
Transitive Closure and the Mechanization of MathematicsArnon AvronSchool of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel(aa@math.tau.ac.il)Abstract. We argue that the concept of transitive closure is the key for under-standing �nitary inductive de�nitions and reasoning, and we provide evidence for thethesis that logics which are based on it (in which induction is a logical rule) are theright logical framework for the formalization and mechanization of Mathematics. Weinvestigate the expressive power of languages with the most basic transitive closureoperation TC. We show that with TC one can de�ne all recursive predicates andfunctions from 0, the successor function and addition, yet with TC alone additionis not de�nable from 0 and the successor function. However, in the presence of apairing function, TC does suÆce for having all types of �nitary inductive de�nitionsof relations and functions. This result is used for presenting a simple version ofFeferman's framework FS0, demonstrating that TC-logics provide in general anexcellent framework for mechanizing formal systems. An interesting side e�ect ofthese results is a simple characterization of recursive enumerability and a new,concise version of Church thesis. We end with a use of TC for a formalizationof Set Theory which is based on purely syntactical considerations, and reects realmathematical practice. 1. IntroductionThere is an old answer to the question: \What is a formal system?"which was supplied by Post [22] and Smullyan [23]. They took theclasses of strings closed under sets of inductive de�nitions as the generalnotion (in e�ect, the theory of recursively enumerable classes). Theirapproach was however believed to be completely unusable in practice,and so it has �rst been ignored as a possible basis for a practicalframework. However, in [9] Feferman gave a new proposal in the samevein, as a competitor to the type theory school of frameworks, like theEdinburgh LF (see e.g. [14, 21]). Feferman's FS0 follows the approachof Post and Smullyan: basically it identi�es the notions of a formalsystem and of an r.e. set. There is enormous improvement, however,over the Post/Smullyan approach by taking Lisp's S-expressions (ratherthan strings) as the basic data structure, and by using a very exibleform of inductive de�nitions. FS0 is accordingly a version of Pure Lisp,supplemented with facilities for de�ning recursively enumerable classesand with induction over such classes. Since syntactic categories con-nected with a formal system L are almost always de�ned inductively,it is usually straightforward to make an encoding of a logic L in FS0c 2002 Kluwer Academic Publishers. Printed in the Netherlands.
paper.tex; 30/08/2002; 12:52; p.1

2as classes of S-expressions. The induction principles of FS0 can thenbe used for doing within FS0 object-level theorem proving in L, andalso meta-level reasoning concerning L. That this approach is indeedpotentially practical from an implementation point of view has beendemonstrated by the works of Matthews [20, 17, 18]). Nevertheless,mechanical theorem proving (even interactively) in FS0 is still quitediÆcult, since FS0 is a �rst-order theory, in which induction is providedas an axiom, not as a rule. Moreover: the language of FS0 is also notso convenient to work with. It is a rather complicated 3-sorted lan-guage, including S-expressions, functions on S-expressions, functionalsfor combining functions, classes and class forming operations. 1The main goal of this paper is to show that Feferman's frameworkcan be simpli�ed a lot by turning it into a basic logic (rather than acomplicated theory within a logic) in a relatively simple language. Sinceinduction becomes a logical rule of inference in this logic, the resultingsystem (so we believe) should be easier to use, and can really serve asa framework for formalizing mathematical systems and for reasoningabout them. The key idea is that instead of using �rst order logic asan underlying logic we should use an extension of it with an operationfor forming transitive closure of binary relations.A second goal we have, strongly related to the �rst, is to provideevidence for a broader thesis, according to which a logic of this sortis actually the right logical framework for the formalization and mech-anization of mathematics. It should be clear that �rst-order logic istoo week for this task. Thus the fact that it fails even to provide acategorical characterization of the natural numbers means that thislogic is incapable of telling the whole story that human Logic has to tell.Moreover: even a mathematical theory which does have a �rst-order for-mulation often has basic theorems which are not really theorems of that�rst-order theory, but (oÆcially) theorems about it. A trivial example(from [17])2 is the identity (ab)n = anbn, which is valid for every integern in every commutative group. This identity is certainly a theorem ofcommutative group theory (proved by mathematical induction), but itis not a theorem of �rst-order commutative group theory!While �rst-order logic is too weak, second-order logic is frequentlytoo strong (and much more diÆcult to mechanically work with). More-over: it is based on ontological commitments which are not universallyaccepted. Thus it is counter-intuitive that in order to understand thenotion of a natural number (which every child does) one needs to un-derstand also the notion of an arbitrary set of natural numbers (which1 A more detailed description of FS0 is given in subsection 5.1.2 Other, more interesting examples are given in subsection 2.2.
paper.tex; 30/08/2002; 12:52; p.2

3most people do not), but this precisely is what the use of a second-orderlanguage for characterizing the natural numbers amounts to. It couldin fact be claimed with justice that second-order \logic" is actually nota logic at all, but set theory in disguise.The use of of a logic with a transitive closure operation TC seemsto me as the correct intermediate level. The fundamental inductionprinciple is a logical principle in such a logic, and usually any obviousconsequence of a given �rst-order theory which cannot be formulatedand proved in that theory can easily be formulated and proved in acorresponding logic with TC using this principle. On the other handthe construction of the transitive closure of a given relation does notinvolve the creation of new, abstract objects (like in second order logic),but rather of new relations among existing ones 3. Moreover: the useof TC is natural (and so user-friendly), since the correct use of it is apart of everybody's logic. Here are two non-mathematical examples:� I am a descendant of Jacob. Therefore my son is also a descen-dant of Jacob. Moreover: The descendants of my son will all bedescendants of Jacob.� If you have sexual relations with someone who had had sexual rela-tions with someone who had had sexual relations with ... someonewho had been a HIV carrier, then you might become one too.4Everyone can (and does) understand the inferences made in thesetwo examples. One does not need to be trained in mathematics or evento understand the natural numbers for that. This means that they arebased on general (though not �rst-order) logical principles 5. Now whatis involved in the two examples (and in a lot of other examples of thissort6) are the following two factors:1. The construction of a certain new binary relation between objectsfrom a given one. This relation is exactly what mathematicians call\the transitive closure" of the old one.3 Note that the use of relations which are not objects can anyhow never beendispensed with. Even in set theory, where relations are usually taken as objects, themost important ones (2, = and �) are not!4 Taken without permission from a T.V. campaign for safe sex.5 I am convinced that most people will indeed classify the conclusions in theexamples above as logical consequences of their assumptions!6 To give just one more example from computer science: in Page 7 of [16] theauthors write: \Some appeal to second-order logic appears necessary here becausetransitive closure is not �rst-order de�nable". In fact transitive closure is the only"second-order" feature they need.
paper.tex; 30/08/2002; 12:52; p.3

