theory has a consistent model.

It follows that if we restrict our attention to consistent RMI,,-theories,
we can also restrict our semantics to consistent full r.d.l.s, needing, therefore,

only the classical two truth-values ¢ and f, but not 1.

Exactly as in the case of R, when we pass to RM I things become more
complicated. Moreover, although we are going to show that RM I has ezactly

the same properties as R, the proofs are harder.
Theorem 25 RM1 is strongly complete.

Proof: The proof is like the one for R given above, since RMI has the
relevant properties of R which were used there (see [Av90b]). O

Like in the case of RMI,,, the strong completeness of RM I is directly
connected to the semantics of full r.d.l.s. This semantics is extended in
[Av90a,b] to the full language by defining the operator A on a full r.d.l. as
follows: define <on M by: ¢ <y iff val(-mz+y) # f. (M, <) is a lattice. Let
x Ay = inf<(z,y). The notions of an RMI-model, consistent RM I-model
and the truth of a formula A (of the language of RMI) in such models are
defined as in the case of RMI,,. The classes of setups RDL and CRDL are
also defined like their counterparts in the case of RMI,,. Again we have:

Proposition 26
1. CPryr= RDL.

2. Npyr=CRDL.

Proof: Similar to the proofs of propositions 22 and 23. O
Again, theorem 25 and 26(1) entail the following: result of [Av90b]:

Corollary: RM1 is sound and complete for the semantics of full r.d.l.s.
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Theorem 27
1. Fryr A iff A us valid wn all the consistent models.

2. RM1I 1s weakly normal.

Proof:

1. Suppose that 0garrA. Then there is a model (M, v) in which A is not
true. Let M’ be the consistent full r.d.l based on T (the tree on which
M is based). Let v' be any valuation in M’ which satisfies the following
conditions: (i) |[v'(P)| = |v(P)| for every atomic P, (ii) v'(P) = v(P)
whenever |v(P)| is normal in M. It is easy to see that conditions (i)
and (ii) are preserved if we replace P by any sentence. In particular
v/(A) = v(A) and so A is not valid in the consistent model M'.

2. Immediate from part (1) and proposition 26(2) O

Theorem 28
1. RM1I s c-normal.

2. Fvery consistent RMI-Theory has consistent model.

Proof: (1) By proposition 8(4) it suffices to prove that if T is consistent
and A a sentence then either T'U {A} or T U {—A} is consistent. This is
not so easy, however, since like in R, T U {A} might be inconsistent even if
T 0-A, while unlike in R, () for V is not sound for F5%,,;.

Suppose then that T U {A} and T'U {—A} are both inconsistent. Since
=B, B tpyr —(B — B), this means, by RMI deduction theorem for D'
that there exist sentences B and C such that T Fryy A D =(B — B),

14See [Av90b]. The connective D is defined there by a Db =15V (a — b).
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T Frur ~A D =(C — C). In order to prove that T is inconsistent it is

enough therefore to show that the following theory Fj is inconsistent:
Fob={AD> ~(B—B) , "AD ~(C = C)}.

For this we show that the following sentence ¢ and its negation are theorems

of Fy (where aob= —(—a+ —b)):
¢p=(BV[-"AoR"(A+C,B))A(CV [([A+C)oR"(A+ B,C)]) .

By the completeness theorem it suffices to show that ¢ gets a neutral
value (I) in every model of Fy. Let (M,v) be such a model, and denote by
R the relevance relation between the nodes of the tree on which M is based.

It is easy to see that:
2) (A £ (B) [o(A)] £ (C)]
b) If |v(A)| R|v(B)| or if v(A) is designated then v(B) is neutral.
c) If [w(A)|R|v(C)| or if v(=A) is designated then v(C) is neutral.

Denote, for convenience, v(A) by a, v(B) by b, v(C) by ¢, and the two
conjuncts of ¢ by ¢ and @5 respectively. Then:

(i) If |6] R (|a| V|c|) then v(p1) = b. Also we have then that |¢| < |a|V|e| <
la| V |b] = |a+b]| (since always (|a|V |b]) R (|a|V |c|)). Hence |¢| R |a+ b|
and so v (@2) = tjavplvi- 1t follows that v (@) = b and so v (p) is
neutral by b) above.

