
Tableaux with Four Signs as a Uni�ed FrameworkArnon AvronSchool of Computer ScienceTel-Aviv UniversityRamat Aviv 69978, Israelemail: aa@math.tau.ac.ilAbstract. We show that the use of tableaux with four types of signed formulas (the signs intuitivelycorresponding to positive/negative information concerning truth/falsity) provides a framework in whicha diversity of logics can be handled in a uniform way. The logics for which we provide sound and completetableaux systems of this type are classical logic, the most important three-valued logics, the four-valuedlogic of logical bilattices (an extension of Belnap's four-valued logic), Nelson's logics for constructivenegation (N� and N), and da Costa's paraconsistent logic C! (together with some extensions of which).For the latter we provide new, simple semantics for which our tableaux systems are sound and complete.1 IntroductionThere are two main variants of tableaux systems for classical logic. One employs two sorts of signed formulas:T' and F' (intuitively meaning \' is true" and \' is false", respectively). The other employs ordinaryformulas, replacing T' simply by ' and using :' as a substitute for F' (where : is the negation connectiveof the language). This alternative for the use of signs works well for classical logic, but a combination ofthe two methods is frequently needed for handling weaker logics, since usually the refutation of F' is notequivalent to the validity of '. Our goal here is to present what we believe to be a better approach, onewhich allows for a uni�ed treatment of negation (and other standard connectives!) in a diversity of logics.The idea is to use four sorts of signed formulas: T+', T�', F+', and F�'. The intuitive meaning of thesesigns can best be explained in terms of positive and negative information (see e.g. [Wan93]). T+' intuitivelymeans that there is a positive information for the truth of ', T�' means that there is a negative informationfor the truth of ', F+' means that there is a positive information for the falsity of ', F�' means thatthere is a negative information for the falsity of '. 1 In the rest of this paper we demonstrate the usefulnessof the four-signs framework by providing within it sound and complete tableaux systems for several wellknown logics. In the next section we consider logics in which negation is added to positive classical logic.This includes classical logic itself, the most important three-valued logics, and the four-valued logic of logicalbilattices (which is an extension of Belnap's famous four-valued logic). In the last section we treat logicsin which (true) negation is conservatively added to positive intuitionistic logic. The systems we considerthere are Nelson's two logics for constructive negation (N� and N), and da Costa's paraconsistent logic C!(together with some extensions of which). For the latter we provide new, simple semantics for which ourtableaux system(s) are sound and complete.1 A similar idea has motivated the introduction and use of bilattices. See [Gin87,Gin88,Fit90b,Fit90a,Fit91,Fit94].



One point should be noted before we proceed. The use of tableaux with more than two signs has alreadybeen used in the framework of many-valued logics (see the survey papers [H�ah99,BFS00] for the idea andfor a extensive list of references). The signs which are used there correspond however to the truth-valuesof the logic in question (so tableaux systems with exactly n signs are used for any n-valued logic). Here,in contrast, the four signs do not correspond to truth-values and we use them even for logics which do nothave �nite characteristic matrix. On the contrary, our goal is to provide a general framework which (as faras possible) is not essentially connected to any speci�c type of semantics.2 Many-valued Extensions of Positive Classical Logic2.1 Four-valued LogicsIn [Bel77b,Bel77a] Belnap suggested the use of logics based on the four truth-values t; f;>, and ?, where tand f are the classical values, > (\both true and false") represents the truth-value of formulas about whichthere is inconsistent data, while ? (\neither true nor false") is the truth-value of formulas on which no datais available. Belnap's structure is nowadays known also as the basic (distributive) bilattice, and its logic |as the basic logic of (distributive) bilattices (see [Gin87,Gin88,Fit90b,Fit90a,Fit91,Fit94,AA96,AA98]). Thefollowing is an extension (from [AA96]) of Belnap's logic with an appropriate implication connective:De�nition 1. The matrix M4 = hM4; D4; O4i: 2{ M4 = ft; f;>;?g{ D4 = ft;>g{ The operations in O4 are de�ned by:1. :t = f; :f = t; :> = >; :? = ?2. a _ b = sup�t(a; b); a ^ b = inf�t(a; b), where the partial order �t is de�ned by: f �t >;? �t t.3. a � b = � b if a 2 D4t if a 62 D4As usual, A function v from the set F of formulas of f:;_;^;�g into M4 is called a valuation in M4 ifit respects the operations in O4. A valuation v is an M4-model of a formula ' of F if v(') 2 D4. v is anM4-model of a set T of formulas if it is an M4-model of each element of T . A formula ' follows in M4 fromT (T `M4 ') if every M4-model of T is also a M4-model of '.The concept of an M4-model can be extended to signed formulas as follows:{ v is an M4-model of T+' if v(') 2 ft;>g{ v is an M4-model of T�' if v(') 2 ff;>g{ v is an M4-model of F+' if v(') 2 ff;?g{ v is an M4-model of F�' if v(') 2 ft;?g2 The names of the various matrices discussed in this section are taken from [Avr03].



