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Abstract. We present a new unified framework for formalizations of
axiomatic set theories of different strength, from rudimentary set theory
to full ZF . It allows the use of set terms, but provides a static check of
their validity. Like the inconsistent “ideal calculus” for set theory, it is
essentially based on just two set-theoretical principles: extensionality and
comprehension (to which we add ∈-induction and optionally the axiom
of choice). Comprehension is formulated as: x ∈ {x | ϕ} ↔ ϕ, where
{x | ϕ} is a legal set term of the theory. In order for {x | ϕ} to be legal,
ϕ should be safe with respect to {x}, where safety is a relation between
formulas and finite sets of variables. The various systems we consider
differ from each other mainly with respect to the safety relations they
employ. These relations are all defined purely syntactically (using an
induction on the logical structure of formulas). The basic one is based on
the safety relation which implicitly underlies commercial query languages
for relational database systems (like SQL).

Our framework makes it possible to reduce all extensions by defini-
tions to abbreviations. Hence it is very convenient for mechanical manip-
ulations and for interactive theorem proving. It also provides a unified
treatment of comprehension axioms and of absoluteness properties of
formulas.

1 Introduction

The goal of this paper is to develop a unified, user-friendly framework for for-
malizations of axiomatic set theories of different strength, from rudimentary set
theory to full ZF. The work in a formal system that is constructed within such
a framework should be very close to the way work in set theories is practically
done in reality. In particular, it should be possible to employ in a natural way
all the usual set notations and constructs as found in textbooks on naive or
axiomatic set theory (and only such notations).

Our starting point is what is known as the “ideal calculus” for naive set
theory (see [10], Sect. III.1). This very simple calculus is based on just two
set-theoretical principles: extensionality and full comprehension. It thus exactly
reflects our initial, immediate intuitions concerning sets (before becoming aware
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of the inconsistencies they involve). Now in its most transparent formal presen-
tation, the ideal calculus employs set terms of the form {x | ϕ}, where x is a
variable and ϕ is any formula in which x occurs free. Then the comprehension
principle is most succinctly formulated as follows:

x ∈ {x | ϕ} ↔ ϕ

Unfortunately, it is well known that this principle leads to paradoxes (like Rus-
sel’s paradox). Hence all set theories that are believed to be consistent impose
constraints on the use of this principle. In all textbooks the choice of these
constraints is guided by semantic intuitions (like the limitation of size doctrine
[10,16]), especially the question: what operations on sets are “safe”. Since it is
one of our main purposes to remain as close to the “ideal calculus” as possi-
ble, on one hand, and we aim at computerized systems, on the other, we shall
translate the various semantic principles into syntactic constraints on the logical
form of formulas. Given a set theory S, we shall call a formula ϕ(x) (which may
have free variables other than x) S-safe with respect to x if {x | ϕ} is a valid
term of S (which intuitively means that according to the principles accepted by
S, the set denoted by this term exists for all values of the other parameters).
Thus “safety” will basically be here a relation between formulas and variables.
(Actually, in order to define it syntactically we shall need to generalize it to a
relation between formulas and finite sets of variables.) The various systems we
consider differ from each other only with respect to the safety relations they
employ.

Another problem solved in our framework is that official formalizations of
axiomatic set theories in almost all textbooks are based on some standard first-
order languages. In such languages terms are variables, constants, and sometimes
function applications (like x ∩ y). What is usually not available in the official
languages of these formalizations is the use of set terms of the form described
above ({x | ϕ}). As a result, already the formulation of the axioms is quite
cumbersome, and even the formalization of elementary proofs becomes some-
thing practically incomprehensible. In contrast, all modern texts in all areas of
mathematics (including set theory itself) use such terms extensively. For the
purpose of mechanizing real mathematical practice and for automated or inter-
active theorem proving, it is therefore important to have formalizations of ZF
and related systems which allow the use of such terms. Now, set terms are used
in all textbooks on first-order set theories, as well as in several computerized sys-
tems. However, whenever they are intended to denote sets (rather than classes)
they are introduced (at least partially) in a dynamic way, based for example
on the “extension by definitions” procedure (see [20], Sect. 4.6): In order to be
able to introduce some set term for a set (as well as a new operation on sets)
it is necessary first to justify this introduction by proving a corresponding exis-
tence theorem. (The same is basically true in case set terms are officially used to
denote “classes”, as in [18], Sect. I.4.) The very useful complete separation we
have in first-order logic between the (easy) check whether a given expression is a
well-formed term or formula, and the (difficult) check whether it is a theorem, is
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thus lost. By analogy to programs: texts in such dynamic languages can only be
“interpreted”, but not “compiled”. In contrast, a crucial feature of our frame-
work is that although it makes extensive use of set terms, the languages used in
it are all static: the task of verifying that a given term or formula is well-formed
is decidable, easily mechanizable, and completely separated from any task con-
nected with proving theorems (like finding proofs or checking validity of given
ones). Expanding the language is allowed only through explicit definitions (i.e.
new valid expressions of an extended language will just be abbreviations for ex-
pressions in the original language). This feature has the same obvious advantages
that static type-checking has over dynamic type-checking.1

Two other important features of the framework we propose are:

– It provides a unified treatment of two important subjects of set theory: ax-
iomatization and absoluteness (the latter is a crucial issue in independence
proofs and in the study of models of set theories – see e.g. [17]). In the
usual approaches these subjects are completely separated. Absoluteness is
investigated mainly from a syntactic point of view, axiomatizations – from
a semantic one. Here both are given the same syntactic treatment. In fact,
the basis of the framework is its formulation of rudimentary set theory,
in which only terms for absolute sets are allowed. The other set theories
are obtained from it by small changes in the definitions of the safety rela-
tions.2

– Most of our systems (including the one which is equivalent to ZF ) have the
remarkable property that every set or function that is implicitly definable
in them already has a term in the corresponding language denoting it. More
precisely: if ϕ(x, y1, . . . , yn) is a formula such that ∀y1, . . . , yn∃!xϕ is prov-
able, then there is a term t(y1, . . . , yn) such that ϕ(y1, . . . , yn, t(y1, . . . , yn))
is provable. Hence, there is no need for the procedure of extension by def-
initions, and introduction of new symbols is reduced to using abbrevia-
tions.

1 The closest attempt I am aware of to develop a language for sets that employs
static set terms can be found Sect. 5.1 of [7]. However, the construction there is
rather complicated, and far remoted from actual mathematical practice. (The terms
have the form: {tn+1 : x0C0t0, x1C1t1, . . . , xnCntn | ϕ}, where each Ci is either ∈
or ⊆, ϕ is a formula, and t1, . . . , tn are terms such that Fv(ti) ∩ {x1, . . . , xn} ⊆
{x0, . . . , xi−1}). Moreover: the use of these terms does not have the two important
features described below, and cannot serve as a basis for a framework of the type
developed here.

