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0. Introduction

Around 1950, B.A. Trakhtenbrot proved an important undecidability result (known,
by a pure accident, as “Trakhtenbrot’s theorem”): there is no algorithm to decide, given
a first-order sentence, whether the sentence is satisfiable in some finite model. The result
is in fact true even if we restrict ourselves to languages that has only one binary relation
[Tra63]. It is hardly conceivable that at that time Prof. Trakhtenbrot expected his result
to influence the development of the theory of relational databases query languages, but it
did. This perhaps is not surprising in view of the following two facts:

1) The theory of relational databases is strongly rooted in logic and can easily be ab-
stracted to make it a branch of mathematical logic.

2) The main interest in the theory of relational databases is in finite relations.

In the first section we explain those two points in more detail. Then, in section 2
of the present paper, we discuss the question: “What constitutes a reasonable query to
a database?” The discussion naturally leads to a certain class of queries, known as the
“domain independent” queries, as an ideal query language. At this point Trakhtenbrot’s
theorem appears as a major obstacle, since it easily implies that this ideal class is unde-
cidable. Real query languages cannot be allowed to have this property. Section 3 outlines

then several possible ways to circumvent this difficulty. The following section explains the
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extra difficulties in applying them in case we allow function symbols in the language. The
last two sections describes the two main approaches in greater depth, and explains how
the difficulties with function symbols can be overcome (at least in principle). Section 5 is

mainly based on [Hir91], while section 6 — on [AH91a].

1. The Logical Framework

A relational database is usually given in the form of a finite number of finite tables,
each having a name. We start our discussion with a description of how such a database
should be understood from an abstract logical point of view. As is usual in logical frame-
works, we shall specify the languages used, their intended general semantics, and the

corresponding notion of validity.

1.1 Languages. The languages used are standard first order languages with equality.
The only restrictions are that the number of predicate and function symbols should be
finite, while the set of constants should be effectively enumerable.

The demand for finiteness of the set of predicate symbols is due to the fact that all of
them (except equality) are meant to correspond to tables in some specific database, and
there are only finitely many such tables. The demand that there are only finitely many
function symbols is less essential, but convenient. A given database can mention only
finitely many such symbols, and the use of function symbols which are not mentioned in the
database can be viewed as just an effective method of adding infinitely many new constants
(this remark will become clearer after we describe the intended semantics). Finally, the
demand concerning constants reflects a pragmatical aspect of the subject: tables and

answers to queries should be effectively listed.

1.2 Theories. The theories which are of interest in the present context are finite sets
of atomic sentences of the form p(ty,...,t,), where p is not the equality symbol. Such
a theory D is just a first order representation of some database db, where for each p the
set of sentences in D of the form p(t1,...,t,) is a full description of a corresponding table
in db with the same name. We shall call such theories db-theories, and usually identify a

database with the corresponding db-theory.



1.3 Semantics.  The main factor that distinguishes pure relational database theory from
other branches of mathematical logic is the structures which are taken to be of interest.
These are not all the possible models of theories like above, but rather a restricted class

of what might be called “preferred” (or admissible) models:

Definition. Given a language L and a db-theory D in L, an L-db model for it is
a Herbrand structure for some effective extension of L with at most countable set of
constants. This Herbrand structure should satisfy the following two conditions:

(i) Two terms of the domain are equal iff they are identical.

(ii) An atomic sentence (other than equality) is true in it iff it belongs to D. In particular:

all the relations (except equality) should be finite.

Note. Given D in a language L, for every 0 < n < oo there is up to isomorphism
exactly one L-db model of D which has exactly n constants not belonging to L.

The fact that we confine ourselves only to Herbrand structures is a formal version
of the demand that every element of a structure could be named, i.e.: corresponds to
some syntactic term. This demand is a variant of what is known as the domain closure
assumption. Condition (i) above means then that every such element has a unigue name.
This condition is known therefore as the unique name assumption. Finally, condition (ii)
means that the given database is expected to have a full description of the relations. This
is known as the closed world assumption.

There is one fundamental principle (already mentioned above) of relational database
practice that dictates all these assumptions: we should be able to fully and unambiguously
list everything which interests us. This applies, first of all, to the relations of D (i.e. the

tables). It also applies to answers to queries, as we shall see below.

