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Abstract

Non-deterministic matrices (Nmatrices) are multiple-valued structures in which the value assigned by
a valuation to a complex formula can be chosen non-deterministically out of a certain nonempty set
of options. We consider two different types of semantics which are based on Nmatrices: the dynamic
one and the static one (the latter is new here). We use the Rasiowa-Sikorski (R-S) decomposition
methodology to get sound and complete proof systems employing finite sets of mv-signed formulas
for all propositional logics based on such structures with either of the above types of semantics. Later
we demonstrate how these systems can be converted into cut-free ordinary Gentzen calculi which are
also sound and complete for the corresponding non-deterministic semantics. As a by-product, we
get new semantic characterizations for some well-known logics (like the logic CAR from [18, 28]).
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1 Introduction

A non-deterministic matrix (Nmatrices) for a propositional language L is a multiple-
valued structure where the operations corresponding to the logical connectives of L
may provide more than one option for the truth-value to be assigned to a complex
formula ψ, given the truth-values assigned to the immediate subformulas of ψ. Nma-
trices were introduced in ([2, 3, 4]), and in [4] it was shown that logics which have a
finite characteristic Nmatrix have the main good properties enjoyed by logics which
have an ordinary (deterministic) finite characteristic matrix. In particular: they are
decidable and finitary (i.e.: they satisfy the compactness theorem). Many concrete
applications of finite Nmatrices were then given in [4, 5, 6, 7], where it was also shown
that for these applications the use of Nmatrices is indeed necessary: no finite ordinary
matrix can be used instead.

However, all the papers cited above concentrated on the problem of providing non-
deterministic semantics for various proof systems. In other words: their aim was to
find characteristic Nmatrices for logics which had been originally introduced through
some proof system (either a Hilbert-type type one or a Gentzen-type one). Then the
the resulting Nmatrices were used to show some interesting properties of these logics
and interesting relations between them. In fact, [5, 6, 7] were devoted to developing
general methods for doing this, and so they provided non-deterministic semantics for
thousands of logics which were (and historically had first been) introduced via some
formal proof system.
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The present paper is the first work which goes in the opposite direction.1 Its goal
is to develop proof systems for logics which are defined by Nmatrices. So here the
Nmatrices come first, and we describe general methods of developing proof systems
for them, demonstrating their usefulness with some concrete examples. Another inno-
vation of this paper is the distinction made between two different types of semantics
which are based on Nmatrices: the dynamic one and the static one. So far, all the
previous papers on the subject employed the dynamic semantics only. This is the first
to introduce (and apply) also the static one.

The structure of the paper is as follows. In Sect. 2 we describe the two types of
semantics for logical systems induced by Nmatrices (the dynamic semantics and the
static semantics). Several running examples of two-valued, three-valued, and four-
valued Nmatrices are given in the second part of that section. In Sect. 3 we introduce
general proof systems for logics having finite-valued non-deterministic semantics, to-
gether with principles that allow us to simplify these systems in the individual cases.
Our systems are based on a weakened version of the Rasiowa-Sikorski (R-S) decom-
position methodology ([25, 30]), which can be easily translated to the well-known
n-sequent formalism ([13]). The soundness and completeness of our general proof
systems are then proved in Sect. 4, where some general applications are also de-
scribed. In Sect. 5, the general method is illustrated on the various running examples
introduced in Sect. 2.2. It turns out then that most of them correspond to well-known
logics. We also show there how our proof systems can be used for obtaining cut-free
ordinary (two-sided) Gentzen-type systems for these well-known logics.

2 Non-deterministic Matrices

2.1 Concept

In what follows, L is a propositional language, On (n ≥ 0) is the set of its n-ary
connectives, W is its set of wffs, p, q, r denote propositional variables, ϕ, ψ, φ, τ denote
arbitrary formulas (of L), and Γ,∆ denote finite sets of formulas.

Definition 2.1 A non-deterministic matrix (Nmatrix) for L is a triple M = (V ,D,O),
where V is a non-empty set of truth values, D is a non-empty proper subset of V (con-
taining its designated values), and O includes an n-ary function �̃ : Vn → 2V \ {∅}
for every n-ary connective � ∈ On.

Definition 2.2 Let M = (V ,D,O) be an Nmatrix.

1. A dynamic valuation in M is a function v : W → V such that for each n-ary
connective � ∈ On, the following holds for all ψ1, . . . , ψn ∈ W:

(SLC) v(�(ψ1, . . . , ψn)) ∈ �̃(v(ψ1), . . . , v(ψn))

2. A static valuation in M is a function v : W → V which satisfies Condition (SLC)
together with the following compositionality principle: for each � ∈ On and for

1Actually, some partial work in this direction was done already in [2, 4], where a connection was established

between canonical Gentzen type systems and 2-valued Nmatrices. It was shown there how to construct a character-

istic 2-valued Nmatrix for any given canonical system, and how to develop a canonical system for any given 2-valued

Nmatrix. However, this was only done for the very special case of 2-valued Nmatrices (with dynamic semantics),

while the present paper effects this for any finite-valued Nmatrix.
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every ψ1, . . . , ψn, ϕ1, . . . , ϕn ∈ W,

(CMP) v(�(ψ1, . . . , ψn)) = v(�(ϕ1, . . . , ϕn)) if v(ψi) = v(ϕi) (i = 1 . . . n)

Note 2.3 The well-known ordinary (deterministic) matrices correspond to the case
when each �̃ is a function taking singleton values only. Then it can be treated as
a function �̃ : Vn → V ; thus there is no difference between static and dynamic
valuations, and we have full determinism.

Note 2.4 Like in usual multi-valued semantics, the principle here is that each formula
has a definite logical value. This is why we exclude ∅ as a value of �̃. However, the
absence of any logical value for a formula can still be simulated in our formalism
by introducing a special logical value ⊥ representing exactly this case (which is a
well-known procedure in the framework of partial logics).

As one can see from the above definitions, the dynamic semantics corresponds to
selecting the value of v(�(ψ1, . . . , ψn)) out of the whole range of the allowed values in
�̃(v(ψ1), . . . , v(ψn)) separately and independently for each tuple 〈v(ψ1), . . . , v(ψn)〉.
Thus the choice of one of the possible values is made at the lowest possible (local)
level of computation, or on-line, and v(ψ1), . . . , v(ψn) do not uniquely determine
v(�(ψ1, . . . , ψn)). This semantics corresponds to the highest level of non-determinism
possible in the context of the definition of an Nmatrix.

On the other hand, with the static semantics this choice is made globally, system-
wide. Indeed, Condition (CMP) says that the value of v(�(ψ1, . . . , ψn)) is now
uniquely determined by v(ψ1), . . . , v(ψn) — which means that the interpretation of
� is a function. The function is a “determinisation” of the non-deterministic inter-
pretation �̃ to be applied in computing the value of any formula under the given
valuation. This limits non-determinism, but we still have the freedom of choosing the
above function among those compatible with the non-deterministic interpretation �̃
of �. The selection is performed before any computation begins. So, in the static
semantics one selects a function fv

� : Vn → V such that, for any (t1, . . . , tn) ∈ V , and
any ψ1, . . . , ψn ∈ W :

fv
� (t1, . . . , tn) ∈ �̃(t1, . . . , tn), v(�(ψ1, . . . , ψn)) = fv

� (v(ψ1) . . . v(ψn))

Definition 2.5 A valuation v in M satisfies a formula ψ (v |= ψ) if v(ψ) ∈ D, and
is a model of Γ (v |= Γ) if it satisfies every formula in Γ.

Definition 2.6 We say that ψ is dynamically (statically) valid in M, in symbols
|=d

M ψ (|=s
M ψ), if v |= ψ for each dynamic (static) valuation v in M.

We say that ∆ dynamically (statically) follows from Γ in M, in symbols Γ `d
M ∆

(Γ `s
M ∆), if for every dynamic (static) model v of Γ in M we have v |= φ for some

φ ∈ ∆.
The relation `d

M (`s
M) is called the dynamic (static) consequence relation induced

by M.

Note 2.7 Obviously, the static consequence relation includes the dynamic one, i.e.
`s
M ⊇ `d

M. For ordinary matrices `s
M = `d

M, so we shall just write `M in this case.
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2.2 Exemplary Nmatrices

Below we shall denote N = V \ D, and shall usually identify singleton values of con-
nectives with the truth values themselves.

