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Abstract

Bilattices are algebraic structures that were introduced by Ginsberg, and further examined
by Fitting, as a general framework for many applications in computer science. In this paper
we consider their applicability for computerized reasoning in general, and for reasoning with
inconsistent data in particular.

1 Background

A great deal of research has been devoted in the last twenty years for constructing plausible para-
consistent systems. One of the pioneering works towards this purpose was that of Belnap, who
introduced his well-known four-valued logic [Be77a, Be77b]. The idea is that in addition to the
classical values ¢, f, two additional truth-values are introduced for intuitively representing incom-
plete knowledge. One, denoted here by L, represents lack of knowledge. The other, T, denotes
“over”-knowledge (conflicts). These four elements form a structure called FOUR (see Figure 1).
The basic idea is that this structure is “two-dimensional”; Each “dimension” corresponds to an-
other partial ordering of the truth values. One order, <y, is represented in the horizontal axis of
Figure 1. It intuitively reflects differences in the “measure of ¢truth” that each value represents. The
corresponding lattice was originally denoted 1.4 by Belnap. The vertical axis of Figure 1 represents
the other partial order, <j, that might be understood as reflecting differences in the amount of
knowledge or information that each truth value exhibits. Belnap denotes the corresponding lattice
by A4.

Belnap’s logic was generalized by Ginsberg [Gi88], who introduced the notion of bilattices, which
are algebraic structures that contain arbitrary number of truth values simultaneously arranged in
two partial orders. These orders are related by a negation operator () that is an involution w.r.t.
<; and order preserving w.r.t <j. This reflects the intuition that while one expects negation to
invert the notion of truth, we know no more and no less about —p than we know about p. Formally:

Definition 1.1 [Gi88] A bilattice is a structure B = (B, <¢, <x, ) such that B is a nonempty set
containing at least two elements; (B, <;), (B, <j) are complete lattices; and — is a unary operation



Figure 1: FOUR

on B that has the following properties: (1) if a <;b, then —a >;=b, (2) if a <j b, then —a <j; —b,
(3) =—a=a.

Following Fitting, we shall use A and V for the lattice operations which correspond to <;, and
®, @ for those that correspond to <j. Also, f and t denote, respectively, the least and the greatest
element w.r.t. <;, while 1 and T — the least and the greatest element w.r.t. <g. It is easy to see
that ¢, f, T, and L are all distinct from each other.

Definition 1.2 A bilattice is called distributive [Gi88] if all the twelve possible distributive laws
concerning A, V, @, and ¢ hold. It is called interlaced [Fi90a] if each one of A, V, ®, and & is
monotonic with respect to both <; and <j.

Proposition 1.3 [Fi90b] Every distributive bilattice is interlaced.
Proposition 1.4 [Fi91] If B is interlaced, then t@ f=T,t®@ f=1, TVL=t and TAL=F.

The next definition describes a general method for constructing distributive and interlaced
bilattices:

Definition 1.5 [Gi88] Let (L,<p) be a complete lattice. The structure L&OL=(LXL, <, <g,) is
defined as follows:

(y1,y2) >¢ (w1, 22) iff y1 >p 21 and y2 <p 22,

(y1,y2) >k (21, 22) iff y1 > @1 and y2 >p 22,

_|($17 $2) = ($27 $1).

Proposition 1.6 Let L& L be the structure defined in 1.5.

a) [Gi88] If L is distributive then sois L® L.

b) [Fi90a] Every distributive bilattice is isomorphic to L® L for some distributive lattice L.
c) [Fi90a] L® L is always an interlaced bilattice.

d) [Av96] Every interlaced bilattice is isomorphic to L©® L for some bounded lattice L.



A truth value (z,y) € L® L may intuitively be understood so that x represents the amount
of evidence for an assertion, while y represents the amount of evidence against it. It is eas-
ily verified that Lpgr = (inf(L),inf(L)); Trer = (sup(L),sup(L)); trer = (sup(L),inf(L)); and
fror=(@nf(L),sup(L)).

The original motivation of Ginsberg for using bilattices was to provide a uniform approach for a
diversity of applications in Al (see [Gi88]). Fitting has further investigated these structures [Fi90a,
Fi94] and showed that they are useful for providing semantic to logic programs [Fi90a, Fi91, Fi93].

