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Abstract

We provide a general framework for constructing
natural consequence relations for paraconsistent
and plausible nonmonotonic reasoning. The frame-
work is based on preferential systems whose pref-
erences are based on the satisfaction of formulas
in models. We show that these natural preferential
systems that were originally designed for paracon-
sistent reasoning fulfill a key condition (stoppered-
ness or smoothness) from the theoretical research
of nonmonotonic reasoning. Consequently, the
nonmonotonic consequence relations that they in-
duce fulfill the desired conditions of plausible con-
sequence relations. Hence our frameword encom-
passes different types of preferential systems that
were developed from different motivations of para-
consistent reasoning and non-monotonic reasoning,
and reveals an important link between them.

Introduction

Both goals of handling contradictions and reasoning non-
monotonically require some selection between alternstive
which parts of the knowledge to retain and which to discard
or change. A central tool in both fields has beeeferential
systemsmeaning that only a subset of the models should be
relevant for making inferences from a theory. These models
are the most preferred ones according to some criterion.

In the research on paraconsistency, preferential systems
were used for constructing logics which are paraconsistent
but stronger than substructural paraconsistent logicse Th
preferences in these systems were defined in different ways.
Some were based on checking which abnormal formulas
(such asy A —)) are satisfied in the models of a the-
ory (see e.g.[Priest, 1991; Batens, 1998 Others were
based on preferences between the truth values that are as-
signed to formulas (see e.g[Kifer and Lozinskii, 1992;
Arieli and Avron, 20008).

Preferential systems were also used for providing se-
mantics for nonmonotonic consequence relations (see e.g.
[Shoham, 1987; Kraust al., 1990; Makinson, 1994. It was
discovered, however, that in order for them to fulfill all the

For a long time the research efforts on paraconsistency ar@esired theoretical properties that plausible nonmorioten
on nonmonotonic reasoning were separated. The former rdations should have (see e..ehmann, 199, preferential
search dealt with the question of how to prevent the infezencSystems need to satisfy a further condition called stompere
of every fact from an inconsistent source of knowledge, and'€ss or smoothnes's. The problem is that this condition is usu
how to isolate inconsistent parts of the knowledge and yeglly not easy to verify.
work in the usual way with the consistent parts. The latter In this paper we provide a general framework for construct-
dealt with the question of how to “jump to conclusions” baseding natural consequence relations for paraconsistentlanel p
on partial knowledge of the domain (this is needed since havsible nonmonotonic reasoning. The main technique is using
ing complete knowledge is often unrealistic), and how to re-preferential systems in which the preference between mod-
vise previous “hasty” conclusions in the face of new andfull  els is made according to a certain set of formulas which are
information. satisfied in them. The framework is obtained by a general-
However, in recent years the formal connections betweeization of some preferential systems that were used for con-
these two areas have begun to be revealed. It is only naturatructing useful paraconsistent consequence relatiods 2
that such a connection would exist, because conclusiohs theompasses also other systems. Moreover, these natural pref
are drawn based on partial knowledge may contradict newrential systems that were originally designed for paracon
and more reliable information, and each new piece of inforsistent reasoning fulfill the stopperedness condition df we
mation may contradict previous information and hence forcéand hence have also the desired theoretical propertiesef no
us to revise some of our knowledge. As the famous exampl&onotonic consequence relations.
goes, if we conclude that Tweety can fly based on the sole As we said, the theoretical research on nonmonotonic rea-
fact that it is a bird, the new piece of information that Tweet soning and the research on paraconsistent reasoning have
is a penguin and penguins cannot fly forces us not only to rebeen conducted separateley at first. Nevertheless, formula
vise previous conclusions but also to deal with the fact thapreferential systems, which are a generalization of method
we now have a contradiction in our knowledge. used in the latter, solve a key issue in the former, and help



to bridge the gap between the two directions of research and We shall use a general definition of semantic structures that
to combine them under a unified framework. This providesdoes not assume anything about its models, except that there
strong evidence for their important rule in non-classieal-r is some satisfaction relation that indicates which forraalae
soning. satisfied by each of the models.

The structure of the rest of this paper is as follows. Inpgfinition 2.3 1 A semantic structurdor £ is a pairS =
section 2 we review some basic concepts related to multi Mas, E5), where=5 C Ms x W. Ms is a set ofmodels
valued monotonic logics, including the concept of a non-and|:‘s is called asatisfaction relation A modelm € Mg
deterministic matrix. In section 3 we briefly review one di- gaiisfiesa formulay if m =S . m is amodel off’ (m =S T)
rection of the research in nonmonotonic reasoning, and shoy it satisfies every formula if. The set of the models of
how stoppered preferential systems provide semantics fof i5 denoted bynod(L,S). A is aconsequencef I' in S
plausible relations. In section 4 we present our main frame(r S A if for everyr;L € mod(T,S), m =5 ¢ for some
work of formula-preferential systems and prove that under, - A S is called theconsequerice relation induced 8y
a natural condition they fulfill the stopperedness conditio e say thass is finitary if FS is finitary.

We bring several examples of systems from the literature and , ) .

show how they can be constructed in our framework. In sec- Itis easy to verify that every semantic structure induces an
tion 5 we review another technique that was used in prefersc’-

ential systems for paraconsistent reasoning, namely the U$ 5 Non-deterministic matrices

of preferences between truth values. We show that these sys- . "

tems can be simulated by formula-preferential systems. W& c0mmon type of semantic structures for propositional log-

conclude the paper with some remarks and directions for furlCS IS the class of multi-valued matrices. These structemes
loy the classical principle of assigning truth values to fo

ther research. P . 4 :
mulas, i.e. the value that a valuation assigns to a complex

ST formula is uniquely determined by the values that it assigns
2 Preliminaries to its subformulas. However, an agent acting in the realavorl
2.1 Consequence relations and semantic structures often has only incomplete or imprecise knowledge to guisle it