(ii) If |8 R(]a| V |c|) and either |a| < |a| V |¢| or val(a) = f then, by
a), |b] <la|V || and either |a| B |c| or v(—A) is designated. Hence ¢ is
neutral by ¢). It follows (since either |a| B |c| or val(a) = f), that either
la| R |c| or |e| < |a|. In both cases v(A+C) = flajvpvie> v(p2) = ¢, and

v(@1) = tavpvie|- Hence v(p) = ¢, which is neutral.
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(iii) If |b| R(|a| V |¢|), |a] = |a| V |¢| and a is designated then, by a), |a| =
la| V |b] V |e|. If val(a) = I then also val(b) = I and val(c) = I, and
so val(v(p)) = I. If val(a) = t then by b) b is neutral and so |b] < |a|
(la| is normal!). Obviously |¢| < |a] in this case, and so v(p1) = b,

v(p2) = tjo) = a and v(p) = b, which is neutral.

(2) Immediate from (1) and proposition 26(2). O
Proposition 29 RM1 is not strongly c-normal.

Proof: Let v and 1, be the two elements of the theory Fy from the last
proof. Let T' = {41}, A = —1p5. Then T is consistent (even classically!)
and A is provable in every consistent and complete extension of T' (since Fj
is inconsistent). Hence T +5,,, A. However, T 0 a4 since it is easy to

construct a full model of 9y in which = is not true. (41 is neutral in this
model.) O

Like in the case of R, our results show that F¥,,; is stronger than F gy

and F%3;,. We now construct a formal system for this consequence relation.

Definition. The system RMIC is RM I strengthened by MT for D:

ADB, -BF-A.

Theorem 30
1. Ttpurc A iff THR A
2. Fryvic A iff Fryur A.
Proof:

1. Obviously, if both A D B and —B are true in a consistent model
(M,v) then so is —~A. Hence if T Frasjc A then T HX,,; A. For the
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converse, suppose T F¥,,; A. Then by Theorem 26 T U {—A} has
no consistent model. This means, by Theorem 28, that T'U {—=A} is
inconsistent. Hence T' Fryr ~A D —(B — B) for some B. Since also
Fryr ——(B — B), we have that T Frye == A, by applying M.T.
Hence T Frayic A.

2. Immediate from 1) and theorem 27(2). O

Notes:

1. From 30(2) it is clear that the system RMI is closed under M.T. for
D. By applying this rule to theories we can make, however, any in-
consistent theory trivial. This resembles the status of (y) in R and E.
Indeed (y) may be viewed as M.T. for the usual implication as defined
in classical logic. A comparison of theorems 30 and 20 deepens the

analogy (note that RM1I is not an extension of R and 20 fails for it!).

2. Despite 30(2) RMI and RMIC are totally different even for consistent
theories, as we have seen in prop. 29. It is smportant, however, to note
that theory T 1s consistent in RM I iff @t 1s consistent in RMIC. This

follows easily from theorem 28.

3.6 Three Valued Logics

Like in section 2, we consider here only the 3-valued logic which we call in
[Av91b] “natural” (in fact, only those with Tarskian CR). All these logics
have the connectives {—=, A, V} as defined by Kleene. The weaker ones have
only these connectives as primitive. The stronger ones have also an implica-
tion connective which reflect their consequence relation.

Suppose the truth-values are {¢, f,I'}. t and f correspond to the classical
truth values. Hence ¢ is designated, f is not. The 3-valued logics are therefore

naturally divided into two main classes: those in which I is not designated,
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and those in which it is. The first type of logics can be understood as those
in which the law of contradiction is valid, but excluded middle is not. The

second type — the other way around.

3.6.1 Kleene’s basic 3-valued logic

This logic, which we denote by KZ, has only t as designated and {—,V, A} as
primitives. It has no valid formula, but it does have a non-trivial consequence
relation, defined by the 3-valued semantics. A setup in this semantics is any
set of the form {A | v(A) = t} where v is a 3-valued valuation, and the
consequence relation gy is defined by this semantics. A sound and strongly
complete Gentzen-type or natural deduction formulations have been given in
several places (see, e.g., [BCJ84] or [AvIlb]).