Note. In the above framework we ignore certain aspects of real database systems:

(1) In relational systems each column in a table has a name of its own, and the order
of the columns is in principle irrelevant. Moreover: values which occur in different
columns frequently have different types, and so the use of some many-sorted language
might be more appropriate. These differences do not affect, however, the metatheory

in an essential way (see, e.g., [Ull89]). The abstractions made here (and elsewhere)
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are theoretically as harmless as the abstractions made in studying usual single-sorted
first order languages.

(2) Much more important is the fact that in real databases some of the constants like “1”
frequently have standard intended interpretation in a well known infinite domain (like
N) and so commercial query languages allow the use of standard, infinite relations
(like inequality between natural numbers) and even the use of standard functions,
like + and x. An attempt to take this fact into account would change the theory
completely. Here, however, we treat only what we call pure database languages, in
which the only relations known and used are those which are explicitly represented as
finite tables.

(3) The unique name assumption seems natural (and harmless) with respect to simple
databases, in which we have no function symbols. It is somewhat restrictive when
function symbols are allowed. It means, for example, that father_of (John) must be
different from father_of (Jack), and that functions like + and x should not be used in
queries. In other words: function symbols are a way of naming and not of reflecting
some truth about the universe. We believe that further research should be done

concerning relaxing this assumption. This, again, will not be done here.

1.4 The Validity Concept. The relevant concept is not explicitly defined in the
literature, but as in any application of a logic it! exists nevertheless and determines the
way the logic is used. Thus the most common use of databases is in answering queries.
Suppose now that D is a database. The simplest type of query to D is a “yes” or “no”
question. What can be the form of such a query? The answer is: “Is a given sentence ¢
valid according to D”? The answer to this query will depend, of course, on the notion of
validity we have in mind.

When we have semantics to some logic, the standard, obvious way to define validity
in a theory D is as truth in every model of D. In our case we have the semantics of
db-models. What is taken to be such a model depends, however, also on the language in

which D is taken to be a theory (this is not uniquely determined!) Obviously, we should

1 or a generalization: a consequence relation



use a language in which both ¢ (the query) and at least the relevant part of D can be

expressed. The minimal such language 1s given in the following definition.

Definition.
(1) Given a database D and a formula ¢, L(D, ¢) is the language in which:

a) The predicate symbols are those which are mentioned in ¢

b) The constants and function symbols are those that are either mentioned in ¢ or

in some sentence p(ty,...,t,) in D such that p is mentioned in .
(2) L™(D,¢), 0 < n < oo, is the language which is obtained from L(D,¢) by adding n
new constants? (Obviously, L°(D,¢) = L(D,¢).)

(3) DJp is the subset of D which consists of the sentences in D which belong to L(D, ¢).
(4) Dom, (D, ) is the unique model of D|e whose elements are the terms of L") (D, )
(5) Dom(D,¢) is Domg(D, ¢) — the unique minimal admissible model of D.

It is obvious that every L(D,)-db model of D|y (see definition in 1.3) is isomorphic
to Dom, (D, ¢) for some 0 < n < oc.

We are now ready to define validity:

Definition.  Let D be a database and ¢ a sentence. D g ¢ iff ¢ is true in every
L(D, ¢)-db model of D]y (iff ¢ is true in Dom, (D, ¢) for every 0 < n < co).

At this point it may seem natural to ask: why do we need to consider Dom, (D, ¢)
for n > 07 After all, all the models other than Dom(D,¢) contain elements which are
neither referred to in ¢ nor in the relevant fragment D|e of D. Why should they be
important? The answer is that frequently we do need to know the truth value of ¢ in a
model other than Dom(D, ¢). For example, in order to evaluate the truth value of ¢ V ¢
in (say) Dom(D, ¢ V1), we have to evaluate the truth value of ¢ in Dom(D, ¢ V ¢). But
Dom(D, ¢ V 1) may be isomorphic to Dom, (D, ¢) for some n > 0!

We can look at the issue also from a little bit different (although strongly related)

2 There are several methods of determining L(")(D, @) exactly, but we shall not bother

to do so. It is obvious that the precise identity of the new constants is not important.

