
WHAT REASONABLE FIRST-ORDER QUERIESARE PERMITTED BY TRAKHTENBROT'S THEOREM?Arnon Avron and Joram HirschfeldRaymond and Beverly SacklerFaculty of Exact SciencesSchool of Mathematical SciencesTel Aviv UniversityRamat-Aviv, 69978 Israel0. IntroductionAround 1950, B.A. Trakhtenbrot proved an important undecidability result (known,by a pure accident, as \Trakhtenbrot's theorem"): there is no algorithm to decide, givena �rst-order sentence, whether the sentence is satis�able in some �nite model. The resultis in fact true even if we restrict ourselves to languages that has only one binary relation[Tra63]. It is hardly conceivable that at that time Prof. Trakhtenbrot expected his resultto in
uence the development of the theory of relational databases query languages, but itdid. This perhaps is not surprising in view of the following two facts:1) The theory of relational databases is strongly rooted in logic and can easily be ab-stracted to make it a branch of mathematical logic.2) The main interest in the theory of relational databases is in �nite relations.In the �rst section we explain those two points in more detail. Then, in section 2of the present paper, we discuss the question: \What constitutes a reasonable query toa database?" The discussion naturally leads to a certain class of queries, known as the\domain independent" queries, as an ideal query language. At this point Trakhtenbrot'stheorem appears as a major obstacle, since it easily implies that this ideal class is unde-cidable. Real query languages cannot be allowed to have this property. Section 3 outlinesthen several possible ways to circumvent this di�culty. The following section explains the1

extra di�culties in applying them in case we allow function symbols in the language. Thelast two sections describes the two main approaches in greater depth, and explains howthe di�culties with function symbols can be overcome (at least in principle). Section 5 ismainly based on [Hir91], while section 6 { on [AH91a].1. The Logical FrameworkA relational database is usually given in the form of a �nite number of �nite tables,each having a name. We start our discussion with a description of how such a databaseshould be understood from an abstract logical point of view. As is usual in logical frame-works, we shall specify the languages used, their intended general semantics, and thecorresponding notion of validity.1.1 Languages. The languages used are standard �rst order languages with equality.The only restrictions are that the number of predicate and function symbols should be�nite, while the set of constants should be e�ectively enumerable.The demand for �niteness of the set of predicate symbols is due to the fact that all ofthem (except equality) are meant to correspond to tables in some speci�c database, andthere are only �nitely many such tables. The demand that there are only �nitely manyfunction symbols is less essential, but convenient. A given database can mention only�nitely many such symbols, and the use of function symbols which are not mentioned in thedatabase can be viewed as just an e�ective method of adding in�nitely many new constants(this remark will become clearer after we describe the intended semantics). Finally, thedemand concerning constants re
ects a pragmatical aspect of the subject: tables andanswers to queries should be e�ectively listed .1.2 Theories. The theories which are of interest in the present context are �nite setsof atomic sentences of the form p(t1; : : : ; tn), where p is not the equality symbol. Sucha theory D is just a �rst order representation of some database db, where for each p theset of sentences in D of the form p(t1; : : : ; tn) is a full description of a corresponding tablein db with the same name. We shall call such theories db-theories, and usually identify adatabase with the corresponding db-theory. 2

1.3 Semantics. The main factor that distinguishes pure relational database theory fromother branches of mathematical logic is the structures which are taken to be of interest.These are not all the possible models of theories like above, but rather a restricted classof what might be called \preferred" (or admissible) models:De�nition. Given a language L and a db-theory D in L, an L-db model for it isa Herbrand structure for some e�ective extension of L with at most countable set ofconstants. This Herbrand structure should satisfy the following two conditions:(i) Two terms of the domain are equal i� they are identical.(ii) An atomic sentence (other than equality) is true in it i� it belongs to D. In particular:all the relations (except equality) should be �nite.Note. Given D in a language L, for every 0 � n � 1 there is up to isomorphismexactly one L-db model of D which has exactly n constants not belonging to L.The fact that we con�ne ourselves only to Herbrand structures is a formal versionof the demand that every element of a structure could be named , i.e.: corresponds tosome syntactic term. This demand is a variant of what is known as the domain closureassumption. Condition (i) above means then that every such element has a unique name.This condition is known therefore as the unique name assumption. Finally, condition (ii)means that the given database is expected to have a full description of the relations. Thisis known as the closed world assumption.There is one fundamental principle (already mentioned above) of relational databasepractice that dictates all these assumptions: we should be able to fully and unambiguouslylist everything which interests us. This applies, �rst of all, to the relations of D (i.e. thetables). It also applies to answers to queries, as we shall see below.Note. In the above framework we ignore certain aspects of real database systems:(1) In relational systems each column in a table has a name of its own, and the orderof the columns is in principle irrelevant. Moreover: values which occur in di�erentcolumns frequently have di�erent types, and so the use of some many-sorted languagemight be more appropriate. These di�erences do not a�ect, however, the metatheoryin an essential way (see, e.g., [Ull89]). The abstractions made here (and elsewhere)3

