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Abstract. An (n, k)-ary quantifier is a generalized logical connective,
binding k variables and connecting n formulas. Canonical systems with
(n, k)-ary quantifiers form a natural class of Gentzen-type systems which
in addition to the standard axioms and structural rules have only logical
rules in which exactly one occurrence of a quantifier is introduced. The se-
mantics for these systems is provided using two-valued non-deterministic
matrices, a generalization of the classical matrix. In this paper we use a
constructive syntactic criterion of coherence to characterize strong cut-
elimination in such systems. We show that the following properties of a
canonical system G with arbitrary (n, k)-ary quantifiers are equivalent:
(i) G is coherent, (ii) G admits strong cut-elimination, and (iii) G has a
strongly characteristic two-valued generalized non-deterministic matrix.

1 Introduction

The possibility to eliminate cuts is a crucial property of useful sequent calculi.
This property was first established by Gentzen (in his classical [10]) for sequent
calculi for classical and intuitionistic first-order logic. Since then many other
cut-elimination theorems, for many systems, have been proved by various meth-
ods 1. Now showing that a given sequent calculus admits cut-elimination is a
difficult task, often carried out using heavy syntactic arguments and based on
many case-distinctions. It is thus important to have some useful criteria that
characterize cut-elimination (i.e., conditions which are both necessary and suffi-
cient for having an appropriate cut-elimination theorem).

In this paper we give a constructive characterization of a general strong
form of cut-elimination for a very natural class of Gentzen-type systems called
canonical systems. These are systems which in addition to the standard axioms
and structural rules have only logical introduction rules of the ideal type, in
which exactly one occurrence of a connective or quantifier is introduced, and
no other connective or quantifier is mentioned in the formulation of the rule.

1 We note that by ‘cut-elimination’ we mean here just the existence of proofs without
(certain forms of) cuts, rather than an algorithm to transform a given proof to a
cut-free one (for the assumptions-free case the term “cut-admissibility” is sometimes
used, but this notion is too weak for our purposes).



For the propositional case canonical systems were first introduced and investi-
gated in [2]. There semantics for such systems was provided using two-valued
non-deterministic matrices (called 2Nmatrices) 2. It was shown in [2] that for
propositional canonical systems there is an exact triple correspondence between
cut-elimination, the existence of a characteristic 2Nmatrix for them, and a con-
structive syntactic property called coherence. In [17] the same triple correspon-
dence was shown to hold also for canonical systems with unary quantifiers. The
next natural stage was to consider languages and systems with arbitrary (n, k)-
ary quantifiers. By an (n, k)-ary quantifier ([13, 15]) we mean a generalized logical
connective, which binds k variables and connects n formulas. In particular, any
n-ary propositional connective is an (n, 0)-ary quantifier, the unary quantifiers
considered in [17] (including the standard first-order quantifiers ∃ and ∀) are
(1, 1)-quantifiers, bounded universal and existential quantifiers used in syllogis-
tic reasoning (∀x(p(x) → q(x)) and ∃x(p(x) ∧ q(x))) are (2,1)-ary quantifiers,
while the simplest Henkin quantifier3 QH is a (1,4)-quantifier:

QHx1x2y1y2ψ(x1, x2, y1, y2) :=
∀x1 ∃y1

∀x2 ∃y2
ψ(x1, x2, y1, y2)

The first steps in investigating canonical systems with (n, k)-ary quantifiers were
taken in [4]. There the semantics of 2Nmatrices and the coherence criterion were
extended to languages with (n, 1)-ary quantifiers. Then it was shown that coher-
ence is equivalent in this case to the existence of a characteristic 2Nmatrix, and
it implies (but is not equivalent to) cut-elimination. When canonical systems are
generalized to languages with arbitrary (n, k)-ary quantifiers, two serious prob-
lems emerge. The first problem is that the semantics of 2Nmatrices employed in
[17, 4] is no longer adequate in case k > 1. The second problem is that even in case
of k = 1, coherence is not a necessary condition for standard cut-elimination,
and so the triple correspondence seems to be lost. Now the first problem was
solved in [3] by introducing generalized two-valued Nmatrices (2GNmatrices),
where a more complex approach to quantification is used. However, the problem
of finding an appropriate form of cut-elimination for which coherence is a nec-
essary condition, and reestablishing the triple correspondence was explicitly left
open in [4] and then also in [3].