In [AA94, AA96] we presented a preliminary development of bilattice-based logics and cor-
responding proof systems. These logics turned out to have a proof theory with many desirable
properties. In particular they may be used for non-monotonic reasoning and for making efficient
inferences from inconsistent data. In the present paper we proceed with this logical approach. We
consider bilattice-valued logics that are preferential in the sense of Shoham [Sh&7, Sh&R], i.e.: they
are based on the idea that inferences should be taken not according to all models of a given theory,
but only w.r.t. a subset of them, determined according to certain preference criteria. Roughly
speaking, we use two guidelines for making preferences among models: (a) Prefer models that as-
sume as much consistency as possible, and: (b) Prefer models that assume a minimal amount of
knowledge (minimal commitment).

The existence of elements like T and L as well as the idea of ordering data according to degrees
of knowledge suggest that bilattices are particularly suitable for being a good semantical tool for
constructing paraconsistent logics and for reasoning with uncertainty.

2 Logical bilattices

In order to define bilattice-based consequence relations, we first consider the subset of the designated
truth values of a bilattice. This set is used for defining validity of formulae.

Definition 2.1 [AA94, AA9G]

a) A bifilter of a bilattice B=(B, <, <j) is a nonempty proper subset F C B, such that:
(1) anbe Fiff aeF and beF (ii) a@beF iff ae F and be F

b) A bifilter F is called prime, if it also satisfies:
(1) avbe Fif ac ForbeF (ii) adbeF iff acF orbeF

Note: Obviously, if a € F and b>;a or b > a, then b € F. It immediately follows that ¢, T € F
while f, LZF.

Example 2.2 Ginsberg’s DEFAULT (Figure 2, right) and Belnap’s FOUR are bilattices that
contain exactly one bifilter, {T,¢}, which is prime in both. NINE (Figure 2, left), on the other
hand, contains two bifilters: {b | b>1t}, as well as {b | b>ydt}; both are prime.

The following propositions generalize the cases of FOUR and NINIL:

Proposition 2.3 Let B=(B, <;, <j) be an interlaced bilattice.
a) A subset F of B is a (prime) bifilter iff it is a (prime) filter relative to <;, and T € F.
b) A subset F of B is a (prime) bifilter iff it is a (prime) filter relative to <j, and te F.
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Figure 2: NINE and DEFAULT

Proof: Assume that B is interlaced.

a) The condition is obviously necessary. For the converse it suffices to show that: (i) if a € F and
be F then a@be F, (it) if a € F and b >y a then b€ F, and (¢i7) if F is prime relative to <,
then ad®b e F iff either a € F or b€ F. Now, (i) and (zi7) follow, respectively, from the facts that
in interlaced bilattices a®b >, aAb and aVb >, a®b. For (i7) we note that a <j; b is equivalent
to a <pb<; T. Since B is interlaced, it follows that aA(aAT) < bA(aAT) <p TA(aAT). Thus
anNT <pbA(aAT)<paAT, and so bA(aAT)=aAT. Hence b>,aAT. Since a€F, TEF and Fis a
filter w.r.t. <y, necessarily be F as well.

b) The proof is dual to that of part (a). O

Notation 2.4 Fy(a)={b|b>ra}, Fila)={b]|b>+a}.

Proposition 2.5 Let B=(B, <;, <j) be an interlaced bilattice.
a) Fp(a) is a bifilter of B if L#a<yt, iff a>; L. Moreover, in this case Fy(a)=F;(aAT).
b) Fi(a) is a bifilter of B if f#a<; T, iff a>} f. Moreover, in this case Fi(a)=F(a@t).