2 It should perhaps be noted that the idea that existence of sets {x | ϕ} might be
connected with absoluteness properties of ϕ occurs also (though with a very different
formalization) in Ackermann’s set theory [1], which turned out to be equivalent (once
one adds regularity) to ZF [19]. The connections (if any) between Ackermann’s
approach and the present one are yet to be determined, and will be investigated
in the future. (I am grateful to an anonymous referee for bringing Ackermann’s set
theory to my attention).
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2 A Description of the General Framework

2.1 Languages

Officially, every set theory S has in our formal framework its own language
L(S). L(S) is determined by the safety relation �S on which S is based. The
sets of terms and formulas of L(S) and �S are usually defined by a simultaneous
recursion. For every S the clauses for L(S) in this recursive definition are the
following (where Fv(exp) denotes the set of free variables of exp):

– Every variable is a term.
– The constant ω is a term.
– If x is a variable, and ϕ is a formula such that ϕ �S {x}, then {x | ϕ} is a

term (and Fv({x | ϕ}) = Fv(ϕ) − {x}).
– If t and s are terms then t = s and t ∈ s are atomic formulas.
– If ϕ and ψ are formulas, and x is a variable, then ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ), and

∃xϕ are formulas.

Note. We have included the constant ω in all our languages in order to be
able to have in all of them closed terms for denoting constant sets (see e.g. the
definition of ∅ in Sect. 3.1). However, in most of our systems nothing is assumed
about ω and its interpretation. Only in systems that include the infinity axiom
we put the constant ω (which is available anyway) to the further use of denoting
the set whose existence is guaranteed by this axiom.

2.2 Logic

Basically, the logic we will use in most of our systems is the usual first-order logic
with equality. One should note however the following differences/additions:

1. Our languages provide much richer classes of terms than those allowed in
orthodox first-order systems. In particular: a variable can be bound in them
within a term. The notion of a term being free for substitution is generalized
accordingly (also for substitutions within terms!). As usual this amounts to
avoiding the capture of free variables within the scope of an operator which
binds them. Otherwise the rules/axioms concerning the quantifiers and terms
remain unchanged (for example: ϕ[x �→ t] → ∃xϕ is valid for every term t
which is free for x in ϕ).

2. The rule of α-conversion (change of bound variables) is included in the logic.
3. The substitution of equals for equals is allowed within any context (under

the usual conditions concerning bound variables).
4. In analogy to the previous rule concerning identity of terms, we assume

similar rule(s) allowing the substitution of a formula for an equivalent for-
mula in any context in which the substitution makes sense. In particular,
the following schema is valid whenever {x | ϕ} and {x | ψ} are legal terms:

∀x(ϕ ↔ ψ) → {x | ϕ} = {x | ψ}
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2.3 Axioms

The main part of all our systems consists of the following axioms and axiom
schemes (our version of the ideal calculus, augmented with the assumption that
we are dealing with the cumulative universe):

Extensionality:

– ∀y(y = {x | x ∈ y})

Comprehension Schema:

– ∀x(x ∈ {x | ϕ} ↔ ϕ)

The Regularity Schema (∈-induction):

– (∀x(∀y(y ∈ x → ϕ[x �→ y]) → ϕ)) → ∀xϕ

Notes:

1. Thus the main parts of the various set theories we shall consider will differ
only with respect to the power of their comprehension scheme. This, in turn,
again depends only on the safety relation used by each. Hence also the differ-
ences in strength between the systems will mainly be due to the differences
between their safety relations.

2. It is easy to see (see [4]) that our assumptions concerning the underlying logic
and the comprehension schema together imply that the above formulation
of the extensionality axiom is equivalent to the more usual one:

∀z(z ∈ x ↔ z ∈ y) → x = y

3. The first two axioms immediately entail the following two principles (where
t is an arbitrary valid term):

– {x | x ∈ t} = t (provided x ∈ Fv(t))
– t ∈ {x | ϕ} ↔ ϕ[x �→ t] (provided t is free for x in ϕ)

These principles are counterparts of the reduction rules (η) and (β) (respec-
tively) from the λ-calculus. Like their counterparts, they are designed to be
used as simplification rules (at least in the solution of elementary problems).

The Axiom of Choice. The full set theory ZFC has one more axiom that does
not fit into the formal framework described above: AC (the axiom of choice).
It seems that the most natural way to incorporate it into our framework is by
further extending the set of terms, using Hilbert’s ε symbol, together with its
usual characterizing axiom (which is equivalent to the axiom of global choice):

∃xϕ → ϕ[x �→ εxϕ]

It should be noted that this move is not in line with our stated goal of employing
only standard notations used in textbooks, but some price should be paid for
including the axiom of choice in a system.



92 A. Avron

2.4 Safety Relations

As emphasized above, the core of each of our systems is the safety relation
it employs. Now the idea of using such relations is due to the similarity (noted
first in [4]) between issues of safety and domain independence in database theory
([2,24]), and issues of set-existence and absoluteness in set theory. This similarity
allows us to apply in the context of set theories the purely syntactic approach
to safety of formulas that has been developed in database theory.

From a logical point of view, a database of scheme D = {P1, . . . , Pn} is just a
given set of finite interpretations of the predicate symbols P1, . . . , Pn. A query
language for such a database is an ordinary first-order language with equality,
the signature of which includes {P1, . . . , Pn}. Ideally, every formula ψ of a query
language can serve as a query. If ψ has free variables then the answer to ψ is the
set of tuples which satisfy it in some intended structure, where the interpretations
of P1, . . . , Pn is given by the database. If ψ is closed then the answer to the query
is either “yes” or “no” (which can be interpreted as {∅} and ∅, respectively).
However, an answer to a query should be finite and computable, even if the
intended domain is infinite. Hence only “safe” formulas, the answers to which
always have these properties, should be used as queries. In fact, an even stronger
property of formulas is usually taken to be crucial. Safe queries should be domain
independent ([24,2]) in the following sense:

Definition 1. 3 Let σ be a signature which has no function symbols, and whose
set of predicate symbols includes D = {P1, . . . , Pn}. A query ϕ(x1. . . . , xn) in σ
is called D-d.i. (D-domain-independent) if whenever S1 and S2 are structures
for σ such that S1 is a substructure of S2, and the interpretations of {P1, . . . , Pn}
in S1 and S2 are identical, then for all a1 ∈ S2, . . . , an ∈ S2:

S2 |= ϕ(a1, . . . , an) ↔ a1 ∈ S1 ∧ . . . ∧ an ∈ S1 ∧ S1 |= ϕ(a1, . . . , an)

Thus a domain-independent query is a query the answer to which depends only
on the information included in the database, and on the objects which are men-
tioned in the query. Practical database query languages are designed so that
only d.i. queries can be formulated in them. Unfortunately, it easily follows from
Trakhtenbrot’s Theorem (see [9]) that it is undecidable which formulas are d.i.
(or “safe” in any other reasonable notion of safety of queries, like “finite and
computable”). Therefore all commercial query languages (like SQL) allow to use
as queries only formulas from some syntactically defined class of d.i. formulas.
Many explicit proposals of decidable, syntactically defined classes of safe for-
mulas have been made in the literature. Perhaps the simplest among them is
the following class SS(D) (“syntactically safe” formulas for a database scheme
D) from [24] (originally designed for languages in which every term is either a
variable or a constant):4

3 This is a slight generalization of the usual definition ([24]), which applies only to free
Herbrand structures which are generated by adding to σ some new set of constants.

4 What we present below is both a generalization and a simplification of Ullman’s
original definition.
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1. Pi(t1, . . . , tni) ∈ SS(D) in case Pi (of arity ni) is in D.
2. x = c and c = x are in SS(D) (where x is a variable and c is a constant).
3. ϕ ∨ ψ ∈ SS(D) if ϕ ∈ SS(D), ψ ∈ SS(D), and Fv(ϕ) = Fv(ψ).
4. ∃xϕ ∈ SS(D) if ϕ ∈ SS(D).
5. If ϕ = ϕ1 ∧ϕ2 ∧ . . .∧ϕk then ϕ ∈ SS(D) if the following conditions are met:

(a) For each 1 ≤ i ≤ k, either ϕi is atomic, or ϕi is in SS(D), or ϕi is a
negation of a formula of either type.

(b) Every free variable x of ϕ is limited in ϕ. This means that there exists
1 ≤ i ≤ k such that x is free in ϕi, and either ϕi ∈ SS(D), or there
exists y which is already limited in ϕ, and ϕi ∈ {x = y, y = x}.

There is one clause in this definition which is somewhat strange: the last one,
which treats conjunction. The reason why this clause does not simply tell us
(like in the case of disjunction) when a conjunction of two formulas is in SS(D),
is the desire to take into account the fact that once the value of y (say) is known,
the formula x = y becomes safe. In order to replace this problematic clause by a
more concise one (which at the same time is more general) the formula property
of d.i. was turned in [4] into the following relation between a formula ϕ and finite
subsets of Fv(ϕ):

Definition 2. Let σ be as in Definition 1. A formula ϕ(x1, . . . , xn, y1, . . . , yk)
in σ is D-d.i. with respect to {x1, . . . , xn} if whenever S1 and S2 are structures
as in Definition 1, then for all a1 ∈ S2, . . . , an ∈ S2 and b1 ∈ S1, . . . , bk ∈ S1:

S2 |= ϕ(−→a ,
−→
b ) ↔ a1 ∈ S1 ∧ . . . ∧ an ∈ S1 ∧ S1 |= ϕ(−→a ,

−→
b )

Obviously, a formula ϕ is D-d.i. iff it is D-d.i. with respect to Fv(ϕ). On the
other hand the formula x = y is only partially D-d.i.: it is D-d.i. with respect
to {x} and {y}, but not with respect to {x, y}.

A particularly important observation is that a formula ϕ is D-d.i. with re-
spect to ∅, if whenever S1 and S2 are structures as in Definition 1, then for
all b1, . . . , bk ∈ S1, S2 |= ϕ(

−→
b ) ↔ S1 |= ϕ(

−→
b ). Such formulas may be called

D-absolute. Obviously, this notion of D-absoluteness is closely related to the
set-theoretical notion of absoluteness. However, as it is, it is not really a gen-
eralization of the notion used in set theory. In addition to =, the language of
set theory has only one binary predicate symbol: ∈. Now the notion of {∈}-
absoluteness is useless (since if the interpretations of ∈ in two standard models
S1 and S2 of ZF are identical, then S1 and S2 are identical). The notion of ∅-
absoluteness, in contrast, is identical to the most general notion of absoluteness
as defined e.g. in [17] (p. 117), but that notion is of little use in set theory. Thus
Δ0-formulas are not ∅-absolute. Indeed, in order for Δ0-formulas to be absolute
for structures S1 and S2 (where S1 is a substructure of S2), we should assume
that S1 is a transitive substructure of S2. This means that if b is an element of
S1, and S2 |= a ∈ b, then a belongs to S1, and S1 |= a ∈ b. In other words: the
formula x ∈ y should be d.i. with respect to {x} (but not with respect to {y}).
In [4] and [6] this observation was used for developing a general framework for
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domain independence and absoluteness, and it was shown that this framework
has deep applications in computability theory.

The similarity between d.i. and absoluteness is also the crucial observation
on which the present framework for set-theories is based. However, in order to
exploit this similarity here we do not need the full general framework developed
in [4,6]. It suffices to introduce the following general, abstract notion of a safety
relation (which is based on Ullman’s notion of syntactic safety, but its use is not
confined to database theory):

Definition 3. A relation � between formulas ϕ and subsets of Fv(ϕ) is a safety
relation if it satisfies the following conditions:

1. If ϕ � X then X ⊆ Fv(ϕ).
2. If ϕ � X and Z ⊆ X, then ϕ � Z.
3. If ϕ � {x1, . . . , xn} and v1, . . . vn are n distinct variables not occurring in

ϕ, then ϕ[x1 �→ v1, . . . , xn �→ vn].
4. ϕ � ∅ if ϕ is atomic.
5. t = x � {x} and x = t � {x} if x ∈ Fv(t).
6. ¬ϕ � ∅ if ϕ � ∅.
7. ϕ ∨ ψ � X if ϕ � X and ψ � X.
8. ϕ ∧ ψ � X ∪ Y if ϕ � X, ψ � Y , and Y ∩ Fv(ϕ) = ∅.
9. ∃yϕ � X − {y} if y ∈ X and ϕ � X.