In what follows L is a language)V is its set of wifs;ip, ¢,  decisions. This knowledge may even be inconsistent. When
denote arbitrary formulas (af), andT", A denote sets of for-  this is the case the classical approach becomes useless, and
mulas. When the language is propositionékenotes its set an alternative approach is needed.

of propositional variables, and ¢, » denote such variables. One possible such alternative is to borrow the ideaat-

In this paper the non-monotonic consequence relations thgeterministiccomputations from automata and computabil-
we shall use will be based (in a way to be defined below) ority theory, and apply it for assigning truth-values to coexpl
underlying monotonic multiple-conclusion consequence reformulas. This approach has indeed (implicitly) been used
lations. The intuitive idea of such a relatienis thatl' - A in [Batens, 199Bfor handling inconsistent data. This was
holds true iff either one of the elementsafis true or one of  done, however, in an ad-hoc way. Here we introduce a natu-
the elements of is false. This will be precisely defined in ral generalization of the logical concept of a matrix. Irsthi
Definition 2.3. generalization the value that a valuation assigns to a cexnpl
Definition 2.1 formula can be chosen non-deterministically from a certain

: nonempty set of options. We therefore call these structures
1. [Scott, 1974a; 1974bA (Scot) consequence relation non-deterministic matrices
(scrfor short) forL is a binary relatiort- between sets

of formulas of L that satisfies the following conditions: Definition 2.4 [Avron and Lev, 200DA non-deterministic

matrix (Nmatrix for short) for a propositional languaggis

s-R  strong reflexivity atupleS = (T, D, O), whereT is a non-empty set dfuth
if TNA#@thenl - A values D is a non-empty proper subset Bf (its designated
M monotonicity valueg, and for everyn-ary connective> of £, O includes
if T Aandll CT',A C A'thenl” - A’ a corresponding-ary functions from 7" to 27 — {#}. A
C cut valuationin S is a functionv : WW — 7T that satisfies the con-
if T Fy,Aandl”, ¢ - A’ thenT, T' F A, A’ dition: if o is ann-ary connective, ang, .. ., ¢, € W, then

e . . iy v(o(tr, ..., ¥n)) € S(v(¥1),...,v(¢¥n)). Vs denotes the
2. anrs CE_CIS w_ltﬁ%n;_tkf Iﬁgﬂvﬁg eC Zzgilgr?itgg’ldcs ;g)r set of valuations of. The satisfaction relatiog® C Vs xW

; ; ; is defined:v = v iff v(x)) € D. We identify the Nmatrix
andA’C AstT '_ A% N - S with the semantic structur@/’s, =°). s and=° are de-
When the language is propositional, it is usually requirediined as in Definition 2.3. The same applies for all the other
that a monotonic consequence relation for the language wilkoncepts of that definition. We say th@is (in)finite if 7 is

be closed under uniform substitutions: (in)finite.
Definition 2.2 A uniform substitution is a functioa : A — Notes:

W that is extended to allV by: o(o(¢u,...,¢n)) = 1. Every (deterministic) matrix can be identified with an

. 4 o Nmatrix whose functions i¥) always return singletons.
form if for every uniform substitutiorr and event and A, 4 ¢

if T = A theno(I') F a(A). !See e.g[Makinson, 1989; Lehmann, 19P2



2. ltis easy to verify that ifS is an Nmatrix ther-s is a To complete the picture, we mention tha; and F; can
uniform scr. be characterized using Gentzen-type and Hilbert-typeutialc

T ; ,
In addition to their obvious potential for reasoning un- The Gentzen-type calculus,, is obtained from Gentzen's

der uncertainty and for specification and verification of-non original calculus (ifGentzen, 1968 for classical logic (in-
deterministic programs, N-matrices have considerabletpra cluding cut) by omitting the rulg- =] for introducing nega-
cal technical applications. It is well known that every pspop tion on the left (any other version of the classical calculus
sitional logic can be characterized semantically using kimu Would do here just as well, as long as its rules for negatien ar
valued matrix [tos and Suszko, 1938 However, there the two standard ones). Similarl@j is obtained from this
are importantlogics whose characteristic matrices neciégs  calculus by omitting= —J. It can be shovvﬁthatl—G’T =k,
consist of an infinite number of truth values. Such charactery, 4 Fai = FL. (The standard sdre which is associated
istic matrices are frequently of little help in providingaie ith a2 a. Gp ¢ ; te@is defined by e A
sion procedures for their logics, or in getting real insigitd Yf\? ha given Lentzen-type SAV,S AIS er:nﬁ y: 5
them. Our generalization of the concept of a matrix allows ud!t there exist finitel™ C T, C A such thal” = 1S
to replace in many cases an infinite characteristic matiix foprovable inG.) . )
a given propositional logic by a characteridfiiuite structure These results can be generalized as follows:
that automatically provides a decision procedure. We proTheorem 2.7 let G, be the standard calculus for classical
vide now examples for such cases. These Nmatrices defidegic in L., in which each connective has exactly two corre-
monotonic logics that will be the underlying logics of some sponding logical rules. Then every system which is obtained
nonmonotonic logics from the literatures that we shalleavi from G. by omitting some of its logical rules is decidable,
in later sections. admits cut-elimination, and has a characteristic two-\elu
Let £ be the classical propositional language with theN-matrix.
connectives{A, v, 5.~ f}. For a connective of La, g An even stronger generalization (which will take us too far
denotes the corresponding classical boolean operation. Tr(1:l

X f h be f dLev,
NmatncesSpT and 8; for £, have the set of truth values 2\3’3]3]/_ rom our purpose here) can be founfaron and Lev