In this paper we provide a full solution to the second problem 4. This is
achieved in two main steps. The first is to include substitution as one of the struc-

2 Non-deteministic matrices form a natural generalization of ordinary matrices, in
which the value assigned by a valuation to a complex formula can be chosen non-
deterministically out of a certain nonempty set of options.

3 It should be noted though that the canonical systems with (n, k)-ary quantifiers
studied in this paper are still not sufficient for treating Henkin quantifiers, as the
representation language is not expressive enough to capture dependencies between
variables; one direction is extending the representation language with function sym-
bols, which would lead to the inevitable loss of the decidability of coherence.

4 A partial solution for the restricted case k = 1 is already provided in [4].



tural rules of a canonical system 5. The second step is to extend cut-elimination
to deduction from assumptions (following [1, 16]). For historical reasons, reason-
ing with non-logical assumptions (in the form of sequents) is usually reduced to
pure provability of sequents. However, this is not always possible (the resolution
calculus, primitive recursive arithmetics, pure equality reasoning, and disjunc-
tive databases are four cases in point). Even when such reduction is possible, it
is not necessarily desirable, as the case of first-order logic with equality shows
(see e.g. [16]). Thus it is in fact very natural to investigate and characterize
cut-elimination in the context of deduction from assumptions.

With the aid of the above two steps we again establish an exact triple
correspondence between coherence of canonical systems with arbitrary (n, k)-
ary quantifiers, their 2GNmatrices-based semantics, and a strong form of cut-
elimination for them. More specifically, we show that the following properties
of a canonical system G are equivalent: (i) G is coherent, (ii) G admits strong
cut-elimination, and (iii) G has a strongly6 characteristic 2GNmatrix.

2 Preliminaries

In what follows, L is a language with (n, k)-ary quantifiers, that is with quanti-
fiers Q1, ...,Qm with arities (n1, k1), ..., (nm, km) respectively. For any n > 0 and
k ≥ 0, if a quantifier Q in a language L is of arity (n, k), then Qx1...xk(ψ1, ..., ψn)
is an L-formula whenever x1, ..., xk are distinct variables and ψ1, ..., ψn are for-
mulas of L. Denote by FrmL (Frmcl

L) the set of L-formulas (closed L-formulas).
Denote by TrmL (Trmcl

L) the set of L-terms (closed L-terms). We write Q−→x A

instead of Qx1...xkA, and ψ{−→t /−→z } instead of ψ{t1/z1, ..., tk/zk}.
A set of sequents S satisfies the free-variable condition if the set of variables
occurring bound in S is disjoint from the set of variables occurring free in S.
In the following two subsections, we briefly reproduce the relevant definitions
from [4, 3] of canonical rules with (n, k)-ary quantifiers and of the framework of
non-deterministic matrices. Note the important addition of the definition of full
canonical systems, which include the rule of substitution.

2.1 Full canonical systems with (n, k)-ary quantifiers

We use the simplified representation language from [4, 3] for a schematic repre-
sentation of canonical rules.

Definition 21 For k ≥ 0, n ≥ 1, Ln
k is the language with n k-ary predicate

symbols p1, ..., pn, the set of constants Con = {c1, c2, ..., } and the set of variables
V ar = {v1, v2, ..., }.
In this paper we assume for simplicity that Ln

k and L share their sets of variables
and constants.
5 See [1] for the general need for this step, e.g. for the foundations of the resolution

calculus, and for reasoning from assumptions in general.
6 See Defn. 215 below.



Definition 22 A canonical rule of arity (n, k) has the form {Πi ⇒ Σi}1≤i≤m/C,
where m ≥ 0, C is either ⇒ Qv1...vk(p1(v1, ..., vk), ..., pn(v1, ..., vk)) or
Qv1...vk(p1(v1, ..., vk), ..., pn(v1, ..., vk)) ⇒ for some (n, k)-ary quantifier Q of L
and for every 1 ≤ i ≤ m: Πi ⇒ Σi is a clause7 over Ln

k .

