
APERIODICITY OF COCYCLES AND CONDITIONAL LOCAL

LIMIT THEOREMS

JON AARONSON, MANFRED DENKER, OMRI SARIG, ROLAND ZWEIMÜLLER

Abstract. We establish conditions for aperiodicity of cocycles (in the sense
of [GH]), obtaining, via a study of perturbations of transfer operators, con-

ditional local limit theorems and exactness of skew–products. Our results

apply to a large class of Markov and non–Markov interval maps, including
beta transformations.

1. Introduction

Let (X,B,m, T ) be a non–singular transformation, and φ : X → G be a measur-
able function taking values in a locally compact Abelian polish (LCAP) group G.
We say that φ is aperiodic [GH] if the only solutions for γ ◦ φ = λg/g ◦ T a.e. with

γ ∈ Ĝ, |λ| = 1 and a measurable transfer function g : X → S1 are γ ≡ 1, λ = 1
and g constant almost everywhere. This condition is crucial for establishing a local
limit theorem (LLT) for the m–distributions of {

∑n−1
i=0 φ ◦ T i}n≥1, and exactness

for the skew–product Tφ(x, t) =
(
Tx, t+ φ(x)

)
(see [G], [GH], [AD2]).

We focus on fibred systems. A fibred system is a quintuple (X,B,m, T, α) where
(X,B,m, T ) is a non–singular transformation on a σ-finite measure space and α ⊂ B
is a finite or countable partition mod m such that:

(1)
∨∞
i=0 T

−iα generates B;
(2) every A ∈ α has positive measure;
(3) for every A ∈ α, T |A : A→ TA is bimeasurable invertible with non–singular

inverse.

The first aim of the paper is to find sufficient conditions for the aperiodicity of
α–measurable φ : X → G where G is a LCAP group.

The reader is invited to prove this when (X,B,m, T, α) is independent in the
sense that m(

⋂n
j=0 T

−jAj) =
∏n
j=0m(Aj) for all n ≥ 1, A1, . . . , An ∈ α, and

φ : X → G (α–measurable) does not take values in a non-trivial, closed coset of G
(see also §2).

In case (X,B,m, T, α) is Markov, i.e. TA is α–measurable for all A ∈ α, and if
also α is finite and m is an equilibrium measure (see [Ke1]), one can use the work of
Livsic [L] to obtain periodic point conditions for aperiodicity. Simpler conditions
have been established in [AD1] for the α–measurable case, using a technique of
Kowalski [Ko1].
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The non-Markov case is not so well–understood. Morita has a condition for
aperiodicity for a certain class of non-Markov Lasota-Yorke maps ([M], proof of
theorem 5.2), but this class does not include the β–transformation (see below).
Kowalski also has a related result ([Ko2], theorem 9). We also mention Nicol and
Scott [NS] who provide rigidity results for the equation φ = h− h ◦ T with T the
β-transformation and φ Lipschitz or Hölder on [0, 1] (see also Pollicott and Yuri
[PY]).

We give a brief account of our results on aperiodicity. We consider fibred systems
which are skew-product rigid (§2, Definition 1), a property shared, for example, by
many piecewise monotonic interval maps. For such systems, we identify a collection
of sets Mrec (§3, Definition 2) for which we prove (theorem 2): if γ ◦ φ = λg/g ◦ T
a.e., then g has a version which is constant on every element of Mrec.

We then study the collection Mrec, seeking conditions for it to cover X with
overlaps, so that every function which is constant on every element of Mrec is
necessarily constant everywhere. We call systems of this type almost onto, in anal-
ogy with the Markov case which was discussed in [AD1]. We give examples of
skew-product rigid almost onto systems in §4.

For these systems, if γ ◦ φ = λg/g ◦ T , then g is constant, and the dynamical
aperiodicity condition reduces to aperiodicity of the distribution of φ, i.e. the non-

existence of non-trivial γ ∈ Ĝ, λ ∈ S1 such that γ ◦ φ = λ a.e. This is equivalent to
{φ(x)− φ(y) : x, y ∈ X} generating a dense subgroup of G.

Our tests for aperiodicity in non-Markov situations are complemented by a cor-
responding study of perturbations of transfer operators. In §5 we prove continuity
of perturbations for a large class of expanding interval maps, which leads to suffi-
cient conditions for the exactness of skew products and to conditional local limit
theorems.

As an illustration, consider the β–transformation T : [0, 1] → [0, 1], T (x) =
βxmod 1 for β > 1, together with its absolutely continuous invariant probability
measure dP = q(x)dx (see Parry [P]). Define for x ∈ [0, 1], Xn(x) := [βTn−1x].
The sequence {Xn(x)}n≥1 is called the (greedy) β–expansion of x, because

x =

∞∑
n=1

1

βn
Xn(x).

We apply our results to the study of the stochastic behaviour of {Xn}n≥1. If β
is an integer, then Xn are i.i.d’s. We prove that the following stochastic properties,
well–known for i.i.d’s (see Feller [F], §IV.6 and §VII.4), persist for non–integer β
(when {Xn}n≥1 may not be Markov):

(1) de Moivre’s approximation: If Sn :=
∑n
k=1Xk, then

σ
√
nP(Sn = kn)→ 1√

2π
e−

x2

2 as n→∞, kn ∈ Z, kn−nE(X1)
σ
√
n

→ x

uniformly as x ∈ K for all K ⊂ R compact.
(2) Asymptotics of random walks on R driven by ”β-jumps”: Suppose that

ψ : [0, 1] → R satisfies E(ψ) = 0 and ψ(x) = a[βx] where {ai − aj : 0 ≤
i, j ≤ [β]} are rationally independent, then Tψ is conservative, exact and
pointwise dual ergodic with an(Tψ) ∝

√
n (as defined in e.g. [A]).
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(3) The Hewitt-Savage zero–one law: Call x, y ∈ [0, 1] β-exchangeable if their
β–expansions differ by a finite permutation. If a Borel set E satisfies

x ∈ E, y and x are β-exchangeable =⇒ y ∈ E,
then P(E) is equal to zero or one.

De Moivre’s approximation follows from aperiodicity of φ : [0, 1]→ Z, φ(x) := [βx]
(see [RE]), and the Hewitt–Savage zero–one law (for non-integer β) follows from
the aperiodicity of F# : [0, 1] → Z[β], F#(x) = (δφ(x),1, . . . , δφ(x),[β]) (see [G]).
Details are given in §6.

2. Fibred Systems, Skew-Products and skew-product rigidity

Let (X,B,m, T, α) be a fibred system. Elements of αn :=
∨n−1
i=0 T

−iα are called
cylinders of length n. We agree to call X (the) cylinder of length zero. We denote
the cylinder of length n which contains x ∈ X by αn(x). We say that a set E ⊆ X is
almost open modm, if for almost every x ∈ E, there exists an n such that αn(x) ⊆
Emodm. Ergodic sums of φ : X → G are denoted by φn := φ+φ◦T+. . .+φ◦Tn−1.

Throughout mλ will denote Lebesgue measure. A piecewise monotonic (resp.
increasing) map of the interval is a triple (X,T, α) where X is an interval, α is
a finite or countable generating partition ( modmλ) of X into open intervals, and
T : X → X is a map such that T |A is continuous and strictly monotonic (resp.
increasing) for each A ∈ α. For piecewise monotonic maps of the interval equipped
with a non-atomic measure, all cylinders are intervals, and therefore a set is almost
open iff it is equal to an open set modmλ.

Recall that the Frobenius–Perron operator or transfer operator of a non-singular
transformation (X,B,m, T ) is the (unique) operator PT : L1(m) → L1(m) which
satisfies

∀g ∈ L∞, f ∈ L1

∫
g · PT fdm =

∫
g ◦ T · fdm.

If (X,B,m, T, α) is a fibred system, then T : A → TA has a non singular inverse
vA : TA→ A for each A ∈ α, and the Frobenius-Perron operator of T is

PT f =
∑
A∈α

1TAv
′
A · f ◦ vA, where v′A :=

dm ◦ vA
dm

.

We are interested in the collection of all skew-products of the form

τS : X × Y → X × Y , τS(x, y) =
(
Tx, S(α(x))(y)

)
where (Y,F , µ) is a Lebesgue probability space, Aut(Y ) is the collection of its au-
tomorphisms (invertible bi-measurable measure–preserving transformations), and
S : α → Aut(Y ) is arbitrary. We call these transformations skew–products over α.
We note for future reference that τnS (x, y) =

(
Tnx, S(αn(x))(y)

)
, where for every

cylinder C = [A0, . . . , An−1], S(C) := S(An−1) ◦ . . . ◦ S(A0), and that the transfer
operator of τS is

(1) (PτSf)(x, y) =
∑
A∈α

1TA(x)v′A(x)f
(
vA(x), S

(
A
)−1

y
)
.

Definition 1. A fibred system (X,B,m, T, α) is called skew-product rigid if a.e.
x ∈ X is included in a cylinder of finite measure, and if for every invariant density
h(x, y) (not necessarily integrable) of an arbitrary skew–product over α, [h(·, y) > 0]
is almost open for a.e. y ∈ Y .
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The following proposition shows a stronger property for independent fibred systems.

Proposition 1 ([M1]). Let (X,B,m, T, α) be an independent fibred system and
suppose that S : α → Aut(Y ). If h ∈ L1(m × µ) satisfies PτSh = λh for some
λ ∈ S1, then h is X ×F-measurable.

Proof. A calculation shows that

PnτSh(x, y) = PnT (h(·, S(αn(·))−1(y))(x).

To see that h is X × F-measurable, let hn be αn × F-measurable so that ‖h −
hn‖L1(m×µ) → 0. Evidently

PnτShn(x, y) = PnT (hn(·, S(αn(·))−1(y))(x) =

= E(hn(·, S(αn(·))−1(y)) = E(PnτShn|X ×F).

This allows us to bound ‖h− E(h|X ×F)‖1 by

‖h− PnτSh‖1 + ‖PnτSh− P
n
τShn‖1+

+ ‖E(PnτShn|X ×F)− E(PnτSh|X ×F)‖1 + ‖E(PnτSh|X ×F)− E(h|X ×F)‖1 ≤
≤ 2‖h− PnτSh‖1 + 2‖h− hn‖1 = 2|1− λn| · ‖h‖1 + 2‖h− hn‖1.

The limit inferior of this estimate is zero, so h = E(h|X×F) almost everywhere. �

Corollary 1. If (X,B,m, T, α) is independent, G is a LCAP group, φ : X → G is
α–measurable and does not take values in a non-trivial, closed coset of G, then φ
is aperiodic.

