A LOCAL LIMIT THEOREM FOR STATIONARY
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ABSTRACT. We prove local limit theorems for Gibbs-Markov pro-
cesses in the domain of attraction of normal distributions.

§1 Introduction

It is well known that a random variable X belongs to the domain of
attraction of a normal distribution DA(2) if its characteristic function
satisfies

1
(%) log F exp[it X] = ity — §t2L(1/|t\)

for some slowly varying function L : Ry — R, which is bounded
below and some constant v € R (cf. [IL]).

The normal (or classical) domain of attraction NDA(2) consists of
the class Ly, and is characterised by the boundedness of the slowly
varying function L in (x). Here we consider the "non-normal” domain
of attraction DA(2) \ NDA(2).

The function L is unbounded and is determined (up to asymptotic
equivalence) by the tails of the distribution of X which satisfy

1-G(r)=P(X >z)~ciz2l()
(1) G(—z) = P(X < —2) ~ oz 2l(z) x— o0.l

for some constants c¢i;,co > 0,¢; + ¢ = 1 and some slowly varying
function [, which in turn determines L by

L(z) = / W2dPy (u). (1).2
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2 Local Limit Theorem

It follows from (1.2) that
[(z) = o(L(x)) (1).3

as r — OoQ.

Let X;, X5, ... be a stationary process of independent random vari-
ables with X}, € DA(p) (0 <p <2).

The local limit theorem (LLT) for the partial sums S,, := X; +--- +
X, is well known, that is 9 constants A,, B, € R, B, — 400 such
that V x € R and / C R ( an interval),
kn - An

By,
where ¢ is a p-stable density on R. Extensions of the LLT to Markov
chains are well known (see [AD] for a more detailed discussion).

In [AD], LLT’s were established for Gibbs-Markov functionals (defi-
nition below) in the non-normal stable case (p < 2).

In the normal case (p = 2), such extensions are only known when
X € NDA(2) (see [AD], [Rou], [GH], [M]).

Here we prove the LLT for Gibbs-Markov functionals X, X5,... in
the case X; € DA(2) \ NDA(2).

B,P(S, —k,€1I)—|I|lg(k) as

— K

§2 Gibbs-Markov processes and functionals

Definition 2.1: A mixing stationary process {7, : n € N} is called
Gibbs-Markov, if its state space F is at most countable and if
(1) (Markov property)

P(Zy=a,Z5=0)>0 and P(Z1=0,Z2=¢)>0
— P(Z1=a,Zy=b,Z3=1¢)>0
for all a,b,c € E and
inf{ > P(Zy=b):a€ E} >0.
be B; P(Z1=a,Z2=b)>0
(2) (Gibbs property) There exist constants M > 0 and 0 < r < 1
such that
P(Zy=a1,.... 2y = ap|Zps1 = b1, ooy Zni = by)
P(Zy=a1,.... 2y = ap|Zps1 = C1y ooy ik = C)
for all a;,bj,c; € E,1<i<n,1<j<kandallnk>1

—1| < Mr~ min{l:c;#b; }




Jon Aaronson and Manfred Denker 3

Remarks 2.2:
1) Recall that a process Z = {Z, : n > 1} is called mixing, if for all
square-integrable functions f, g € Ls(Z) one has

Ef(Z)g(Zn, Zpia,...) > Ef(Z)Eg(Z)  asn — oo,

where L,(Z) (¢ € NU{oo}) is the space of functions g : EY — R which
are g-integrable with respect to the distribution of Z.

2) The coordinate process on EN of a mixing Gibbs-Markov map (as
in [AD]) is a Gibbs-Markov process in the sense of definition 2.1. Con-
versely, every Gibbs-Markov process has a mixing, shift-invariant dis-
tribution on EY under which the shift is a Gibbs-Markov map.

Definition 2.3: A function f : EN — R is uniformly Lipschitz on
states (f € Lip), if

D(f):= sup Tmin{l:x’#y’}‘f(x) — f(y)| < oo,
a€E,x,y€lal

where [a] = {(z1,72,...) € EN : 2y = a}.

