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Abstract. We argue that the concept of transitive closure is the key for under-
standing finitary inductive definitions and reasoning, and we provide evidence for the
thesis that logics which are based on it (in which induction is a logical rule) are the
right logical framework for the formalization and mechanization of Mathematics. We
investigate the expressive power of languages with the most basic transitive closure
operation TC. We show that with TC one can define all recursive predicates and
functions from 0, the successor function and addition, yet with T'C' alone addition
is not definable from 0 and the successor function. However, in the presence of a
pairing function, T'C does suffice for having all types of finitary inductive definitions
of relations and functions. This result is used for presenting a simple version of
Feferman’s framework F'Sp, demonstrating that T'C-logics provide in general an
excellent framework for mechanizing formal systems. An interesting side effect of
these results is a simple characterization of recursive enumerability and a new,
concise version of Church thesis. We end with a use of T'C' for a formalization
of Set Theory which is based on purely syntactical considerations, and reflects real
mathematical practice.

1. Introduction

There is an old answer to the question: “What is a formal system?”
which was supplied by Post [22] and Smullyan [23]. They took the
classes of strings closed under sets of inductive definitions as the general
notion (in effect, the theory of recursively enumerable classes). Their
approach was however believed to be completely unusable in practice,
and so it has first been ignored as a possible basis for a practical
framework. However, in [9] Feferman gave a new proposal in the same
vein, as a competitor to the type theory school of frameworks, like the
Edinburgh LF (see e.g. [14, 21]). Feferman’s F'S; follows the approach
of Post and Smullyan: basically it identifies the notions of a formal
system and of an r.e. set. There is enormous improvement, however,
over the Post/Smullyan approach by taking Lisp’s S-expressions (rather
than strings) as the basic data structure, and by using a very flexible
form of inductive definitions. F'Sy is accordingly a version of Pure Lisp,
supplemented with facilities for defining recursively enumerable classes
and with induction over such classes. Since syntactic categories con-
nected with a formal system L are almost always defined inductively,
it is usually straightforward to make an encoding of a logic L in F'Sy
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as classes of S-expressions. The induction principles of F'Sy can then
be used for doing within F'Sy object-level theorem proving in L, and
also meta-level reasoning concerning L. That this approach is indeed
potentially practical from an implementation point of view has been
demonstrated by the works of Matthews [20, 17, 18]). Nevertheless,
mechanical theorem proving (even interactively) in F'Sy is still quite
difficult, since F'Sy is a first-order theory, in which induction is provided
as an axiom, not as a rule. Moreover: the language of F'Sy is also not
so convenient to work with. It is a rather complicated 3-sorted lan-
guage, including S-expressions, functions on S-expressions, functionals
for combining functions, classes and class forming operations. '

The main goal of this paper is to show that Feferman’s framework
can be simplified a lot by turning it into a basic logic (rather than a
complicated theory within a logic) in a relatively simple language. Since
induction becomes a logical rule of inference in this logic, the resulting
system (so we believe) should be easier to use, and can really serve as
a framework for formalizing mathematical systems and for reasoning
about them. The key idea is that instead of using first order logic as
an underlying logic we should use an extension of it with an operation
for forming transitive closure of binary relations.

A second goal we have, strongly related to the first, is to provide
evidence for a broader thesis, according to which a logic of this sort
is actually the right logical framework for the formalization and mech-
anization of mathematics. It should be clear that first-order logic is
too week for this task. Thus the fact that it fails even to provide a
categorical characterization of the natural numbers means that this
logic is incapable of telling the whole story that human Logic has to tell.
Moreover: even a mathematical theory which does have a first-order for-
mulation often has basic theorems which are not really theorems of that
first-order theory, but (officially) theorems about it. A trivial example
(from [17])? is the identity (ab)™ = a™b", which is valid for every integer
n in every commutative group. This identity is certainly a theorem of
commutative group theory (proved by mathematical induction), but it
is not a theorem of first-order commutative group theory!

While first-order logic is too weak, second-order logic is frequently
too strong (and much more difficult to mechanically work with). More-
over: it is based on ontological commitments which are not universally
accepted. Thus it is counter-intuitive that in order to understand the
notion of a natural number (which every child does) one needs to un-
derstand also the notion of an arbitrary set of natural numbers (which

L A more detailed description of F'Sp is given in subsection 5.1.
2 Other, more interesting examples are given in subsection 2.2.
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most people do not), but this precisely is what the use of a second-order
language for characterizing the natural numbers amounts to. It could
in fact be claimed with justice that second-order “logic” is actually not
a logic at all, but set theory in disguise.

The use of of a logic with a transitive closure operation T'C' seems
to me as the correct intermediate level. The fundamental induction
principle is a logical principle in such a logic, and usually any obvious
consequence of a given first-order theory which cannot be formulated
and proved in that theory can easily be formulated and proved in a
corresponding logic with T'C' using this principle. On the other hand
the construction of the transitive closure of a given relation does not
involve the creation of new, abstract objects (like in second order logic),
but rather of new relations among existing ones 3. Moreover: the use
of TC is natural (and so user-friendly), since the correct use of it is a
part of everybody’s logic. Here are two non-mathematical examples:

— I am a descendant of Jacob. Therefore my son is also a descen-
dant of Jacob. Moreover: The descendants of my son will all be
descendants of Jacob.

— If you have sexual relations with someone who had had sexual rela-
tions with someone who had had sexual relations with ... someone
who had been a HIV carrier, then you might become one too.*

Everyone can (and does) understand the inferences made in these
two examples. One does not need to be trained in mathematics or even
to understand the natural numbers for that. This means that they are
based on general (though not first-order) logical principles °. Now what
is involved in the two examples (and in a lot of other examples of this
sort®) are the following two factors:

1. The construction of a certain new binary relation between objects
from a given one. This relation is exactly what mathematicians call
“the transitive closure” of the old one.

