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Abstract. We show that the use of tableaux with four types of signed formulas (the signs intuitively
corresponding to positive/negative information concerning truth/falsity) provides a framework in which
a diversity of logics can be handled in a uniform way. The logics for which we provide sound and complete
tableaux systems of this type are classical logic, the most important three-valued logics, the four-valued
logic of logical bilattices (an extension of Belnap’s four-valued logic), Nelson’s logics for constructive
negation (N~ and N), and da Costa’s paraconsistent logic C., (together with some extensions of which).
For the latter we provide new, simple semantics for which our tableaux systems are sound and complete.

1 Introduction

There are two main variants of tableaux systems for classical logic. One employs two sorts of signed formulas:
Ty and Fy (intuitively meaning “p is true” and “g is false”, respectively). The other employs ordinary
formulas, replacing T simply by ¢ and using —¢ as a substitute for Fy (where — is the negation connective
of the language). This alternative for the use of signs works well for classical logic, but a combination of
the two methods is frequently needed for handling weaker logics, since usually the refutation of Fy is not
equivalent to the validity of ¢. Our goal here is to present what we believe to be a better approach, one
which allows for a unified treatment of negation (and other standard connectives!) in a diversity of logics.
The idea is to use four sorts of signed formulas: T+<,0, T o, F+<,0, and F~ ¢. The intuitive meaning of these
signs can best be explained in terms of positive and negative information (see e.g. [Wan93]). TT ¢ intuitively
means that there is a positive information for the truth of ¢, T~ ¢ means that there is a negative information
for the truth of ¢, F¢ means that there is a positive information for the falsity of ¢, F~¢ means that
there is a negative information for the falsity of . ! In the rest of this paper we demonstrate the usefulness
of the four-signs framework by providing within it sound and complete tableaux systems for several well
known logics. In the next section we consider logics in which negation is added to positive classical logic.
This includes classical logic itself, the most important three-valued logics, and the four-valued logic of logical
bilattices (which is an extension of Belnap’s famous four-valued logic). In the last section we treat logics
in which (true) negation is conservatively added to positive intuitionistic logic. The systems we consider
there are Nelson’s two logics for constructive negation (N~ and N), and da Costa’s paraconsistent logic C,,
(together with some extensions of which). For the latter we provide new, simple semantics for which our

tableaux system(s) are sound and complete.

! A similar idea has motivated the introduction and use of bilattices. See [Gin87,Gin88,Fit90b,Fit90a,Fit91,Fit94].



One point should be noted before we proceed. The use of tableaux with more than two signs has already
been used in the framework of many-valued logics (see the survey papers [Hah99,BFS00] for the idea and
for a extensive list of references). The signs which are used there correspond however to the truth-values
of the logic in question (so tableaux systems with exactly n signs are used for any n-valued logic). Here,
in contrast, the four signs do mot correspond to truth-values and we use them even for logics which do not
have finite characteristic matrix. On the contrary, our goal is to provide a general framework which (as far

as possible) is not essentially connected to any specific type of semantics.

2 Many-valued Extensions of Positive Classical Logic

2.1 Four-valued Logics

In [Bel77b,Bel77a] Belnap suggested the use of logics based on the four truth-values ¢, f, T, and L, where ¢
and f are the classical values, T (“both true and false”) represents the truth-value of formulas about which
there is inconsistent data, while L (“neither true nor false”) is the truth-value of formulas on which no data
is available. Belnap’s structure is nowadays known also as the basic (distributive) bilattice, and its logic —
as the basic logic of (distributive) bilattices (see [Gin87,Gin88,Fit90b,Fit90a,Fit91,Fit94 AA96,AA98]). The

following is an extension (from [AA96]) of Belnap’s logic with an appropriate implication connective:
Definition 1. The matriz My = (My, Dy, O4): 2

- My=A{t,f, T, 1}

- Dy={t, T}

— The operations in Oy are defined by:
1. ~t=f, ~f=t -T=T, -L=1
2. aVb=sup<,(a,b)
3. aDb = {

, aANb=1inf<,(a,b), where the partial order <; is defined by: f <, T, L <;t.
b zfa € D4
t 7f a g D4

As usual, A function v from the set F of formulas of {—,V,A, D} into My is called a valuation in M, if
it respects the operations in O4. A valuation v is an My-model of a formula ¢ of F if v(p) € Dy4. v is an
My-model of a set T of formulas if it is an M4-model of each element of T'. A formula ¢ follows in My from

T (T Fpm, ¥) if every My-model of T is also a My-model of ¢.