{_t, f} and the designated valueThey interpret the connec- g conclude the discussion on these Iogﬁﬁ},andkj are
tb’is as TOIIOWS: respectively the same & uN andCLaN from [Batenset
ijco_e{g\ V, 5} thend(z1, 2) = {go (1, 22)}; al.,, 1999. ;- is also identical to the logid/2 of [Béziau,
inS;, ;,’c _ (1), 5t = {t, f1; ’ ’ 1999, where cut-elimination folG, and its completeness
’ o have already been claimed. Two-valued N-matrices induce in

in Sl =4 ~f

inS,, =t =A{f},~f={t. f}. . fact a constructive subclass of the class of bivaluatioesl us
We shall use-] as a shorthand for®» , and similarly with  in [Béziau, 1999

other relations. We now define some further Nmatrices that can actually be

Note: the consequence relations inducedﬁjyandsj can- defined as ordinary matriceS, is the matrix forZ. that has
not be induced by finite matrices (s®ron and Lev, 200D  {t, f, T, —} as the truth values anft, T} as the designated

for a proof). This result can be generalized as follows: values.<; is a partial ordering of the truth values defined by:

) ) f <& (T, =) < t. The interpretation of the connectives is:
Theorem 2.5 Let S be a two-valued N-matrix which has at *%

least one proper nondeterministic operation. Thef has f= {fi; . . ~ .
no finite characteristic matrix. If in additioss includes the ~*1/\%2 = {inf< {21,223}, 21V = {supg, {@1, 22}};
classical positive operations, thers has no finite weakly- - {2,} ifz €{t, T}

characteristic matrix. L1y = { {t}  otherwise;

Definition 2.6 An scr I~ is paraconsistent w.r.t. = when =t = {f},5f = {t},5T = {T},5—
v, ~ I/ @ for somey, and it is paracompleteness w.r:. S is defined so thab will be an internal implication w.r.t.

whend i 1, ~) for somey.2 Fa i D1 by ¢, AQff T k4 49 D ¢, A. The values and

Let -0 be the uniform closure of positive classical logic f behave like the classical values w.r.t. the negatiohe
in L. (this practically means that every negated formula isvalueT represents “inconsistency”, because a valuatisat-
treated as an atomic formula, while the semantics of the podsfies both a formula and its negatiom iff v(y)) = T. The
itive connectives is the classical one). The essentialgntgp value— represents “incompleteness”, because a valuation sat-
of -} is that it is theminimallogic in £, that contains-;s isﬂgs neither a formula nor its negatiory iff v(y) = —.
and in which) ] v, =) for all 4. This means that, is S:1 is the submatrix o8, with the truth valueqt, f, T}. .
paraconsistent and not paracomplétg.is the minimal logic S5 Is the submatrix ofs, with the truth values, £, -}

in L) that contains ;s and in whiche, = - 0 for all ¢, 3See[Avron and Lev, 200D

i.e. itis paracomplete and not paraconsistent. “These three matrices have been widely investigated intére li

- ature. See e.gKleene, 1950; Belnap, 1977a; 1977b; D’ottaviano,
2The name ‘paraconsistent’ was coined by Quesada at the 3r#i985; Avron, 1986; 1991; Ginsberg, 1988; Rozoner, 1989tdips

Latin American Conference on Mathematical Logic in 1976d an 1990; Fitting, 1990; 1991; Priest, 1989; 1991; Arieli andréw,

the name ‘paracomplete’ is frofBatenset al,, 1999. 1996; 1993.



The essential property of, (respectively}-, , -3) is that
it is the maximallogic in L. that containg-,.s and that is
paraconsistent and paracomplete w.st(-; — paraconsis-
tent (but not paracomplete?); — paracomplete (but not para-
consistent)).

Figure 1 presents the relations between the logics.

F; — F, means-, C -,

Figure 1: Some basic consequence relations
We conclude this section with a result that will be impor-
tant for our framework in later sections:
Theorem 2.8 [Avron and Lev, 200D Every finite Nmatrix is
finitary.
3 Nonmonotonic Consequence Relations
3.1 Plausible consequence relations

Monotonic consequence relations are not suitable for man
applications in Al, and hence many systems that exhibit non

monotonic behavior have been developed and studi@alb-

bay, 19853 began a theoretical investigation of conditions that
nonmonotonic consequence relations should satisfy. It was

suggested that such relatiopsshould satisfy at least three
basic conditions:

Definition 3.1 A cautious consequence relatiga binary

the underlying classical logic (an example for such a con-
nection is the propertyight weakening if Fcr, ¥ D ¢
andr ~ ¢ thent |~ ¢). Later,- was taken as any mono-
tonic logic (Freund and Lehmann, 1993and in any lan-
guage [Arieli and Avron, 2000b) (for other related works
see alsgMakinson, 1989; Gabbay, 1991; Freustchl, 1991;
Leh?;ann and Magidor, 1992; Schlechta, 1996; Lehmann,
1994.)

In this paper we shall use the following notion:

Definition 3.2 Let+ be an scr. A binary relatiop- between
sets of formulas and sets of formulas is calteglausibleif
it satisfies the following conditions:

Ext F-extension

foreveryl', A #£ ), if T - A thenT |~ A.

RM  right monotonicity

if I |~ A andA C A’ thenI |~ A,

LCM left cautious monotonicity

if T |~ ¢ foreveryy € I, andl’ |~ A thenI', T |~ A.
LCC left cautious cut

if T' |~ ¢, Aforeveryy € ¥ andll, ¥ |~ A thenT |~ A,
RCC right cautious cut

if T',¢ |~ A foreveryy) € ¥ andll |~ X, A thenT |~ A.