Proof:

a) If a# L then the set {b | b>j a} is obviously a filter relative to <;. By Proposition 2.3(b) it
follows, therefore, that it is a bifilter if L #a <jt. In other words, a# L and L <ja<jit. Since B
is interlaced this means that ¢ # L and LAL<gaAL<ptAL=1 andsoa# L and aAL=_1. It
follows that a# L and a>; L, and so a >; L. For the other part of the proposition, recall that in
the proof of Proposition 2.3(a) it is shown that if b >y a then b>;aAT. Thus Fi(a) CFi(aAT). On
the other hand, if a >; L then aVT >, LVT =t (Proposition 1.4), and so aV T =t. It follows that
if 6>,aAT then aAT <;0<,aVT, and s0 a®@(aAT)<a®@b<;a®@(aVT). But a<; T implies that
a=aNa<yaAT, and so a®@(aAT)=a. Similarly a®(aVT)=a. Hence a <,a®b<;a, and so a®@b=a,
which means that ¢ <zb. Thus, F;(a AT)CFi(a) and so Fi(aAT)=Fi(a).

b) The proof is dual to that of part (a). O

Proposition 2.6 Let B = (B, <;,<j) be an interlaced bilattice. If F is a bifilter in B, then
infp F e F iff inf, F € F. Moreover, in such a case inf; F =T Ainf; F and inf, F=t®inf; F.



Figure 3: FIVE

Proof: Follows from Proposition 2.5. O

Definition 2.7 [AA94, AA96] A logical bilattice is a pair (B, F), in which B is a bilattice and F
is a prime bifilter of 5.

Logical bilattices will be our primary semantical tool for defining paraconsistent logics. Not
every bilattice can be turned into a logical one. FIVE (Figure 3), for instance, has only one filter
F={T,t}, which is not prime: dTV L=teF, while dT ¢ F, L ¢ F. However, as Propositions 2.8
and 2.10 below show, logical bilattices are very common, and easily constructed:

Proposition 2.8 Let L& L be a bilattice as described in Definition 1.5.
a) Fis a bifilter in Lo L iff F=Fp x L, where Fr, is a filter in L.
b) F is a prime bifilter in L& L iff F=F x L, where Fy, is a prime filter in L.

Proof:

a) (<) Let Fr, be a filter in L and let F=F7, x L. Since inf(L) € Fr, and sup(L) € Fr,, so for every
z€ L (inf(L),z) ¢ F and (sup(L),z) € F. Thus F is a nonempty proper subset of L& L. Now,
(z1,22) A (y1,y2) € F,iff (x1 Ap yr, 22 Ve y2) € F,iff oy Apyn € Fr, iff @1 € Fr and yy € Fp, iff
(z1,22) € F and (y1,y2) € F. The proof in the case of @ is similar. Therefore F is a bifilter in
LoL.

(=) Let F be a bifilter in L& L. Denote: Fr,={x | Jy (z,y) € F}. We shall show that F=Fp x L.
Obviously, F C Fr, x L. For the converse, let (2,{)€ Fr, x L. Then thereis a y€ L s.t. (z,y)€F.
Now, (z,IV5y) >k (x,y)€F, and so (z,lVyy)€F. On the other hand, (z,1)>¢(z,{Vyy)€F, and
so (z,l) € F. It follows, therefore, that Fr, x L CF. Hence F=Fp x L.

b) Suppose first that Fy, is a prime filter in L. Then: (21, 22)V(y1,y2) € F,iff (21Vryr, 22ALy2) €F,
iff @y vy € Fr, iff 21 € Fr, or yy € Fr, iff (21, 22) €F or (y1,y2) € F. The proof in the case of & is
similar. For the converse, assume that F is a prime bifilter in L&L. By part (a), F=Frx L, where
Fr is afilter in L. We show that Fr, is prime: Assume that z Vy y € Fr, and let z be some element
in L. Then (xVpy,2)eF = (x,2)V (y,2)€F = (z,2)eF or (y,2)€F => x€FrorycFr. O



Corollary 2.9

a) Let zg€ L, zog#inf(L). Denote: F(zo)={(y1,%2) | y1 > 20, y2€ L}, and Fr(xo)={y€eL | y>1L
zo}. Then (LG L, F(xg)) is a logical bilattice iff Fp,(z¢) is prime.

b) (L& L,F(sup(L))) is a logical bilattice iff sup(L) is join irreducible (i.e.: iff 2 Vi y =sup(L)
implies that @ =sup(L) or y=sup(L)).

c) If the condition of case (b) is met, then F(sup(L)) is minimal among the (prime) bifilters of
LoL.