42. The use of some induction principle for inferring facts about objectswhich are related by the new relation. Such induction principle(s)should be the core of the logic of the transitive closure operation.These consideration lead us to the conviction that the ability tode�ne the transitive closure of any given relation and make appropri-ate inferences concerning it is essential for any computerized reasoningsystem, and especially one which is designed for doing mathematics. Wefurther believe that systems which are based on extending �rst-orderlogic with TC should suÆce for most (if not all) concrete, applicablemathematics, and that such systems should be better suited for auto-mated reasoning than systems which are based on higher order logics.The results below provide some (quite partial) evidence for these beliefs.The structure of the paper is as follows. In section 2 we review�rst the basic de�nitions, and then provide examples of applicationsin two major mathematical disciplines: geometry and arithmetics. Themain result of this section is that using TC, all recursive functions arede�nable from 0; S and + (where S denotes the successor function). Insection 3 we present induction as a logical rule of languages with TC.We use for this a Gentzen-type format, generalizing a particular casewhich has been used by Gentzen. In section 4 we study the expressivepower of languages with TC. We show that TC alone is not suÆcientfor de�ning addition from 0 and the successor function. However, inthe presence of a pairing function, it does suÆce for having all typesof �nitary inductive de�nitions of relations and functions. This resultis used in section 5.1 for presenting a simple version of Feferman'sframework FS0, demonstrating that TC-logics provide in general anexcellent framework for mechanizing formal systems. An interestingside e�ect of the results in that section is a simple characterization ofrecursive enumerability and a new, concise version of Church thesis.Finally, in section 5.2 we use TC for a formalization of set theorywhich is based on purely syntactical considerations, and reects realmathematical practice.One more remark before we start: a great deal of attention hasalready been given in the past to logics with a transitive closure op-eration in the context of �nite model theory (FMT { see [8]), as wellas other branches of computer science (like databases and complexity).However, in almost all cases the research has focused on their appli-cations to �nite structures. Our own interest, in contrast, is in logicswhich are meaningful and applicable to every structure. In fact, in�nitestructures are by far more interesting and important from the point ofview which interests us: the prospect of formalizing and mechanizingmathematics (especially concrete mathematics). Important and useful
paper.tex; 30/08/2002; 12:52; p.4

5as it certainly is, most of the work that was done in FMT (and relatedareas) on the subject is therefore almost irrelevant to the purposes ofthis paper. Moreover: most of this research has been dedicated to modeltheory (with an emphasis on �xed-point logics), while for formalizingmathematics we need useful proof systems. I believe that from this pointof view logics which are based on TC will prove superior to �xed-pointlogics, and they are certainly more natural and better suited than theselogics to formalize the way mathematics is actually done!2. Logics with a Transitive Closure Operation2.1. The Language and its SemanticsThe language and semantics of the basic extension of �rst order logicwith a transitive closure operation are de�ned as follows (see, e.g.,[15, 13, 12]):DEFINITION 1. Let � be a signature for a �rst-order language withequality. The language L1TC(�) is de�ned like the usual �rst-order lan-guage which is based on �, but with the addition of the following clause:� If ' is a formula, x; y are distinct variables, and t; s are terms,then (TCx;y')(t; s) is a formula. In this formula all the free occur-rences of x and y in ' become bound.The semantics of the new type of formulas is de�ned as follows. Givena structure D for � with domain D and an assignment v in D for thevariables of the language, de�ne:� D; v j= (TCx;y')(t; s) i� there exist a0; a1; : : : ; an 2 D (n � 1)such that a0 = v(t), an = v(s), and D; v(x := ai; y := ai+1) j= 'for i = 0; 1; : : : ; n� 1.NOTE 1. Given a formula ', (TCx;y') is a new binary predicate sym-bol (in standard �rst-order languages only primitive predicate symbolsare available!).NOTE 2. In L1TC we really need only the propositional connectivesand the TC operator, since the existential quanti�er can be de�ned asfollows: 9x' =Df �TCu;v�'(u=x) _ '(v=x)��(t; s)where t and s are terms. Any two terms would do, but in order for 9x'to have less free variables than ' (in particular, in order for 9x' to be
paper.tex; 30/08/2002; 12:52; p.5

6a sentence in case x is the only free variable of '), t and s should be(not necessarily distinct) closed terms. This is possible, of course, onlyif the signature � has at least one constant.On the other hand, in the presence of the existential quanti�er itis possible to provide an alternative (simpler?) version of TC. Since'(t=x) is equivalent to 9x:x = t ^ ', one can replace the somewhatcumbersome (TCx;y')(t; s) by the simpler TC�x;y', where the meaningof the latter is identical to that of (TCx;y')(x; y) (and so x and y are freein this formula). Note however that the resulting language is strangein that it might not be possible to substitute in it terms (not evenclosed ones) for free variables (although the truth-value of a formula ina structure still depends on the values which are assigned there to itsfree variables).NOTE 3. The reexive transitive closure RTC can be de�ned as:RTCxy(t; s) �Df (t = s) _ (TCxy')(t; s) :It is possible in fact to take RTC as primitive, since (TCxy')(t; s) islogically equivalent to:'(t=x; s=y) _ 9z�z 6= t ^ (RTCx;y')(t; z) ^ (RTCx;y')(z; s)� :Note however that the use of negation is needed for de�ning TC interms of RTC, while it is not needed for de�ning RTC in terms of TC(This di�erence is crucial for the validity of Theorems 3 and 5 below!).Hence it is better to choose TC as primitive.2.2. An Example: Applications in Euclidean GeometryAs is well known, elementary Euclidean geometry (EUG) has beengiven by Tarski a complete (and so decidable) �rst-order axiomatiza-tion (see e.g. [24]). However, some of the most interesting theoremsof Euclidean geometry cannot be formulated in the language of EUG.Examples are the negative results concerning construction problems(like squaring the circle), and the Mascheroni-Mohr theorem accordingto which every point in the plane which can be constructed using a rulerand a compass (given a �nite set of points) can be constructed usingonly a compass7. By Theorem 3 below, these theorems can be formu-lated if TC and a pairing function are added to the language of EUG. Asfor their proofs | induction plays of course a crucial role in them. It is7 An attempt of automatizing my new proof of this theorem in [2, 3] has beenone of my major motivations for investigating L1TC(�) (see [4]).
paper.tex; 30/08/2002; 12:52; p.6