[Lehmann, 1992; Arieli and Avron, 200Dbse LCC with
a finite X, and do not use RCC. In the nonmonotonic conse-
guence relations that will interest us, both rules will bdva
Of course, LCC and RCC are also valid in scrs that are in-

Yuces by semantic structures. What is “cautious” about them

is that onlyI" is used, in contrast to thg, I’ of the rule C in
Definition 2.1 (~ is not “cautious” on its r.h.s. in view of

M).
3.2 Preferential systems

In parallel to the research on syntactic properties of non-
monotonic consequence relations, semantical methods for

relation ~ between sets of formulas and formulas that satishonmonotonic reasoning were suggested. Shdl&mham,

fies the following conditions:

reflexivity. Fi~yifyp el
weak monotonicity if T' |~ ¢ andl |~ ¢ thenD', ¢ |~ ¢
cut if I' |~ andl', ¢ |~ ¢ thenl ~ ¢

1987; 1988 proposed the concept pfeferential modelsas
a generalization of McCarthy’s circumscriptignicCarthy,
198d. The main idea is that instead of using all the models

of a given theory for checking which conclusions follow from

it, the models are ordered by a preference relation, and only

Weak monotonicity replaces the usual monotonicity condithe most preferred models are used as relevant for making

tion (if T |~ ¢ thenT, ¢ |~ ¢). The idea is that by adding to
I" one of its conclusions undés, one does not change its set
of conclusions, but for an arbitrary formula addedtothis

is not guaranteed. Sd&rauset al, 1994 for a discussion

inferences from the theory.
[Makinson, 1989; Kraust al., 1990; Lehmann, 1992ise
preferential systems to provide semantics for the nonmono-

tonic relations that they investigate. The nonmonotorie-re

of why a nonmonotonic relation is expected to satisfy theseions that are induced by preferential systems satisfy tivo o

conditions.

the three basic conditions of Definition 3.1, namely reflexiv

These conditions led to a wide study of general patterngty and cut, but not necessarily weak monotonicity. In order
for nonmonotonic reasoning. The basic idea behind mosto ensure this condition, these works identify a condithuat t
of the works is to classify nonmonotonic formalisms and tothe preferential system should satisfy, which is cadlswoth-
recognize logical properties that they should satisfy. &om nessn the first andstopperedness the other two: for every
works continued to study the properties of nonmonotonic remodel of a given theory there should be some most-preferred

lations as independent relations, e[ylakinson, 199%and
[Lehmann, 199P The latter suggested the concept qiau-

model of the theory that is comparable with it. The rationale
is that the elimination of one of the models should be justifie

sibility logic. Other works based the nonmonotonic conse-by retaining another model that is preferred over it (anccivhi

qguence relations~ on underlying monotonic ones. At

is a most-preferred model). Indeed, if some model is part

first ((Krauset al., 199Q), the nonmonotonic relations were of an infinitely-descending chain of models under the prefer
in the classical propositional language and were based oence relation, and there does not exist a most-preferreéimod



that bounds this chain, it is difficult to conceptualize wthet 4  Formula-Preferential Systems
preference relation between the models ought to mean.
any case, aArieli and Avron, 2000bhas shown, a preferen-
tial system that satisfies the stopperedness conditiorcexiu

In, . . .

IPhls section provides a natural source of stoppered pmefere

tial systems. The idea is to select a subset of the formulas in

a consequence relation that fulfills not only the conditiohs jth?hlangu?ge, z;n? to l?ase the t;]orpfparlsc?n bfetwe;ahr) the Tr?dEIS

Definition 3.1 but is already a plausible consequence waiati In the preferential system on what formu'as from this sey the
satisfy. This idea is a generalization of a method for con-

Notation 3.3 If A is a set with a pre-ordef, = < y denotes gy cfing “adaptive logics” ifBatens, 1998 in which the

z2yandy Az Ming(A) ={zec A|vye A yAuz} selected formulas express some kind of abnormality w.r.t. a
Definition 3.4 5 Let S be a semantic structure. desired logic. We shall first explain this idea and then show
1. A preferential systerin S is a pairP = (S, <), where that under a simple condition, formula-preferential syste
< is a pre-ordéron M. - are stoppered and hence induce plausible relations.

2. Amodelm € mod(T,S) is aP-preferential modedf I -
if m € pmod(T',P) = Min<(mod(T,S)). 4.1 Definition

3. A set of formulasT’ P-preferentially entailsa set of ~1he idea behind formula-preferential systems is a general-
formulas A (notation: T FP A) if for every m ¢ ization of the “mlnlmal-abnormql!ty strategy” frofBatens,
pmod(T,P) there is ap € A s.t. m =5 6.7 FP is 1999. That paper uses a specific selection of models from

called theconsequence relation induced By S, 1% Denoting K (v) = {¢ € Wa |[v(y A ~¢) = t}, a

The term “consequence relation” here is more general tha@;c()d,()alvcog('s) Spilr?(t:rt]?: \;\tfath?r:g Irsn%? mogl]_ez;bmgflﬁgtr :t:at
in Definition 2.1. In particular, we do not assume monotonic-eg;minimizgs' the abnorn{alities (here inconsisteyncies) i
A , D VAR . -

::}yégc'ﬁ gﬁZ'b{ﬁ;ﬁE dF(F UA {Zu;%;ﬁ anﬁ)g(g g)c)iefmed the models of a theory (by “abnormality” we mean a formula
Y ’ p n that leads to triviality w.r.t. a desired logic, here — claab

Definition 3.5 Let A be a set with a pre-ordet. Aiswell-  |ogic). Other papers consider other kinds of abnormalities
founded undek if it does not have an infinitely descending (see section 4.3).
cr\aln under<. A IS stoppered undex if everyz € A has Formula-preferential systems form a generalization o thi
z' € Ming(A) s.t.z’ < . idea. They also select those models of a theory that minimize
Note that if A is well-founded undeK thenitis stoppered the satisfaction of formulas from a certain §ebf formulas,
under= (the converse does not necessarily hold). but it can now be done with respect to any &etin addition,
Definition 3.6 8 A preferential syster® = (S, <) is stop-  this type of preferential systems is defined in any semantic
peredif for all T', mod(T", S) is stoppered undex. structure, since what is important for the preference icat

between the models is what formulas they satisfy, and not

0 . )
Theorem 3.7 ° If P is a stoppered preferential systemdn their inner structure.

then7 is -S-plausible.