3 Domy (D, ) n > 0 is unique up to isomorphism — see previous footnote.
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point of view. There are certain basic properties that we would like our validity notion to
have, but obtain only if we consider Dom,, (D, ¢) for all n. For example:

o If either ¢ or # is valid then so 1s ¢ V ¢

o If both ¢ and v are valid then so is ¢ A%

A third reason that we would like to mention is pragmatical. As we noted above, in
practice the constants we use often have a fixed intended meaning in an apriorily given
structure that might even be infinite. We are aware then of the existence of elements
in the domain of discourse which do not belong to Dom(D, ¢). There might be cases in
which these extra elements might be relevant, and we don’t want our theory to exclude this

possibility (this explains why we allow the case n = 0o in the definition of Dom, (D, ¢)).

2. What Queries Are “Reasonable”?

The notion of a query to a relational database generalizes in many ways that of a
system of equations. Such a system is usually just a conjunction ¢ of atomic formulae
of the form t; = 3 (or, rarely, a disjunction of such conjunctions). The (free) variables
T1,...,T, of ¢ are the “unknowns” and a “solution” is a set of irreducible closed terms
S1y..., 8, (like “3” or “277 ) such that ¢(s1/x1,...,8,/x,) is valid. In relational database
theory, in contrast, any formula p(x1,...,x,) is a potential “query”. Given a database D a
solution is then any tuple (s1,...,s,) of closed terms such that D =g ©(s1/x1,...,80/Tn)
(note that because of the unique name assumption, every closed term is “irreducible”).

When we learn in school the subject of systems of equations, all the efforts are almost
entirely concentrated on what might be called “reasonable” systems. These are systems
the solutions of which can be listed. This means, first of all, that the set of solutions is
finite, and also that the elements of this set can all effectively be found.”? An answer to
such a “reasonable” system of equations ¢ is then just a formula ¢ of the form (x; =

A Aay =t ) VeV (e = tF Ao Aa, = t5) (where t are closed, irreducible terms

4 The converse of this fails, however. Thus (Jx x # b) A a = ais valid, while 3z & # b is not.

This anomaly can be explained in several ways, but we shall not discuss this issue here.
° Trigonometric equations are an interesting sort of exception, but here too “reasonable” equa-

tions are such that the solutions in any given finite interval can be listed.

6



and x1,...,x, are the “unknowns”) such that Vai,...,2, ¢ < @ is valid.® Now exactly
the same criterion for “reasonableness” applies to queries in relational databases, and the
form of an answer to a reasonable query is expected to be just the same (A “table” is
no more than a compact way of representing a formula ¢ as above). Only the notion of
validity which is used for defining an answer 1 to a query ¢ (given a database D) is, of
course, D [=4p5. One should note that according to this definition, the property of being a
“reasonable” query is relative to a given database D. A query can be reasonable relative
to one database but unreasonable relative to another.

The condition of “reasonableness” (relative to D) that has just been described can

very naturally be split into the following two conditions.

(I) “Finite” Relative Domain Independence ([Ki88]): A formula ¢ is (finitely)
domain independent (d.i.) relative to D if the same set of tuples of closed terms satisfies it
in all (finitely generated) admissible models of D|y (i.e. Dom,(D,¢) 0 < n < oo, or just

finite n in the case of finite relative domain independence).

(IT) Relative Safety ([AGS86], [Ki88]): A formula ¢ is safe relative to D iff for every

n it has a finite set of solutions in Dom, (D, ¢).

Notes. 1) The two notions of relative d.i. are in fact equivalent. This was shown in case
there are no function symbols in [Ki88] and in the general case in [AH91a], (see section 6
below).

2) There are other notions of “safety” which are used in the literature — see [Ki88] for
a survey. The one above is what Kiffer uses in [Ki88].

Obviously, in case there are no function symbols a query is reasonable (relative to D)
iff it is both d.i. and safe (relative to D). It is also clear that under the same assumption
Dom, (D, ) is finite for n < oo, and so relative d.i. implies relative safety. It was
conjectured in [Ki88] and proved in [AH91a] that these facts hold also in case we do
have function symbols (see section 6). It follows that relative reasonableness and relative

d.i. are two equivalent notions. It is no wonder, therefore, that domain independence is

® Tt is worth noting that in trigonometric equations > has the form of a disjunction of certain
simple ezistential formulae of the form Jk(x = t(k)), where k is the only free variable of .