Proof: Part (a) immediately follows from Propositions 2.5(a) and 2.8(b), since F(zg) = Fi(2)
where z=(z¢,inf(L)). Part (b) follows from (a), since Fr,(sup(L))={sup(L)} is a prime filter in
L iff sup(L) is join irreducible. For part (¢) note that F(sup(L))= F(trer). The claim follows
therefore from (b) and the fact that every bilattice contains the set {b€B | b>rtg}. O

Proposition 2.10 Every distributive bilattice can be turned into a logical bilattice.

First proof: Let B be a distributive bilattice. Consider a <;filter 7' in B s.t. T € F' (clearly
there is such a filter, e.g.: F4(T)). By a famous theorem of lattice theory (see [Bi67]) F' can be
extended to a prime <;filter F. By Proposition 2.3a, F is a prime bifilter. O

Second proof: By Fitting’s theorem mentioned in Proposition 1.6(b), every distributive bilattice
is isomorphic to L& L, where L is a distributive lattice. Let Fj, be any prime filter of L (again,
such a filter exists by a theorem of lattice theory). Then Fr, x L is a prime bifilter by Proposition
2.8. 0

Note: Not every logical bilattice needs to be distributive or even interlaced. (DEFAULT,{T,t})
is, for example, a logical bilattice although DEFAULT is not interlaced.

3 Bilattice-valued logics for paraconsistent reasoning

Given a logical bilattice (B, F), the standard notions of valuations, models, etc. are defined in the
usual way. Now, let ¢ be a formula in the basic language of bilattices ({—,V, A, ®,®}), and suppose
that v is a valuation that assigns L to every atomic formula. Then v(1)=_L as well, and so there
are no tautologies in the basic language of bilattices. Thus, e.g., excluded middle is not a valid rule,
and this implies that the definition of the material implication p+ ¢ as =pVq is not adequate for
representing entailments. We use therefore instead another connective, denoted O ([AA96]), which
does function as an implication (see Proposition 3.2 below). It is defined as follows: ¢ Db=t if a is
not designated, otherwise: ¢ Db=».

In the rest of this section we briefly consider several families of plausible logics, the semantics
of which is based on logical bilattices. As we shall see, all the consequence relations involved
are paraconsistent. Some of these logics may be viewed as generalizations of other well known
paraconsistent logics, such as D’ottaviano Js [Do85] (see also [Ro89, Av91] and chapter IX of
[Ep90]), Belnap’s four-valued logic [Be77a, Be77b], and Priest’s LPm [Pr89, Pr91].



3.1 The basic consequence relation

We start with the simplest consequence relation which naturally corresponds to logical bilattices:

Definition 3.1 Let (B, F) be a logical bilattice and suppose that I and A are two sets of formulae.
I'E=BF A if every model of ' in (B, F) is a model of some formula of A.

The main properties of =8% are summarized in the following proposition:

Proposition 3.2 [AA96] =57 is monotonic, compact, and paraconsistent. Is has a cut free, sound
and complete Gentzen-type proof system (GBL; see Figure 4), and the deduction theorem is valid
for it w.r.t. D.

=87 is therefore a consequence relation in the standard sense of Tarski and Scott. Note that
the {A,V,=}-fragment of =57 in case that B= FOUR and F = {t, T} is identical to the set of
“first degree entailments” in relevance logic (see [AB75, Du86]).

As the following proposition shows, =27 has a strong connection to Belnap’s four-valued logic.
In what follows we shall denote (FOUR)=(FOUR, {t, T}), and write “4” whenever (FOUR) should

appear as a superscript.
Theorem 3.3 [AA96, AA9Ta] I'EBTA iff =t A.

Despite the nice properties of =37 it appears that it has several drawbacks. One of which is
that =57 is strictly weaker than classical logic, even for consistent theories (e.g., %% pv—p). Also,
it completely invalidates some intuitively justified inference rules, like the Disjunctive Syllogism:
;From —p and pVq one can never infer ¢ by using =57,

3.2 The logics 27

A natural approach for reducing the set of models which are used for drawing conclusions is to
consider only the k-minimal ones. The idea behind this approach is that one should not assume
anything that is not really known. Keeping the amount of knowledge as minimal as possible may be
taken as a kind of consistency preserving method: As long as one keeps the redundant information
as minimal as possible, the tendency of getting into conflicts decreases.

