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Abstract. We prove local limit theorems for Gibbs-Markov pro-
cesses in the domain of attraction of normal distributions.

§1 Introduction

It is well known that a random variable X belongs to the domain of
attraction of a normal distribution DA(2) if its characteristic function
satisfies

logE exp[itX] = itγ − 1

2
t2L(1/|t|)(∗)

for some slowly varying function L : R+ → R+ which is bounded
below and some constant γ ∈ R (cf. [IL]).

The normal (or classical) domain of attraction NDA(2) consists of
the class L2, and is characterised by the boundedness of the slowly
varying function L in (∗). Here we consider the ”non-normal” domain
of attraction DA(2) \ NDA(2).

The function L is unbounded and is determined (up to asymptotic
equivalence) by the tails of the distribution of X which satisfy

1−G(x) = P (X ≥ x) ∼ c1x
−2l(x)

G(−x) = P (X ≤ −x) ∼ c2x
−2l(x) x→∞.1(1)

for some constants c1, c2 ≥ 0, c1 + c2 = 1 and some slowly varying
function l, which in turn determines L by

L(x) =

∫ x

−x
u2dPX(u). (1).2
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2 Local Limit Theorem

It follows from (1.2) that

l(x) = o(L(x)) (1).3

as x→∞.

Let X1, X2, . . . be a stationary process of independent random vari-
ables with Xk ∈ DA(p) (0 < p ≤ 2).

The local limit theorem (LLT) for the partial sums Sn := X1 + · · ·+
Xn is well known, that is ∃ constants An, Bn ∈ R, Bn → +∞ such
that ∀ κ ∈ R and I ⊂ R ( an interval),

BnP (Sn − kn ∈ I)→ |I|g(κ) as
kn − An
Bn

→ κ

where g is a p-stable density on R. Extensions of the LLT to Markov
chains are well known (see [AD] for a more detailed discussion).

In [AD], LLT’s were established for Gibbs-Markov functionals (defi-
nition below) in the non-normal stable case (p < 2).

In the normal case (p = 2), such extensions are only known when
Xk ∈ NDA(2) (see [AD], [Rou], [GH], [M]).

Here we prove the LLT for Gibbs-Markov functionals X1, X2, . . . in
the case X1 ∈ DA(2) \ NDA(2).

§2 Gibbs-Markov processes and functionals

Definition 2.1: A mixing stationary process {Zn : n ∈ N} is called
Gibbs-Markov, if its state space E is at most countable and if

(1) (Markov property)

P (Z1 = a, Z2 = b) > 0 and P (Z1 = b, Z2 = c) > 0

=⇒ P (Z1 = a, Z2 = b, Z3 = c) > 0

for all a, b, c ∈ E and

inf{
∑

b∈E;P (Z1=a,Z2=b)>0

P (Z1 = b) : a ∈ E} > 0.

(2) (Gibbs property) There exist constants M > 0 and 0 < r < 1
such that∣∣∣∣P (Z1 = a1, ..., Zn = an|Zn+1 = b1, ..., Zn+k = bk)

P (Z1 = a1, ..., Zn = an|Zn+1 = c1, ..., Zn+k = ck)
−1

∣∣∣∣ ≤Mr−min{l:cl 6=bl}

for all ai, bj, cj ∈ E, 1 ≤ i ≤ n, 1 ≤ j ≤ k and all n, k ≥ 1.
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Remarks 2.2:
1) Recall that a process Z = {Zn : n ≥ 1} is called mixing, if for all
square-integrable functions f, g ∈ L2(Z) one has

Ef(Z)g(Zn, Zn+1, ...)→ Ef(Z)Eg(Z) as n→∞,
where Lq(Z) (q ∈ N∪{∞}) is the space of functions g : EN → R which
are q-integrable with respect to the distribution of Z.
2) The coordinate process on EN of a mixing Gibbs-Markov map (as
in [AD]) is a Gibbs-Markov process in the sense of definition 2.1. Con-
versely, every Gibbs-Markov process has a mixing, shift-invariant dis-
tribution on EN under which the shift is a Gibbs-Markov map.