Note: The stopperedness condition is introduced becausBotation 4.1 Let S be a semantic structure and &tC .
some preferential systems which are not stoppered do rot séorm € M denote:Sats ¢(m) = {1 € G | m S ¢}.

isfy the condition LCM of Definition 3.2 (the other conditi®n - .
are always fulfilled by all preferential systems). Definition 4.2 Let G C W. A formula-preferential system

As noted in[Kraus et al, 1990; Makinson, 19d4it is ~ 0@sed or is a preferential systel? = (S, <) that satis-

usually not easy to check whether a preferential system iges. for allmy,my € Ms, my < mo iff Sats,q(mi) C
stoppered. Preferential systems were originally develese ats,q(ms). P is called in short aG-preferential system”.
a framework for providing semantics for nonmonotonic in- .
ference relations. They were also used, apparently indepef-2 Stoppered formula-preferential systems

dently at first, for constructing systems for reasoning with  We present now the main technical result of this paper.
consistencies (and other abnormalities) in a way which is on

the one hand non-trivial and on the other hand not as weakheorem 4.3 If P is a formula-preferential system in a fini-
as monotonic substructural logics (see e[@atens, 1986; tary semantic structure theR is stoppered.

Priest, 1991; Kifer and Lozinskii, 1992; Arieli and Avron, . _ e :
1994). Interestingly, these ideas, which were developeoﬁgoszg ilrjlpspoons]gtféapwf' I(:S(;,tljﬂ)bvtghéai\r/eef]f&rgt\?vrgn?r:ﬂrllzw

from motivations different from stopperedness, will i thatmod(T, S) is stoppered undex. The proof consists of
us with methods for constructing stoppered preferentisd sy two parts V\;hiCh refer to the séf ar).

tems.

SFollowing [Makinson, 1994; Lehmann, 1902 Definition 4.4
6For the purpose of showing_ the resul_ts in section 3.2 (but not CsaT)={ACG|T LS A}
sections 4 and 5 can be any binary relation. ’
"Note that we daot require thatm € pmod({¢}, P), or that ¢ ICsa(I) ={T CG|VA€Csa(l).TNA# 0}
m € pmod(T'U {¢}, P).
8Following [Makinson, 199% %N our notations,[Batens, 199Bactually uses the first-order
°A Generalization of a result ipArieli and Avron, 2000b. level ofS,,T, but here we discuss only the propositional level.



The first part of the proof (Lemma 4.5) shows thatLemma 4.9 12 Min(IC(T)) = {Sat(m) | m € pmod(T)}.
ICs,c(I) is stoppered undet. For the second part of the b, . For one direction, take somE € Min(IC(T)) and
proof, note that for everyn € mod(l',S), Sats,g(m) € suppose in contradiction that there is no € pmod(T)
ICs,¢(T), butif T € 1Cs ('), there does not necessarily st Sat(m) — T. By Lemma 4.8, there is also na €
EX'St ange ?’Od(l;h‘;% st.T > Ea?(?fg@)'t Incontrast, 1 T) st Sat(m) = T. In particular, this is true for
Lemma 4.9 shows thate € pmod(L', §) if Sats,;(m)1S@ )14y € mod(I' UT). By definition, Sat(m) > T for al

ni s.6(D). m € mod(T UT), so for all suchm, Sat(m) > T. Now let

In the rest of this proof we shall omit the subscriptsA S S
= at(m) =T |m € mod(T UT)}. Thenl, T > A,
S, G and C, and also shortemod(T',S) to mod(T") and But AuriT :( @? in co|ntradiction(to Ler)n}ma 47

pmod(L', P) o pmod(I’). For the converse, ifn € pmod(I') then in particular
Lemma 4.5 IC(T") is stoppered undet. m € mod(T") and soSat(m) € IC(T"). By Lemma 4.5 there

Proof: LetT € 1C(T"). We need to show that there exigtse Idsirz(é{inoii,r trferl\e/zhin@@sSvI,’C(eF);;jd(jrj) %_t_sa:tp(z)'si){n:?f flgsot
Min(IC(I') s.t. 1" C T. LetZy = {T" € IC(L) | T € T} sat(n') C Sat(m), m € pmod(T'), and therefor&at(m) —
and letC C Zr be a chain w.r.tC. We shall show that’ is Sat(m') = T € Min(1C(I)). -
bounded below i1, so by Zorn’s lemmé& has a minimal
element, which is the required-minimal element. Indeed,
letT* = () C. ObviouslyT* boundsC' andT* C T C G. It
remains to show that™* € IC(T"). Suppose in contradiction L
that there is somé\ € C(I') s.t. T* N A = (. SinceS is gatt(j;n% %g(ﬂm&i{(li?rgasgﬁg?eirg IS;', i];TOd(F) S:’
finitary, there is a finiteA’ C A s.t. A’ € C(T"). Suppose - = T =

A= {¢1,...,¢¥,}. Thenforalll < i < n,¢; & T, Corollary 4.10 If P is a formula-preferential system in a
and sincel™ = (C then for alll < i < n there is some finitary semantic structuré then-"” is -5-plausible.

TYi € Cstap; ¢ TV, LetC' = {T¥ |; € A’} and let
T** = N C'. ThenT** N A’ = §§, and sal'** ¢ 1C(T"). But
sinceC isachainandso i€’ C C, thereissomé < k <n

End of the proof of Theorem 4.3Let m € mod(T"). Then
Sat(m) € IC(T"). By Lemma 4.5 there i¥" € Min(IC(T"))

Proof: Follows from Theorems 3.7 and 4.3. [ |

SETVC T forall 1< j < n'and tereorerc - I1E e practa) mportance of ou esult apples o )
- . . e )

T ¢ 1C(T), in contradictiontd™* € €' € IC(T). " finite structures, this means that the following result hasg

Lemma 4.6 11 If T € Min(IC(T")) then for allyy € T there  practical significance.

existsA € C(I) st T'NA = {¢}. Corollary 4.11 If P is a formula-preferential system in a fi-
Proof: Suppose in contradiction that for somB e  nite NmatrixS then-" is -S-plausible.