Note. Recall that we are taking ∧, ∨, ¬ and ∃ as our primitives. Moreover:
we take ¬(ϕ → ψ) as an abbreviation for ϕ ∧ ¬ψ, and ∀x1, . . . , xkϕ as an ab-
breviation for ¬∃x1, . . . , xk¬ϕ. This entails the following important property of
“bounded quantification”: If � is a safety relation, ϕ � {x1, . . . , xn}, and ψ � ∅,
then ∃x1 . . . xn(ϕ ∧ ψ) � ∅ and ∀x1 . . . xn(ϕ → ψ) � ∅. The latter can easily be
generalized, and the generalization can be used for an alternative definition of
safety relations in case the negation connective may be used only before atomic
formulas, and the negation of ϕ, ϕ, is inductively defined for complex formulas
(a common procedure in proof theory): strengthen condition 4 above to ϕ � ∅
if ϕ is a literal, and replace condition 6 by: ∀x1 . . . xnϕ � ∅ if ϕ � {x1, . . . , xn}.

Examples

– For first order languages with equality, having no function symbols and no
predicate symbols other than those in D, partial D-d.i. (Definition 2) is a
safety relation. A syntactic counterpart � directly corresponding to SS(D)
is inductively defined by using the clauses of Definition 3 and the assumption
that ϕ � Fv(ϕ) for every atomic formula ϕ of the form Pi(t1, . . . , tni).

– Let L be the language of PA (Peano’s Arithmetic), and let N be the standard
model of PA. Define a relation �N on L by: ϕ(x1, . . . , xn, y1, . . . , yl) �N
{x1, . . . , xn} if the set {〈k1, . . . , kn〉 ∈ N n | ϕ(k1, . . . , kn, m1, . . . , ml)} is
finite and computable (as a function of m1, . . . , ml) for all m1, . . . , ml in N .5

5 In the case l = 0 an intentional meaning of “computable” is meant, but we shall not
get into details here. See [4,6] for more details.
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Then �N is a safety relation, and ϕ �N ∅ iff ϕ defines a decidable predicate.
A useful syntactic approximation �b of �N can in this case inductively
be defined by using the clauses of Definition 3 and the assumption that
x < t �b x if x ∈ Fv(t). The set {ϕ | ϕ �b ∅} is a straightforward extension
of Smullyan’s set of Σ0 formulas (see [23], P. 41), which can serve as a basis
for the usual arithmetical hierarchy. It is interesting to note that a succinct
inductive definition of �b can be given which is almost identical to that of
the basic safety relation �RST of set theory (see Definition 5 ). The only
difference is that the condition x ∈ t �b x in Definition 5 should be replaced
by x < t �b x.

Next we describe the way safety relations are used in our framework for set
theories. The basic idea is that ϕ should be safe for {x} in a set theory S iff the
collection {x | ϕ} is accepted as a set by S. This leads to the following definition:

Definition 4. Let L be a language which has ∈ among its binary predicate sym-
bols. An ∈-safety relation for L is a safety relation � for L which satisfies the
following condition:

– x ∈ t � {x} if x is a variable such that x ∈ Fv(t).

All the safety relations used in our framework are ∈-safety relations.

3 The Rudimentary Set Theory RST

Our basic system is the one which corresponds to the minimal ∈-safety relation:

Definition 5. The relation �RST is inductively defined as follows:

1. ϕ �RST ∅ if ϕ is atomic.
2. ϕ �RST {x} if ϕ ∈ {x = t, t = x, x ∈ t}, and x ∈ Fv(t).
3. ¬ϕ �RST ∅ if ϕ �RST ∅.
4. ϕ ∨ ψ �RST X if ϕ �RST X and ψ �RST X.
5. ϕ ∧ ψ �RST X ∪ Y if ϕ �RST X, ψ �RST Y , and Y ∩ Fv(ϕ) = ∅.
6. ∃yϕ �RST X − {y} if y ∈ X and ϕ �RST X.

It is easy to see that �RST is indeed an ∈-safety relation. We denote by RST
(Rudimentary Set Theory) the set theory it induces (within the framework de-
scribed above). The following theorem about RST can easily be proved:

Theorem 1. Given an expression E and a finite set X of variables, it is decid-
able in polynomial time whether E is a valid term of RST , whether it is a valid
formula of RST , and if the latter holds, whether E �RST X.

Note. The last theorem is of a crucial importance from implementability point
of view, and it obtains also for all the extensions of RST discussed (explicitly
or implicitly) below. In order to ensure it, we did not include in the definition of
safety relations the natural condition that if ϕ � X and ψ is (logically) equivalent
to ϕ (where Fv(ϕ) = Fv(ψ)) then also ψ � X . However, we obviously do have
that if �RST ϕ ↔ ψ then �RST x ∈ {x | ϕ} ↔ ψ, and so �RST ∃Z∀x.x ∈ Z ↔ ψ.
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3.1 The Power of RST

In the language of RST we can introduce as abbreviations (rather than as exten-
sions by definitions) most of the standard notations for sets used in mathematics.
Again, all these abbreviations should be used in a purely static way: no justifying
propositions and proofs are needed. Here are some examples:

– ∅ =Df {x | x ∈ ω ∧ x = x}.
– {t1, . . . , tn} =Df {x | x = t1 ∨ . . . ∨ x = tn} (where x is new).
– 〈t, s〉 =Df {{t}, {t, s}}.
– 〈t1, . . . , tn〉 is ∅ if n = 0, t1 if n = 1, 〈〈t1, . . . , tn−1〉, tn〉 if n ≥ 2.
– {x ∈ t | ϕ} =Df {x | x ∈ t ∧ ϕ}, provided ϕ �RST ∅. (where x ∈ Fv(t)).
– {t | x ∈ s} =Df {y | ∃x.x ∈ s ∧ y = t} (where y is new, and x ∈ Fv(s)).
– s × t =Df {x | ∃a∃b.a ∈ s ∧ b ∈ t ∧ x = 〈a, b〉} (where x, a and b are new).
– {〈x1, . . . , xn〉 | ϕ} =Df {z | ∃x1 . . . ∃xn.ϕ ∧ z = 〈x1, . . . , xn〉}, provided

ϕ �RST {x1, . . . , xn}, and z ∈ Fv(ϕ).
– s ∩ t =Df {x | x ∈ s ∧ x ∈ t} (where x is new).
– s ∪ t =Df {x | x ∈ s ∨ x ∈ t} (where x is new).
– s − t =Df {x | x ∈ s ∧ x ∈ t} (where x is new).
– S(x) =Df x ∪ {x}
–

⋃
t =Df {x | ∃y.y ∈ t ∧ x ∈ y} (where x and y are new).

–
⋂

t =Df {x | ∃y(y ∈ t ∧ x ∈ y) ∧ ∀y(y ∈ t → x ∈ y)} (where x, y are new).