Definition 3.4 Let v1, vy be two four-valued valuations, and I' — a set of formulae.
a) vy is k-smaller than vy (11 <prve) if for every atomic p, v1(p) <pva(p).
b) v is a k-minimal model of T" if there is no model of I which is k-smaller than v.

Definition 3.5 I’ ):f’]:A iff every k-minimal model of I' in (B, F) is a model of some 6 € A.
Note: Obviously, if ['=3% A then I ):f’]:A.

Lemma 3.6 Let B be a finite bilattice. For every model M of ' there exists a k-minimal model
Nof I's.t. N<;; M.1

"Property of this kind is called in another context smoothness ([KLM90]), or stopperedness ([Ma94]).
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Proof: Suppose that M is some model of I, and let Sy; ={M; | M; is a model of ', M; < M}.
Let C'C Sy be a descending chain w.r.t. <;. We shall show that C'is bounded in Sys, so by Zorn’s
lemma Sp; has a minimal element, which is the required k-minimal model. Let N be the the follow-
ing valuation: N(p)=minc, {M;(p) | M; €C'}. N is defined since C'is a chain, and B is finite. Obvi-
ously N bounds C'. It remains to show that N € Sps. Assume that 1> € and let A(¢)={p1,...,pn}
be the set of the atomic formulae in . Then: N(p;)=M; (p1),...,N(pn) =M, (pn). Since C'is a
chain we may assume, without a loss of generality, that M;, >5 ... >; M; , and so N is the same
as M;, on every atom in A(7). Since M;, is a model of 1, so is N. This is true for every ¢ €I" and
80 N € Sy as required. O

As the following proposition shows, it is sometimes sufficient to consider only the k-minimal
models of a given theory for making inferences with =57

Proposition 3.7 Let B be a finite interlaced bilattice, and F — a prime bifilter in B. If the formulae
of A are in the language without D, then I'=8F A iff I ):f’]:A.

Proof: The “only if” direction is trivial. For the other direction, suppose that I' ):’:’]:A, and let
M be some model of I'. By Lemma 3.6 there is a k-minimal model N of I' s.t. M >, N. Thus
there is a § € A s.t. N(§) € F. Now, since B is interlaced, all the operators that correspond to the

connectives of A are monotone w.r.t. <j, and so M(J) >, N(§). But F is upwards-closed w.r.t.
<k, therefore M (6) € F as well. O

Corollary 3.8 Let B be a finite interlaced bilattice. Then in the language without D, the logics
=57 and ):’:’]: are identical.

Proposition 3.7 shows that in many cases we can limit ourselves to k-minimal models without
any loss of generality. This property allows a considerable reduction in the number of models that

should be checked.

JFrom Propositions 3.2 and 3.7 it follows that ):f’]: is paraconsistent, and is also monotonic
w.r.t. conclusions without D. The last property is no longer true when D is allowed in the r.h.s.

of ):’:’]::
o BF . . .
Proposition 3.9 =" is in general nonmonotonic.

Proof: Let (B,F) be any logical bilattice in which b; = infp{b | b € F} € F.2> Denote: bt =
infr{b | b,—b e F}. It is easy to verify that bt,—bt € F. Now, ¢ ):’,’:’ —q D p, since M(p) =
1, M(q)=b; is the only k-minimal model of {¢} in (B, F). On the other hand, ¢, ¢ béf’]: =qDp,
since N(p)=_1, N(q)=bT is a counter k-minimal model of {¢, ~¢}. O

Using the example of the last proof, one can easily see that ¢ ):f’]: =¢g D p and also —=¢,—g D
P ):’:’]: p, but —q, ¢ b&’:’}-p. It follows that ):’:’]: is not a consequence relation in the usual sense,

L T .. .. . B,F . .
since it is not closed under (multiplicative) cut. This is not surprising, since |=; is not monotonic,

2This is clearly the case whenever B is finite.
®See also Proposition 2.6.



and it is usual to require a nonmonotonic relation to be closed only under cautious cut and cautious
monotonicity (see [Ga85, KLM90, Le92, Ma94]):

Proposition 3.10
a) ):f’]: preserves cautious cut: If T', ¢ ):’:’]:A and T’ ):’,f’}-lb, A, then T ):f’]:A.
b) ):f’]: preserves cautious monotonicity: If T’ ):f’]:¢ and T’ ):f’]:A, then T', % ):f’]:A.

