ON EXACT GROUP EXTENSIONS

JON AARONSON AND MANFRED DENKER

Abstract. We give conditions for the exactness of \mathbb{R}^{d}-extensions.

§0 Introduction

A fibred system $(X, \mathcal{B}, m, T, \alpha)$ is a nonsingular transformation (X, \mathcal{B}, m, T) of a standard probability space equipped with a countable, measurable partition $\alpha \subset \mathcal{B}$, generating \mathcal{B} (in the sense that $\sigma\left(\left\{T^{-n} a: a \in \alpha, n \geq\right.\right.$ $0\})=\mathcal{B})$ such that $T: a \rightarrow T a$ is invertible, nonsingular for $a \in \alpha$. A fibred system $(X, \mathcal{B}, m, T, \alpha)$ is called a Markov map (or Markov fibred system) if $T a \in \sigma(\alpha) \bmod m \quad \forall a \in \alpha$.

Write $\alpha=\left\{a_{s}: s \in S\right\}$ and endow $S^{\mathbb{N}}$ with its canonical (Polish) product topology. Let

$$
\Sigma=\left\{s=\left(s_{1}, s_{2}, \ldots\right) \in S^{\mathbb{N}}: m\left(\bigcap_{k=1}^{n} T^{-k} a_{s_{k}}\right)>0 \quad \forall n \geq 1\right\}
$$

then Σ is a closed, shift invariant subset of $S^{\mathbb{N}}$, and there is a measurable map $\phi: \Sigma \rightarrow X$ defined by $\left\{\phi\left(s_{1}, s_{2}, \ldots\right)\right\}:=\bigcap_{k=1}^{\infty} T^{-(k-1)} a_{s_{k}}$.

The closed support of the probability $m^{\prime}=m \circ \phi^{-1}$ is Σ, and ϕ is a conjugacy of (X, \mathcal{B}, m, T) with $\left(\Sigma, \mathcal{B}(\Sigma), m^{\prime}\right.$, shift). Thus we may, and sometimes do, assume that $X=\Sigma, T$ is the shift, and $\alpha=\{[s]: s \in S\}$.

For $n \geq 1$, there are m-nonsingular inverse branches of T denoted $v_{a}: T^{n} a \rightarrow a$ and defined by $v_{a}(x):=(a, x) \quad\left(a \in \alpha_{0}^{n-1}\right)$ with Radon Nikodym derivatives denoted

$$
v_{a}^{\prime}:=\frac{d m \circ v_{a}}{d m} .
$$

Let (X, \mathcal{B}, m, R) be a nonsingular transformation of a standard probability space.

The Frobenius-Perron operators $P_{R^{n}}=P_{R^{n}, m}: L^{1}(m) \rightarrow L^{1}(m)$ are defined by

$$
\int_{X} P_{R^{n}} f \cdot g d m=\int_{X} f \cdot g \circ R^{n} d m
$$

[^0]and for the fibred system $(X, \mathcal{B}, m, T, \alpha)$ (as above) have the form
$$
P_{T^{n}} f=\sum_{a \in \alpha_{0}^{n-1}} 1_{T^{n} a} v_{a}^{\prime} \cdot f \circ v_{a}
$$

A fibred system $(X, \mathcal{B}, m, T, \alpha)$ has:
the Renyi property if $\exists C>1$ such that $\forall n \geq 1, a \in \alpha_{0}^{n-1}, m(a)>0$: $\left|\frac{v_{a}^{\prime}(x)}{v_{a}^{\prime}(y)}\right| \leq C$ for $m \times m$-a.e. $(x, y) \in T^{n} a \times T^{n} a$.

It is well known (a proof is recalled in [ADU93]) that any topologically mixing probability preserving Markov map with the Renyi property is exact in the sense that $\bigcap_{n \geq 1} T^{-n} \mathcal{B}=\{\varnothing, X\} \bmod m$.

Examples include:

- topological Markov shifts equipped with Gibbs measures ([Bow08], [BR75])
and
- uniformly expanding, piecewise onto C^{2} interval maps $T:[0,1] \rightarrow$ [0,1] satisfying
Adler's condition $\sup _{x \in[0,1]} \frac{\left|T^{\prime \prime}(x)\right|}{T^{\prime}(x)^{2}}<\infty($ Adl73 $)$;
or, generalising the above two examples:
- Gibbs-Markov maps as in AD96,
the Markov map ($X, \mathcal{B}, m, T, \alpha$) being called Gibbs-Markov if it has the Gibbs property that $\exists C>1,0<r<1$ such that $\forall n \geq 1, a \in$ $\alpha_{0}^{n-1}, m(a)>0$:
$\left|\frac{v_{a}^{\prime}(x)}{v_{a}^{\prime}(y)}-1\right| \leq C r^{t(x, y)}$ for $m \times m$-a.e. $(x, y) \in T^{n} a \times T^{n} a,($ see $\S 4.6, \S 4.7$ of Aar97);
and the big image property that $\inf _{a \in \alpha} m(T a)>0$.
Now let $\phi: X \rightarrow \mathbb{R}^{d}$ be measurable and consider the skew product $T_{\phi}: X \times \mathbb{R}^{d} \rightarrow X \times \mathbb{R}^{d}$ defined by $T_{\phi}(x, y):=(T x, y+\phi(x))$ with respect to the (invariant) product measure $m \times m_{\mathbb{R}^{d}}$ where $m_{\mathbb{R}^{d}}$ denotes Lebesgue measure.

