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Abstract

We provide a general framework for constructing
natural consequence relations for paraconsistent
and plausible nonmonotonic reasoning. The frame-
work is based on preferential systems whose pref-
erences are based on the satisfaction of formulas
in models. We show that these natural preferential
systems that were originally designed for paracon-
sistent reasoning fulfill a key condition (stoppered-
ness or smoothness) from the theoretical research
of nonmonotonic reasoning. Consequently, the
nonmonotonic consequence relations that they in-
duce fulfill the desired conditions of plausible con-
sequence relations. Hence our frameword encom-
passes different types of preferential systems that
were developed from different motivations of para-
consistent reasoning and non-monotonic reasoning,
and reveals an important link between them.

1 Introduction
For a long time the research efforts on paraconsistency and
on nonmonotonic reasoning were separated. The former re-
search dealt with the question of how to prevent the inference
of every fact from an inconsistent source of knowledge, and
how to isolate inconsistent parts of the knowledge and yet
work in the usual way with the consistent parts. The latter
dealt with the question of how to “jump to conclusions” based
on partial knowledge of the domain (this is needed since hav-
ing complete knowledge is often unrealistic), and how to re-
vise previous “hasty” conclusions in the face of new and fuller
information.

However, in recent years the formal connections between
these two areas have begun to be revealed. It is only natural
that such a connection would exist, because conclusions that
are drawn based on partial knowledge may contradict new
and more reliable information, and each new piece of infor-
mation may contradict previous information and hence force
us to revise some of our knowledge. As the famous example
goes, if we conclude that Tweety can fly based on the sole
fact that it is a bird, the new piece of information that Tweety
is a penguin and penguins cannot fly forces us not only to re-
vise previous conclusions but also to deal with the fact that
we now have a contradiction in our knowledge.

Both goals of handling contradictions and reasoning non-
monotonically require some selection between alternatives:
which parts of the knowledge to retain and which to discard
or change. A central tool in both fields has beenpreferential
systems, meaning that only a subset of the models should be
relevant for making inferences from a theory. These models
are the most preferred ones according to some criterion.

In the research on paraconsistency, preferential systems
were used for constructing logics which are paraconsistent
but stronger than substructural paraconsistent logics. The
preferences in these systems were defined in different ways.
Some were based on checking which abnormal formulas
(such as ^ : ) are satisfied in the models of a the-
ory (see e.g. [Priest, 1991; Batens, 1998]). Others were
based on preferences between the truth values that are as-
signed to formulas (see e.g.[Kifer and Lozinskii, 1992;
Arieli and Avron, 2000a]).

Preferential systems were also used for providing se-
mantics for nonmonotonic consequence relations (see e.g.
[Shoham, 1987; Krauset al., 1990; Makinson, 1994]). It was
discovered, however, that in order for them to fulfill all the
desired theoretical properties that plausible nonmonotonic re-
lations should have (see e.g.[Lehmann, 1992]), preferential
systems need to satisfy a further condition called stoppered-
ness or smoothness. The problem is that this condition is usu-
ally not easy to verify.

In this paper we provide a general framework for construct-
ing natural consequence relations for paraconsistent and plau-
sible nonmonotonic reasoning. The main technique is using
preferential systems in which the preference between mod-
els is made according to a certain set of formulas which are
satisfied in them. The framework is obtained by a general-
ization of some preferential systems that were used for con-
structing useful paraconsistent consequence relations, and en-
compasses also other systems. Moreover, these natural pref-
erential systems that were originally designed for paracon-
sistent reasoning fulfill the stopperedness condition as well,
and hence have also the desired theoretical properties of non-
monotonic consequence relations.

As we said, the theoretical research on nonmonotonic rea-
soning and the research on paraconsistent reasoning have
been conducted separateley at first. Nevertheless, formula-
preferential systems, which are a generalization of methods
used in the latter, solve a key issue in the former, and help



to bridge the gap between the two directions of research and
to combine them under a unified framework. This provides
strong evidence for their important rule in non-classical rea-
soning.

The structure of the rest of this paper is as follows. In
section 2 we review some basic concepts related to multi-
valued monotonic logics, including the concept of a non-
deterministic matrix. In section 3 we briefly review one di-
rection of the research in nonmonotonic reasoning, and show
how stoppered preferential systems provide semantics for
plausible relations. In section 4 we present our main frame-
work of formula-preferential systems and prove that under
a natural condition they fulfill the stopperedness condition.
We bring several examples of systems from the literature and
show how they can be constructed in our framework. In sec-
tion 5 we review another technique that was used in prefer-
ential systems for paraconsistent reasoning, namely the use
of preferences between truth values. We show that these sys-
tems can be simulated by formula-preferential systems. We
conclude the paper with some remarks and directions for fur-
ther research.

2 Preliminaries
2.1 Consequence relations and semantic structures
In what followsL is a language,W is its set of wffs, ; �; �
denote arbitrary formulas (ofL), and�;� denote sets of for-
mulas. When the language is propositional,A denotes its set
of propositional variables, andp; q; r denote such variables.

In this paper the non-monotonic consequence relations that
we shall use will be based (in a way to be defined below) on
underlying monotonic multiple-conclusion consequence re-
lations. The intuitive idea of such a relatioǹis that� ` �
holds true iff either one of the elements of� is true or one of
the elements of� is false. This will be precisely defined in
Definition 2.3.

Definition 2.1
1. [Scott, 1974a; 1974b] A (Scott) consequence relation

(scr for short) forL is a binary relatioǹ between sets
of formulas ofL that satisfies the following conditions:

s-R strong reflexivity:
if � \� 6= ; then� ` �
M monotonicity:
if � ` � and� � �0, � � �0 then�0 ` �0
C cut:
if � `  ;� and�0;  ` �0 then�;�0 ` �;�0

2. An scr` is finitary if the following condition holds for
all �;� � W : if � ` � then there exist finite�0 � �
and�0 � � s.t.�0 ` �0.

When the language is propositional, it is usually required
that a monotonic consequence relation for the language will
be closed under uniform substitutions:

Definition 2.2 A uniform substitution is a function� : A !W that is extended to allW by: �(�( 1; : : : ;  n)) =�(�( 1); : : : ; �( n)) for anyn-ary connective�. ` is uni-
form if for every uniform substitution� and every� and�,
if � ` � then�(�) ` �(�).

