ON EXACT GROUP EXTENSIONS
JON AARONSON AND MANFRED DENKER

ABSTRACT. We give conditions for the exactness of R%-extensions.

§0 INTRODUCTION

A fibred system (X, B, m,T,«) is a nonsingular transformation (X, B,m,T)
of a standard probability space equipped with a countable, measurable
partition « ¢ B, generating B (in the sense that o({T"a: a€ o, n>
0}) = B) such that T : a — Ta is invertible, nonsingular for a € a. A
fibred system (X, B,m,T,«) is called a Markov map (or Markov fibred
system) if Ta € o(a) mod m VY aea.

Write o = {as : s € S} and endow SN with its canonical (Polish)
product topology. Let

Y={s=(s1,82,...) € SN: m(( T *as,)>0 Vn>1},
k=1

then X is a closed, shift invariant subset of SN, and there is a measurable
map ¢ : % - X defined by {¢(s1,52,...)} =Ny T-*Dag,.

The closed support of the probability m’ =mo ¢! is X, and ¢ is a
conjugacy of (X, B, m,T) with (3, B(X), m’,shift). Thus we may, and
sometimes do, assume that X =%, T is the shift, and a = {[s] : s € S}.

For n > 1, there are m-nonsingular inverse branches of 7' denoted
vy : T"a - a and defined by v,(x) = (a,z) (a € af™') with Radon
Nikodym derivatives denoted

, dmou,
Vg, =

dm

Let (X, B, m, R) be a nonsingular transformation of a standard prob-
ability space.

The Frobenius-Perron operators Pgn = Pgn,, : L1(m) - L1(m) are
defined by

/PRnf-gdm:[f-gOR”dm
X X
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and for the fibred system (X, B, m,T,a) (as above) have the form
PTnf = Z 1T”aU; : fo'l}a.

n-1
QEOCO

A fibred system (X, B, m,T,a) has:
the Renyi property if 3 C'> 1 such that V n>1, a€af™, m(a) > 0:

va(2)

v (v)

<C for mxm-a.e. (z,y) € T"axT"a.

It is well known (a proof is recalled in [ADU93]) that any topo-
logically mixing probability preserving Markov map with the Renyi
property is ezact in the sense that MN,s; 778 = {@, X} mod m.

Examples include:

e topological Markov shifts equipped with Gibbs measures ([Bow08],[BR75])
and
e uniformly expanding, piecewise onto C? interval maps T : [0,1] —
[0, 1] satisfying
Adler’s condition sup 1 % < oo (JAdI73]);
or, generalising the above two examples:
e Gibbs-Markov maps as in [AD96],

the Markov map (X, B, m,T,«) being called Gibbs-Markov if it has
the Gibbs property that 3 C'> 1, 0 <r <1 such that Vn >1, a ¢
ap~t, m(a) > 0:

‘Zégg —~ 1‘ < Crt@y) for m x m-a.e. (z,y) € T"axT"a, (see §4.6, §4.7 of
[Aar97]);
and the big image property that inf,., m(Ta) > 0.

Now let ¢ : X - R¢ be measurable and consider the skew product
Ty : X xR? — X xR? defined by Ty(z,y) = (Tz,y+¢(x)) with respect to
the (invariant) product measure m x mga where mga denotes Lebesgue
measure.

We say that ¢ is aperiodic if v(¢) = zhhoT has no nontrivial solution
inveR?, ze S and h: X - S! measurable.

It is not hard to show that if T} is ergodic, and 7" is weakly mixing,
then T} is weakly mixing iff ¢ is aperiodic.

We're interested in the exactness of Tj.

We establish two (partial) results in this direction.

Theorem 1

Suppose that (X,B,m,T,«) is a probability preserving Markov map
with the Renyi property. Let N >1 and ¢: X — R? be oy ~'-measurable
(i.e. ¢(z) = p(a)H(x)) where x e ol (x) e ™).