We say that ϕ is aperiodic if $\gamma(\phi)=z \bar{h} h \circ T$ has no nontrivial solution in $\gamma \in \widehat{\mathbb{R}^{d}}, z \in S^{1}$ and $h: X \rightarrow S^{1}$ measurable.

It is not hard to show that if T_{ϕ} is ergodic, and T is weakly mixing, then T_{ϕ} is weakly mixing iff ϕ is aperiodic.

We're interested in the exactness of T_{ϕ}.
We establish two (partial) results in this direction.

Theorem 1

Suppose that $(X, \mathcal{B}, m, T, \alpha)$ is a probability preserving Markov map with the Renyi property. Let $N \geq 1$ and $\phi: X \rightarrow \mathbb{R}^{d}$ be α_{0}^{N-1}-measurable (i.e. $\phi(x)=\phi\left(\alpha_{0}^{N-1}(x)\right)$ where $\left.x \in \alpha_{0}^{N-1}(x) \in \alpha_{0}^{N-1}\right)$.

If T_{ϕ} is topologically mixing, then T_{ϕ} is exact.

For the other result, we assume that $(X, \mathcal{B}, m, T, \alpha)$ is an exact probability preserving fibred system with the property that there is a Banach space $\left(L,\|\cdot\|_{L}\right)$ of functions with $\|\cdot\|_{2} \leq\|\cdot\|_{L}$, such that $P_{T}: L \rightarrow L$ and $\exists H>0,0<r<1, N \geq 1$ such that

$$
\left\|P_{T^{N}} f\right\|_{L} \leq r\|f\|_{L}+H\|f\|_{1} \forall f \in L
$$

In this case (see [DF37], [TM50]) $\exists M>0, \theta \in(0,1)$ such that

$$
\left\|P_{T^{n}} f-\int_{X} f d m\right\|_{L} \leq M \theta^{n}\|f\|_{L} \forall f \in L
$$

Given $\phi: X \rightarrow \mathbb{R}^{d}$ measurable, we define the characteristic function operators $P_{t}(f)=P_{T}\left(e^{i\langle t, \phi\rangle} f\right) \quad\left(t \in \mathbb{R}^{d}\right)$.

We assume also that $P_{t}: L \rightarrow L\left(t \in \mathbb{R}^{d}\right)$ and that $t \mapsto P_{t}$ is continuous $\left(\mathbb{R}^{d} \rightarrow \operatorname{Hom}(L, L)\right.$.

It is shown in Nag57 (see also theorem 4.1 of AD96) that
(i) there are constants $\epsilon>0, K>0$ and $\theta \in(0,1)$; and continuous functions $\lambda: B(0, \epsilon) \rightarrow B_{\mathbb{C}}(0,1), g: B(0, \epsilon) \rightarrow L$ such that
$\left\|P_{t}^{n} h-\lambda(t)^{n} g(t) \int_{X} h d m\right\|_{L} \leq K \theta^{n}\|h\|_{L} \quad \forall|t|<\epsilon, n \geq 1, h \in L ;$
(ii) if $\gamma(\phi)=z \bar{h} h \circ T$ where $\gamma \in \widehat{\mathbb{R}^{d}}, z \in S^{1}$ and $h: X \rightarrow S^{1}$ measurable, then $h \in L$;
and
(ii) in case ϕ is aperiodic, then $\forall 0<\delta<M<\infty, \exists K>0,0<\rho<1$ such that

$$
\left\|P_{\gamma}^{n} h\right\|_{L} \leq K \rho^{n} \quad \forall h \in L, n \geq 1, \delta \leq|\gamma| \leq M
$$

Examples include:

- (see AD96]), $(X, \mathcal{B}, m, T, \alpha)$ a Gibbs-Markov maps and $\phi: X \rightarrow \mathbb{R}^{d}$ uniformly Hölder continuous on partition sets. Here L is a space of Hölder continuous functions $f: X \rightarrow \mathbb{C}$.
- (see [RE83], Ryc83]), $X=[0,1], m$ Lebesgue measure, α a partition of $X \bmod m$ into open intervals, and $T: a \rightarrow T a$ an invertible, m nonsingular homeomorphism for each $a \in \alpha$ with $\inf \left|T^{\prime}\right|>1$ and $\frac{1}{T^{\prime}}$ of bounded variation on X; and $\phi: X \rightarrow \mathbb{R}^{d}$ either: of bounded variation on X; or constant on each $a \in \alpha$. Here L is the space of functions $f: X \rightarrow \mathbb{C}$ of bounded variation on X.

Set $\phi_{n}=\phi+\phi \circ T+\ldots+\phi \circ T^{n-1}$.

Theorem 2

Suppose that

$$
\forall \lambda>1 \exists n_{k} \rightarrow \infty \text { such that } \frac{\phi_{n_{k}}}{\lambda^{n_{k}}} \rightarrow 0 \text { a.e. as } k \rightarrow \infty
$$

and that ϕ is aperiodic;
then T_{ϕ} is exact.