Example 2.8 Consider V = {f, t},D = {t}, and assume L has binary connectives
∨,∧,⊃ interpreted classically, and a unary connective ¬, which is interpreted either
classically or paraconsistently. This leads to the Nmatrix M2 = (V ,D,O) for L,
where:

∨̃ f t

f f t

t t t

∧̃ f t

f f f

t f t

⊃̃ f t

f t t

t f t

¬̃ f t

t {f, t}

Obviously, the dynamic semantics satisfies ¬ϕ ∨ ϕ but not ϕ ⊃ ¬¬ϕ (take v(ϕ) =
t, v(¬ϕ) = t, v(¬¬ϕ) = f). On the other hand, the static semantics does satisfy
ϕ ⊃ ¬¬ϕ (it allows just two interpretations for ¬: the classical one and λx.t, and
ϕ ⊃ ¬¬ϕ is valid for both). However, it does not satisfy ¬ϕ ∧ ϕ ⊃ ψ (take the
interpretation of ¬ to be λx.t, and let v(ϕ) = t, v(ψ) = f). It follows that the logics
induced by the dynamic semantics and by the static semantics are different, although
both are paraconsistent. We shall see in Section 5 that they both correspond to
well-know logics.

Example 2.9 Assume now V = {f, e, t},D = {t}, and L has a unary connective ¬
and a binary connective ∨. Consider the Nmatrix MMK = (V ,D,O), with O =
{¬̃, ∨̃}, where:

¬̃ f e t

t e f

∨̃ f e t

f f e t

e e e {e, t}
t t t t

One can easily see that with the static semantics the above Nmatrix corresponds to
the intersection of two well-known, three-valued logics: namely, 3-valued Kleene and
McCarthy [26] logics 2. Indeed: if in the static semantics we take fK

∨ (e, t) = t, we
shall obtain Kleene logic, while by choosing fM

∨ (e, t) = e we shall get McCarthy
logic. Therefore using our procedures for developing proof systems one can obtain
proof systems for both these logics, which coincide with the result of modifying the
proof system for `s

MMK
(as developed in Section 5.3) by strengthening in each case

exactly one of its disjunction rules.

Example 2.10 Consider the following two 3-valued Nmatrices M3
L,M

3
S . In both we

have V = {f,>, t},D = {>, t}. Also the interpretations of disjunction, conjunction
and implication are the same in both of them, corresponding to those in positive
classical logic:

a∨̃b =

{
D if either a ∈ D or b ∈ D,
N if a, b ∈ N ,

2The standard language of these logics includes the connective ∧ as well, but in both of them ∧ is definable in

terms of ¬,∨ by De Morgan laws.
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a∧̃b =

{
D if a, b ∈ D,
N if either a ∈ N or b ∈ N ,

a⊃̃b =

{
D if either a ∈ N or b ∈ D,
N if a ∈ D and b ∈ N .

However, negation is interpreted differently: more liberally in M3
L, and more strictly

in M3
S :

M3
L :

¬̃ f > t

t V f
M3

S :
¬̃ f > t

t D f

Later we shall show, using our general method and theorems, that the dynamic se-
mantics for M3

L and M3
S induce the same logic (i.e., consequence relation). However,

the proof mechanisms developed here give a deeper insight into the matter. Indeed,
we show that the sets of 3-sequents which are derivable in the respective proof systems
we develop for M3

L and M3
S in Section 5.4 (and so, by completeness, also the sets of

3-sequents dynamically valid in M3
L and M3

S , respectively) do differ from each other.

Example 2.11 After considering 2-valued Nmatrices and 3-valued Nmatrices, our
last example is a 4-valued Nmatrix. This is the Nmatrix M4 = (V ,D,O), where
V = {f,⊥,>, t}, D = {>, t}, ∧,∨,⊃ are are defined by the general rules given in
Example 2.10 (applied, however, to the sets D and N = V \ D appearing in the
current exmaple), while ¬ is the negation of the bilattice FOUR ([11, 22, 21, 1]):

¬̃ f ⊥ > t

t ⊥ > f

3 Proof Theory

In this section we present proof systems for propositional logics based on finite Nma-
trices (for both versions of the semantics: the dynamic and the static one). They will
consist of rules operating on finite sets of signed formulas, and axioms being sets of
such formulas. The deduction formalism used here is similar to the so-called Rasiowa-
Sikorski (R-S) systems ([30], [25]), known also as dual tableaux ([23]). However, in
contrast to the former, the deduction rules in our formalism are not invertible.

Definition 3.1 Let V be a finite set (of truth-values), let L be a propositional language
with a set W of wffs, and let M be an Nmatrix for L with V as its set of truth-values.

• A signed formula over L and V is an expression of the form a : ψ, where a ∈
V , ψ ∈ W.

• A valuation v in M satisfies a signed formula a : ψ, in symbols v |= a : ψ, if
v(ψ) = a.

Signed formulas will be denoted by α, β, . . ., and sets of signed formulas — by
Ω,Σ,Φ.

In terms of satisfaction by a valuation and validity, sets of signed formulas will be
interpreted disjunctively:
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Definition 3.2

• A valuation v in M satisfies a set of signed formulas Ω iff it satisfies some signed
formula α ∈ Ω.

• A set of signed formulas Ω is said to be dynamically (statically) valid in an Nmatrix
M, in symbols |=d

M Ω (|=s
M Ω), if v |= Ω for every dynamic (static) valuation v

in M.

As before, let N = V \ D denote the set of non-designated logical values. Further,
for any set of logical values A ⊆ V and any set of formulas F ⊆ W , denote A : F =
{a : ψ | a ∈ A,ψ ∈ F}. The following straightforward observation is the key for using
proof systems based on sets of signed formulas to characterize the logics induced by
Nmatrices.

Proposition 3.3 For any Nmatrix M over V, and any finite sets of formulas Γ,∆ ⊂
W, Γ `d

M ∆ (Γ `s
M ∆) holds iff the set of signed formulas (N : Γ) ∪ (D : ∆)

is dynamically (statically) valid in M. In particular, a formula ϕ is dynamically
(statically) valid in M iff the set D : {ϕ} is dynamically (statically) valid in M.

Definition 3.4 Let M be an Nmatrix, and SF — a deduction system based on finite
sets of signed formulas over the language of M and the set of truth-values of M. We
say that:

• SF is dynamically (statically) complete for M if for all finite sets of formulas
Γ,∆ ⊂ W: Γ `d

M ∆ (Γ `s
M ∆) iff `SF (N : Γ) ∪ (D : ∆).

• SF is weakly dynamically (statically) complete for M if for all formulas ϕ ∈ W:
|=d

M ϕ (|=s
M ϕ) iff `SF (D : {ϕ}).

• SF is fully dynamically (statically) complete for M if for any set of signed for-
mulas Ω :|=d

M Ω (`s
M Ω) iff `SF Ω.

By Prop. 3.3, full completeness implies completeness, which in turn implies weak
completeness.

3.1 Dynamic Semantics

The deduction system SF d
M for the dynamic semantics of an n-valued Nmatrix M

contains:

• Axioms: Each set of signed formulas containing {a : ϕ | a ∈ V}, where ϕ is any
formula in W ;

• Inference rules: For every m-ary connective � ∈ O and any logical values
a1, a2, . . . , am, b1, b2, . . . , bk ∈ V such that �̃(a1, . . . , am) = {b1, . . . , bk}, the rule:

(�-D)
Ω, a1 : ϕ1 . . . Ω, am : ϕm

Ω, b1 : �(ϕ1, . . . , ϕm), . . . , bk : �(ϕ1, . . . , ϕm)
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3.2 Static Semantics

The proof system SF s
M for the static semantics of M is obtained out of the system

SF d
M for the dynamic semantics by adding, for any � ∈ Om and any a1, . . . , am, b ∈ V

such that b ∈ �̃(a1, . . . , am), the rule:

(�-S)
Ω, a1 : ϕ1 . . . Ω, am : ϕm Ω, a1 : ψ1 . . . Ω, am : ψm Ω, b : �(ψ1, . . . , ψm)

Ω, b : �(ϕ1, . . . , ϕm)

Obviously, these (2m+1)-premise inference rules are not very convenient — and, more
importantly, they are not analytic. They can, however, be simplified at the price of
extending the language with constants corresponding to all truth values. Moreover: in
that case we can resign from repeating the inference rules from the dynamic semantics,
adding instead equivalent axioms for the constants.