are theoretically as harmless as the abstractions made in studying usual single-sorted�rst order languages.(2) Much more important is the fact that in real databases some of the constants like \1"frequently have standard intended interpretation in a well known in�nite domain (likeN) and so commercial query languages allow the use of standard, in�nite relations(like inequality between natural numbers) and even the use of standard functions,like + and �. An attempt to take this fact into account would change the theorycompletely. Here, however, we treat only what we call pure database languages, inwhich the only relations known and used are those which are explicitly represented as�nite tables.(3) The unique name assumption seems natural (and harmless) with respect to simpledatabases, in which we have no function symbols. It is somewhat restrictive whenfunction symbols are allowed. It means, for example, that father of (John) must bedi�erent from father of (Jack), and that functions like + and � should not be used inqueries. In other words: function symbols are a way of naming and not of re
ectingsome truth about the universe. We believe that further research should be doneconcerning relaxing this assumption. This, again, will not be done here.1.4 The Validity Concept. The relevant concept is not explicitly de�ned in theliterature, but as in any application of a logic it1 exists nevertheless and determines theway the logic is used. Thus the most common use of databases is in answering queries.Suppose now that D is a database. The simplest type of query to D is a \yes" or \no"question. What can be the form of such a query? The answer is: \Is a given sentence 'valid according to D"? The answer to this query will depend, of course, on the notion ofvalidity we have in mind.When we have semantics to some logic, the standard, obvious way to de�ne validityin a theory D is as truth in every model of D. In our case we have the semantics ofdb-models. What is taken to be such a model depends, however, also on the language inwhich D is taken to be a theory (this is not uniquely determined!) Obviously, we should1 or a generalization: a consequence relation 4

use a language in which both ' (the query) and at least the relevant part of D can beexpressed. The minimal such language is given in the following de�nition.De�nition.(1) Given a database D and a formula ', L(D;') is the language in which:a) The predicate symbols are those which are mentioned in 'b) The constants and function symbols are those that are either mentioned in ' orin some sentence p(t1; : : : ; tn) in D such that p is mentioned in '.(2) Ln(D;'); 0 � n � 1, is the language which is obtained from L(D;') by adding nnew constants2 (Obviously, L0(D;') = L(D;').)(3) Dj' is the subset of D which consists of the sentences in D which belong to L(D;').(4) Domn(D;') is the unique model of Dj' whose elements are the terms of L(n)(D;')3(5) Dom(D;') is Dom0(D;') { the unique minimal admissible model of D.It is obvious that every L(D;')-db model of Dj' (see de�nition in 1.3) is isomorphicto Domn(D;') for some 0 � n � 1.We are now ready to de�ne validity:De�nition. Let D be a database and ' a sentence. D j=db ' i� ' is true in everyL(D;')-db model of Dj' (i� ' is true in Domn(D;') for every 0 � n �1).At this point it may seem natural to ask: why do we need to consider Domn(D;')for n > 0? After all, all the models other than Dom(D;') contain elements which areneither referred to in ' nor in the relevant fragment Dj' of D. Why should they beimportant? The answer is that frequently we do need to know the truth value of ' in amodel other than Dom(D;'). For example, in order to evaluate the truth value of ' _ in (say) Dom(D;' _), we have to evaluate the truth value of ' in Dom(D;' _). ButDom(D;' _) may be isomorphic to Domn(D;') for some n > 0!We can look at the issue also from a little bit di�erent (although strongly related)2 There are several methods of determining L(n)(D;') exactly, but we shall not botherto do so. It is obvious that the precise identity of the new constants is not important.3 Domn(D;') n > 0 is unique up to isomorphism { see previous footnote.5