The concept of an My-model can be extended to signed formulas as follows:

v is an My-model of T if v(p) € {t, T}
c{f. T}
p)e{f,L}
— v is an My-model of F~y if v(p) € {¢, L}

(
v is an My-model of T~ if v(y
— v is an My-model of Fty if u(
(

)
)
)
)

? The names of the various matrices discussed in this section are taken from [Avr03].



Note that T, @ iff the set {TT¢ | ¢ € T} U {FTp} is not satisfiable.

Note. It is well known from the literature on bilattices (see e.g. [Gin88,Fit94]) that M, can be identified
with {¢, f} x {t, f} (so that T represents (¢,¢), L represents (f, f), ¢t represents (¢, f) and f represents
(f,t)). This allows an alternative presentation of the semantics, using two valuations in {t, f}, representing
independent information concerning truth and falsity of formulas (see [Wan93]). We shall explain more about

this approach in the next section.

We present now a tableaux system which is sound and complete with respect to Faq,:

Definition 2. The tableauz system Tab(My): 3

Expansion Rules:

(rr-) T g @
() B s
(T*A) i et
(F* o) ?Fif,—;% FF% (F o)

Closure Conditions: A branch is closed iff for some formula ¢ it contains either {TTo, FTo} or {T ¢, F p}.
Theorem 1. A set of signed formulas is unsatisfiable in My iff it has a closed tableauz in Tab(My).

Proof: It is straightforward to check that a set T" of formulas for which one of the two closure conditions
obtains is unsatisfiable, and that for every expansion rule R, if T has a model in M, then so does at least

3 This system is closely related to the Gentzen-type system for this logic that was presented in [AA96,Avr03], and
its completeness can be derived from the completeness of that system. It is however more illuminating to prove it
directly.



one of the sets which are obtained from T by R. This shows soundness (i.e.: if T has a closed tableaux then
it is unsatisfiable). For the converse it is suffices to prove that the set of formulas I" of any fully expanded

open branch (in a complete tableaux for T') has a model v defined as follows:

f TpgIFpgrl
1 F'pel'F pel
T TrpellT pel
t  otherwise

Now the fact that I is open (i.e. contains no set of the form {Tt¢, FT ¢} or {T ¢, F~¢}) implies that
v is well defined, and that if Sp € I, where S is one of the four signs and p is atomic, then v is a model of

Sp. Using induction on the structure of formulas and the fact that I" is fully expanded it is not difficult to

show that v is a model of any formula in I".

Corollary 1. Let ¢ and ¢ be formulas in the language of {—,V,A}. Then ¢ — ¢ is a valid first degree
entailment of the relevance logic R ([AB75,AB92,Dun86]) iff {T @, FT 4} has a closed tableauz in Tab(My).

Note. Although we use here 4 signs, these signs do not correspond to the 4 truth values of the semantics.
Indeed, the same signs will be used below with very similar systems for 3-valued logics and even for the

classical, two-valued logic.

2.2 Three-valued Logics and Classical Logic
We consider next two basic three-valued logics, whose matrices are submatrices of M.
Definition 3. The matriz M%t} = (MS.{t},Dét}, O;t}):

- M{Y =1t f,1}

— Dy = {t}

— The operations in Oét} are defined by:
1. ~t=f, —-f=t, -L=1

2. aVb=sup<,(a,b), aNb=1inf< (a,b),
b ifac DY

3. adb =
¢ t ifagDét}

Note. The implication connective of M?Et} was originally introduced by Stupecki in [Stu36]. It was in-
dependently reintroduced in [Mon67,Woj84,Sch86] and [Avr91] (see also [Bus96]). The language of Mgt} is
equivalent ([Avr91]) to that used in the logic LPF of the VDM project ([Jon86]), as well as to the language
of Lukasiewicz 3-valued logic L3 ([Luk67]). It is in fact the language of all 3-valued operations which are
classically closed. Tt can be shown that by adding one propositional constant to it (corresponding to the
truth value 1) we get a functionally complete set of 3-valued connectives (See [Avr99] for further details and

references).