The properties of kg, which are relevant to the present paper are sum-

marized in the following theorem:
Theorem 31

1. Like intuitionistic logic, i, s strongly consistent, c-normal but not

even weakly complete.
2. HS5 s classical logic.
Proof:

1. Since —A, A Fg¢ B, Fgy 1s strongly normal. Since I—%Z AV —A but
0xeAV —A, Frpis not weakly complete.

We turn now to e-normality. First we need a lemma

Lemma. If T has a 3-valued model then it has also a classical, two

valued model.

Proof of the lemma: It is enough to show that every finite subset of

T has a two-valued model (by compactness of classical logic). So let I'
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be a finite set which has a 3-valued model. Since De-Morgan laws and
the double-negation laws are valid for the three-valued truth tables, we
may assume that all the formulas in I are in negation normal form. We
prove now the claim by induction on the number of A and V in I'. If
all the formulas in I' are either atomic or negations of atomic formula,
then the claim is obvious. If ' = I'; U{A A B} then I' has a model iff
I'y U{A, B} has a model, and so we can apply the induction hypothesis
to M U{A,B}. If I' = I'1 U{A V B} then I' has a model iff either
I'y U{A} or 'y U{B} has, and we can apply the induction hypothesis
to the one which does, getting by this a two-valued model for T

To complete the proof of the theorem, let T be a consistent -y ,-theory.
The definitions of consistency and of -y, imply in this case that it has
some 3-valued model. By the lemma it has also a two-valued model.
Let T™* be the set of all the formulae that are true in that two-valued
model. Then T* is a Fgy-setup which is consistent (even classically),

complete, and an extension of T'.

. Since F¢¥ AV A and ~AV C, AV B tg, CV B, it is easy to
show, using (for example) Shoenfield’s axiomatization of classical logic
in [Sh67] that ¢, CFYY. The converse is obvious, since g, C ey and

Fee is strongly complete (by Fe¢ we mean here classical logic). O

3.6.2 LPF/Ls

LPF was developed in [BCJ84] for the VDM Project. As explained in
[Av91b], it can be obtained from Fj, by adding an internal implication D
so that TV A Fppr B iff T Frppr A D B. The definition of D is: a Db =1t

ifa#t,bif a=t. Alternatively one can add to the language Lukasiewicz’s

implication, or the operator A used in [BCJ84]. All these connectives are

definable from one another with the help of =, A and V.
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Theorem 32
1. Fppr 1s strongly consistent but neither weakly complete nor c-normal.
2. HSF.. is classical logic.

Proof:

1. That Frpp is strongly consistent but not weakly normal follows from
the corresponding fact for gy, since - pp is a conservative extension of
Fre. As for e-normality, it is enough to note that {(AV—-A) D B, =B}
is consistent in LPF (take v(A) = I, v(B) = f) but obviously has no

consistent and complete extension.

2. Again, take any axiomatization of classical logic in the L P F-language

and check that all the axioms and rules are valid in l—g}];F. O

3.6.3 The Basic Paraconsistent 3-valued logic PAC

This logic, which we call PAC in [Av91b] '*) has the same language (with
the same definitions of the connectives) as Fxy. The difference is that here
both t and I are designated. A setup in the intended semantics is, therefore,
this time a set of the form {A | v(A) =t or v(A) = I},where v is a three-
valued valuation. A sound and strongly complete (relative to the 3-valued

semantics) Gentzen-type axiomatization is given in [Av91b].'

Theorem 33

1. Fpac 1s strongly complete, weakly normal and c-normal. It is neither

strongly consistent nor strongly c-normal.

151t is a fragment of several logics which got several names in the literature — see next
subsection.

16Giving a faithful Hilbert-type system is somewhat a problem here, since the set of
valid formulas is identical to that of classical logic, but the consequence relation is not.
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2. ¥, is identical to classical logic.