7



widely taken as the crucial property that characterizes “reasonable” queries.

The notion of d.i. and of safety that we have introduced are relative notions. A query
@ can, for example, be d.i. relative to Dy but not domain dependent relative to Dy. One
of the most important features of real databases, however, is that they change all the time
through updating. Hence a query which is reasonable at a certain moment might become
unreasonable a few moments later. It is very desirable to avoid such a situation. A really
“good” query is one that is always reasonable, i.e.: domain independent relative to every
D.” Formulae which have this property are called universally domain independent, or just
domain independent (see, e.g. [UlB9]).

The upshot of this discussion is the widely accepted view, that the class of universally
d.i. formulae forms the ideal query language. (see, e.g., [To87], [Ull89]). As many other
ideals, however, this ideal also cannot be fully achieved. It was proved in [DiP69] that
this class is undecidable even in the simple case of languages with no function symbols. It
follows that it cannot be identical with the set of queries of any concrete, effective query
language.

It is in the proof of this undecidability result that Trakhtenbrot’s theorem plays a
decisive role. To see how, take any sentence A in a language with no function symbols.
Define p(2) = nA Ax = 2. It is not difficult to show that ¢ is d.i. iff A is true in all finite
structures. It follows that had the notion of d.i. been decidable, so would have been the
notion of validity in all finite structures. But Trakhtenbrot’s theorem says that this is not

the case!

3. Three Approaches to How to Be As Reasonable As Possible

3.1. Concentrating On One Domain. This approach requires that together with
a query the user will specify which domains (among, e.g., the Dom,(D,¢)) he has in
mind. The trouble is that often (most of the time?) the user does not know this, or might
need some extra knowledge to determine it. This extra knowledge might refer to possible

changes of the database in the future.

T This corresponds to a stronger notion of validity: ¢ is strongly valid if D [=g4p ¢ for every D.
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Another version of this approach is to always take Dom(D, ) as the intended domain.

We have seen already the shortcomings of this approach.

3.2. Using Approximations of the Ideal. This is the approach taken by all present
query language. The idea is described in [UlI89, p.151] as follows: “We shall first consider
what we really would like concerning relational calculus expressions. This property, called
“domain independence”, is a semantic notion; it will be seen that it is impossible to
tell, given a formula, whether the formula satisfies the property. After defining “domain
independence” we shall therefore look for approximations to the ideal”.

We now give what seems to us a proper definition of a “proper approximation”:

Definition. A class L of formulae is a proper query language if:
(i) L is decidable
(ii) Every formula in L is domain independent
(iii) There is a procedure that given some domain independent query ¢ produces a query

' in L such that ¢ and ¢’ are equivalent.

Note. By (b) and (c) every two proper query languages are equivalent: they have the
same expressive power as the class of domain independent queries.
The question of the existence of proper query languages and methods for obtaining

them are discussed in section 5.

3.3 Using Relative Domain Independent Queries.  The proper languages form an
attempt to overcome the problem of the undecidability of the class of universal domain
independent queries by shrinking it to a smaller class, without losing expressive power.
Here, in contrast, the approach is to extend in each case this class to some subclass of the
formulas which are d.i. relative to the given database D. Since the identity of this subclass
might depend on D, this approach requires the use of an algorithm that given D and ¢
determines whether ¢ belongs to the subclass associated with D. As it happens, one can
in principle use, for any D, simply the whole class of formulas which are d.i. relative to

D. More on this — in section 6 below.



4. The Problems With Languages With Function Symbols

The choice of (relative) d.i. as the crucial property was due, we recall, to the fact
that (relative) d.i. entails (relative) safety. This, however, was obvious only for simple
languages (i.e.: languages with no function symbols), where Dom(D, ¢) is finite. It was
not at all obvious for generalized languages (i.e.: languages with function symbols). Still,
as noted above, this turned out to be the case. There is, however, another problem which
was hidden in the simple case. A query is intuitively reasonable, we recall, if we can list
all the solutions. This means not only that they are finite in number, but also that we can
effectively find them all. This is easy if ¢ is relatively d.i. and Dom(D, ¢) is finite. But if
there are function symbols then Dom(D, ¢) is infinite, and we might have a problem even
if there are only finitely many solutions. In [Ki88] another property, which a “reasonable”

query language should have, is therefore introduced. We split it here into two properties:

Definition. (1) A class @ of formulae is strongly capturable {relative to a database D}
if each ¢ € @) is domain independent {relative to D} and there is an algorithm that given
¢ € () and D computes the answer to .