7interesting to note however that at least for Mascheroni-Mohr theoreman extra axiom is needed as well: Archimedes' axiom. This axiom saysthat given two segments a and b, there is a natural number n such thatb is congruent to a partial segment of na. Archimedes' axiom cannotbe formulated in the �rst-order language of EUG. It can however easilyand naturally be formulated using TC. Here, e.g., is a formulation ofits counterpart in the standard signature of ordered �elds (which issomewhat shorter than its formulation in the language of geometry):8a8b�b > 0! 9z�z > a ^ (TCx;yx = y + b)(z; 0)�� :Note that the natural numbers are not even mentioned in this formu-lation! (Of course, they are de�nable in this signature by the formulaN(n) �Df (TCx;yx = y + 1)(n; 0)).2.3. Transitive Closure and the Natural NumbersIn L1TC(h0; S;+i) one can de�ne:t < s �Df �TCx;yy = S(x)�(t; s) :The following �nite set of axioms is then categorical, with N as theunique model: N1. 8x�S(x) 6= 0�N2. 8x8y�S(x) = S(y)) x = y�N3. 8x(x = 0 _ 0 < x)N4. 8x(x+ 0 = x)N5. 8x�x+ S(y) = S(x+ y)�Note that this system is of course not categorical if we de�ne t < s as9z:S(z) + t = s!THEOREM 1. All recursive functions are de�nable in L1TC(h0; S;+i).8.Proof: Obviously, it is suÆcient to show that multiplication is de�n-able in L1TC(h0; S;+i). For this note that the division relation (de�nedby: x j y �Df 9z(x � z = y)) is de�nable in L1TC(h0; S;+i), sinceN j= x j y , (TCa;ba+ x = b)(0; y) : Next, it is obvious that x = y2 isequivalent in N toy j (x+ y) ^ S(y) j (x+ y) ^ 8z(z < x+ y ^ y j z) :�S(y) j z)� :8 By an n�ary function being de�nable we mean of course that its graph isde�nable (as an (n+ 1)�ary relation).
paper.tex; 30/08/2002; 12:52; p.7

8Finally, x = y � z is equivalent in N to9u9v9w�u = y2 ^ v = z2 ^ w = (y + z)2 ^ w = �(u+ v) + x�+ x�COROLLARY 1. The set of formulas of L1TC(h0; S;+i) which are validin N is not arithmetical.COROLLARY 2. The set of logically valid formulas of L1TC(h0; S;+i)is not arithmetical.Proof: A formula ' of L1TC(h0; S;+i) is valid in N i� the formulaN1 ^ � � � ^N5! ' is logically valid.NOTE 4. For a categorical characterization of the natural numbersL1TC(h0; Si) and axioms N1-N3 already suÆce. Unfortunately, the ex-pressive power of this language is too weak (See Theorem 2 below).Note, however, that L1TC(h0; Si) does suÆce for our de�nition of <.3. Reasoning with TC: Induction as a Logical RuleCorollary 2 means that no complete and sound proof system for thelogically valid formulas of L1TC is possible. Instead one should look fora computationally eÆcient sound proof system which will be strongenough for most (or even all) related mathematical needs. The mostimportant valid logical rule of L1TC(�) which such a system shouldinclude is induction. Using a Gentzen-type format, a general form ofthis principle can be formulated as follows:�; ; ') �; (y=x)�; (s=x); (TCx;y')(s; t)) �; (t=x)where x and y should not occur free in �;�, and y should not occurfree in .To see the connection between this rule and ordinary induction,assume that � is a signature which contains 0 and S, and take ' to bey = S(x). Substituting 0 for s we get:�; ; y = S(x)) �; (y=x)�; (0=x); �TCx;yy = S(x)�(0; t)) �; (t=x)Using �rst order rules for = and the de�nition of < in L1TC(h0; Si), thisis equivalent to: �;) �; �S(x)=x��; (0=x); 0 < t) �; (t=x)
paper.tex; 30/08/2002; 12:52; p.8

9Since obviously �; (0=x), 0 = t) �; (t=x) is a valid sequent, we get�;) �; �S(x)=x��; (0=x); 0 = t _ 0 < t) �; (t=x)Using N3 from subsection 2.3 , this implies the validity of the followingin the context of any system in which N3 is valid:�;) �; �S(x)=x��; (0=x)) �; (t=x)This is exactly the form given to the induction rule by Gentzen in theclassical [11] (in which the consistency of PA is proved).The induction rule is an introduction rule for TC on the left handside of a sequent. Two obvious rules for introducing it on the right handside are: �) �; '(t=x; s=y)�) �; (TCx;y')(t; s)�) �; (TCx;y')(r; s) �) �; (TCx;y')(s; t)�) �; (TCx;y')(r; t)A major research task here is to �nd out what other rules (if any)should be added in order to make the system \complete" in somereasonable sense.4. The Expressive Power and Inductive De�nitions4.1. The Need to Use PairsWe have seen that induction as a method of proof is a part of the logicof L1TC(�). However, induction is used in Mathematics also as a toolfor de�ning new concepts and relations (including functions, which wetake here as a special type of relations). For this L1TC(�) is in generaltoo weak:THEOREM 2. + is not de�nable in L1TC(h0; Si).Proof: By a well-known result of B�uchi ([7]. See also [6], p. 615]),S1S, the (monadic) second order theory of the successor function, is
paper.tex; 30/08/2002; 12:52; p.9

