
ON THE ASYMPTOTICS OF A 1-PARAMETER
FAMILY OF INFINITE

MEASURE PRESERVING TRANSFORMATIONS

JON. AARONSON, BENJAMIN WEISS

Abstract. We estimate various aspects of the growth rates of
ergodic sums for some infinite measure preserving transformations
which are not rationally ergodic. 30/1/98. Floppy disc version

§0 Ergodic sums of infinite measure preserving
transformations

Let T = (XT ,BT ,mT , T ) be a conservative, ergodic measure pre-
serving transformation of a σ-finite, infinite, nonatomic standard mea-
sure space. It is known ( [Hop37], see also [Aar97], [Kre85]) that for
f ∈ L1(mT )+ ∶= {f ∈ L1(mT ) ∶ f ≥ 0, ∫X fdmT > 0},

Sn(f)(x) = S
T
n (f) ∶=

n−1

∑
k=0

f(T kx)→∞ for a.e. x ∈X,

and for f, g ∈ L1
+:

Sn(f)(x)

Sn(g)(x)
→
∫X fdm

∫X gdm
for a.e. x ∈X,

whence,

Sn(f) = o(n) a.e.

On the other hand, for any sequence of constants (an)n∈N,

Sn(f) /≍ an a.e.

as was shown in [Aar77] (see also [Aar97]).
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2 A 1-parameter family

A rationally ergodic transformation T = (XT ,BT ,mT , T ) satisfies a
kind of ergodic theorem :

∀ nk →∞, ∃ m` = nk` →∞ ∋
1

N

N

∑
`=1

Sm`(f)

am`
→ ∫

X
fdm a.e. ∀ f ∈ L1

(1)
where an = an(T ) are constants ( [Aar79], see also [Aar97]). This
sequence of constants, called the return sequence, is determined by (1)
uniquely up to asymptotic equality, and can therefore be considered to
represent the the absolute rate of growth of Sn(f) as n→∞ for f ∈ L1

+.
In order to study the rate of growth of STn (f) → ∞ for general

T , define as in [Aar81] the median sequences αn(P, f, θ) for P a mT -
absolutely continuous probability on XT , f ∈ L1(mT )+, 0 < θ < 1 by

αn(P, f, θ) ∶= max{t ≥ 0 ∶ P ([Sn(f) ≥ t]) ≥ θ}.

For example if T ∶ R→ R is Boole’s transformation defined by Tx = x−
1
x , then T is a conservative, ergodic, measure preserving transformation
of R equipped with Lebesgue measure (see [AW73]) and is rationally

ergodic with return sequence an(T ) ∼
√

2n
π ( [Aar81], see also [Aar97]).

It is also shown in [Aar81] that

P([
n−1

∑
k=0

f ○ T k ≥

√
2n

π
t])→

2

π ∫
∞

t
e−

s2

π ds

as n→∞ for t ≥ 0 and f ∈ L1
+, ∫X fdm = 1; whence

αn(P, f, θ) ∼

√
2n η(θ)

π ∫
X
fdm

where 2
π ∫

∞

η(θ) e
− s

2

π ds = θ.

A different kind of behaviour is exhibited by a conservative, er-
godic, measure preserving transformation T = (XT ,BT ,mT , T ) which
is squashable (see [Aar97]) in the sense that it commutes with a non
singular transformation Q which is not measure preserving).

In this case (as shown in [Aar81]) there is no ergodic theorem of

type (1), and moreover αn(P,f,θ)
αn(Q,g,θ′) → 0 as n → ∞ ∀ P,Q mT -absolutely

continuous probabilities on XT , f, g ∈ L1(mT )+, 0 < θ′ < θ < 1.
Suppose that R ∶ W → W is a non-singular transformation of the

probability space (W,B, µ) and that dµ○R
dµ = cφ where 0 < c < 1 and

φ ∶W → Z.
The Maharam Z-extension of R is the skew product transformation

T ∶W ×Z→W ×Z defined by T (x,n) = (Rx,n−φ(x)) considered with
respect to the invariant measure mT defined by mT (A×{n}) = µ(A)cn.
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The Maharam Z-extension of R is ergodic if, and only if R is of type
IIIc (see [Aar97], [Wei81]); and in this case it is squashable commuting
with the transformation Q(x,n) = (x,n+ 1) (for which mT ○Q = cmT ).

In this paper we look at the 1-parameter family of Maharam Z-
extensions considered in [HIK72] proving a logarithmic pointwise er-
godic theorem as in [Fis93] and evaluating their median sequences.

It turns out that a limiting transformation of our 1-parameter fam-
ily is actually boundedly rationally ergodic with return sequence an ≍
n√

logn
.

This latter phenomenology was also obtained for some analogous
transformations in [AK82], but by rather different methods.