It is straightforward to check that in all these abbreviations the right hand side is
a valid term of RST (provided that the terms/formulas occurring in it are valid
terms/well-formed formulas of RST ). We explain s × t by way of example: since
a and b are new, a ∈ s �RST {a}, and b ∈ t �RST {b}. Since b ∈ Fv(a ∈ s), this
implies that a ∈ s ∧ b ∈ t �RST {a, b}. Similarly, a ∈ s ∧ b ∈ t ∧ x = 〈a, b〉 �RST

{a, b, x}. It follows that ∃a∃b.a ∈ s ∧ b ∈ t ∧ x = 〈a, b〉 �RST {x}. Hence our
term for s × t (which is the most natural one) is a valid term of RST .

Lemma 1. There is a formula OP (z, x, y) in the basic language of RST (i.e.:
without set terms) such that:

1. �RST OP (z, x, y) ↔ z = 〈x, y〉
2. OP (z, x, y) �RST {x, y}.

Proof: Let Pa(z, x, y) ≡Df x ∈ z ∧y ∈ z ∧∀w(w ∈ z → w = x∨w = y). Then
Pa(z, x, y) �RST {x, y}, and �RST Pa(z, x, y) ↔ z = {x, y}. Let OP (z, x, y) be
the formula ∃u∃v(Pa(z, u, v) ∧ Pa(u, x, x) ∧ Pa(v, x, y)). ��

With the help of OP we can define all the standard basic operations related to
relations and functions. For example:

– Dom(s) =Df {x | ∃z∃y(z ∈ s ∧ OP (z, x, y)}
– Rng(s) =Df {y | ∃z∃x(z ∈ s ∧ OP (z, x, y)}
– t � s =Df {x ∈ t | ∃z∃yOP (x, y, z) ∧ y ∈ s}
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In RST we can also introduce as abbreviations the terms used in the λ-calculus
for handling explicitly defined functions which are sets (except that our terms
for functions should specify the domains of these functions, which should also
be explicitly definable sets). Moreover: the reduction rules of the λ-calculus for
these terms are easy theorems of RST . Thus the notation for λ-set and function
application are introduced as follows:

– λx ∈ s.t =Df {〈x, t〉 | x ∈ s} (where x ∈ Fv(s))
– f(t) =Df

⋃
Rng(f � {t})

(Note that f(t) is defined for every f and t, but when f denotes a function F ,
and t denotes an element a in F ’s domain, then f(t) indeed denotes the value
of F at a.) We can easily check now that rules β and η obtain in RST :

– �RST u ∈ s → (λx ∈ s.t)u = t[x �→ u] (if u is free for x in t).
– �RST u ∈ s → (λx ∈ s.t)u = ∅ (if u is free for x in t).
– �RST λx ∈ s.t(x) = t � s (in case x ∈ Fv(t)).

Exact characterizations of the operations that are explicitly definable in RST ,
and of the strength of RST , are given in the following theorems and corollary
(the proofs of which will be given in [6]).

Theorem 2

1. If F is an n-ary rudimentary function6 then there exists a formula ϕ s. t.:

(a) Fv(ϕ) = {y, x1, . . . , xn}
(b) ϕ �RST {y}
(c) F (x1, . . . , xn) = {y | ϕ}.

2. If ϕ is a formula such that:

(a) Fv(ϕ) = {y1, . . . , yk, x1, . . . , xn}
(b) ϕ �RST {y1, . . . , yk}
then there exists a rudimentary function F such that:

F (x1, . . . , xn) = {〈y1, . . . , yk〉 | ϕ}.

Corollary 1. If Fv(ϕ) = {x1, . . . , xn}, and ϕ �RST ∅ then ϕ defines a rudi-
mentary predicate P . Conversely, if P is a rudimentary predicate then there is
a formula ϕ such that ϕ �RST ∅ and ϕ defines P .

Theorem 3. RST is equivalent to the system obtained from Gandy’s “Basic
Set Theory” BST ([12]) by the addition of the ∈ −induction schema.

6 The class of rudimentary set functions was introduced independently by Gandy ([12])
and Jensen ([15]). See also [8], Sect. IV.1.
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3.2 Generalized Absoluteness

For simplicity of presentation, we assume the cumulative universe V of ZF , and
formulate our definitions accordingly. It is easy to see that V is a model of RST
(with the obvious interpretations of RST ’s terms).

Definition 6. Let M be a transitive model of RST . Define the relativization to
M of the terms and formulas of RST recursively as follows:

– tM = t if t is a variable or a constant.
– {x | ϕ}M = {x | x ∈ M ∧ ϕM}.
– (t = s)M = (tM = sM) (t ∈ s)M = (tM ∈ sM).
– (¬ϕ)M = ¬ϕM (ϕ ∨ ψ)M = ϕM ∨ ψM. (ϕ ∧ ψ)M = ϕM ∧ ψM.
– (∃xϕ)M = ∃x(x ∈ M ∧ ϕM).

Definition 7. Let T be an extension of RST such that V |= T .

1. Let t be a term, and let Fv(t) = {y1, . . . , yn}. We say that t is T -absolute if
the following is true (in V ) for every transitive model M of T :

∀y1 . . .∀yn.y1 ∈ M ∧ . . . ∧ yn ∈ M → tM = t

2. Let ϕ be a formula, and let Fv(ϕ) = {y1, . . . , yn, x1, . . . , xk}. We say that ϕ
is T -absolute for {x1, . . . , xk} if {〈x1, . . . , xk〉 | ϕ} is a set for all values of the
parameters y1, . . . , yn, and the following is true (in V ) for every transitive
model M of RST :

∀y1 . . . ∀yn.y1 ∈ M ∧ . . . ∧ yn ∈ M → [ϕ ↔ (x1 ∈ M ∧ . . . ∧ xk ∈ M ∧ ϕM)]

Thus a term is T -absolute if it has the same interpretation in all transitive models
of T which contains the values of its parameters, while a formula is T -absolute for
{x1, . . . , xk} if it has the same extension (which should be a set) in all transitive
models of T which contains the values of its other parameters. In particular: ϕ
is T -absolute for ∅ iff it is absolute relative to T in the usual sense of set theory
(see e.g. [17]), while ϕ is T -absolute for Fv(ϕ) iff it is domain-independent in
the sense of database theory (see Definition 1) for transitive models of T .

Theorem 4

1. Any valid term t of RST is RST -absolute.
2. If ϕ �RST X then ϕ is RST -absolute for X.

The proof is by a simultaneous induction on the complexity of t and ϕ.