We shall use a general definition of semantic structures that
does not assume anything about its models, except that there
is some satisfaction relation that indicates which formulas are
satisfied by each of the models.

Definition 2.3 1 A semantic structurefor L is a pairS =hMS ; j=Si, wherej=S � MS �W . MS is a set ofmodels
andj=S is called asatisfaction relation. A modelm 2 MS
satisfiesa formula if m j=S  . m is amodel of� (m j=S �)
if it satisfies every formula in�. The set of the models of� is denoted bymod(�;S). � is a consequenceof � in S
(� `S �) if for everym 2 mod(�;S), m j=S � for some� 2 �. `S is called theconsequence relation induced byS.
We say thatS is finitary if `S is finitary.

It is easy to verify that every semantic structure induces an
scr.

2.2 Non-deterministic matrices
A common type of semantic structures for propositional log-
ics is the class of multi-valued matrices. These structuresem-
ploy the classical principle of assigning truth values to for-
mulas, i.e. the value that a valuation assigns to a complex
formula is uniquely determined by the values that it assigns
to its subformulas. However, an agent acting in the real world
often has only incomplete or imprecise knowledge to guide its
decisions. This knowledge may even be inconsistent. When
this is the case the classical approach becomes useless, and
an alternative approach is needed.

One possible such alternative is to borrow the idea ofnon-
deterministiccomputations from automata and computabil-
ity theory, and apply it for assigning truth-values to complex
formulas. This approach has indeed (implicitly) been used
in [Batens, 1998] for handling inconsistent data. This was
done, however, in an ad-hoc way. Here we introduce a natu-
ral generalization of the logical concept of a matrix. In this
generalization the value that a valuation assigns to a complex
formula can be chosen non-deterministically from a certain
nonempty set of options. We therefore call these structures
non-deterministic matrices:

Definition 2.4 [Avron and Lev, 2000] A non-deterministic
matrix (Nmatrix for short) for a propositional languageL is
a tupleS = hT ;D;Oi, whereT is a non-empty set oftruth
values, D is a non-empty proper subset ofT (its designated
values), and for everyn-ary connective� of L, O includes
a correspondingn-ary functione� from T n to 2T � f;g. A
valuationin S is a functionv :W ! T that satisfies the con-
dition: if � is ann-ary connective, and 1; : : : ;  n 2 W , thenv(�( 1; : : : ;  n)) 2 e�(v( 1); : : : ; v( n)). VS denotes the
set of valuations ofS. The satisfaction relationj=S � VS�W
is defined:v j=S  iff v( ) 2 D. We identify the NmatrixS with the semantic structurehVS ; j=Si. `S andj=S are de-
fined as in Definition 2.3. The same applies for all the other
concepts of that definition. We say thatS is (in)finite if T is
(in)finite.

Notes:
1. Every (deterministic) matrix can be identified with an

Nmatrix whose functions inO always return singletons.

1See e.g.[Makinson, 1989; Lehmann, 1992].



2. It is easy to verify that ifS is an Nmatrix theǹ S is a
uniform scr.

In addition to their obvious potential for reasoning un-
der uncertainty and for specification and verification of non-
deterministic programs, N-matrices have considerable practi-
cal technical applications. It is well known that every propo-
sitional logic can be characterized semantically using a multi-
valued matrix ([Łos and Suszko, 1958]). However, there
are important logics whose characteristic matrices necessarily
consist of an infinite number of truth values. Such character-
istic matrices are frequently of little help in providing deci-
sion procedures for their logics, or in getting real insightinto
them. Our generalization of the concept of a matrix allows us
to replace in many cases an infinite characteristic matrix for
a given propositional logic by a characteristicfinite structure
that automatically provides a decision procedure. We pro-
vide now examples for such cases. These Nmatrices define
monotonic logics that will be the underlying logics of some
nonmonotonic logics from the literatures that we shall review
in later sections.

Let Lcl be the classical propositional language with the
connectivesf^;_;�;:; fg. For a connective� of Lcl, g�
denotes the corresponding classical boolean operation. The
NmatricesS>p andS?p for Lcl have the set of truth valuesft; fg and the designated valuet. They interpret the connec-
tives as follows:ef = ffg;
if � 2 f^;_;�g thene�(x1; x2) = fg�(x1; x2)g;
in S>p , e:f = ftg, e:t = ft; fg;
in S?p , e:t = ffg, e:f = ft; fg.
We shall usè >p as a shorthand for̀S>p , and similarly with
other relations.
Note: the consequence relations induced byS>p andS?p can-
not be induced by finite matrices (see[Avron and Lev, 2000]
for a proof). This result can be generalized as follows:

Theorem 2.5 Let S be a two-valued N-matrix which has at
least one proper nondeterministic operation. Then`S has
no finite characteristic matrix. If in additionS includes the
classical positive operations, theǹS has no finite weakly-
characteristic matrix.

Definition 2.6 An scr ` is paraconsistent w.r.t.: when ;: 6` ; for some , and it is paracompleteness w.r.t.:
when; 6`  ;: for some .2

Let `pos be the uniform closure of positive classical logic
in Lcl (this practically means that every negated formula is
treated as an atomic formula, while the semantics of the pos-
itive connectives is the classical one). The essential property
of `>p is that it is theminimal logic in Lcl that contains̀ pos
and in which; `>p  ;: for all  . This means that̀ pos is
paraconsistent and not paracomplete.`?p is the minimal logic
in Lcl that contains̀ pos and in which ;: `?p ; for all  ,
i.e. it is paracomplete and not paraconsistent.

2The name ‘paraconsistent’ was coined by Quesada at the 3rd
Latin American Conference on Mathematical Logic in 1976, and
the name ‘paracomplete’ is from[Batenset al., 1999].