Let us denote the constant corresponding to a ∈ V by a. Then the proof system
SF sc

M for the static semantics of the language featuring constants consists of:

• Axioms: Each set of signed formulas containing either:
1. {a : ϕ | a ∈ V}, where ϕ is any formula in W ; or
2. {a : a}, for any a ∈ V ; or
3. {b1 : �(a1, . . . , am), . . . , bk : �(a1, . . . , am)} for any � ∈ Om and any a1, . . . , am,

b1, . . . , bk ∈ V such that �̃(a1, . . . , am) = {b1, . . . , bk} .

• Inference rules: For any � ∈ Om and any a1, . . . , am, b ∈ V such that b ∈
�̃(a1, . . . , am), the rule

(�-SC)
Ω, a1 : ϕ1 . . . Ω, am : ϕm Ω, b : �(a1, . . . , am)

Ω, b : �(ϕ1, . . . , ϕm)

Clearly, both the systems presented above are sound. In the sequel we shall denote
by `sc

M the consequence relation induced by the static semantics of an Nmatrix M on
the language L extended with the constants representing the truth values of M.

Note 3.5 Examining the generic deduction systems given above, we can easily ob-
serve that the inference rules of the static semantics really differ from those of the
dynamic semantics only in case of truly non-deterministic values of the connectives.
Indeed, if the value of the connective is a singleton, i.e. �̃(a1, . . . , am) = {b}, the rule
(�-S) is just a weaker version of (�-D), and so need not be included in SF s

M. As for
SF sc

M, the last premise of rule (�-SC) is derivable in the system by virtue of the sin-
gleton set {b : �(a1, . . . , am)} being an axiom — hence it can be skipped (the formal
justification is provided by Principle 2 in the next section). As the other premises of
the “static” and “dynamic” rules coincide, and so do the conclusions in such a “sin-
gleton” case, the rules can be considered identical. Moreover: in this case the “static”
Axiom 3 corresponding to such a singleton value of the connective can be deleted too,
since it is derivable from rule (�-D) and the basic axioms for the constants (“static”
Axiom 2).

Note 3.6 It can easily be proved that the weakening rule (from Ω infer Ω′ in case
Ω ⊂ Ω′) is admissible in our systems. This is the reason why it has not been necessary
to officially include it among our rules, although we shall henceforth treat it as one
of these rules in practice.
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3.3 Streamlining of the Deduction Systems

As in other similar cases, the instances of the generic deduction systems we have given
in Sect. 3.1, 3.2 corresponding to individual Nmatrices are hardly the optimal deduc-
tion systems for these matrices. Hence we now give some principles for streamlining
such systems. Later we shall illustrate their application on the deduction systems for
our exemplary Nmatrices.

Denote the system under consideration by R. Our streamlining principles consist
in: deleting a derivable rule (Princ. 1), replacing a rule by one with weaker premises
(Princ. 2), and combining two rules with the same conclusion (Princ. 3):

Principle 1 If a rule in R is derivable from other rules, it can be deleted.

Principle 2 If
S

Σ
(where S is a set of premises) is a rule in R, S′ is a subset of S

and
S′

Σ
is derivable in R, then

S

Σ
can be replaced with

S′

Σ
. In particular: if

S

Σ
is a rule in R, π ∈ S and π is derivable from S \ {π} in R, then

S

Σ
can be

replaced with
S \ {π}

Σ
.

Principle 3 Rules
Ω1 . . . Ωk

Σ
and

Ω′
1 . . . Ω′

l

Σ
can be replaced with the rule

{Ωi ∪ Ω′
j}1≤i≤k,1≤j≤l

Σ

The validity of Principles 1 and 2 is obvious, while the validity of Principle 3 follows

from the use of contexts in our rules: if
Φ1 . . . Φk

Σ
is a valid application of rule

R, and Σ′ is a set of signed formulas, then
Φ1 ∪ Σ′ . . . Φk ∪ Σ′

Σ ∪ Σ′ is also a valid

application of rule R. Hence for each 1 ≤ i ≤ k, Ωi ∪ Σ follows from {Ωi ∪ Ω′
j} | 1 ≤

j ≤ l} using the second rule, and then Σ follows from these k sets using the first rule.

4 Completeness and Its Applications

4.1 Completeness Proofs

In this section we shall prove completeness of the calculi presented in Sect. 3.

Theorem 4.1 The calculus SF d
M is fully dynamically complete for M.

Proof: It is straightforward to show that `SF d

M

Ω implies |=d
M Ω. It remains to

show that a set Ω of signed formulas not provable in SF d
M is not valid, i.e., there is

a valuation v in M which refutes all formulas in Ω.
Define a set Ω of signed formulas to be saturated if the following holds: if �̃(a1, . . . , am)

= {b1, . . . , bk}, and b1 : �(ϕ1, . . . , ϕm), . . . , bk : �(ϕ1, . . . , ϕm) are all in Ω, then
ai : ϕi ∈ Ω for some 1 ≤ i ≤ m. Let Ω be not provable in SF d

M, and suppose it is not
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saturated. Now assume for contradiction that Ω ∪ {ai : ϕ} is provable for 1 ≤ i ≤ m.
Then from rule (� −D) we get that Ω ∪ {b1 : �(ϕ1, . . . , ϕm), . . . , bk : �(ϕ1, . . . , ϕm)}
is provable - but the latter set is identical with Ω. Hence there is an i such that
Ω ∪ (ai : ϕi) is not provable. By repeating this procedure, we can extend Ω to a
saturated, non-provable set in a finite number of steps (since each time we add only
subformulas of the formulas already in Ω).

Thus it suffices to show that if Ω is saturated and not provable in SF d
M then it has

a countermodel v. We define such a v by induction on the complexity of formulas.
According to our goal, v is defined so that v(ϕ) 6= i for any (i : ϕ) ∈ Ω.

First, let p be any propositional variable. As the unprovable Ω cannot contain any
axiom of SFM

d , (i0 : p) 6∈ Ω for some i0. We put v(p) = i0, which meets the goal
condition. Suppose now we have defined v for formulas of complexity up to l, and that
ψ = �(ϕ1, . . . , ϕm), where each ϕi is of complexity at most l. Hence v(ϕi) is already
defined for each i. Assume ai = v(ϕi), and �̃(a1, . . . , am) = {b1, . . . , bk}. Then there
must be an i0 such that bi0 : �(ϕ1, . . . , ϕm) 6∈ Ω. Indeed: as Ω is saturated, otherwise
there would be j with aj : ϕj ∈ Ω, contradicting the induction hypothesis on ϕj . Now
take v(ψ) = bi0 .

By construction, the valuation v defined above refutes Ω. Moreover, for any m-
ary connective � and any formulas ϕ1, . . . , ϕm of L we have v(�(ϕ1, . . . , ϕm)) ∈
�̃(ϕ1, . . . , ϕm), so v is a well-defined valuation compliant with the dynamic semantics
of the given Nmatrix. 2

Corollary 4.2 The calculus SF d
M is (weakly) dynamically complete with respect to

M.

Theorem 4.3 The calculus SF sc
M is fully statically complete for M.

Proof: Again, the soundness of SF sc
M is an obvious consequence of the definition of

the static semantics. The proof of completeness is analogous to the dynamic case, but
now we define a set Ω of signed formulas to be saturated if whenever b : �(ϕ1, . . . , ϕm)
is in Ω, and b ∈ �̃(a1, . . . , am), then either ai : ϕi ∈ Ω for some 1 ≤ i ≤ m or
b : �(a1, . . . , am) is in Ω. The definition of a counter-valuation v for a given unprovable,
saturated Ω starts this time by taking v(a) = a for any constant a ∈ V . The case
where ϕ is a propositional variable is handled like in the dynamic case. Next, if ϕ
is of the form �(a1, . . . , am) then there should be some b ∈ �̃(a1, . . . , am) such that
b : �(a1, . . . , am) is not in Ω (otherwise Ω would be provable by Axiom 3 of SF sc

M).
We let v(ϕ) = b in this case. Finally, for other complex formulas we define inductively
v(�(ϕ1, . . . , ϕm)) = v(�(a1, . . . , am)), where ai = v(ϕi) (i = 1, . . . ,m). 2

Corollary 4.4 The calculus SF sc
M is (weakly) statically complete with respect to M.