Note that T `M4 ' i� the set fT+ j  2 Tg [ fF+'g is not satis�able.Note. It is well known from the literature on bilattices (see e.g. [Gin88,Fit94]) that M4 can be identi�edwith ft; fg � ft; fg (so that > represents (t; t), ? represents (f; f), t represents (t; f) and f represents(f; t)). This allows an alternative presentation of the semantics, using two valuations in ft; fg, representingindependent information concerning truth and falsity of formulas (see [Wan93]). We shall explain more aboutthis approach in the next section.We present now a tableaux system which is sound and complete with respect to `M4 :De�nition 2. The tableaux system Tab(M4): 3Expansion Rules:(T+:) T+:'T�' T�:'T+' (T�:)(F+:) F+:'F�' F�:'F+' (F�:)(T+^) T+' ^  T+';T+ T�' ^  T�' j T� (T�^)(F+^) F+' ^  F+' j F+ F�' ^  F�';F� (F�^)(T+_) T+' _  T+' j T+ T�' _  T�';T� (T�_)(F+_) F+' _  F+';F+ F�' _  F�' j F� (F�_)(T+ �) T+' �  F+' j T+ T�' �  T+';T� (T� �)(F+ �) F+' �  T+';F+ F�' �  F+' j F� (F� �)Closure Conditions: A branch is closed i� for some formula ' it contains either fT+';F+'g or fT�';F�'g.Theorem 1. A set of signed formulas is unsatis�able in M4 i� it has a closed tableaux in Tab(M4).Proof: It is straightforward to check that a set T of formulas for which one of the two closure conditionsobtains is unsatis�able, and that for every expansion rule R, if T has a model in M4 then so does at least3 This system is closely related to the Gentzen-type system for this logic that was presented in [AA96,Avr03], andits completeness can be derived from the completeness of that system. It is however more illuminating to prove itdirectly.



one of the sets which are obtained from T by R. This shows soundness (i.e.: if T has a closed tableaux thenit is unsatis�able). For the converse it is suÆces to prove that the set of formulas � of any fully expandedopen branch (in a complete tableaux for T ) has a model v de�ned as follows:v(p) =8>><>>:f T+p 62 �;F�p 62 �? F+p 2 �;F�p 2 �> T+p 2 �;T�p 2 �t otherwiseNow the fact that � is open (i.e. contains no set of the form fT+';F+'g or fT�';F�'g) implies thatv is well de�ned, and that if Sp 2 � , where S is one of the four signs and p is atomic, then v is a model ofSp. Using induction on the structure of formulas and the fact that � is fully expanded it is not diÆcult toshow that v is a model of any formula in � .Corollary 1. Let ' and  be formulas in the language of f:;_;^g. Then ' !  is a valid �rst degreeentailment of the relevance logic R ([AB75,AB92,Dun86]) i� fT+';F+ g has a closed tableaux in Tab(M4).Note. Although we use here 4 signs, these signs do not correspond to the 4 truth values of the semantics.Indeed, the same signs will be used below with very similar systems for 3-valued logics and even for theclassical, two-valued logic.2.2 Three-valued Logics and Classical LogicWe consider next two basic three-valued logics, whose matrices are submatrices of M4.De�nition 3. The matrix Mftg3 = hMftg3 ; Dftg3 ; Oftg3 i:{ Mftg3 = ft; f;?g{ D4 = ftg{ The operations in Oftg3 are de�ned by:1. :t = f; :f = t; :? = ?2. a _ b = sup�t(a; b); a ^ b = inf�t(a; b),3. a � b = ( b if a 2 Dftg3t if a 62 Dftg3Note. The implication connective of Mftg3 was originally introduced by S lupecki in [S lu36]. It was in-dependently reintroduced in [Mon67,Woj84,Sch86] and [Avr91] (see also [Bus96]). The language of Mftg3 isequivalent ([Avr91]) to that used in the logic LPF of the VDM project ([Jon86]), as well as to the languageof  Lukasiewicz 3-valued logic  L3 ([ Luk67]). It is in fact the language of all 3-valued operations which areclassically closed. It can be shown that by adding one propositional constant to it (corresponding to thetruth value ?) we get a functionally complete set of 3-valued connectives (See [Avr99] for further details andreferences).