10decidable. Now L1TC(h0; Si) is interpretable in S1S, since (TCx;y')(t; s)is equivalent to8Zn�8u�'(t=x; u=y) ! u 2 Z�^8x8y(x 2 Z ^'! y 2 Z)�! s 2 Zo(where Z is a second order variable). This implies the decidability ofthe set of formulas of L1TC(h0; Si) which are valid in N. The theoremfollows therefore from Corollary 1.One possible solution to the problem caused by Theorem 2 is to usestronger transitive closure operations. [13], e.g., considers the languagesLnTC(�), in which (TCkx1;:::;xk;y1;:::;yk')(~t; ~s) is a formula whenever ' is aformula, x1; : : : ; xk; y1; : : : ; yk (k � n) are 2k distinct variables, and ~t; ~sare k-vectors of terms. The semantics of (TCk~x;~y')(~t; ~s) is de�ned as inthe case k = 1, only this time we need to refer to vectors of length k ofterms or variables. Now in L2TC(h0; Si) addition (and so every recursivefunction) is de�nable, since it is easy to see thatN j= x = y + z , �RTC2x1;x2;y1;y2y1 = S(x1) ^ y2 = S(x2)�(0; y; z; x)However, the use of TCk is not so natural, and its implementation is aserious problem for proof checkers which are based on strict disciplineof types, like LF-style Logical Frameworks (see [14, 1, 21]). To see why,let � be a signature of some �rst-order language L. The standard wayof representing L in the LF is by using an LF -signature �� whichincludes the types � and o (representing the set of terms of L and theset of formulas of L, respectively), the judgment true : o ! Type,constants for the connectives and quanti�ers (where the type of 8,e.g., is (� ! o) ! o), and constants corresponding to those of � withappropriate types (thus a binary predicate symbol of � is assigned thetype �! �! o, while a binary function symbol | the type �! �! �).Following this approach, the obvious (and the only natural) way torepresent TC in such frameworks is by introducing a constant:TC : (� �! � �! o) �! (� �! � �! o)TC2, in turn, should be represented by a constant of the form:TC2 : (�! �! �! �! o) �! (�! �! �! �! o)Obviously, the complexity of the types of the constants needed for TCkaccording to this standard approach grows with k. Worse: there is noway of including all of them in one �nite signature, while the LF (as
paper.tex; 30/08/2002; 12:52; p.10

11well as any other logical framework which is based on strict disciplineof types) allows only �nite signatures. 9An obvious better solution to the problem caused by Theorem 2 isto allow the (explicit or implicit) construction of pairs in the language.Using pairs all the TCk can be reduced to TC1 in a trivial way. Draw-ing on Feferman's analysis and results in ([9]), we now show that theavailability of both pairs and the basic TC (i.e. TC1) together suÆcefor having all types of �nitary inductive de�nitions at our disposal.4.2. Finitary inductive Definitions of RelationsFor simplicity, we assume �rst that a pairing function is explicitly givenin the language.DEFINITION 2. Let � be a �rst-order signature with equality havingat least one constant 0. Let L be a language which contains L1TC(�).1. A structure D for L is called admissible if there exists a term t(x,y)of L (denoted below simply as (x; y)) such that:D j= (x1; y1) = (x2; y2)! x1 = x2 ^ y1 = y2D j= (x; y) 6= 02. Let D with domain D be admissible for L, and let
 be a class offormulas of L. We denote by K
(D) the set of subsets of D whichare de�nable by some formula in
.NOTE 5. Like in [9], by letting S(x) = (x; 0) we get a a copy of thenatural numbers in any admissible structure D. In what follows we shallidentify the natural numbers with this copy.NOTE 6. As noted in [9], every subset A of D induces an n-aryrelation A(n) on D, de�ned by: A(n)(x1; : : : ; xn) , (x1; : : : ; xn) 2 A(where (x1; : : : ; xn) is an abbreviation of (� � � ((x1; x2); x3) � � � ; xn)).Conversely: every n-ary relation A(n) on D is induced by some A � D.Hence it suÆces to investigate de�nability of subsets of D.DEFINITION 3. Let L be as in De�nition 2. A class
 of formulasof L is called T C+-closed if it contains all equations in L and is closedunder applications of _;^;9; and TC (i.e., if ' 2
, and t and s areterms, then (TCx;y')(s; t) 2
).9 The real source of the problem is that the generalized transitive closure opera-tion does not have a unique arity. Hence any system in which every constant shouldhave a �xed arity can directly handle it only by oÆcially using an in�nite numberof primitive symbols, or by using a very roundabout codi�cation.
paper.tex; 30/08/2002; 12:52; p.11

12NOTE 7. If
 is closed under substitutions of variables for variables(which is the case in all interesting cases) then by Note 2 closure under9x follows from closure under TC and _.THEOREM 3. Let D be admissible for L, and let
 be a T C+-closedclass of formulas of L. Then K
(D) is closed under �nitary induc-tive de�nitions (as they are de�ned in [9]). In other words: When-ever A1; : : : ; Am; B1; : : : ; Bp are all in K
(D), then so are the leastX1; : : : ;Xm which satisfy the following conditions:(1) Ai � Xi (1 � i � m).(2) If a1 2 Xjk1 ; : : : ; anj 2 Xjknj and (b; a1; : : : ; anj) 2 Bj then alsob 2 Xj (1 � j � p).(here A1; : : : ; Am provide the initial conditions, while B1; : : : ; Bp arethe inductive rules).Proof: The de�nability of m sets X1; : : : ;Xm is equivalent to thede�nability of the single set Z = Si�mXi � fig, sincez 2 Z $ _i�m9x(x 2 Xi ^ z = (x; i))x 2 Xi $ 9z(z 2 Z ^ z = (x; i))Since the initial and inductive conditions concerning X1; : : : ;Xm in theformulation of the theorem can similarly be transformed into conditionson this set, we may assume in what follows w.l.o.g. that m = 1. Withthis assumption we may use disjunction (and, if necessary, dummyconditions of the form yi = yi) to further assume that p = 1 aswell10. Hence it remains to show that K
(D) is closed under Feferman'soperations Ik (from [9]), where for A;B � D and k � 1, Ik(A;B) isthe least X � D such that:(i) A � X(ii) If x1; : : : ; xk 2 X, and (y; x1; : : : ; xk) 2 B, then y 2 X.To show the closure of K
(D) under Ik, let (following [9])Seq(X) =Df f0g [f(0; x1; : : : ; xn) j n � 1; x1; : : : ; xn 2 XgThe main idea of the proof is to show that given A and B, K
(D)contains the set of �nite sequences (represented as elements of Seq(V0))10 This reduction to the case where m = p = 1 is exactly like what is done in [9]for Feferman's system FS0.
paper.tex; 30/08/2002; 12:52; p.12