Proof. Suppose that γ ◦ φ = λg◦T
g where γ ∈ Ĝ, λ ∈ S1 and g : X → S1 is

measurable. Setting Y = S1, µ = Lebesgue measure and S(a)(y) := γ◦φ(a)y we see
that PτSh = λh where h(x, y) := g(x)y. By the previous proposition h(x, y) = h(y),
whence γ ◦ φ ≡ λ. It follows that γ ≡ 1 = λ. �

We discuss some other examples. Consider the following properties for a piece-
wise monotonic map of the interval (X,T, α):

(A) Adler’s condition: for all A ∈ α, T |A extends to a C2 map on A and
T ′′/(T ′)2 is bounded on X.

(F) Finite images: {TA : A ∈ α} is finite.
(U) Uniform expansion: inf |T ′| > 1.
(N) Non-uniform expansion: there is a finite set of partition sets ζ ⊆ α such

that every Z ∈ ζ has an indifferent fixed point xZ ∈ ∂Z with Thaler’s
assumptions:
(a) Tx −−−−−−−→

x→xZ ,x∈Z
xZ and T ′x −−−−−−−→

x→xZ ,x∈Z
1.

(b) xZ is a one-sided regular source: T ′ decreases on (−∞, xZ) ∩ Z and
increases on (xZ ,∞) ∩ Z (one of these conditions is empty).

(c) for every ε > 0 there exists ρ(ε) > 1 such that |T ′| ≥ ρ(ε) on

Xε := X \
⋃
Z∈ζ

Z ∩ (xZ − ε, xZ + ε).

Piecewise monotonic maps (X,T, α) of the interval with properties (A),(F),(U) (re-
spectively (A),(F),(N)) will be called AFU maps (respectively AFN maps). They
admit at least one finite (respectively σ–finite) absolutely continuous invariant mea-
sure m, cf. [Z1]. In this context, B will always denotes the Borel σ–algebra.
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Suppose that (X,T, α) is an AFU map, and let h(x, y) be some invariant density
of an arbitrary skew-product over α, then:

(1) If α is a Markov partition, then it can be shown that for almost every y,
h(·, y) : I → I has a piecewise Hölder version (see [Ko1] and proposition
3.6 in [AD1]).

(2) When α is not necessarily a Markov partition, it can be shown that for
almost every y, h(·, y) : I → R has a version with bounded variation (see
lemma 4 in [Ko2]).

Thus, AFU maps (with or without the Markov property) are skew-product rigid.
Actually the same is true for AFN maps, which shows that this property of fibred
systems does not depend on the existence of an absolutely continuous invariant
probability measure.

Theorem 1. AFN maps are skew-product rigid.

We begin with an account of the basic structure of AFN maps (cf. [Z1, Z2]):
Every AFN map has an absolutely continuous, invariant measure (a.c.i.m.) m �
mλ with the following decomposition:

X =

N⊎
i=1

Ni−1⊎
j=0

T jXi modm , TNiXi = Xi modmλ

and X =

∞⋃
n=1

T−n

 N⋃
i=1

Ni−1⊎
j=0

T jXi

 modmλ.

Each Xi is a finite union of intervals and TNi : Xi → Xi is conservative exact.
Moreover, m(Xi) =∞ iff Xi contains a (possibly one–sided punctured) neighbour-
hood of xZ for some Z ∈ ζ, and in this case Ni = 1.

The restriction of an AFN (resp. AFU) map to one of its ergodic components⋃Ni−1
j=0 T jXi’s is called a basic AFN (resp. AFU) map.
The proof of theorem 1 is based on an inducing procedure which we now describe.

Let (X,B,m, T, α) be a conservative ergodic measure–preserving fibred system. Fix
some α–measurable set A with an α–measurable partition η (for interval maps this
will be the partition into connected components), and write A =

⊎
i∈ΛAi with

Ai ∈ α. The induced system on A is the fibred system (A,BA,mA, TA, αA) where
BA := {E ∈ B : E ⊆ A}, mA = m|BA , TA = Tϕ where

ϕ(x) = 1A(x) inf{n ≥ 1 : Tn(x) ∈ A}

and αA = αA(η) =
{

[Ai, B1, . . . , Bn, C] : i ∈ Λ, n ≥ 0, Bj ∈ α \ {Ak}k∈Λ, C ∈ η}.

Lemma 1. Let (X,B,m, T, α) be a conservative ergodic measure–preserving fibred
system. Suppose that

(2) ∀n, k∀C ∈ αk, Tn(C) is almost open mod m.

If there is some α–measurable set A such that (A,BA,mA, TA, αA) is skew-product
rigid, then so is (X,B,m, T, α).

Proof. Fix some skew–product over α, τ = τS : X × Y → X × Y where (Y,F , µ)
is some standard probability space, and suppose h(x, y) ≥ 0 is an invariant density
for τ . We show that [h(·, y) > 0] is almost open mod m for a.e. y.
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We check that τ is conservative. Indeed, for every B ∈ α
∞∑
n=1

1B×Y ◦ τn ≡
∞∑
n=1

1B ◦ Tn =∞ m× µ–almost everywhere in B × Y .

so B×Y is in the conservative part of τ for all B ∈ α. It follows that we can induce
τ on A × Y . The result is a skew–product over αA, τSA : A × Y → A × Y where
SA : αA → Aut(Y ) is

SA([Ai, B1, . . . , Bn−1, Aj ]) := S(Bn−1) ◦ . . . ◦ S(B1) ◦ S(Ai).

The set A×Y is a sweep–out set for τ , because
⋃∞
k=1 τ

−k(A×Y ) =
⋃∞
k=1 T

−kA×Y
and T is conservative ergodic. We can therefore apply Kac’s formula. Writing

h̃ = h · 1A×Y and recalling the definition of the Frobenius–Perron operator of τ ,
Pτ , we get for all f ∈ L∞(X × Y ):∫

X×Y
fhd(m× µ) =

∫
A×Y

ϕ−1∑
i=0

f ◦ τ ihd(m× µ)

=

∞∑
n=1

n−1∑
i=0

∫
X×Y

1[ϕ=n]×Y h̃f ◦ τ id(m× µ)

=

∞∑
i=0

∞∑
n=i+1

∫
X×Y

P iτ

(
1[ϕ=n]×Y h̃

)
fd(m× µ).

It follows that

h =

∞∑
n=0

Pnτ

(
h̃1[ϕ>n]×Y

)
.

If τ̃ = (τ)A×Y = τSA , then h̃d(m×µ) is τ̃–invariant. By assumption, the system
(A,BA,mA, TA, αA) is skew-product rigid, and it is easy to use this to check that

(3) [h̃(·, y) > 0] is almost open mod m, for µ–a.e. y ∈ Y .

Now, if Hy := [h(·, y) > 0], then (1) gives, modm,

Hy =
{
x ∈ X :

∞∑
n=1

Pnτ

(
h̃1[ϕ>n]×Y

)
> 0
}

=

∞⋃
n=1

{
x ∈ X : Pnτ

(
h̃1[ϕ>n]×Y

)
> 0
}

=

∞⋃
n=1

{
x ∈ X :

∑
C∈αn

1TnC(x)v′C(x)h̃
(
vC(x), S(C)−1(y)

)
1[ϕ>n](vC(x)) > 0

}
=

∞⋃
n=1

⋃
C∈αn

Tn(C) ∩ Tn([ϕ > n] ∩ C) ∩ {x ∈ X : h̃
(
vC(x), S(C)−1(y)

)
> 0}

=

∞⋃
n=1

⋃
C∈αn

Tn
(
[ϕ > n] ∩ C

)
∩
{
x ∈ X : h̃

(
vC(x), S(C)−1(y)

)
> 0
}
.

Tn
(
[ϕ > n] ∩ C

)
is a union of images of cylinders, so it is almost open mod m by

(2). We claim that G(y, n, C) :=
{
x ∈ X : h̃

(
vC(x), S(C)−1(y)

)
> 0

}
is almost

open mod m for µ–almost all y ∈ Y .
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By (3), and since αA-cylinders are α-cylinders, there exists some Y1 ⊆ Y such
that

µ(Y \ Y1) = 0 and ∀y ∈ Y1 A ∩ [h̃(·, y) > 0] is m-almost open.

Set Y ′ :=
⋂
{S(C ′)−1(Y1) : C ′ is a cylinder }. Since for every C ′, S(C ′) ∈ Aut(Y ),

µ(Y \ Y ′) = 0 and ∀y ∈ Y ′∀C ′ ∈ αn, C ′ ∩ [h̃(·, S(C ′)−1y) > 0] is m-almost open.

Now fix y ∈ Y ′. Since m ◦ v−1
C ∼ m, for almost every x ∈ [h̃(vC(x), S(C)−1y) > 0]

there is a cylinder B such that

vC(x) ∈ B ⊆ C ∩ [h̃(·, S(C)−1y) > 0].

Choose, using (2), a cylinder D ⊆ αn(x)∩Tn(B) which contains x. If x′ ∈ D, then
vC(x′) ∈ B and so h(vC(x′), S(C)−1y) > 0. It follows that x ∈ D ⊆ G(y, n, C).
This shows that G(y, n, C) is almost open for all y ∈ Y2, n ∈ N, and C ∈ αn. Since,
again by (2), Tn([ϕ > n]∩C) is almost open mod m, we have that Hy = [h(·, y) > 0]
is almost open mod m for µ–almost every y, completing the proof. �

Proof of theorem 1. We can assume without loss of generality that (X,B,m, T )
is conservative and ergodic (otherwise decompose T to its basic components as
explained in the the beginning of the section, and treat each component separately).

Lemma 8 of [Z2] shows that every conservative ergodic AFN–map has an α2–
measurable sweep out setA ⊆ X with a finite partition η into connected components
such that the induced system on A is AFU, and hence skew-product rigid. It follows
from lemma 1 that (X,B,m, T, α2) also has this property . (AFN maps are piecewise
monotonic, so (2) holds, because cylinders are intervals, and images of intervals are
almost open.) It remains to observe that (X,B,m, T, α) is skew-product rigid as
soon as (X,B,m, T, α2) is. �

3. Aperiodicity

Let (X,B,m, T, α) be a fibred system. Elements of

M := {Tnαn(x) : n ≥ 1, x ∈ X} ∪ {X}

are called image sets. We will be mainly interested in fibred systems for which
every image set is almost open. This is the case for piecewise monotonic maps of
the interval, for example.

Definition 2. A cylinder C of length n0 is called a cylinder of full returns, if for
almost all x ∈ C there exist nk ↑ ∞ such that Tnkαnk+n0(x) = C. In this case we
say that Tn0(C) is a recurrent image set, and write

Mrec := {J : J is a recurrent image set}.