* Note that the use of relations which are not objects can anyhow never been
dispensed with. Even in set theory, where relations are usually taken as objects, the
most important ones (€, = and C) are not!

* Taken without permission from a T.V. campaign for safe sex.

5 I am convinced that most people will indeed classify the conclusions in the
examples above as logical consequences of their assumptions!

6 To give just one more example from computer science: in Page 7 of [16] the
authors write: “Some appeal to second-order logic appears necessary here because
transitive closure is not first-order definable”. In fact transitive closure is the only
”second-order” feature they need.
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2. The use of some induction principle for inferring facts about objects
which are related by the new relation. Such induction principle(s)
should be the core of the logic of the transitive closure operation.

These consideration lead us to the conviction that the ability to
define the transitive closure of any given relation and make appropri-
ate inferences concerning it is essential for any computerized reasoning
system, and especially one which is designed for doing mathematics. We
further believe that systems which are based on extending first-order
logic with T'C' should suffice for most (if not all) concrete, applicable
mathematics, and that such systems should be better suited for auto-
mated reasoning than systems which are based on higher order logics.
The results below provide some (quite partial) evidence for these beliefs.

The structure of the paper is as follows. In section 2 we review
first the basic definitions, and then provide examples of applications
in two major mathematical disciplines: geometry and arithmetics. The
main result of this section is that using 7'C, all recursive functions are
definable from 0, S and + (where S denotes the successor function). In
section 3 we present induction as a logical rule of languages with T'C.
We use for this a Gentzen-type format, generalizing a particular case
which has been used by Gentzen. In section 4 we study the expressive
power of languages with T'C'. We show that T'C alone is not sufficient
for defining addition from 0 and the successor function. However, in
the presence of a pairing function, it does suffice for having all types
of finitary inductive definitions of relations and functions. This result
is used in section 5.1 for presenting a simple version of Feferman’s
framework F'Sy, demonstrating that T'C-logics provide in general an
excellent framework for mechanizing formal systems. An interesting
side effect of the results in that section is a simple characterization of
recursive enumerability and a new, concise version of Church thesis.
Finally, in section 5.2 we use TC for a formalization of set theory
which is based on purely syntactical considerations, and reflects real
mathematical practice.

One more remark before we start: a great deal of attention has
already been given in the past to logics with a transitive closure op-
eration in the context of finite model theory (FMT — see [8]), as well
as other branches of computer science (like databases and complexity).
However, in almost all cases the research has focused on their appli-
cations to finite structures. Our own interest, in contrast, is in logics
which are meaningful and applicable to every structure. In fact, infinite
structures are by far more interesting and important from the point of
view which interests us: the prospect of formalizing and mechanizing
mathematics (especially concrete mathematics). Important and useful
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as it certainly is, most of the work that was done in FMT (and related
areas) on the subject is therefore almost irrelevant to the purposes of
this paper. Moreover: most of this research has been dedicated to model
theory (with an emphasis on fixed-point logics), while for formalizing
mathematics we need useful proof systems. I believe that from this point
of view logics which are based on T'C will prove superior to fixed-point
logics, and they are certainly more natural and better suited than these
logics to formalize the way mathematics is actually done!

2. Logics with a Transitive Closure Operation

2.1. THE LANGUAGE AND ITS SEMANTICS

The language and semantics of the basic extension of first order logic
with a transitive closure operation are defined as follows (see, e.g.,
[15, 13, 12]):

DEFINITION 1. Let o be a signature for a first-order language with
equality. The language L]TC(U) is defined like the usual first-order lan-
guage which is based on o, but with the addition of the following clause:

— If v is a formula, x,y are distinct variables, and t,s are terms,
then (T'Cyyp)(t,s) is a formula. In this formula all the free occur-
rences of © and y in @ become bound.

The semantics of the new type of formulas is defined as follows. Given
a structure D for o with domain D and an assignment v in D for the
variables of the language, define:

— D,v |= (TCyyp)(t,s) iff there exist ag.ai,...,an, € D (n > 1)
such that ag = v(t), ap = v(s), and D,v(x = a;, y:=aj41) E ¢
fori=0,1,...,n—1.

NOTE 1. Given a formula ¢, (T'C, ,¢) is a new binary predicate sym-
bol (in standard first-order languages only primitive predicate symbols
are available!).

NOTE 2. In LITC we really need only the propositional connectives
and the T'C operator, since the existential quantifier can be defined as
follows:

3w =y (TCuu(p(u/z) V 6(v/2)) ) (t.5)

where t and s are terms. Any two terms would do, but in order for Az
to have less free variables than ¢ (in particular, in order for 3z to be
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a sentence in case z is the only free variable of @), ¢ and s should be
(not necessarily distinct) closed terms. This is possible, of course, only
if the signature o has at least one constant.

On the other hand, in the presence of the existential quantifier it
is possible to provide an alternative (simpler?) version of T'C'. Since
@(t/z) is equivalent to 3z.z = ¢t A @, one can replace the somewhat
cumbersome (T'Cy, y¢)(t, s) by the simpler T'Cy ¢, where the meaning
of the latter is identical to that of (T'Cy ) (z,y) (and so = and y are free
in this formula). Note however that the resulting language is strange
in that it might not be possible to substitute in it terms (not even
closed ones) for free variables (although the truth-value of a formula in
a structure still depends on the values which are assigned there to its

free variables).

NOTE 3. The reflexive transitive closure RT'C can be defined as:
RTCyy(t,s) =ps (t =35) V (TCoryp)(t,s) .