(2) A class @ of formulae is weakly capturable relative to D if there is an algorithm
that given ¢ € @: (i) determines if it is d.i. relative to D and (ii) Computes the answer if
1t 1s.

Obviously, for simple languages the class of formulae which are d.i. relative to D is
strongly capturable relative to D — simply compute the answer in Dom(D, ). Again this
is far from being obvious in the generalized case. Moreover, it was shown in [AGS86] (see
also [Ki88]) that for simple languages relative d.i. and relative safety are both decidable. It
follows immediately that for such languages the whole class of first order queries is weakly
capturable ([Ki88]). For generalized languages, on the other hand, decidability of relative
d.i. does not immediately guarantee this last result. Still, it was proved in [AH91a] that
all the results mentioned above concerning the simple case hold also for the generalized
one, although the proofs are much more difficult. An outline of them is given in section 6.

Turning now to the approach of “approximating the ideal”, we note that many dif-

ferent query languages of the type we called “proper” (see 3.2) have been suggested in
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the literature: [CoT2] (“range separable formulae”), [Ni82] (“range restricted formulas”),
[De82] (“evaluable formulas”), [To87] (“allowed formulas”) and [UlI89] (“Syntactically safe
formulae”). Topor (in [To87]) was the first to justify his class from a point of view which
is similar to the one presented here (by showing that every d.i. query is equivalent to an
“allowed” query). However, all these classes (including Topor’s) were suggested for simple
databases, and Topor admits that there are serious difficulties in finding a good class of
queries in case there are function symbols (see [To87], [TS88]). Such a class of queries (the
secured queries) was first introduced and shown to be adequate in [Hir91]. In section 5 we
review Topor’s and Hirschfeld’s results.

The following lemma is the key to the difference in the present context between the

simple and the generalized case.

Lemma. 1) If ¢ does not mention function symbols then there is a formula D () which
for every simple database D describes the subdomain Dom(D, ¢) inside every other domain

M (note that D, depends only on ¢, not on D).

2) If D or ¢ mention at least one function symbol then there is no formula that defines

Dom(D, ¢) inside (say) Dom;(D, ¢).

Proof of 1.  The formula D, is a disjunction of formulae of two kinds:
(1) Jyr--Fyic1Iyarr - yn; Rj(y1, - oo Yim1, T, Yig1, - - - Yn, ), Where R; ranges over the
relations mentioned in ¢, n; is the arity of B; and 1 <: < n;.
(ii) @ = ¢, where ¢ is a constant which is mentioned in .
The second part follows from one of the lemmas (number 5) which are used in [Hir91]
for the proof of the theorem in section 5. We only note that if either D or ¢ contains a
function symbol then Dom(D, ¢) is infinite and the formula D,(x) of part (i) describes

only a finite subset of it.

5. Proper Query Languages

As we noted at the end of the last section, many suggestions for what we call “proper
query languages” were suggested in the case of simple language. We now describe two

examples, both from [To87], which represent two different approaches to the problem.
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Example 1.

Definition.

holds.

X

X

X

18 Pos
18 Pos
18 Pos
18 Pos
18 Pos
18 Pos

18 Pos

The class of allowed formulae

A variable x is pos (positive) in a formula W if one of the following cases

in p(t1,...,t,) if @ occurs in p(ty,...,t,) and p is not =;
inx =corc=xif ¢is a constant;

in = F if x is neg in F

in FAGif ¢ is pos in F or z is pos in G;

in VG if zis posin F and z is pos in G;

in F — G if x is neg in F and « is pos in G;

in dyF if x is pos in F.

Similarly, « is neg (negative) in W if one of the following cases holds.

x 1s neg in —F if x is pos in F;

risnegin FAGif xisnegin F and z is neg in G;

risnegin FV G if v is negin F or « is neg in G;

risnegin ' — G if 2 1s posin F or z is neg in G;

o v is negin VyF if x is neg in F.

Definition.