Here, we agree to call X is a cylinder of length zero.
A measurable map f : X → S (S some arbitrary set) is called a colouring of a

collection C ⊂ B, if f |C is almost everywhere equal to a constant for every C ∈ C.
The constant colourings are called trivial colourings.

Definition 3. A fibred system is called almost onto if all the colourings of Mrec

are trivial (in particular, X =
⋃
Mrec modm). A map for which X ∈ Mrec is

called quasi–beta.
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The beta transformation is quasi–beta (see §4.2). Other examples of almost-onto
maps (quasi-beta and not quasi–beta) are given in §4.

Theorem 2 (Mrec-measurability of the transfer function g). Let (X,B,m, T, α) be
a skew-product rigid measure–preserving fibred system whose image sets are almost
open. Let G be a LCAP group. If γ ◦ φ = λg/g ◦ T a.e. where φ : X → G is

α-measurable, γ ∈ Ĝ, and λ ∈ S1, then g is constant on every recurrent image set.

Corollary 2. If in addition (X,B,m, T, α) is almost onto, then φ is aperiodic iff
the group generated by {φ(x)− φ(y) : x, y ∈ X} is dense in G.

Proof. Suppose γ ◦ φ = λg/g ◦ T . By theorem 2, g is a colouring of Mrec, whence
constant. It follows that γ ◦ φ = λ and the corollary easily follows. �

Remark 1. If α is a Markov partition and T is conservative, then Mrec = {TA :
A ∈ α} and the theorem reduces to theorem 3.1 in [AD1].

Proof. In this case, every cylinder of positive measure is a cylinder of full re-
turns, and for every cylinder C = [A0, . . . , An0−1], Tn0(C) = T (An0−1). There-
fore Mrec = {T (A) : A ∈ α}. The map is almost onto iff the only colouring of
{T (A) : A ∈ α,m(A) > 0} is trivial, and this is equivalent to the almost onto
condition mentioned in [AD1]: ∀A,A′ ∈ α,∃B1, . . . , Bn ∈ α such that

m(TA ∩ TB1),m(TB1 ∩ TB2), . . . ,m(TBn ∩ TA′) > 0.

This reduces theorem 2 to theorem 3.1 in [AD1]. �

Remark 2. If (X,B,m, T, α) is Markov and skew product rigid, then it is almost
onto iff F ] is aperiodic, where fixing a0 ∈ α, F ] : X → Zα\{a0} is defined by
F ](x)a := δa,α(x) (a ∈ α \ {a0}). Thus the almost onto condition in Corollary 1
cannot be omitted.

Proof. Almost onto implies F ] aperiodic by Corollary 1.
To see the converse, it suffices to show that if T is not almost onto, then there

exists an α measurable φ : X → Z which is not aperiodic, even though {φ(x)−φ(y) :
x, y ∈ X} generates Z.

If the system is not almost onto, then there exists some α-measurable two-set
partition α̃ = {A−, A+} of X such that each TA, A ∈ α, is contained in A− or in
A+. (Let α∗ be the finest partition with the property that each TA is contained
in some atom of α∗. By assumption, α∗ is nontrivial. Fix any A− ∈ α∗ and let
A+ := X \A−.) Define

φ(x) :=

{
0 if x ∈ X0 := {x : α̃(x) = α̃(Tx)}
1 if x ∈ X1 := {x : α̃(x) 6= α̃(Tx)}

which is measurable α since the sets X0, X1 are. By transitivity, the Xi are
nonempty. Letting

g(x) :=

{
1 if x ∈ A+

−1 if x ∈ A−
we have

eiπφ =
g

g ◦ T
=

{
1 on X0

−1 on X1.

This shows that φ : X → Z is not aperiodic, even though {φ(x)− φ(y) : x, y ∈ X}
generates Z. �
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Proof of theorem 2. The proof is based on the following statement:

(∗) g is constant on every cylinder of full returns.

Given (∗) the proof of the theorem is as follows. Fix J ∈ Mrec, and choose some
cylinder of full returns C ∈ αn0 such that J = Tn0(C). Let g(C) be the value
of g on C, and define vC : J → C to be the inverse of Tn0 : C → J . Then
γ ◦ φn0

= λn0g/g ◦ Tn0 , whence γ ◦ φn0
◦ vC = λn0g ◦ vC/g. Therefore, if φn0

(C) is
the value of φn0

on C, then

g(x) =
λn0g(C)

γ(φn0
(C))

(x ∈ J)

which proves that g is constant on J . This proves the theorem.
We prove (∗) first under the additional assumption that T is quasi–beta, and then

in the general case. We use the following concept, essentially due to to Kowalski
[Ko1, Ko2]:

Definition 4. Let (X,B,m, T, α) be a fibred system.

(1) A skew–product over α is called simple if each of its invariant densities
h(x, y) satisfies [h > 0] ∈ α⊗F .1

(2) (X,B,m, T, α) is weak quasi–Markov (wqM), if all skew–products over α
are simple.

Remark 3. 1) These definitions can be made with Aut(Y ) replaced by the col-
lections of the null–preserving transformations of (Y,F , µ), or the non–singular
transformations of (Y,F , µ). The corresponding properties are then called strong
quasi–Markov (sqM) and quasi–Markov (qM). Note that [Ko1] states qM ⇒ α is
a Markov partition, but only proves sqM ⇒ α is a Markov partition.

2) It is not hard to show that a probability preserving fibred system (X,B,m, T, α)
is wqM iff for every S : α→ Aut(Y ) every τS–invariant set is α⊗F–measurable.

3) Using 2) it is not hard to show that if (X,B,m, T, α) is an almost onto, wqM
probability preserving fibred system, and S : α→ Aut(Y ), then the joint ergodicity
of {S(a) : a ∈ α} implies the ergodicity of τS , and indeed, λ ∈ S1 is an eigenvalue
for τS iff there is an h : Y → C satisfying h ◦ S(a) = λh for all a ∈ α.

Returning to the proof of theorem 2, we show that if (X,B,m, T, α) is skew-
product rigid and is quasi-beta, then it is weakly quasi–Markov. We then show
that the weak quasi–Markov property implies (∗), thus proving the theorem in the
case of quasi-beta systems.

Step 1. A skew-product rigid fibred system which is quasi–beta is weak quasi–
Markov.

Proof. Let (X,B,m, T, α) be a skew-product rigid quasi–beta fibred system. Fix
some standard probability space (Y,F , µ) and let τS : X × Y → X × Y be some
skew–product over α. We must show that every non-negative measurable solution
of PτSh = h satisfies [h > 0] ∈ α⊗F . Fix such an h and set E := [h > 0].

Recall that the y–section of a set E is Ey := {x ∈ X : (x, y) ∈ E}. For every
B ∈ B set FE(B) := {y ∈ Y : B ⊆ Ey modm}. This is F–measurable, because

1Here and throughout F1⊗F2 denotes the completion of the product σ–algebra, and invariant
densities are not required to be integrable.
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E ∈ B ⊗ F .2 We show that E = E1 modm× µ, where

E1 := {(x, y) ∈ E : α1(x)× {y} ⊆ E} ≡
⋃
A∈α

A× FE(A)

thereby proving the proposition.
We claim that

E =
⋃

C cylinder

C × FE(C) modm× µ,

(1) RHS ⊆ LHS: Enough to see that for every cylinder C, (m × µ)
(
[C ×

FE(C)] \E
)

= 0. This is because [C×FE(C)] \E =
⋃
y∈FE(C){x ∈ C : x ∈

C \ Ey} × {y} and every y–section of this set has measure zero.
(2) To see the other inclusion, fix y and suppose x ∈ (LHS \ RHS)y := {x :

(x, y) ∈ LHS \ RHS}. Then x ∈ [h(·, y) > 0] and there is no n such that
αn(x) ⊆ [h(·, y) > 0]. The system being skew-product rigid, we find that

m ((LHS \RHS)y) = 0 for µ-a.e y ∈ Y.

It follows from Fubini’s theorem that LHS ⊆ RHSmodm× µ.

Therefore, if E 6= E1 modm × µ, then there is a cylinder of positive measure
C = [A0, . . . , An−1] such that µ(FE(C) \ FE(A0)) > 0 (otherwise C × FE(C) ⊆ E1

for all cylinders C, and this implies E1 ⊇ E). If F := FE(C) \ FE(A0), then
E \E1 ⊇ C × F modm× µ. This shows that if E 6= E1 modm× µ, then there is a
cylinder C and an F–measurable F such that

E \ E1 ⊇ C × F and (m× µ)(C × F ) > 0.

We show that C ⊇ C̃ where C̃ = [A0, . . . AN−1] is a cylinder of length N such

that if S̃ = S(C̃), then

(4) m(C̃) > 0 , TN (C̃) = X , µ
(
F ∩ S̃(F )

)
> 0.

The quasi-beta property is that for a.e. x ∈ C, Tnαn(x) = X infinitely often. It
follows that C ⊇ C ′ = [A0, . . . , Am−1] where Ai ∈ α, m(C ′) > 0, and Tm(C ′) = X.
Set S := SAm−1

◦ · · · ◦ SA0
. This is an automorphism of (Y,F , µ), so there exists

some k ≥ 1 such that µ
(
F ∩ Sk(F )

)
> 0. If C̃ :=

⋂k−1
i=0 T

−imC ′ ∈ αkm, then

Tmk(C̃) = Tmk(C ′ ∩ T−mC ′ ∩ . . . ∩ T−(k−1)mC ′)

= Tmk
(
(Tm|C′)−1(C ′ ∩ T−mC ′ ∩ . . . ∩ T−m(k−2)C ′)

)
= Tm(k−1)

(
C ′ ∩ T−mC ′ ∩ . . . ∩ T−m(k−2)C ′

)
= . . . = Tm(C ′) = X.

Finally, note that the local invertibility property of (X,B,m, T, α) and TN C̃ = X

imply that m(C̃) > 0, so (4) is satisfied with N = mk and C̃.
We can now derive the contradiction which proves that E 6= E1 modm × µ is

impossible. Set F̃ = F ∩ S̃(F ), and consider C̃ × F̃ . By construction,

A0 × F̃ ⊆ TN C̃ ×
(
F ∩ S̃(F )

)
⊆ τNS (C̃ × F ) ⊆ τNS (C × F ) ⊆ τNS (E) ⊆ E

2To see this define ψ(y) :=
∫
B 1E(x, y)dm(x). Then y ∈ FE(B) iff ψ(y) = m(B). The

measurability of FE(B) now follows from Fubini’s theorem, which says that ψ is F–measurable.
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because E = [h > 0] and h is an invariant density, so τS(E) ⊆ E.3

It follows that A0 × F̃ ⊆ E1, whence C̃ × F̃ ⊆ E1. But this is impossible, since

C̃ × F̃ ⊂ C × F ⊆ E \ E1 modm× µ and (m× µ)(C̃ × F̃ ) > 0.