Note 4.5 It can be directly seen that the completeness of SF sc
M implies completeness

of the system SF s+c
M for the language with the constants, obtained out of the system

SF s
M by adding the basic axioms for constants {a : a}. Indeed, it is easy to see that

out of these axioms plus rule (�-D) of SF s+c
M we can infer the one remaining Axiom

3. and the rule (�-SC) of SF sc
M. Hence SF s+c

M is at least as strong as SF sc
M, which

means it must be complete like SF sc
M.
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As to the system SF s
M, its completeness can be proved directly, using a method

analogous to the case of SF d
M, but we skip it, since we will not make any use of the

completeness of SF s
M here.

4.2 Applications

4.2.1 Elimination of Generalized Cuts

The analogue of the well known cut rule for ordinary sequents is the following gener-
alized cut rule for sets of signed formulas:

Ω ∪ {i : ϕ | i ∈ I} Ω ∪ {j : ϕ | j ∈ J}
Ω

for I, J ⊆ V , I ∩ J = ∅

Theorem 4.6 The generalized cut rule is admissible in SF d
M and in SF sc

M.

Proof: The rule is obviously sound for both the dynamic semantics and the static
one. Hence its admissibility follows from the completeness theorems.

4.2.2 Proof Search: R-S Systems

The proof systems developed here operate on sets of multi-valued (mv) signed for-
mulas. As we have mentioned in the introduction, they follow the pattern of mv
Rasiowa-Sikorski (R-S) systems ([25, 30]). Such systems are commonly used for proof
search by applying the inference rules “backwards”. Besides R-S systems, another,
much better known type of system used for this purpose are mv tableaux (R-S sys-
tems are sometimes called “dual tableaux” — see [23]). From a syntactical point
of view, the two types of systems are quite similar. They are based on rules which
decompose formulas into simpler ones, and use those rules to generate labeled decom-
position trees for formulas, which are termed “proofs” if they satisfy certain closure
properties. The main difference between R-S systems and tableaux is in the semantic
interpretation of what is done in them: Tableaux interpret sets of signed formulas
conjunctively, while R-S systems interpret them disjunctively. Accordingly, an open
branch of a tableau yields a valuation which satisfies all the signed formulas on that
branch, while an open branch of an R-S tree yields a valuation which refutes all the
signed formulas on that branch.

In the two-valued case, both mechanisms are equivalent from the proof-theoretic
viewpoint, differing just in presentation. However, in the multi-valued case, the dif-
ference is much more significant. To prove Γ ` ∆, the R-S systems use a single
decomposition tree for the set (N : Γ) ∪ (D : ∆) – and this is also the case for the
systems developed here. On the other hand, the tableaux formalism uses a separate
tableau for each assignment of labels in D to the formulas in Γ, and labels in N to
the formulas in ∆. Thus to show the validity of a formula ϕ one has to show that
{a : ϕ} has a closed tableau for each a ∈ N .3

3In [23] this problem is dealt with by allowing sets of truth values to function as signs in signed formulas. This is

not necessary in case of R-S systems, but the use of this method might possibly improve their efficiency too. This

will be a topic of future research.
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4.2.3 Obtaining Cut-free, Ordinary Two-sided Gentzen-type Systems

In [9] we describe a general procedure which allows us to obtain in many important
cases an ordinary (two-sided), cut-free Gentzen-type system from an R-S style mv-
calculus. In the next section we present examples of systems obtained with this
method from the mv-calculi developed here.

5 Examples

In this section we show what R-S deduction systems result from applying the general
schemes of axioms and inference rules given in Sect. 3.1, 3.2 to the concrete cases
of our exemplary Nmatrices. We further show how these systems can be reduced
with help of the reduction principles given in Sect. 3.3, and what are the equivalent
complete and cut-free systems of ordinary, two-sided sequents obtained from these
R-S systems using the general methods of [9].

It is useful to employ in what follows another notational variant for our proof
systems, presenting them as calculi of n-sequents (also termed many-sided sequents,
or many-placed sequents) 4. Without loss of generality we may assume that the set
of truth values of the language L is V = {0, 1, . . . , n− 1} (where n ≥ 2), with the set
of designated values being D = {d, . . . , n− 1} (where d ≥ 1)5.

Definition 5.1

• By an n-sequent over the language L we mean an expression Σ of the form
Γ0|Γ1| . . . |Γn−1, where for each i Γi ⊆ W is a finite set of formulas of L.

• A valuation v in an Nmatrix M satisfies the sequent Σ = Γ0|Γ1| . . . |Γn−1, written
v |= Σ, if there exists an i, 0 ≤ i ≤ n− 1, and ϕi ∈ Γi such that v(ϕi) = i.

• A sequent Σ is said to be dynamically (statically) valid in an Nmatrix M, in
symbols |=d

M Σ (|=s
M Σ) if v |= Σ for every dynamic (static) valuation v in M.

Clearly, in view of the above, a set S of signed formulas over the language L is
equivalent to the sequent Γ0 | Γ1 | . . . | Γn−1, where Γi = {ψ | (i : ψ) ∈ S}. This gives
a simple method for translating our proof systems (based on sets of signed formulas)
into sequent calculi, which we will use in this section.

To make the presentation more intuitive, the sequent bar | which separates the
non-designated values from the designated ones will be replaced with the symbol ⇒
used in ordinary sequents.

5.1 Dynamic Semantics of M2: the Logic CLuN

Although cut-free canonical Gentzen-type systems were already developed for all dy-
namic 2-valued Nmatrices in [2, 4], it should be illuminating to see how the methods

4Proof systems based on n-sequents were invented and reinvented several times in the past. See e.g. [31, 29, 14].

See also [32, 23, 13] for further details and references. Now formulating our general methods and calculi in this

format is extremely cumbersome and difficult to read. However, when the number n of truth-values is not big (as

is the case in our examples), the use of n-sequents makes it easier to grasp what is going on, and especially the

process of converting the resulting calculi to ordinary, 2-sided Gentzen-type systems becomes smoother and more

transparent.
5If V 6= {0, 1, ..., n − 1}, we shall assume that the order of sequent positions corresponding to the individual

truth values coincides with the order of those values in the truth tables.
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of this paper work in this simple case (it should also be instructive to compare it with
the corresponding static case, which has not been dealt with before). So consider the
dynamic semantics of the 2-valued Nmatrix M2 from Example 2.8. We describe the
{∨,¬} fragments of the corresponding systems (implication and conjunction can be
handled similarly).

The basic rules for ∨,¬ we get from the procedure of Sect. 3.1 are:

(1)
Ω, f : ϕ Ω, f : ψ

Ω, f : ϕ ∨ ψ
(2)

Ω, f : ϕ Ω, t : ψ

Ω, t : ϕ ∨ ψ
(3)

Ω, t : ϕ Ω, f : ψ

Ω, t : ϕ ∨ ψ

(4)
Ω, t : ϕ Ω, t : ψ

Ω, t : ϕ ∨ ψ
(5)

Ω, f : ϕ

Ω, t : ¬ϕ
(6)



Ω, t : ϕ

Ω, f : ¬ϕ, t : ¬ϕ

ff

This system is hardly an optimal one, so we next apply our reduction principles 1–3
of Sect. 3.3 to bring it to a more compact and pleasing form.

Negation: The rule for negation enclosed in brackets has a tautological conclusion,
and therefore it can be deleted by Principle 1. This leaves us with the single
negation rule (5), which in the n-sequent notation mentioned above takes the
form:

(5)
Γ, ϕ⇒ ∆
Γ ⇒ ∆,¬ϕ

Note that as n = 2 in this example, we obtain the standard sequents here. It
should also be noted that by adding a rule dual to (5) we obtain a proof system
for classical logic.