For a specific application of a canonical rule we need to instantiate the schematic
variables by the terms and formulas of L. This is done using a mapping function:

Definition 23 Let R = Θ/C be an (n, k)-ary canonical rule, where C is of one
of the forms (Q−→v (p1(−→v ), ..., pn(−→v )) ⇒) or (⇒ Q−→v (p1(−→v ), ..., pn(−→v ))). Let Γ
be a set of L-formulas and z1, ..., zk - distinct variables of L. An 〈R, Γ, z1, ..., zk〉-
mapping is any function χ from the predicate symbols, terms and formulas of
Ln

k to formulas and terms of L, satisfying the following conditions:

– For every 1 ≤ i ≤ n, χ[pi] is an L-formula. χ[y] is a variable of L, and
χ[x] 6= χ[y] for every two variables x 6= y. χ[c] is an L-term, such that χ[x]
does not occur in χ[c] for any variable x occurring in Θ.

– For every 1 ≤ i ≤ n, whenever pi(t1, ..., tk) occurs in Θ, for every 1 ≤ j ≤ k:
χ[tj ] is a term free for zj in χ[pi], and if tj is a variable, then χ[tj ] does not
occur free in Γ ∪ {Qz1...zk(χ[p1], ..., χ[pn])}.

– χ[pi(t1, ..., tk)] = χ[pi]{χ[t1]/z1, ..., χ[tk]/zk}.

χ is extended to sets of Ln
k -formulas as follows: χ[∆] = {χ[ψ] | ψ ∈ ∆}.

Definition 24 Let R = Θ/C be an (n, k)-ary canonical rule, where Θ = {Πi ⇒
Σi}1≤i≤m and C has the form Q−→v (p1(−→v ), ..., pn(−→v )) ⇒. An application of R
is any inference step of the form:

{Γ, χ[Πi] ⇒ ∆,χ[Σi]}1≤i≤m

Γ,Qz1...zk (χ[p1], ..., χ[pn]) ⇒ ∆

where z1, ..., zk are variables, Γ, ∆ are any sets of L-formulas and χ is some
〈R, Γ ∪∆, z1, ..., zk〉-mapping.
An application of a canonical rule of the form Θ/C ′ there C ′ has the form
⇒ Q−→v (p1(−→v ), ..., pn(−→v )) is defined similarly.

Example 25 The standard introduction rules for the (1, 1)-ary quantifier ∀ can
be formulated as follows: {p(c) ⇒}/∀v1 p(v1) ⇒ and {⇒ p(v1)}/ ⇒ ∀v1 p(v1).
Applications of these rules have the forms:

Γ, A{t/w} ⇒ ∆

Γ, ∀w A ⇒ ∆
(∀ ⇒)

Γ ⇒ A{z/w}, ∆
Γ ⇒ ∀w A, ∆

(⇒ ∀)

where z is free for w in A, z is not free in Γ ∪∆ ∪ {∀wA}, and t is any term
free for w in A.

7 By a clause we mean a sequent containing only atomic formulas.



Notation 26 (Following [2, 4]). Let −t = f,−f = t. Let ite(t, A,B) = A and
ite(f, A, B) = B. Let Φ,As (where Φ may be empty) denote ite(s, Φ ∪ {A}, Φ).
For instance, the sequents A ⇒ and ⇒ A are denoted by A−a ⇒ Aa for a = f
and a = t respectively. With this notation, an (n, k)-ary canonical rule has the
form {Σj ⇒ Πj}1≤j≤m/Q−→z (p1(−→z ), ..., pn(−→z ))−s ⇒ Q−→z (p1(−→z ), ..., pn(−→z ))s

for some s ∈ {t, f}. For further abbreviation, we denote such rule by {Σj ⇒
Πj}1≤j≤m/Q(s).

Definition 27 A full canonical calculus G is a Gentzen-type system, which con-
sists of (i) The α-axiom ψ ⇒ ψ′ for ψ ≡α ψ′, (ii) The standard structural rules
with the addition of the substitution rule, and (iii) Canonical inference rules.

The coherence criterion used in [3, 4] can be straightforwardly extended to full
canonical calculi:

Definition 28 For two sets of clauses Θ1, Θ2 over Ln
k , Rnm(Θ1 ∪ Θ2) is a set

Θ1 ∪ Θ′2, where Θ′2 is obtained from Θ2 by a fresh renaming of constants and
variables which occur in Θ1.

Definition 29 (Coherence8) A full canonical calculus G is coherent if for
every two canonical rules of the form Θ1/ ⇒ A and Θ2/A ⇒, the set of clauses
Rnm(Θ1 ∪Θ2) is classically inconsistent.