De�nition 4. The matrix Mft;>g3 = hMft;>g3 ; Dft;>g3 ; Oft;>g3 i:{ Mft;>g3 = ft; f;>g{ Dft;>g3 = ft;>g{ The operations in Oft;>g3 are de�ned by:1. :t = f; :f = t; :> = >2. a _ b = sup�t(a; b); a ^ b = inf�t(a; b),3. a � b = ( b if a 2 Dft;>g3t if a 62 Dft;>g3Note. The implication connective of Mft;>g3 was �rst introduced in [DdC70,dC74]. It was independentlyintroduced also in [Avr86]. The language f:;_;^;�ft;Igg is equivalent to that used in the standard 3-valuedparaconsistent logic J3 ([D'o85,Avr86,Roz89,Eps90]. In [Avr91] it is called Pac), as well as to that usedin the semi-relevant system RM3 ([AB75,AB92,Dun86]. See also [Avr86,Avr91]). It is the language of all3-valued operations which are classically closed and free ([Avr99]).The concepts of Mftg3 -model and of Mft;>g3 -model are de�ned now exactly as in the case of M4 (but ofcourse only the available truth-values are relevant. Thus practically a valuation v in Mftg3 is an Mftg3 -modelof T+' if v(') = t).The tableaux system Tab(Mftg3 ): This is the system obtained from Tab(M4) by adding to it the followingextra closure condition: a branch is closed also if for some formula ' it contains fT+';T�'g.The tableaux system Tab(Mft;>g3 ): This is the system obtained from Tab(M4) by adding to it the fol-lowing extra closure condition: a branch is closed also if for some formula ' it contains fF+';F�'g.Theorem 2.1. A set of signed formulas is unsatis�able in Mftg3 i� it has a closed tableaux in Tab(Mftg3 ).2. A set of signed formulas is unsatis�able in Mft;>g3 i� it has a closed tableaux in Tab(Mft;>g3 ).Proof: Similar to that of Theorem 1.Note. Because of the strong expressive power of the languages ofMftg3 and Tab(Mftg3 ) (see [Avr99,Avr03]),their tableaux systems can be used as bases for all other 3-valued logics. For example, ' !  , where ! is Lukasiewicz 3-valued implication, is equivalent in Mftg3 to (' �  )^ (: � :'). This leads to the following4 rules for it: (T+ !) T+'!  T+ j T�' j F+';F� T�'!  T+';T� (T� !)(F+ !) F+'!  T+';F+ j T� ;F�' F�'!  F+' j F� (F� !)



We end this section with a characterization of classical logic itself:Theorem 3. Let Tab(M2) be the system obtained from Tab(M4) by adding to it both of the new closureconditions of Tab(Mftg3 ) and Tab(Mft;>g3 ). Then a set of signed formulas is unsatis�able in classical logici� it has a closed tableaux in Tab(M2).We leave the proof of this Theorem to the reader.3 Conservative Extensions of Positive Intuitionistic Logic3.1 Nelson's Logics for NegationThe logics N� and N are conservative extensions of positive intuitionistic logic which were independentlyintroduced by Nelson (see [AN84]) and Kutschera ([vK69]). The motivation for their introduction has beenthe wish to provide an adequate treatment of negative information within the framework of constructivelogic. See [Wan93] for further details and references.The standard semantics of N� is based on Kripke frames I = hI;�; v+; v�i in which v+ and v� arevaluations from I�F into ft; fg (where F is the set of formulas) which satisfy the following basic conditions:(H+) If a � b and v+(a; ') = t then v+(b; ') = t(H�) If a � b and v�(a; ') = t then v�(b; ') = tv+ and v� should further satisfy also the following conditions:v+(a; ' ^  ) = t i� v+(a; ') = t and v+(a;  ) = tv�(a; ' ^  ) = t i� v�(a; ') = t or v�(a;  ) = tv+(a; ' _  ) = t i� v+(a; ') = t or v+(a;  ) = tv�(a; ' _  ) = t