Step 2. The weak quasi–Markov property implies that g is α–measurable for
measure–preserving fibred systems.

Proof ([Kow], [AD]). Set ψ := γ ◦ φ : X → S1. Let Y = S1 equipped with Lebesgue
measure µ, and consider S : α→ Aut(Y ) given by S(A)(y) = λy ·ψ(A) where ψ(A)
is the value of ψ on A. The corresponding skew–product, τS : X × Y → X × Y , is
τS(x, y) = (Tx, λy · ψ(x)).

A calculation shows that h(x, y) := g(x) · y satisfies h ◦ τS = h. Thus, every level
set of h, At = [h < t] is τS–invariant, and since T preserves m, 1At is an invariant
density for τS . By the weak quasi-Markov property, At ∈ α⊗B(S1), and it follows
that h is α⊗ B(S1)–measurable. This can only happen if g is α–measurable.

This proves (∗) and the theorem in the case when T is quasi–beta.

We now consider the general case. First, we note that we may assume without

loss of generality that λ = 1. Indeed, suppose λ = eiθ, and define G̃ := G × R,

φ̃(x) = (φ(x),−θ), and γ̃(x, t) = eitγ(x). Then γ̃ ◦ φ̃ = g/g ◦ T , and φ̃ is α–
measurable, so we in the situation of the theorem but with λ = 1. Henceforth,
assume that λ = 1.

Next fix some cylinder C ∈ αn0 of full returns. If n0 = 0, T is quasi-beta and
we are done, so assume that n0 > 0. Next define

ϕC(x) := 1C(x) inf{n ≥ 1 : Tn(x) ∈ C}, αC := {αϕC(x)+n0
(x) : x ∈ X}, TC := TϕC

and let mC and BC be the restrictions of m and B to C. Then (C,BC ,mC , TC , αC)
is a fibred map with almost open image sets (w.r.t (Tc, αC)).

We claim that this system is quasi–beta. Indeed, C has full returns, so for almost
every x ∈ C there are nk ↑ ∞ with Tnkαnk+n0(x) = C. Since nk is a time of return,
there exists some mk such that

nk = ϕC(x) + ϕC(TCx) + . . . ϕC(Tmk−1
C x).

By the definition of αC ,

(αC)mk(x) = αnk+n0
(x)

whence (TC)mk(αC)mk(x) = Tnkαnk+n0
(x) = C.

If we set φC := φ + φ ◦ T + . . . φ ◦ TϕC−1, we get for almost every x ∈ C,
γ ◦ φC = g/g ◦ TC . Since φC is αC–measurable and TC is quasi–beta, we have by
the first part of the proof that g is constant on C, whence (∗). �

To conclude this section we mention another aspect of cylinders of full returns:

Remark 4 (Relation to Iterated Function Systems). We can also characterize
cylinders of full returns in terms of a suitable iterated function system (IFS). Let
(X,B,m, T, α) be a fibred system, and let α̃+ := {A ∈

⋃
n≥1 αn : m(A) > 0}. Given

C ∈ α̃+ we let WC := {W ∈ α̃+ : T |W |W ⊇ C} and notice that [W0, . . . ,Wk−1] ∈
WC implies [Wi, . . . ,Wk−1] ∈ WC for i < k.

3Proof: for every f ≥ 0 such that fh ∈ L1(m × µ),
∫ ∫

1Efh =
∫ ∫

1E ◦ τSf ◦ τSh ≤∫ ∫
f ◦ τSh =

∫ ∫
fh =

∫ ∫
1Efh, so that ≤ is actually =. Since f was arbitrary, 1E ◦ τS = 1 a.e.

on E = [h > 0] so that τS(E) ⊆ Emodm.
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Consider the IFS XC := {v = (T |W | |W )−1 |C : W ∈ WC} consisting of maps
v : C → X. Observe that if vi = (T |Wi| |Wi

)−1 |C∈ XC , i ∈ {1, 2}, and v2(C)∩C 6=
∅, then v2(C) ⊆ C (since v2(C) = [W2, C] ∈ ξ|W2|+|C|) and v1 ◦ v2 ∈ XC with
v1 ◦ v2(C) = [W1,W2, C].

Therefore, if x = v1 ◦ . . . ◦ vn(xn) for some xn ∈ C and vi ∈ XC , then x ∈ [W,C]
for some W ∈ WC with |W | ≥ n. Hence if X∗ ⊆ XC and X∗ ⊆ X are such
that X∗ =

⋃
v∈X∗ v(C ∩X∗), then any x ∈ X∗ belongs to infinitely many [W,C],

W ∈ WC . By lemma 2, if X∗ has positive measure, then C is a cylinder of full
returns.

Specifically, if we letW∗C := {W ∈ WC : @W1 ∈ C∩WC such that W = [W0,W1]
with | Wi |> 0} and define X∗C like XC with WC replaced by W∗C , lemma 2 also
shows necessity of X being covered (mod m) by the images of v ∈ X∗C , so that

C is a cylinder of full returns iff X =
⋃
v∈X∗C

v(C ∩X) (mod m).

4. Examples II: Almost Onto Systems

4.1. Finding recurrent image sets. The following result contains the informa-
tion we need on the structure of Mrec:

Theorem 3 (The family of recurrent image sets). Let T be a basic AFU map with
partition α and absolutely continuous invariant measure m. Then:

(1) J is a recurrent image set iff [Tnαn(x) = J infinitely often] has positive
measure, and in this case this set is of full measure.

(2) If inf |(TN )′| > 2, then at least one of the elements of αN is a cylinder of
full returns.

(3) If J is a recurrent image set for T , and J ⊇ C where C is a cylinder, then
T |C|(C) is again a recurrent image set.

(4) X is covered (up to finitely many points) by some finite M′rec ⊆Mrec.

In what follows y is called a fixed point in a cylinder A if

(1) T is orientation preserving in A, y ∈ A and T (x)→ y as x→ y in A, or
(2) T is orientation reversing in A, y ∈ int(A), and T (x)→ y as x→ y in A.

(This is intended to prevent ambiguity when y is a discontinuity point.)

Theorem 4 (Recurrent image sets at fixed points). Let (X,T, α) be a basic AFU-
map, and suppose y is a fixed point in A ∈ α. If T (A) ⊇ A, then each of the images
T (I1), T (I2) of the components I1, I2 of A\{y} is covered by a recurrent image set.

In particular, if T has a full branch, then there are two recurrent image sets
J, J ′ ∈ Mrec such that X = J ∪ J ′ up to end points of J, J ′ (and if y ∈ ∂A, then
J = J ′).

The theorem suggests the following test for the almost onto property: Define the
full-image transition graph J = (Tα, ) by requiring that I  J iff I covers some
C ∈ α with TC = J . Then:

Corollary 3. Let T be a basic AFU-map on the interval X with
⋃
Tα connected,

and suppose that infX |T ′| > 2 or that there is an orientation preserving fixed point
at ∂A for some A ∈ α. Then Tα ∩Mrec 6= ∅, and if J is irreducible, then T is
almost onto.
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Proof. Part 2 of theorem 3 and theorem 4 show that under the assumptions of the
corollary, Tα ∩Mrec 6= ∅. It is enough to show that Tα ⊆ Mrec (since

⋃
Mrec,

too, is connected in this case). Theorem 3 says that there is some J ∈ Tα ∩Mrec,
and that if J = J0  J1  . . . Jk−1, then each Ji is in Tα ∩Mrec. �

Example 1. Set Zi = [ i4 ,
i+1
4 ), (i = 0, . . . , 3) and fix θ ∈ (0, 1

2 ). Let Tθ : [0, 1) →
[0, 1) be the map given by T |Zi maps Zi affinely onto Bi, where B0 = B2 = [0, 1−θ)
and B1 = B3 = [θ, 1), together with α = {Z0, . . . , Z3}. Then Tθ is almost onto but
not quasi–beta.

Proof. Tα = {[0, 1 − θ), [θ, 1)} and [0, 1 − θ)  [θ, 1)  [0, 1 − θ) so that the
conditions of the lemma are satisfied, whence T is almost onto. T is not quasi–beta
because there are no cylinders with image equal to the whole interval. �

The remainder of this section is dedicated to the proof of theorem 3. We need
the following lemma:

Lemma 2. Let (X,B,m, T, α) be a conservative ergodic fibred system. The follow-
ing are equivalent:

(1) C ∈ αn0 is a cylinder of full returns,
(2) ϕC(x) := min{n ≥ 1 : Tnαn+|C|(x) = C} is finite for m-a.e. x ∈ C.
(3) There exists M of positive measure such that for almost every x ∈M , there

are nk ↑ ∞ with Tnkαnk+n0(x) = C.
(4) For almost every x ∈ X, there are nk ↑ ∞ such that Tnkαnk+n0(x) = C.

In particular, if the system is conservative ergodic and J ∈ Mrec, then for a.e.
x ∈ X, Tnαn(x) = J for infinitely many n ∈ N.

Proof. (1)⇒ (2) is trivial.
In order to prove that (2) ⇒ (3), it is enough to prove that (2) ⇒ (1) because

(1) ⇒ (3) (take M = C). Consider the full return map TC defined a.e. on

C by TCx := Tϕ
C(x)x ∈ C, whose natural partition αC is given by αC(x) =

αϕC(x)+|C|(x) (mod m). Then m |C ◦(TC)−1 � m |C , so that ϕC ◦ TC is defined

a.e. on C, and (by induction) so are all powers (TC)n, n ≥ 1, proving (1).
We prove (3)⇒ (4). For this purpose define F` : X → 2α` , ` ≥ 1 by

F`(x) := {C ∈ α` : Tnαn+`(x) = C for infinitely many n ∈ N}.

Observe that for every x, Tnαn+`(x) = Tn−1αn+`−1(Tx): ⊆ is a set-theoretic
identity and this forces = because both sets are `–cylinders. It follows that

F` ◦ T ⊇ F`.

Our system is assumed to be conservative ergodic. It is not difficult to deduce
from this that F` is constant a.e. on X, so that if C ∈ F`(x) for a.e. x ∈ M and
m(M) > 0, then C ∈ F`(x) for a.e. x ∈ X, whence (3)⇒ (4).