Definition 2.3: A function f : EN → R is uniformly Lipschitz on
states (f ∈ Lip), if

D(f) := sup
a∈E,x,y∈[a]

rmin{l:xl 6=yl}|f(x)− f(y)| <∞,

where [a] = {(x1, x2, ...) ∈ EN : x1 = a}.

Definition 2.4: A stationary process {Xn : n ∈ N} is called a Gibbs-
Markov functional, if there exists a Gibbs-Markov process Z = {Zn :
n ∈ N} and a function f ∈ Lip such that

Xn = f(Zn, Zn+1, ...).

The Frobenius-Perron operators P n : L1(Z)→ L1(Z) are defined by

EP nf(Z1, Z2, ...)g(Z1, Z2, ...) = Ef(Z1, Z2, ...)g(Zn+1, Zn+2, ...), (2).1

and the characteristic function operator for the function ϕ : EN → R
by

Ptf = P (f exp[itϕ]). (2).2

In [AD] it has been shown that when ϕ ∈ Lip, Pt acts on L :=
L∞(Z) ∩ Lip equipped with the norm ‖f‖L = ‖f‖∞ + D(f). As an
operator on L, Pt has a unique eigenvalue of maximal modulus λ(t) for
|t| < ε and a decomposition

P n
t f = λ(t)ng(t)Ef(Z) +Qn

t f (|t| < ε), (2).3

where the spectral radius of Qt is uniformly bounded by some θ < 1
and where g(t) is the normalized eigenfunction for λ(t). Pt is called
the characteristic function operator, since

P n
t 1 = P neitSn = λ(t)ng(t) +Qn

t 1,



4 Local Limit Theorem

where Sn = X1 + ...+Xn.

§3 Local limit theorems

In this section, we assume that {Xn : n ≥ 1} is a Gibbs-Markov
functional with X1 = f(Z) ∈ DA(2), but EX2

1 =∞. Let the operator
Pt : L → L, λ(t) and g(t) be defined (as in §2, (2.1)–(2.3)) for |t| < ε
and for φ = f . Moreover, let G denote the distribution function of X1

and l and L the associated slowly varying functions as defined in (1.1)
and (1.2).

Theorem 3.1:

log λ(t) = itγ − 1

2
|t|2L(|t|−1)(1 + o(1)) (3).1

as t→ 0, where the constant γ ∈ R is defined by

γ =

∫ ∞
−∞

xG(dx). (3).2

Remark 3.2: Theorem 3.1 may fail in the ’classical’ case whereEf(Z) =
0 and Ef(Z)2 <∞. Indeed, suppose φ ∈ L, then also f := φ◦T−φ ∈ L
(here T denotes the shift on EN). As can be easily checked,

Pt(e
itφ) = eitφ,

whence λ(t) = 1 (see [AD]). On the other hand, it is indicated in [AD]
how to prove theorem 3.1 in case f ∈ Lip, Ef(Z) = 0, Ef(Z)2 < ∞,
and not of form f = φ ◦ T − φ.

Remark 3.3:
As a corollary, we obtain that under the conditions of theorem 3.1

| log λ(t)− logE exp[itX1]| = o(|t|2L(1/|t|)) as t→ 0.

Lemma 3.4:
E(|1− eitX1|) = O(|t|)

as t→ 0.

Proof. This estimate follows from the expansion of E exp[itX1] (see
theorem 2.6.5 in [IL].
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Proof of theorem 3.1. Let g̃t = g(t)/Eg(t)(Z) denote the eigenfunc-
tion of Pt with eigenvalue λ(t) satisfying Eg̃t(Z) = 1, then by (2.1)

λ(t) = λ(t)Eg̃t(Z) = Eλ(t)g̃t(Z) = EP [g̃te
itφ](Z) = Eg̃t(Z)eitX1 .

