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Abstract. We give conditions for the exactness of Rd-extensions.

§0 Introduction

A fibred system (X,B,m,T,α) is a nonsingular transformation (X,B,m,T )
of a standard probability space equipped with a countable, measurable
partition α ⊂ B, generating B (in the sense that σ({T −na ∶ a ∈ α, n ≥
0}) = B) such that T ∶ a → Ta is invertible, nonsingular for a ∈ α. A
fibred system (X,B,m,T,α) is called a Markov map (or Markov fibred
system) if Ta ∈ σ(α) mod m ∀ a ∈ α.

Write α = {as ∶ s ∈ S} and endow SN with its canonical (Polish)
product topology. Let

Σ = {s = (s1, s2, . . . ) ∈ SN ∶ m(
n

⋂
k=1

T −kask) > 0 ∀ n ≥ 1},

then Σ is a closed, shift invariant subset of SN, and there is a measurable
map φ ∶ Σ→X defined by {φ(s1, s2, . . . )} ∶= ⋂∞

k=1 T
−(k−1)ask .

The closed support of the probability m′ = m ○ φ−1 is Σ, and φ is a
conjugacy of (X,B,m,T ) with (Σ,B(Σ),m′, shift). Thus we may, and
sometimes do, assume that X = Σ, T is the shift, and α = {[s] ∶ s ∈ S}.

For n ≥ 1, there are m-nonsingular inverse branches of T denoted
va ∶ T na → a and defined by va(x) ∶= (a, x) (a ∈ αn−10 ) with Radon
Nikodym derivatives denoted

v′a ∶=
dm ○ va
dm

.

Let (X,B,m,R) be a nonsingular transformation of a standard prob-
ability space.

The Frobenius-Perron operators PRn = PRn,m ∶ L1(m) → L1(m) are
defined by

∫
X
PRnf ⋅ gdm = ∫

X
f ⋅ g ○Rndm
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and for the fibred system (X,B,m,T,α) (as above) have the form

PTnf = ∑
a∈αn−10

1Tnav
′
a ⋅ f ○ va.

A fibred system (X,B,m,T,α) has:

the Renyi property if ∃ C > 1 such that ∀ n ≥ 1, a ∈ αn−10 , m(a) > 0:

∣v
′
a(x)
v′a(y)

∣ ≤ C for m ×m-a.e. (x, y) ∈ T na × T na.

It is well known (a proof is recalled in [ADU93]) that any topo-
logically mixing probability preserving Markov map with the Renyi
property is exact in the sense that ⋂n≥1 T −nB = {∅,X} mod m.

Examples include:
● topological Markov shifts equipped with Gibbs measures ([Bow08],[BR75])
and
● uniformly expanding, piecewise onto C2 interval maps T ∶ [0,1] →
[0,1] satisfying

Adler’s condition supx∈[0,1]
∣T ′′(x)∣
T ′(x)2 <∞ ([Adl73]);

or, generalising the above two examples:
● Gibbs-Markov maps as in [AD96],

the Markov map (X,B,m,T,α) being called Gibbs-Markov if it has
the Gibbs property that ∃ C > 1, 0 < r < 1 such that ∀ n ≥ 1, a ∈
αn−10 , m(a) > 0:

∣v
′
a(x)
v′a(y)

− 1∣ ≤ Crt(x,y) for m×m-a.e. (x, y) ∈ T na× T na, (see §4.6, §4.7 of

[Aar97]);
and the big image property that infa∈αm(Ta) > 0.

Now let φ ∶ X → Rd be measurable and consider the skew product
Tφ ∶X×Rd →X×Rd defined by Tφ(x, y) ∶= (Tx, y+φ(x)) with respect to
the (invariant) product measure m×mRd where mRd denotes Lebesgue
measure.

We say that φ is aperiodic if γ(φ) = zhh○T has no nontrivial solution

in γ ∈ R̂d, z ∈ S1 and h ∶X → S1 measurable.
It is not hard to show that if Tφ is ergodic, and T is weakly mixing,

then Tφ is weakly mixing iff φ is aperiodic.
We’re interested in the exactness of Tφ.
We establish two (partial) results in this direction.

Theorem 1
Suppose that (X,B,m,T,α) is a probability preserving Markov map

with the Renyi property. Let N ≥ 1 and φ ∶X → Rd be αN−10 -measurable
(i.e. φ(x) = φ(αN−10 (x)) where x ∈ αN−10 (x) ∈ αN−10 ).