The last implication (4)⇒ (1) is trivial, so the lemma is proved. �

Proof of theorem 3. The proof uses Canonical Markov Extensions (C.M.E.),
which we now turn to describe. Let M be the collection of image sets of T , and

define for every J ∈M, Ĵ := J × {J}. Let M̂ := {Ĵ : J ∈M}, and define

X̂ :=
⋃
M̂ , T̂ : X̂ → X̂ , T̂ (x, J) :=

(
Tx, T (α(x) ∩ J)

)
.
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We equip X̂ with the natural Borel structure induced by Ĵ ∼= J . Note that π : X̂ →
X, π(x, J) = x is a factor map, and that α̂ := M̂ ∨ π−1α is a Markov partition for

T̂ . (X̂, T̂ , α̂) is called the Canonical Markov Extension of (X,T, α) (Hofbauer [H],
Keller [Ke2]).

We define the levels of the extension as follows: Level zero is X×{X}, and Level

n for n ≥ 1, is
⋃(
M̂n \ M̂n−1

)
, where

M̂n = {Ĵ : J ∈ T kαk, k ≤ n} and M̂0 = {X × {X}}.

The height Λ(x̂) of x̂ ∈ X̂ is the index of the level set which contains x̂. Some basic

properties of T̂ (see [Ke2] for proofs):

(1) The collection of image sets of T̂ is M̂ = {Ĵ : J ∈ M}, and this collection
is pairwise disjoint.

(2) T̂n(x, J) =
(
Tnx, Tn(αn(x) ∩ J)

)
. Since αn shrinks to points, for every

x ∈ int(J) there is n0 = n0(x) such that for all n ≥ n0, T̂n(x, J) =(
Tnx, Tnαn(x)

)
.

(3) α̂n(x, J) =
(
αn(x)∩J

)
×{J}, and for every x ∈ int(J) there is n0 = n0(x)

such that for n ≥ n0, α̂n(x, J) = αn(x)× {J}.
(4) T̂nα̂n(x, J) = Tn(αn(x) ∩ J)× {Tn(αn(x) ∩ J)}, and for every x ∈ int(J)

there is n0 = n0(x) such that for every n ≥ n0, T̂nα̂n(x, J) = Tnαn(x) ×
{Tnαn(x)}.

(5) if |Tα| <∞, then π−1{x} ∩ [Λ = n] is finite for all n ≥ 0, x ∈ X.

We will also need the following strong lifting result for basic AFN maps [Z2]: Let

dm = hdmλ be the a.c.i.m of T . There exists a T̂–invariant conservative ergodic
Borel measure m̂ such that m̂ ◦ π−1 = m, for which the following is true:

(†) ∀Ĵ ∈ M̂, if m̂(Ĵ) > 0, then m̂|Ĵ ∼ m ◦ π|J .

This is not stated explicitly in [Z2] but can be derived from results there as follows:

Define the regularity of a û : X̂ → R+ which is differentiable on every Ĵ to be the

supremum over all Ĵ of

RĴ(û) :=


supĴ |û

′/û| û > 0 on Ĵ

0 û ≡ 0 on Ĵ

∞ otherwise.

The proof of proposition 1 in [Z2] implies that that dm̂ = ĥdm̂λ where m̂λ is the

sum of the Lebesgue measures on Ĵ ∼= J , and the regularity of ĥ is finite. This
implies (†).

Let M̂rec be the collection of recurrent image sets for T̂ (w.r.t. m̂), and denote

by M̂+ the collection of image sets of T̂ with positive m̂ measure. We derive the
theorem from the following characterization of Mrec:

(‡) Mrec =
{
T |C|(C) : C is a cylinder such that C ⊆ J ∈ π(M̂+)

}
= π(M̂+).

We explain how this implies the theorem:

Proof of part 1. Lemma 1 says that if J is a recurrent image set, then [Tnαn(x) =
J infinitely often] has positive (in fact full) measure. We show the other direction.
Suppose m[Tnαn(x) = J i.o.] > 0. Then m̂[Tnαn

(
π(x̂)

)
= J i.o.] > 0, because
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m̂ ◦ π−1 = m. But for almost every x̂ if n is large enough, then T̂nα̂n(x̂) =

Tnαn
(
π(x̂)

)
× {Tnαn

(
π(x̂)

)
}, so that in fact m̂[T̂nân

(
π(x̂)

)
= Ĵ i.o.] > 0. This

means that m̂[T̂n(x̂) ∈ Ĵ i.o.] > 0, whence (trivially) m̂[∃n such that T̂n(x̂) ∈ Ĵ ] >

0. The invariance of m̂ now implies that m̂(Ĵ) > 0, so that J = π(Ĵ) ∈ π(M̂+).
Therefore, by (‡), J is a recurrent image set.

Proof of part 2. Without loss of generalityN = 1 (else work with (X,B,m, TN , αN )).
The first telescope lemma of [Z1] says that for almost every x there are nk ↑ ∞
such that Tnkαnk(x) = Tα(Tnk−1x). There are only finitely many possibilities for
Tα(Tnk−1x), because of (F). Therefore, there is a J ∈ Tα such that

m{x : Tnαn(x) = J infinitely often} > 0.

This implies, by part one, that J is a recurrent image set.

Proof of part 3. Suppose J ∈Mrec and C ⊆ J is a cylinder. By (‡), J ∈ π(M̂+).

But this means that C ⊆ J ∈ π(M̂+), so (‡) gives T |C|(C) ∈ Mrec and part 3
follows.

Proof of part 4. By lemma 6 of [Z2] and the proof of proposition 1 there,

we know that h(x) =
∑
π(x̂)=x ĥ(x̂) outside some countable set E, and that for

ε := infX h/2 > 0 there is some η ∈ N such that
∑
π(x̂)=x,Λ(x̂)>η ĥ(x̂) < ε for

all x ∈ X. Consequently,
∑
π(x̂)=x,Λ(x̂)≤η ĥ(x̂) > 0 outside E, showing that each

x ∈ X \ E is contained in some member J of the finite collection

M′rec := {J : Ĵ ∈ M̂+ ∩ {Λ ≤ η}}.

By (‡), M′rec ⊆ Mrec. But since X only has a finite number of components, we
conclude that M′rec covers X up to finitely many points. Part 4 follows.

This shows that the theorem follows from (‡), which we now prove, using the
following steps:

(A) Mrec ⊇
{
T |C|(C) : C is a cylinder such that C ⊆ J ∈ π(M̂+)

}
(B)

{
T |C|(C) : C is a cylinder such that C ⊆ J ∈ π(M̂+)

}
⊇ π(M̂rec)

(C) π(M̂rec) ⊇ π(M̂+)

(D) π(M̂+) ⊇Mrec

Proof of (A): Suppose C ⊆ J ∈ π(M̂rec). Then Ĉ := Ĵ ∩ π−1C ∈ α̂|C| is a full

lift of C, i.e. πĈ = C, so that each x ∈ C has a unique lift x̂ ∈ Ĉ. For any
n ∈ N and x ∈ C, αn+|C|(x) = π

(
α̂n+|C|(x̂)

)
∩ J = π

(
α̂n+|C|(x̂)

)
. It follows

that Tnαn+|C|(x) = π
(
T̂nα̂n+|C|(x̂)

)
, showing that the full return times τC(x) and

τ̂ Ĉ(x̂) agree for all x ∈ C (cf. lemma 2). It is therefore enough to prove that that

Ĉ is a cylinder of full returns for T̂ w.r.t. m̂.

By assumption, m̂(Ĵ) > 0. (‡) implies that m̂(Ĉ) > 0, because π|Ĵ(Ĉ) = C and

m(C) > 0. It follows that Ĉ is a T̂–cylinder of positive m̂–measure, and this means

that it is a cylinder of full returns, because T̂ is Markov and m̂ is conservative,
and in the Markov case, every cylinder with positive measure is a cylinder of full
returns.
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Proof of (B): Suppose J ∈ π(M̂rec). Then Ĵ ≡ J × {J} is a recurrent image set,

so by lemma 1 for m̂ a.e. x̂ ∈ X̂, T̂nα̂n(x̂) = Ĵ infinitely often. Thus

for m̂ a.e. x̂ ∈ X̂, J = π(Ĵ) = π
(
T̂nα̂n(x̂)

)
= Tnαn

(
π(x̂)

)
infinitely often.

If n is large enough αn
(
π(x̂)

)
= π

(
α̂n(x̂)

)
, and this is contained in some element

of π
(
M̂+

)
for a.e. x̂. It follows that J ∈ {T |C|(C) : C ⊆ J ∈ π(M+)}.

Proof of (C): Suppose J ∈ π(M+). Then there is a Ĉ ∈ α̂ such that m̂(Ĉ∩T̂−1Ĵ) >

0. For this partition element, m̂[Ĵ ∩ T̂ (Ĉ)] = m̂[T̂−1Ĵ ∩ T̂−1T̂ (Ĉ)] > 0. But for

the canonical Markov extension, M̂ is a partition, so that if T̂ (Ĉ) intersects Ĵ , it is

equal to it. Thus Ĵ = T̂ (Ĉ) where Ĉ ∈ α̂ has positive measure. But T̂ is Markov,
and for conservative Markov maps every cylinder of positive measure is a cylinder

of full returns. It follows that Ĉ is a cylinder of full returns, and consequently

Ĵ = T̂ (Ĉ) is a recurrent image set for T̂ , whence J ∈ π(M̂rec).

Proof of (D): Suppose J ∈Mrec. Lemma 1 says that for almost every x, Tnαn(x) =

J infinitely often. Since for m̂–a.e. x̂, T̂nα̂n(x̂) = αn(πx̂) × {Tnαn(πx̂)}, we

have that with full m̂–probability, T̂n(x̂) ∈ Ĵ . This is the same as saying that

X̂ =
⋃
n≥1 T̂

−nĴ so we must have m̂(Ĵ) > 0, whence J = π(Ĵ) ∈ π(M+). �

Proof of theorem 4. We distinguish two cases, the first one being that there
is some neighbourhood U of y in X such that U ∩ A is contained in some J ∈
Mrec. The cylinders An := [A, . . . , A] ∈ αn are (possibly one-sided punctured)
neighbourhoods of y shrinking toward this point, so that An ⊆ J for n ≥ n0. For
such n therefore TA = TnAn = T |An|An ∈Mrec by part 3 of theorem 3.

As for the second case (where necessarily y ∈ int(A)), theorem 3 part 4 says
that there is some finite M′rec ⊆ Mrec covering X up to finitely many points, so
that y is the common end point of two adjacent members J, J ′ of M′rec. Define
An as before, then An \ {y} ⊆ J ∪ J ′ for n ≥ n1, so that An ∩ J,An ∩ J ′ lift

to cylinders Ân ⊆ M̂ and Â′n ⊆ Ĵ ′ from α̂n which have positive measure. Hence
Tn(An∩J), Tn(An∩J ′) ∈Mrec, but as y is a fixed point, these are just the images
TIi of the components I of A \ {y}. �

4.2. Quasi-Beta Maps. The strongest form of the almost–onto property is the
quasi–beta property: X is a recurrent image set. This section collects examples of
such maps. (Examples of almost onto maps which are not quasi–beta are given in
the previous section.) Note that the β–transformation is a particular case.