Disjunction: Rules 3,4 have a common conclusion, so they can be grouped together
under Princ. 3 in Sect. 3.3, yielding a rule with four premises. Two of them are
subsumed by the first one, so we can eliminate them by Principle 2 to get the rule

Ω, t : ϕ Ω, f : ψ, t : ψ
Ω, t : ϕ ∨ ψ

However, the second premise in this rule is tautological, so we can delete it too,
getting

Ω, t : ϕ
Ω, t : ϕ ∨ ψ

Using Princ. 3 for combining the latter rule with Rule 2, and deleting again a
tautological premise, we finally get

Ω, t : ϕ, t : ψ
Ω, t : ϕ ∨ ψ

Together with Rule 1, we thus get the following reduced set of disjunction rules:

Ω, f : ϕ Ω, f : ψ

Ω, f : ϕ ∨ ψ

Ω, t : ϕ, t : ψ

Ω, t : ϕ ∨ ψ
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Again, in the alternative notational variant of the sequent calculus, the above rules
can be rewritten to the standard set of disjunction rules in the sequent calculus:

Γ, ϕ ⇒ ∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆

Γ ⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ

Let SF d
M2

be the proof system for the dynamic semantics presented above. It is
already an ordinary Gentzen-type system, and it is cut-free by Theorem 4.6. As its
single rule for negation obviously translates to ¬ϕ∨ϕ, a sound and complete Hilbert-
type axiomatization for `d

M2
is obtained by adding this axiom schema to a standard

Hilbert-type formulation of positive classical logic.

Note 5.2 The Gentzen-type and Hilbert-type systems we have just derived are in fact
the standard ones used in the literature for Batens’ logic CLuN from [10]. This fact
implies that `d

M2
= `CLuN.6 (Officially, this result was first shown in [2, 3, 4], but it

should be noted that already in [10], M2 and its the dynamic semantics had implicitly
been introduced, together with the sound and complete Hilbert-type system we have
derived for it here).

5.2 Static Semantics of M2: the Logic CAR

Now let us turn to the static semantics of the Nmatrix M2. We know from Note 3.5 in
Sect. 3.2 that static axioms corresponding to deterministic values of connectives can
be deleted. The only non-deterministic value of a connective is ¬t = {f, t}, and the
corresponding axiom is {f : ¬t, t : ¬t} — which can also be deleted as a special case
of the general axiom for the dynamic semantics. Thus we only have two additional
axioms for the constants: {f : f}, {t : t}. In the sequent notation, these axioms take
the form f ⇒, ⇒ t, respectively, while the general axiom inherited from the dynamic
semantics becomes ϕ ⇒ ϕ, which is the well-known basic axiom of the standard
sequent calculus.

As to the inference rules, we know again from Note 3.5 that the “static” rules
for deterministic values of connectives coincide with the corresponding “dynamic”
rules. Hence in this example it is enough to give the two static rules corresponding
to ¬t = {f, t}:

Ω, t : ϕ Ω, f : ¬t

Ω, f : ¬ϕ

Ω, t : ϕ Ω, t : ¬t

Ω, t : ¬ϕ

which in the sequent notation become

(I)
Γ ⇒ ∆, ϕ Γ,¬t ⇒ ∆

Γ,¬ϕ⇒ ∆
(II)

Γ ⇒ ∆, ϕ Γ ⇒ ∆,¬t

Γ ⇒ ∆,¬ϕ

Accordingly, denote (following section 3.2) by SF sc
M2

the deduction system obtained

by adding to the system SF d
M2

above the basic axioms f ⇒ and ⇒ t, as well as rules
(I), (II). We know from Sect. 3 that SF sc

M2
is complete for `s

M2
, and the cut rule

is admissible in it. Our next goal is to provide for `s
M2

a system without constants
having the same properties.

6The original language of CLuN includes also the propositional constant ⊥, which can easily be added here too.
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As a starting point we take the system SF s
M2

(recall that it is obtained out of SF d
M2

by adding the rule schema (�−S) of Sect. 3.2). This system has two additional rules
for negation:

(I-s)
{Γ ⇒ ∆, ϕ} Γ ⇒ ∆, ψ Γ ⇒ ∆,¬ψ

Γ ⇒ ∆,¬ϕ
(II-s)

Γ ⇒ ∆, ϕ {Γ ⇒ ∆, ψ} Γ,¬ψ ⇒ ∆

Γ,¬ϕ ⇒ ∆

It can be easily seen that rules (I-s), (II-s) remain semantically valid if we drop the
premises included in brackets, so in what follows we will use these weaker versions
of them (this is not essential, but it makes further reasoning easier). Obviously, the
aforementioned rules do not have the subformula property — so our immediate goal
is to transform them to valid analytic rules with the same power. Let us begin with
rule (II-s). Its problematic premise, which makes the rule non-analytic, is Γ,¬ψ ⇒ ∆.
We take a special instance of (II-s), where this premise is an axiom, and together with
weakening obtain the following derivation:

Γ ⇒ ∆, ϕ
Γ ⇒ ∆, ϕ,¬ψ Γ,¬ψ ⇒ ∆,¬ψ

Γ,¬ϕ⇒ ∆,¬ψ

leading to the simpler analytic rule

(IV)
Γ ⇒ ∆, ϕ

Γ,¬ϕ⇒ ∆,¬ψ

It can easily be checked that a similar procedure applied to rule (I-s) yields the same
rule.

Definition 5.3 Let Gs
M2

be the system obtained from SF s
M2

by replacing rules (I-s)
and (II-s) with rule (IV) above, and let Gsc

M2
be obtained from SF sc

M2
by replacing

rules (I) and (II) with the same rule (IV).

Theorem 5.4

1. Gs
M2

is sound and complete for `s
M2

, and the cut rule is admissible in it.

2. Gsc
M2

is sound and complete for `sc
M2

, and the cut rule is admissible in it.

Proof. The first part of the theorem is an immediate corollary of the second, because
all the rules ofGsc

M2
have the subformula property (and so the axioms for the constants

cannot be used in a cut-free proof of a sequent in the language of Gs
M2

).
For the second part, note first that the soundness of Gsc

M2
follows from that of

SF sc
M2

, because rule (IV) is derivable in the latter. To complete the proof it suffices
(by the completeness of SF sc

M2
) to show that rules (I) and (II) are admissible in Gsc

M2
.

To show admissibility of Rule I in Gsc
M2

, assume we have (cut-free) proofs of the
sequents (A) Γ ⇒ ∆, ϕ and (B) Γ,¬t ⇒ ∆ in Gsc

M2
. Change in the proof of (B)

every ancestor of the constant t in the indicated occurrence of ¬t on the left hand
side of (B) to ϕ, and add the context Γ ⇒ ∆ to all the sequents in the proof. Neither
of this influences the validity of the applications of rules — and the left hand side
of the sequent (B) changes to the desired form. The axioms without an ancestor
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of the considered occurrence of t are translated to axioms followed by weakening.
The axioms that might contain such an ancestor are ⇒ t and ¬t ⇒ ¬t. The first
translates to Γ ⇒ ∆, ϕ, which is just the provable sequent (A). The second yields
Γ,¬ϕ ⇒ ∆,¬t. However, the latter sequent is derivable from (A) using Rule (IV).
As a result, we get a (cut-free) proof of Γ,¬ϕ⇒ ∆.

In case of Rule II, we assume we have (cut-free) proofs of its premises in Gsc
M2

.
Change in the proof of Γ ⇒ ∆,¬t each ancestor of the indicated occurrence of t to
ϕ. As a result, the axiom t ⇒ t is replaced by the sequent ϕ ⇒ t derivable from
the axiom ⇒ t by weakening, and the axiom ¬t ⇒ ¬t — by the sequent ¬t ⇒ ¬ϕ,
derivable from ⇒ t using Rule (IV). Since these are the only axioms giving rise to the
occurrences of t we are replacing, and the applications of rules are preserved under
this transformation, we eventually obtain a cut-free proof of Γ ⇒ ∆,¬ϕ. Hence Rule
II is admissible too. 2

Note 5.5 An examination of the derivation above of Rule II reveals that it is sufficient
to have a proof of the second premise of that rule in order to get a proof of its
conclusion. This indicates that Rule II should remain valid if its first premise is
deleted. A direct check proves that it is indeed so.