A formula W is allowed if the following conditions hold:

(1) every free variable in W is pos in W;

(2) for every subformula 32 F of W, x is pos in F

(3) for every subformula VaF of W, x is neg in F.

This is a typical bottom-up construction, which assures that when W is evaluated all

the variables range over subsets of Dom(D, W) which do not depend on the actual domain

in which W is evaluated. This follows from the fact that inside the building blocks of

W (the atoms) the variables satisfy some conditions (of positiveness and negativeness) so

that when the formula is inductively put together these conditions are also put together

to produce the desired d.i. property. The bottom-up construction means that a recursive

test is needed to check whether a given query is allowed.

In [To87] it is shown that the class of allowed formulae is indeed proper in our sense.
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Example 2. Relativized Queries. For each formula ¢ let ¢’ be the formula obtained
from ¢ by relativizing all the quantifiers and free variables of ¢ to D, of section 4. (this
means that we obtain first " from ¢ by inductively replacing each quantification Jxv) by
Jz(D,(x) ANy") and Vap by Ya(Dy(xz) — "), Then if x4,...,z, are the free variables of
@, we let ¢ be " ADy(x1)A -+ ANDy(zy)). A relativized query is a query of the form ¢
(for some ).

Now assume that L(D, ) is simple. It is easily shown then by induction that for every
ai,...,an € Domg(D,); ¢'(a1,...,a,) is true in Domyg(D, ) iff a1,...,a, € Dom(d, )
and ¢(ay,...,a,) is true in Dom(D, ¢). It follows that ¢’ is always d.i. and that if ¢
is also d.i. then ¢ is equivalent to ¢’ in all admissible domains. It is also very easy to
determine if a given formula is a relativized one. It follows that the class of relativized
queries is a proper query language.

The relativization approach has the advantage of securing a query top-down. We may
start with any formula and add the requirement that all its variables should range over the
subset described by the formula D,. An obvious possible generalization is the following:
start by defining a collection of “simple” formulae that define “absolute permissible sets”
and then allow any formula in which it is specified over what absolute set each variable
should range. In a way the “simple” formulae act like types, and a query is any formula
whose variables are typed. This “top-down” nature can be made explicit if we allow exterior
variables which are already typed to serve as parameters in the typing of the inner variables.
For example, assume that A(z,y) is any atomic formula and that ¢ («) is JyA(x, y). Assume
also that p(x) and R(x,y) are relations in the database. Then « = yV R(«, y) is not a good
restriction, since it is not d.i., but once x is restricted to P(x) it becomes a good restriction
for y. The restricted formula will be then: P(a)A3Jy[(R(x,y)Va = y)A A(x,y)]. The user
friendliness of this approach becomes clear if we separate the query itself (which may be

any formula) from the typing of the variables. The above query will then look like this:

JyA(z,y){x: P(x), y: R(z,y) Vo =y} .

While this idea is of interest already for simple languages, it becomes essential when

we turn to generalized ones, since there no uniform tool like D, is available (see the end
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of section 4).

In the following definition the absolute formulas are the “simple” formulae over which
the quantifiers can range, bounded formulas are formulas in which the quantified variables
are restricted by absolute formulas, and secured formulas are formulas in which all the
variables are restricted by absolute formulas. The class of secured formulas is the one

which was suggested in [Hir91] as a proper approximation in the generalized case.
Definition.

1) Absolute Formulas.

a) Every atomic relation R (t1(T),---,t5(T)) is absolute, while # = ¢ is absolute iff ¢ is

variable free.

b) If A and B are absolute then so is A A B. If in addition they have exactly the same
free variables then also A V B is absolute. (But not for example R(z) V S(y)).
c) If A is absolute then so is JyA.

d) (Closure under the application of definable functions:) If @(xy,...,2,) is absolute
with z1,..., 2, actually free in ¢ and if t1, ...t} are terms whose variables are among

x1,...,x, then the following formula is absolute:

V(Y1 yk) = 3o Jag [@(21,. . x0) Ayr =t A Ay = 1]

2) Bounded Formulas.
a) Every quantifier free formula is bounded.

b) If ¢ is bounded and if A(x) is absolute with = actually free in A(x) then the following

are bounded:
(i) Jx(A(z) A g)
(i) Va(A(z) — »)

3) Secured Formulas. If p(xy1,...,2,) is bounded and if A(xy,...,x,) is absolute

with xq,..., 2, the free variables of A then A A ¢ is secured.
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Remark. The definitions can be modified to allow more variables as parameters, pro-
vided we keep trace of them and they will be taken care later. In particular an equation
y =t(x1,...,2,) is absolute modulo any choice of n out of the n 4+ 1 variables occurring.
This will yield a somewhat more flexible language of secured queries. We do not need it
at the moment since the definition above suffices to give us a proper language.