Remarks

1) Theorem 2 generalises the corresponding theorem on page 443 in Gui89.
2) The condition (\diamond) is satisfied if m-dist (ϕ) is in the domain of attraction of a stable law.
3) The condition (\diamond) is not satisfied iff $\exists \lambda>1$ and $\epsilon>0$ such that $m\left(\left[\left|\phi_{n}\right|>\lambda^{n}\right]\right) \geq \epsilon \quad \forall n \geq 1$ and there are independent processes like this.
4) For examples satisfying the assumptions of the theorems, let $X=$ $[0,1], T x=\left\{\frac{1}{x}\right\}$, then T is a piecewise onto C^{2} interval map with Markov partition $\alpha=\left\{I_{n}=\left(\frac{1}{n+1}, \frac{1}{n}\right]: n \geq 1\right\}$. The invariant probability is Gauss' measure $d m(x):=\frac{1}{\log 2} \frac{d x}{1+x}$. Since T^{2} is uniformly expanding and satisfies Adler's condition, we have (passing to the Polish product topology induced by α) that ($X, \mathcal{B}, m, T, \alpha$) has the Gibbs property, whence (T is piecewise onto) the Renyi property and is Gibbs-Markov.

It is not hard to show that if $\phi: X \rightarrow \mathbb{R}$ is constant on each I_{n}, takes the value 0 and the semigroup generated by the values of ϕ is dense in \mathbb{R}, then T_{ϕ} is topologically mixing and therefore exact by theorem 1 .

Such functions $\phi: X \rightarrow \mathbb{R}$ are aperiodic by corollary 3.2 of [A-D], and so the exactness of T_{ϕ} is also established by theorem 2. On the other hand, if $\phi(x)=\log \frac{1}{x}$ then T_{ϕ} is not topologically mixing (since $\phi \geq 0$). Nevertheless, ϕ is aperiodic by corollary 3.2 of [A-D], and so T_{ϕ} is exact by theorem 2 (but totally dissipative).

§1 Frobenius-Perron operators, exactness and relative EXACTNESS

Let (X, \mathcal{B}, m, R) be a nonsingular transformation of a standard probability space. The tail σ-algebra of (X, \mathcal{B}, m, R) is $\mathcal{T}(R):=\bigcap_{n=1}^{\infty} R^{-n} \mathcal{B}$ and the nonsingular transformation R is called exact if $=\{\varnothing, X\} \bmod m$.

Theorem 1.1 [DL84]

$$
\left\|P_{R^{n}} f\right\|_{1} \rightarrow\|E(f \mid \mathcal{T}(R))\|_{1} \text { as } n \rightarrow \infty \forall f \in L^{1}(m) .
$$

In particular (see Lin71]), R is exact iff $\left\|P_{R^{n}} f\right\|_{1} \rightarrow 0 \forall f \in L^{1}(m), \int_{X} f d m=$ 0.

Proof

First note that $\left|P_{T} f\right| \leq P_{T}|f|$ whence $\left\|P_{R^{n}} f\right\|_{1} \downarrow$ and $\exists \lim _{n \rightarrow \infty}\left\|P_{R^{n}} f\right\|_{1}$. Next, $\forall n \geq 1 \exists g_{n} \in L^{\infty}(\mathcal{B})$ with $\int_{X}\left(P_{R^{n}} f\right) g_{n} d m=\left\|P_{R^{n}} f\right\|_{1}$, whence

$$
\left\|P_{R^{n}} f\right\|_{1}=\int_{X} f g_{n} \circ R^{n} d m
$$

By weak $*$ compactness, $\exists n_{k} \rightarrow \infty$ and $g \in L^{\infty}(\mathcal{B})$ such that $g_{n_{k}} \circ R^{n_{k}} \rightarrow$ g weak $*$ in $L^{\infty}(\mathcal{B})$.

It follows that $g \in L^{\infty}(\mathcal{T}(R)),\|g\|_{\infty} \leq 1$ and $\lim _{n \rightarrow \infty}\left\|P_{R^{n}} f\right\|_{1}=$ $\int_{X} f g d m$. Thus
$\lim _{n \rightarrow \infty}\left\|P_{R^{n}} f\right\|_{1} \leq \sup \left\{\int_{X} f h d m: h \in L^{\infty}(\mathcal{T}(R)),\|h\|_{\infty} \leq 1\right\}=\|E(f \mid \mathcal{T}(R))\|_{1}$.
To show the converse inequality, note that $\exists g \in L^{\infty}(\mathcal{T}(R)),\|g\|_{\infty}=1$ such that

$$
\|E(f \mid \mathcal{T}(R))\|_{1}=\int_{X} E(f \mid \mathcal{T}(R)) g d m=\int_{X} f g d m
$$

whence $\forall n \geq 1, \exists g_{n} \in L^{\infty}(\mathcal{B}), g=g_{n} \circ R^{n}$ and

$$
\|E(f \mid \mathcal{T}(R))\|_{1}=\int_{X} f g d m=\int_{X} f g_{n} \circ R^{n} d m=\int_{X}\left(P_{R^{n}} f\right) g_{n} d m \leq\left\|P_{R^{n}} f\right\|_{1} .
$$

Let (X, \mathcal{B}, m, R) and (Y, \mathcal{C}, μ, S) be nonsingular transformations of standard probability spaces. A factor map is a function $\pi: X \rightarrow Y$ satisfying $\pi^{-1} \mathcal{C} \subset \mathcal{B}, \pi \circ T=S \circ \pi, m \circ \pi^{-1}=\mu$.