It is possible in fact to take RT'C as primitive, since (T'Cyy¢)(t,s) is
logically equivalent to:

o(t/x,s/y) VvV Iz (z 1N (RTC, ) (t, z) AN (RTCyyp)(z, 5)) )

Note however that the use of negation is needed for defining T'C' in
terms of RT'C, while it is not needed for defining RT'C' in terms of T'C
(This difference is crucial for the validity of Theorems 3 and 5 below!).
Hence it is better to choose T'C as primitive.

2.2. AN EXAMPLE: APPLICATIONS IN EUCLIDEAN GEOMETRY

As is well known, elementary Euclidean geometry (EUG) has been
given by Tarski a complete (and so decidable) first-order axiomatiza-
tion (see e.g. [24]). However, some of the most interesting theorems
of Euclidean geometry cannot be formulated in the language of EUG.
Examples are the negative results concerning construction problems
(like squaring the circle), and the Mascheroni-Mohr theorem according
to which every point in the plane which can be constructed using a ruler
and a compass (given a finite set of points) can be constructed using
only a compass’. By Theorem 3 below, these theorems can be formu-
lated if T'C and a pairing function are added to the language of EUG. As
for their proofs — induction plays of course a crucial role in them. It is

7 An attempt of automatizing my new proof of this theorem in [2, 3] has been
one of my major motivations for investigating Lt (o) (see [4]).
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interesting to note however that at least for Mascheroni-Mohr theorem
an extra axiom is needed as well: Archimedes’ axiom. This axiom says
that given two segments a and b, there is a natural number n such that
b is congruent to a partial segment of na. Archimedes’ axiom cannot
be formulated in the first-order language of EUG. It can however easily
and naturally be formulated using T'C. Here, e.g., is a formulation of
its counterpart in the standard signature of ordered fields (which is
somewhat shorter than its formulation in the language of geometry):

VaVb(b >0—3z(z>an (TCpyz =y + b)(z,O))) .

Note that the natural numbers are not even mentioned in this formu-
lation! (Of course, they are definable in this signature by the formula
N(n) =ps (TCpyx =y + 1)(n,0)).

2.3. TRANSITIVE CLOSURE AND THE NATURAL NUMBERS
In L1, ((0,S,4)) one can define:
t<s=ps (TCryy=S(x))(t,s).

The following finite set of axioms is then categorical, with N as the
unique model:

N1.  Vz(S(z) #0)

N2. vovy(S(z) = S(y) = = = y)
N3. Ve(z =0V 0 < x)

N4. Vo(r +0=x)

N5. Vz(z + S(y) = S(z +y))

Note that this system is of course not categorical if we define ¢t < s as
32.5(z) +t = s!

THEOREM 1. All recursive functions are definable in L} ((0, S, +)).8.

Proof: Obviously, it is sufficient to show that multiplication is defin-
able in L1, ((0,S,+)). For this note that the division relation (defined
by: | y =py Jz(z * z = y)) is definable in L}~((0,S,+)), since
Nz |y e (TCupa+z = b)(0,y) . Next, it is obvious that z = y? is
equivalent in N to

yl @+ ASW) | (@+y) AVz(z<z+ynry|z=-(S@)|2) .

® By an n—ary function being definable we mean of course that its graph is
definable (as an (n + 1)—ary relation).
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Finally, x = y - z is equivalent in N to
3u3v3w<u:y2/\v:z2/\w: (y+2)° Aw = ((u+0) + ) —}—x)

COROLLARY 1. The set of formulas of Lt~ ({0, S, +)) which are valid
in N is not arithmetical.

COROLLARY 2. The set of logically valid formulas of L1.~((0, S, +))
s not arithmetical.

Proof: A formula ¢ of L1,((0,5,+)) is valid in N iff the formula
N1A---ANNbH — pis logically valid.

NOTE 4. For a categorical characterization of the natural numbers
L}.~({0,S)) and axioms N1-N3 already suffice. Unfortunately, the ex-
pressive power of this language is too weak (See Theorem 2 below).
Note, however, that L}..((0,S)) does suffice for our definition of <.

3. Reasoning with 7'C: Induction as a Logical Rule

Corollary 2 means that no complete and sound proof system for the
logically valid formulas of Ll is possible. Instead one should look for
a computationally efficient sound proof system which will be strong
enough for most (or even all) related mathematical needs. The most
important valid logical rule of Li.,(c) which such a system should
include is induction. Using a Gentzen-type format, a general form of
this principle can be formulated as follows:

U, o= Ap(y/x)
U p(s/z), (TCyyi)(s,t) = A, p(t/)
where z and y should not occur free in I', A, and y should not occur
free in 2.
To see the connection between this rule and ordinary induction,
assume that o is a signature which contains 0 and S, and take ¢ to be
y = S(z). Substituting 0 for s we get:

U,y = S(x) = A, ¢(y/z)
L, (0/2), (TCyyy = S(2))(0,1) = A, 4(t/z)

Using first order rules for = and the definition of < in L}((0, S)), this
is equivalent to:

T, = A(S(x)/z)
Lop(0/x),0 <t = A 9)(t/x)
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Since obviously I',9(0/z), 0 =t = A, (t/x) is a valid sequent, we get

L= A,p(S(x)/x)
T,(0/z),0 =tV 0 <t= A,(t/z)

Using N3 from subsection 2.3 , this implies the validity of the following
in the context of any system in which N3 is valid:

T = A, (S(x)/x)
T,(0/x) = A, ¢(t/)

This is exactly the form given to the induction rule by Gentzen in the
classical [11] (in which the consistency of PA is proved).