point of view. There are certain basic properties that we would like our validity notion tohave, but obtain only if we consider Domn(D;') for all n. For example:� If either ' or is valid then so is ' _ � If both ' and are valid then so is ' ^ .4A third reason that we would like to mention is pragmatical. As we noted above, inpractice the constants we use often have a �xed intended meaning in an apriorily givenstructure that might even be in�nite. We are aware then of the existence of elementsin the domain of discourse which do not belong to Dom(D;'). There might be cases inwhich these extra elements might be relevant, and we don't want our theory to exclude thispossibility (this explains why we allow the case n =1 in the de�nition of Domn(D;')).2. What Queries Are \Reasonable"?The notion of a query to a relational database generalizes in many ways that of asystem of equations. Such a system is usually just a conjunction ' of atomic formulaeof the form t1 = t2 (or, rarely, a disjunction of such conjunctions). The (free) variablesx1; : : : ; xn of ' are the \unknowns" and a \solution" is a set of irreducible closed termss1; : : : ; sn (like \3" or \2�") such that '(s1=x1; : : : ; sn=xn) is valid. In relational databasetheory, in contrast, any formula '(x1; : : : ; xn) is a potential \query". Given a databaseD asolution is then any tuple (s1; : : : ; sn) of closed terms such that D j=db '(s1=x1; : : : ; sn=xn)(note that because of the unique name assumption, every closed term is \irreducible").When we learn in school the subject of systems of equations, all the e�orts are almostentirely concentrated on what might be called \reasonable" systems. These are systemsthe solutions of which can be listed . This means, �rst of all, that the set of solutions is�nite, and also that the elements of this set can all e�ectively be found.5 An answer tosuch a \reasonable" system of equations ' is then just a formula of the form (x1 =t11 ^ � � � ^ xn = t1n) _ � � � _ (x1 = tk1 ^ � � � ^ xn = tkn) (where tji are closed, irreducible terms4 The converse of this fails, however. Thus (9x x 6= b) ^ a = a is valid, while 9x x 6= b is not.This anomaly can be explained in several ways, but we shall not discuss this issue here.5 Trigonometric equations are an interesting sort of exception, but here too \reasonable" equa-tions are such that the solutions in any given �nite interval can be listed.6

and x1; : : : ; xn are the \unknowns") such that 8x1; : : : ; xn ' $ is valid.6 Now exactlythe same criterion for \reasonableness" applies to queries in relational databases, and theform of an answer to a reasonable query is expected to be just the same (A \table" isno more than a compact way of representing a formula as above). Only the notion ofvalidity which is used for de�ning an answer to a query ' (given a database D) is, ofcourse, D j=db. One should note that according to this de�nition, the property of being a\reasonable" query is relative to a given database D. A query can be reasonable relativeto one database but unreasonable relative to another.The condition of \reasonableness" (relative to D) that has just been described canvery naturally be split into the following two conditions.(I) \Finite" Relative Domain Independence ([Ki88]): A formula ' is (�nitely)domain independent (d.i.) relative to D if the same set of tuples of closed terms satis�es itin all (�nitely generated) admissible models of Dj' (i.e. Domn(D;') 0 � n � 1, or just�nite n in the case of �nite relative domain independence).(II) Relative Safety ([AGS86], [Ki88]): A formula ' is safe relative to D i� for everyn it has a �nite set of solutions in Domn(D;').Notes. 1) The two notions of relative d.i. are in fact equivalent. This was shown in casethere are no function symbols in [Ki88] and in the general case in [AH91a], (see section 6below).2) There are other notions of \safety" which are used in the literature { see [Ki88] fora survey. The one above is what Ki�er uses in [Ki88].Obviously, in case there are no function symbols a query is reasonable (relative to D)i� it is both d.i. and safe (relative to D). It is also clear that under the same assumptionDomn(D;') is �nite for n < 1, and so relative d.i. implies relative safety. It wasconjectured in [Ki88] and proved in [AH91a] that these facts hold also in case we dohave function symbols (see section 6). It follows that relative reasonableness and relatived.i. are two equivalent notions. It is no wonder, therefore, that domain independence is6 It is worth noting that in trigonometric equations has the form of a disjunction of certainsimple existential formulae of the form 9k(x = t(k)), where k is the only free variable of t.7