The fibre expectation of the factor map $\pi: X \rightarrow Y$ is an operator

$$
f \mapsto E(f \mid \pi), L^{1}(X, \mathcal{B}, m) \rightarrow L^{1}(Y, \mathcal{C}, \mu)
$$

defined by $\int_{Y} E(f \mid \pi) g d \mu=\int_{X} f g \circ \pi d m$.
The factor map $\pi: X \rightarrow Y$ is called relatively exact if

$$
f \in L^{1}(\mathcal{B}), E(f \mid \pi)=0 \text { a.e. } \Longrightarrow\left\|P_{R^{n}} f\right\|_{1} \rightarrow 0
$$

The corollary below appears in Gui89. For the convenience of the reader, we supply a (possibly different) proof.

Proposition 1.2 Suppose that $\pi: X \rightarrow Y$ is relatively exact, then $\mathcal{T}(R)=\pi^{-1} \mathcal{T}(S)$ mod m.

Proof

Evidently, $\pi^{-1} \mathcal{T}(S) \subseteq \mathcal{T}(R)$. We show that $\pi^{-1} \mathcal{T}(S) \supseteq \mathcal{T}(R)$.
By relative exactness and theorem 1.1, if $f \in L^{1}(\mathcal{B})$ and $E(f \mid \pi)=0$ a.e., then $\int_{X} f g d m=0 \forall g \in L^{\infty}(\mathcal{T}(R))$.

Thus if $f \in L^{2}(\mathcal{B}) \ominus L^{2}\left(\pi^{-1} \mathcal{C}\right)$, then $E(f \mid \pi)=0$ a.e. and so

$$
\int_{X} f g d m=0 \forall g \in L^{\infty}(\mathcal{T}(R)), \Longrightarrow f \perp L^{2}(\mathcal{T}(R)) .
$$

Thus $L^{2}(\mathcal{B}) \ominus L^{2}\left(\pi^{-1} \mathcal{C}\right) \subset L^{2}(\mathcal{B}) \ominus L^{2}(\mathcal{T}(R))$ whence $L^{2}(\mathcal{T}(R)) \subset L^{2}\left(\pi^{-1} \mathcal{C}\right)$ and $\mathcal{T}(R) \subset \pi^{-1} \mathcal{C} \bmod m$.

To see that in fact $\mathcal{T}(R) \subseteq \pi^{-1} \mathcal{T}(S) \bmod m$, fix $N \geq 1$, then

$$
\begin{aligned}
& \mathcal{T}(R)=\bigcap_{n \geq 1} R^{-n} \mathcal{B}=\bigcap_{n \geq N+1} R^{-n} \mathcal{B} \\
& =R^{-N} \mathcal{T}(R) \subset R^{-N} \pi^{-1} \mathcal{C}=\pi^{-1} S^{-N} \mathcal{C}
\end{aligned}
$$

Taking the intersection over N shows the claim.
Corollary 1.3 (Gui89], proposition 1)
If S is exact and $\pi: X \rightarrow Y$ is relatively exact, then T is exact.

$\S 2$ Proof of theorem 1

For a nonsingular transformation (X, \mathcal{B}, m, R), define the tail relation of R :

$$
\mathfrak{T}(R):=\left\{(x, y) \in X \times X: \exists n \geq 0, R^{n} x=R^{n} y\right\} .
$$

Evidently $\mathfrak{T}(R)$ is an equivalence relation and if (X, \mathcal{B}, m) is standard, then $\mathfrak{T}(R) \in \mathcal{B}(X \times X)$.

If R is locally invertible, then $\mathfrak{T}(R)$ has countable equivalence classes and is nonsingular in the sense that $m(\mathfrak{T}(R)(A))=0 \forall A \in \mathcal{B}, m(A)=0$ where $\mathfrak{T}(R)(A):=\{y \in X: \exists x \in A(x, y) \in \mathfrak{T}(R)\}$.

A set $A \in \mathcal{B}(X)$ is invariant under the equivalence relation $\mathfrak{T} \in \mathcal{B}(X \times$ $X)$ if $\mathfrak{T}(A)=A$ and the equivalence relation \mathfrak{T} is called ergodic if \mathfrak{T} invariant sets have either zero, or full measure.

The collection of invariant sets under $\mathfrak{T}(R)$ is the tail σ-algebra $\mathcal{T}(R)$ (whence the name "tail relation").

In order to prove theorem 1 , it suffices to show that $\mathfrak{T}\left(T_{\phi}\right)$ is ergodic.
The tail relation of T_{ϕ} is given by

$$
\begin{aligned}
& \mathfrak{T}\left(T_{\phi}\right) \\
& =\left\{((x, s),(y, t)) \in(X \times G)^{2}: \exists n \geq 0, T^{n} x=T^{n} y, s-t=\phi_{n}(y)-\phi_{n}(x)\right\} \\
& =\left\{((x, s),(y, t)) \in(X \times G)^{2}:(x, y) \in \mathfrak{T}(T), \tilde{\phi}(x, y)=s-t\right\}
\end{aligned}
$$

where $\tilde{\phi}: \mathfrak{T}(T) \rightarrow \mathbb{R}^{d}$ is defined by $\tilde{\phi}(x, y):=\sum_{n=0}^{\infty}\left(\phi\left(T^{n} y\right)-\phi\left(T^{n} x\right)\right)$.
We prove that $\mathfrak{T}\left(T_{\phi}\right)$ is ergodic by the method of Schmidt (explained in Sto66]), by showing that $\forall t \in \mathbb{R}^{d}, U$ a neighbourhood of t and $A \in \mathcal{B} m(A)>0, \exists B \in \mathcal{B} B \subset A$ and $\tau: B \rightarrow B$ nonsingular such that $(x, \tau(x)) \in \mathfrak{T}(T)$ and $\tilde{\phi}(x, \tau(x)) \in U \forall x \in B$.