The induction rule is an introduction rule for T'C on the left hand
side of a sequent. Two obvious rules for introducing it on the right hand
side are:

I'= A o(t/z,s]y)
I'=> A, (TCfr,,ySD) (ta S)

F = Aa (TCfE,ySD) (Ta 3) F = Aa (TCT,y‘P) (S, t)
I'= A (TCyyp)(r.t)

A major research task here is to find out what other rules (if any)
should be added in order to make the system “complete” in some
reasonable sense.

4. The Expressive Power and Inductive Definitions

4.1. THE NEED TO USE PAIRS

We have seen that induction as a method of proof is a part of the logic
of L} (o). However, induction is used in Mathematics also as a tool
for defining new concepts and relations (including functions, which we
take here as a special type of relations). For this L. (0) is in general
too weak:

THEOREM 2. + is not definable in L.,((0,S)).

Proof: By a well-known result of Biichi ([7]. See also [6], p. 615]),
S1S, the (monadic) second order theory of the successor function, is
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decidable. Now L1, ({0, S)) is interpretable in S185, since (TCy ,¢)(t, 3)
is equivalent to

VZ{[VU((p(t/x,u/y) —u€ Z)ANVaVy(r € ZANp 5y € Z)] = s € Z}

(where Z is a second order variable). This implies the decidability of
the set of formulas of L} ((0,S)) which are valid in N. The theorem
follows therefore from Corollary 1.

One possible solution to the problem caused by Theorem 2 is to use
stronger transitive closure operations. [13], e.g., considers the languages

L. (o), in which (Tofh--w"?kﬂlﬂ7~~~’ykg0)({’ §) is a formula whenever ¢ is a

formula, z1,..., %45 y1,--.,ys (k < n) are 2k distinct variables, and ¢, §
are k-vectors of terms. The semantics of (TCLfop)(f, §) is defined as in
the case k = 1, only this time we need to refer to vectors of length & of
terms or variables. Now in L2.,((0, S)) addition (and so every recursive
function) is definable, since it is easy to see that

N ‘: T=y+ze (RTczl,a:g,yl,ygy] - S(.’E]) NYs = S(*/EQ))(anaZax)

However, the use of TC* is not so natural, and its implementation is a
serious problem for proof checkers which are based on strict discipline
of types, like LF-style Logical Frameworks (see [14, 1, 21]). To see why,
let o be a signature of some first-order language L. The standard way
of representing L in the LF is by using an LF-signature ¢* which
includes the types ¢ and o (representing the set of terms of L and the
set of formulas of L, respectively), the judgment true : o — Type,
constants for the connectives and quantifiers (where the type of V,
e.g., is (1t = 0) — 0), and constants corresponding to those of o with
appropriate types (thus a binary predicate symbol of o is assigned the
type t = ¢ — o, while a binary function symbol — the type t — ¢ — ).
Following this approach, the obvious (and the only natural) way to
represent T'C' in such frameworks is by introducing a constant:

TC: (1L—1t—0) — (1L —1t—0)
TC?, in turn, should be represented by a constant of the form:
TC?: (1= 1—=1—=1—0) — (L=t —=1—1—0)
Obviously, the complexity of the types of the constants needed for TC*

according to this standard approach grows with k. Worse: there is no
way of including all of them in one finite signature, while the LF (as
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well as any other logical framework which is based on strict discipline
of types) allows only finite signatures. *

An obvious better solution to the problem caused by Theorem 2 is
to allow the (explicit or implicit) construction of pairs in the language.
Using pairs all the TC* can be reduced to TC'" in a trivial way. Draw-
ing on Feferman’s analysis and results in ([9]), we now show that the
availability of both pairs and the basic TC (i.e. TC") together suffice
for having all types of finitary inductive definitions at our disposal.

4.2. FINITARY INDUCTIVE DEFINITIONS OF RELATIONS

For simplicity, we assume first that a pairing function is explicitly given
in the language.

DEFINITION 2. Let o be a first-order signature with equality having
at least one constant 0. Let L be a language which contains Lk (o).

1. A structure D for L is called admissible if there exists a term t(z,y)
of L (denoted below simply as (x,y)) such that:

D= (z1,y1) = (T2.92) = 21 = T2 Ay1 = 12
Dk (z,y) #0

2. Let D with domain D be admissible for L, and let Q) be a class of
formulas of L. We denote by K (D) the set of subsets of D which
are definable by some formula in €.

NOTE 5. Like in [9], by letting S(z) = (z,0) we get a a copy of the
natural numbers in any admissible structure D. In what follows we shall
identify the natural numbers with this copy.

NOTE 6. As noted in [9], every subset A of D induces an n-ary
relation A™ on D, defined by: A" (zy,...,z,) & (z1,....2,) € A
(where (z1,...,%,) is an abbreviation of (---((z1,z2),23) - ,zy)).
Conversely: every n-ary relation A™ on D is induced by some A C D.
Hence it suffices to investigate definability of subsets of D.

DEFINITION 3. Let L be as in Definition 2. A class Q) of formulas
of L is called TC™ -closed if it contains all equations in L and is closed
under applications of V,N,3, and TC (i.e., if ¢ € Q, and t and s are
terms, then (TCy,p)(s,t) € Q).

9 The real source of the problem is that the generalized transitive closure opera-
tion does not have a unique arity. Hence any system in which every constant should

have a fixed arity can directly handle it only by officially using an infinite number
of primitive symbols, or by using a very roundabout codification.
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NOTE 7. If Q is closed under substitutions of variables for variables
(which is the case in all interesting cases) then by Note 2 closure under
Jz follows from closure under T'C' and V.

THEOREM 3. Let D be admissible for L, and let Q be a TCT-closed
class of formulas of L. Then K(D) is closed under finitary induc-
tive definitions (as they are defined in [9]). In other words: When-
ever Ai,...,Am,Bi1,...,B, are all in K*(D), then so are the least
X1,..., Xy which satisfy the following conditions:

(1) AiCX; (1<i<m).