To complete the picture, we mention that`>p and`?p can
be characterized using Gentzen-type and Hilbert-type calculi.
The Gentzen-type calculusG>p is obtained from Gentzen’s
original calculus (in[Gentzen, 1969]) for classical logic (in-
cluding cut) by omitting the rule[: )] for introducing nega-
tion on the left (any other version of the classical calculus
would do here just as well, as long as its rules for negation are
the two standard ones). Similarly,G?p is obtained from this
calculus by omitting[) :]. It can be shown3 that`G>p = `>p
and `G?p = `?p . (The standard scr̀G which is associated
with a given Gentzen-type systemG is defined by:� `G �
iff there exist finite�0 � �, �0 � � such that�0 ) �0 is
provable inG.)

These results can be generalized as follows:

Theorem 2.7 let Gc be the standard calculus for classical
logic in Lcl in which each connective has exactly two corre-
sponding logical rules. Then every system which is obtained
fromGc by omitting some of its logical rules is decidable,
admits cut-elimination, and has a characteristic two-valued
N-matrix.

An even stronger generalization (which will take us too far
away from our purpose here) can be found in[Avron and Lev,
2001].

To conclude the discussion on these logics,`>p and`?p are
respectively the same asCLuN andCLaN from [Batenset
al., 1999]. `?p is also identical to the logicK=2 of [Béziau,
1999], where cut-elimination forG?p and its completeness
have already been claimed. Two-valued N-matrices induce in
fact a constructive subclass of the class of bivaluations used
in [Béziau, 1999].

We now define some further Nmatrices that can actually be
defined as ordinary matrices.S4 is the matrix forLcl that hasft; f;>;?g as the truth values andft;>g as the designated
values.�t is a partial ordering of the truth values defined by:f <t (>;?) <t t. The interpretation of the connectives is:ef = ffg;x1 êx2 = finf�tfx1; x2gg; x1e_x2 = fsup�tfx1; x2gg;x1 e�x2 = � fx2g if x1 2 ft;>gftg otherwise;e:t = ffg, e:f = ftg, e:> = f>g, e:? = f?g.e� is defined so that� will be an internal implication w.r.t.`4, i.e. �;  `4 �;� iff � `4  � �;�. The valuest andf behave like the classical values w.r.t. the negation:. The
value> represents “inconsistency”, because a valuationv sat-
isfies both a formula and its negation: iff v( ) = >. The
value? represents “incompleteness”, because a valuation sat-
isfies neither a formula nor its negation: iff v( ) = ?.S>3 is the submatrix ofS4 with the truth valuesft; f;>g.S?3 is the submatrix ofS4 with the truth valuesft; f;?g. 4

3See[Avron and Lev, 2000].
4These three matrices have been widely investigated in the liter-

ature. See e.g.[Kleene, 1950; Belnap, 1977a; 1977b; D’ottaviano,
1985; Avron, 1986; 1991; Ginsberg, 1988; Rozoner, 1989; Epstein,
1990; Fitting, 1990; 1991; Priest, 1989; 1991; Arieli and Avron,
1996; 1998].



The essential property of̀4 (respectively,̀ >3 , `?3 ) is that
it is the maximallogic in Lcl that contains̀ pos and that is
paraconsistent and paracomplete w.r.t.: (`>3 – paraconsis-
tent (but not paracomplete);`?3 – paracomplete (but not para-
consistent)).

Figure 1 presents the relations between the logics.`pos `?p`>p `4 `?3`>3 `CL���@@R - --���@@R @@R���`x! `y means̀ x � `y
Figure 1: Some basic consequence relations

We conclude this section with a result that will be impor-
tant for our framework in later sections:

Theorem 2.8 [Avron and Lev, 2000]. Every finite Nmatrix is
finitary.

3 Nonmonotonic Consequence Relations
3.1 Plausible consequence relations
Monotonic consequence relations are not suitable for many
applications in AI, and hence many systems that exhibit non-
monotonic behavior have been developed and studied.[Gab-
bay, 1985] began a theoretical investigation of conditions that
nonmonotonic consequence relations should satisfy. It was
suggested that such relationsj� should satisfy at least three
basic conditions:

Definition 3.1 A cautious consequence relationis a binary
relationj� between sets of formulas and formulas that satis-
fies the following conditions:

reflexivity: � j�  if  2 �
weak monotonicity: if � j�  and� j� � then�; � j�  
cut: if � j�  and�;  j� � then� j� �
Weak monotonicity replaces the usual monotonicity condi-

tion (if � j�  then�; � j�  ). The idea is that by adding to� one of its conclusions underj�, one does not change its set
of conclusions, but for an arbitrary formula added to�, this
is not guaranteed. See[Krauset al., 1990] for a discussion
of why a nonmonotonic relation is expected to satisfy these
conditions.

These conditions led to a wide study of general patterns
for nonmonotonic reasoning. The basic idea behind most
of the works is to classify nonmonotonic formalisms and to
recognize logical properties that they should satisfy. Some
works continued to study the properties of nonmonotonic re-
lations as independent relations, e.g.[Makinson, 1994] and
[Lehmann, 1992]. The latter suggested the concept of aplau-
sibility logic. Other works based the nonmonotonic conse-
quence relationsj� on underlying monotonic ones̀. At
first ([Krauset al., 1990]), the nonmonotonic relations were
in the classical propositional language and were based on

the underlying classical logic (an example for such a con-
nection is the propertyright weakening: if `CL  � �
and � j�  then � j� �). Later,` was taken as any mono-
tonic logic ([Freund and Lehmann, 1993]), and in any lan-
guage ([Arieli and Avron, 2000b]) (for other related works
see also[Makinson, 1989; Gabbay, 1991; Freundet al., 1991;
Lehmann and Magidor, 1992; Schlechta, 1996; Lehmann,
1998].)

In this paper we shall use the following notion:

Definition 3.2 Let ` be an scr. A binary relationj� between
sets of formulas and sets of formulas is called`-plausibleif
it satisfies the following conditions:

Ext `-extension:
for every�;� 6= ;, if � ` � then� j� �.
RM right monotonicity:
if � j�� and� � �0 then� j� �0.
LCM left cautious monotonicity:
if � j�  for every 2 �0, and� j�� then�;�0 j��.
LCC left cautious cut:
if � j�  ;� for every 2 � and�;� j�� then� j��.
RCC right cautious cut:
if �;  j�� for every 2 � and� j� �;� then� j��.