4 Stronger Set Theories

The definability of {t, s} and of
⋃

t in the language of RST means that the
axioms of pairing and union are provable in RST . We turn now to the question
how to deal with the other comprehension axioms of ZF within the proposed
framework. We start first with the axioms that remain valid if we limit ourselves
to hereditarily finite sets. We show that the addition of each of them to RST
corresponds to adding to the definition of �RST a certain syntactic condition.
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4.1 Basic ZF : The Full Separation and Replacement Schemes

Theorem 5. Let T be an extension of RST , based on some safety relation �T

which extends �RST .
1. If �T satisfies the condition:

(Sep) ϕ �T ∅ for every formula ϕ

then the axiom schema of separation is derivable in T .
2. If �T satisfies the condition:

(Rep) ∃yϕ ∧ ∀y(ϕ → ψ) �T X if ψ � X, and X ∩ Fv(ϕ) = ∅.
then the axiom schema of replacement is derivable in T .

Proof: In the presence of condition (Sep), {x | x ∈ z ∧ ϕ} is a valid term for
every ϕ, and this implies the separation schema.

Suppose now that �T Satisfies (Rep). The proof that the replacement schema
is derivable in T is more difficult than in the previous case, because unlike the
other comprehension axioms of ZF , the official formulation of replacement has
the form of a conditional:

(∀y∃v∀x(ϕ ⇔ x = v)) ⇒ (∃Z∀x.x ∈ Z ⇔ (∃y.y ∈ w ∧ ϕ))

where v, w, Z ∈ Fv(ϕ). To prove this in T , let A be the formula ∀x(ϕ ⇔ x = v).
Reasoning in T , assume ∀y∃vA (this is the left hand side of the implication
we want to prove). This and the definition of the formula A logically imply
(∃vA ∧ ∀v(A → x = v)) ⇔ ϕ. But by (Rep), ∃vA ∧ ∀v(A → x = v) �T {x}.
Hence ∃y.y ∈ w∧(∃vA∧∀v(A → x = v)) �T {x}. Thus the comprehension axiom
of T implies: ∃Z∀x.x ∈ Z ⇔ (∃y.y ∈ w ∧ (∃vA ∧ ∀v(A → x = v))). This and the
above conclusion of ∀y∃vA together entail ∃Z∀x.x ∈ Z ⇔ (∃y.y ∈ w ∧ ϕ). ��
Definition 8

1. The safety relation �BZF is obtained from �RST by replacing clauses 1 and
3 of its definition with (Sep) and (Rep).

2. The system BZF is defined like RST , using �BZF instead of �RST .

Note. Any formula ϕ is logically equivalent to ∃yϕ ∧ ∀y(ϕ → ∃x.x = ω), where
y is a dummy variable. Hence (Sep) is superfluous in the presence of (Rep) (This
corresponds to the well-known fact that separation is derivable from replace-
ment). In particular, to get BZF it suffices to add to �RST only (Rep).

Theorem 6. Let BZF ∗ be the system in the pure first-order fragment of the
language of BZF (i.e. with no set terms) which is obtained from BZF by re-
placing its comprehension axiom with the following safe comprehension schema:

(SCn) ∃Z(∀x.x ∈ Z ⇔ ϕ)

where ϕ is in the language of BZF ∗, ϕ �BZF {x}, and Z ∈ Fv(ϕ). Let ZF−−

be ZF without the powerset axiom and the infinity axiom. Then BZF , BZF ∗,
and ZF−− are all equivalent.7

7 Note again (see the note in Sect. 2.1) that although ZF −− can talk about ω, as far
as this theory is concerned, ω could be any set whatsoever.
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Proof: Obviously, every theorem of BZF ∗ is also a theorem of BZF . That
every theorem of ZF−− is a theorem of BZF ∗ can be shown exactly like in the
proof of Theorem 5.

To complete the cycle, it remains to show that BZF is a conservative extension
of ZF−−. For this we define recursively for every formula ϕ of BZF a translation
ϕ(I) into the language of ZF−− such that Fv(ϕ(I)) = Fv(ϕ):

– If ϕ is an atomic formula in the language of ZF−− then ϕ(I) = ϕ.
– Suppose ϕ is an atomic formula which contains a set term. Let t = {x | ψ}

(where ψ �BZF x) be a maximal set term of ϕ. Define:

ϕ(I) = ∃Z(∀x(x ∈ Z ⇔ ψ(I)) ∧ (ϕ[t �→ Z])(I))

where Z is a new variable, and ϕ[t �→ Z] is the formula obtained from ϕ by
replacing every occurrence of t in ϕ by Z.

– Let (ϕ ∧ ψ)(I) = (ϕ)(I) ∧ (ψ)(I), (∃xϕ)(I) = ∃x(ϕ)(I) etc.

Next, we show how to express the safety relation �BZF within the language of
ZF−−. From Lemma 1 it easily follows that there is a formula Bn(x1, . . . , xn, z)
in the language of ZF−− such that Bn(x1, . . . , xn, z) �RST {x1, . . . , xn} and
Bn(x1, . . . , xn, z) is equivalent in RST to 〈x1, . . . , xn〉 ∈ z. Let setx1,...,xnϕ be
(ϕ → ϕ) for n = 0, ∃Z∀x1 . . . ∀xn(Bn(x1, . . . , xn, Z) ⇔ ϕ) for n > 0 (where
Z ∈ Fv(ϕ)) 8. Let Setx1,...,xnϕ be the universal closure of setx1,...,xnϕ. Note that
Setxϕ formalizes the application to ϕ of the comprehension principle. We show
by induction on the structure of a formula ϕ of BZF that if ϕ �BZF {x1, . . . , xn}
then Setx1,...,xnϕ(I) is a theorem of ZF−−.

1. The case n = 0 is trivial

2. (a) If t is a variable or a constant of BZF then

– setxx = t and setxt = x follow from the pairing axiom.

– setxx ∈ t is a logically valid formula.

(b) If t = {y | ψ} (where ψ �BZF y) and ϕ = p(x, t), where p(x, t) is in
{x = t, t = x, x ∈ t}, and x ∈ Fv(t) (= Fv(ψ) − {y}), then ϕ(I) is
∃Z(∀y(y ∈ Z ⇔ ψ(I)) ∧ p(x, Z)). By induction hypothesis for ψ we have
�ZF −− Setyψ

(I). This means that �ZF −− ∃Z(∀y(y ∈ Z ⇔ ψ(I)), and so
�ZF −− ∃!Z(∀y(y ∈ Z ⇔ ψ(I)). By part (a) also �ZF −− Setxp(x, Z). Now
it is easy to show that (∃!ZA ∧ ∀ZsetxB) → setx∃Z(A ∧ B) is logically
valid in case x ∈ Fv(A). This implies that �ZF −− Setxϕ(I).

3. setx1,...,xn(ϕ ∨ ψ)(I) follows from setx1,...,xnϕ(I) and setx1,...,xnψ(I) by the
axioms of union and pairing.