(2) If a1 € X,‘Zl,...,anj € X,‘an and (b,ay,...,ay;) € Bj then also
be X; (1<j<p).

(here Aq,..., A provide the initial conditions, while By,..., B, are
the inductive rules).

Proof: The definability of m sets Xy,...,X,, is equivalent to the
definability of the single set Z = .., X; x {i}, since

i<m
2 €7+ \/EIm(r[;EX,;/\z:(m,i))
i<m
€ X 3z(z€ ZNz= (1))

Since the initial and inductive conditions concerning Xy, ..., X, in the
formulation of the theorem can similarly be transformed into conditions
on this set, we may assume in what follows w.l.o.g. that m = 1. With
this assumption we may use disjunction (and, if necessary, dummy
conditions of the form y; = y;) to further assume that p = 1 as
well'?. Hence it remains to show that (D) is closed under Feferman’s
operations Ij (from [9]), where for A,B C D and k > 1, I}(A, B) is
the least X C D such that:

i) ACX
(ii) M 2y,...,2x € X, and (y,21,...,2x) € B, then y € X.
To show the closure of X% (D) under Iy, let (following [9])
Seq(X) =ps {0} U{(0,21,...,2p) [ n>1,21,...,2, € X}

The main idea of the proof is to show that given A and B, K% (D)
contains the set of finite sequences (represented as elements of Seq(Vy))

10 This reduction to the case where m = p = 1 is exactly like what is done in [9]
for Feferman'’s system F'Sy.
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which can be viewed as “proofs” that their last element is in I (A, B).
Obtaining then Iy (A, B) is easy, since for any a € Seq(X) both n and
T, are uniquely determined, and z, can easily be obtained from a.

To simplify notation, we do here the case k = 2 (the case where k > 2
is almost identical, while the case k& = 1 is done below ''). The details
are given in the following definitions and easily shown facts (where we
use {(y,z) | ¢} as an abbreviation of {z | Jy3z(z = (y,z) A ) }).

— For B C D let TC(B) be the transitive closure of the binary
relation induced by B. In other words:

TC(B) = {(z,y) | (TC’uyvﬂz.z = (u,v) Nz € B)(m,y)}
Obviously, TC(B) € K%(D) for all B € K%(D).

— L(A,B)={z|z€ AVIyy € AA(z,y) € TC(B)}. Hence K (D)
is closed under I.

— Seq(A) =L({0},{(y,z) | 3w(y = (z,w)Aw € A)}). Hence Seq(A)
is in £(D) whenever A € K%(D).

— Let 17 Perm be the set of all pairs of the form:

(('7"1""amlaa‘abayla"'ayn)v (mla"'amlabaa‘ayla"'ayn))

where ! > 0andn > 0. Then 1~ Perm € K(D), since it is identical
to I;(S, E), where S(witch) and E(nlarge) are defined by:

S = {(y,2) | 323a3b(s = (2,0,b) Ay = (2,5, )}
E={(y,2) | 3a3b3v.z = (a,b) Ay = ((a,v), (b,v))}
(S is the set of pairs ((x1,...,2;,a,b),(x1,...,2;,b,a)) (I > 0),

(a,b)€1” Perm )
a,v),(b,w))€1~ Perm /"

while F corresponds to the inductive rule: T

— Let Perm be the set of all pairs of the form:
((a,.T] PP ,xn), (a,:cﬂm, . 7$7r(n)))

where 7 is a permutation of {1,...,n}. Then Perm € K%(D), since
Perm = I (id*, 1~ Perm), where id* = {(z,z) | Judv.x = (u,v)}.

— Let Proof (A, B) be the set of sequences (0, z1,...,x,) for which
there exists a permutation 7 of {1,...,n} s. t. for every 1 < i < n,
either z,(;) € A or there exist j,1 such that 7(j), 7(l) < n(i) and

(.’Eﬂ(i),xﬂ(j),xﬂ(l)) € B. Then PTOOf(A,B) € ’CQ(D), since it is

" In [9] it is shown how to reduce (in a similar framework) any Iy to I».

paper.tex; 30/08/2002; 12:52; p.13



14

identical to I1(Seq(A), PermUB*), where UUV is an abbreviation
for {z|z€UVzeV}, and

B* ={(y,z) | 3zFuFvIw.y = (z,2) Nz = (u,v,w) A (z,v,w) € B}

Note that y is obtained from z in B* by adding to = the result of
applying the rule B to the last two components of x.

— I(A,B) = {y | 3z3z.x € Proof(A,B) ANz = (z,y)}. Hence
I,(A, B) € KY(D) whenever A, B € K%(D).

NOTE 8. Feferman has taken I as a primitive of his F'Sy. A proof
similar to that of Theorem 3 shows that he could have taken instead
just I (or T'C applied to classes).

NOTE 9. An examination of the proof Theorem 3 shows that it is not
necessary to assume that the language has a pairing term for D. It
suffices that there is a formula (x,y, z) in Q such that:

D EVaVy3dz.z #0AP(x,y, 2)

D ‘: w(mayazl) /\10(77,?/,22) — 21 = 22
D=z, y1,2) NP(x2,y2,2) = 21 = T2 Ay = Yo

4.3. FINITARY INDUCTIVE DEFINITIONS OF PARTIAL FUNCTIONS

We have concentrated so far on inductive definitions of classes and
relations. However, finitary inductive definitions are used also for defin-
ing partial functions. To do this within our framework, we follow the
modern approach, and identify a partial function f from D to D with
its graph. Accordingly, we call an n-ary f definable if the following
set is definable: {(z1,...,zn,y) | y = f(z1,...,2y)}. It is not difficult
then to show that from our results concerning definability of relations
it follows that the usual methods of introducing new functions using
finitary inductive definitions are available to us. As an example, we
show that for admissible D and for a TC"-closed class of formulas §2,
the set (D) is closed under the three basic functionals which have
been used in [9].