Definition 4. The matriz Mgt’T} = (Mét’T},Dét’T}J)gt’T}):

S Mt = {11, T)

- DI = (1, T}

— The operations in O%t’T} are defined by:
1. ~t=f —f=t -T=T

2. aVb=sup<,(a,b), aNb=1inf< (a,b),
b ifaec D"

3. aDb =
t ifag DT

Note. The implication connective of M§t7T} was first introduced in [DAC70,dC74]. It was independently
introduced also in [Avr86]. The language {—,V, A, Dy 11} is equivalent to that used in the standard 3-valued
paraconsistent logic J3 ([D’085,Avr86,R0289,Eps90]. In [Avr91] it is called Pac), as well as to that used
in the semi-relevant system RM3 ([AB75,AB92,Dun86]. See also [Avr86,Avr91]). It is the language of all

3-valued operations which are classically closed and free (J[Avr99]).

The concepts of Mgt}—model and of Mgt’T}—model are defined now exactly as in the case of My (but of
course only the available truth-values are relevant. Thus practically a valuation v in Mét} is an Mit}—model

of Tty if v(p) = t).

The tableaux system Tab(/\/lgt}): This is the system obtained from T'ab(M4) by adding to it the following
extra closure condition: a branch is closed also if for some formula ¢ it contains {T+<,0, T ¢}.
The tableaux system Tab(/\/lgt’T}): This is the system obtained from T'ab(My) by adding to it the fol-

lowing extra closure condition: a branch is closed also if for some formula ¢ it contains {Fﬂp, F o}

Theorem 2.

1. A set of signed formulas is unsatisfiable in ./\/lét} iff it has a closed tableauz in Tab(M:gt}).
2. A set of signed formulas is unsatisfiable in M§t7T} iff it has a closed tableauz in Tab(M:gt’T}).

Proof: Similar to that of Theorem 1.

Note. Because of the strong expressive power of the languages of Mit} and Tab(/\/lét}) (see [Avr99,Avr03]),
their tableaux systems can be used as bases for all other 3-valued logics. For example, ¢ — ¢, where — is
Lukasiewicz 3-valued implication, is equivalent in Mgt} to (¢ DY) A (-1 D —p). This leads to the following
4 rules for it:

T o = ¢ T ¢

(O ) Ty T o [ FeF v ot g (T )
Fto =9 Fo—= _
F =) oo T o F FolF g )



We end this section with a characterization of classical logic itself:

Theorem 3. Let Tab(Ms) be the system obtained from Tab(My) by adding to it both of the new closure
conditions of Tab(Mét}) and Tab(M:gt’T}). Then a set of signed formulas is unsatisfiable in classical logic
iff it has a closed tableauz in Tab(Ms).

We leave the proof of this Theorem to the reader.

3 Conservative Extensions of Positive Intuitionistic Logic

3.1 Nelson’s Logics for Negation

The logics N~ and N are conservative extensions of positive intuitionistic logic which were independently
introduced by Nelson (see [AN84]) and Kutschera ([vK69]). The motivation for their introduction has been
the wish to provide an adequate treatment of negative information within the framework of constructive
logic. See [Wan93] for further details and references.

The standard semantics of N~ is based on Kripke frames Z = (I, <,v%,»™) in which ™ and v~ are
valuations from I x F into {¢, f} (where F is the set of formulas) which satisfy the following basic conditions:

(HT) TIfa<bandov*(a,¢)=tthen v* (b, o) =t

(H7) Ifa<bandv (a,p) =t then v (b,p) =1

vT and v~ should further satisfy also the following conditions:

vt(a,p A) =t iff vt(a,p) =t and vt (a, ) =t

v (a,pAY) =t iffv(a,p) =torv (a,yp) =t

vi(a, V) =t iff vF(a,p) =t orvt(a,v) =t

v (a, V) =t iff v (a,p) =t and v~ (a,v) = ¢

v (a, o D) =tiff for all b > a, either v (b, ) = f or v (b,4p) = ¢
v (a,p DY) =tiff vt(a,p) =t and v (a,9) =t

v (a,~p) =t iffv(a,p) =t

v (a,mp) =t iffvt(a,p) =1t

Call a frame 7 = (I, <,v™,v™) satisfying the above conditions a N~ -frame. A N-frame is defined similarly,

with one extra condition: that v™ (a, ¢) and v~ (a, ) cannot both be ¢ at the same time.