Note 5.6 The two negation rules of Gsc
M2

translate to ¬ϕ ∨ ϕ and ϕ ⊃ (¬ϕ ⊃ ¬ψ).
Hence a sound and complete Hilbert-type axiomatization for `s

M2
is obtained by

adding these two axiom schemes to a standard Hilbert-type formulation of positive
classical logic.

Note 5.7 The logic CAR from [18, 28] is the minimal extension of CLuN for which
substitution of equivalents is a valid rule. In [18] a corresponding sound and complete
Hilbert type system was presented7. That system differs from the one we have just
derived for `s

M2
only by having (ψ ⊃ ϕ) ⊃ (¬ϕ ⊃ ¬ψ) as an axiom instead of

ϕ ⊃ (¬ϕ ⊃ ¬ψ). Since the two systems can easily be seen to be equivalent, it follows
that CAR is in fact the logic corresponding to the static semantics of M2:

Corollary 5.8 CAR is sound and complete with respect to the static semantics of
M2, i.e. `s

M2
= `CAR.

5.3 MMK and the Logics of McCarthy and Kleene

Next, let us see what systems we get for the 3-valued Nmatrix MMK from Exam-
ple 2.9.

Dynamic semantics:

Negation:
Ω, f : ϕ

Ω, t : ¬ϕ

Ω, e : ϕ

Ω, e : ¬ϕ

Ω, t : ϕ

Ω, f : ¬ϕ

7Proof systems for this logic, though not its semantics, were already considered by Curry in [20].
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Disjunction: We get the following nine rules:

(f ∨ f)
Ω, f : ϕ Ω, f : ψ

Ω, f : ϕ ∨ ψ
(f ∨ e)

Ω, f : ϕ Ω, e : ψ

Ω, e : ϕ ∨ ψ

(f ∨ t)
Ω, f : ϕ Ω, t : ψ

Ω, t : ϕ ∨ ψ
(e ∨ f)

Ω, e : ϕ Ω, f : ψ

Ω, e : ϕ ∨ ψ

(e ∨ e)
Ω, e : ϕ Ω, e : ψ

Ω, e : ϕ ∨ ψ
(e ∨ t)

Ω, e : ϕ Ω, t : ψ

Ω, e : ϕ ∨ ψ, t : ϕ ∨ ψ

(t ∨ f)
Ω, t : ϕ Ω, f : ψ

Ω, t : ϕ ∨ ψ
(t ∨ e)

Ω, t : ϕ Ω, e : ψ

Ω, t : ϕ ∨ ψ

(t ∨ t)
Ω, t : ϕ Ω, t : ψ

Ω, t : ϕ ∨ ψ

The four rules with the conclusion Ω, t : ϕ ∨ ψ can be combined using our
reduction principles to just one rule. Likewise, the rules (e ∨ f) and (e ∨ e) can
be combined too. Hence the set of nine rules given above can be reduced to the
following five:

Ω, f : ϕ Ω, f : ψ

Ω, f : ϕ ∨ ψ

Ω, f : ϕ Ω, e : ψ

Ω, e : ϕ ∨ ψ

Ω, f : ϕ, t : ϕ Ω, t : ϕ, t : ψ

Ω, t : ϕ ∨ ψ

Ω, e : ϕ Ω, f : ψ, e : ψ

Ω, e : ϕ ∨ ψ

Ω, e : ϕ Ω, t : ψ

Ω, e : ϕ ∨ ψ, t : ϕ ∨ ψ

which in the sequent notation can be written as:

Γf, ϕ|Γe ⇒ Γt Γf, ψ|Γe ⇒ Γt
Γf, ϕ ∨ ψ|Γe ⇒ Γt

Γf, ϕ|Γe ⇒ Γt Γf|Γe, ψ ⇒ Γt
Γf|Γe, ϕ ∨ ψ ⇒ Γt

Γf, ϕ|Γe ⇒ Γt, ϕ Γf|Γe ⇒ Γt, ϕ, ψ

Γf|Γe ⇒ Γt, ϕ ∨ ψ

Γf|Γe, ϕ ⇒ Γt Γf, ψ|Γe, ψ ⇒ Γt
Γf|Γe, ϕ ∨ ψ ⇒ Γt

Γf|Γe, ϕ ⇒ Γt Γf|Γe ⇒ Γt, ψ

Γf|Γe, ϕ ∨ ψ ⇒ Γt, ϕ ∨ ψ

Static semantics: The only non-deterministic value of a connective we have here is
e ∨ t = {e, t}. Hence together with the basic axioms for constants we obtain the
following additional axioms for the static semantics: {f : f}, {e : e}, {t : t}, {e :
e∨ t, t : e∨ t}, which in the sequent notation take the form: f| ⇒ , |e ⇒ , | ⇒
t, |e ∨ t ⇒ e ∨ t. As to the inference rules, the only ones differing from the rules
for the dynamic semantics are those corresponding to e ∨ t = {e, t}:

Γf|Γe, ϕ ⇒ Γt Γf|Γe ⇒ Γt, ψ Γf|Γe, e ∨ t ⇒ Γt
Γf|Γe, ϕ ∨ ψ ⇒ Γt

Γf|Γe, ϕ ⇒ Γt Γf|Γe ⇒ Γt, ψ Γf|Γe ⇒ Γt, e ∨ t

Γf|Γe ⇒ Γt, ϕ ∨ ψ
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We shall now translate the above systems of 3-sequent inference rules and axioms to
ordinary, 2-sided sequent calculi8. The translation is based on the observation that,
for any formula ϕ and any valuation v in MMK , the following relationships hold:

v(ϕ) = t iff v(ϕ) ∈ D
v(ϕ) = e iff v(ϕ) ∈ N & v(¬ϕ) ∈ N
v(ϕ) = f iff v(ϕ) ∈ N & v(¬ϕ) ∈ D

(5.1)

where D = {t},N = {f, e} are the sets of designated and non-designated values of
MMK , respectively. Now, for any valuation v, v satisfies an ordinary sequent Γ ⇒ ∆
if either v(ϕ) ∈ N for some ϕ ∈ Γ, or v(ψ) ∈ D for some ψ ∈ Γ. It easily follows
therefore from (5.1) above that v satisfies Γf|Γe ⇒ Γt if and only if it satisfies all
the ordinary sequents of the form Γ′

f
,Γ′

e,¬Γ′′
e ⇒ Γt,¬Γ′′

f
, where Γl = Γ′

l ] Γ′′
l for

l ∈ {f, e}. Based on this, we translate the 3-sequent inference rules as follows. Given

a 3-sequent rule R =
S

Σ
, we translate each 3-sequent in the premises S and in the

conclusion Σ to the equivalent set of ordinary sequents defined above, obtaining the
sets S′ and Σ′ of ordinary sequents, respectively. Then a rule R is replaced by the
equivalent set of 2-sequent rules which allow us to derive each sequent in Σ′ out of
the sequents in S′.

By way of example, consider the rule

Γf, ϕ|Γe ⇒ Γt Γf, ψ|Γe ⇒ Γt
Γf, ϕ ∨ ψ|Γe ⇒ Γt

Translating the premises and the conclusion to sets of ordinary sequents, we get as a
result the following two rules of the ordinary sequent calculus:

Γ, ϕ⇒ ∆ Γ ⇒ ∆,¬ϕ Γ, ψ ⇒ ∆ Γ ⇒ ∆,¬ψ
Γ, ϕ ∨ ψ ⇒ ∆

Γ, ϕ⇒ ∆ Γ ⇒ ∆,¬ϕ Γ, ψ ⇒ ∆ Γ ⇒ ∆,¬ψ
Γ ⇒ ∆,¬(ϕ ∨ ψ)

It can be directly checked that these four-premise rules can be optimized by deleting
part of their premises while preserving their semantic validity, which yields:

Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆
Γ, ϕ ∨ ψ ⇒ ∆

Γ ⇒ ∆,¬ϕ Γ ⇒ ∆,¬ψ
Γ ⇒ ∆,¬(ϕ ∨ ψ)

Proceeding in a similar way with all rules and axioms of the 3-sequent calculi presented
above, we get the ordinary sequent calculi given below.