THEOREM 4. If Q is TC"-closed, and the partial functions f and
g are in K®(D) (where D is admissible), then so are also the partial

functions P(f,9), C(f.g), and R(f,q), where P(f,q) = Az.(fz.g),
C(f,9) = \x.f(gx), and R(f,g) is the function h defined by primitive

recursion as follows:
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0 x =0
h(T) = f(y) x :Z(y,O)
g(y,z,zu,h(y,z) h(yaﬂﬂ) €z ::(y7(27U0)

Proof: we have:
- P(f,9) = {z| 323y Fyo.z = (z, (g1, y2)) ANz, 1) € fA(z,92) € g}
- C(f,9) ={z| Fz3y3w.z = (z,y) A (z,w) € g A (w,y) € f}

— R(f,g) is the least set h which contains the set
{w | w=(0,0)V Izdy.w = ((2,0),y) A (z,y) € f}

and is closed under the following inductive rule: If (x,y,u1) € h,
(z,2z,u2) € h, and (z,y, z,u1,u2,u3) € g, then (z,(y,z),us) € h.
By Theorem 3 it follows therefore that R(f,g) is in K%(D).

5. Using T'C for the Mechanization of Mathematics

5.1. F'Sy; AND RECURSIVELY ENUMERABLE SETS

A formal mathematical system is a finite collection of syntactic cat-
egories (over some finite set of basic symbols called the “alphabet”).
Each of these categories should be semi-decidable: if something belongs
to it, then it should be possible to mechanically show that this is the
case. In practice, the various syntactic categories are invariably defined
using finitary inductive definitions. As was explained in the introduc-
tion, this observation has led Feferman in [9] (following previous works
of Post [22] and Smullyan [23]) to propose F'Sj, a simple theory of
inductive definitions, as a general framework for implementing formal
systems and for reasoning about them. The main two features which
distinguish F'Sy from previous works are:

— Rather than the set of strings of symbols from some finite alphabet
U of basic symbols, the universe of expressions in F'Sj is taken to
be that of Lisp’s S-expressions (or lists), where (without a loss
in generality) only one basic symbol 0 is needed. In other words:
the pairing function is taken to be primitive, and the universe of
expressions is Vj, the least set which includes 0, and includes (a, b)
whenever it includes a and b (note that every admissible structure
contains an inductively defined substructure which is isomorphic
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to Vp). This simplifies definitions and propositions a lot, and allows
for greater flexibility (and it is also strongly justified by the results
of the previous section!).

— F'Sy provides explicit class terms for denoting subsets of Vj, as
well as explicit means for introducing such subsets using finitary
inductive definitions. It is not difficult to show that a subset of V} is
denoted by some class term of F'Sy iff it is recursively enumerable.

The approach of F'Sy for constructing class-denoting terms is based
on the use of Combinators rather than the use of abstractions. More-
over: In addition to terms for classes F'Sy has also terms denoting
functions, and these terms are used in constructing class terms. The
definition of the two classes is as follows:

C-FnTm (closed function terms)

1. The constants I, D, P;, P, and K are in C-FnTm.
2. If f,g € C-FnTm then P(f,q),C(f,9), R(f,g) € C-FnTm.

C-ClTm (closed class terms)

1. The constant {0} € C-ClT'm.
2. If f € CFnTm and S € C-CITm then f~'S € C-CITm.
3. It S, T € C-ClTm then SNT,SUT,I5(S,T) € C-ClTm.

Here I, P, P, and K, denote, respectively, the identity function,
the projection functions for pairs, and the constant function Az.0. D
denotes the function that given (z,y,u,v) returns u if x = y and v if
x # y (it returns 0 if the input is not a 4-tuple). The class term f~ 'S
denotes the set {z | f(z) € S}. The meaning of the other constructs
was explained in the previous section.

We describe now a very simple language with T'C, in which the
subsets of Vy which are definable by abstractions are exactly those
which are denoted by class terms of F'Sy (i.e., the r.e. subsets of V;).

DEFINITION 4. PTC*, the minimal pure language whose set of for-
mulas is TC*-closed, is defined as follows:

Terms of PTC*

1. The constant 0 is a term.
2. Every (individual) variable is a term.

3. If t and s are terms then so is (t,s).
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Formulas of PTCt

1. Ift and s are terms then t = s is a formula.
2. If v and Y are formulas then so are ¢ VY and @ A .

3. If ¢ is a formula, x,y are two different variables, and t, s are
terms, then (TCyy0)(t,s) is a formula.

NOTE 10. Recall that the existential quantifier is definable in PTC*
by Note 2 (that note provides also an alternative, shorter syntax for
TC in the presence of this quantifier).

DEFINITION 5. % = KPTC™(Vy) (i.e., S € X iff there is a formula
o(z) of PTCT such that S = {z € Vg | o(x)}).

THEOREM 5. The following are equivalent for a subset S of Vj:
1. S is recursively enumerable.
2. S is definable by some closed class term of F'Sy.
3.5 el

Proof: That (1) implies (2) is well-known, and was essentially shown
in [9] (see Theorem 10.3 and 20.1 there). That (3) implies (1) is obvious
from Church Thesis (and can easily be shown formally by standard
methods). We prove here that (2) implies (3).