Min(IC(I")) and some) € T', TNA # {¢} forall A € C(T"). .
For all suchA we know that’ 1 A = § sinceT’ € IC(I"), Proof: Follows from Theorem 2.8 and Corollary 4.10. m

igrsg;aai c{t?c})%)tQZ*Ae lzé/[ix?(llcl-(llg)r])fi(rie} iwgl)z]}eclg(r)’ ': A note about finitariness: it can be shown that formula-
' preferential systems do not in general preserve finitasines
Lemma 4.7 1*If T € Min(IC(T')) andA C G thenl, T S A G-preferential systerf? in a finitary semantic structu®
Aiff ANT #0. might not induce a finitary consequence relation. Neverthe-
less, ifT" has only a finite number of minimél-consequences

Proof: If ANT # { then obvioushyl’, 7' +° A. For the . ') is finite) thenl P A imolies that th
converse, suppose in contradiction thaf” S A but A N Einiftrelgr(’cé(li(arzéi’ |2| Z)s teF’ P A,Imp ies thatthere are

T = (). By Lemma 4.6, for eachy € T there exists\¥ C G

T}. We show thal’ - A*, A: supposen € mod(I). If ,
m =5 ¢ for some¢ € A then we are finished. Otherwise, We show now how known systems from the literature can be

sinceT, T +S A thenm &S 4 for somey € T. Since constructed using formula-preferential systems. Sinkefal
rES 1/; A is true thenn =5 ¢ for somes ¢ AY c A+ them are based on finite Nmatrices, then by Corollary 4.11,

SoT S A*, A, but(A* UA) N T = 0. This is impossible the induced consequence relations are plausible.

becausd” € IC(I") andA* U A € C(T). B Closed-World Assumption
Lemma 4.8 If m € mod(T) and Sat(m) € Min(Ic(T')) N the “Closed-World Assumption” methddReiter, 1978 a
thenm € pmod(T). propositional variable that cannot be proved to be true-s as

o sumed to be false. A corresponding formula-preferentisd sy
Proof: By definition,Sat(n) € IC(T') for everyn € mod(T').  tem isP = (Scy, <) that is based ond.. The obtained
Thus, If m € mod(T') and Sat(m) € Min(IC(T')) then  consequence relatidf” is nonmonotonic. E.g., if» oL p
there cannot ben' ¢ mod(F) sit.m' < m, because then thenw P —p but¢7p |7/P -p (provided{wyp} is C|assica||y
Sat(m’) C Sat(m) (andSat(m') € IC(T')), and scbat(m)is  consistent).F” is, however, not paraconsistent. Sireds
not minimal inIC(T). = 00000000
- 12Following [Batens, 1998 but the proof here (of the first direc-

1Based orfBatens, 1999a tion) is different and relies on Lemma 4.7.



based orfcy,, a classically inconsistent theory does not haveW,,;} (notice the difference frorMACLUNs2 — the two con-

any models and entails any formula undes, and-”. This  sequence relations are incomparable. For a comparison be-
shows that nonmonotonicity and paraconsistency are indeéween the use of; and I—; as the underlying monotonic
pendent issues. However, many nonmonotonic systems werelations, se¢Batens, 200)).

designed for handling contradictions in an adequate way, as ac| ¢2 from [Batens, 1999bis induced by the following
explained next. formula-preferential system (we give here a simplified ver-
sion). It is defined in the two-valued Nmati$ in which all

the connectives of .; are weakened: for am-ary connective

o€ {A,V,D~, f}and anyz € {t, f}",5(z) = {t. f}. To

still retain expressive power, we extedd; to the language

Preferential systems for handling contradictions

SinceCL is unsuitable for reasoning from classically incon-
sistent theories, one solution is to take the paraconsistgn
e D
IISSI—ZT3 qoz;rté F(t%sfqg Tﬂé\tér?r]rélgéspth?aslze}cvc\;ﬁsheathvfe;hcaet re-:g;: Withl the ad|d6d c?_nnecti\ées and &t_vv hich functi?n in

. ' ; . X as classical negation and conjunctioRz = {notz};
lations are too weak. In particular, on classically comsist " & B gd . Jh f | {f m}. |
sets they do not entail all the conclusions that classidally %1 & %2 = {71 andzz}. Py is the formula-preferentia

low from them (for example, the Disjunctive Syllogism (from SYStém inSy that is based on the sé: this set includes
W, b V ¢ infer ¢) is not valid inF; andr). all formulas which express the fact that a certain formula

Lett4 = & A ). A consequence relation that is lo- ©(¥1---,%n) and one or more ofy, ..., v, are assigned

cated between the monotonic “lower-limit logie? and the vaIuegsE that are illegzal in zclassical valuationg,ée/g& Y,
“upper-limit logic” Fcr, 2 can be obtained by using the 7~ 1/’& ~ ﬂ/’&'z (¥ & 9) "t“ (¥ \//\Vf?) ~ wth (W é\ ¢5|):_
formula-preferential syster® = (S , <) that is based on (¥ & ~ ) & (¥ O ¢), etc. ereas the underlying
G = {1p|p € Au}. FP is the same a&Pm of [Priest monotonic relation is totally weak inL; (i.e. for all
= e} , { Do o ok

1991 (whens, is without 5) and ACLuNs2 of [Batens, 2 € We I'Fo Aiff ' A 2 0), 70 is still as strong as
1994. F” is nonmonotonic: il = {p, ~p V ¢} thenl' F” ¢ CL on classically consistent sets (k). In comparison to
butll’ .—|p 7 ¢ (andl', ¢ |7”’ q). ¥ |s also paraconsistent: ACLUN2, ACL f2is “adaptive” on all the connectives ify,,

not only—.
p,—p " ¢, and ever(p v q),~(p Vv q) ¥ q. Moreover, IfT _ '
is classically consistent thdh" A'iff I' ¢y, A. For this, Other adaptive logics (e.g.[Var_1ackere, 1997 _199}9
notice that for a valuation in S, v =1 1piff v(y) = T.  use a formula-preferential systefin a more complicated
All the classical model® of T are also valuations i, ,  Way: the;)deflnltlon of the adaptive logigv is: T \7 A iff
they are<-equivalent (sinc&atsr (v) = 0), and they are ?T(F)I F” Tr(A), whereTr is some pre-processing of the
<-preferred over all the models &fin S;' that assignT to ormutas. ' .
some variable. Thus, IF is classically consistent then its  Further examples of formula-preferential systems will be

P-preferential models are its classical models. given in section 5.3.