Example 210 Consider the calculus G1 consisting of the rules Θ1/∀v1 p(v1) ⇒
and Θ2/ ⇒ ∀v1 p(v1) where Θ1 = {p(c) ⇒} and Θ2 = {⇒ p(v1)} (these rules are
from Example 25). Rnm(Θ1 ∪ Θ2) = {p(c) ⇒,⇒ p(v1)} (note that no renaming
is needed here) is clearly classically inconsistent and so G1 is coherent.

Proposition 211 (Decidability of coherence) The coherence of a full canon-
ical calculus is decidable.

2.2 Generalized non-deterministic matrices

Our main semantic tool in this paper are generalized non-deterministic matrices
introduced in [3], which are a generalization of non-deterministic structures used
in [2, 17, 4].

Definition 212 A generalized non-deterministic matrix (henceforth GNmatrix)
for L is a tuple M = 〈V,D,O〉, where: (i) V is a non-empty set of truth values,
(ii) D is a non-empty proper subset of V, and (iii) For every (n, k)-ary quantifier
Q of L, O9 includes a corresponding operation Q̃S : (Dk → Vn) → P+(V) for
8 The coherence criterion was first introduced in [2]. A related criterion also called

coherence was later used in [14], where linear logic is used to specify and reason
about a number of sequent systems.

9 Strictly speaking, the tuple 〈V,D,O〉 is not well-defined, since O is a proper class.
Since all our results remain intact if we concentrate only on countable models, this
technical problem can be overcome by assuming that the domains of all the structures
are prefixes of the set of natural numbers.



every L-structure S = 〈D, I〉.
A 2GNmatrix is any GNmatrix with V = {t, f} and D = {t}.

The notion of an L-structure is defined standardly (see, e.g. [4]). In order to
interpret quantifiers, the substitutional approach is used, which assumes that
every element of the domain has a term referring to it. Thus given an L-structure
S = 〈D, I〉, the language L is extended with individual constants: {a | a ∈ D}.
Call the extended language L(D). The interpretation function I is extended to
L(D) as follows: I[a] = a. An S-substitution σ is any function from variables to
Trmcl

L(D). For an S-substitution σ and a term t (a formula ψ), the closed term
σ[t] (the sentence σ[ψ]) is obtained from t (ψ) by substituting every variable
x for σ[x]. We write10 ψ ∼S ψ′ if ψ′ can be obtained from ψ by renamings
of bound variables and by any number of substitutions of a closed term t for
another closed term s, so that I[t] = I[s].

Definition 213 Let S = 〈D, I〉 be an L-structure for a GNmatrix M. An S-
valuation v : Frmcl

L(D) → V is legal in M if it satisfies the following condi-
tions: v[ψ] = v[ψ′] for every two sentences ψ,ψ′ of L(D), such that ψ ∼S ψ′,
v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]], and v[Qx1, ..., xk(ψ1, ..., ψn) is in the set
Q̃S [λa1, ..., ak ∈ D.〈v[ψ1{a1/x1, ..., ak/xk}], ..., v[ψn{a1/x1, ..., ak/xk}]〉] for ev-
ery (n, k)-ary quantifier Q of L.

Definition 214 Let S = 〈D, I〉 be an L-structure for an GNmatrix M. An M-
legal S-valuation v is a model of a sentence ψ in M, denoted by S, v |=M ψ, if
v[ψ] ∈ D. For an M-legal S-valuation v, a sequent Γ ⇒ ∆ is M-valid in 〈S, v〉
if for every S-substitution σ: whenever S, v |=M σ[ψ] for every ψ ∈ Γ , there is
some ϕ ∈ ∆, such that S, v |=M σ[ϕ]. A sequent Γ ⇒ ∆ is M-valid, denoted
by `M Γ ⇒ ∆, if for every L-structure S and every M-legal S-valuation v,
Γ ⇒ ∆ is M-valid in 〈S, v〉. For a set of sequents S, S `M Γ ⇒ ∆ if for every
L-structure S and every M-legal S-valuation v: whenever the sequents of S are
M-valid in 〈S, v〉, Γ ⇒ ∆ is also M-valid in 〈S, v〉.

Definition 215 A system G is strongly sound for a GNmatrix M if for every
set of sequents S: S `G Γ ⇒ ∆ entails S `M Γ ⇒ ∆. A system G is strongly
complete for a GNmatrix M if for every set of sequents S: S `M Γ ⇒ ∆ entails
S `G Γ ⇒ ∆. A GNmatrix M is strongly characteristic for G if G is strongly
sound and strongly complete for M.