Proof:

a) Suppose that M is a k-minimal model of I', but M (§) ¢ F for every § € A. Since I' ):f’]:lb, Al
then M (1) € F, and so M is a model of {I', ¥}. Moreover, M must be a k-minimal model of {I', ¥},
since any other model of this set which is strictly smaller than M w.r.t. <; must be a model of I,
which is k-smaller than M. Now, I', % ):f’]:A, thus M (0) € F for some § € A — a contradiction.

b) Assume that I’ ):’:’]:Qb, and I’ ):’:’]:A. Let M be a k-minimal model of 'U{#}. In particular, M
is a model of I'. Moreover, it must be an k-minimal model of I' as well, since otherwise there would
be a model N of I' that is strictly k-smaller than M. Since I' ):f’f¢7 this N would have been an
k-minimal model I'U{¢} and therefore N<S’TM w.r.t. 'U{¢} — a contradiction. Therefore, M
is a k-minimal model of I'. Now, since I' ):f’]:A, M is a model of some §€ A. Hence I', ¢ ):f’]:A.
O

3.3 The logics =27

The motivation behind the last family of bilattice-based consequence relations that we consider
here is perhaps the closest in spirit to the original idea of paraconsistent reasoning: We allow a
nontrivial reasoning in the presence of inconsistency, while still trying to minimize the amount of
contradictions. This approach reflects the intuition that while one has to deal with conflicts in a
nontrivial way, contradictory data corresponds to inadequate information about the real world, and
therefore should be minimized.

Definition 3.11 [AA94, AA96] Let (B,F) be a logical bilattice. A subset 7 of B is called an
inconsistency set of B if it has the following properties:

a)beZiff -beT.

b)be FNIiffbe F and -be F.

Note: It is easy to see that if Z is an inconsistency set then ¢, f¢Z and T €Z.

Example 3.12 In (FOUR) there are two inconsistency sets: 7y ={T} and Z;={T, L}. The use
of 71 means preference of consistent values, while the use of Zo means preference of classical values.

Notation 3.13 [(v,Z) = {p | p is atomic and v(p)€Z}.

Intuitively, 7 is a set of inconsistent values of (B, F), and I(v,Z) corresponds to the inconsistent
assignments of v w.r.t. 7.

Definition 3.14 Let (B, F) be a logical bilattice and Z — an inconsistency set of B.

a) vy is more consistent than vy w.r.t. I (vy >27 1vy) if I(1y,I) C1(vy, T).

b) v is a most consistent model of I' w.r.t. Z (Z-mcm, for short), if there is no model of I" which
is more consistent than v.
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Definition 3.15 [AA94, AA9G] " ):g’]:A if every Z-mem of I' in (B, F) is a model of some formula
of A.

Example 3.16 (Tweety Dilemma) Let (B, F)=(FOUR). Using the notations of example 3.12,
let Zy={T} and Z,={T, L}. Consider the following set of assertions, I'":

bird(Tweety) — fly(Tweety)*
penguin(Tweety) D bird(Tweety)
penguin(Tweety) D = fly(Tweety)
bird(Tweety)

Unlike the other formulae of I', the first assertion is an instance of a rule that has exceptions. Thus
it is formulated with a weaker “implication” connective.
The 18 models of I' in (FOUR) are given in Figure 5. Two of these models, M17 and M18, are

Model No. bird(Tweety) | fly(Tweety) | penguin(Tweety)
M1~ M T T.f T4, f, L
M9 — M12 T t 1 £l

M13 — M16 t T T4, f, L
M17 — M18 t t £l

Figure 5: The models of I' (Example 3.16)

the Zi-mems of I'. M17 — the only classical model of I' — is also the only Zo-mem of I'. Thus, when
using }=7, one can infer that bird(Tweety) (but —bird(Tweety) is not true), and fly(Tweety) (while
—fly(Tweety) is not true). Also, nothing is yet known about Tweety being a penguin. According
to ):%2 one can infer bird(Tweety), fly(Tweety), and —penguin(Tweety). The inverse assertions
are not true, as expected. Note that fly(Tweety) is not a consequence of =} (and so it is not a
consequence of =% as well. M12 is a counter-model for both cases). One might view this fact as an
evidance that =} is “over-cautious”.