i� v�(a; ') = t and v�(a;  ) = tv+(a; ' �  ) = t i� for all b � a, either v+(b; ') = f or v+(b;  ) = tv�(a; ' �  ) = t i� v+(a; ') = t and v�(a;  ) = tv+(a;:') = t i� v�(a; ') = tv�(a;:') = t i� v+(a; ') = tCall a frame I = hI;�; v+; v�i satisfying the above conditions a N�-frame. A N-frame is de�ned similarly,with one extra condition: that v+(a; ') and v�(a; ') cannot both be t at the same time.Note. It can be shown that it suÆces to demand the H(erditary) conditions (H+) and (H�) only foratomic formulas. The other conditions impose them then on all the formulas.The semantics of formulas and of signed formulas is de�ned now as follows. Let I = hI;�; v+; v�i be aN�-frame, and let a 2 I . De�ne:{ (I; a) is a N�-model of T+' if v+(') = t{ (I; a) is a N�-model of T�' if v�(') = t{ (I; a) is a N�-model of F+' if v+(') = f{ (I; a) is a N�-model of F�' if v�(') = f



Let now (I; a) be a N�-model of an ordinary formula ' i� it is a N�-model of T+' (i� it is not a N�-modelof F+'). De�ne the concept of N-model of signed formulas and of ordinary formulas in a similar way, usingN-frames instead of N�-frames.Note. If we allow only one element in I then what we get is equivalent to the four-valued logic of M4.As we have already noted above, it is indeed quite common to use two valuations v+ and v� from F toft; fg for an equivalent representation of the semantics of this logic ([Wan93]). The conditions concerningv+ and v� are practically identical to those in the case of N�, with only one exception: instead of the abovecondition concerning v+(a; ' �  ) = t we have in that logic the simpler condition:v+(' �  ) = t i� v+(') = f or v+( ) = tIt is possible then to de�ne the meanings of the signed formulas in this logic in a way which is completelyanalogous to the way this was done above in for N�.We present now tableaux systems which are sound and complete with respect to N� and N.De�nition 5. The tableaux systems Tab(N�) and Tab(N) are obtained from Tab(M4) and Tab(Mftg3 )(respectively) by replacing their (F+ �) rule with the following pair of rules:(F+ �)w F+' �  F+ (F+ �)I S;F+' �  T (S);T+';F+ Here (F+ �)I is a variant of the usual special intuitionistic rule for refuting implication: if S is the set of signedformulas on some branch then T (S) is the set of all the elements in S whose sign is either T+ or T�, andan expansion of a branch by this rule requires the creation of a new tableau for the set T (S)[fT+';F+ g.Theorem 4. A set of signed formulas is unsatis�able in N� i� it has a closed tableaux in Tab(N�).Theorem 5. A set of signed formulas is unsatis�able in N i� it has a closed tableaux in Tab(N).The proofs of these theorems is similar to the proofs of the soundness and completeness of the standardtableaux system for propositional intuitionistic logic, or of the soundness and completeness of the usualGentzen-type systems for N� and N (as presented e.g. in [Wan93])4. Details will be given in the full paper.3.2 Extensions with Excluded MiddleIt is well known that it is impossible to conservatively add to intuitionistic positive logic a negation whichis both explosive (i.e.: :'; ' `  for all ';  ) and for which LEM (the Law of Excluded Middle: :' _ ') isvalid. With such an addition we get classical logic. In N (following the tradition of intuitionistic logic) the4 The tableaux systems we present here are of course strongly related to these Gentzen-type systems.