13which can be viewed as \proofs" that their last element is in Ik(A;B).Obtaining then Ik(A;B) is easy, since for any a 2 Seq(X) both n andxn are uniquely determined, and xn can easily be obtained from a.To simplify notation, we do here the case k = 2 (the case where k > 2is almost identical, while the case k = 1 is done below 11). The detailsare given in the following de�nitions and easily shown facts (where weuse f(y; x) j 'g as an abbreviation of fz j 9y9x(z = (y; x) ^ ')g).� For B � D let TC(B) be the transitive closure of the binaryrelation induced by B. In other words:TC(B) = f(x; y) j �TCu;v9z:z = (u; v) ^ z 2 B�(x; y)gObviously, TC(B) 2 K
(D) for all B 2 K
(D).� I1(A;B) = fx j x 2 A_9y:y 2 A^ (x; y) 2 TC(B)g. Hence K
(D)is closed under I1.� Seq(A) = I1(f0g; f(y; x) j 9w(y = (x;w)^w 2 A)g). Hence Seq(A)is in K
(D) whenever A 2 K
(D).� Let 1�Perm be the set of all pairs of the form:((x1; : : : ; xl; a; b; y1; : : : ; yn); (x1; : : : ; xl; b; a; y1; : : : ; yn))where l > 0 and n � 0. Then 1�Perm 2 K
(D), since it is identicalto I1(S;E), where S(witch) and E(nlarge) are de�ned by:S = f(y; x) j 9z9a9b(x = (z; a; b) ^ y = (z; b; a)gE = f(y; x) j 9a9b9v:x = (a; b) ^ y = ((a; v); (b; v))g(S is the set of pairs ((x1; : : : ; xl; a; b); (x1; : : : ; xl; b; a)) (l > 0),while E corresponds to the inductive rule: (a;b)21�Perm((a;v);(b;v))21�Perm).� Let Perm be the set of all pairs of the form:((a; x1; : : : ; xn); (a; x�(1); : : : ; x�(n)))where � is a permutation of f1; : : : ; ng. Then Perm 2 K
(D), sincePerm = I1(id�; 1�Perm), where id� = f(x; x) j 9u9v:x = (u; v)g.� Let Proof(A;B) be the set of sequences (0; x1; : : : ; xn) for whichthere exists a permutation � of f1; : : : ; ng s. t. for every 1 � i � n,either x�(i) 2 A or there exist j; l such that �(j); �(l) < �(i) and(x�(i); x�(j); x�(l)) 2 B. Then Proof(A;B) 2 K
(D), since it is11 In [9] it is shown how to reduce (in a similar framework) any Ik to I2.
paper.tex; 30/08/2002; 12:52; p.13

14 identical to I1(Seq(A); P erm[B�), where U[V is an abbreviationfor fz j z 2 U _ z 2 V g, andB� = f(y; x) j 9z9u9v9w:y = (x; z)^ x = (u; v; w) ^ (z; v; w) 2 BgNote that y is obtained from x in B� by adding to x the result ofapplying the rule B to the last two components of x.� I2(A;B) = fy j 9x9z:x 2 Proof(A;B) ^ x = (z; y)g. HenceI2(A;B) 2 K
(D) whenever A;B 2 K
(D).NOTE 8. Feferman has taken I2 as a primitive of his FS0. A proofsimilar to that of Theorem 3 shows that he could have taken insteadjust I1 (or TC applied to classes).NOTE 9. An examination of the proof Theorem 3 shows that it is notnecessary to assume that the language has a pairing term for D. ItsuÆces that there is a formula (x; y; z) in
 such that:D j= 8x8y9z:z 6= 0 ^ (x; y; z)D j= (x; y; z1) ^ (x; y; z2)! z1 = z2D j= (x1; y1; z) ^ (x2; y2; z)! x1 = x2 ^ y1 = y24.3. Finitary Inductive Definitions of Partial FunctionsWe have concentrated so far on inductive de�nitions of classes andrelations. However, �nitary inductive de�nitions are used also for de�n-ing partial functions. To do this within our framework, we follow themodern approach, and identify a partial function f from D to D withits graph. Accordingly, we call an n-ary f de�nable if the followingset is de�nable: f(x1; : : : ; xn; y) j y = f(x1; : : : ; xn)g. It is not diÆcultthen to show that from our results concerning de�nability of relationsit follows that the usual methods of introducing new functions using�nitary inductive de�nitions are available to us. As an example, weshow that for admissible D and for a T C+-closed class of formulas
,the set K
(D) is closed under the three basic functionals which havebeen used in [9].THEOREM 4. If
 is T C+-closed, and the partial functions f andg are in K
(D) (where D is admissible), then so are also the partialfunctions P (f; g), C(f; g), and R(f; g), where P (f; g) = �x:(fx; gx),C(f; g) = �x:f(gx), and R(f; g) is the function h de�ned by primitiverecursion as follows:
paper.tex; 30/08/2002; 12:52; p.14

15h(x) = 8><>:0 x = 0f(y) x = (y; 0)g(y; z; w; h(y; z); h(y;w)) x = (y; (z; w))Proof: we have:� P (f; g) = fz j 9x9y19y2:z = (x; (y1; y2))^ (x; y1) 2 f ^ (x; y2) 2 gg� C(f; g) = fz j 9x9y9w:z = (x; y) ^ (x;w) 2 g ^ (w; y) 2 fg� R(f; g) is the least set h which contains the setfw j w = (0; 0) _ 9x9y:w = ((x; 0); y) ^ (x; y) 2 fgand is closed under the following inductive rule: If (x; y; u1) 2 h,(x; z; u2) 2 h, and (x; y; z; u1; u2; u3) 2 g, then (x; (y; z); u3) 2 h.By Theorem 3 it follows therefore that R(f; g) is in K
(D).5. Using TC for the Mechanization of Mathematics5.1. FS0 and Recursively Enumerable SetsA formal mathematical system is a �nite collection of syntactic cat-egories (over some �nite set of basic symbols called the \alphabet").Each of these categories should be semi-decidable: if something belongsto it, then it should be possible to mechanically show that this is thecase. In practice, the various syntactic categories are invariably de�nedusing �nitary inductive de�nitions. As was explained in the introduc-tion, this observation has led Feferman in [9] (following previous worksof Post [22] and Smullyan [23]) to propose FS0, a simple theory ofinductive de�nitions, as a general framework for implementing formalsystems and for reasoning about them. The main two features whichdistinguish FS0 from previous works are:� Rather than the set of strings of symbols from some �nite alphabetU of basic symbols, the universe of expressions in FS0 is taken tobe that of Lisp's S-expressions (or lists), where (without a lossin generality) only one basic symbol 0 is needed. In other words:the pairing function is taken to be primitive, and the universe ofexpressions is V0, the least set which includes 0, and includes (a; b)whenever it includes a and b (note that every admissible structurecontains an inductively de�ned substructure which is isomorphic
paper.tex; 30/08/2002; 12:52; p.15