Note that strong soundness implies (weak) soundness11. A similar remark applies
to completeness and a characteristic GNmatrix.

10 The motivation for this definition, in addition to capturing α-equivalence, is purely
technical and is related to extending the language with the set of individual constants
{a | a ∈ D}. Suppose we have a closed term t, such that I[t] = a ∈ D. But a also
has an individual constant a referring to it. We would like to be able to substitute
t for a in every context.

11 A system G is (weakly) sound for a GNmatrix M if `G Γ ⇒ ∆ entails `M Γ ⇒ ∆.



In addition to L-structures for languages with (n, k)-ary quantifiers, we will also
use Ln

k -structures for the simplified languages Ln
k , using which the canonical rules

are formulated. To make the distinction clearer, we shall use the metavariable S
for the former and N for the latter. Since the formulas of Ln

k are always atomic,
the specific 2GNmatrix for which N is defined is immaterial, and can be omitted.
Henceforth we may speak simply of validity of sets of sequents over Ln

k .

Definition 216 Let N = 〈D, I〉 be a structure for Ln
k . The functional distri-

bution of N is a function FDistN ∈ Dk → {t, f}n, such that: FDistN =
λa1, ..., ak ∈ D.〈I[p1][a1, ..., ak], ..., I[pn][a1, ..., ak]〉.

3 The Triple Correspondence

In this section we establish an exact triple correspondence between the coherence
of full canonical systems, their 2GNmatrices-based semantics and strong cut-
elimination, a version of cut-elimination for deduction with assumptions taken
from [1]:

Definition 31 Let G be a full canonical calculus and let S be some set of se-
quents. A proof P of Γ ⇒ ∆ from S in G is S-cut-free if all cuts in P are on
substitution instances of formulas from S.

Definition 32 A Gentzen-type calculus G admits strong cut-elimination if for
every set of sequents S and every sequent Γ ⇒ ∆, such that S ∪ {Γ ⇒ ∆}
satisfies the free-variable condition it holds that if S `G Γ ⇒ ∆, then Γ ⇒ ∆
has an S-cut-free proof in G.

Note that strong cut-elimination implies standard cut-elimination (which corre-
sponds to the case of an empty set S).
Remark: At this point the importance of the substitution rule should be stressed.
Consider for instance the canonical calculus with two standard (1, 1)-ary rules
for ∀ from Example 25. Consider the following deduction:

⇒ p(x)

⇒ ∀xp(x)
(⇒ ∀) p(c) ⇒

∀xp(x) ⇒ (∀ ⇒)

⇒ (Cut)

The above application of Cut can only be eliminated using an explicit applica-
tion of the substitution rule. An alternative, less satisfactory solution (instead of
adding the substitution rule to canonical calculi explicitly,) would be considering
only sets of non-logical assumptions, which are closed under substitution12.

In [3] a strongly sound and (weakly) complete 2GNmatrix MG is defined for
every coherent canonical calculus G. This can be straightforwardly extended to
full canonical calculi. We strengthen this result in the sequel for full canonical
calculi by showing that MG is also strongly complete for G.

12 This was done in [4] for the restricted class of canonical systems with k = 1.



Definition 33 Let G be a coherent full canonical calculus. For every L-structure
S = 〈D, I〉, the GNmatrix MG contains the operation Q̃S defined as follows. For
every (n, k)-ary quantifier Q of L, every r ∈ {t, f} and every g ∈ Dk → {t, f}n:

Q̃S [g] =





{r} Θ/Q(r) ∈ G and there is an Ln
k − structure N = 〈DN , IN 〉

such that DN = D , FDistN = g and Θ is valid in N .

{t, f} otherwise

Proposition 34 If a full canonical calculus G is coherent, then it is strongly
sound for MG.

Proof: The proof is similar to the proof of Theorem 23 in [3], with the addition
of checking that the substitution rule is strongly sound for MG. In fact, it is
easy to see that the substitution rule is strongly sound for any 2GNmatrix M.