Proof:

1. The strong completeness theorem for the Gentzen-type system entails
that Fpac is finitary. Hence to show strong syntactical completeness
it is enough to show that the condition in 8(1) obtains. This is easy.
Weak normality is immediate from the fact that Fpse A iff A is a
classical tautology (see [Av91b]) and that FpscCley. e-normality is
proved exactly as for R (it is easy to check that Fpac has all the
properties which are used in that proof). It is also easy to check that
—p,p0 pacq and that {—p,p V q} is consistent, that —p,p V ¢ F¥, ¢
but =p,p V q0pacq (take v(p) = I, v(q) = f). Hence Fpac is not

strongly ¢-normal and not strongly consistent.

2. Since all classical tautologies are valid in Fpsc and M P for classical
implication is valid for F¥,., Fo,CFY,-. The converse is obvious,

since ¢y 1s strongly e-normal and Fp4cC ey O

3.6.4 RM;/J;

This logic is obtained from PAC by the addition of certain connectives while
keeping the same CR. There are two essential ways that this has been done

(independently) in the literature (they were shown equivalent in [Av91b]):

(i) Adding an implication —, defined as in [S052]. In this way we get the
strongest logic in the relevance family: the three-valued extension of
RM. 1t is in this way that this logic arose in the relevance literature.
The corresponding matrix is called there M3 and the logic RM;5. It
can be axiomatized by adding to R the axioms A — (A — A) and
AV (A— B).
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(ii) Adding an implication D, defined by (see [dC74]) a D b=t if a = f,
a D b = b otherwise. For this connective the deduction theorem holds.
In this form the logic was called Js in [DO85] (see also [Ep95]) . Tt
was independently investigated also in [Av86] and in [Ro89]. Strongly
complete Hilbert-type formulations with M.P. for D as the only rule
of inference were given in those papers, and a cut-free Gentzen-type

formulation can be found in [Av91b].

In what follows we shall use the neutral name Pac* for the CR of PAC
in the extended language. The next theorem shows that the main difference

between Pac* and PAC is that Pac* is not weakly normal.

Theorem 34 1. Pac* s strongly complete and c-normal. It is neither

strongly consistent nor weakly normal.

2. B8, . is identical to classical logic.

Proof:

1. Strong completeness and c-normality can easily be proved. Since Fp,qx
is a conservative extension of p,., it is not strongly consistent. Finally
8, AAN=AD B, since 7(AAN=AD B) Fpyr AN—A, but 0pgesAA
—A D B (the same argument applies to (AN -A — B)).

2. It is provable in [Du70] that classical logic is the only proper extension
of RM5 in the language of {—,V, A, —} (from the point of view of the-
oremhood). Since we have just seen that the set of valid sentences in
F&,. is such a proper extension, and since M P for — is valid for it,
F8, .« should be identical to k¢, (in this language). The same argu-

ment works for the {—=,V, A, D} language using the results of [Av86].

17IDO85] and [Ep95] consider a language with more connectives, but we shall not treat
them here.
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Alternatively, it is not difficult to show that by adding ~AA A — B to
the Hilbert-type formulation of RM5 or —A AN A D B to that of J; we

get classical logic in the corresponding languages. O

Conclusion

We have seen two different aspects of negation. From our two points of view

the major conclusions are:

o The negation of classical logic is a perfect negation from both syntac-

tical and semantic points of view.

o Next come the intensional fragments of the standard relevance logics

(R, RMI,,RM,). Their negation is an internal negation for their
associated internal CR. Relative to the external one, on the other hand,
it has the optimal properties one may expect a semantic negation to
have in a paraconsistent logic. In the full systems (R, RMI, RM) the
situation is similar, though less perfect (from the semantic point of

view). It is even less perfect for the 3-valued paraconsistent logic.

The negation of Linear Logic is a perfect internal negation w.r.t. its
associated internal CR. It is not, however, a negation from the semantic

point of view. The same applies to Lukasiewicz 3-valued logic.

The negations of intuitionistic logic and of Kleen’s 3-valued logic are

not really negations from the two points of view presented here.

In addition we have seen that within our general semantic framework,

any consequence relation which is not strongly normal naturally induces one

or more derived consequence relations in which its negation better deserves

this name. We gave sound and complete axiomatic systems for these derived

relations for all the substructural logics we have investigated.
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