choice was on explosiveness. In the paraconsistent logics of da Costa's school ([dC74,CM02]) explosivenessis rejected, while LEM is accepted. Thus da Costa's basic system C! is a conservative extension of positiveintuitionistic logic which is obtained from any standard Hilbert-type formulation of this logic by adding asaxioms :' _ ' and ::' � '. We present now a Kripke-style semantics for C! which is similar to that wehave presented above for N 5.De�nition 6. A C!-frame is a structure I = hI;�; v+; v�i in which v+ and v� are valuations from I �Finto ft; fg such that:1. There are no a 2 I and ' for which both v+(a; ') = f and v�(a; ') = f .2. The basic conditions (H+) and (H�) above are satis�ed3. v+ and v� satisfy also the following conditions:v+(a; ' ^  ) = t i� v+(a; ') = t and v+(a;  ) = tv+(a; ' _  ) = t i� v+(a; ') = t or v+(a;  ) = tv+(a; ' �  ) = t i� for all b � a, either v+(b; ') = f or v+(b;  ) = tv+(a;:') = t i� v�(a; ') = tv�(a;:') = f if v+(a; ') = fThus the conditions concerning v+ are identical to those in the case of N�, and are fully deterministic(given v�). The values assigned to v�, in contrast, are in general not determined by the values assigned byv+ and v� to its subformulas, and they are only subjected to two constraints (this implies, among otherthings, that it does not suÆce to assume conditions (H+) and (H�) only for atomic formulas, since thisdoes not enforce them for arbitrary formulas).The concept of a model of a signed formula, and the associated consequence relation are de�ned nowexactly as in the case of N� and N. We present now a corresponding tableaux system: 6De�nition 7. The tableaux system Tab(C!) has the following rules and closure conditions:Closure Conditions: Like in the case of Tab(Mft;>g3 ), a branch is closed i� for some formula ' itcontains either fT+';F+'g, or fT�';F�'g, or fF+';F�'g.Expansion Rules: The rules (T+:), (F+:), (T+^), (F+^), (T+_), (F+_), (T+ �), and (T�:)of Tab(M4), as well as the rules (F+ �)w and (F+ �)I of Tab(N�).Analytic Cuts: S'T+ j F+ S'T� j F� Where S 2 fT+;F+;T�;F�g and  is a subformula of '5 Though similar, we believe that our new semantics is simpler and more intuitive than the one given in [Baa86].6 This system is closely related, but not identical, to the Gentzen-type system given for C! in [Rag68].



Theorem 6. A set of signed formulas is unsatis�able in C! i� it has a closed tableaux in Tab(C!).Proof: We give an outline, leaving details for the full paper. Call a �nite set � of signed formulas saturatedif it satis�es the following conditions:1. � has no closed tableau in Tab(C!).2. If S' 2 � them for every subformula  of ', either T+ 2 � or F+ 2 � , and either T� 2 � orF� 2 � .3. With the exception of (F+ �)I , � respects all the expansion rules of Tab(C!) (e.g.: if T+'^ 2 � thenboth T+' 2 � and T+ 2 � , while if F+' ^  2 � then either F+' 2 � or F+ 2 � ).Because of the presence of the analytic cuts, it is easy to see that if � does not have a closed tableau inTab(C!) then it can be extended to a �nite saturated set ��, so that every (ordinary) formula which occursin �� is a subformula of some formula in �. Let I be the set of all saturated sets which have this property.Obviously �� 2 I . De�ne next v+ and v� for � 2 I and ' 2 F recursively as follows:{ If ' is atomic, then v+(�; ') = f i� F+' 2 � , and v�(�; ') = f i� F�' 2 � .{ If ' =  1 ^  2 then v+(�; ') = f i� either v+(�;  1) = f or v+(�;  2) = f , while v�(�; ') = f i�F�' 2 � .{ If ' =  1 _  2 then v+(�; ') = f i� v+(�;  1) = f and v+(�;  2) = f , while v�(�; ') = f i� F�' 2 � .{ If ' =  1 �  2 then v+(�; ') = f i� there exists � � � � in I such that v+(� �;  1) = t and v�(� �;  2) =f , while v�(�; ') = f i� F�' 2 � .{ If ' = : then v+(�; ') = f i� v�(�;  ) = f , while v�(�; ') = f i� either F�' 2 � or v+(�;  ) = f .We proceed next to show that hI;�; v+; v�i is a C!-frame, and that each � 2 I is a model of all thesigned formulas of � . In particular: �� is a model of all the signed formulas in �.Note. With the exception of (F+ �) and (F� �), it is possible to add to Tab(C!) all the other expansionrules of Tab(M4), and still get a conservative extension of positive intuitionistic logic. It is possible also tomodify the semantics in an appropriate way to get soundness and completeness for the resulting system. Onthe other hand by adding (F� �) to Tab(C!) we get classical logic.Note. The crucial step in the proof of the last theorem is to show that the resulting hI;�; v+; v�i isindeed a frame. It is at this point where the addition of (F� �) causes the argument to fail.One �nal remark. It is possible to conservatively add a propsitional constant f to all the systems we havediscussed above, together with the extra closure condition that a branch which contains T+f (and optionallyalso F�f) is closed. Hence we could have assumed that full propositional intutionistic logic is contained in allthese systems. It seems diÆcult to satisfactorily handle intuitionistic \negation" itself within our framework,but this is not so important anyway, since this negation is best understood in terms of � and f .
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