Note. It can be shown that it suffices to demand the H(erditary) conditions (H+) and (H ™) only for

atomic formulas. The other conditions impose them then on all the formulas.

The semantics of formulas and of signed formulas is defined now as follows. Let 7 = (I, <,v",v7) be a

N~ -frame, and let a € I. Define:

a) is a N™-model of Ty if vt (¢) =1t
a) is a N7 -model of T~ ¢ if v~ ()

)
)
) is a N~ -model of FT¢ if vt
)

¥
¥

(z, (

(Z, (¥) =1t
(Z,a (p)=f
(Z,a) isa N -model of F @ if v~ () = f



Let now (Z,a) be a N~ -model of an ordinary formula ¢ iff it is a N ~-model of T ¢ (iff it is not a N~-model
of F* ). Define the concept of N-model of signed formulas and of ordinary formulas in a similar way, using

N-frames instead of N~ -frames.

Note. If we allow only one element in I then what we get is equivalent to the four-valued logic of M.
As we have already noted above, it is indeed quite common to use two valuations v+ and v~ from F to
{t, f} for an equivalent representation of the semantics of this logic ([Wan93]). The conditions concerning
vt and v~ are practically identical to those in the case of N—, with only one exception: instead of the above

condition concerning v (a, ¢ D 1) =t we have in that logic the simpler condition:

vt DY) =tiff vt (p) = forovt(v) =t

It is possible then to define the meanings of the signed formulas in this logic in a way which is completely

analogous to the way this was done above in for N—.

We present now tableaux systems which are sound and complete with respect to N~ and N.

Definition 5. The tableauz systems Tab(N~) and Tab(IN) are obtained from Tab(M,) and Tab(M%t})
(respectively) by replacing their (F™ D) rule with the following pair of rules:
Ftoo
+ w ¥
S

S,Fto oy
T(S). T . F ¢

(F* D)

Here (F™ D)7 is a variant of the usual special intuitionistic rule for refuting implication: if S is the set of signed
formulas on some branch then T'(S) is the set of all the elements in S whose sign is either T or T, and

an expansion of a branch by this rule requires the creation of a new tableau for the set T'(S) U {T ¢, F*1}.
Theorem 4. A set of signed formulas is unsatisfiable in N~ iff it has a closed tableauz in Tab(IN ™).
Theorem 5. A set of signed formulas is unsatisfiable in N iff it has a closed tableauz in Tab(IN).

The proofs of these theorems is similar to the proofs of the soundness and completeness of the standard
tableaux system for propositional intuitionistic logic, or of the soundness and completeness of the usual

Gentzen-type systems for N~ and N (as presented e.g. in [Wan93])*. Details will be given in the full paper.

3.2 Extensions with Excluded Middle

It is well known that it is impossible to conservatively add to intuitionistic positive logic a negation which
is both explosive (i.e.: =, p F 4 for all ¢, 1) and for which LEM (the Law of Excluded Middle: - V ¢) is
valid. With such an addition we get classical logic. In N (following the tradition of intuitionistic logic) the

* The tableaux systems we present here are of course strongly related to these Gentzen-type systems.



choice was on explosiveness. In the paraconsistent logics of da Costa’s school ([dC74,CMO02]) explosiveness
is rejected, while LEM is accepted. Thus da Costa’s basic system C,, is a conservative extension of positive
intuitionistic logic which is obtained from any standard Hilbert-type formulation of this logic by adding as
axioms = V ¢ and == D ¢. We present now a Kripke-style semantics for C, which is similar to that we

have presented above for N 5.

Definition 6. A C,-frame is a structure T = (I, <,v™,v™) in which v* and v~ are valuations from I x F

into {t, f} such that:

1. There are no a € I and ¢ for which both v (a,p) = f and v~ (a,p) = f.
2. The basic conditions (H" ) and (H™) above are satisfied

3. v¥ and v~ satisfy also the following conditions:

vi(a, o AY) =t iff vt(a,@) =t and v (a,) =t

vT(a,pVip) =t iff vt(a,@) =t orvt(a,) =t

v (a, o D)=t iff  forallb> a, either v (b,p) = f orvT(be)) =1t
v (a,~p) =t iff v (a,p)=t

v (a,~p) = f if  vt(a,9)=f

Thus the conditions concerning vT are identical to those in the case of N—, and are fully deterministic
(given v~ ). The values assigned to v, in contrast, are in general not determined by the values assigned by
vT and v~ to its subformulas, and they are only subjected to two constraints (this implies, among other
things, that it does not suffice to assume conditions (H*) and (H ™) only for atomic formulas, since this
does not enforce them for arbitrary formulas).