Definition 2.4: A stationary process {X,, : n € N} is called a Gibbs-
Markov functional, if there exists a Gibbs-Markov process Z = {Z,, :
n € N} and a function f € Lip such that

X, = f(Zn7 Zn+17 )

The Frobenius-Perron operators P™ : Li(Z) — Li(Z) are defined by
EPnf(Zl, Zg, )g(Zl, ZQ, ) = Ef(Zl, Zg, ---)g(Zn+17 Zn—|-2; ), (2)1
and the characteristic function operator for the function ¢ : EY — R

by
P.f = P(f explite]). (2).2

In [AD] it has been shown that when ¢ € Lip, P acts on L :=
Loo(Z) N Lip equipped with the norm || f]lz = [|f]lec + D(f). As an
operator on £, P; has a unique eigenvalue of maximal modulus A(t) for
|t] < € and a decomposition

Brf=X0"9gOEf(Z)+Qrf (|t <e), (2).3
where the spectral radius of @); is uniformly bounded by some 6 < 1
and where ¢(t) is the normalized eigenfunction for A(t). P; is called
the characteristic function operator, since

P = PretS = M(0)g(t) + Q)1



4 Local Limit Theorem

where S, = X; + ...+ X,,.

§3 Local limit theorems

In this section, we assume that {X,, : n > 1} is a Gibbs-Markov
functional with X; = f(Z) € DA(2), but EX? = co. Let the operator
P, L — £, \(t) and ¢(t) be defined (as in §2, (2.1)—(2.3)) for |t| < €
and for ¢ = f. Moreover, let GG denote the distribution function of X;
and [ and L the associated slowly varying functions as defined in (1.1)
and (1.2).

Theorem 3.1:
. 1 _
log A(t) = ity — §|t|2L(|t\ H(1+o(1)) (3).1
as t — 0, where the constant v € R is defined by

y = / " 2Gde). (3).2

o0

Remark 3.2: Theorem 3.1 may fail in the 'classical’ case where E f(Z) =
0 and Ef(Z)* < co. Indeed, suppose ¢ € L, then also f := ¢oT—¢ € L
(here T denotes the shift on EN). As can be easily checked,

Pt(eiw) — eitqﬁ’

whence A(¢) =1 (see [AD]). On the other hand, it is indicated in [AD]
how to prove theorem 3.1 in case f € Lip, Ef(Z) = 0, Ef(Z)* < oo,
and not of form f=¢oT — ¢.

Remark 3.3:
As a corollary, we obtain that under the conditions of theorem 3.1

|log A(t) — log E exp[itX1]| = o([t|*L(1/|t]))  ast — 0.

Lemma 3.4:
E(|1—e™]) = O(Jt])
as t — 0.

Proof. This estimate follows from the expansion of F exp[itX;] (see
theorem 2.6.5 in [IL].
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Proof of theorem 3.1. Let §; = g(t)/Eg(t)(Z) denote the eigenfunc-
tion of P, with eigenvalue \(t) satisfying E£¢;(Z) = 1, then by (2.1)
At) = N EG(Z) = EX(t)§(Z) = EP[gie"*)(Z) = Egi(Z)e"™".
(3).3
By theorem 4.1 in [AD], and by lemma 3.4,
15t — Lllee = O(Jt]) st — 0.

Denote by Fy the o-algebra generated by X; and let ¢, o X7 =
E(g/(Z)|Fp), then by (3.3)

N = B explitXi] = [ a)esslitalGlde),  (3)4
6= ewi < I3~ U =OH) ast—0, ()5

and

/w@@N%M%:1VteR

o0

It follows from (3.5) that for |¢| small enough, Re g: > 0. Write
G = g; +igl —igy
where g := max{+Im §;,0} > 0 and ¢/ = Re g, > 0.
For x = r, +,—, we fix g, = ¢g. Then dG, := ¢,dG is a (positive)
measure on R. Note that by (3.5)
limsup |g:(z) — K| =0

t—=0 pcRr

where K = K, =1 for * = r and K = 0 otherwise.
Define distribution functions G’, GY (j = 1,2) on R, by

Gy(2) = Gi(w) = Gi(0), Gi(z) == Gi(0) = Gy(~2),
G'(z) = G(x) — G(0), and G?*(x) := G(0) — G(—=x).
We have that