[Lehmann, 1992; Arieli and Avron, 2000b] use LCC with
a finite�, and do not use RCC. In the nonmonotonic conse-
quence relations that will interest us, both rules will be valid.
Of course, LCC and RCC are also valid in scrs that are in-
duces by semantic structures. What is “cautious” about them
is that only� is used, in contrast to the�;�0 of the rule C in
Definition 2.1 (j� is not “cautious” on its r.h.s. in view of
RM).

3.2 Preferential systems
In parallel to the research on syntactic properties of non-
monotonic consequence relations, semantical methods for
nonmonotonic reasoning were suggested. Shoham[Shoham,
1987; 1988] proposed the concept ofpreferential modelsas
a generalization of McCarthy’s circumscription[McCarthy,
1980]. The main idea is that instead of using all the models
of a given theory for checking which conclusions follow from
it, the models are ordered by a preference relation, and only
the most preferred models are used as relevant for making
inferences from the theory.

[Makinson, 1989; Krauset al., 1990; Lehmann, 1992] use
preferential systems to provide semantics for the nonmono-
tonic relations that they investigate. The nonmonotonic rela-
tions that are induced by preferential systems satisfy two of
the three basic conditions of Definition 3.1, namely reflexiv-
ity and cut, but not necessarily weak monotonicity. In order
to ensure this condition, these works identify a condition that
the preferential system should satisfy, which is calledsmooth-
nessin the first andstopperednessin the other two: for every
model of a given theory there should be some most-preferred
model of the theory that is comparable with it. The rationale
is that the elimination of one of the models should be justified
by retaining another model that is preferred over it (and which
is a most-preferred model). Indeed, if some model is part
of an infinitely-descending chain of models under the prefer-
ence relation, and there does not exist a most-preferred model



that bounds this chain, it is difficult to conceptualize whatthe
preference relation between the models ought to mean. In
any case, as[Arieli and Avron, 2000b] has shown, a preferen-
tial system that satisfies the stopperedness condition induces
a consequence relation that fulfills not only the conditionsof
Definition 3.1 but is already a plausible consequence relation.
Notation 3.3 If A is a set with a pre-order�, x � y denotesx � y andy 6� x. Min�(A) = fx 2 A j 8y 2 A: y 6� xg.
Definition 3.4 5 Let S be a semantic structure.

1. A preferential systemin S is a pairP = hS;�i, where� is a pre-order6 onMS .

2. A modelm 2 mod(�;S) is aP-preferential modelof �
if m 2 pmod(�;P) = Min�(mod(�;S)).

3. A set of formulas� P-preferentially entailsa set of
formulas� (notation: � `P �) if for every m 2pmod(�;P) there is a� 2 � s.t. m j=S �.7 `P is
called theconsequence relation induced byP .

The term “consequence relation” here is more general than
in Definition 2.1. In particular, we do not assume monotonic-
ity (it is possible that� `P � but�;  6`P � if � is defined
in such a way thatpmod(� [ f g;P) 6� pmod(�;P)).
Definition 3.5 LetA be a set with a pre-order�. A is well-
founded under� if it does not have an infinitely descending
chain under�. A is stoppered under� if every x 2 A hasx0 2 Min�(A) s.t.x0 � x.

Note that ifA is well-founded under� then it is stoppered
under� (the converse does not necessarily hold).

Definition 3.6 8 A preferential systemP = hS;�i is stop-
peredif for all �,mod(�;S) is stoppered under�.

Theorem 3.7 9 If P is a stoppered preferential system inS
then`P is `S-plausible.

Note: The stopperedness condition is introduced because
some preferential systems which are not stoppered do not sat-
isfy the condition LCM of Definition 3.2 (the other conditions
are always fulfilled by all preferential systems).

As noted in[Kraus et al., 1990; Makinson, 1994], it is
usually not easy to check whether a preferential system is
stoppered. Preferential systems were originally developed as
a framework for providing semantics for nonmonotonic in-
ference relations. They were also used, apparently indepen-
dently at first, for constructing systems for reasoning within-
consistencies (and other abnormalities) in a way which is on
the one hand non-trivial and on the other hand not as weak
as monotonic substructural logics (see e.g.[Batens, 1986;
Priest, 1991; Kifer and Lozinskii, 1992; Arieli and Avron,
1996]). Interestingly, these ideas, which were developed
from motivations different from stopperedness, will provide
us with methods for constructing stoppered preferential sys-
tems.

5Following [Makinson, 1994; Lehmann, 1992].
6For the purpose of showing the results in section 3.2 (but not

sections 4 and 5),� can be any binary relation.
7Note that we donot require thatm 2 pmod(f�g;P), or thatm 2 pmod(� [ f�g;P).
8Following [Makinson, 1994].
9A Generalization of a result in[Arieli and Avron, 2000b].

4 Formula-Preferential Systems

This section provides a natural source of stoppered preferen-
tial systems. The idea is to select a subset of the formulas in
the language, and to base the comparison between the models
in the preferential system on what formulas from this set they
satisfy. This idea is a generalization of a method for con-
structing “adaptive logics” in[Batens, 1998], in which the
selected formulas express some kind of abnormality w.r.t. a
desired logic. We shall first explain this idea and then show
that under a simple condition, formula-preferential systems
are stoppered and hence induce plausible relations.

4.1 Definition

The idea behind formula-preferential systems is a general-
ization of the “minimal-abnormality strategy” from[Batens,
1998]. That paper uses a specific selection of models fromS>p .10 DenotingK(v) = f 2 Wcl j v( ^ : ) = tg, a
modelv of � is selected iff there is no other modelv0 of � s.t.K(v0) � K(v). In this way the minimal-abnormality strat-
egy minimizes the abnormalities (here – inconsistencies) in
the models of a theory (by “abnormality” we mean a formula
that leads to triviality w.r.t. a desired logic, here – classical
logic). Other papers consider other kinds of abnormalities
(see section 4.3).

Formula-preferential systems form a generalization of this
idea. They also select those models of a theory that minimize
the satisfaction of formulas from a certain setG of formulas,
but it can now be done with respect to any setG. In addition,
this type of preferential systems is defined in any semantic
structure, since what is important for the preference relation
between the models is what formulas they satisfy, and not
their inner structure.