widely taken as the crucial property that characterizes \reasonable" queries.The notion of d.i. and of safety that we have introduced are relative notions. A query' can, for example, be d.i. relative to D1 but not domain dependent relative to D2. Oneof the most important features of real databases, however, is that they change all the timethrough updating. Hence a query which is reasonable at a certain moment might becomeunreasonable a few moments later. It is very desirable to avoid such a situation. A really\good" query is one that is always reasonable, i.e.: domain independent relative to everyD.7 Formulae which have this property are called universally domain independent , or justdomain independent (see, e.g. [Ull89]).The upshot of this discussion is the widely accepted view, that the class of universallyd.i. formulae forms the ideal query language. (see, e.g., [To87], [Ull89]). As many otherideals, however, this ideal also cannot be fully achieved. It was proved in [DiP69] thatthis class is undecidable even in the simple case of languages with no function symbols. Itfollows that it cannot be identical with the set of queries of any concrete, e�ective querylanguage.It is in the proof of this undecidability result that Trakhtenbrot's theorem plays adecisive role. To see how, take any sentence A in a language with no function symbols.De�ne '(x) = :A ^ x = x. It is not di�cult to show that ' is d.i. i� A is true in all �nitestructures. It follows that had the notion of d.i. been decidable, so would have been thenotion of validity in all �nite structures. But Trakhtenbrot's theorem says that this is notthe case!3. Three Approaches to How to Be As Reasonable As Possible3.1. Concentrating On One Domain. This approach requires that together witha query the user will specify which domains (among, e.g., the Domn(D;')) he has inmind. The trouble is that often (most of the time?) the user does not know this, or mightneed some extra knowledge to determine it. This extra knowledge might refer to possiblechanges of the database in the future.7 This corresponds to a stronger notion of validity: ' is strongly valid if D j=db ' for every D.8

Another version of this approach is to always take Dom(D;') as the intended domain.We have seen already the shortcomings of this approach.3.2. Using Approximations of the Ideal. This is the approach taken by all presentquery language. The idea is described in [Ull89, p.151] as follows: \We shall �rst considerwhat we really would like concerning relational calculus expressions. This property, called\domain independence", is a semantic notion; it will be seen that it is impossible totell, given a formula, whether the formula satis�es the property. After de�ning \domainindependence" we shall therefore look for approximations to the ideal".We now give what seems to us a proper de�nition of a \proper approximation":De�nition. A class L of formulae is a proper query language if:(i) L is decidable(ii) Every formula in L is domain independent(iii) There is a procedure that given some domain independent query ' produces a query'0 in L such that ' and '0 are equivalent.Note. By (b) and (c) every two proper query languages are equivalent: they have thesame expressive power as the class of domain independent queries.The question of the existence of proper query languages and methods for obtainingthem are discussed in section 5.3.3 Using Relative Domain Independent Queries. The proper languages form anattempt to overcome the problem of the undecidability of the class of universal domainindependent queries by shrinking it to a smaller class, without losing expressive power.Here, in contrast, the approach is to extend in each case this class to some subclass of theformulas which are d.i. relative to the given database D. Since the identity of this subclassmight depend on D, this approach requires the use of an algorithm that given D and 'determines whether ' belongs to the subclass associated with D. As it happens, one canin principle use, for any D, simply the whole class of formulas which are d.i. relative toD. More on this { in section 6 below. 9

4. The Problems With Languages With Function SymbolsThe choice of (relative) d.i. as the crucial property was due, we recall, to the factthat (relative) d.i. entails (relative) safety. This, however, was obvious only for simplelanguages (i.e.: languages with no function symbols), where Dom(D;') is �nite. It wasnot at all obvious for generalized languages (i.e.: languages with function symbols). Still,as noted above, this turned out to be the case. There is, however, another problem whichwas hidden in the simple case. A query is intuitively reasonable, we recall, if we can listall the solutions. This means not only that they are �nite in number, but also that we cane�ectively �nd them all. This is easy if ' is relatively d.i. and Dom(D;') is �nite. But ifthere are function symbols then Dom(D;') is in�nite, and we might have a problem evenif there are only �nitely many solutions. In [Ki88] another property, which a \reasonable"query language should have, is therefore introduced. We split it here into two properties:De�nition. (1) A class Q of formulae is strongly capturable frelative to a database Dgif each ' 2 Q is domain independent frelative to Dg and there is an algorithm that given' 2 Q and D computes the answer to '.(2) A class Q of formulae is weakly capturable relative to D if there is an algorithmthat given ' 2 Q: (i) determines if it is d.i. relative to D and (ii) Computes the answer ifit is.Obviously, for simple languages the class of formulae which are d.i. relative to D isstrongly capturable relative to D { simply compute the answer in Dom(D;'). Again thisis far from being obvious in the generalized case. Moreover, it was shown in [AGS86] (seealso [Ki88]) that for simple languages relative d.i. and relative safety are both decidable. Itfollows immediately that for such languages the whole class of �rst order queries is weaklycapturable ([Ki88]). For generalized languages, on the other hand, decidability of relatived.i. does not immediately guarantee this last result. Still, it was proved in [AH91a] thatall the results mentioned above concerning the simple case hold also for the generalizedone, although the proofs are much more di�cult. An outline of them is given in section 6.Turning now to the approach of \approximating the ideal", we note that many dif-ferent query languages of the type we called \proper" (see 3.2) have been suggested in10