Theorem 5 (Quasi-beta maps I). Let (X,T, α) be a basic AFU-map. Each of the
following conditions implies the quasi–beta property:

(1) There exists an A ∈ α such that T (A) = X and such that one of the end
points of A is a fixed point in A, or

(2) There exist A1, A2 ∈ α different such that T (A1) = T (A2) = X.

Proof. This follows from theorem 4. (Notice that A contains some fixed point y,
which is inside A if it is orientation-reversing. Apply theorem 4 to see that each
component of X \{y} is contained in some recurrent image set. But A◦ is contained
in one of these components, so that by part 3 of theorem 3, TA = X is a recurrent
image set.) �
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Stronger assumptions on the image structure of the map enable a more direct
proof which does not depend on lifting results for Markov extensions (and also
allows indifferent fixed points):

Theorem 6 (Quasi-beta maps II). Let (I,B,m, T, α) be a piecewise increasing
AFN map of the unit interval together with its a.c.i.m. m. Suppose that for every
A ∈ α, 0 ∈ Ta, and that TA0 = I for some A0 ∈ α with the property that 0 ∈ A0.
Then (I,B,m, T, α) is quasi-beta.

Proof. We need the following property:

(5) ∀n ∈ N ∀A ∈ αn ∃pA ∈ A such that TnpA = 0.

We use induction on n. For n = 1 this is part of our assumptions. Assume this holds
for n and choose some A ∈ αn+1. Write A = B ∩ T−1C with B ∈ α,C ∈ αn. Since
T is piecewise increasing, B = (pB , qB) and C = (pC , qC) where TpB = TnpC = 0,
and (T |A)−1C =

(
(T |A)−1pC , (T |A)−1qC

)
. If A = B ∩ T−1C 6= ∅, either pB ∈ A

or (T |A)−1pC ∈ A. Both map to 0 under Tn+1 (because 0 must be a fixed point),
so 0 ∈ Tn+1A.

Standard arguments (compare [T], [A], [Z2]) show that AFN maps have a
Schweiger collection ([Sc], [A]), i.e. a collection of cylinders r ⊆

⋃
n≥0 αn with

the following properties:

(1) for all n and every A ∈ αn, A =
⋃
B∈r,B⊆ABmodm

(2) there exists some positive constant M such that
v′B(x)
v′B(y) ≤M for every B ∈ r

and m×m-almost all (x, y) ∈ T |B|B × T |B|B.
(3) A ∈ αn, B ∈ r, A ∩ T−nB 6= ∅ implies A ∩ T−nB ∈ r.

To prove the quasi-beta property, let A0 := (0, c0) and define cn ∈ A0 by Tncn = c0.
Fix some A ∈ αN and some B ∈ r such that B ⊆ Amodm, and set B = (pB , qB).
Let |B| denote the length of B as a cylinder (so B ∈ α|B|). T |B| is increasing on

B, so (5) implies that T |B|B =
(
0, T |B|(qB)

)
. Since cn ↓ 0, there is some n0 such

that cn0 < T |B|(qB) ≤ cn0−1 (where c−1 := 1). By the mean value theorem and
the Schweiger property, if B′ := B ∩ T−|B|[0, cn0

], then

m(B′)

m(B)
≡ m(B ∩ T−|B|[0, cn0

])

m(B)
=

∣∣∣∣ vB(0)− vB(cn0
)

vB(0)− vB(T |B|qB)

∣∣∣∣ ≥ 1

M
· cn0

T |B|qB

≥ 1

M
· cn0

cn0−1
=

1

M

cn − 0

T (cn0
)− T (0)

≥ ε0

where ε0 := M−1(inf{T ′(x) : x ∈ A0})−1. Furthermore,

B′ := B ∩ T−|B|[0, cn0 ] ≡ B ∩ T−|B|(A0 ∩ T−1A0 ∩ · · · ∩ T−n0A0) ∈ α|B|+n0+1

and (since T |B|B = [0, T |B|qB ] ⊇ [0, cn0
])

T |B
′|B′ = Tn0+1T |B|(B ∩ T−|B|[0, cn0 ])

= Tn0+1[0, cn0+1] = T [0, c0] = TA0 = [0, 1] modm.

Hence, for every B ∈ r ∩ A there exists B′ ∈ α|B′| with B′ ⊆ B, T |B
′|B′ = [0, 1]

and m(B′) ≥ ε0m(B). Since A =
⋃
B∈r,B⊆AB, this shows that

m{x ∈ A : ∃n ≥ |A| such that Tnαn(x) = [0, 1] modm} ≥ ε0m(a).
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It now follows by the method of exhaustion that for almost all x ∈ A there is
n ≥ |A| such that Tnαn(x) = [0, 1]. Since A ∈ αN and N ∈ N were arbitrary, the
quasi-beta property follows. �

4.3. An instructive counterexample. Fix any k ∈ N, k > 1, let α be the
partition (mod mλ) of X = [0, 1] into subintervals with end points i/2k, i ∈
{0, 1, . . . , 2k} \ {k}, and define T to be the piecewise affinely increasing map, sym-
metric under x 7−→ 1 − x, which maps each (i/2k, (i + 1)/2k), i < k − 1, onto
(1/2, 1), while T ((k − 1)/2k, (k + 1)/2k) = (0, 1).

Proposition 2. (X,T, α) is a basic exact AFU-map which preserves Lebesgue mea-
sure mλ, |T ′| ≡ k,and has a full branch. However, the system is not almost onto.

Proof. To see this it is enough to notice that its C.M.E. (X̂, T̂ , α̂) only has two

levels, the higher of which, X̂ ∩ {Λ = 1}, is forward invariant under T̂ , so that the

base X̂ ∩ {Λ = 0} is dissipative and the only recurrent image sets are the intervals
(0, 1/2) and (1/2, 1), the upper level is made of (see (‡) in the proof of theorem 3).

(Let us also remark that for every non degenerate interval I there is some j ∈ N
such that T jI = (0, 1/2) ∪ (1/2, 1), but the fixed point x = 1/2 is not contained in
any recurrent image set.) �

5. Perturbation Theory and Conditional Local Limit Theorems for
Interval Maps

Let (X,B,m, T, α) be a fibred system on a probability space. For ω : X → S1

measurable, define
Pωf := PT (ωf) (f ∈ L1(m)),

and for φ : X → Rd , φ = (φ(1), . . . , φ(d)), measurable, and t ∈ Rd set Pt :=
Pχt(φ) where χt(y) := ei〈t,y〉. In the independent case where φ is α-measurable and

α, T−1α, . . . are independent,

Pt1 = E(ei〈t,φ〉),

which is why the Pt are sometimes called characteristic function operators. The
characteristic function operators can be used to study the local and distributional
limit behaviour of φn in the same way as the characteristic function is used in the
independent case. In this section we study these operators for certain piecewise
monotonic maps of the interval, and establish the properties needed for proving
local and distributional limit theorems.

This requires some tools in operator theory which we now explain. Recall that
a linear operator P on a Banach space L is quasi compact (on L) if for some
N ≥ 1, θ ∈ (0, 1), E1, . . . , EN projections with finite dimensional images, and
λ1, . . . , λN ∈ S1 := {z ∈ C : |z| = 1}:

(QC) ‖Pnf −
N∑
k=1

λnkEkf‖L ≤Mθn‖f‖L ∀ f ∈ L.

There are situations when the restriction of the Frobenius-Perron operator to a
suitable Banach space is quasi-compact. This can be sometime proved using the
following concept:

Definition 5. Let C, L be Banach spaces such that C ⊃ L and ‖ · ‖C ≤ ‖ · ‖L.
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(1) We call the pair (C,L) adapted if L-bounded sets are precompact in C.
(2) Let (C,L) be an adapted pair of Banach spaces. A linear operator P : C → C

is said to be a D-F operator on (C,L) if there are θ ∈ (0, 1), M > 0, n ∈ N
such that

‖Pnf‖L ≤ θ‖f‖L +M‖f‖C ∀ f ∈ L.
We will call this latter inequality a D-F inequality.

The terminologies ‘D-F inequality’ and ‘D-F operator’ are in honour of W. Doe-
blin and R. Fortet who first considered such operators (in [DF]) for the case when
C is the space continuous functions on a compact metric space X, and L is the
space of Lipschitz continuous functions on X. It was established in [DF] that a
D-F operator on (C(X), L(X)) is quasi compact on L(X) and this was generalized
in [ITM] to show that a D-F operator on an adapted pair (C,L) is quasi compact
on L. The proof of this uses inter alia a kind of rigidity of D-F operators: if P is
a D-F operator on (C,L), then

• if f ∈ C and λ ∈ S1 satisfy Pf = λf , then f ∈ L
• if r(P ) denotes the spectral radius of P : L → L, then r(P ) ≤ 1 with

equality iff there are some f ∈ L and λ ∈ S1 satisfying Pf = λf .

We apply this theory in the context of piecewise monotonic maps with countably
many branches. Let X ⊆ R be an interval. For every measurable f on X taking
values in Rd or C define varX(f) := sup

∑
i ‖f(xi)− f(xi−1)‖ where the supremum

ranges over all x1 < x2 < · · · < xn in X. For every f ∈ L1(mλ) set

‖f‖BV := ‖f‖∞ +
∨
X

f, where
∨
X

f = inf{varX(f∗) : f∗ = f mλ − a.e. }.

Finally, let BV := {f ∈ L1(mλ) : ‖f‖BV < ∞}. It follows from Helly’s theorem
that the pair

(
L1(mλ), BV ) is adapted.

Let (X,T, α) be a non–singular piecewise monotonic map of the unit interval.
Below v′A will always denote a version of this L1-function which minimizes variation.
We say that T satisfies Rychlik’s condition [R] if

(R)
∑
A∈α
‖1TAv′A‖BV =: R <∞.

Corollary 1 of [Z1] says that every AFU map satisfies Rychlik’s condition. The
following result is due to M. Rychlik ([R]):

Proposition 3 (Ergodic properties of Rychlik maps). Suppose that (X,T, α) is a
piecewise monotonic interval map satisfying (R) and (U), then so does (X,Tn, αn).
T has a finite ergodic decomposition into products of finite rotations and mixing
maps satisfying (R) and (U). If T is weakly mixing, then its unique invariant prob-
ability density h belongs to BV , and there are constants K > 0, θ ∈ (0, 1) such
that

‖Pnf − (

∫
X

fdmλ)h‖BV ≤ Kθn‖f‖BV .