Dynamic semantics: The system GMKd is defined as follows:

Axioms: ϕ⇒ ϕ

Inference rules:

8As noted above, the translation presented here is a particular instance of a general method described in [9].
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(1)
Γ, ϕ⇒ ∆

Γ,¬¬ϕ⇒ ∆
(2)

Γ ⇒ ∆, ϕ

Γ,¬ϕ ⇒ ∆
(3)

Γ ⇒ ∆, ϕ

Γ ⇒ ∆,¬¬ϕ

(4)
Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
(5)

Γ ⇒ ∆,¬ϕ Γ ⇒ ∆,¬ψ

Γ ⇒ ∆,¬(ϕ ∨ ψ)
(6)

Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

(7)
Γ ⇒ ∆, ϕ,¬ϕ Γ ⇒ ∆, ϕ, ψ

Γ ⇒ ∆, ϕ ∨ ψ
(8)

Γ,¬ϕ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

Static semantics: The system GMKsc is obtained from GMKd by augmenting it
with:

Additional axioms: f ⇒, e ⇒, ¬e ⇒, ⇒ t

Additional inference rules:

Γ, ϕ ⇒ ∆ Γ,¬ϕ⇒ ∆ Γ, e ∨ t ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆

Γ ⇒ ∆, ψ Γ ⇒ ∆, e ∨ t

Γ ⇒ ∆, ϕ ∨ ψ

Theorem 5.9 The two-sided calculi GMKd, GMKsc are sound and complete for the
dynamic and the static semantic of MMK , respectively, and the cut rule is admissible
in them.

Proof. Soundness of the above systems follows immediately from soundness of the
original 3-sequent calculi out of which they have been obtained, since our translation
preserves validity of rules. To show completeness and admissibility of cuts assume
e.g. that Γ ⇒ ∆ is valid according to the dynamic semantics. Then Γ `d

MMK
∆. It

follows by Proposition 3.3 that the 3-sequent Γ | Γ ⇒ ∆ is valid, and so provable in
SF d

MMK
. Any such proof of Γ | Γ ⇒ ∆ can be directly translated by our procedure to

a cut-free proof in GMKd of any of its 2-sequent translations. In particular, Γ ⇒ ∆
has such a proof.

Using similar procedures, we can obtain sequent calculi for Kleene and McCarthy
logics. As we have mentioned when introducing MMK , the resulting systems cor-
respond to GMKd with one disjunction rule strengthened in each case. Namely, to
obtain McCarthy logic, we replace rule (4) above with

Γ, ϕ⇒ ∆ Γ,¬ϕ, ψ ⇒ ∆
Γ, ϕ ∨ ψ ⇒ ∆

while for Kleene logic we delete the first premise in rule (7), obtaining the rule:

Γ ⇒ ∆, ϕ, ψ
Γ ⇒ ∆, ϕ ∨ ψ

Finally, it should be noted that except (4), the two-sided rules developed above either
coincide with the rules developed for McCarthy logic in [24], or can be shown to be
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mutually derivable with them. For example, rule (7) can be “split” using the converse
of Principle 3 into the following rules from [24]:

Γ ⇒ ∆, ϕ
Γ ⇒ ∆, ϕ ∨ ψ

Γ ⇒ ∆,¬ϕ Γ ⇒ ∆, ψ
Γ ⇒ ∆, ϕ ∨ ψ

5.4 Dynamic Semantics of M3
L and M3

S: the Logic Cmin

From now on, we will only use the sequent notation in the proof systems for our
exemplary logics. Let us turn to the dynamic semantics of the Nmatrices M3

L,M
3
S

from Example 2.10. In case of disjunction, the basic 3-sequent rules of Sect. 3.1 are
as follows:

(f ∨ f)
Γf, ϕ ⇒ Γ>|Γt Γf, ψ ⇒ Γ>|Γt

Γf, ϕ ∨ ψ ⇒ Γ>|Γt
(f ∨ >)

Γf, ϕ ⇒ Γ>|Γt Γf ⇒ Γ>, ψ|Γt
Γf ⇒ Γ>, ϕ ∨ ψ|Γt, ϕ ∨ ψ

(f ∨ t)
Γf, ϕ ⇒ Γ>|Γt Γf ⇒ Γ>|Γt, ψ

Γf ⇒ Γ>, ϕ ∨ ψ|Γt, ϕ ∨ ψ
(> ∨ f)

Γf ⇒ Γ>, ϕ|Γt Γf, ψ ⇒ Γ>|Γt
Γf ⇒ Γ>, ϕ ∨ ψ|Γt, ϕ ∨ ψ

(> ∨ >)
Γf ⇒ Γ>, ϕ|Γt Γf ⇒ Γ>, ψ|Γt

Γf ⇒ Γ>, ϕ ∨ ψ|Γt, ϕ ∨ ψ
(> ∨ t)

Γf ⇒ Γ>, ϕ|Γt Γf ⇒ Γ>|Γt, ψ

Γf ⇒ Γ>, ϕ ∨ ψ|Γt, ϕ ∨ ψ

(t ∨ f)
Γf ⇒ Γ>|Γt, ϕ Γf, ψ ⇒ Γ>|Γt

Γf ⇒ Γ>, ϕ ∨ ψ|Γt, ϕ ∨ ψ
(t ∨ >)

Γf ⇒ Γ>|Γt, ϕ Γf ⇒ Γ>, ψ|Γt
Γf ⇒ Γ>, ϕ ∨ ψ|Γt, ϕ ∨ ψ

(t ∨ t)
Γf ⇒ Γ>|Γt, ϕ Γf ⇒ Γ>|Γt, ψ

Γf ⇒ Γ>, ϕ ∨ ψ|Γt, ϕ ∨ ψ

Using again reduction principles 1–3 we can reduce them to just two rules, analogous
to the standard ones:

Γf, ϕ ⇒ Γ>|Γt Γf, ψ ⇒ Γ>|Γt
Γf, ϕ ∨ ψ ⇒ Γ>|Γt

Γf ⇒ Γ>, ϕ, ψ|Γt, ϕ, ψ

Γf ⇒ Γ>, ϕ ∨ ψ|Γt, ϕ ∨ ψ

The difference between the two Nmatrices M3
L,M

3
S concerns only negation. Accord-

ingly, the corresponding systems differ only in the negation rules. Thus for the liberal
case we get the following 3 rules:

Γf, ϕ ⇒ Γ>|Γt
Γf ⇒ Γ>|Γt,¬ϕ



Γf ⇒ Γ>, ϕ|Γt
Γf,¬ϕ⇒ Γ>,¬ϕ|Γt,¬ϕ

ff

Γf ⇒ Γ>|Γt, ϕ

Γf,¬ϕ⇒ Γ>|Γt

However, the rule for the single non-deterministic value of the negation of M3
L (the

one enclosed in brackets) is trivial (since its conclusion is valid), and can be deleted.
The final system SFM3

L

for M3
L we get is:
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(∨ ⇒)
Γf, ϕ⇒ Γ>|Γt Γf, ψ ⇒ Γ>|Γt

Γf, ϕ ∨ ψ ⇒ Γ>|Γt

Γf ⇒ Γ>, ϕ, ψ|Γt, ϕ, ψ

Γf ⇒ Γ>, ϕ ∨ ψ|Γt, ϕ ∨ ψ
(⇒ ∨)

(∧ ⇒)
Γf, ϕ, ψ ⇒ Γ>|Γt

Γf, ϕ ∧ ψ ⇒ Γ>|Γt

Γf ⇒ Γ>, ϕ|Γt, ϕ Γf ⇒ Γ>, ψ|Γt, ψ

Γf ⇒ Γ>, ϕ ∧ ψ|Γt, ϕ ∧ ψ
(⇒ ∧)

(⊃⇒)
Γf ⇒ Γ>, ϕ|Γt, ϕ Γf, ψ ⇒ Γ>|Γt

Γf, ϕ ⊃ ψ ⇒ Γ>|Γt

Γf, ϕ ⇒ Γ>, ψ|Γt, ψ

Γf ⇒ Γ>, ϕ ⊃ ψ|Γt, ϕ ⊃ ψ
(⇒⊃)

(¬ ⇒)
Γf ⇒ Γ>|Γt, ϕ

Γf,¬ϕ⇒ Γ>|Γt

Γf, ϕ⇒ Γ>|Γt
Γf ⇒ Γ>|Γt,¬ϕ

(⇒ ¬)

Note 5.10 It is easy to see, by just inspecting the rules of SFM3

L

, that if Γf ⇒ Γ>|Γt
is provable in SFM3

L
then Γf ⇒ Γ> ∪ Γt is provable in classical logic. The converse

fails, of course: ¬p, p ⇒ is classically valid, but ¬p, p ⇒ | is not valid in M3
L, and

so it is not provable in SFM3

L

.