Clearly the language of secured queries is decidable. It follows therefore from the
following theorem that this language is a proper query language for first order relational

databases with functions.

Theorem.
a) Every secured query is domain independent.

b) Every domain independent query is equivalent to some secured query.

The proof of (a) is simple: by easy induction it is seen that D and every absolute
formula defines in every domain for D and ¢ the same subset. It is then shown that if
p(x1,...,2,)1s bounded then for every t1, ..., t, (terms without variables) in the language,
Y(t1,...,t,) has the same truth value in all the domains for D and ¢ that include #1, ..., ,.
From this it follows that if ¢(T) is secured then all the solutions anywhere are already in
Dom(D, ¢) and they do not change from one domain to another.

The proof of (b), on the other hand, is quite complicated, and we shall not include it
here. The reader can find it in [Hir91].

6. Using the Relative Notions
We start again with the simple case:

Lemma ([AGS86],[Ki88]). Let D be a database and let ¢(x1,...,x5) be a formula
whose number of quantifiers and free variables is (together) n. Let My and My be admissi-
ble domains for D and ¢ that have at least n elements outside Dom(D, ). Let ay,...,ay
in My and by, ...,b; in My have the following properties:

(i) Fori=1,...,k, if a; € Dom(D, ) or b; € Dom(D, ¢) then a; = b

(ii) a; = aj iff b; = b;.
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Then (ay,...,ax) is true in My iff p(b;, ..., bg) is true in Ms.
The proof is by an easy structural induction. Conditions (i) and (ii) take care of the

atomic case, while the assumption on the size of M, and M, is used in the case of da).

Note. It is not difficult to see that this lemma implies that if ¢ has the same solutions
in all the finite models for D then it has the same solutions also in the infinite domain.

Hence finite (relative) d.i. implies (relative) d.i.

Theorem. In a simple language and databases, the class of the first order formulas is

weakly capturable and that of relative d.i. — strongly capturable.

Proof: For the first part, let ¢ be a simple formula with ny quantifiers and free vari-
ables. We first check if it has in Dom,, (D, ¢) some solution which does not entirely lie in
Dom(D, ). If it does then by the last lemma, ¢ has new solutions in Dom,,,+1(D, ¢) and
so is not d.i. relative to D. If, on the other hand, all the solutions in Dom, (D, ¢) are in-
side Dom(D, ¢), then by the same lemma ¢ has the same set of solutions in all the domains
Dom, (D, ¢) with n > ng. This gives us the following constructive criterion for checking
d.i. relative to D: ¢ is d.i. relative to D iff (a) All the solutions in Dom, (D, ¢) are inside
Dom(D,¢), and (b) ¢ has the same set of solutions in all the domains Dom, (D, ¢) with
0 < n < ng (note that these are all finite).

The second part easily follows from the first.

We now turn to generalized languages, and outline the treatment that we gave them
in [AH91a]. Full proofs can be found in that paper (see also [AH91b]).® The main idea
is a reduction of a query to several easy-to-handle normal forms, one of them uniform for

sufficiently large domains.

Definition.

(1) A special primitive formula (Spf) is a formula of the form:
¢(z,y) = F0[P(Z,y,v) AN N(y,v)]

where:

& Certain resemblance between our procedures and the work of Malcév in [Mal71] should be noted

here.

16



(i) P is of the form Ax; = ¢, (v, 7).
11) N is a conjunction of inequalities of the form variable # term.
J q
11) Each z; occurs exactly once in ¢.
y
(iv) Each v; occurs at least once in P.

(2) A special existential formula is a disjunction of Spfs.