If Tφ is topologically mixing, then Tφ is exact.
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For the other result, we assume that (X,B,m,T,α) is an exact proba-
bility preserving fibred system with the property that there is a Banach
space (L, ∥ ⋅ ∥L) of functions with ∥ ⋅∥2 ≤ ∥ ⋅∥L, such that PT ∶ L→ L and
∃H > 0, 0 < r < 1, N ≥ 1 such that

∥PTNf∥L ≤ r∥f∥L +H∥f∥1 ∀ f ∈ L.
In this case (see [DF37], [ITM50]) ∃M > 0, θ ∈ (0,1) such that

∥PTnf − ∫
X
fdm∥L ≤Mθn∥f∥L ∀ f ∈ L.

Given φ ∶ X → Rd measurable, we define the characteristic function
operators Pt(f) = PT (ei⟨t,φ⟩f) (t ∈ Rd).

We assume also that Pt ∶ L→ L (t ∈ Rd) and that t↦ Pt is continuous
(Rd → Hom (L,L).

It is shown in [Nag57] (see also theorem 4.1 of [AD96]) that

(i) there are constants ε > 0, K > 0 and θ ∈ (0,1); and continuous
functions λ ∶ B(0, ε)→ BC(0,1), g ∶ B(0, ε)→ L such that

∥P n
t h − λ(t)ng(t) ∫X hdm∥L ≤Kθn∥h∥L ∀ ∣t∣ < ε, n ≥ 1, h ∈ L;

(ii) if γ(φ) = zhh ○ T where γ ∈ R̂d, z ∈ S1 and h ∶ X → S1 measurable,
then h ∈ L;

and

(ii) in case φ is aperiodic, then ∀ 0 < δ < M < ∞, ∃ K > 0, 0 < ρ < 1
such that

∥P n
γ h∥L ≤Kρn ∀ h ∈ L, n ≥ 1, δ ≤ ∣γ∣ ≤M.

Examples include:
● (see [AD96]), (X,B,m,T,α) a Gibbs-Markov maps and φ ∶ X → Rd

uniformly Hölder continuous on partition sets. Here L is a space of
Hölder continuous functions f ∶X → C.
● (see [RE83], [Ryc83]), X = [0,1], m Lebesgue measure, α a partition
of X mod m into open intervals, and T ∶ a → Ta an invertible, m-
nonsingular homeomorphism for each a ∈ α with inf ∣T ′∣ > 1 and 1

T ′ of
bounded variation on X; and φ ∶ X → Rd either: of bounded variation
on X; or constant on each a ∈ α. Here L is the space of functions
f ∶X → C of bounded variation on X.

Set φn = φ + φ ○ T + ... + φ ○ T n−1.
Theorem 2

Suppose that

∀ λ > 1 ∃ nk →∞ such that
φnk
λnk

→ 0 a.e. as k →∞(◇)
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and that φ is aperiodic;
then Tφ is exact.

Remarks
1) Theorem 2 generalises the corresponding theorem on page 443 in

[Gui89].
2) The condition (◇) is satisfied if m-dist (φ) is in the domain of

attraction of a stable law.
3) The condition (◇) is not satisfied iff ∃ λ > 1 and ε > 0 such that

m([∣φn∣ > λn]) ≥ ε ∀ n ≥ 1 and there are independent processes like
this.

4) For examples satisfying the assumptions of the theorems, let X =
[0,1], Tx = { 1

x}, then T is a piecewise onto C2 interval map with
Markov partition α = {In = ( 1

n+1 ,
1
n] ∶ n ≥ 1}. The invariant probability

is Gauss’ measure dm(x) ∶= 1
log 2

dx
1+x . Since T 2 is uniformly expanding

and satisfies Adler’s condition, we have (passing to the Polish product
topology induced by α) that (X,B,m,T,α) has the Gibbs property,
whence (T is piecewise onto) the Renyi property and is Gibbs-Markov.

It is not hard to show that if φ ∶X → R is constant on each In, takes
the value 0 and the semigroup generated by the values of φ is dense in
R, then Tφ is topologically mixing and therefore exact by theorem 1.

Such functions φ ∶ X → R are aperiodic by corollary 3.2 of [A-D],
and so the exactness of Tφ is also established by theorem 2. On the
other hand, if φ(x) = log 1

x then Tφ is not topologically mixing (since
φ ≥ 0). Nevertheless, φ is aperiodic by corollary 3.2 of [A-D], and so Tφ
is exact by theorem 2 (but totally dissipative).

§1 Frobenius-Perron operators, exactness and relative
exactness

Let (X,B,m,R) be a nonsingular transformation of a standard prob-
ability space. The tail σ-algebra of (X,B,m,R) is T (R) ∶= ⋂∞

n=1R
−nB

and the nonsingular transformationR is called exact if = {∅,X} mod m.

Theorem 1.1 [DL84]

∥PRnf∥1 → ∥E(f ∣T (R))∥1 as n→∞ ∀ f ∈ L1(m).

In particular (see [Lin71]), R is exact iff ∥PRnf∥1 → 0 ∀ f ∈ L1(m), ∫X fdm =
0.