We will need the following generalization of Proposition 1 of [R].

Proposition 4 (D-F inequality for perturbed P ). Suppose that (X,T, α) satisfies
(R) and (U) and that ω : X → S1 satisfies C = Cω,α := supA∈α

∨
A ω < ∞. Then

there exist θ ∈ (0, 1) and K0,M0 > 0 such that

‖Pnω f‖BV ≤ K0θ
n‖f‖BV +M0‖f‖1.



20 J. Aaronson, M. Denker, O. Sarig, R. Zweimüller

Proof. Let ωn :=
∏n−1
k=0 ω ◦ T k. We claim that Cωn,αn ≤ nCω,α (n ≥ 1). To see

this fix n ≥ 2, A ∈ αn, then

∨
A

ωn =
∨
A

(ω ωn−1◦T ) ≤
∨
A

ω+
∨
A

ωn−1◦T ≤
∨
A

ω+
∨
TA

ωn−1 ≤ Cω,α+Cωn−1,αn−1 .

We let c := (supA∈α ‖v′A‖∞)−1 > 1 and fix n ≥ 1, ε > 0 so that θ := 2(4+nC)
cn +2ε <

1. By Rychlik’s condition, there is β ⊂ αn finite so that
∑
A∈αn\β ‖1TnAv

′
A‖BV <

1
cn .

Now fix f ∈ BV . Note that for every A ∈ αn, v′A is nonnegative and also
‖v′A‖∞ ≤ 1

cn . Thus for A ∈ β there exists a finite partition γA of X into intervals
whose endpoints are points of continuity for 1TnAv

′
A, 1TnAωn ◦ vA, 1TnAf ◦ vA, so

that supg∈γA
∨
g(1TnAv

′
A) < 1

cn + ε.

Therefore, since Pnω f =
∑
A∈αn 1TnAv

′
A ωn ◦ vA f ◦ vA,

∨
(Pnω f) ≤

∑
A∈αn

∨
(1TnAv

′
A ωn ◦ vA f ◦ vA) =

∑
A∈αn

∨
(PnT (1Afωn))

=
∑
A∈β

∨
(PnT (1Afωn)) +

∑
A∈αn\β

∨
(PnT (1Afωn))

For A ∈ β,

∨
(PnT (1Afωn)) =

∑
g∈γA

∨
g

(
1TnAv

′
A ωn ◦ vA f ◦ vA

)
≤

∑
g∈γA

(
‖v′A‖∞

∨
g

(1TnA ωn ◦ vA f ◦ vA)

+
∨
g

(1TnAv
′
A)‖1g∩TnA f ◦ vA‖∞

)
=

∑
g∈γA

(
‖v′A‖∞

∨
g

(1TnA ωn ◦ vA f ◦ vA)

+
∨
g

(1TnAv
′
A)‖1vA(g)f‖∞

)
.

Now ‖1vA(g)f‖∞ ≤ 1
mλ(vA(g))‖1vA(g)f‖1 +

∨
vA(g) f and

∨
g

(1TnA ωn ◦ vA f ◦ vA) ≤ 2‖1vA(g)f‖∞ +
∨
vA(g)

ωnf

≤ (2 + nC)‖1vA(g)f‖∞ +
∨
vA(g)

f

≤ 2+nC
mλ(vA(g))‖1vA(g)f‖1 + (3 + nC)

∨
vA(g)

f
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so
∨

(PnT (1Afωn)) is

≤
∑
g∈γA

(‖v′A‖∞
∨
g

(1TnA ωn ◦ vA f ◦ vA) +
∨
g

(1TnAv
′
A)‖1vA(g)f‖∞)

≤
∑
g∈γA

(
‖v′A‖∞[ 2+nC

mλ(vA(g))‖1vA(g)f‖1 + (3 + nC)
∨
vA(g)

f ]

+
∨
g

(1TnAv
′
A)[ 1

mλ(vA(g))‖1vA(g)f‖1 +
∨
vA(g)

f ]

)

≤
∑
g∈γA

(
[(3 + nC)‖v′A‖∞ +

∨
g

(1TnAv
′
A)]

∨
vA(g)

f

+[(2 + nC)‖v′A‖∞ +
∨
g

(1TnAv
′
A)] 1

mλ(vA(g))‖1vA(g)f‖1
)

≤ θ
2

∨
A

f + max
A∈β, g∈γA

1
mλ(vA(g))‖1Af‖1.

For A ∈ αn \ β,

∨
(PnT (1Afωn)) ≤ ‖f‖∞

∨
X

(1TnAv
′
A) + ‖v′A‖∞

∨
X

(1TnA ωn ◦ vA f ◦ vA)

≤ ‖1TnAv′A‖BV
(
‖f‖∞ +

∨
X

(1TnA ωn ◦ vA f ◦ vA)

)
.

Now

‖f‖∞ ≤ ‖f‖1 +
∨
X

f

and ∨
X

(1TnA ωn ◦ vA f ◦ vA) ≤ 2‖f‖∞ +
∨
A

(ωnf)

≤ (2 + nC)‖f‖∞ +
∨
A

f

≤ (2 + nC)‖f‖1 + (3 + nC)
∨
I

f.

Thus,

‖f‖∞ +
∨
X

(1TnA ωn ◦ vA f ◦ vA) ≤ (3 + nC)‖f‖1 + (4 + nC)
∨
X

f.

Putting things together:
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∨
X

(Pnω f) ≤
∑
A∈β

∨
(PnT (1Afωn)) +

∑
A∈αn\β

∨
(PnT (1Afωn)) ≤

∑
A∈β

(
θ
2

∨
A

f + max
A∈β, g∈γA

1
mλ(vA(g))‖f1A‖1

)
+

+
∑

A∈αn\β

‖1TnAv′A‖BV
(

(3 + nC)‖f‖1 + (4 + nC)
∨
X

f

)

=

(
θ
2 + (4 + nC)

∑
A∈αn\β

‖1TnAv′A‖BV
)∨

X

f +M‖f‖1.

≤ θ
∨
X

f +M‖f‖1.

The estimate for ‖PTn(ωNf)‖∞ follows from the last statement of the previous
proposition. �

Proposition 5 (Continuity of the perturbation). Suppose that (X,T, α) satisfies
(U) and (R); and that φ : X → Rd satisfies C = Cφ,α := supA∈α

∨
A φ <∞, then,

s 7→ Ps is continuous (Rd → Hom (BV,BV )), moreover

‖Ps − Pt‖BV ≤ 2
∑
A∈α
‖1TAv′A‖BV

(
(2 + C‖s‖) sup

A
|χs(φ)− χt(φ)|+ ‖s− t‖C

)
.

If, in addition, (X,T, α) satisfies AFU, then there exists K > 0 such that

‖Ps − Pt‖BV ≤ 2K(2 + C‖s‖)
∫
X

|1− χt−s(φ)|dmλ + 2CK(3 + 2C‖s‖)‖s− t‖.

Proof. For g ∈ BV and t ∈ Rd we have

Ptg = P (ei〈t,φ〉g) =
∑
A∈α

χt(φ ◦ vA)1TAv
′
A · g ◦ vA,

whence

(Pt − Ps)g =
∑
A∈α

1TAχt(φ ◦ vA)(1− χs−t(φ ◦ vA))v′A · g ◦ vA.

Noting that |1− χs−t(φ ◦ vA)| ≤ |1− χs−t(φ(xA))|+ C‖s− t‖ for any xA ∈ A, we
see that

‖(Pt − Ps)g‖∞ ≤
∑
A∈α
‖1− χs−t(φ ◦ vA)‖∞‖1TAv′A · g ◦ vA‖∞

≤
∑
A∈α

(|1− χs−t(φ(xA))|+ C‖s− t‖)‖v′A‖∞‖g‖∞;

and ∨
((Pt − Ps)g ≤

∑
A∈α

∨
(χs(φ ◦ vA)− χt(φ ◦ vA))1TAv

′
A · g ◦ vA).

We recall the chain rule for BV functions [AM]: Let A be an interval and let
ϕ : A→ Rd be a function of bounded variation. Set ϕ(x±) := limt→x, ±(t−x)>0 ϕ(t),
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Jϕ := {x ∈ A : ϕ(x+) 6= ϕ(x−)}, and let µϕ be the Rd-valued measure determined
by µϕ

(
(a, b]

)
:= ϕ(b+) − ϕ(a+). For every continuously differentiable function

F : Conv[ϕ(A)]→ C, we have

dµF◦ϕ = 〈∇F ◦ ϕ, dµϕ〉+
∑
x∈Jϕ

[
F
(
ϕ(x+)

)
− F

(
ϕ(x−)

)]
dδx.

Passing to total variations, we see that

∨
A

F◦ϕ =

∫
A

‖∇F◦ϕ‖ d‖µϕ‖+
∑
x∈Jϕ

∣∣F (ϕ(x+)
)
−F
(
ϕ(x−)

)∣∣ ≤ 2 sup
Conv[ϕ(A)]

‖∇F‖
∨
A

ϕ.

Applying this for F (x) := ei〈t,x〉 − ei〈s,x〉 and ϕ := φ gives

(6)
∨
A

[χs(φ)− χt(φ)] ≤ 2C(‖t− s‖+ ‖s‖ sup
A
|χs(φ)− χt(φ)|).

Using this, we see that for fixed A ∈ α,∨
[(χs(φ ◦ vA)− χt(φ ◦ vA))1TAv

′
A · g ◦ vA] ≤

≤ ‖1TAv′A‖∞
∨

(1TA(χs(φ ◦ vA)− χt(φ ◦ vA))g ◦ vA) +
∨

(1TAv
′
A)‖g‖∞ sup

A
|χs(φ)− χt(φ)|

≤ ‖1TAv′A‖BV
(

3‖g‖∞ sup
A
|χs(φ)− χt(φ)|+

∨
A

((χs(φ)− χt(φ))g)

)
≤ ‖1TAv′A‖BV

(
4‖g‖BV sup

A
|χs(φ)− χt(φ)|+ ‖g‖∞

∨
A

(χs(φ)− χt(φ))

)
≤ 2‖1TAv′A‖BV ‖g‖BV

(
(2 + C‖s‖) sup

A
|χs(φ)− χt(φ)|+ C‖t− s‖

)
.

This proves the first inequality. To verify the second inequality, note first that
under AFU there exists K > 0 with

‖1TAv′A‖BV ≤ Kmλ(A) (A ∈ α).