Now we come to the main result of this paper - establishing the correspondence:

Theorem 35 (The Triple Correspondence) Let G be a full canonical cal-
culus. Then the following statements concerning G are equivalent:

1. G is coherent.
2. G has a strongly characteristic 2GNmatrix.
3. G admits strong cut-elimination.

Proof: We first prove that (1) ⇒ (2). Suppose that G is coherent. By proposi-
tion 34, G is strongly sound for MG. For strong completeness, let S be some set
of sequents. Suppose that a sequent Γ ⇒ ∆ has no proof from S in G. Then it
also has no S-cut-free proof from S in G. If S ∪ {Γ ⇒ ∆} does not satisfy the
free-variable condition, obtain S ′∪{Γ ′ ⇒ ∆′} by renaming the bound variables,
so that S ′ ∪ {Γ ′ ⇒ ∆′} satisfies the condition (otherwise, take Γ ′ ⇒ ∆′ and S ′
to be Γ ⇒ ∆ and S respectively). Then Γ ′ ⇒ ∆′ has no proof from S ′ in G
(otherwise we could obtain a proof of Γ ⇒ ∆ from S by using cuts on logical
axioms), and so it also has no S ′-cut-free proof from S ′ in G. By proposition 36,
S ′ 6`MG

Γ ′ ⇒ ∆′. That is, there is an L-structure S and an MG-legal valuation
v, such that the sequents in S ′ are MG-valid in 〈S, v〉, while Γ ′ ⇒ ∆′ is not.
Since v respects the ≡α-relation, the sequents of S are also MG-valid in 〈S, v〉,
while Γ ⇒ ∆ is not. And so S6`MG

Γ ⇒ ∆. We have shown that G is strongly
complete (and strongly sound) for MG. Thus MG is a strongly characteristic
2GNmatrix for G.
Now we prove that (2) ⇒ (1). Suppose that G has a strongly characteristic 2GN-
matrix M. Assume by contradiction that G is not coherent. Then there exist
two (n, k)-ary rules of the forms R1 = Θ1/ ⇒ A and R2 = Θ2/A ⇒ in G, such
that Rnm(Θ1 ∪ Θ2) is classically consistent and A = Q−→v (p1(−→v ), ..., pn(−→v )).
Recall that Rnm(Θ1 ∪Θ2) = Θ1 ∪Θ′

2, where Θ′2 is obtained from Θ2 by renam-
ing constants and variables that occur also in Θ1 (see defn. 28). For simplic-
ity 13 we assume that the fresh constants used for renaming are all in L. Let
13 This assumption is not necessary and is used only for simplification of presentation,

since we can instantiate the constants by any L-terms.



Θ1 = {Σ1
j ⇒ Π1

j }1≤j≤m and Θ′2 = {Σ2
j ⇒ Π2

j }1≤j≤r. Since Θ1 ∪ Θ′2 is classi-
cally consistent, there exists an Ln

k -structure N = 〈D, I〉, in which both Θ1 and
Θ′2 are valid. Recall that we also assume that Ln

k is a subset of L14 and so the
following are applications of R1 and R2 respectively:

{Σ1
j ⇒ Π1

j }1≤j≤m

⇒ Q−→v (p1(
−→v ), ..., pn(−→v ))

{Σ2
j ⇒ Π2

j }1≤j≤m

Q−→v (p1(
−→v ), ..., pn(−→v )) ⇒

Let S be any extension of N to L and v - any M-legal S-valuation. It is easy
to see that the premises of the applications above are M-valid in 〈S, v〉 (since
the premises contain atomic formulas). Since G is strongly sound for M, both
⇒ Q−→v (p1(−→v ), ..., pn(−→v )) and Q−→v (p1(−→v ), ..., pn(−→v )) ⇒ should also be M-valid
in 〈S, v〉, which is of course impossible.
Next, we prove that (1) ⇒ (3). Let G be a coherent full canonical calculus. Let
S be a set of sequents, and let Γ ⇒ ∆ be a sequent, such that S ∪ {Γ ⇒ ∆}
satisfies the free-variable condition. Suppose that S `G Γ ⇒ ∆. We have already
shown above that MG is a strongly characteristic 2GNmatrix for G. Thus S `M
Γ ⇒ ∆. Now we need the following proposition, the proof of which is given in
Appendix A:

Proposition 36 Let G be a coherent full canonical calculus. Let S be a set of
sequents and Γ ⇒ ∆ - a sequent such that S∪{Γ ⇒ ∆} satisfies the free-variable
condition. If Γ ⇒ ∆ has no S-cut-free proof from S in G, then S6`MG

Γ ⇒ ∆.