§1 The 1-parameter family

Let Ω = {0,1}N, and B is the σ-algebra generated by cylinders. Define
the adding machine τ ∶ Ω→ Ω by

τ(1, ...,1,0, εn+1, εn+2, ...) = (0, ...,0,1, εn+1, εn+2, ...).

For p ∈ (0,1), define a probability µp on Ω by

µp([ε1, ..., εn]) =
n

∏
k=1

p(εk)

where p(0) = 1 − p and p(1) = p.

It is not hard to show that µp ○ τ ∼ µp, and

dµp ○ τ

dµp
= (

1 − p

p
)

φ

where

φ(x) =
∞

∑
n=1

(xn − (τx)n) = min{n ∈ N ∶ xn = 0} − 2.

This means that τ is an invertible non-singular transformation of (Ω,B, µp)
and a measure preserving transformation of (Ω,B, µ 1

2
).

It is well known that τ is ergodic on (Ω,B, µp), (indeed, τ -invariant
sets are tail-measurable and hence trivial by the Kolmogorov 0−1 law).

Set,
X = Ω ×Z, T (x,n) = (τx, n − φ(x)),

and, for p ∈ (0,1),

mp(A × {n}) = µp(A)(
1 − p

p
)

n

.
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Our 1-parameter family is {Tp ∶ p ∈ (0,1), 0 < p ≤ 1
2} where

Tp ∶= (X,B,mp, T ).

Even though Tp is defined for 1
2 < p < 1, we ”stop” at p = 1

2 because
T −1
p is isomorphic with T1−p by (x,n)↔ (πx,−n) where (πx)n ∶= 1−xn.

As above, mp ○ T −1 =mp and TQ = QT where Q(x,n) = (x,n + 1).
It was shown in [HIK72] (see also [Aar97]) that Tp is ergodic ∀ p ∈

(0,1), whence Tp, being an ergodic Maharam Z-extension, is squashable
for p ≠ 1

2 .
It follows from results in [Aar87] (see [Aar97]) that the representation

of Tp for p ≠ 1
2 as a Maharam Z-extension of a transformation of type

III p
1−p

is unique (up to isomorphism of the type III p
1−p

transformation).

§2 The results

Theorem 1 For every p ∈ (0,1),

logSn(f)

logn
→ Ĥ(p) mp-a.e. ∀ f ∈ L1

+(mp) (2)

where H(p) ∶= −p log p − (1 − p) log(1 − p) and Ĥ(p) ∶= H(p)
log2 .

Theorem 2
For p ≠ 1

2 :

αn(P, f, θ) = n
Ĥ(p)ecpξ(θ)

√
logn(1+o(1)) (3)

as n → ∞ ∀ P a mp-absolutely continuous probability on X, f ∈

L1(mp)+ and 0 < θ < 1 where cp =

√
p(1−p)
log 2 log 1−p

p and ∫
∞

ξ(θ)
e−
t2

2
√

2π
dt =

θ;begin

lim
n→∞

Sn(f)

nĤ(p)et
√

logn log(3) n
= {

0 t > −cp
∞ t < −cp

and

lim
n→∞

Sn(f)

nĤ(p)et
√

logn log(3) n
= {

0 t > cp
∞ t < cp

(4)

a.e. ∀ f ∈ L1(mp)+ where log(3) n ∶= log log logn.

Theorem 3
For p = 1

2 , T is boundedly rationally ergodic, and

an(T 1
2
) ≍

n
√

logn
.
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§3 The Main Lemma

For x = (x1, x2, . . . ) ∈ Ω, and n ∈ N, let

ρn(x) = min{1 ≤ r ≤ n ∶ xn−r = 0}, σn(x) = min{s ≥ 1 ∶ xn+s = 0},

sn(x) =
n

∑
k=1

xk, pn =
sn
n
, Nn(x) = S2n(1Ω×{0})(x,0).

Note that

sn ∼ np, & lim sup
n→∞

ρn
logn

= lim sup
n→∞

σn
logn

=
1

log 1
p

µp − a.e..

Main Lemma

Nn(x) = Φn(x)(
n

sn(x)
)

where

∣ log Φn∣ = O(logn) µp − a.e.,

and

∀ ε > 0 ∃ M =Mε, nε ∋ µp([∣ log Φn∣ ≥M]) ≤ ε ∀ n ≥ nε.

Sublemma 1

(
n − ρn(x) − 1

sn−ρn(x)−1(x) − 1
) ≤ Nn(x) ≤ (

n − ρn(x)

sn−ρn(x)(x)
)+(

n

sn(x) + ρn(x) + σn(x) − 1
).