the literature: [Co72] (\range separable formulae"), [Ni82] (\range restricted formulas"),[De82] (\evaluable formulas"), [To87] (\allowed formulas") and [Ull89] (\Syntactically safeformulae"). Topor (in [To87]) was the �rst to justify his class from a point of view whichis similar to the one presented here (by showing that every d.i. query is equivalent to an\allowed" query). However, all these classes (including Topor's) were suggested for simpledatabases, and Topor admits that there are serious di�culties in �nding a good class ofqueries in case there are function symbols (see [To87], [TS88]). Such a class of queries (thesecured queries) was �rst introduced and shown to be adequate in [Hir91]. In section 5 wereview Topor's and Hirschfeld's results.The following lemma is the key to the di�erence in the present context between thesimple and the generalized case.Lemma. 1) If ' does not mention function symbols then there is a formula D'(x) whichfor every simple databaseD describes the subdomainDom(D;') inside every other domainM (note that D' depends only on ', not on D).2) If D or ' mention at least one function symbol then there is no formula that de�nesDom(D;') inside (say) Dom1(D;').Proof of 1. The formula D' is a disjunction of formulae of two kinds:(i) 9y1 � � � 9yi�19yi+1 � � � 9ynjRj(y1; : : : ; yi�1; x; yi+1; : : : ; ynj), where Rj ranges over therelations mentioned in ', nj is the arity of Rj and 1 � i � nj .(ii) x = c, where c is a constant which is mentioned in '.The second part follows from one of the lemmas (number 5) which are used in [Hir91]for the proof of the theorem in section 5. We only note that if either D or ' contains afunction symbol then Dom(D;') is in�nite and the formula D'(x) of part (i) describesonly a �nite subset of it. 5. Proper Query LanguagesAs we noted at the end of the last section, many suggestions for what we call \properquery languages" were suggested in the case of simple language. We now describe twoexamples, both from [To87], which represent two di�erent approaches to the problem.11

Example 1. The class of allowed formulaeDe�nition. A variable x is pos (positive) in a formula W if one of the following casesholds.� x is pos in p(t1; : : : ; tn) if x occurs in p(t1; : : : ; tn) and p is not =;� x is pos in x = c or c = x if c is a constant;� x is pos in :F if x is neg in F ;� x is pos in F ^G if x is pos in F or x is pos in G;� x is pos in F _G if x is pos in F and x is pos in G;� x is pos in F ! G if x is neg in F and x is pos in G;� x is pos in 9yF if x is pos in F .Similarly, x is neg (negative) in W if one of the following cases holds.� x is neg in :F if x is pos in F ;� x is neg in F ^ G if x is neg in F and x is neg in G;� x is neg in F _ G if x is neg in F or x is neg in G;� x is neg in F ! G if x is pos in F or x is neg in G;� x is neg in 8yF if x is neg in F .De�nition. A formula W is allowed if the following conditions hold:(1) every free variable in W is pos in W ;(2) for every subformula 9xF of W , x is pos in F ;(3) for every subformula 8xF of W; x is neg in F .This is a typical bottom-up construction, which assures that when W is evaluated allthe variables range over subsets of Dom(D;W) which do not depend on the actual domainin which W is evaluated. This follows from the fact that inside the building blocks ofW (the atoms) the variables satisfy some conditions (of positiveness and negativeness) sothat when the formula is inductively put together these conditions are also put togetherto produce the desired d.i. property. The bottom-up construction means that a recursivetest is needed to check whether a given query is allowed.In [To87] it is shown that the class of allowed formulae is indeed proper in our sense.12