This boils down to showing that
$\forall A \in \mathcal{B}_{+} g_{0} \in \mathbb{R}^{d} \eta>0, \exists B \in \mathcal{B}_{+} B \subset A, n \geq 1$

$$
\begin{align*}
\text { and } \tau: B \rightarrow \tau B \subset A \text { nonsingular such that } \\
T^{n} \circ \tau \equiv T^{n} \text { and }\left\|\phi_{n} \circ \tau-\phi_{n}-g_{0}\right\|<\eta \text { on } B .
\end{align*}
$$

The proof of (\ddagger) will be written as a sequence of minor claims, $\boldsymbol{\Psi} 0, \llbracket 1, \ldots$
$\mathbb{1 0}$ We first claim that there is no loss in generality in assuming that $N=1$ (i.e. that $\phi: X \rightarrow \mathbb{R}^{d}$ is α-measurable). This is because $\left(X, \mathcal{B}, m, T, \alpha_{0}^{N-1}\right)$ is also a probability preserving Markov map with the Renyi property and inducing the same (shift) topology on X as $(X, \mathcal{B}, m, T, \alpha)$.
$\mathbb{1} \forall s, t \in S, \exists \kappa=\kappa_{s, t} \geq 1$ and $a=a_{s, t}=\left[a_{1}, \ldots a_{\kappa}\right], b=b_{s, t}=$ $\left[b_{1}, \ldots b_{\kappa}\right] \in \alpha_{0}^{\kappa-1}, a_{1}=b_{1}=s a_{\kappa}=b_{\kappa}=t$ such that $\left\|\phi_{\kappa}(b)-\phi_{\kappa}(a)-g_{0}\right\|<\eta$.

This follows from topological mixing of T_{ϕ}.
By the Renyi property, $\exists M>1$ such that

$$
M^{-1} m(u) m(v) \leq m\left(u \cap T^{-k} v\right) \leq M m(u) m(v) \forall u \in \alpha_{0}^{k-1}, v \in \alpha_{0}^{\ell-1},\left[v_{1}\right] \subset T\left[u_{k}\right] .
$$

Given $u=\left[u_{1}, \ldots, u_{n}\right] \in \alpha_{0}^{n-1}$ with $u_{n}=t$, define $\tau=\tau_{u}: u \cap T^{-n} a \rightarrow$ $u \cap T^{-n} b$ by

$$
\tau\left(u_{1}, \ldots, u_{n}, a_{1}, \ldots a_{\kappa}, y\right):=\tau\left(u_{1}, \ldots, u_{n}, b_{1}, \ldots b_{\kappa}, y\right)
$$

【2 $\tau=\tau_{u}: u \cap T^{-n} a \rightarrow u \cap T^{-n} b$ is invertible nonsingular and $\frac{d m \circ \tau}{d m}=$ $M^{ \pm 4} \frac{m(b)}{m(a)}$.
Proof

$$
\begin{aligned}
\int_{u \cap T^{-n} a \cap c} \frac{d m \circ \tau}{d m} d m & =m\left(u \cap T^{-n} b \cap c\right) \\
& =M^{ \pm 2} \frac{m(b)}{m(a)} m(u) m(b) m(c) \\
& =M^{ \pm 4} \frac{m(b)}{m(a)} m\left(u \cap T^{-n} a \cap c\right) .
\end{aligned}
$$

【3 Proof of \ddagger

Fix $0<\epsilon<M^{-1} \min \left\{m\left(a_{s, t}\right), m\left(b_{s, t}\right)\right\}$, then

$$
m\left(u \cap T^{-n} a_{s, t}\right), m\left(u \cap T^{-n} b_{s, t}\right) \geq \epsilon m(u) \forall u \in \alpha_{0}^{n-1},[s] \subset T\left[u_{n}\right] .
$$

Let $\delta>0$ be so small that $\delta<\frac{m(b)(\epsilon-\delta)}{M^{4} m(a)}$.
$\exists n \geq 1$ and $u \in \alpha_{0}^{n-1}$ such that $m(A \cap u) \geq(1-\delta) m(u)$ and $[s] \subset T\left[u_{n}\right]$.

Consider $\tau_{u}: u \cap T^{-n} a \rightarrow u \cap T^{-n} b$ as in $\mathbb{2}$. Evidently $T^{n+\kappa} \circ \tau \equiv T^{n+\kappa}$ and $\left\|\phi_{n+\kappa} \circ \tau-\phi_{n+\kappa}-g_{0}\right\|<\eta$ on $u \cap T^{-n} a$.

To complete the proof we claim that $\exists B \in \mathcal{B}_{+} B \subset A \cap u \cap T^{-n} a$ such that $\tau B \subset A$.