LEMMA 1. NEQ ={(z,y) e Vo |z #y} e X

Proof of Lemma 1: NE(Q is the least subset S of Vi which contains
{w | Izdyw = ((z,y),0) Vw = (0,(z,y))} and is closed under the
following inductive rules: If (z,y) € S then ((z,z2),(y,w)) € S and
((z,2), (w,y)) € S. Hence Neq € X by Theorem 3.

LEMMA 2. If f is a closed function term of F'Sy then the function
denoted by f (viewed as a set of pairs) is in 2.

Proof: By Theorem 4 it suffices to prove that the basic functions of
F'Sy are in Y. This is obvious for I, Py, P, Ky, since:

I={w|3zw=(z,z)}
Py ={w|3zyw = ((z,y),x)}

Py ={w| 3zdy.w = ((2,9),y)}
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Ky =A{w | Jz.w = (z,0)}

Finally, that D € ¥ follows from Lemma 1, since D = D1 U Dy, where:
Dy ={w|Fz.w= (2,00 A (z =0V Iy.z = (0,y)VIyIz.z = ((0,y),2))}

Dy ={w |Fzyuw,zw = (z,y,u,v, 2)A.(x = yAz = u)V(z # yAz = v)}

End of the proof of Theorem 5: By induction on the construction of
closed class terms in F'Sy. The constant {0} denotes the set {z | z = 0},
which is in 3. 3 is obviously closed under N and U, and by Theorem 3
it is also closed under I5. It remains to prove that if S denotes a set in
¥, and f is a closed function term of F'Sy, then f~1S € 3. This follows
from Lemma 2 and the induction hypothesis, since

IS ={z|ww=(x,y) A\y € SAw € f}

NOTE 11. Theorem 5 leads in a natural way to the most concise (and
simplest?) formulation of Church Thesis that I know.

NOTE 12. In addition to closed terms, Feferman allows in F'Sy also
terms depending on parameters of three different types: individual pa-
rameters, function parameters and class parameters. Theorem 5 can
easily be generalized to this more general case. Thus it is possible to
prove by the same method that if S is a class term depending on the
individual parameters y,. ..,y then the set {(y1,...,yx,z) | x € S}
is in Y. For handling the use of class and function parameters we have
to generalize Theorem 5 to signatures which includes extra function
and predicate symbols (in addition to 0,= and the pairing function).
To do this all is needed is to include any atomic formula in the class
of formulas whivh defines ¥, and the proof can proceed as before. This
generalization amounts to a logical characterization of relative recursive
enumerability in a given set of functions and relations.

NOTE 13. The structure Vj is a substructure of any admissible struc-
ture, and it can be defined inductively. A careful examination of the
proof of Theorem 3 for the particular case of the definability of Vj
reveals that there exists a formula Vy(z) of PTCT which defines V; in
all admissible structures (such a formula may be called absolute). The
structure V; can therefore be categorically axiomatized in L}.-({0, P})
(where P is a binary function symbol) by the following theory PTC:

Vo VoV Vya. P(z1,y1) = P(22,y2) = o1 = 22 Ay1 = 42

VaVy.—P(z,y) =0
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The strength of a formal system which is based on PT'C depends on
that of the underlying T'C-logic. It might be instructive to determine
what logical principles are needed to make it equivalent to PA.

NOTE 14. Feferman’s F'Sj provides of course not only means for defin-
ing subsets of V4, but also an axiomatic system for reasoning about
Vo and its definable subsets. The central axiom of this system is an
induction axiom which is formulated using a class variable. This axiom
is equivalent in strength to 3} — I A (since only r.e. sets are definable).
Now in PTC™ the induction rule is apriorily restricted to %} formulas,
since only such formulas are available. On the other hand the axioms of
PTC are of course not in PTC*, and the logical connectives which are
excluded from PTC' (- and —) are used in them in an essential way.
The best way to develop a corresponding proof system which remains
within the language PTC* again seems to be the use of a Gentzen-
type calculus (with substitution of terms for free variables as one of
the rules). It might again be instructive to find out whether one should
actually use weaker logical principles for T'C' in order to get a system
which is equivalent in its power to F'Sy (and so to PRA - see [9]), or
whether the use of a limitted language suffices here.

5.2. A FORMALIZATION OF SET THEORY

We finally turn to the formalization of the whole of Mathematics, or
at least Set Theory, in an appropriate language containing 7'C'. Unlike
standard formalizations in books on axiomatic set theory, we want our
language to be as close as possible to that used in actual mathemati-
cal practice, and at the same time easy for mechanical manipulations
and interactive theorem proving. This means that the language should
provide a rich class of terms denoting sets on one hand, but be based
on syntactical (rather than semantic) considerations on the other. We
present here one version, in which the language has (in addition to
variables) terms of the form {z | ¢}. Of course, not every formula ¢
can be allowed in {2 | ¢}. The main novelty in what we present now is
in providing a purely syntactic characterization of the class of formulas
which one can safely use (according to ZF') in abstractions. In order
to do so we introduce a safety relation between formulas and finite sets
of variables (rather than treating safety as a property of formulas).

The intended meaning of “The formula ¢(z1,...,Z,, y1,-..,yk) is safe
with respect to {z1,...,z,}” is that for any assignment of sets to the
parameters yi,. .., Y, the class {(z1,...,z,) | ¢} is a set.

The Formal definition of our language is the following (where Fv(A)
denotes the set of free variables of A):
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Terms:
— Every variable is a term.
— If x is a variable, and ¢ is a formula which is safe w.r.t. {z},
then {z | p} is term.
Formulas:

If ¢+ and s are terms than t = s, ¢ € s and ¢ C s are formulas.

If ¢ and 7 are formulas, x and y are variables, and s,t
are terms, then —p, @ A, ¢ V9, ¢ = ¥, Yz, Jzp, and
(TCyyp)(t,s) are formulas.