Gi(o0) ~ Gil) = g (1), (3)6

as r — 0o, and

7 0(w) G(du)
[ Gldu)

g1(t, ) :
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It follows from (3.5) again that sup,cp |g,(t,2) — K| — 0 as t — 0.
We need the following calculations. First note that
/R(l + itz — ") Gy(dx)
= /000(1 +ite — ™) G} (dx) + /000(1 —itr — e ") G2(dx),
and secondly that integration by parts (for j = 1,2) yields
/Ooog (= 1Yite — expl—(—1)iita]) G (dx)
= [(Gi(00) ~ Gi(a) (1 ~ (~1Yitz — expl—(~1ita] i
+ /OOO(Gf(OO) — Gl(2))((=1)7it exp[—(=1)ita] — (=1)it)dz
(1)t /0 h <exp[—i(—1)jtx] - 1) o5, x)hjx(f)d:c.
We split the last integral into three parts:

" /| h <exp[—i(—1)jtaj] _ 1) g5t ) hﬂ‘;j")dx

t|—1t

+ t/olﬂl (exp[—i(—l)jtx] — 1+ @(—1)%) g;(t, x)h"x(f)dx

It~ . 1y
- t/ i(—1)txg;(t, x) ](f)dx.
0 x

For the first integral we obtain using (1.3)

" /| h (exp[—i(—l)jtx] _ 1) 0t )12 gy

2
t-1 T

/i),

—snlt) [ (expl-i(- 17y sento)] = 1) e 20

—o( [" Csturienay )
o [ Zitwrienay)
O<t2l(1/|t|)) = o(t2L(1/|t\)).
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Since [ is slowly varying

1t /Oltl I(2)de = O(l(|t|_1)).

From this and (1.3) we obtain for the second integral that

/ /0 . (exp[—i(—l)jt:l:] 1+ z<—1)ﬂ'm) gj(t,a:)hjm(;)da:

O(t3 /0 " hj(x)dx)
= O(t21(1/|ty)> = o(tQL(1/|t|)).

The third integral, multiplied by i(—1)7, is equal to

11 (2
t2/0 xg;(t, ) h;g )dx
1= : :
= t2/0 (G (00) — G (x))dx

2 ' ] . 2 ]~ .

- Gl ~ Gl + 5 [ aGi)
2 pltt .
gg P2G(dx) + o(t*L(1/|1]))

:{m+“m Gl + oL/ =
(K +o0(1)5 [0, 2*G(dz) + oL(1/|t)))  j=2

2

= (K + o(1)) S L(1/I]),

where we used (1.1), (3.5) and (3.6). Finally note that by (3.5)

- /q;gt(a:)G(dx) — 1 O(t]) as t — 0,
R

and, since G is not in the normal domain of attraction, we have t*> =

o(t*L(1/1t]))-
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The proof of theorem 3.1 is completed by using (3.4) and the previous
estimates:

log A(t) — ity ~ A(t) — 1 — ity

_ /_ * (em e m) 3u(2)G(dx) + o(2L(1/[t]))

oo

- ( 1 t) (@) + g} (2) — ig; (2))G(de) + o(L(1/ 1)

B t;OO [t|~1
2 )y
= 2L(1/[t)(1 + o(1)).

g, (x)G(dx) + o(t*L(1/[t]))

Let
nL(B,) = B2, A, =n. (3).7
The following corollaries contain the local and central limit theorems.

Their proofs are straightforward using theorem 3.1 (cf. corresponding
statements in [AD]). We write, as before,

Sn :X1+X2—|—+Xn,
and denote by ¢ the density of the standard normal distribution.
Corollary 3.5: (Conditional lattice local limit theorem) Suppose
that X; is aperiodic.

Let A,,, B, be as defined in (3.7), and suppose that k,, € Z, % —
k € R as n — oo, then

and, in particular

B, Elis, =k, = ¢(k) asn — oo.

Corollary 3.6: (Conditional non-lattice local limit theorem) Suppose
that X; is aperiodic.

Let A,, B, be as defined in (3.7), let I C R be an interval, and
suppose that k, € Z, % — k € R as n — oo, then

B P (Lis,enorn) = []d(k) asn — oo
where |I| is the length of I, and in particular

B, Els,ck,+1 — |I|o(k) asn — oo.
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Corollary 3.7:  (Distributional limit theorem) Let A,, B, be as
defined in (3.7). Then
Sn - An
By,
is asymptotically standard normal.
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