If T, is topologically mizing, then T, is exact.
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For the other result, we assume that (X, B, m, T, «) is an exact proba-
bility preserving fibred system with the property that there is a Banach
space (L, | -||z) of functions with |-|2 < |-z, such that Pr: L — L and
JdH >0, 0<r<1, N >1 such that

| Prn flle <rlflle+ HIfl2 vV fel.
In this case (see [DF37], [[TM50]) 3M >0, 6 € (0,1) such that

|Prof = [ fdmls< MO™|flz v feL.

Given ¢ : X — R? measurable, we define the characteristic function
operators Pi(f) = Pr(et9) f) (t e RY).

We assume also that P, : L > L (¢ € R?) and that ¢ — P, is continuous
(R? - Hom (L, L).

It is shown in [Nagh7] (see also theorem 4.1 of [AD96]) that
(i) there are constants ¢ > 0, K > 0 and 6 € (0,1); and continuous
functions A : B(0,¢) - Bc(0,1), g: B(0,¢) - L such that

|Prh = A()"g(t) [y hdm|y < KOk, ¥ |t <e, n>1, hel;

(i) if v(¢) = zhh o T where 7 € Rd, zeS! and h: X - S! measurable,
then h e L;

and
(7)) in case ¢ is aperiodic, then V 0 <0 < M <00, 3 K >0, 0<p< 1
such that

|Pyh|p < Kp® ¥ hel, nx1, 6 <|y|<M.

Examples include:

e (see [AD9M]), (X,B,m,T,«) a Gibbs-Markov maps and ¢ : X — R?
uniformly Hoélder continuous on partition sets. Here L is a space of
Holder continuous functions f: X — C.

e (see [RE83|, [Ryc83]), X =[0,1], m Lebesgue measure, a a partition
of X mod m into open intervals, and T : a — Ta an invertible, m-
nonsingular homeomorphism for each a € a with inf|7”| > 1 and ,%, of
bounded variation on X; and ¢ : X - R? either: of bounded variation
on X; or constant on each a € a. Here L is the space of functions
f: X — C of bounded variation on X.

Set ¢, =¢p+¢poT +...+poTm 1,

Theorem 2
Suppose that

%

(o) V)\>13nk—>oosuchthat)\—zl’:—>0a.e. as k — oo
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and that ¢ is aperiodic;
then Ty is exact.

Remarks

1) Theorem 2 generalises the corresponding theorem on page 443 in
[Cuig9].

2) The condition (o) is satisfied if m-dist (¢) is in the domain of
attraction of a stable law.

3) The condition (¢) is not satisfied iff 3 A > 1 and € > 0 such that
m([|¢n| > A"]) 2 € ¥V n > 1 and there are independent processes like
this.

4) For examples satisfying the assumptions of the theorems, let X =
[0,1], Tz = {1}, then T is a piecewise onto C? interval map with
Markov partition a = {I,, = (=%, 2]: n > 1}. The invariant probability

n+l’n
is Gauss’ measure dm(z) := —-%. Since T2 is uniformly expanding

log2 1+z°
and satisfies Adler’s (:ondition,g we have (passing to the Polish product
topology induced by «) that (X,B,m,T,«) has the Gibbs property,
whence (T is piecewise onto) the Renyi property and is Gibbs-Markov.

It is not hard to show that if ¢ : X - R is constant on each I, takes
the value 0 and the semigroup generated by the values of ¢ is dense in
R, then T} is topologically mixing and therefore exact by theorem 1.

Such functions ¢ : X — R are aperiodic by corollary 3.2 of [A-D],
and so the exactness of T}, is also established by theorem 2. On the
other hand, if ¢(z) = log + then T} is not topologically mixing (since
¢ >0). Nevertheless, ¢ is aperiodic by corollary 3.2 of [A-D], and so T}
is exact by theorem 2 (but totally dissipative).

§1 FROBENIUS-PERRON OPERATORS, EXACTNESS AND RELATIVE
EXACTNESS

Let (X, B, m, R) be a nonsingular transformation of a standard prob-
ability space. The tail o-algebra of (X,B,m,R) is T(R) := N>y R"B
and the nonsingular transformation R is called ezactif = {@, X} mod m.

Theorem 1.1 [DL&4]
| Prefll = [ECIT(R))1 asn—> o0V feLl(m).