By this proposition, Γ ⇒ ∆ has an S-cut-free proof from S in G. Thus G admits
strong cut-elimination.
Finally, we prove that (3) ⇒ (1). Suppose that G admits strong cut-elimination.
Suppose by contradiction that G is not coherent. Then there are two canonical
rules of G of the forms: Θ1/ ⇒ A and Θ2/A ⇒, such that Rnm(Θ1 ∪ Θ2) is
classically consistent. Let Θ = Rnm(Θ1 ∪ Θ2). Then Θ ∪ {⇒} satisfy the free-
variable condition, since only atomic formulas are involved and no variables are
bound there. Since Θ `G⇒ A and Θ `G A ⇒, by using cut we get: Θ `G⇒. But
⇒ has no Θ-cut-free proof in G from Θ since Θ is consistent, in contradiction
to the fact that G admits strong cut-elimination.

Corollary 37 For every full canonical calculus, the question whether it admits
strong cut-elimination is decidable.

Remark: The results presented above are related to [8], where a general class of
sequent calculi with (n, k)-ary quantifiers and a (not necessarily standard) set of
structural rules, are defined. Canonical calculi are a particular instance of such
calculi which includes all of the standard structural rules. While handling a a
wider class of calculi than canonical systems (different combinations of structural
rules are allowed), [8] provides no semantics for them. Syntactic conditions are
given, which are sufficient and under certain additional limitations also necessary
for modular cut-elimination, a particular version of cut-elimination for deduction
14 This assumption is again not essential for the proof, but it simplifies the presentation.



with non-logical assumptions containing only atomic formulas. In the context
of canonical systems, these conditions can be shown to be equivalent to our
coherence criterion, but (unlike coherence) they are not constructive.
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A Appendix: proof of Proposition 36

Let Γ ⇒ ∆ be a sequent which satisfies the free-variable condition. Suppose
that Γ ⇒ ∆ has no S-cut-free proof from S in G. To show that S6`MG

Γ ⇒ ∆,
we will construct an L-structure S and an MG-legal valuation v, such that S is
MG-valid in 〈S, v〉, while Γ ⇒ ∆ is not.
It is easy to see that we can limit ourselves to the language L∗, which is a
subset of L, consisting of all the constants and predicate and function symbols,
occurring in Γ ⇒ ∆. Let T be the set of all the terms in L∗ which do not
contain variables occurring bound in Γ ⇒ ∆. It is a standard matter to show
that Γ,∆ can be extended to two (possibly infinite) sets Γ ′,∆′ (where Γ ⊆ Γ ′

and ∆ ⊆ ∆′), satisfying the following properties:

1. For every finite Γ1 ⊆ Γ ′ and ∆1 ⊆ ∆′, Γ1 ⇒ ∆1 has no cut-free proof in G.
2. There are no ψ ∈ Γ ′ and ϕ ∈ ∆′, such that ψ ≡α ϕ.
3. If {Πj ⇒ Σj}1≤j≤m/Q(r) is an (n, k)-ary rule of G andQz1...zk (A1, ..., An) ∈

ite(r,∆′, Γ ′) (recall Notation 26), then there is some 1 ≤ j ≤ m satisfy-
ing the following condition. Let t1, ..., tm be all the Ln

k -terms occurring in
Πj ∪ Σj , where tj1 , ..., tjl

are all the constants and tjl+1 , ..., tjm are all the
variables. Then for every s1, ..., sl ∈ T there are some15 sl+1, ..., sm ∈ T, such
that whenever pi(tn1 , ..., tnk

) ∈ ite(r,Πj , Σj), then Ai{sn1/z1, ..., snk
/zk} ∈

ite(r, Γ ′,∆′).
4. For every formula ψ occurring in S and every substitution instance ψ′ of ψ:

ψ′ ∈ Γ ′ ∪∆′.

Note that the last condition can be satisfied because cuts on substitution in-
stances of formulas from S are allowed in an S-cut-free proof.
Let S = 〈D, I〉 be the L∗-structure defined as follows: D = T, I[c] = c for every
constant c of L∗; I[f ][t1, ..., tn] = f(t1, ..., tn) for every n-ary function symbol
f ; I[p][t1, ..., tn] = t iff p(t1, ..., tn) ∈ Γ ′ for every n-ary predicate symbol p.
It is easy to show by induction on t that: (lem1) for every t ∈ T: I[σ∗[t]] = t.
Let σ∗ be any S-substitution satisfying σ∗[x] = x for every x ∈ T. (Note that
every x ∈ T is also a member of the domain and thus has an individual constant
referring to it in L∗(D)).
For an L(D)-formula ψ (an L(D)-term t), we will denote by ψ̂ (t̂) the L-formula
(L-term) obtained from ψ (t) by replacing every individual constant of the form
s for some s ∈ T by the term s.
Define the S-valuation v as follows: (i) v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]], (ii) If
there is some C ∈ Γ ′∪∆′, s.t. C ≡α