16 to V0). This simpli�es de�nitions and propositions a lot, and allowsfor greater exibility (and it is also strongly justi�ed by the resultsof the previous section!).� FS0 provides explicit class terms for denoting subsets of V0, aswell as explicit means for introducing such subsets using �nitaryinductive de�nitions. It is not diÆcult to show that a subset of V0 isdenoted by some class term of FS0 i� it is recursively enumerable.The approach of FS0 for constructing class-denoting terms is basedon the use of Combinators rather than the use of abstractions. More-over: In addition to terms for classes FS0 has also terms denotingfunctions, and these terms are used in constructing class terms. Thede�nition of the two classes is as follows:C-FnTm (closed function terms)1. The constants I;D; P1; P2, and K0 are in C-FnTm.2. If f; g 2 C-FnTm then P (f; g); C(f; g); R(f; g) 2 C-FnTm.C-ClTm (closed class terms)1. The constant f0g 2 C-ClTm.2. If f 2 C-FnTm and S 2 C-ClTm then f�1S 2 C-ClTm.3. If S; T 2 C-ClTm then S \ T; S [T; I2(S; T) 2 C-ClTm.Here I; P1; P2 and K0 denote, respectively, the identity function,the projection functions for pairs, and the constant function �x:0. Ddenotes the function that given (x; y; u; v) returns u if x = y and v ifx 6= y (it returns 0 if the input is not a 4-tuple). The class term f�1Sdenotes the set fx j f(x) 2 Sg. The meaning of the other constructswas explained in the previous section.We describe now a very simple language with TC, in which thesubsets of V0 which are de�nable by abstractions are exactly thosewhich are denoted by class terms of FS0 (i.e., the r.e. subsets of V0).DEFINITION 4. PT C+, the minimal pure language whose set of for-mulas is T C+-closed, is de�ned as follows:Terms of PT C+1. The constant 0 is a term.2. Every (individual) variable is a term.3. If t and s are terms then so is (t; s).
paper.tex; 30/08/2002; 12:52; p.16

17Formulas of PT C+1. If t and s are terms then t = s is a formula.2. If ' and are formulas then so are ' _ and ' ^ .3. If ' is a formula, x; y are two di�erent variables, and t; s areterms, then (TCx;y')(t; s) is a formula.NOTE 10. Recall that the existential quanti�er is de�nable in PT C+by Note 2 (that note provides also an alternative, shorter syntax forTC in the presence of this quanti�er).DEFINITION 5. � = KPT C+(V0) (i.e., S 2 � i� there is a formula'(x) of PT C+ such that S = fx 2 V0 j '(x)g).THEOREM 5. The following are equivalent for a subset S of V0:1. S is recursively enumerable.2. S is de�nable by some closed class term of FS0.3. S 2 �.Proof: That (1) implies (2) is well-known, and was essentially shownin [9] (see Theorem 10.3 and 20.1 there). That (3) implies (1) is obviousfrom Church Thesis (and can easily be shown formally by standardmethods). We prove here that (2) implies (3).LEMMA 1. NEQ = f(x; y) 2 V0 j x 6= yg 2 �Proof of Lemma 1: NEQ is the least subset S of V0 which containsfw j 9x9y:w = ((x; y); 0) _ w = (0; (x; y))g and is closed under thefollowing inductive rules: If (x; y) 2 S then ((x; z); (y;w)) 2 S and((z; x); (w; y)) 2 S. Hence Neq 2 � by Theorem 3.LEMMA 2. If f is a closed function term of FS0 then the functiondenoted by f (viewed as a set of pairs) is in �.Proof: By Theorem 4 it suÆces to prove that the basic functions ofFS0 are in �. This is obvious for I; P1; P2;K0, since:I = fw j 9x:w = (x; x)gP1 = fw j 9x9y:w = ((x; y); x)gP2 = fw j 9x9y:w = ((x; y); y)g
paper.tex; 30/08/2002; 12:52; p.17

18K0 = fw j 9x:w = (x; 0)gFinally, that D 2 � follows from Lemma 1, since D = D1 [D2, where:D1 = fw j 9x:w = (x; 0)^ (x = 0_9y:x = (0; y)_9y9z:x = ((0; y); z))gD2 = fw j9x;y;u;v;z:w = (x; y; u; v; z)^:(x = y^z = u)_(x 6= y^z = v)gEnd of the proof of Theorem 5: By induction on the construction ofclosed class terms in FS0. The constant f0g denotes the set fx j x = 0g,which is in �. � is obviously closed under \ and [, and by Theorem 3it is also closed under I2. It remains to prove that if S denotes a set in�, and f is a closed function term of FS0, then f�1S 2 �. This followsfrom Lemma 2 and the induction hypothesis, sincef�1S = fx j 9y9w:w = (x; y) ^ y 2 S ^ w 2 fgNOTE 11. Theorem 5 leads in a natural way to the most concise (andsimplest?) formulation of Church Thesis that I know.NOTE 12. In addition to closed terms, Feferman allows in FS0 alsoterms depending on parameters of three di�erent types: individual pa-rameters, function parameters and class parameters. Theorem 5 caneasily be generalized to this more general case. Thus it is possible toprove by the same method that if S is a class term depending on theindividual parameters y1; : : : ; yk then the set f(y1; : : : ; yk; x) j x 2 Sgis in �. For handling the use of class and function parameters we haveto generalize Theorem 5 to signatures which includes extra functionand predicate symbols (in addition to 0;= and the pairing function).To do this all is needed is to include any atomic formula in the classof formulas whivh de�nes �, and the proof can proceed as before. Thisgeneralization amounts to a logical characterization of relative recursiveenumerability in a given set of functions and relations.NOTE 13. The structure V0 is a substructure of any admissible struc-ture, and it can be de�ned inductively. A careful examination of theproof of Theorem 3 for the particular case of the de�nability of V0reveals that there exists a formula V0(x) of PT C+ which de�nes V0 inall admissible structures (such a formula may be called absolute). Thestructure V0 can therefore be categorically axiomatized in L1TC(f0; Pg)(where P is a binary function symbol) by the following theory PTC:8x18x28y18y2:P (x1; y1) = P (x2; y2)! x1 = x2 ^ y1 = y28x8y::P (x; y) = 08x:V0(x)
paper.tex; 30/08/2002; 12:52; p.18