Notation 4.1 Let S be a semantic structure and letG � W .
Form 2MS denote:SatS;G(m) = f 2 G jm j=S  g.
Definition 4.2 Let G � W . A formula-preferential system
based onG is a preferential systemP = hS;�i that satis-
fies: for allm1;m2 2 MS , m1 � m2 iff SatS;G(m1) �SatS;G(m2). P is called in short a “G-preferential system”.

4.2 Stoppered formula-preferential systems

We present now the main technical result of this paper.

Theorem 4.3 If P is a formula-preferential system in a fini-
tary semantic structure thenP is stoppered.

Proof: Suppose thatP = hS;�i whereS is finitary andP is
based on someG � W . Let � be given – we want to show
thatmod(�;S) is stoppered under�. The proof consists of
two parts which refer to the setICS;G(�):
Definition 4.4� CS;G(�) = f� � G j � `S �g� ICS;G(�) = fT � G j 8� 2 CS;G(�): T \� 6= ;g

10In our notations,[Batens, 1998] actually uses the first-order
level ofS>p , but here we discuss only the propositional level.



The first part of the proof (Lemma 4.5) shows thatICS;G(�) is stoppered under�. For the second part of the
proof, note that for everym 2 mod(�;S), SatS;G(m) 2ICS;G(�), but if T 2 ICS;G(�), there does not necessarily
exist anm 2 mod(�;S) s.t. T = SatS;G(m). In contrast,
Lemma 4.9 shows thatm 2 pmod(�;S) iff SatS;G(m) is a
minimalelement ofICS;G(�).

In the rest of this proof we shall omit the subscriptsS, G and�, and also shortenmod(�;S) to mod(�) andpmod(�;P) to pmod(�).
Lemma 4.5 IC(�) is stoppered under�.

Proof: LetT 2 IC(�). We need to show that there existsT 0 2
Min(IC(�)) s.t. T 0 � T . LetZT = fT 0 2 IC(�) j T 0 � Tg
and letC � ZT be a chain w.r.t.�. We shall show thatC is
bounded below inZT , so by Zorn’s lemmaZT has a minimal
element, which is the required�-minimal element. Indeed,
let T � = TC. ObviouslyT � boundsC andT � � T � G. It
remains to show thatT � 2 IC(�). Suppose in contradiction
that there is some� 2 C(�) s.t. T � \ � = ;. SinceS is
finitary, there is a finite�0 � � s.t. �0 2 C(�). Suppose�0 = f 1; : : : ;  ng. Then for all1 � i � n,  i 62 T �,
and sinceT � = TC then for all1 � i � n there is someT i 2 C s.t.  i 62 T i . LetC 0 = fT i j  i 2 �0g and letT �� = TC 0. ThenT �� \�0 = ;, and soT �� 62 IC(�). But
sinceC is a chain and so isC 0 � C, there is some1 � k � n
s.t. T k � T j for all 1 � j � n and thereforeT k =T �� 62 IC(�), in contradiction toT k 2 C � IC(�).
Lemma 4.6 11 If T 2 Min(IC(�)) then for all 2 T there
exists� 2 C(�) s.t.T \� = f g.
Proof: Suppose in contradiction that for someT 2Min(IC(�)) and some 2 T ,T\� 6= f g for all� 2 C(�).
For all such� we know thatT \ � 6= ; sinceT 2 IC(�),
so (T � f g) \ � 6= ;. Hence(T � f g) 2 IC(�), in
contradiction toT 2 Min(IC(�)) sinceT � f g � T .

Lemma 4.7 11 If T 2 Min(IC(�)) and� � G then�; T `S� iff � \ T 6= ;.
Proof: If � \ T 6= ; then obviously�; T `S �. For the
converse, suppose in contradiction that�; T `S � but� \T = ;. By Lemma 4.6, for each 2 T there exists� � G
s.t. � `S  ;� andT \ � = ;. Let �� = Sf� j  2Tg. We show that� `S ��;�: supposem 2 mod(�). Ifm j=S � for some� 2 � then we are finished. Otherwise,
since�; T `S � thenm 6j=S  for some 2 T . Since� `S  ;� is true thenm j=S � for some� 2 � � ��.
So� `S ��;�, but (�� [ �) \ T = ;. This is impossible
becauseT 2 IC(�) and�� [� 2 C(�).
Lemma 4.8 If m 2 mod(�) and Sat(m) 2 Min(IC(�))
thenm 2 pmod(�).
Proof: By definition,Sat(n) 2 IC(�) for everyn 2 mod(�).
Thus, If m 2 mod(�) and Sat(m) 2 Min(IC(�)) then
there cannot bem0 2 mod(�) s.t. m0 � m, because thenSat(m0) � Sat(m) (andSat(m0) 2 IC(�)), and soSat(m) is
not minimal inIC(�).

11Based on[Batens, 1999a].

Lemma 4.9 12 Min(IC(�)) = fSat(m) jm 2 pmod(�)g.
Proof: For one direction, take someT 2 Min(IC(�)) and
suppose in contradiction that there is nom 2 pmod(�)
s.t. Sat(m) = T . By Lemma 4.8, there is also nom 2mod(�) s.t. Sat(m) = T . In particular, this is true for
all m 2 mod(� [ T ). By definition,Sat(m) � T for allm 2 mod(� [ T ), so for all suchm, Sat(m) � T . Now let� = SfSat(m)� T jm 2 mod(� [ T )g. Then�; T `S �.
But� \ T = ;, in contradiction to Lemma 4.7.

For the converse, ifm 2 pmod(�) then in particularm 2 mod(�) and soSat(m) 2 IC(�). By Lemma 4.5 there
is someT 2 Min(IC(�)) s.t. T � Sat(m). By the first
direction, there ism0 2 pmod(�) s.t. T = Sat(m0). SoSat(m0) � Sat(m), m 2 pmod(�), and thereforeSat(m) =Sat(m0) = T 2 Min(IC(�)).
End of the proof of Theorem 4.3: Let m 2 mod(�). ThenSat(m) 2 IC(�). By Lemma 4.5 there isT 2 Min(IC(�))
s.t.T � Sat(m). By Lemma 4.9, there ism0 2 pmod(�) s.t.Sat(m0) = T , soSat(m0) � Sat(m), i.e.m0 � m.