Adaptive Logics ] ) )

[Batens, 199Bpresents the idea afdaptive logics These 2 Pointwise-preferential systems

were originally introduces ifBatens, 198p by dynamic o

proof systems that are designed to mimic some aspects of hlArieli and Avron, 2000b suggests another method for con-
man reasoning with inconsistencies, especially the faatt th Structing preferential systems that are stoppered. Thiouet
conclusions that are drawn at a certain stage may be rejecté?j Pased on a type of preferential systems caflethtwise

at a later stage because of other conclusions, and then evBFferential systems. The underlying idea is to have a prefe
accepted again. The name “adaptive” is due to the fact th@NC€ between the truth values of a multiple-valued strectur

these logics adapt their rules to the given set of premises. E and to base the preference between the valuations on tiis pre
the Disjunctive Syllogism is not valid ik . In contrast, if  E'€Nce. We shall see that these systems can be embedded in

I = {r, -r, =r Vs, p, =p V q} then the adaptive logic formula-preferentia! systems, and that therefore thedfinit
ACLUNS? that is based ok, does not allow to use this rule N€SS of the underlying semantic structure ensures stappere
onT only for inferring s (sincer behaves inconsistently) but N€SS:
does allow its use for inferring from p, —p V ¢ (since there
is no reason to suppose thabehaves inconsistently). 5.1 Definition

Different adaptive logics have been developed (see
[Batens, 200D for a survey). Those that are based on Consider the truth values of the (N)matfx. We might have
the minimal-abnormality strategy are a special case of th@& preference between the truth values according to ther-pro
formula-preferential systems where the §ab taken as a set  erties in the valuations. E.g. we might prefer the classical
of abnormal formulas? For example ACLUN2 (note: not Vvaluest and f over T and —, since a valuation satisfies ex-
ACLuUNs2) from [Batens, 199Bis induced by the formula- actly one ofy) and - iff it assigns a classical value .

preferential system i, that is based o = {t¢ |y €  If there are two models for a given set of premises and they
assign the same values to all atomic formulas except that one

3These terms are borrowed frdBatens, 1999b assigng to p and the othef, we might prefer the first. This

YThe adaptive logics ifBatens, 199Band similar papers are 1S the underlying idea of the following definition.
defined as single-conclusion consequence relations.



Definition 5.1 ° LetS be an Nmatrix with a set of truth val-
uesT, and let< be a pre-order off . A pointwise preferential
systen{in S) based orx is a preferential syste@ = (S, <)
that satisfies the condition: for alh,v2 € Vs, v1 < vy iff
for every propositional variablg, v; (p) < va(p). If <isa
partial-orderP is calledstrongly pointwise will be called
in short a ‘<-preferential system”.

Note that< is indeed a pre-order K is a pre-order.

5.2 Embedding pointwise preferential systems in
formula-preferential systems

Pointwise preferential systems are in general a differgrd t

same result, since suahguarantees that |:5' I,pforallv,
and so the presence of these formula§idoes not influence
the preference relation.

Corollary 5.5 If P is a pointwise preferential system in
a finitary NmatrixS then P is stoppered and-” is -
plausible.

Proof: SupposeP = (S, =) and letP’ (8',=') be a
formula-preferential systen associated with it. CetC W
and letv € mod(T",S). SinceS’ is an extension of, there
isv' € mod(l',S’) that is an extension af. By Theorem
4.3, there isu’ € pmod(T',P') s.t. u' <" v'. It follows
from Theorem 5.4(2) that the reductianof v’ to W is s.t.

of systems than formula-preferential systems. Neverthe; pmod(T,P) andu < v. HenceP is stoppered. By

less, by adding certain connectives to the language, we cafl\egrem 3.7-" is S_plausible.
construct for each pointwise preferential system a formula '

preferential system that induces the same consequenee reg 3 Examples
tion and, in a certain sense, has the same preference nEIat'OThe following pointwise preferential systems are based-on fi

Definition 5.2 LetS = (T, D, O) be a Nmatrix for a propo-
sitional language’, and let£’ be a propositional language
with the same variables a§ but with additional logical
connectives. Arextension ofS to £’ is a NmatrixS' =
(T,D,0") for £' s.t. O' DO O. A valuationv' in 8’ is an
extensiorof a valuatiorw in S to £' if v andv’ agree on/V.
Definition 5.3 Let S = (7, D, O) be an Nmatrix for and
let P = (S,=<) be a<-preferential system. A formula-
preferential systenassociatedwvith P is P! = (S', =') for
the language’, wherel' is like £ but with the added or de-
fined connective$l, | z € T}, S’ is an extension of to £’

with the same truth values s.t. for everyy € T, I:y cD
if y > xandl,y C 7 — D otherwise, and®’ is based on
G={Lp|lzeT,pe A}.

Note: For all valuations in ', v =" I iff v(1p) > .

Theorem 5.4 Let P = (S, <) be a <-preferential system
and letP’ = (S', =") be an associatedr-preferential sys-
tem.

1. ForallT,A C W, T P AiffT 7" A.

2. Forallvy, vy € Vs, v1 = v iff for each of their (respec-
tive) extensions;, vy € Vss to L', v] <’ v).

Proof: First, LetP* = (S', <*) be the<-preferential sys-

nite matrices, so by Theorem 2.8 and Corollary 5.5, the in-
duced consequence relations are plausible.

Minimal knowledge

[Arieli and Avron, 1998; 2000aconsiders pointwise prefer-
ential systems in matrices that are based on logical lmiéstti
Bilattices'® consist of two partial orderings of the truth val-
ues, where each one induces a complete lattiganeasures
the amount ofruth of the values and ;, measures the amount
of knowledgef the values. E.g. iy, f <; (T,—) <; tand

— < (t, f) <k T. <¢and<; are related by a negation oper-
ation, which is an involution w.r.t<; and an order preserving
w.r.t. <. A logical bilatticé’ is a pair(L, F), whereL is a
bilattice andF is a set of designated elements that forms a
primebifilter in £, i.e. a prime filter w.r.t<; and<y,.