In particular (see [Lin71]), Ris exact iff | Pgn f||; > OV f e L'(m), [y fdm =
0.

Proof
First note that |Prf| < Pr|f| whence | Pgn f|1 4 and 3 lim,, o | Pro f]|1-
Next, V n>13 g, € L®(B) with [ (Pgnf)gndm = | Pgn f]1, whence



Jon Aaronson and Manfred Denker 5

1P fl= [ fono Rdm.

By weak * compactness, 3 ng - oo and g € L>(B) such that g,, o R —
g weak * in L>(B).

It follows that g € L*(T(R)), [|g]e < 1 and lim, e |Pref|1 =
[« fgdm. Thus

Tim || Pge f1y Ssup{/x fhdm: he L=(T(R)), [hle <1} = |[ECSIT(R))]1.

To show the converse inequality, note that 3 g € L= (T (R)), ||g] =1
such that

IEGITRDL = [ EGIT(R))gdm = [ fgm
whence Y n>1, 3 g, € L*(B),g = g, o R* and

BT = [ fodm= [ fg.oRrdm= [ (Pref)gadin < | P flh.
Ul

Let (X,B,m,R) and (Y,C,u,S) be nonsingular transformations of
standard probability spaces. A factor map is a function 7 : X - Y
satisfying 77 1Cc B, moT =Som, mon~!=p.

The fibre expectation of the factor map 7 : X - Y is an operator

fre E(flm), LY(X,B,m) ~ LY(Y.C, 1)

defined by [, E(f|m)gdp = [y fgomdm.
The factor map 7 : X — Y is called relatively exact if

fel'(B), E(flr)=0ae. = |Pgaf|1—0.

The corollary below appears in [Gui89]. For the convenience of the
reader, we supply a (possibly different) proof.

Proposition 1.2 Suppose that m : X — Y s relatively exact, then
T(R)=n"tT(S) mod m.

Proof

Evidently, 7717 (S) ¢ T(R). We show that 71T (S) 2 T(R).

By relative exactness and theorem 1.1, if f € L'(B) and E(f|r) =0
a.e., then [, fgdm =0V ge L=(T(R)).

Thus if f e L?(B) e L?(n~'C), then E(f|r) =0 a.e. and so

Afgdm:OVgeL“’(T(R)), — f1LXT(R)).
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Thus L2(B)eL?(n~'C) c L*(B)eL*(T (R)) whence L?(T (R)) c L?>(7~'C)
and T(R) c #~'C mod m.
To see that in fact T(R) c 71T (S) mod m, fix N > 1, then

T(R)=(R"B= (| R"B

n>1 n>N+1

=RYT(R)c RNr'C=n15"C.
Taking the intersection over N shows the claim. U

Corollary 1.3 ([Gui89|, proposition 1)
If S is exact and m: X =Y s relatively exact, then T is exact.

§2 PROOF OF THEOREM 1

For a nonsingular transformation (X, B, m, R), define the tail relation
of R:

T(R):={(z,y) e X xX: In>0, R"x = R"y}.

Evidently T(R) is an equivalence relation and if (X, B, m) is stan-
dard, then T(R) € B(X x X).

If R is locally invertible, then T(R) has countable equivalence classes
and is nonsingular in the sense that m(T(R)(A)) =0V Ae B, m(A) =0
where T(R)(A):={yeX: FzeA (z,y) e T(R)}.

A set A € B(X) is invariant under the equivalence relation T € B(X x
X) if ¥(A) = A and the equivalence relation ¥ is called ergodic if T-
invariant sets have either zero, or full measure.

The collection of invariant sets under T(R) is the tail o-algebra T (R)
(whence the name ”tail relation”).

In order to prove theorem 1, it suffices to show that T(7T}) is ergodic.