Theorem.
a) Given D,y and n one can construct a special existential formula EP»% which is equiv-
alent to ¢ in Domy (D, p).
b) ¢ has a finite number of solutions in Dom, (D, ¢) iff each disjunct of EP:% is of the

form

L1 :tl/\l'z :tz/\/\l'k:tk

where 1, ...,z are the free variables of @ and tq,... t}; are closed.
c) If EP'% does not have this form then no proper subdomain of Dom, (D, y) includes

all the solutions (in Dom, (D, ¢)).
Corollary. Relative d.i. = relative safety.

The formula E”# depends on n. In order to get a more uniform normal form, we
add to the language a new predicate, G(x), with the intended meaning: “z is a generator”
(i.e.: a simple constant term). It is worth noting that G(z) is definable in the language
(since we assume only a finite number of function symbols!). But as is often the case with

quantifiers elimination, we need this predicate to be atomic.

Theorem. Given D and ¢, one can constructively find a number np , and a formula
EP:%# (in the extended language) which has the same properties as EP¢ (ie. (a) — (c)
of the previous theorem) for np , < n < oo, except that the N(y,v) part may contain

formulae of the forms +G(y;), +G(v;).

Corollaries.
1) If ¢ is safe relative to D then it has the same set of solutions in all Dom, (D, ¢) s.t.

np, <n < oo.
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2) ¢ is safe relative to D iff it has a finite set of solutions for all Dom,(D,¢) s.t. 0 <
n < np,, and in Doms (D, ¢), and these are all decidable questions.

3) ¢ is d.i. relative to D iff it is safe relative to D and has the same set of solutions for
alln st. 0<n<np,.

4) (i) The class of first order queries is weakly capturable.
(i1) The class of relatively safe queries is strongly capturable.

Moreover.
5) It is decidable whether a query has a finite number of solutions in all finitely generated
domains (over a given D).
6) A formula is domain independent relative to D iff it has the same set of solutions in

all finitely generated domains (over D).

The proof of these corollaries from the last two theorems is similar to the proof of the
analogous results in the case with no function symbols.

We started this paper with a remark about Trakhtenbrot’s theorem, and it is appro-
priate to conclude it with another remark concerning it.

Recall that DiPaola used Trakhtenbrot’s theorem to show that there is no algorithm
to determine if a given formula is universally domain independent. Above we have shown,
in contrast, that there s an algorithm to determine whether a given formula is d.i. relative
to a given database. This might hint that there is a relativized version of Trakhtenbrot
theorem that does not hold. This indeed is the case, and though it is not very deep, it is
worth mentioning. Given a finite structure M in some simple (i.e., functionless) language,
let its actual diagram be the set of elements which satisfy (as part of a tuple) at least one

of the atomic relations. Then:

Theorem 6. There is an algorithm which given a statement @ in a simple first order
calculus and a number ng determines if ¢ has a (finite) model with actual diagram of size

S no.

Thus it is true that the smallest model for ¢ may be unpredictably large (Trakhten-
brot), but it may only happen if the actual diagram becomes also impredictably large.
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The proof follows from the last lemma above. For a fixed ng there are only finitely
many actual diagrams Dy,..., D, and we need only check ¢ in Dom,(D;,¢) with ¢ < ¢

and n < n.

7. Conclusion

We have seen that there are two possible approaches to the problem of making “rea-
sonable” first-order queries to a pure relational database:

1) If we want to use only queries that are reasonable with respect to any possible database
then we should use some syntactically defined, decidable approximation of the ideal
language (that of universally domain-independent queries). There are several choices
available here, but in a certain precise sense they are all equivalent.

2) If we are only interested in making reasonable queries to the particular database we
have at a given moment then any first order formula might be a candidate. We
have, however, to apply first a special algorithm which checks if the formula is indeed
reasonable relative to the given database. We have seen that such an algorithm exists.
In order to make this approach practical a more efficient one than that presented here
should be found.

We have seen also that despite the apparent difficulties, as long as all the function
symbols are interpreted as generative, there is no significant theoretical difference between
the simple case in which we do not have function symbols and the generalized one in which
we do.

All the results above were based on the assumption that we are dealing only with pure
query languages, in which the only relation symbols (except equality) are the names of the
tables in the database. We believe that in order to make the theory more applicable, it is
important to investigate impure languages as well. In particular: languages with symbols

”

for standard infinite relations like “<”. The case in which not all function symbols are

generative should also seriously be investigated.
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