Corollary 4.10 If P is a formula-preferential system in a
finitary semantic structureS then`P is `S-plausible.

Proof: Follows from Theorems 3.7 and 4.3.

The main practical importance of our result applies to all
finite Nmatrices. Since in practice one usually works with
finite structures, this means that the following result has great
practical significance.

Corollary 4.11 If P is a formula-preferential system in a fi-
nite NmatrixS then`P is `S-plausible.

Proof: Follows from Theorem 2.8 and Corollary 4.10.

A note about finitariness: it can be shown that formula-
preferential systems do not in general preserve finitariness.
A G-preferential systemP in a finitary semantic structureS
might not induce a finitary consequence relation. Neverthe-
less, if� has only a finite number of minimalG-consequences
(Min�(CS;G(�)) is finite) then� `P � implies that there are
finite�0 � � and�0 � � s.t.�0 `P �0.
4.3 Examples
We show now how known systems from the literature can be
constructed using formula-preferential systems. Since all of
them are based on finite Nmatrices, then by Corollary 4.11,
the induced consequence relations are plausible.

Closed-World Assumption
In the “Closed-World Assumption” method[Reiter, 1978], a
propositional variable that cannot be proved to be true is as-
sumed to be false. A corresponding formula-preferential sys-
tem isP = hSCL;�i that is based onAcl. The obtained
consequence relatioǹP is nonmonotonic. E.g., if 6`CL p
then `P :p but ; p 6`P :p (providedf ; pg is classically
consistent).`P is, however, not paraconsistent. SinceP is

12Following [Batens, 1998], but the proof here (of the first direc-
tion) is different and relies on Lemma 4.7.



based onSCL, a classically inconsistent theory does not have
any models and entails any formula under`CL and`P . This
shows that nonmonotonicity and paraconsistency are inde-
pendent issues. However, many nonmonotonic systems were
designed for handling contradictions in an adequate way, as
explained next.

Preferential systems for handling contradictions
SinceCL is unsuitable for reasoning from classically incon-
sistent theories, one solution is to take the paraconsistent log-
ics `>3 or `4 (thus if � = fr; :r; p; p � qg we have that� `>3 q and� 6`>3 :q). Nevertheless these consequence re-
lations are too weak. In particular, on classically consistent
sets they do not entail all the conclusions that classicallyfol-
low from them (for example, the Disjunctive Syllogism (from , : _ � infer �) is not valid in`>3 and`4).

Let " �  ^ : . A consequence relation that is lo-
cated between the monotonic “lower-limit logic”̀>3 and the
“upper-limit logic” `CL 13 can be obtained by using the
formula-preferential systemP = hS>3 ;�i that is based onG = f"p j p 2 Aclg. `P is the same asLPm of [Priest,
1991] (whenS>3 is without�) andACLuNs2 of [Batens,
1998]. `P is nonmonotonic: if� = fp;:p _ qg then� `P q
but�;:p 6`P q (and�;:q 6`P q). `P is also paraconsistent:p;:p 6`P q, and even(p _ q);:(p _ q) 6`P q. Moreover, If�
is classically consistent then� `P � iff � `CL �. For this,
notice that for a valuationv in S>3 , v j=>3 "p iff v( ) = >.
All the classical modelsv of � are also valuations inS>3 ,
they are�-equivalent (sinceSatS>3 ;G(v) = ;), and they are�-preferred over all the models of� in S>3 that assign> to
some variable. Thus, if� is classically consistent then itsP-preferential models are its classical models.

Adaptive Logics
[Batens, 1998] presents the idea ofadaptive logics. These
were originally introduces in[Batens, 1986] by dynamic
proof systems that are designed to mimic some aspects of hu-
man reasoning with inconsistencies, especially the fact that
conclusions that are drawn at a certain stage may be rejected
at a later stage because of other conclusions, and then even
accepted again. The name “adaptive” is due to the fact that
these logics adapt their rules to the given set of premises. E.g.
the Disjunctive Syllogism is not valid iǹ>3 . In contrast, if� = fr; :r; :r _ s; p; :p _ qg then the adaptive logic
ACLuNs2 that is based oǹ>3 does not allow to use this rule
on� only for inferrings (sincer behaves inconsistently) but
does allow its use for inferringq from p; :p _ q (since there
is no reason to suppose thatp behaves inconsistently).

Different adaptive logics have been developed (see
[Batens, 2000] for a survey). Those that are based on
the minimal-abnormality strategy are a special case of the
formula-preferential systems where the setG is taken as a set
of abnormal formulas.14 For example,ACLuN2 (note: not
ACLuNs2) from [Batens, 1998] is induced by the formula-
preferential system inS>p that is based onG = f" j  2

13These terms are borrowed from[Batens, 1999b].
14The adaptive logics in[Batens, 1998] and similar papers are

defined as single-conclusion consequence relations.

Wclg (notice the difference fromACLuNs2 – the two con-
sequence relations are incomparable. For a comparison be-
tween the use of̀ >3 and`>p as the underlying monotonic
relations, see[Batens, 2000]).

ACL ;2 from [Batens, 1999b] is induced by the following
formula-preferential system (we give here a simplified ver-
sion). It is defined in the two-valued NmatrixS0 in which all
the connectives ofLcl are weakened: for ann-ary connective� 2 f^;_;�;:; fg and any�x 2 ft; fgn, e�(�x) = ft; fg. To
still retain expressive power, we extendLcl to the languageL+cl with the added connectives� and& which function inS0 as classical negation and conjunction:e�x = fnot xg;x1 e& x2 = fx1 and x2g. P0 is the formula-preferential
system inS0 that is based on the setG0: this set includes
all formulas which express the fact that a certain formula�( 1; : : : ;  n) and one or more of 1; : : : ;  n are assigned
values that are illegal in a classical valuation, e.g. & : ,�  & � : , ( & �) & � ( ^ �), �  & ( ^ �),( & � �) & ( � �), etc. Whereas the underlying
monotonic relatioǹ 0 is totally weak inLcl (i.e. for all�;� � Wcl, � `0 � iff � \� 6= ;), `P0 is still as strong as
CL on classically consistent sets (inLcl). In comparison to
ACLuN2 , ACL ;2 is “adaptive” on all the connectives inLcl,
not only:.