To see this, note that

$$
m\left(u \cap T^{-n} a \cap A\right) \geq m\left(u \cap T^{-n} a\right)-m(u \backslash A) \geq(\epsilon-\delta) m(u),
$$

whence using $\mathbb{T} 2$,

$$
m\left(\tau\left(u \cap T^{-n} a \cap A\right)\right) \geq \frac{m(b)}{M^{4} m(a)} m\left(u \cap T^{-n} a \cap A\right) \geq \frac{m(b)(\epsilon-\delta)}{M^{4} m(a)} m(u) .
$$

Since $\tau\left(u \cap T^{-n} a \cap A\right) \subset u$, the condition on $\delta>0$ ensures that $m(\tau(u \cap$ $\left.\left.T^{-n} a \cap A\right) \cap A\right)>0$ whence $m(B)>0$ where $B:=\tau^{-1}\left(\tau\left(u \cap T^{-n} a \cap A\right) \cap\right.$ $A) \subset A$.

§3 Proof of theorem 2

We prove theorem 2 via corollary 1.3. To do this, we must consider T_{ϕ} as a nonsingular transformation with respect to some probability $P \sim m \times m_{\mathbb{R}^{d}}$.

Let $p: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$be continuous with $\int_{\mathbb{R}^{d}} p(y) d y=1$ and define a probability P on $X \times \mathbb{R}^{d}$ by $d P(x, y):=p(y) d m(x) d y$; then $\left(X \times \mathbb{R}^{d}, \mathcal{B}(X \times\right.$ $\left.\left.\mathbb{R}^{d}\right), P, T_{\phi}\right)$ is a nonsingular transformation with Frobenius-Perron operators given by

$$
P_{T_{\phi}^{n}, P} f(x, y)=\frac{1}{p(y)} P_{T_{\phi}^{n}}(f \cdot 1 \otimes p)(x, y)
$$

where $P_{T_{\phi}^{n}}:=P_{T_{\phi}^{n}, m \times m_{\mathbb{R}^{d}}}$.
Consider the map $\pi: X \times \mathbb{R}^{d} \rightarrow X$ defined by $\pi(x, y)=x$. This is a factor map as it satisfies $\pi^{-1} \mathcal{B}(X) \subset \mathcal{B}\left(X \times \mathbb{R}^{d}\right), \pi \circ T_{\phi}=T \circ \pi, P \circ \pi^{-1}=$ m.

The fibre expectation of π is given by

$$
E(f \mid \pi)(x)=\int_{\mathbb{R}^{d}} f(x, y) p(y) d y\left(f \in L^{1}\left(X \times \mathbb{R}^{d}, \mathcal{B}\left(X \times \mathbb{R}^{d}\right), P\right)\right)
$$

By corollary 1.3 and exactness of T, it suffices to show that π is relatively exact.

To do this, we show that

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} f(x, y) p(y) d y=0 \text { a.e. } \Longrightarrow \\
& \int_{X \times \mathbb{R}^{d}}\left|P_{T_{\phi}^{n}, P} f\right| d P=\int_{X \times \mathbb{R}^{d}}\left|P_{T_{\phi}^{n}}(f \cdot 1 \otimes p)\right| d\left(m \times m_{\mathbb{R}^{d}}\right) \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$; equivalently (taking $F(x, y):=f(x, y) p(y))$,

$$
\int_{\mathbb{R}^{d}} F(x, y) d y=0 \text { a.e. } \Longrightarrow \int_{X \times \mathbb{R}^{d}}\left|P_{T_{\phi}^{n}} F\right| d\left(m \times m_{\mathbb{R}^{d}}\right) \rightarrow 0
$$

as $n \rightarrow \infty$.

To prove (\star), we first claim that $\mathbb{T} 1$ for $\lambda>1, h \in L^{1}(m)$ and $f \in L^{1}\left(\mathbb{R}^{d}\right)$,

$$
\left\|P_{T_{\phi}^{n_{k}}}(h \otimes f)\right\|_{1} \leq C \lambda^{\frac{n_{k} d}{2}}\left\|P_{T_{\phi}^{n_{k}}}(h \otimes f)\right\|_{2}+o(1)
$$

as $k \rightarrow \infty$ where $C=2^{\frac{d}{2}} m(B(0,1))$ and $\frac{\phi_{n_{k}}}{\lambda^{n_{k}}} \rightarrow 0$ a.e..
Proof As can be checked,
$P_{T_{\phi}^{n}}(h \otimes f)(x, y)=P_{T^{n}}\left(h(\cdot) f\left(y-\phi_{n}(\cdot)\right)\right)(x) \quad\left(h \in L^{1}(m), f \in L^{1}\left(\mathbb{R}^{d}\right)\right)$.
Denoting $E(H):=\int_{X} H d m$ for $H \in L^{1}(m)$, we have

$$
\begin{equation*}
\left\|P_{T_{\phi}^{n_{k}}}(h \otimes f)\right\|_{1}=\int_{\mathbb{R}^{d}}\left|E\left(P_{T^{n_{k}}}\left(h(\cdot) f\left(y-\phi_{n_{k}}(\cdot)\right)\right)\right)\right| d y \leq \int_{|y| \leq 2 \lambda^{n_{k}}}+\int_{|y|>2 \lambda^{n_{k}}} . \tag{2}
\end{equation*}
$$