Example 2. Relativized Queries. For each formula ' let '0 be the formula obtainedfrom ' by relativizing all the quanti�ers and free variables of ' to D' of section 4. (thismeans that we obtain �rst '00 from ' by inductively replacing each quanti�cation 9x by9x(D'(x) ^ 00) and 8x by 8x(D'(x)! 00). Then if x1; : : : ; xn are the free variables of', we let '0 be '00 ^D'(x1) ^ � � � ^D'(xn)). A relativized query is a query of the form '0(for some ').Now assume that L(D;') is simple. It is easily shown then by induction that for everya1; : : : ; an 2 Domk(D;'); '0(a1; : : : ; an) is true in Domk(D;') i� a1; : : : ; an 2 Dom(d; ')and '(a1; : : : ; an) is true in Dom(D;'). It follows that '0 is always d.i. and that if 'is also d.i. then ' is equivalent to '0 in all admissible domains. It is also very easy todetermine if a given formula is a relativized one. It follows that the class of relativizedqueries is a proper query language.The relativization approach has the advantage of securing a query top-down. We maystart with any formula and add the requirement that all its variables should range over thesubset described by the formula D'. An obvious possible generalization is the following:start by de�ning a collection of \simple" formulae that de�ne \absolute permissible sets"and then allow any formula in which it is speci�ed over what absolute set each variableshould range. In a way the \simple" formulae act like types, and a query is any formulawhose variables are typed. This \top-down" nature can be made explicit if we allow exteriorvariables which are already typed to serve as parameters in the typing of the inner variables.For example, assume that A(x; y) is any atomic formula and that (x) is 9yA(x; y). Assumealso that p(x) and R(x; y) are relations in the database. Then x = y_R(x; y) is not a goodrestriction, since it is not d.i., but once x is restricted to P (x) it becomes a good restrictionfor y. The restricted formula will be then: P (x)^9y[(R(x; y)_x = y)^A(x; y)]. The userfriendliness of this approach becomes clear if we separate the query itself (which may beany formula) from the typing of the variables. The above query will then look like this:9yA(x; y)fx : P (x); y : R(x; y) _ x = yg :While this idea is of interest already for simple languages, it becomes essential whenwe turn to generalized ones, since there no uniform tool like D' is available (see the end13

of section 4).In the following de�nition the absolute formulas are the \simple" formulae over whichthe quanti�ers can range, bounded formulas are formulas in which the quanti�ed variablesare restricted by absolute formulas, and secured formulas are formulas in which all thevariables are restricted by absolute formulas. The class of secured formulas is the onewhich was suggested in [Hir91] as a proper approximation in the generalized case.De�nition.1) Absolute Formulas.a) Every atomic relation R (t1(x); � � � ; tk(x)) is absolute, while x = t is absolute i� t isvariable free.b) If A and B are absolute then so is A ^ B. If in addition they have exactly the samefree variables then also A _B is absolute. (But not for example R(x) _ S(y)).c) If A is absolute then so is 9yA.d) (Closure under the application of de�nable functions:) If '(x1; : : : ; xn) is absolutewith x1; : : : ; xn actually free in ' and if t1; : : : ; tk are terms whose variables are amongx1; : : : ; xn then the following formula is absolute: (y1; : : : ; yk) � 9x1 � � � 9xn ['(x1; : : : ; xn) ^ y1 = t1 ^ � � � ^ yk = tk] :2) Bounded Formulas.a) Every quanti�er free formula is bounded.b) If ' is bounded and if A(x) is absolute with x actually free in A(x) then the followingare bounded:(i) 9x(A(x) ^ ')(ii) 8x(A(x)! ')3) Secured Formulas. If '(x1; : : : ; xn) is bounded and if A(x1; : : : ; xn) is absolutewith x1; : : : ; xn the free variables of A then A ^ ' is secured.14

Remark. The de�nitions can be modi�ed to allow more variables as parameters, pro-vided we keep trace of them and they will be taken care later. In particular an equationy = t(x1; : : : ; xn) is absolute modulo any choice of n out of the n+ 1 variables occurring.This will yield a somewhat more
exible language of secured queries. We do not need itat the moment since the de�nition above su�ces to give us a proper language.Clearly the language of secured queries is decidable. It follows therefore from thefollowing theorem that this language is a proper query language for �rst order relationaldatabases with functions.Theorem.a) Every secured query is domain independent.b) Every domain independent query is equivalent to some secured query.The proof of (a) is simple: by easy induction it is seen that D and every absoluteformula de�nes in every domain for D and ' the same subset. It is then shown that if (x1; : : : ; xn) is bounded then for every t1; : : : ; tn (terms without variables) in the language, (t1; : : : ; tn) has the same truth value in all the domains forD and ' that include t1; : : : ; tn.From this it follows that if '(x) is secured then all the solutions anywhere are already inDom(D;') and they do not change from one domain to another.The proof of (b), on the other hand, is quite complicated, and we shall not include ithere. The reader can �nd it in [Hir91].6. Using the Relative NotionsWe start again with the simple case:Lemma ([AGS86],[Ki88]). Let D be a database and let '(x1; : : : ; xk) be a formulawhose number of quanti�ers and free variables is (together) n. Let M1 andM2 be admissi-ble domains for D and ' that have at least n elements outside Dom(D;'). Let a1; : : : ; akin M1 and b1; : : : ; bk in M2 have the following properties:(i) For i = 1; : : : ; k, if ai 2 Dom(D;') or bi 2 Dom(D;') then ai = bi(ii) ai = aj i� bi = bj . 15