Other adaptive logics (e.g. [Vanackere, 1997; 1999])
use a formula-preferential systemP in a more complicated
way: the definition of the adaptive logicj� is: � j� � iffTr(�) `P Tr(�), whereTr is some pre-processing of the
formulas.

Further examples of formula-preferential systems will be
given in section 5.3.

5 Pointwise-preferential systems

[Arieli and Avron, 2000b] suggests another method for con-
structing preferential systems that are stoppered. The method
is based on a type of preferential systems calledpointwise
preferential systems. The underlying idea is to have a prefer-
ence between the truth values of a multiple-valued structure
and to base the preference between the valuations on this pref-
erence. We shall see that these systems can be embedded in
formula-preferential systems, and that therefore the finitari-
ness of the underlying semantic structure ensures stoppered-
ness.

5.1 Definition

Consider the truth values of the (N)matrixS4. We might have
a preference between the truth values according to their prop-
erties in the valuations. E.g. we might prefer the classical
valuest andf over> and?, since a valuation satisfies ex-
actly one of and: iff it assigns a classical value to .
If there are two models for a given set of premises and they
assign the same values to all atomic formulas except that one
assignst to p and the other>, we might prefer the first. This
is the underlying idea of the following definition.



Definition 5.1 15 LetS be an Nmatrix with a set of truth val-
uesT , and let� be a pre-order onT . A pointwise preferential
system(in S) based on� is a preferential systemP = hS;�i
that satisfies the condition: for allv1; v2 2 VS , v1 � v2 iff
for every propositional variablep, v1(p) � v2(p). If � is a
partial-order,P is calledstrongly pointwise. P will be called
in short a “�-preferential system”.

Note that� is indeed a pre-order if� is a pre-order.

5.2 Embedding pointwise preferential systems in
formula-preferential systems

Pointwise preferential systems are in general a different type
of systems than formula-preferential systems. Neverthe-
less, by adding certain connectives to the language, we can
construct for each pointwise preferential system a formula-
preferential system that induces the same consequence rela-
tion and, in a certain sense, has the same preference relation.

Definition 5.2 Let S = hT ;D;Oi be a Nmatrix for a propo-
sitional languageL, and letL0 be a propositional language
with the same variables asL but with additional logical
connectives. Anextension ofS to L0 is a NmatrixS 0 =hT ;D;O0i for L0 s.t. O0 � O. A valuationv0 in S 0 is an
extensionof a valuationv in S toL0 if v andv0 agree onW .

Definition 5.3 Let S = hT ;D;Oi be an Nmatrix forL and
let P = hS;�i be a�-preferential system. A formula-
preferential systemassociatedwith P is P 0 = hS 0;�0i for
the languageL0, whereL0 is likeL but with the added or de-
fined connectivesfIx j x 2 T g, S 0 is an extension ofS toL0
with the same truth values s.t. for everyx; y 2 T , eIxy � D
if y � x and eIxy � T � D otherwise, andP 0 is based onG = fIxp j x 2 T ; p 2 Ag.
Note: For all valuationsv in S 0, v j=S0 Ix iff v( ) � x.

Theorem 5.4 Let P = hS;�i be a�-preferential system
and letP 0 = hS 0;�0i be an associatedG-preferential sys-
tem.

1. For all �;� � W , � `P � iff � `P0 �.

2. For all v1; v2 2 VS , v1 � v2 iff for each of their (respec-
tive) extensionsv01; v02 2 VS0 toL0, v01 �0 v02.

Proof: First, LetP� = hS 0;��i be the�-preferential sys-
tem inS 0. Pointwise preferential systems compare only the
truth values that valuations assign to propositional variables,
and hence for allv1; v2 2 VS , v1 � v2 iff for each of their
(respective) extensionsv01; v02 2 VS0 to L0, v01 �� v02. This
means that for all�;� � W , � `P � iff � `P� �. Now we
show that�0 = ��, and hence that̀P0 = `P� . Indeed, letv1; v2 2 VS0 . v1 �0 v2 iff for all p 2 A, v1(p) � v2(p), iff
for all x 2 T and allp 2 A, if v1 j=S0 Ixp thenv2 j=S0 Ixp,
iff SatS0;G(v1) � SatS0;G(v2), iff v1 �� v2.
Note: for eachx 2 T that is a least element (x � y for ally 2 T ), definingG without any formulaIxp will give the

15A generalization of ‘pointwise preferential systems’ from
[Arieli and Avron, 2000b], which are in our notations strongly point-
wise preferential systems in matrices.

same result, since suchx guarantees thatv j=S0 Ixp for all v,
and so the presence of these formulas inG does not influence
the preference relation.

Corollary 5.5 If P is a pointwise preferential system in
a finitary NmatrixS then P is stoppered and̀ P is `S-
plausible.

Proof: SupposeP = hS;�i and letP 0 = hS 0;�0i be a
formula-preferential systen associated with it. Let� � W
and letv 2 mod(�;S). SinceS 0 is an extension ofS, there
is v0 2 mod(�;S 0) that is an extension ofv. By Theorem
4.3, there isu0 2 pmod(�;P 0) s.t. u0 �0 v0. It follows
from Theorem 5.4(2) that the reductionu of u0 to W is s.t.u 2 pmod(�;P) andu � v. HenceP is stoppered. By
Theorem 3.7,̀ P is `S-plausible.

5.3 Examples
The following pointwise preferential systems are based on fi-
nite matrices, so by Theorem 2.8 and Corollary 5.5, the in-
duced consequence relations are plausible.

Minimal knowledge
[Arieli and Avron, 1998; 2000a] considers pointwise prefer-
ential systems in matrices that are based on logical bilattices.
Bilattices16 consist of two partial orderings of the truth val-
ues, where each one induces a complete lattice:�t measures
the amount oftruth of the values and�k measures the amount
of knowledgeof the values. E.g. inS4, f <t (>;?) <t t and? <k (t; f) <k >. �t and�k are related by a negation oper-
ation, which is an involution w.r.t.�t and an order preserving
w.r.t. �k. A logical bilattice17 is a pairhL;Fi, whereL is a
bilattice andF is a set of designated elements that forms a
primebifilter in L, i.e. a prime filter w.r.t.�t and�k.