A strongly <,-preferential system induces a consequence
relation that draws conclusions according to models that as
sume minimal knowledge concerning the premises. The intu-
ition is that one should not assume anything that isreally
known. E.g. ifP} is the system that is based an in Sy, any
variable which is not a subformula 6fis assigned the “lack
of knowledge” truth value- by all the preferential models of
I'. [Arieli and Avron, 2000&proves that the consequence re-
lation induced by a strongl¥ . -preferential system in a ma-
trix based on a logical bilattice is nonmonotonic and panaco

4 . . 4
tem inS’. Pointwise preferential systems compare only thesistent. E.g-"x is paraconsistenp, —p i7"+ ¢ (for p # q),

truth values that valuations assign to propositional \deis,
and hence for ally,v2 € Vg, v1 < vy iff for each of their
(respective) extensions, v, € Vs to L', vi <* v). This
means that forall’, A C W, T F” Aiff T F7~ A. Now we
show that<’ = <*, and hence that” = F”". Indeed, let
v1,v9 € Vgr. v1 X' vy iffforall p € A, vi(p) < va(p), iff
forallz € Tandallp € A, if v; =5 Ipthenvy, =5 I,p,
iff Sats: (v1) C Sats g (va), iff 1 <* vs. [ ]

Note: for eachz € T thatis a least element (< y for all
y € T), definingG without any formulal,p will give the

1A generalization of ‘pointwise preferential systems’ from
[Arieli and Avron, 2000b, which are in our notations strongly point-
wise preferential systems in matrices.

and nonmonotonicy FP& —q O p butg, =g 7% —q O p.
However [Arieli and Avron, 1998 proves that ifA does not
contain> thenT FP% Aiff T 4 A, soP% is too weak to

be used for adequate reasoning. It is more useful in a compo-
sition with the-": below.

According to section 5.2P¢ can be embedded in the
formula-preferential system (i§,) that is based on the set
thatincluded+p =pA—-p, ip=p, Iyp =—-p, Lip=¢ D
¢, forall p € A, . According to the remark before Corollary
5.5, 1, p is redundant. In this particular casep is also re-
dundant, i.e. itis enoughtotaké = A, U {-p|p € Aa}
(proof: vy =<} va iff Vp € A v1(p) < va(p); iff Vp € Aq

185ee e.g[Ginsberg, 1988; Fitting, 1991; Avron, 1996
"seg[Arieli and Avron, 1996.



if v1 =4 pthenvy =4 pandifv, =4 —pthenvy, =4 —p; iff  for reasoning in the face of inconsistencies and other abnor
Sats,.¢(v1) C Sats, ¢(v2)). Note that contrary to the orig- malities, can be constructed in this framework. Moreover, a
inal motivation behind the minimal-abnormality stratedy o though most of these systems were not originally part of the
[Batens, 1998 in this system (as well as in CWA of section theoretical research of nonmonotonic consequence refatio
4.3) we do not regard the formulas@as abnormal (in par- the generalization of their preference relations to the ioke
ticular, all the variables are i&), but rather as the formulas formula-preferential systems provides us with a method for

whose satisfaction we want to minimize in the models. ensuring the condition of stopperedness: formula-prefeaike
o ) ) systems that are based on finitary semantic structures are
Minimal inconsistency stoppered, and hence satisfy theoretical desiderata flaua p

[Arieli and Avron, 1998 considers another family of systems. sible nonmonotonic logic. All the examples from the litera-
The idea is to select a subsebf the truth valueg™ as rep-  ture that we have given are of this kind since they are based
resenting inconsistent values (artonsistency sgts.t. for  on finite non-deterministic matrices.

everyr € T,z € Tiff -z € 7,andx € DNZiff ,—x € D. We enumerate some open research questions.

The values that are not ifi are preferred over those that 1. can every plausible consequence relation that is based
are inZ by defining the pre-ordexz on7: z; <z z iff on an underlying monotonic relation be induced by a
z1 € T—Zorz, € 7. The obtained z-preferential systems (stoppered) preferential system? What are the exact suf-

select the models that assume minimal inconsistency (W.r.t  ficient and necessary conditions for stopperedness? Can
7) of the premises. The intuition is that contradictory data the preferential system always be defined as a formula-
corresponds to inadequate information about the world and  /pointwise preferential system? What happens when the
should be minimized. underlying monotonic relation is not finitary?

The preferential system from section 4.3 can be defined 2. The examples we provided for the preferential systems

- i i g = .. .
57;1§_thet§; g'rEf?r:iesnitghseygﬁmir:rfgnsvivsr;g:]ecz sgt {I—rl;%Helf en- were at the propositional level. The next natural thing to
RAGEARRS yn LCNCYy SEL 9 do is to extend them to the first-order level.
eral case, there may be other inconsistency sets. For exam-

ple, inS,, bothZ; = {T} andZ, = {T,—} are inconsis- 3. Anotherimportantgoalis to relate more works and prac-
tency sets, and they induce different consequence refation  tical applications to the framework presented here (e.g.
if P; (i = 1,2) is the pointwise<, -preferential system in demonstrating how other “adaptive logics” might be in-
Sy andl’ = {p D =p,—p D p}, thenl ™' p > ¢ while corporatedin it). For some of them it might be necessary
T /72 p D ¢, and-"2 p Vv —p butt/”* p v —p. [Arieli and to extend and generalize the framework further, e.g. by
Avron, 20004 proves that z-preferential systems in matri- defining preferences not only between models but also
ces based on logical bilattices, whefds an inconsistency between the formulas of the given set of premises.

set, induce consequence relations that are nonmonotoahic an
paraconsistent w.r.t-. E.g. "2 is nonmonotonic, paracon- References
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