Proof We first establish the lower bound. Letting

kn(x) = 2n−ρn(x) −
n−ρn(x)

∑
k=1

2k−1xk,

we see that

(τ kn(x)x)j =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 1 ≤ j ≤ n − ρn(x) − 1,

1 n − ρn(x) ≤ j ≤ n + σn(x) − 1,

xk else.
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It follows that

Nn(x)

≥ #{kn(x) ≤ j ≤ kn(x) + 2n−ρn(x)−1 − 1 ∶
∞

∑
t=1

((τ jx)t − xt) = 0}

= #{(ε1, . . . , εn−ρn(x)−1) ∈ {0,1}n−ρn(x)−1 ∶

n−ρn(x)−1

∑
k=1

εk = sn−ρn(x)−1(x) − 1}

= (
n − ρn(x) − 1

sn−ρn(x)−1(x) − 1
).

To check the upper bound, set Kn(x) = kn(x) + 2n−ρn(x)−1, and note
that

Nn(x) = #{0 ≤ j ≤Kn(x) − 1 ∶ φj(x) = 0} +#{Kn(x) ≤ j ≤ 2n − 1 ∶ φj(x) = 0}

≤ #{ε ∈ {0,1}n−ρn(x) ∶ sn−ρn(x)(ε) = sn−ρn(x)(x)}

+#{ε ∈ {0,1}n ∶ sn(ε) = sn(x) + ρn(x) + σn(x) − 1}

= (
n − ρn(x)

sn−ρn(x)(x)
) + (

n

sn(x) + ρn(x) + σn(x) − 1
).

�

Sublemma 2 Suppose that 0 ≤ k ≤ n, and 0 ≤ k + b ≤ n + a, then

∣ log (
n + a

k + b
)−log (

n

k
)∣ ≤ (∣a∣+∣b∣)(∣ log(p−

∣a∣ + ∣b∣

n
)∣+∣ log(1−p−

∣a∣ + ∣b∣

n
)∣)

where p ∶= k
n .

The proof of sublemma 2 is straightforward, and is left to the reader.

Proof of the main lemma Define Φn by

Nn = Φn(
n

sn
).

By sublemma 1,

Nn ≥ (
n − ρn − 1

sn−ρn−1 − 1
)

and by sublemma 2,

(
n − ρn − 1

sn−ρn−1 − 1
) ≥ [(pn −

an + bn
n

)(1 − pn −
an + bn
n

)]
an+bn

(
n

sn
)

where an = ρn + 1, and bn = sn − sn−ρn−1 + 1 ≤ ρn + 2, whence

Φn ≥ [(pn −
2ρn + 3

n
)(1 − pn −

2ρn + 3

n
)]

2ρn+3
(5)
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Again by sublemma 1,

Nn(x) ≤ (
n − ρn(x)

sn−ρn(x)(x)
) + (

n

sn(x) + ρn(x) + σn(x) − 1
),

and again by sublemma 2,

(
n − ρn
sn−ρn

) ≤ [
1

(pn −
an+bn
n )(1 − pn −

an+bn
n )

]

an+bn

(
n

sn
)

where an = ρn, and bn = sn − sn−ρn ≤ ρn,

(
n

sn(x) + ρn(x) + σn(x) − 1
) ≤ [

1

(pn −
bn
n )(1 − pn −

bn
n )

]

bn

(
n

sn
)

where bn = σn + ρn, and it follows that

Φn ≤ 2[
1

(pn −
2(ρn+σn)

n )(1 − pn −
2(ρn+σn)

n )
]

2(ρn+σn)

. (6)

It follows from (5) and (6) that

∣ log Φn∣ ≤ (2(ρn+σn)+3)∣ log((pn−
2(ρn + σn) + 3

n
)(1−pn−

2(ρn + σn) + 3

n
))∣.

By the SLLN, µp-a.s.,

(pn −
2(ρn + σn) + 3

n
)(1 − pn −

2(ρn + σn) + 3

n
)→ p(1 − p),

also,

(ρn + σn) = O(logn),

whence

∣ log Φn∣ = O(logn).

Also, given ε > 0, if K = 2∣ log p(1 − p)∣, and pL−2 < ε
4 , then,

µp([2(ρn + σn) + 3 ≥ 2L + 3]) ≤ µp([ρn ≥ L]) + µp([σn ≥ L]) ≤ 2pL−2 <
ε

2
,

and by the WLLN, for n large enough,

µp([log((pn −
2(ρn + σn) + 3

n
)(1 − pn −

2(ρn + σn) + 3

n
)) ≥K]) <

ε

2
.

It follows that, for n large enough,

µp([∣ log Φn∣ ≥K
2L+3]) < ε.

�
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Proofs of the results

By Stirling’s formula, and the SLLN, we have that

(
n

sn
) ∼

Cp
√
n

1

pnpnn (1 − pn)n(1−pn)
=
Cp
√
n
enH(pn) µp − a.e. as n→∞,

where

Cp =
1

√
2πp(1 − p)

, and H(p) = −p log p − (1 − p) log(1 − p).