By the Cauchy-Schwartz inequality,

$$
\begin{equation*}
\int_{|y| \leq 2 \lambda^{n_{k}}} \leq \sqrt{m_{\mathbb{R}^{d}}\left(B\left(0,2 \lambda^{n_{k}}\right)\right)}\left\|P_{T_{\phi}^{n_{k}}}(h \otimes f)\right\|_{2}=C \lambda^{\frac{n_{k} d}{2}}\left\|P_{T_{\phi}^{n_{k}}}(h \otimes f)\right\|_{2} \tag{3}
\end{equation*}
$$

whereas

$$
\begin{aligned}
& \int_{|y|>2 \lambda^{n_{k}}} \leq \int_{|y|>2 \lambda^{n_{k}}} \mid E\left(P_{T^{n_{k}}}\left(h(\cdot) f\left(y-\phi_{n_{k}}(\cdot)\right) 1_{\left.\left[\mid \phi_{n_{k}}(\cdot)\right) \mid \leq \lambda^{n_{k}}\right]}\right) \mid d y\right. \\
& +\int_{|y|>2 \lambda^{n_{k}}}\left|E\left(P_{T^{n_{k}}}\left(h(\cdot) f\left(y-\phi_{n_{k}}(\cdot)\right) 1_{\left[\mid \phi_{n_{k}}\right.}(\cdot) \mid>\lambda^{\left.n_{k}\right]}\right)\right)\right| d y=I+I I .
\end{aligned}
$$

Here as $k \rightarrow \infty$:

$$
\begin{equation*}
I I \leq\|f\|_{1} E\left(|h| 1_{\left[\mid \phi_{n_{k}}\right.}(\cdot) \mid>\lambda^{\left.n_{k}\right]}\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

since $\frac{\phi_{n_{k}}}{\lambda^{n} k} \rightarrow 0$ a.e.; and

$$
\begin{align*}
I & \leq \int_{|y|>2 \lambda^{n_{k}}} E\left(|h|\left|f\left(y-\phi_{n_{k}}\right)\right| 1_{\left[\left|\phi_{n_{k}}(\cdot)\right| \leq \lambda^{n_{k}}\right]}\right) d y \\
& =E\left(|h| 1_{\left[\left|\phi_{n_{k}}\right| \leq \lambda^{n_{k}}\right]} \int_{|y|>2 \lambda^{n_{k}}}\left|f\left(y-\phi_{n_{k}}\right)\right| d y\right) \\
& \leq E(|h|) \int_{|y|>\lambda^{n_{k}}}|f(y)| d y \rightarrow 0, \tag{5}
\end{align*}
$$

Substituting (3), (4) and (5) into (2) proves $\mathbb{\$ 1}$.
To complete the proof of (\star), let $F \in L^{1}\left(m \times m_{\mathbb{R}^{d}}\right)$ satisfy $\int_{\mathbb{R}^{d}} F(x, y) d y=$ 0 for m-a.e. $x \in X$ and fix $\epsilon>0$. We show that

$$
\limsup _{n \rightarrow \infty} \int_{X \times \mathbb{R}^{d}}\left|P_{T_{\phi}^{n}} F\right| d\left(m \times m_{\mathbb{R}^{d}}\right)<\epsilon
$$

Standard approximation techniques show that $\forall \epsilon>0, \exists N \in \mathbb{N}, h_{1}, \ldots, h_{N} \epsilon$ $L, g_{1}, \ldots, g_{N} \in L^{1}\left(\mathbb{R}^{d}\right)$ such that $\int_{\mathbb{R}^{d}} g_{k}(y) d y=0 \quad(1 \leq k \leq N)$ and

$$
\left\|F-\sum_{k=1}^{N} h_{k} \otimes g_{k}\right\|_{L^{1}\left(m \times m_{\mathbb{R}^{k}}\right)}<\frac{\epsilon}{2} .
$$

Next, it follows from theorems 1.6.3 and 1.6.4 in Rud74] that
$\exists f_{1}, \ldots, f_{N} \in L^{1} \cap L^{2}$ such that

- $\quad\left[\widehat{f_{k}} \neq 0\right]$ is compact and bounded away from $0(1 \leq k \leq N)$; and
- $\left\|f_{k}-g_{k}\right\|_{L^{1}\left(m_{\mathbb{R}^{d}}\right)}<\frac{\epsilon}{2 N\left\|h_{k}\right\|_{L^{1}(m)}}(1 \leq k \leq N)$, whence

$$
\begin{gathered}
\left\|\sum_{k=1}^{N} h_{k} \otimes f_{k}-\sum_{k=1}^{N} h_{k} \otimes g_{k}\right\|_{L^{1}\left(m \times m_{\mathbb{R}^{d}}\right)} \leq \sum_{k=1}^{N}\left\|h_{k}\right\|_{L^{1}(m)} \cdot\left\|f_{k}-g_{k}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)}<\frac{\epsilon}{2}, \\
\left\|F-\sum_{k=1}^{N} h_{k} \otimes f_{k}\right\|_{L^{1}\left(m \times m_{\mathbb{R}^{d}}\right)}<\epsilon .
\end{gathered}
$$

We claim
【2 If $h \in L$ and $f \in L^{1} \cap L^{2}$ is such that $[\widehat{f} \neq 0$] is compact and bounded away from 0 , then $\exists 0<\rho<1$ such that

$$
\begin{equation*}
\left\|P_{T_{\phi}^{n}}(h \otimes f)\right\|_{2}=O\left(\rho^{n}\right) \text { as } n \rightarrow \infty . \tag{6}
\end{equation*}
$$