Suppose now that a new data arrives: penguin(Tweety). The models of the modified knowledge-
base, I'' = T' U {penguin(Tweety)}, are listed in Figure 6. This time the Z;-mcms and the Z,-
mems of IV coincide. They are denoted by M4 and M6. It follows that according to the new

Model No. || bird(Tweety) | fly(Tweety) | penguin(Tweety)
M1 M2 T T T.1
M3 — M4 T f T.¢
M5 — M6 t T T

Figure 6: The models of I'" (Example 3.16)

information one should change his belief and infer new conclusions: bird(Tweety), penguin(Tweety),
and = fly(Tweety). Although I is classically inconsistent, the complements of these assertions
cannot be inferred by ):%J (7=1,2), as indeed one expects.

*Recall that — denotes the material implication.

11



Note: There is a slight (but signiﬁcant) difference between the definition of ):g’]: and the definition
of the paraconsistent relation ): ) (abbreviation: f=,.y,), considered in [AA94, AA96]. Here we
consider the inconsistent as:31gnments of a given valuation w.r.t. «all the atomic formulae. In
[AA94, AA96], on the other hand, only the assignments on the atomic formulae that appear in the
language of the premises are relevant for making preferences among valuations. In other words,
if A(T') is the set of atomic formulae in the language of the premises I', then the relevant set
of assignments according to [AA94, AA96] is I(v, ' I)_ {p e A(l') | v(p) € I} (cf. Definition
3.13). Obviously, g’}- is not the same logic as ): (1) For example, p ):{T 13 4V, while

p%Aclon({T,J_}) qV—q (a counter-model assigns ¢ to p and J_ to ¢q).

Our new definition has several advantages over the previous one. One of which is the fact that
by Proposition 3.19(a) below, cautious cut is always sound for ):g’]:. In the case of |=.,,, however,
cautious cut is valid only in the {V, A, ®, ®, —}-fragment of the language, and provided that there
is a value be B s.t. b,—b¢g F and bgZ. Therefore, e.g., cautious cut fails in the case of ):‘clon({_m_}).

Indeed, ¢ ):‘clon({_m_}) qVp and ¢,qVp ):‘clon({_m_}) pV-p, but ¢ I;égon({T,L}) pV-p. Cautious cut also

fails in the case of ):B’]: whenever D appears in the language. For a counter-example note that

q#wn qvnami%qu#wn)Oi%w)vﬁwDﬂw qu%wn (pD=q)V(=pD—q) (consider
a Valuatlon M, where M(¢)=t and M(p)=T). It is shown in [AA96] that in the case of op,
in order to add D to the language without losing cautious cut, one has to add a certain constraint
to this rule: Every atomic formulae that appears in the language of the cut formula(e) should also
appear in the language of the premises.’

Proposition 3.17 For every logical bilattice (B, F) and an inconsistency set Z
a) If T =87 A then TERT A,

b) ):g’]: is nonmonotonic.

c) ):g’]: is paraconsistent.

Proof: Let (B,F) be an arbitrary logical bilattice, and Z — an inconsistency set in it. Then:

a) Immediately follows from the definitions of 8% and ):g’]:.

b) Consider, e.g., I'={p,—pVq}. Every Z-mcm M of I' must assign to both p and ¢ consistent

values (since the valuation that assigns ¢ to p and f to ¢ is an Z-mem of I'). Now, since M (p) € F,

it follows that M (—p) Q]: otherwise M (p) € Z). Thus, in order that M(—pV¢q) € F, necessarily
M (q) € F. Therefore I ):I g. On the other hand, let F' ' U{-p}. Then I' bég’]:q (N(p)=T,

N(q)=f is a counter Z-mcm of [').

c¢) Using the notations of the part (b), I is an inconsistent theory and still T’ %I q. O

Proposition 3.18 [AA96] Let (B, F) be a logical bilattice (B, F) and Z — an inconsistency set in
it.

a) If ' and A are in the language of {—,A,V, f,t} and ' ):g’]: A, then the disjunction of the
sentences in A classically follows from I'.

b) Let I' be a classically consistent set in the language of {—, A, V, f,t}, and ¢ — a clause that does
not contain any pair of an atomic formula and its negation. If 4 classically follows from I', then

rez” .