The safety relation:

Every formula is safe w.r.t (.

If 2 is a variable, ¢ is a term, and x ¢ Fv(t), then z = t,
t=x,x €t,and  C ¢ are safe w.r.t {z}.

If ¢ and % are both safe w.r.t. X, then so is ¢ V 9.

If ¢ is safe w.r.t. X, and 9 is safe w.r.t. Y, then ¢ A ¢ and
¥ A p are safe w.r.t. X U (Y — Fo(y)).

Ify € X and ¢ is safe w.r.t. X, then Jygp is safe w.r.t. X —{y}.
If 9 is safe w.r.t. X, y € Fo(p), and X N Fo(p) = 0, then
Jyp AVy(p — 1) is safe w.r.t. X.

If ¢ is safe w.r.t X, and {z,y} N X # 0, then (TCyy¢) (2. y)
is safe w.r.t. X.

The axioms of the system are the following:

The extensionality axioms :

rCyNyCe—z=y
ze€xNxCy—=>z€y
xCyVIz(ze€xzNzdy)

The comprehension schema :

Vz(z € {z | ¢} < )

Other axioms:

The axiom of choice

The regularity axiom
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What is the connection between this system and ZF', and what is
the role of T'C' here? Well, to start with, it is not too difficult to prove
(see [5]) that the TC-free fragment of this system (which is essentially
its first-order fragment) is equivalent to the system obtained from ZF
by deleting the axiom of infinity. The use of T'C, on the other hand,
enables us to categorically introduce the class w of the finite ordinals:

w={z|z=0V3yy=0A(TCoy(z ={z]2=yVzey})(zy)}

(Here ) may be defined, e.g., as {z | (Jy.y = y) AVyly =y = x € y)}).
It follows that with an appropriate logical system for first order logic
strengthened with T'C, our system is at least as strong as ZF (and
most probably equivalent to it in case we employ a natural system).

NOTE 15. To understand the clause concerning T'C in the definition
of the safety relation, note that intuitively (T'C, ,¢)(z,y) is equivalent
to the infinitary disjunction:

p(z,y)
V3w (¢(z, w1) A p(wi,y))
V3w 3wa (@ (2, wi) A p(wr, wy) A p(wa,y))
V...

Now if ¢ is safe wr.t. X and z € X (say) then by the clauses
concerning V, A and 3, each disjunct defines a set (for every assignment
of values to the parameters, if any exist). Hence the collection of sets
which satisfy (T'Cyy¢)(z,y) is a countable union of sets, and so it is a
set itself.

NOTE 16. The clause in the definition of the safety relation concerning
YV and — is needed only for getting the full power of the replacement
axiom (see [5]). It should be noted that by deleting it we get a system
which is still stronger than the original system Z of Zermelo. Thus the
existence of the transitive closure (in the usual sense of set theory) of
any set is an easy corollary of the clause concerning T'C, but cannot
be proved in Z'. It is interesting to note also that if we add to the
language Hilbert’s e-operation, and use it to formulate the axiom of
choice as 3xp — p(exp/z) (the axiom of global choice), then the clause
concerning ¥V and — becomes redundant.

NOTE 17. Except for the clause concerning T'C, all the other clauses
in the definition of the safety relation remain valid if by a “set” we

2 This fact has been shown, e.g., in an unpublished note of Martin Goldstern.
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mean a finite set (retaining otherwise the intended meaning of the
safety relation as it has been explained above). This is not true, of
course, for the clause concerning T'C'. What is true in the finite case is
that if ¢ is safe w.r.t. X, and {z,y} C X, then (TCyy¢)(z,y) is safe
w.r.t. X.

NOTE 18. The set of hereditary finite sets is a model of the sys-
tem which is obtained from our version of ZF by deleting the clause
concerning T'C' from the definition of the safety relation. A complete
(and categorical) theory of the hereditary finite sets can be obtained
by adding instead of that clause an axiom saying that every set is in
L({0},{(y,z1,22) | y =21 Vy € 22}) (this axiom is expressible using
TC by Theorem 3, since the standard pairing function of set theory is
available here). The axiom of choice and the regularity axiom should
become redundant in the resulting system.

NOTE 19. With T'C' it is possible to formulate some weak versions of
the regularity axiom, like:

(Vm—'(TCm’y(m € U))(’I’,’I’)) A (V’I‘(TCTy(’I' € U))((Z],fr))
It might be interesting to investigate the resulting theory.

NOTE 20. Our language is expressive enough for introducing most
(all?) standard abbreviations and constructs used in normal mathe-
matical texts. Thus the definite article (the unique z such that ¢, in
case such exists) can be defined by:

o ={y | Jzp AVz(p — y € x)}

where y is a new variable, not occurring in ¢ (note that according to
this definition tzy is @ if there is no set which satisfy ¢, and it is the
intersection of all the sets which satisfy ¢ otherwise). Az € s.t (where
x & Fu(s)) can then be defined as {z | Jz(z € s Az = (z,t)}, while
the application of a function f to an argument ¢ can be defined as
vr.(t,x) € f.

6. Conclusion and Further Research
Our main subject in this work was the expressive power and the rea-

soning potential of logics with transitive closure operations. As noted
above, our next major goal is to work out this potential by developing
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computationally efficient sound proof system(s) for logics with T'C' that
will be strong enough for various mathematical needs. A promising
direction to follow here is to try to solve the various problems raised
above of how to get formal systems of logic which will be equivalent
to (or at least as strong as) some basic formal mathematical theories,
like: PRA, PA, ZF, and others.

As we have already declared, We further believe that an appropriate
logic of T'C' might be sufficient for most of applicable mathematics.
Showing this belief to be true is a further future project.
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