Then '(a1; : : : ; ak) is true in M1 i� '(bj ; : : : ; bk) is true in M2.The proof is by an easy structural induction. Conditions (i) and (ii) take care of theatomic case, while the assumption on the size of M1 and M2 is used in the case of 9x .Note. It is not di�cult to see that this lemma implies that if ' has the same solutionsin all the �nite models for D then it has the same solutions also in the in�nite domain.Hence �nite (relative) d.i. implies (relative) d.i.Theorem. In a simple language and databases, the class of the �rst order formulas isweakly capturable and that of relative d.i. { strongly capturable.Proof: For the �rst part, let ' be a simple formula with n0 quanti�ers and free vari-ables. We �rst check if it has in Domn0(D;') some solution which does not entirely lie inDom(D;'). If it does then by the last lemma, ' has new solutions in Domn0+1(D;') andso is not d.i. relative to D. If, on the other hand, all the solutions in Domn0(D;') are in-side Dom(D;'), then by the same lemma ' has the same set of solutions in all the domainsDomn(D;') with n � n0. This gives us the following constructive criterion for checkingd.i. relative to D: ' is d.i. relative to D i� (a) All the solutions in Domn0(D;') are insideDom(D;'), and (b) ' has the same set of solutions in all the domains Domn(D;') with0 � n � n0 (note that these are all �nite).The second part easily follows from the �rst.We now turn to generalized languages, and outline the treatment that we gave themin [AH91a]. Full proofs can be found in that paper (see also [AH91b]).8 The main ideais a reduction of a query to several easy-to-handle normal forms, one of them uniform forsu�ciently large domains.De�nition.(1) A special primitive formula (Spf) is a formula of the form:�(~x; ~y) = 9~v [P (~x; ~y;~v) ^N(~y;~v)]where:8 Certain resemblance between our procedures and the work of Malc�ev in [Mal71] should be notedhere. 16

(i) P is of the form ^xi = ti (~y;~v).(ii) N is a conjunction of inequalities of the form variable 6= term.(iii) Each xi occurs exactly once in �.(iv) Each vi occurs at least once in P .(2) A special existential formula is a disjunction of Spfs.Theorem.a) Given D;' and n one can construct a special existential formula ED;'n which is equiv-alent to ' in Domn(D;').b) ' has a �nite number of solutions in Domn(D;') i� each disjunct of ED;'n is of theform x1 = t1 ^ x2 = t2 ^ � � � ^ xk = tkwhere x1; : : : ; xk are the free variables of ' and t1; : : : ; tk are closed.c) If ED;'n does not have this form then no proper subdomain of Domn(D;') includesall the solutions (in Domn(D;')).Corollary. Relative d.i. =) relative safety.The formula ED;'n depends on n. In order to get a more uniform normal form, weadd to the language a new predicate, G(x), with the intended meaning: \x is a generator"(i.e.: a simple constant term). It is worth noting that G(x) is de�nable in the language(since we assume only a �nite number of function symbols!). But as is often the case withquanti�ers elimination, we need this predicate to be atomic.Theorem. Given D and ', one can constructively �nd a number nD;' and a formulaED;' (in the extended language) which has the same properties as ED;'n (i.e. (a) { (c)of the previous theorem) for nD;' � n � 1, except that the N(~y;~v) part may containformulae of the forms �G(yi);�G(vi).Corollaries.1) If ' is safe relative to D then it has the same set of solutions in all Domn(D;') s.t.nD' � n � 1. 17

2) ' is safe relative to D i� it has a �nite set of solutions for all Domn(D;') s.t. 0 �n < nD;' and in Dom1(D;'), and these are all decidable questions.3) ' is d.i. relative to D i� it is safe relative to D and has the same set of solutions forall n s.t. 0 � n � nD;'.4) (i) The class of �rst order queries is weakly capturable.(ii) The class of relatively safe queries is strongly capturable.Moreover.5) It is decidable whether a query has a �nite number of solutions in all �nitely generateddomains (over a given D).6) A formula is domain independent relative to D i� it has the same set of solutions inall �nitely generated domains (over D).The proof of these corollaries from the last two theorems is similar to the proof of theanalogous results in the case with no function symbols.We started this paper with a remark about Trakhtenbrot's theorem, and it is appro-priate to conclude it with another remark concerning it.Recall that DiPaola used Trakhtenbrot's theorem to show that there is no algorithmto determine if a given formula is universally domain independent. Above we have shown,in contrast, that there is an algorithm to determine whether a given formula is d.i. relativeto a given database. This might hint that there is a relativized version of Trakhtenbrottheorem that does not hold. This indeed is the case, and though it is not very deep, it isworth mentioning. Given a �nite structure M in some simple (i.e., functionless) language,let its actual diagram be the set of elements which satisfy (as part of a tuple) at least oneof the atomic relations. Then:Theorem 6. There is an algorithm which given a statement ' in a simple �rst ordercalculus and a number n0 determines if ' has a (�nite) model with actual diagram of size� n0.Thus it is true that the smallest model for ' may be unpredictably large (Trakhten-brot), but it may only happen if the actual diagram becomes also impredictably large.18