The system SFM3

S

for M3
S is obtained from SFM3

L

by adding the rule

Γf ⇒ Γ>, ϕ|Γt
Γf ⇒ Γ>,¬ϕ|Γt,¬ϕ

(corresponding to the single non-deterministic value of negation in M3
S).

We can now use the systems SFM3

L

and SFM3

S

we have just developed to provide
an ordinary sequential system equivalent to both, showing in this way that the cor-
responding logics are in fact identical. This time the crucial observation is that, for
any formula ϕ and any valuation v in M3

S , the following relationships hold:

v(ϕ) = t iff v(ϕ) ∈ D & v(¬ϕ) ∈ N
v(ϕ) = > iff v(ϕ) ∈ D & v(¬ϕ) ∈ D
v(ϕ) = f iff v(ϕ) ∈ N

(5.2)

where now D = {t,>},N = {f}. Like in the case of MMK , these relationships can
be used (again with the method of [9] — see details there) to translate the system
SFM3

S

(though not SFM3

L

) to the following cut-free, ordinary sequent calculus:

Definition 5.11 Let GCmin be the system obtained by augmenting the standard (cut-
free) Gentzen-type system for positive classical logic with the following negation rules:

Γ, ϕ⇒ ∆
Γ,¬¬ϕ⇒ ∆

Γ, ϕ⇒ ∆
Γ ⇒,∆,¬ϕ

Theorem 5.12 GCmin is sound and complete for both `d
M3

L

and `d
M3

S

, and the cut

rule is admissible in it.

Proof. That GCmin admits cut-elimination, and that it is sound and complete for
`d
M3

S

, follows from its being a translation of SFM3

S

(the proof is similar to that of
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theorem 5.9, so we omit the details). It can be directly checked that GCmin is sound
for `d

M3

L

too. Since `d
M3

S

is a refinement of `d
M3

L

, we have `GCmin
⊆ `d

M3

L

⊆ `d
M3

S

⊆`GCmin
. Hence all the three logics are identical.

Corollary 5.13 `d
M3

L

= `d
M3

S

.

Note 5.14 Despite the fact that SFM3

L

and SFM3

S

define the same logic (i.e. the

same consequence relation), these systems are not equivalent. Thus ⇒ ¬ϕ|¬ϕ,ϕ is a
theorem of SFM3

S

, but in general not of SFM3

L

.

Note 5.15 The two rules for negation in GCmin obviously translate to ¬ϕ ∨ ϕ and
¬¬ϕ ⊃ ϕ. Hence GCmin is equivalent to the Hilbert-type system obtained by adding
these two axiom schemes to a standard Hilbert-type formulation of positive classical
logic. The result, usually denoted by Cmin, is one of the basic paraconsistent logics
(see e.g. [16]). Thus both M3

L and M3
S provide sound and complete semantics for

Cmin. Note that the goal of translating SFM3

S

to an ordinary Gentzen-type system,
together with the induction in the related proof, inevitably lead to GCmin and Cmin

(and that the admissibility of the cut rule in GCmin inevitably follows from the
corresponding property of SFM3

S

).9

5.5 Dynamic Semantics of the Four-valued M4

Finally, consider the 4-valued Nmatrix defined in Example 2.11. The original de-
duction system for the dynamic semantics generated using our general method has
16 (4 × 4) rules for each binary connective, and 4 rules for negation. However, the
rules for each binary connective can again be reduced to two. As a result, for the
{⊃,¬}-fragment we get:

(⊃)
Γf, ϕ|Γ⊥, ϕ ⇒ Γ>, ψ|Γt, ψ

Γf|Γ⊥ ⇒ Γ>, ϕ ⊃ ψ|Γt, ϕ ⊃ ψ

Γf|Γ⊥ ⇒ Γ>, ϕ|Γt, ϕ Γf, ψ|Γ⊥, ψ ⇒ Γ>|Γt
Γf, ϕ ⊃ ψ|Γ⊥, ϕ ⊃ ψ ⇒ Γ>|Γt

(¬)
Γf, ϕ|Γ⊥ ⇒ Γ>|Γt

Γf|Γ⊥ ⇒ Γ>|Γt,¬ϕ

Γf|Γ⊥, ϕ ⇒ Γ>|Γt
Γf|Γ⊥,¬ϕ⇒ Γ>|Γt

Γf|Γ⊥ ⇒ Γ>, ϕ|Γt
Γf|Γ⊥ ⇒ Γ>,¬ϕ|Γt

Γf|Γ⊥|Γ> ⇒ Γt, ϕ

Γf,¬ϕ|Γ⊥ ⇒ Γ>|Γt

Using methods similar to those employed in Section 5.3 (again see [9] for details), the
above complete 4-sequent calculus for M4 can once more be translated into an equiv-
alent ordinary sequent calculus. This time it is the standard Gentzen-type system for
positive classical logic augmented with two rules for double negation:

9The fact that Cmin is sound and complete for M3

S
was first proved in [3, 4]. In [5] M3

S
was even constructed

from GCmin by a general procedure for deriving characteristic Nmatrices for a certain family of paraconsistent

logics (As noted in the introduction, what is done here is exactly the converse). In contrast, the soundness and

completeness of Cmin with respect to M3

L
is new here.
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Theorem 5.16 Let GM4 be the proof system obtained by augmenting the standard
Gentzen-type system for positive classical logic with the following two rules for nega-
tion:

Γ, ϕ⇒ ∆
Γ,¬¬ϕ⇒ ∆

,
Γ ⇒ ∆, ϕ

Γ ⇒ ∆,¬¬ϕ

Then GM4 is sound and complete for the dynamic semantics of M4, and the cut rule
is admissible in it.10

Note 5.17 As the two negation rules of GM4 translate to ϕ ⊃ ¬¬ϕ and ¬¬ϕ ⊃ ϕ, the
logic of M4 can be axiomatized by adding these two axioms to a standard Hilbert-type
formulation of positive classical logic.

6 Related Work

The concept of a non-deterministic matrix, together with the associated dynamic
semantics, was first introduced and used in [2, 3, 4]. Two precursors that should
be mentioned are the special two-valued Nmatrix M2 from Example 1, which was
essentially used already in [10], and the particular 3-valued instance of the same
idea (with a similar name) which has been used in [19].11 As has been noted in the
introduction, an extensive investigation of dynamic finite Nmatrices, with a lot of
applications, was carried out in [5, 6, 7], with [5] discussing applications of 3-valued
Nmatrices, [6] — mainly of 4-valued ones, and [7] — mainly of 5-valued ones. Some
applications of infinite-valued Nmatrices (in which they cannot be replaced by any
finite ones) were given in [8].

Two related semantic frameworks that also have some nondeterministic aspects
are bivaluations (see e.g. [12, 17]), and Carnielli’s possible-translations semantics
(PTS), which has been used extensively by Carnielli, Marcos and others to provide
semantics for various logics (see [15, 17, 27]) 12. However, both frameworks, as they
are currently defined and used, are far too general, being practically able to provide
semantics for every propositional logic13. As a result, no general theorems concerning
decidability and compactness, of the type proved for finite Nmatrices in [7], hold for
them. Moreover: no general method for developing proof systems from these types
of semantics (like the one we have provided here for Nmatrices) exists, or even seems
possible without restricting them somehow. Still, it seems that, with appropriate
restrictions, PTS might provide a powerful generalization of the use of Nmatrices.
This should be an important subject for future research.
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[6] A. Avron, A Nondeterministic View on Nonclassical Negations, To appear in a special issue of
Studia Logica.

[7] A. Avron, Non-deterministic Matrices and Modular Semantics of Rules, in Logica Universalis
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