Proof

Let $[\widehat{f} \neq 0] \subset B(0, M) \backslash B(0, \delta) . \operatorname{By}(i i)$ (above), $\exists K>0,0<\rho<1$ such that

$$
\left|P_{\gamma}^{n} h(x)\right| \leq K \rho^{n} \quad \forall x \in X, n \geq 1, \delta \leq|\gamma| \leq M,
$$

whence using the fact that the Fourier transform of $y \mapsto P_{T_{\phi}}^{n}(h \otimes f)(x, y)$ is $\gamma \mapsto \widehat{f}(\gamma) P_{\gamma}^{n} h(x)$ and Plancherel's formula, we have

$$
\begin{aligned}
\left\|P_{T_{\phi}^{n}}(h \otimes f)\right\|_{2}^{2} & =\int_{X}\left(\int_{\mathbb{R}^{d}}\left|P_{T_{\phi}^{n}}(h \otimes f)(x, y)\right|^{2} d y\right) d m(x) \\
& =\int_{X}\left(\int_{\mathbb{R}^{d}}|\widehat{f}(\gamma)|^{2}\left|P_{\gamma}^{n} h(x)\right|^{2} d \gamma\right) d m(x) \\
& =\int_{\mathbb{R}^{d}}|\widehat{f}(\gamma)|^{2}\left\|P_{\gamma}^{n} h\right\|_{2}^{2} d \gamma \leq K^{2} \rho^{2 n} \int_{\mathbb{R}^{d}}|\widehat{f}(\gamma)|^{2} d \gamma
\end{aligned}
$$

proving $\mathbb{T} 2$.
To finish the proof of theorem 2, we claim【3 if (6) holds for $h \in L$ and $f \in L^{1} \cap L^{2}$, then

$$
\begin{equation*}
\left\|P_{T_{\phi}^{n}}(h \otimes f)\right\|_{1} \rightarrow 0 . \tag{7}
\end{equation*}
$$

Proof

Fix $\lambda>1$ such that $\lambda^{\frac{d}{2}} \rho<1$. Suppose that $\frac{\phi_{n_{k}}}{\lambda^{n_{k}}} \rightarrow 0$ a.e.. Using (6), we have by $\mathbb{\$ 1}$,

$$
\left\|P_{T_{\phi}^{n_{k}}}(h \otimes f)\right\|_{1} \leq C \lambda^{\frac{n_{k} d}{2}}\left\|P_{T_{\phi}^{n_{k}}}(h \otimes f)\right\|_{2}+o(1)=O\left(\lambda^{\frac{n_{k} d}{2}} \rho^{n_{k}}\right)+o(1) \rightarrow 0
$$

as $k \rightarrow \infty$; establishing (7) since $\left\|P_{T_{\phi}^{n}}(h \otimes f)\right\|_{1} \downarrow$.
This completes the proof of theorem 2.

References

[Aar97] Jon Aaronson. An introduction to infinite ergodic theory, volume 50 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.
[AD96] Jon. Aaronson and Manfred Denker. Local limit theorems for generated by Gibbs-Markov maps. Preprint, 1996.
[Ad173] Roy L. Adler. F-expansions revisited. pages 1-5. Lecture Notes in Math., Vol. 318, 1973.
[ADU93] Jon Aaronson, Manfred Denker, and Mariusz Urbański. Ergodic theory for Markov fibred systems and parabolic rational maps. Trans. Amer. Math. Soc., 337(2):495-548, 1993.
[Bow08] Rufus Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, volume 470 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, revised edition, 2008. With a preface by David Ruelle, Edited by Jean-René Chazottes.
[BR75] Rufus Bowen and David Ruelle. The ergodic theory of Axiom A flows. Invent. Math., 29(3):181-202, 1975.
[DF37] Wolfgang Doeblin and Robert Fortet. Sur des chaînes à liaisons complètes. Bull. Soc. Math. France, 65:132-148, 1937.
[DL84] Y. Derriennic and M. Lin. Sur le comportement asymptotique des puissances de convolution d'une probabilité. Ann. Inst. H. Poincaré Probab. Statist., 20(2):127-132, 1984.
[Gui89] Y. Guivarc'h. Propriétés ergodiques, en mesure infinie, de certains systèmes dynamiques fibrés. Ergodic Theory Dynam. Systems, 9(3):433453, 1989.
[ITM50] C. T. Ionescu Tulcea and G. Marinescu. Théorie ergodique pour des classes d'opérations non complètement continues. Ann. of Math. (2), 52:140-147, 1950.
[Lin71] Michael Lin. Mixing for Markov operators. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19:231-242, 1971.
[Nag57] S. V. Nagaev. Some limit theorems for stationary Markov chains. Teor. Veroyatnost. i Primenen., 2:389-416, 1957.
[RE83] J. Rousseau-Egele. Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux. Ann. Probab., 11(3):772-788, 1983.
[Rud74] Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, second edition, 1974. McGraw-Hill Series in Higher Mathematics.
[Ryc83] Marek Rychlik. Bounded variation and invariant measures. Studia Math., 76(1):69-80, 1983.
[Sto66] Charles Stone. Ratio limit theorems for random walks on groups. Trans. Amer. Math. Soc., 125:86-100, 1966.
(Aaronson) School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.

Email address: aaro@math.tau.ac.il
(Denker) Institut für Mathematische Stochastik, Universität Göttingen, Lotze-str. 13, 37083 Göttingen, Germany

Email address: denker@math.uni-goettingen .de

[^0]: 1991 Mathematics Subject Classification. Primary: 28D05, 60B15; Secondary: 58F15, 58F19, 58F30.
 (C)July 1999, revision $2 / 12 / 99$.