The tail relation of Ty is given by

UTs)
={((z,5), (1)) e (X xG)*: In20, T"w=T"y, s—t=¢u(y) - dulz)}
= {((2,9), (1, 1)) € (X xG)*: (,y) € (T), P(w,y) =5t}
where ¢ : T(T) - R is defined by ¢(z,y) = ¥ (d(T7y) - ¢(T7z)).
We prove that T(7}) is ergodic by the method of Schmidt (explained

in [Sto66]), by showing that V ¢ € R, U a neighbourhood of ¢ and
AeBm(A)>0, 3 BeB Bc Aand 7:B — B nonsingular such that

(x,7(x)) € Z(T) and ¢(z,7(x)) e U V x € B.
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This boils down to showing that
VAeB, goeR¥n>0,3BeB, BcA, n>1

and 7: B - 7B c A nonsingular such that
(*) T"or=T" and |67 - 6 - gol <1 on B.

The proof of (1) will be written as a sequence of minor claims,
9€0.,91,....
€0 We first claim that there is no loss in generality in assuming that
N =1 (ie. that ¢ : X - R? is a-measurable). This is because
(X,B,m,T,ay"!) is also a probability preserving Markov map with
the Renyi property and inducing the same (shift) topology on X as
(X,B,m,T,«a).
Q VsteS I k=ry21and a=as; = [ar,...a,], b =bsy =
[b1,...be] €af™, a1 = by = sa, =b, =t such that [¢.(b)—¢.(a)-go| < 7.

This follows from topological mixing of 7.

By the Renyi property, 3 M > 1 such that

M m(u)m(v) < m(unT*v) < Mm(u)m(v) Yueak™ veaf™, [vi] c Tlux].

Given u = [uq,...,u,] € of ! with w, = ¢, define 7 =7, : unT™"a -
unT="b by
T(ulw'wun)ala"'aﬁay) ::T(ula"'7un7b17"'bﬁay)'

Qr=r1:unT"a - unT"bis invertible nonsingular and d;”% =

M,
PrROOF
[ dmonm:m(umT‘”bmc)
unT-"anc  dA'M
= =20 ym(bym ()
m(a)
= M*4Mm(u NnT"anc).
m(a)

€3 PROOF OF I
Fix 0 < e < M~tmin{m(as¢), m(bst)}, then
m(unT "as,), m(unT "bs,) > em(u) YV ueag™, [s]cTlu].

Let ¢ > 0 be so small that § < ”X/([Z)qg(;;)

In >1and u e of~t such that m(Anu) > (1-0)m(u) and [s] c T[u,].
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Consider 7, :unT"a - unT"b as in 2. Evidently T""* o7 =Tntx
and ||@pik © T = Grsr — Go|| <m on un T "a.

To complete the proof we claim that 3 Be B, Bc AnunT"a such
that 7B c A.

To see this, note that

m(unTanA)>m(unT"a) -m(u~ A) > (e-0)m(u),
whence using €2,

m(b)
M*m(a)

m(unTanA) > Mm(u)

m(r(unT"an A)) > M*m(a)

Since T(unT"an A) c u, the condition on 0 > 0 ensures that m(7(un

T"anA)nA) >0 whence m(B) >0 where B := T‘l(T(u NT"anA)n

A)CA. O

§3 PROOF OF THEOREM 2

We prove theorem 2 via corollary 1.3. To do this, we must consider
T, as a nonsingular transformation with respect to some probability
P ~m xmga.

Let p:R? - R, be continuous with [, p(y)dy =1 and define a prob-
ability P on X x R by dP(z,y) = p(y)dm(z)dy; then (X xR B(X x
R4), P,Ty) is a nonsingular transformation with Frobenius-Perron op-
erators given by

1
Propf(e,y) = ——Pra(f-1©p)(z,y
1.2 0.9) = s Pry (£ 1 01)(2.0)
where PT(;L = PTgvmmed'

Consider the map 7 : X x R? > X defined by 7(z,y) = z. This is a
factor map as it satisfies 7 'B(X) c B(X xR?), woTy=Tom, Por! =
m.

The fibre expectation of 7 is given by

E(m) @) = [ F@yp(dy (/e LH(X xREB(X xRY), P)).

By corollary 1.3 and exactness of T', it suffices to show that = is
relatively exact.