8 This is a generalization of the notation Setxϕ from [20], P. 240.



A Framework for Formalizing Set Theories 101

4. To simplify notation, assume that Fv(ϕ) = {x, z}, Fv(ψ) = {x, y, z}, and
that ϕ �BZF {x}, ψ �BZF {y} (and so ϕ ∧ ψ �BZF {x, y}). By induction
hypothesis, �ZF −− Setxϕ(I), and �ZF −− Setyψ

(I). Reasoning in ZF−−, this
means that there are sets Z(z) and W(x,z) such that x ∈ Z(z) ⇔ ϕ(I) and
y ∈ W (x, z) ⇔ ψ(I). It follows that

{〈x, y〉 | (ϕ ∧ ψ)(I)} =
⋃

x∈Z(z)

{x} × W (x, z)

Setx,y(ϕ ∧ ψ)(I) follows therefore by the axioms of replacement and union,
and the fact that the existence of Cartesian products is provable in ZF−−.

5. Deriving SetX−{y}∃yϕ(I) in ZF−− from SetXϕ(I) is left to the reader.

6. Assume that �ZF −− setx1,...,xnψ(I), and {x1, . . . , xn}∩Fv(ϕ) = ∅. We show
that �ZF −− setx1,...,xn(∃yϕ∧∀y(ϕ → ψ))(I). This is immediate from the fact
that if {x1, . . . , xn}∩Fv(ϕ) = ∅ then ∃y∀x1 . . . xn((∃yϕ∧∀y(ϕ → ψ)) → ψ)
is logically valid 9, together with the following lemma:

Lemma: Assume that {y1, . . . , yk} ∩ Fv(ϕ) = ∅, �ZF −− setx1,...,xnψ and
∃y1, . . . , yk∀x1, . . . , xn(ϕ → ψ) is logically valid. Then �ZF −− setx1,...,xnϕ.

Proof of the Lemma: ∃y1, . . . , yk∀x1, . . . , xn(ϕ → ψ) logically implies the
formula ∃y1, . . . , yk∀x1, . . . , xn(ϕ ↔ .ψ ∧ ϕ). It is easy however to see that
if {y1 . . . yk} ∩ Fv(ϕ) = ∅ then Setx1,...,xnϕ logically follows in first order
logic from Setx1,...,xnφ and ∃y1 . . . yk∀x1 . . . xn(ϕ ↔ φ). Hence we only need
to prove that setx1,...,xn(ψ ∧ ϕ) follows in ZF−− from setx1,...,xnψ. This is
immediate from the axiom of subsets.

Now we show that if �BZF ϕ then �ZF −− ϕ(I). Since obviously ϕ(I) = ϕ in
case ϕ is in the language of ZF−−, this will end the proof of the theorem. Now
the inference rules are identical in the two systems, and our translation preserves
applications of these rules. It suffices therefore to show that the translations of
the comprehension axioms of BZF are theorems of ZF−−. Well, if ϕ �BZF {x}
then the translation of the ϕ-instance of this schema is ∀x(∃Z(∀x(x ∈ Z ↔
ϕ(I)) ∧ x ∈ Z) ↔ ϕ(I)). It is easy to see that this formula follows in ZF−− from
Setxϕ(I). The latter formula, in turn, is provable in ZF−− by what we have
proved above (since ϕ �BZF {x}).

This completes the proof of Theorem 6. ��

As noted at the end of the introduction, in mathematical practice new symbols
for relations and functions are regularly introduced in the course of develop-
ing a theory. This practice is formally based on the “extensions by definitions”
procedure (see e.g. [20], Sect. 4.6). Now, while new relation symbols are intro-
duced just as abbreviations for (usually) longer formulas, new function sym-
bols are introduced in a dynamic way: once ∀y1, . . . , yn∃!xϕ is proved (where
9 For the proof of the validity of this formula show that it follows from ∃y1 . . . ykϕ as

well as from ¬∃y1 . . . ykϕ.
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Fv(ϕ) = {y1, . . . , yn, x}) then a new n-ary function symbol Fϕ can conservatively
be introduced, together with a new axiom: ∀y1, . . . , yn(ϕ[x �→ Fϕ(y1, . . . , yn)]).
Now a particularly remarkable property of BZF and its extensions is that this
dynamic procedure is not needed for them. The required terms are available in
advance, and every new function symbol we might wish to use may be intro-
duced statically, as an abbreviation for an already existing term (in particular:
any set which has an implicit definition in some extension of BZF has an explicit
definition in that extension, using a set term):

Theorem 7. For any formula ϕ of BZF such that Fv(ϕ) = {y1, . . . , yn, x}),
there exists a term tϕ of BZF such that Fv(tϕ) = {y1, . . . , yn}, and

�BZF ∀y1, . . . , yn∃!xϕ → ∀y1, . . . , yn(ϕ[x �→ tϕ])

Proof: Define ιxϕ = {z | ∃xϕ∧∀x(ϕ → z ∈ x)} (where z is a new variable, not
occurring in ϕ). This is a valid term of BZF by the new clause in the definition
of �BZF . Now it can easily be proved that

�BZF ∀y1, . . . , yn(∃!xϕ → ∀x(ϕ ↔ x = ιxϕ))

It follows that ιxϕ is a term tϕ as required. ��

Corollary 2. Every instance of the replacement schema (in the language of
BZF ) is derivable in BZF .10

Proof: From the last theorem (and the definition of �BZF ) it follows that

�BZF ∀y∃!xϕ → ∀x(∃y.y ∈ w ∧ ϕ ↔ x ∈ {x | ∃y.y ∈ w ∧ x = ιxϕ}).

Note. ιxϕ intuitively denotes the unique x such that ϕ, in case such exists.
However, our ιxϕ is always meaningful, and denotes ∅ if there is no set that
satisfies ϕ, and the intersection of all the sets which satisfy ϕ in case there is
more than one such set.

4.2 The Powerset Axiom

Theorem 8

1. Let T be an extension of BZF , based on some safety relation �T which
extends �BZF . If �T satisfies the condition:

(Pow) ∀y(y ∈ x → ϕ) � (X − {y})∪{x} if ϕ � X, y ∈ X, and x ∈ Fv(ϕ).

Then the powerset axiom is derivable in T .
2. Let �BZFP be the safety relation obtained from �BZF by adding condition

(Pow) to its definition, and let the system BZFP be defined like RST , us-
ing �BZFP instead of �RST . Then BZFP is equivalent to ZF − Inf (ZF
without the infinity axiom).