The proof follows from the last lemma above. For a �xed n0 there are only �nitelymany actual diagrams D1; : : : ;D` and we need only check ' in Domn(Di; ') with i � `and n � n'. 7. ConclusionWe have seen that there are two possible approaches to the problem of making \rea-sonable" �rst-order queries to a pure relational database:1) If we want to use only queries that are reasonable with respect to any possible databasethen we should use some syntactically de�ned, decidable approximation of the ideallanguage (that of universally domain-independent queries). There are several choicesavailable here, but in a certain precise sense they are all equivalent.2) If we are only interested in making reasonable queries to the particular database wehave at a given moment then any �rst order formula might be a candidate. Wehave, however, to apply �rst a special algorithm which checks if the formula is indeedreasonable relative to the given database. We have seen that such an algorithm exists.In order to make this approach practical a more e�cient one than that presented hereshould be found.We have seen also that despite the apparent di�culties, as long as all the functionsymbols are interpreted as generative, there is no signi�cant theoretical di�erence betweenthe simple case in which we do not have function symbols and the generalized one in whichwe do.All the results above were based on the assumption that we are dealing only with purequery languages, in which the only relation symbols (except equality) are the names of thetables in the database. We believe that in order to make the theory more applicable, it isimportant to investigate impure languages as well. In particular: languages with symbolsfor standard in�nite relations like \<". The case in which not all function symbols aregenerative should also seriously be investigated.19

References[AGS86] A.K. Aylamazyan, M.M. Gilula, A.P. Stolbashkin, G.F. Schwartz, Reductionof the relational model with in�nite domain in the case of �nite domains, Proc.USSR acad. of Science (Doklady) 286(2): 308-311 (1986).[AH91a] A. Avron and J. Hirschfeld, Queries Evaluation, Relative Safety, and DomainIndependence in First Order Databases with Functions. To appear in the Jour-nal of Methods of Logic in Computer Science.[AH91b] A. Avron and J. Hirschfeld, On First-order Database Query Languages, Proc.6th IEEE Symp. Logic in Computer Science, Amsterdam, July 1991, pp. 226-231.[Co72] E.F. Codd, Relational Completeness of Database Sublanguages, in DatabaseSystems (R. Rustin, Ed.), Prentice-Hall (1972), pp. 65-98.[De82] R. Demolombe, Syntactical characterization of a subset of domain indpendentformulas. Technical report, ONERA-CERT, Toulouse (1982).[DiP69] R.A. Di Paola, The recursive unsolvability of the decision problem for the classof defnite formulas. J. ACM 16(2) (1969) 324-327.[Hir91] J. Hirschfeld, Safe Queries in Relational Database with Functions, in the Pro-ceedings of the 5thWorkshop on Computer Science Logic (Berne, 1991), pp.173-183, LNCS 626, Springer Verlag 1992.[Ki88] M. Ki�er,On Safety Domain independence and capturability of database queries,Proc. International Conference on database and knowledge bases. Jerusalem,Israel (1988).[Mal71] A.I. Mal'cev, Axiomatizable classes of locally free algebras of various types.In The Metamathematics of Algebraic Systems. Collected Papers.1936-1967, pp. 262-289, North-Holland, 1971.[Ni82] J.M. Nicolas Logic for Improving Integrity Checking in Relational Data Bases,Acta Informatica, Vol. 18 (1982), pp. 227-253.20

[To87] R.W. Topor, Domain independence formulas and databases. Theoretical Com-puter Science 52 (1987) 281-306.[Tra63] B.A. Trahktenbrot, Impossibility of an Algorithm for the Decision Problem inFinite Classes, American Mathematical Scoeity Transection, Series 2, Vol. 3(1963), pp. 1-5.[TS88] R.W. Topor and E.A. Sonenberg, On domain independent databases, In Foun-dations of deductive databases and logic programming, J. Minker (ed.),Morgan-Kaufmann, Los Altos, CA (1988) 217-240.[Ull89] J.D. Ullman,Principles of database and knowledge-base systems (1989),Computer Science Press.

21