5Cautious cut together with this condition is called there analytic cautious cut.
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Like in the case of ):f’]: we have the following proposition:

Proposition 3.19
a) ):g’]: preserves cautious cut: If I', ¢ ):g’]:A and ' ):g’f¢7 A then I' ):g’]:A.

b) ):g’]: preserves cautious monotonicity: If T’ ):g’]:¢ and T’ ):g’]:A, then T', % ):g’]:A.

Proof: Similar to that of Proposition 3.10. O

Several consequence relations similar to ):g’]: are considered in the literature. Priest [Pr89,
Pr91] uses a similar consequence relation, =¥ | for defining the logic LPm from the three-valued
logic LP (also known as Kleene 3-valued logic with middle element designated). It is well known
that LP invalidates the Disjunctive Syllogism (i.e., if =7, denotes the consequence relation of LP,
then ¥, —V ¢ [£Pp @). Priest argues that a consistent theory should preserve classical conclusions.
He suggests to resolve this drawback by considering as the relevant models of a set I" only those that
are muinimally inconsistent. Such models assign T only to some minimal set of atomic formulae.
The consequence relation =5 = of the resulting logic, LPm, is then defined as follows: T'={p,
iff every minimally inconsistent model of I' is a model of .

In our terms, Priest considers the inconsistency set Z={b | be F,-be F}. In the 3-valued
semantics this is the only inconsistency set, and it consists only of T. In the general (multi-valued)
case, however, there are many others. It follows that ):g’]: might be viewed as a generalization
of LPm. Moreover, in [AA97a] it is shown that a switch to a bilattice-based semantics might
improve the inference process of LPm: By using, e.g., four-valued semantics and considering only
the <p-minimal valuations among the Z;-mems of a given theory, it is possible to infer the same
conclusions as those obtained by =75 . The number of such models is usually smaller (and never
bigger) than the number of the LPm-models. This is due to the fact that from every k-minimal
Zi1-mem one can construct several LPm-models by changing every l-assignment to either ¢ or f.
To see this in a particular case consider, e.g., the following simple example: Let I'={-pVq, pvq}. ¢
follows from I' according to ={p,, and according to =7, (and classically as well, of course). Now,
I' has two LPm-models: M;(p)=t, Mi(q) =t and Mz(p)=f, Ma(q) =t (these are also its classical
models). On the other hand, there is only one k-minimal Z;-mem of I't N(p) =1, N(¢)=t. This
single model suffices for inferring that ¢ follows from I'. Clearly, when the number of the atomic
formulae that appear in the language of I' increases, the amount of the k-minimal Z;-mcms might
become considerably smaller than the amount of the LPm-models of I'.

Kifer and Lozinskii [KL.92] also propose a similar relation (denoted there ka, where A stands for
the values that are considered as representing inconsistent knowledge). This relation is considered
in the framework of annotated logics ([Su90, KS92, Su94]). See [AA96] for a comparison between

Ra and ):g’]:.

4 Conclusion and future work

Bilattices have had an extensive use in recent years, most notably in the area of logic programming.
These structures are also useful as a semantic tool for defining multi-valued logics. The resulting
consequence relations are strongly related to non-monotonic reasoning, and especially suitable for
reasoning in the presence of inconsistency.
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Despite all their appealing properties, the logics discussed above still lack efficient inference
procedures. Among the issues that should be addressed in this context is whether it is possible to
construct the subset of the preferred models of a given theory without computing the whole set
of its models. Another major challenge is related with the problem of an efficient belief revision,
i.e.: reducing the amount of computations needed for revising the set of conclusions when the
knowledge-base is altered.

A preliminary method for efficiently constructing (four-valued) mcms is presented in [AA97b].
This approach is applied to knowledge-bases which are of a specific structure (called stratified
knowledge-bases). Another possible approach for dealing with computational limitations is consid-
ered in [Le86, Wa94]. The method proposed there is to restrict the representation language, taking
again into account the trade-off between expressiveness and efficiency. In both cases there is still
much work to be done in order to obtain reasoning processes that are general enough on the one
hand and that are computationally feasible on the other hand.
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