19The strength of a formal system which is based on PTC depends onthat of the underlying TC-logic. It might be instructive to determinewhat logical principles are needed to make it equivalent to PA.NOTE 14. Feferman's FS0 provides of course not only means for de�n-ing subsets of V0, but also an axiomatic system for reasoning aboutV0 and its de�nable subsets. The central axiom of this system is aninduction axiom which is formulated using a class variable. This axiomis equivalent in strength to �10�IA (since only r.e. sets are de�nable).Now in PT C+ the induction rule is apriorily restricted to �10 formulas,since only such formulas are available. On the other hand the axioms ofPTC are of course not in PT C+, and the logical connectives which areexcluded from PT C+ (: and !) are used in them in an essential way.The best way to develop a corresponding proof system which remainswithin the language PT C+ again seems to be the use of a Gentzen-type calculus (with substitution of terms for free variables as one ofthe rules). It might again be instructive to �nd out whether one shouldactually use weaker logical principles for TC in order to get a systemwhich is equivalent in its power to FS0 (and so to PRA - see [9]), orwhether the use of a limitted language suÆces here.5.2. A Formalization of Set TheoryWe �nally turn to the formalization of the whole of Mathematics, orat least Set Theory, in an appropriate language containing TC. Unlikestandard formalizations in books on axiomatic set theory, we want ourlanguage to be as close as possible to that used in actual mathemati-cal practice, and at the same time easy for mechanical manipulationsand interactive theorem proving. This means that the language shouldprovide a rich class of terms denoting sets on one hand, but be basedon syntactical (rather than semantic) considerations on the other. Wepresent here one version, in which the language has (in addition tovariables) terms of the form fx j 'g. Of course, not every formula 'can be allowed in fx j 'g. The main novelty in what we present now isin providing a purely syntactic characterization of the class of formulaswhich one can safely use (according to ZF) in abstractions. In orderto do so we introduce a safety relation between formulas and �nite setsof variables (rather than treating safety as a property of formulas).The intended meaning of \The formula '(x1; : : : ; xn; y1; : : : ; yk) is safewith respect to fx1; : : : ; xng" is that for any assignment of sets to theparameters y1; : : : ; yk, the class f(x1; : : : ; xn) j 'g is a set.The Formal de�nition of our language is the following (where Fv(A)denotes the set of free variables of A):
paper.tex; 30/08/2002; 12:52; p.19

20Terms:� Every variable is a term.� If x is a variable, and ' is a formula which is safe w.r.t. fxg,then fx j 'g is term.Formulas:� If t and s are terms than t = s, t 2 s and t � s are formulas.� If ' and are formulas, x and y are variables, and s; tare terms, then :', ' ^ , ' _ , ' ! , 8x', 9x', and(TCx;y')(t; s) are formulas.The safety relation:� Every formula is safe w.r.t ;.� If x is a variable, t is a term, and x 62 Fv(t), then x = t,t = x, x 2 t, and x � t are safe w.r.t fxg.� If ' and are both safe w.r.t. X, then so is ' _ .� If ' is safe w.r.t. X, and is safe w.r.t. Y , then ' ^ and ^ ' are safe w.r.t. X [(Y � Fv()).� If y 2 X and ' is safe w.r.t. X, then 9y' is safe w.r.t. X�fyg.� If is safe w.r.t. X, y 2 Fv('), and X \ Fv(') = ;, then9y' ^ 8y('!) is safe w.r.t. X.� If ' is safe w.r.t X, and fx; yg \X 6= ;, then �TCx;y'�(x; y)is safe w.r.t. X.The axioms of the system are the following:The extensionality axioms :� x � y ^ y � x! x = y� z 2 x ^ x � y ! z 2 y� x � y _ 9z(z 2 x ^ z 62 y)The comprehension schema :� 8x(x 2 fx j 'g $ ')Other axioms:� The axiom of choice� The regularity axiom
paper.tex; 30/08/2002; 12:52; p.20

21What is the connection between this system and ZF , and what isthe role of TC here? Well, to start with, it is not too diÆcult to prove(see [5]) that the TC-free fragment of this system (which is essentiallyits �rst-order fragment) is equivalent to the system obtained from ZFby deleting the axiom of in�nity. The use of TC, on the other hand,enables us to categorically introduce the class ! of the �nite ordinals:! = fx j x = ; _ 9y:y = ; ^ �TCx;y(x = fz j z = y _ z 2 yg)�(x; y)g(Here ; may be de�ned, e.g., as fx j (9y:y = y)^8y(y = y ! x 2 y)g).It follows that with an appropriate logical system for �rst order logicstrengthened with TC, our system is at least as strong as ZF (andmost probably equivalent to it in case we employ a natural system).NOTE 15. To understand the clause concerning TC in the de�nitionof the safety relation, note that intuitively (TCx;y'�(x; y) is equivalentto the in�nitary disjunction:'(x; y)_9w1('(x;w1) ^ '(w1; y))_9w19w2('(x;w1) ^ '(w1; w2) ^ '(w2; y))_ : : :Now if ' is safe w.r.t. X and x 2 X (say) then by the clausesconcerning _;^ and 9, each disjunct de�nes a set (for every assignmentof values to the parameters, if any exist). Hence the collection of setswhich satisfy (TCx;y'�(x; y) is a countable union of sets, and so it is aset itself.NOTE 16. The clause in the de�nition of the safety relation concerning8 and ! is needed only for getting the full power of the replacementaxiom (see [5]). It should be noted that by deleting it we get a systemwhich is still stronger than the original system Z of Zermelo. Thus theexistence of the transitive closure (in the usual sense of set theory) ofany set is an easy corollary of the clause concerning TC, but cannotbe proved in Z12. It is interesting to note also that if we add to thelanguage Hilbert's "-operation, and use it to formulate the axiom ofchoice as 9x'! '("x'=x) (the axiom of global choice), then the clauseconcerning 8 and ! becomes redundant.NOTE 17. Except for the clause concerning TC, all the other clausesin the de�nition of the safety relation remain valid if by a \set" we12 This fact has been shown, e.g., in an unpublished note of Martin Goldstern.
paper.tex; 30/08/2002; 12:52; p.21