10 This corollary provides a direct, short proof that BZF is an extension of ZF −−.
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Proof: For the first part, note that in the presence of condition (Pow) the
powerset axiom immediately follows from the facts that y ∈ z �RST y, and that
P (z) = {x | ∀y(y ∈ x → y ∈ z)}. The proof of the second part is similar to that
of Theorem 6. ��

Another method (which may look more natural and is the one used in [5]) to add
the power of the powerset axiom to the systems described above, is to extend the
language by taking ⊆ as an extra primitive binary relation symbol. A definition
of a system which is equivalent to ZF − Inf can then be obtained from the
definition of BZF by making the following two changes:

– Replace �BZF with �ZF−I , where �ZF−I is defined like �BZF , but with
one extra condition:

x ⊆ t �ZF−I {x} if x is a variable, t is a term, and x ∈ Fv(t).

– Add the usual definition of ⊆ in terms of ∈ as an extra axiom:

∀x∀y(x ⊆ y ↔ ∀z(z ∈ x → z ∈ y))

Alternatively, since ⊆ is now taken as primitive, it might be more natural to use
it as such in our axioms. This means that instead of adding the above axiom, it
might be preferable to replace the single extensionality axiom of BZF with the
following three extensionality axioms:

(Ex1) x ⊆ y ∧ y ⊆ x → x = y

(Ex2) z ∈ x ∧ x ⊆ y → z ∈ y

(Ex3) x ⊆ y ∨ ∃z(z ∈ x ∧ z ∈ y)

4.3 The Axiom of Infinity

Finally we turn to the axiom of infinity — the only axiom that necessarily
takes us out of the realm of (hereditarily) finite sets. As long as we take FOL
(First-Order Logic) as the underlying logic, it seems impossible to incorporate
it into our systems by just imposing new simple syntactic conditions on the
safety relation. Instead the easiest and most natural way to add its power to the
systems discussed so far, is to add to them Peano’s Axioms as new axioms:

– ∅ ∈ ω

– ∀x(x ∈ ω → S(x) ∈ ω) (where S(x) is defined like in Sect. 3.1)

– ϕ[x �→ ∅] ∧ ∀x(ϕ → ϕ[x �→ S(x)]) → ∀x(x ∈ ω → ϕ)

Note that because we are assuming the ∈-induction schema, the above induction
schema can actually be replaced by the following single axiom:

(∅ ∈ y ∧ ∀x(x ∈ y → S(x) ∈ y)) → ω ⊆ y

Theorem 9. ([5]) Let ZF+ be the system obtained from RST by adding (Rep)
and (Pow) to the definition of the safety relation, and the above Peano’s axioms
to the set of axioms. Then ZF+ is equivalent to ZF .
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5 Using Transitive Closure Logic

Introducing the infinity axioms into a system is a major step that from a com-
putational and proof-theoretical point of view takes us to a completely different
level. As is clear from the form we gave to this introduction, it incorporates in-
ductive reasoning into the systems. In order to introduce such reasoning already
on the logical level, and to keep as far as possible the uniformity of our framework,
it is most natural to use as the underlying logic a logic which is stronger than
FOL, but still reasonably manageable from a computational point of view. Now
in [3] it was argued that languages and logics with transitive closure operation
TC provide the best framework for the formalization of mathematics. Following
this suggestion seems particularly suitable in the present context, since with TC
the difference between set theories which assume infinity, and set theories which
are valid also in the universe of hereditarily finite sets, can again be reduced to
differences in the underlying syntactic safety relations.

Definition 9. ([14,22]) Let L be a (first-order) language. The language LTC is
obtained from L by adding the following clause to the definition of a formula: If
ϕ is a formula, x, y are distinct variables, and t, s are terms, then (TCx,yϕ)(t, s)
is a formula (in which every occurrence of x and y in ϕ is bound). The in-
tended meaning of (TCx,yϕ)(t, s) is the following “infinite disjunction”: (where
w1, w2, . . . , are all new):

ϕ[x �→ s, y �→ t] ∨ ∃w1(ϕ[x �→ s, y �→ w1] ∧ ϕ[x �→ w1, y �→ t])∨
∨∃w1∃w2(ϕ[x �→ s, y �→ w1]∧ϕ[x �→ w1, y �→ w2]∧ϕ[x �→ w2, y �→ t])∨. . .

The most important relevant facts shown in [3] concerning TC are:

1. If L contains a constant 0 and a (symbol for) a pairing function, then all
types of finitary inductive definitions of relations and functions (as defined
by Feferman in [11]) are available in LTC .

2. Let V0 be the smallest set including 0 and closed under the operation of
pairing. Let U be the smallest set of first-order terms in a language with a
constant for 0 and a function symbol for pairing. Let PT C+ be the smallest
set of formulas which includes all formulas of the form t = s for t, s ∈ U , and
is closed under ∨, ∧ and TC. Then a subset S of V0 is recursively enumerable
iff there exists a formula ϕ(x) of PT C+ such that S = {x ∈ V0 | ϕ(x)}.

3. By generalizing a particular case which has been used by Gentzen in [13],
mathematical induction can be presented as a logical rule of languages with
TC. Indeed, Using a Gentzen-type format, a general form of this principle
can be formulated as follows:

Γ, ψ, ϕ ⇒ Δ, ψ[x �→ y]
Γ, ψ[x �→ s], (TCx,yϕ)(s, t) ⇒ Δ, ψ[x �→ t]

where x and y are not free in Γ, Δ, and y is not free in ψ.
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Now if we are interested in set theories which are valid under the assumption
that all sets are (hereditarily) finite, then the comprehension axiom remains
valid if TC is included in the language, and the following clause is added to the
definition of a safety relation in the extended language:

(TC-fin) (TCx,yϕ)(x, y) � X if ϕ � X , and {x, y} ⊆ X .

On the other hand, for set theories which assume the existence of infinite sets
the following stronger principle should be adopted:

(TC-inf) (TCx,yϕ)(x, y) � X if ϕ � X , and {x, y} ∩ X = ∅.

Let PST (for “Predicative Set Theory”) be the extension of RST which has
TC in its language, and is based on the safety relation �PST obtained from
�RST by adding (TC-inf) as a new clause. Then the infinity axiom is derivable
in PST , since one can introduce there the set N of natural numbers as follows:11

N = {x | x = ∅ ∨ ∃y.y = ∅ ∧ (TCx,y(x = S(y)))(x, y)}

It is not difficult to see that PST still has the properties of RST described in
Theorems 4 and 5.

Note. The set of valid formulas of TC-logic is not r.e. (or even arithmetical).
Hence no sound and complete formal system for it is possible. It follows that
PST and its extensions cannot be fully formalized, and so appropriate formal
approximations (yet to be determined) of the underlying logic should be used.
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