̂Q−→z (ψ1, ..., ψn), then v[Q−→z (ψ1, ..., ψn)] = t
iff C ∈ Γ ′. Otherwise v[Q−→z (ψ1, ..., ψn)] = t iff
Q̃S [λa1...ak ∈ D.{〈v[ψ1{−→a /−→z }], ..., v[ψn{−→a /−→z }]〉}] = {t}.
The proof of the following lemmas is not hard and is left to the reader:

(lem2): For every L(D)-formula ψ: ψ ∼S σ∗[ψ̂].
(lem3) For every ψ ∈ Γ ′ ∪∆′: σ̂∗[ψ] = ψ.
15 Note that in contrast to t1, ..., tm, s1, ..., sm are L-terms and not Ln

k -terms.



(lem4) v is legal in MG.

Next we prove: (lem5) For every ψ ∈ Γ ′ ∪ ∆′: v[σ∗[ψ]] = t iff ψ ∈ Γ ′. If
ψ = p(t1, ..., tn), then v[σ∗[ψ]] = I[p][I[σ∗[t1]], ..., I[σ∗[tn]]]. Note16 that for
every 1 ≤ i ≤ n, ti ∈ T. By (lem1), I[σ∗[ti]] = ti, and by the definition of I,
v[σ∗[ψ]] = t iff p(t1, ..., tn) ∈ Γ ′. Otherwise ψ = Q−→z (ψ1, ..., ψn). If ψ ∈ Γ ′, then
by (lem3): σ̂∗[ψ] = ψ ∈ Γ ′ and so v[σ∗[ψ]] = t. If ψ ∈ ∆′ then by property 2 of
Γ ′∪∆′ it cannot be the case that there is some C ∈ Γ ′, such that C ≡α σ̂∗[ψ] = ψ
and so v[σ∗[ψ]] = f .
Finally, we prove that for every sequent Σ ⇒ Π ∈ S, Σ ⇒ Π is MG-valid
in 〈S, v〉. Suppose by contradiction that there is some Σ ⇒ Π ∈ S, which is
not MG-valid in 〈S, v〉. Then there exists some S-substitution µ, such that for
every ψ ∈ Σ: S, v |=MG µ[ψ], and for every ϕ ∈ Π: S, v 6|=MGµ[ϕ]. Note that for
every φ ∈ Σ ∪Π, µ̂[φ] is a substitution instance of φ. By property 5 of Γ ′ ∪∆′:
µ̂[φ] ∈ Γ ′∪∆′. By (lem5), if µ̂[φ] ∈ Γ ′ then v[σ∗[µ̂[φ]]] = t, and if µ̂[φ] ∈ ∆′ then
v[σ∗[µ̂[φ]]] = f . By (lem2), µ[φ] ∼S σ∗[µ̂[φ]]. Since v is MG-legal, it respects
the ∼S-relation and so for every φ ∈ Σ∪Π: v[µ[φ]] = v[σ∗[µ̂[φ]]]. Thus µ̂[Σ] ⊆ Γ ′

and µ̂[Π] ⊆ ∆′. But µ̂[Σ] ⇒ µ̂[Π] has an S-cut-free proof from S in G (note
that µ̂[Σ] ⇒ µ̂[Π] is obtained from Σ ⇒ Π by applying the substitution rule),
in contradiction to property 1 of Γ ′ ∪∆′.
Thus, all sequents of S are MG-valid in 〈S, v〉. However, by (lem5): Γ ⇒ ∆ is
not MG-valid in 〈S, v〉 (recall that Γ ⊆ Γ ′ and ∆ ⊆ ∆′). Thus S6`MG

Γ ⇒ ∆.

16 This is obvious if ti does not occur in Γ ⇒ ∆. If it occurs in Γ ⇒ ∆, then since
Γ ⇒ ∆ satisfies the free-variable condition, ti does not contain variables bound in
this set and so ti ∈ T by definition of T.