22mean a �nite set (retaining otherwise the intended meaning of thesafety relation as it has been explained above). This is not true, ofcourse, for the clause concerning TC. What is true in the �nite case isthat if ' is safe w.r.t. X, and fx; yg � X, then (TCx;y'�(x; y) is safew.r.t. X.NOTE 18. The set of hereditary �nite sets is a model of the sys-tem which is obtained from our version of ZF by deleting the clauseconcerning TC from the de�nition of the safety relation. A complete(and categorical) theory of the hereditary �nite sets can be obtainedby adding instead of that clause an axiom saying that every set is inI2(f;g; f(y; x1 ; x2) j y = x1 _ y 2 x2g) (this axiom is expressible usingTC by Theorem 3, since the standard pairing function of set theory isavailable here). The axiom of choice and the regularity axiom shouldbecome redundant in the resulting system.NOTE 19. With TC it is possible to formulate some weak versions ofthe regularity axiom, like:�8x:�TCx;y(x 2 y)�(x; x)� ^ �8x�TCx;y(x 2 y)�(;; x)�It might be interesting to investigate the resulting theory.NOTE 20. Our language is expressive enough for introducing most(all?) standard abbreviations and constructs used in normal mathe-matical texts. Thus the de�nite article (the unique x such that ', incase such exists) can be de�ned by:�x' = fy j 9x' ^ 8x('! y 2 x)gwhere y is a new variable, not occurring in ' (note that according tothis de�nition �x' is ; if there is no set which satisfy ', and it is theintersection of all the sets which satisfy ' otherwise). �x 2 s:t (wherex 62 Fv(s)) can then be de�ned as fz j 9x(x 2 s ^ z = (x; t)g, whilethe application of a function f to an argument t can be de�ned as�x:(t; x) 2 f . 6. Conclusion and Further ResearchOur main subject in this work was the expressive power and the rea-soning potential of logics with transitive closure operations. As notedabove, our next major goal is to work out this potential by developing
paper.tex; 30/08/2002; 12:52; p.22

23computationally eÆcient sound proof system(s) for logics with TC thatwill be strong enough for various mathematical needs. A promisingdirection to follow here is to try to solve the various problems raisedabove of how to get formal systems of logic which will be equivalentto (or at least as strong as) some basic formal mathematical theories,like: PRA, PA, ZF , and others.As we have already declared, We further believe that an appropriatelogic of TC might be suÆcient for most of applicable mathematics.Showing this belief to be true is a further future project.References1. Avron A., Honsell F. A,, Mason I.A., and Pollack R., Using Typed LambdaCalculus to Implement Formal Systems on a Machine, Journal of AutomatedDeduction, vol. 9 (1992) pp. 309-354.2. Avron A., Theorems on Strong Constructibility with a Compass alone, Journalof Geometry, vol. 30 (1987), pp. 28-35.3. Avron A., On Strict Strong Constructibility with a Compass Alone, Journal ofGeometry, vol. 38 (1990), pp. 12-15.4. Avron A., An Exercise in An Interactive Geometrical research, Annals ofMathematics and Arti�cial Intelligence, vol. 9 (1993), pp. 239-252.5. Avron A., Partial Safety of Formulas as a Unifying Foundational Principle, Toappear.6. Barwise J., Ed., Handbook of Mathematical Logic, Studies in Logic andthe Foundations of Mathematics, vol. 90, North-Holland Publishing Company,1977.7. B�uchi, J.R., On a Decision Method in Restricted Second Order Arithmetic, in:Logic Methodology and Philosophy of Science, Proceedings of the 1960Congress, Stanford University Press, Stanford, CA, (1962), pp. 1-11.8. Ebbinghaus H. D., and Flum J., Finite Model Theory, Perspectives inMathematical Logic, Springer, 1995.9. Feferman S., Finitary Inductively Presented Logics, in: Logic Colloquium1988 (1989), Amsterdam, North-Holland, pp. 191-220. Reprinted in [10], pp.297-328.10. Gabbay D., editor,What is a Logical System? Oxford Science Publications,Clarendon Press, Oxford, 1994.11. Gentzen G., Neue Fassung des Widerspruchsfreiheitsbeweises f�ur die reineZahlentheorie, Forschungen zur Logik, N.S., No. 4, pp. 19-44 (English transla-tion in: The collected work of Gerhard Gentzen, edited by M.E. Szabo,North-Holland, Amsterdam, (1969)).12. Gr�adel E., On Transitive Closure Logic, in: Computer Science Logic(Berne 1991), Springer LNCS 626, 1992, pp. 149-163.13. Gurevich Y., Logic and the Challenge of Computer Science, in: B�orger E., ed.,Trends in Theoretical Computer Science, Computer Science Press Inc.,Rockville, Maryland, USA (1988), pp. 1-58.14. Harper R., Honsell F. and Plotkin G., A Framework for De�ning Logics,Journal of the Association for Computing Machinery, vol. 40 (1993), pp.143-184.
paper.tex; 30/08/2002; 12:52; p.23

2415. Immerman, N., Languages which Capture Complexity Classes, in: 15th Sympo-sium on Theory of Computing, Association for Computing Machinary (1983),pp. 347-354.16. Levesque H., Reiter R., Lesperance Y., Lin F., and Scherl R., Golog: A logicprogramming language for dynamic domains, Journal of Logic Programmingvol. 31 (1997), pp. 59-84.17. Matthews S., A Theory and Its Metatheory in FS0, in [10], pp. 329-352, 1994.18. Matthews S., Implementing FS0 in Isabelle: Adding Structure at the Metalevel,in: J. Calmet and C. Limongelli (eds), Proc. Disco'96, Springer, Berlin, 199619. Moschovakis Y., Abstract Recursion as a Foundation for the Theory of Al-gorithms, Lecture Notes in Mathematics, vol. 1104 (1984), Springer, pp.289-364.20. Matthews S., Smaill A., and Basin D., Experience with FS0 as a Frame-work Theory, in: G. Huet and G. Plotkin, editors, Logical Environments,Cambridge University Press, 1993, pp. 61-82.21. Pfenning F., The Practice of Logical Frameworks, in H. Kirchner (ed.): Pro-ceedings of the Colloquium on Trees in Algebra and Programming,Linkvping, Sweden, April 1996, Springer-Verlag LNCS 1059, pp. 119-134.22. Post E., Formal Reductions of the General Combinatorial Decision Problem,American J. of Mathematics, pp, 197-214, 1943.23. Smullyan R., Theory of Formal Systems, Princeton University Press,Princeton, 1961.24. Tarski A., and Givant S., Tarski's System of Geometry, Bulletin of SymbolicLogic, vol. 5 (1999), pp. 175-214.

paper.tex; 30/08/2002; 12:52; p.24