(3).3
By theorem 4.1 in [AD], and by lemma 3.4,

‖g̃t − 1‖∞ = O(|t|) as t→ 0.

Denote by F0 the σ-algebra generated by X1 and let ĝt ◦ X1 =
E(g̃t(Z)|F0), then by (3.3)

λ(t) = Eĝt(X1) exp[itX1] =

∫ ∞
−∞

ĝt(x) exp[itx]G(dx), (3).4

‖ĝt − 1‖L∞(G) ≤ ‖g̃t − 1‖∞ = O(|t|) as t→ 0, (3).5

and ∫ ∞
−∞

ĝt(x) G(dx) = 1 ∀ t ∈ R.

It follows from (3.5) that for |t| small enough, Re ĝt ≥ 0. Write

ĝt = grt + ig+t − ig−t
where g±t := max{±Im ĝt, 0} ≥ 0 and grt = Re ĝt ≥ 0.

For ∗ = r,+,−, we fix gt = g∗t . Then dGt := gtdG is a (positive)
measure on R. Note that by (3.5)

lim
t→0

sup
x∈R
|gt(x)−K| = 0

where K = K∗ = 1 for ∗ = r and K = 0 otherwise.
Define distribution functions Gj, Gj

t (j = 1, 2) on R+ by

G1
t (x) := Gt(x)−Gt(0), G2

t (x) := Gt(0)−Gt(−x),

G1(x) := G(x)−G(0), and G2(x) := G(0)−G(−x).

We have that

Gj
t(∞)−Gj

t(x) =
hj(x)

x2
gj(t, x), (3).6

where

hj(x) :=

{
x2(1−G(x)) = (c1 + o(1))l(x) if j = 1

x2G(−x) = (c2 + o(1))l(x) if j = 2

as x→∞, and

g1(t, x) :=

∫∞
x
gt(u) G(du)∫∞
x
G(du)

, g2(t, x) :=

∫ −x
−∞ gt(u) G(du)∫ −x
−∞G(du)

.
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It follows from (3.5) again that supx∈R |gj(t, x)−K| → 0 as t→ 0.

We need the following calculations. First note that∫
R
(1 + itx− eitx) Gt(dx)

=

∫ ∞
0

(1 + itx− eitx) G1
t (dx) +

∫ ∞
0

(1− itx− e−itx) G2
t (dx),

and secondly that integration by parts (for j = 1, 2) yields∫ ∞
0

(1− (−1)jitx− exp[−(−1)jitx])Gj
t(dx)

= −[(Gj
t(∞)−Gj

t(x))(1− (−1)jitx− exp[−(−1)jitx])]∞0

+

∫ ∞
0

(Gj
t(∞)−Gj

t(x))((−1)jit exp[−(−1)jitx]− (−1)jit)dx

= i(−1)jt

∫ ∞
0

(
exp[−i(−1)jtx]− 1

)
gj(t, x)

hj(x)

x2
dx.

We split the last integral into three parts:

t

∫ ∞
|t|−1

(
exp[−i(−1)jtx]− 1

)
gj(t, x)

hj(x)

x2
dx

+ t

∫ |t|−1

0

(
exp[−i(−1)jtx]− 1 + i(−1)jtx

)
gj(t, x)

hj(x)

x2
dx

− t
∫ |t|−1

0

i(−1)jtxgj(t, x)
hj(x)

x2
dx.

For the first integral we obtain using (1.3)

t

∫ ∞
|t|−1

(
exp[−i(−1)jtx]− 1

)
gj(t, x)

hj(x)

x2
dx

= sgn(t)

∫ ∞
1

(
exp[−i(−1)jy sgn(t)]− 1

)
gj(t, y/|t|)

hj(y/|t|)
(y/|t|)2

dy

= O

(∫ ∞
1

t2

y2
hj(y/|t|)dy

)
= O

(∫ ∞
1

t2

y2
l(y/|t|)dy

)
= O

(
t2l(1/|t|)

)
= o

(
t2L(1/|t|)

)
.
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Since l is slowly varying

|t|
∫ |t|−1

0

l(x)dx = O

(
l(|t|−1)

)
.