Also

sup
A
|χs(φ)−χt(φ)| = sup

A
|1−χt−s(φ)| ≤ 1

mλ(A)

∫
A

|1−χt−s(φ)|dmλ+
∨
A

χt−s(φ)

≤ 1
mλ(A)

∫
A

|1− χt−s(φ)|dmλ + C‖s− t‖.

Thus

‖Ps − Pt‖BV ≤ 2
∑
A∈α
‖1TAv′A‖BV

(
(2 + C‖s‖) sup

A
|χs(φ)− χt(φ)|+ C‖t− s‖

)
≤ 2K

∑
A∈α

mλ(A)

(
(2 + C‖s‖) sup

A
|χs(φ)− χt(φ)|+ C‖t− s‖

)
= 2K(2 + C‖s‖)

∫
X

|1− χt−s(φ)|dmλ + 2CK(3 + 2C‖s‖)‖s− t‖.
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�

Proposition 6. Suppose that (X,T, α) a weakly mixing piecewise monotonic map
of the interval which satisfies (U), (R) with invariant density h. If φ : X → Rd
satisfies Cφ,α <∞, then

(1) there are constants ε > 0, K > 0 and θ ∈ (0, 1), and continuous functions
λ : B(0, ε) → BC(0, 1), g : B(0, ε) → Hom (BV,BV ) such that for t ∈
B(0, ε): g(t) is a projection, dim Im[g(t)] = 1, Ptg(t) = λ(t)g(t),λ(0) = 1,
g(0)f = (

∫
X
fdmλ)h and

‖Pnt f − λ(t)ng(t)f‖BV ≤ Kθn‖f‖BV ∀ |t| < ε, n ≥ 1, f ∈ BV ;

(2) if γ(φ) = zff ◦ T where γ ∈ R̂d, z ∈ S1 and f : X → S1 measurable, then
f ∈ BV ;

(3) in case φ is aperiodic, then for all 0 < δ < M <∞ there exist K > 0, 0 <
ρ < 1 such that

‖Pnγ f‖BV ≤ Kρn‖f‖BV ∀ f ∈ BV, n ≥ 1, δ ≤ |γ| ≤M.

Proof. As shown above, P is a D-F operator. By the weak mixing of T and [ITM],
there exist M > 0, θ ∈ (0, 1) such that

‖Pnf − (

∫
fdmλ)h‖BV ≤Mθn‖f‖BV ∀ f ∈ BV.

The result now follows as in [N] (see also [DS], [RE] and §4 of [AD1]). �

We can now turn to the results mentioned in the introduction.

Theorem 7 (Exactness of skew products). Let (X,T, α) satisfy (U) and (R), and
be weakly mixing with absolutely continuous invariant measure m. Suppose that
φ : X → R satisfies Cφ,α <∞. Let Tφ : X × R→ X × R be the skew product

Tφ(x, y) =
(
Tx, y + φ(x)

)
equipped with the product measure m ×mλ. If φ is aperiodic and for every λ > 1

there exist nk →∞ such that
φnk
λnk → 0 a.e. as k →∞ , then Tφ is exact.

Proof. This follows from proposition 6 as in the proof of theorem 2 of [AD2]. �

The following theorem summarizes the information we need on the characteristic
function operators in order to derive conditional LLTs.

Theorem 8 (Expansion of the eigenvalue). Let (X,T, α) be a weakly mixing AFU
map, assume φ : X → R satisfies Cφ,α < ∞, and let λ is as in the previous
proposition.

(1) If E(φ2) <∞ and 1
nV ar(φn)→ σ2 > 0, then

λ(t) = 1 + itE(φ)− t2σ2

2
(1 + o(1)) as t→ 0.

(2) If the distribution of φ is in the domain of attraction of a stable law of index
p ∈ (0, 2), then

| log λ(t)− logE(eitφ)| = o

(
|t|pL(1/|t|)

)
as t→ 0.
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Proof. For the first part, check that t 7→ Pt is C2 (R → Hom(BV,BV )) with
dPt
dt f = P (iφeitφf) and d2Pt

dt2 f = −P (φ2eitφf). This implies that t 7→ λ(t) is C2.
The Taylor expansion of λ is then calculated as in [RE].

The proof of the second part is as in §5 of [AD1], with propositions 5 and 6
replacing theorems 2.4 and 4.1 there. �

We now obtain the advertised conditional distributional and local limit theorems.

Theorem 9 (Conditional central and local limit theorems). Let (X,T, α) be a
weakly mixing AFU map, and suppose that φ : X → R satisfies Cφ,α <∞.

(1) If E(φ2) <∞ and 1
nV ar(φn)→ σ2 > 0, then

Pn,x(
φn − E(φ)

σ
√
n

∈ (a, b))→ 1√
2π

∫ b

a

e−
t2

2 dt

as n→∞, uniformly in x ∈ X, where Pn,x(A) := PnT 1A(x).
(2) If in addition φ : X → Z is aperiodic, then

σ
√
nPn,x(φn = kn)→ 1√

2π
e−

t2

2 as n→∞, kn ∈ Z, kn−nE(φ)
σ
√
n
→ t

uniformly in x ∈ X and t ∈ K for all K ⊂ R compact.
(3) If in addition φ : X → R is aperiodic and I ⊂ R is a finite interval, then

σ
√
nPn,x(φn ∈ kn + I)→ 1

|I|
√

2π
e−

t2

2 as n→∞, kn ∈ Z, kn−nE(φ)
σ
√
n
→ t

uniformly in x ∈ X and t ∈ K for all K ⊂ R compact.

Theorem 9 follows from (1) of theorem 8 as in [RE] (see also [AD1]). From (2) of
theorem 8, we obtain the analogous stable distributional and local limit theorems.
Indeed, it is now routine to check that all the the results in §6 and §7 of [AD1] are
valid for (X,B,m, T, α) a mixing, probability preserving AFU map and φ : X → Rd
satisfying Cφ,α <∞.

6. Application to β–expansions

Fix β > 1 and consider T : [0, 1] → [0, 1] defined by Tx := βx mod 1. Let
q, dP := q(x)dx, and Xn be as in the introduction.

Proof of De Moivre’s theorem for β-expansions
By theorem 1, T is skew-product rigid and almost onto by theorem 5. Since

1 ∈ {[βx] − [βy] : x, y ∈ [0, 1]}, by theorem 2, φ : X → Z given by φ(x) = [βx] is
aperiodic. De Moivre’s theorem now follows from (2) of theorem 9. �

Asymptotics of random walks on R driven by ”β-jumps”: Suppose that
ψ : [0, 1] → R satisfies E(ψ) = 0 and ψ(x) = a[βx] where {ai − aj : 0 ≤ i,≤
[β]} are rationally independent, then by the anologue of theorem 7.1 in [AD1] for
(X,B,m, T, α) a mixing, probability preserving AFU map ψ satisfying Cψ,α <∞,
Tψ is conservative, exact and pointwise dual ergodic with an(Tψ) ∝

√
n.

Proof of the Hewitt–Savage zero–one law for β-expansions. Let R ∈
B(X ×X) be an equivalence relation with countable equivalence classes. A Borel
isomorphism ψ defined on some A ∈ B with image B ∈ B is a holonomy for R if
(x, ψ(x)) ∈ R for any x ∈ A.
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A measure µ is invariant (non-singular) for R, if it is invariant (non-singular)
under all holonomies of R. A set A ∈ B is R-saturated if x ∈ A, (x, y) ∈ R ⇒ y ∈
R. The measure µ is ergodic for R if every R- saturated set is trivial mod µ.

Now consider X = [0, 1] and the Borel equivalence relations

T(Tβ) := {(x, y) ∈ [0, 1]2 : ∃ N ≥ 1 such that TNx = TNy}
Eβ := {(x, y) ∈ [0, 1]2 : x and y are β-exchangeable}.

We are asked to show the Eβ–ergodicity of Lebesgue’s measure.
Lebesgue’s measure is T(Tβ)-invariant as T(Tβ) is generated by holonomies of

form x 7→ x+ i
βn . Since T(Tβ) ⊃ Eβ , Lebesgue measure is also Eβ-invariant.

To see that Eβ- saturated sets are trivial (mod Lebesgue measure), recall from

[ANSS], F# : [0, 1]→ Z[β] defined by F#(x)i = δ[βx],i and that

Eβ = T((Tβ)F#) ∩ (X × {0})2

where

T((Tβ)F#) := {((x, n), (x′, n′)) ∈ ([0, 1]Z[β])2 : ∃N ≥ 1, TNF#(x, n) = TNF#(x′, n′)}.

The group generated by {F#(x) − F#(y) : x, y ∈ [0, 1]} is Z[β] whence by the
aperiodicity theorem, F# is aperiodic. By theorem 7, TF# is exact (with respect
to m×mZ[β]). This implies the ergodicity of Eβ . �
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complètement continues. Ann. Math. 52 (1950) 140–147.
[Ke1] G. Keller: Equilibrium states in ergodic theory. LMS Students Texts 42, CUP (1998).
[Ke2] G. Keller.: Lifting measures to Markov extensions. Mh. Math. 108 (1989), 183–200.
[Ke3] G, Keller: Exponents, attractors, and Hopf decompositions for interval maps. Ergod.

Th. & Dynam. Sys. 10 (1990), 717–744.



Aperiodicity of Cocycles and Local Limit Theorems 27

[Ko1] Z. Kowalski: Quasi-Markovian transformations. Erg. Thy. Dynam. Syst. 17 (1997) 885–

898.

[Ko2] Z. Kowalski: Ergodic properties of skew–products with Lasota-Yorke type maps in the
base. Studia Math. 106 (1993) 45–57.

[L] A. Livsic: Cohomology properties of dynamical systems. Math. USSR Izv. 6 (1972),

1278–1301.
[M] T. Morita: A generalized local limit theorem for Lasota-Yorke transformations. Osaka

J. Math. 26, no. 2, (1989), 579–595. Errata in Osaka J. Math. 30 (1993), no. 3, 611–612.

[M1] T. Morita: Deterministic version lemmas in ergodic theory of random dynamical sys-
tems. Hiroshima Math. J. 18, no. 1, (1988), 15–29.

[N] S.V. Nagaev: Some limit theorems for stationary Markov chains. Theor. Probab. Appl.

2 (1957) 378–406.
[NS] M. Nicol, A. Scott: Livsic theorems for group extensions of hyperbolic systems with

singularities. To appear in Erg. Th. & Dynam. Syst.
[P] W. Parry: On the β-expansion of real numbers. Acta Math. Acad. Sci. Hung., 11 (1960)

401-416.

[PY] M. Pollicott, M. Yuri: Regularity of solutions to the measurable Livsic equation. Trans.
Amer. Math. Soc. 351 (1999), no. 2, 559–568.
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