Jon Aaronson and Manfred Denker 9

To do this, we show that

L @ypdy =0 ae. —
./Xde |PTg,Pf|dP = ./)<de |PTg(f~ 1®p)|d(m xmga) -0
as n — oo; equivalently (taking F'(z,v) := f(z,v)p(vy)),

(%) f F(z,y)dy=0a.e. — f |Pro F|d(m x mga) = 0
Rd XxRd ' ¢

as 1n — o0.

To prove (%), we first claim that
91 for A>1, he L' (m) and f e L'(R?),

npd
[P (@ [ < OA%HPT;%(h@ Dl +o(1)

as k — oo where C' = Q%m(B(O, 1)) and f%ﬁ -0 ae..
PROOF As can be checked,

Pry(h® f)(2,y) = Pra(h(-)f(y = ¢u(-)))(x) (heL'(m), feL'(R)).
Denoting E(H) := [, Hdm for H € L'(m), we have

| Pros (ho f) 1 = fRdIE(Pm(h(')f(y—aﬁnk('))))|dys AAQW +/y|>2w-

(2)
By the Cauchy-Schwartz inequality,

S, o < Vs BOID) | Pros (h@ )l = OXF | Pygu (he )
(3)

whereas
< E(Proi (M) F(y = b (N 116, (yieamet)|dd
Jomen € L P (RO = 00, )L, copcnnay
+ A/mw |E(Proi (h () f (Y = Gy (D)6, (orme)))dy = T+ 11
Here as k — oo:

IT <[ fliE(RIL g, (ypane)) =0 (4)
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LTI a.e.; and

A"k
IS_/ E(lh — ¥n 1 Nexnw)d
oo ZURIF = G Lgn, orxm )y

since

- 5ot [ 1 onc)a)

6 <E(p) [ 1f@)ldy =0,

Substituting (3),(4) and (5) into (2) proves q1. O
To complete the proof of (%), let F' € L' (mxmga) satisty [o F(z,y)dy =
0 for m-a.e. z € X and fix € >0. We show that
(%¢) lim sup |Pro F|d(m x mga) < €.
n—oo X xRd ¢

Standard approximation techniques show that Ve >0, 3N €N, hy,..., hy €
L, g1,...,gn € L'(R?) such that [p.gx(y)dy=0 (1<k<N) and

N €
HF— kzzjlhk ®ngL1(m><mRk) < 5

Next, it follows from theorems 1.6.3 and 1.6.4 in [Rud74] that
3 fi,--, fv € L' n L? such that

e [fr+#0]is compact and bounded away from 0 (1<k < N);
and

i ka—QkHLl(de)<m (1< k< N), whence

€
o)

N N N
|2 7 ® fio= 3% 1 ® 9 1 sy S 22 W2ty + 1 e = gl ey < 5
k=1 k=1 R k=1

N
17~ 50 il <
k=1

(mmed)

We claim R
Q2If he L and f e L'nL? is such that [ f # 0] is compact and bounded
away from 0, then 3 0 < p < 1 such that

| Pry(h® f)]2=0(p") as n — oo. (6)
PRrROOF

Let [f#0]c B(0, M)~ B(0,0). By (i) (above), 3 K >0, 0<p<1
such that

|PPh(z)| < Kp" Y oeX, n21, §<|y[< M,
whence using the fact that the Fourier transform of y Pﬁ (h® f)(x,y)
is v~ f(’y)PV”h(x) and Plancherel’s formula, we have
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Pry(he 113 = [ ( L |PTg<h®f><x,y>|2dy)dm<x>

- fX( fR |J?(7)|2|P$h(x)|2d7)dm(x)

= [ IFOPIPz I3y < K25 [ [Ty

proving 92. O
To finish the proof of theorem 2, we claim

€3 if (6) holds for he L and f e L' n L2 then
|Prs(he )]y 0. (7)

PROOF .
Fix A > 1 such that A\2p < 1. Suppose that f%,’j — 0 a.e.. Using (6),
we have by €1,

|Pyec(h® Pl < OF [P (h® )l + 0(1) = OO ) +0(1) > 0
as k — oo; establishing (7) since |Prn(h® f)]1 1. O
This completes the proof of theorem 2.
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