From this and (1.3) we obtain for the second integral that

t

∫ |t|−1

0

(
exp[−i(−1)jtx]− 1 + i(−1)jtx

)
gj(t, x)

hj(x)

x2
dx

= O

(
t3
∫ |t|−1

0

hj(x)dx

)
= O

(
t2l(1/|t|)

)
= o

(
t2L(1/|t|)

)
.

The third integral, multiplied by i(−1)j, is equal to

t2
∫ |t|−1

0

xgj(t, x)
hj(x)

x2
dx

= t2
∫ |t|−1

0

x(Gj
t(∞)−Gj

t(x))dx

=
t2

2
[(Gj

t(∞)−Gj
t(x))x2]

|t|−1

0 +
t2

2

∫ |t|−1

0

x2Gj
t(dx)

=
t2

2

∫ |t|−1

0

x2Gj
t(dx) + o(t2L(1/|t|))

=

{
(K + o(1)) t

2

2

∫ |t|−1

0
x2G(dx) + o(t2L(1/|t|)) j = 1

(K + o(1)) t
2

2

∫ 0

−|t|−1 x
2G(dx) + o(t2L(1/|t|)) j = 2

= (K + o(1))
t2

2
L(1/|t|),

where we used (1.1), (3.5) and (3.6). Finally note that by (3.5)

γt :=

∫
R
xĝt(x)G(dx) = γ +O(|t|) as t→ 0,

and, since G is not in the normal domain of attraction, we have t2 =
o(t2L(1/|t|)).
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The proof of theorem 3.1 is completed by using (3.4) and the previous
estimates:

log λ(t)− itγ ∼ λ(t)− 1− itγ

=

∫ ∞
−∞

(
eitx − 1− itx

)
ĝt(x)G(dx) + o(t2L(1/|t|))

=

∫ ∞
−∞

(
eitx − 1− itx

)
(grt (x) + ig+t (x)− ig−t (x))G(dx) + o(t2L(1/|t|))

=
t2

2

∫ |t|−1

−|t|−1

x2ĝrt (x)G(dx) + o(t2L(1/|t|))

= t2L(1/|t|)(1 + o(1)).

Let

nL(Bn) = B2
n, An = γn. (3).7

The following corollaries contain the local and central limit theorems.
Their proofs are straightforward using theorem 3.1 (cf. corresponding
statements in [AD]). We write, as before,

Sn = X1 +X2 + ...+Xn,

and denote by φ the density of the standard normal distribution.

Corollary 3.5: (Conditional lattice local limit theorem) Suppose
that X1 is aperiodic.

Let An, Bn be as defined in (3.7), and suppose that kn ∈ Z, kn−An

Bn
→

κ ∈ R as n→∞, then

‖BnP
n(1[Sn=kn])− φ(κ)‖∞ → 0 as n→∞,

and, in particular

BnE1[Sn=kn] → φ(κ) as n→∞.

Corollary 3.6: (Conditional non-lattice local limit theorem) Suppose
that X1 is aperiodic.

Let An, Bn be as defined in (3.7), let I ⊂ R be an interval, and
suppose that kn ∈ Z, kn−An

Bn
→ κ ∈ R as n→∞, then

BnP
n(1[Sn∈kn+I])→ |I|φ(κ) as n→∞

where |I| is the length of I, and in particular

BnE1[Sn∈kn+I] → |I|φ(κ) as n→∞.
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Corollary 3.7: (Distributional limit theorem) Let An, Bn be as
defined in (3.7). Then

Sn − An
Bn

is asymptotically standard normal.
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