Combining this with the main lemma, we obtain that

Nn = Ψn
enH(pn)
√
n

,(∗)

where

∣ log Ψn∣ = O(logn) µp − a.e.,

and

∀ ε > 0 ∃ M =Mε, nε ∋ µp([∣ log Ψn∣ ≥M]) ≤ ε ∀ n ≥ nε.

Proof of theorem 1 It follows from (∗) that

log2Nn

n
=H(pn) +O(1)→H(p) a.s. as n→∞,

whence, since Nn = S2n(1Ω),

logSn(1Ω)

logn
→H(p) a.s. as n→∞,

and theorem 1 follows from the ratio ergodic theorem. �

The other results are established by considering the Taylor expansion
of H around p, and the asymptotic behaviour of pn − p as n→∞.

Let s∗n = s
∗,p
n =

sn−np√
p(1−p)n

, then

pn − p =
√
p(1 − p)

s∗n
√
n
.

By the central limit theorem (CLT),

µp([s
∗
n ≥ ξ(θ)])→ θ ∀ 0 < θ < 1,

and by the law of the iterated logarithm (LIL)

lim
n→∞

s∗n
√

log(2) n
= −1, lim

n→∞

s∗n
√

log(2) n
= 1 µp − a.e..
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Expanding H around p, we obtain that

H(pn) =H(p) + (pn − p)H
′(p) +

(pn − p)2H ′′(y)

2
for some y between p and pn;

=H(p) + log
1 − p

p

√
p(1 − p)

s∗n
√
n
−
p(1 − p)

2y(1 − y)

s∗2
n

n
.

Proof of theorem 2 It follows from the Taylor expansion of H around
p, (∗) and LIL that

logNn = nH(pn)+O(logn) = nH(p)+ log
1 − p

p

√
p(1 − p)ns∗n+O(logn).

(†)
From (†) and the CLT, we obtain that

α2n(mp∣Ω×{0},1Ω×{0}, θ) = e
nH(p)+cp

√
nξ(θ)(1+o(1))

as n→∞, whence

αn((mp∣Ω×{0},1Ω×{0}, θ) = n
Ĥ(p)ecpξ(θ)

√
logn(1+o(1))

and (3) follows from lemma 1 of [Aar81].

To establish (4), choose t ∈ R and note that by (†),

R(n, t) ∶=
Nn

enH(p)+t
√

n log(2) n
= e
√
n(cps∗n−t

√

log(2) n)+O(logn)

µp-a.e. as n→∞.
It now follows from LIL that

lim
n→∞

R(n, t) = {
0 t > −cp
∞ t < −cp

, & lim
n→∞

R(n, t) = {
0 t > cp
∞ t < cp

Statement (4) follows from this and the ratio ergodic theorem. �

Proof of theorem 3 The proof of theorem 3 is slightly different.
To prove bounded rational ergodicity, we show that ∃ M > 0 such

that

Sn(1Ω×{0}) ≤M ∫
Ω×{0}

Sn(1Ω×{0})dm 1
2

for n ≥ 1 and to obtain the return sequence, we show that

∫
Ω×{0}

Sn(1Ω×{0})dm 1
2
≍

n
√

logn
.

These follow from Nn ≤ 2(
n

[n
2
]
) ≍ 2n√

n
and limn→∞

√
nE(Nn)

2n > 0, which

latter we prove.
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By sublemma 1,

Nn(x) ≤ (
n − ρn(x)

sn−ρn(x)(x)
) + (

n

sn(x) + ρn(x) + σn(x) − 1
)

≤ (
n − ρn(x)

[
n−ρn(x)

2
]
) + (

n

[n
2
]
)

≤ 2(
n

[n
2
]
).

To conclude, by (∗) and the Taylor expansion of H around 1
2 ,

logNn = nH(pn) − log
√
n + log Ψn

= n log 2 − log
√
n + log Ψn − s

∗2
n + o(

s∗3
n

√
n
),

whence lim infn→∞
√
nE(Nn)

2n > 0. �

We conclude with the remark that there is no sequence of constants

an →∞ such that S
T 1
2

n (f)
an

converges in measure on sets of finite measure.
If there were such a sequence, then for some nk →∞,

a2nk ∝
2nk
√
nk

and
logNnk − nk log 2 + log

√
nk

would converge in probability to a constant.
However

logNnk − nk log 2 + log
√
nk = log Ψnk − s

∗2
nk
+ o(

s∗3
nk√
nk

)

whence by CLT,

lim
k→∞

µ 1
2
([logNnk − nk log 2 + log

√
nk < −M]) > 0 ∀ M > 0.
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