The concept, of a model of a signed formula, and the associated consequence relation are defined now

exactly as in the case of N~ and N. We present now a corresponding tableaux system: 6

Definition 7. The tableaux system Tab(C,) has the following rules and closure conditions:

Closure Conditions: Like in the case of Tab(M§t7T}), a branch is closed iff for some formula ¢ it

contains either {T+<,0,F+<,0}, or {T ¢, F ¢}, or {F+<,0,F7<,0}.

Expansion Rules: The rules (TT-), (F™=), (TTA), (FTA), (TTV), (FTV), (TT D), and (T~ )

of Tab(My), as well as the rules (F* 2)* and (F* D)’ of Tab(N").

Analytic Cuts:

S Sy
T ) | FTy T | F 9

Where S € {T+, Fr. T, F~} and ¢ is a subformula of ¢

® Though similar, we believe that our new semantics is simpler and more intuitive than the one given in [Baa86].
5 This system is closely related, but not identical, to the Gentzen-type system given for C, in [Rag68].



Theorem 6. A set of signed formulas is unsatisfiable in Cy, iff it has a closed tableaux in Tab(C,,).

Proof: We give an outline, leaving details for the full paper. Call a finite set I" of signed formulas saturated

if it satisfies the following conditions:

1. I" has no closed tableau in T'ab(Cl,).

2. If Sp € I' them for every subformula 1 of ¢, either TTe) € I" or F™4) € I', and either T ¢ € I" or
Fyel.

3. With the exception of (F* D)/, I" respects all the expansion rules of Tab(C,,) (e.g.: if TTp At € I then
both TTp € I' and T*¢ € I', while if FT ¢ A4 € I' then either FTp € I" or Fty € IN).

Because of the presence of the analytic cuts, it is easy to see that if A does not have a closed tableau in
Tab(C,) then it can be extended to a finite saturated set A*, so that every (ordinary) formula which occurs
in A* is a subformula of some formula in A. Let I be the set of all saturated sets which have this property.

Obviously A* € TI. Define next v+ and v~ for I' € T and ¢ € F recursively as follows:

— If ¢ is atomic, then v+ (I, ) = fif FTp € I'and v () = fif F o€ I.

— If o = 91 Aty then v (I, p) = f iff either v (1) = f or v (I,4hs) = f, while v™ (I, @) = f iff
Fopel.

— If o =9y Vb then v (I, ) = f iff o7 (I,91) = f and v (I, 40) = f, while v (I',p) = fif F e I.

— If o = 91 D ahs then v (I, p) = f iff there exists I'™* D I"in I such that o™ ("™ ¢;) =t and v~ (I'*, 1)) =
fywhilev (Ip)=fif Fpel.

— If ¢ = =) then v (I', @) = f iff v=(I',¢) = f, while v~ (I', ) = f iff either F~p € I" or v (I',¢) = f.

3

We proceed next to show that (I,C,v",v7) is a C,-frame, and that each I' € I is a model of all the

signed formulas of I'. In particular: A* is a model of all the signed formulas in A.

Note. With the exception of (F™ D) and (F~ D), it is possible to add to T'ab(C,,) all the other expansion
rules of T'ab(My,), and still get a conservative extension of positive intuitionistic logic. It is possible also to
modify the semantics in an appropriate way to get soundness and completeness for the resulting system. On

the other hand by adding (F~ D) to T'ab(C,) we get classical logic.

Note. The crucial step in the proof of the last theorem is to show that the resulting (I, C,v",v™) is

indeed a frame. It is at this point where the addition of (F~ D) causes the argument to fail.

One final remark. It is possible to conservatively add a propsitional constant f to all the systems we have
discussed above, together with the extra closure condition that a branch which contains T*f (and optionally
also F~f) is closed. Hence we could have assumed that full propositional intutionistic logic is contained in all
these systems. It seems difficult to satisfactorily handle intuitionistic “negation” itself within our framework,

but this is not so important anyway, since this negation is best understood in terms of D and f.
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