A strongly�k-preferential system induces a consequence
relation that draws conclusions according to models that as-
sume minimal knowledge concerning the premises. The intu-
ition is that one should not assume anything that is notreally
known. E.g. ifP4k is the system that is based on�k in S4, any
variable which is not a subformula of� is assigned the “lack
of knowledge” truth value? by all the preferential models of�. [Arieli and Avron, 2000a] proves that the consequence re-
lation induced by a strongly�k-preferential system in a ma-
trix based on a logical bilattice is nonmonotonic and paracon-
sistent. E.g.̀ P4k is paraconsistent:p;:p 6`P4k q (for p 6= q),
and nonmonotonic:q `P4k :q � p but q;:q 6`P4k :q � p.
However,[Arieli and Avron, 1998] proves that if� does not
contain� then� `P4k � iff � `4 �, so`P4k is too weak to
be used for adequate reasoning. It is more useful in a compo-
sition with the`Pi below.

According to section 5.2,P4k can be embedded in the
formula-preferential system (inS4) that is based on the set
that includesI>p = p ^ :p, Itp = p, Ifp = :p, I?p = � ��, for all p 2 Acl. According to the remark before Corollary
5.5, I?p is redundant. In this particular caseI>p is also re-
dundant, i.e. it is enough to takeG = Acl [ f:p j p 2 Aclg
(proof: v1 �4k v2 iff 8p 2 Acl v1(p) �k v2(p); iff 8p 2 Acl

16See e.g.[Ginsberg, 1988; Fitting, 1991; Avron, 1996].
17See[Arieli and Avron, 1996].



if v1 j=4 p thenv2 j=4 p and ifv1 j=4 :p thenv2 j=4 :p; iffSatS4;G(v1) � SatS4;G(v2)). Note that contrary to the orig-
inal motivation behind the minimal-abnormality strategy of
[Batens, 1998], in this system (as well as in CWA of section
4.3) we do not regard the formulas inG as abnormal (in par-
ticular, all the variables are inG), but rather as the formulas
whose satisfaction we want to minimize in the models.

Minimal inconsistency
[Arieli and Avron, 1998] considers another family of systems.
The idea is to select a subsetI of the truth valuesT as rep-
resenting inconsistent values (aninconsistency set), s.t. for
everyx 2 T , x 2 I iff :x 2 I, andx 2 D\I iff x;:x 2 D.
The values that are not inI are preferred over those that
are inI by defining the pre-order�I on T : x1 �I x2 iffx1 2 T �I orx2 2 I. The obtained�I-preferential systems
select the models that assume minimal inconsistency (w.r.t.I) of the premises. The intuition is that contradictory data
corresponds to inadequate information about the world and
should be minimized.

The preferential system from section 4.3 can be defined
as the�I-preferential system inS>3 whereI = f>g. IfT = ft; f;>g, this is the only inconsistency set. In the gen-
eral case, there may be other inconsistency sets. For exam-
ple, in S4, bothI1 = f>g andI2 = f>;?g are inconsis-
tency sets, and they induce different consequence relations:
if Pi (i = 1; 2) is the pointwise�Ii-preferential system inS4 and� = fp � :p;:p � pg, then� `P1 p � q while� 6`P2 p � q, and`P2 p _ :p but 6`P1 p _ :p. [Arieli and
Avron, 2000a] proves that�I-preferential systems in matri-
ces based on logical bilattices, whereI is an inconsistency
set, induce consequence relations that are nonmonotonic and
paraconsistent w.r.t.:. E.g. `P2 is nonmonotonic, paracon-
sistent, and identical tòCL on classically consistent sets,
for the same reasons as the`P for handling contradictions
from section 4.3. The difference between that`P and`P2
is that the latter is also paracomplete, and can cope not only
with contradictions of the formfp;:pg but also with classi-
cal contradictions of the formfp � f; :p � fg (i.e. this set
does not entail all the formulas under`P2).

For a comparison between the consequence relation of a�I-preferential system andLPm, see [Arieli and Avron,
1998]. [Kifer and Lozinskii, 1992] also proposes a similar
relation in the framework of annotated logics - for a com-
parison between that work and�I-preferential systems, see
[Arieli and Avron, 1996].

According to section 5.2,P1 can be embedded in the
formula-preferential system (inS4) that is based on the setG that includesI>p = p ^ :p for all p 2 Acl andItp =Ifp = I?p = � � �. According to the remark before Corol-
lary 5.5, only the formulasI>p are necessary. ForP2, the set
includesI>p = I?p = (p � :p) ^ (:p � p) for all p 2 Acl
(andItp = Ifp = I?p = � � � are redundant).

6 Conclusion
Our main goal in this paper was to demonstrate the central
role of formula-preferential systems in non-classical reason-
ing. We have shown how different systems from the literature

for reasoning in the face of inconsistencies and other abnor-
malities, can be constructed in this framework. Moreover, al-
though most of these systems were not originally part of the
theoretical research of nonmonotonic consequence relations,
the generalization of their preference relations to the idea of
formula-preferential systems provides us with a method for
ensuring the condition of stopperedness: formula-preferential
systems that are based on finitary semantic structures are
stoppered, and hence satisfy theoretical desiderata for a plau-
sible nonmonotonic logic. All the examples from the litera-
ture that we have given are of this kind since they are based
on finite non-deterministic matrices.

We enumerate some open research questions.
1. Can every plausible consequence relation that is based

on an underlying monotonic relation be induced by a
(stoppered) preferential system? What are the exact suf-
ficient and necessary conditions for stopperedness? Can
the preferential system always be defined as a formula-
/pointwise preferential system? What happens when the
underlying monotonic relation is not finitary?

2. The examples we provided for the preferential systems
were at the propositional level. The next natural thing to
do is to extend them to the first-order level.

3. Another important goal is to relate more works and prac-
tical applications to the framework presented here (e.g.
demonstrating how other “adaptive logics” might be in-
corporated in it). For some of them it might be necessary
to extend and generalize the framework further, e.g. by
defining preferences not only between models but also
between the formulas of the given set of premises.
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