Proof
First note that ∣PTf ∣ ≤ PT ∣f ∣ whence ∥PRnf∥1 ↓ and ∃ limn→∞ ∥PRnf∥1.

Next, ∀ n ≥ 1 ∃ gn ∈ L∞(B) with ∫X(PRnf)gndm = ∥PRnf∥1, whence
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∥PRnf∥1 = ∫
X
fgn ○Rndm.

By weak ∗ compactness, ∃ nk →∞ and g ∈ L∞(B) such that gnk ○Rnk ⇀
g weak ∗ in L∞(B).

It follows that g ∈ L∞(T (R)), ∥g∥∞ ≤ 1 and limn→∞ ∥PRnf∥1 =
∫X fgdm. Thus

lim
n→∞

∥PRnf∥1 ≤ sup{∫
X
fhdm ∶ h ∈ L∞(T (R)), ∥h∥∞ ≤ 1} = ∥E(f ∣T (R))∥1.

To show the converse inequality, note that ∃ g ∈ L∞(T (R)), ∥g∥∞ = 1
such that

∥E(f ∣T (R))∥1 = ∫
X
E(f ∣T (R))gdm = ∫

X
fgdm

whence ∀ n ≥ 1, ∃ gn ∈ L∞(B), g = gn ○Rn and

∥E(f ∣T (R))∥1 = ∫
X
fgdm = ∫

X
fgn○Rndm = ∫

X
(PRnf)gndm ≤ ∥PRnf∥1.

�

Let (X,B,m,R) and (Y,C, µ, S) be nonsingular transformations of
standard probability spaces. A factor map is a function π ∶ X → Y
satisfying π−1C ⊂ B, π ○ T = S ○ π, m ○ π−1 = µ.

The fibre expectation of the factor map π ∶X → Y is an operator

f ↦ E(f ∣π), L1(X,B,m)→ L1(Y,C, µ)
defined by ∫Y E(f ∣π)gdµ = ∫X fg ○ πdm.

The factor map π ∶X → Y is called relatively exact if

f ∈ L1(B), E(f ∣π) = 0 a.e. Ô⇒ ∥PRnf∥1 → 0.

The corollary below appears in [Gui89]. For the convenience of the
reader, we supply a (possibly different) proof.

Proposition 1.2 Suppose that π ∶ X → Y is relatively exact, then
T (R) = π−1T (S) mod m.

Proof
Evidently, π−1T (S) ⊆ T (R). We show that π−1T (S) ⊇ T (R).
By relative exactness and theorem 1.1, if f ∈ L1(B) and E(f ∣π) = 0

a.e., then ∫X fgdm = 0 ∀ g ∈ L∞(T (R)).
Thus if f ∈ L2(B)⊖L2(π−1C), then E(f ∣π) = 0 a.e. and so

∫
X
fgdm = 0 ∀ g ∈ L∞(T (R)), Ô⇒ f ⊥ L2(T (R)).
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Thus L2(B)⊖L2(π−1C) ⊂ L2(B)⊖L2(T (R)) whence L2(T (R)) ⊂ L2(π−1C)
and T (R) ⊂ π−1C mod m.

To see that in fact T (R) ⊆ π−1T (S) mod m, fix N ≥ 1, then

T (R) = ⋂
n≥1

R−nB = ⋂
n≥N+1

R−nB

= R−NT (R) ⊂ R−Nπ−1C = π−1S−NC.

Taking the intersection over N shows the claim. �

Corollary 1.3 ([Gui89], proposition 1)
If S is exact and π ∶X → Y is relatively exact, then T is exact.

§2 Proof of theorem 1

For a nonsingular transformation (X,B,m,R), define the tail relation
of R:

T(R) ∶= {(x, y) ∈X ×X ∶ ∃ n ≥ 0, Rnx = Rny}.

Evidently T(R) is an equivalence relation and if (X,B,m) is stan-
dard, then T(R) ∈ B(X ×X).

If R is locally invertible, then T(R) has countable equivalence classes
and is nonsingular in the sense thatm(T(R)(A)) = 0 ∀A ∈ B, m(A) = 0
where T(R)(A) ∶= {y ∈X ∶ ∃ x ∈ A (x, y) ∈ T(R)}.

A set A ∈ B(X) is invariant under the equivalence relation T ∈ B(X×
X) if T(A) = A and the equivalence relation T is called ergodic if T-
invariant sets have either zero, or full measure.

The collection of invariant sets under T(R) is the tail σ-algebra T (R)
(whence the name ”tail relation”).

In order to prove theorem 1, it suffices to show that T(Tφ) is ergodic.
The tail relation of Tφ is given by

T(Tφ)
= {((x, s), (y, t)) ∈ (X ×G)2 ∶ ∃ n ≥ 0, T nx = T ny, s − t = φn(y) − φn(x)}
= {((x, s), (y, t)) ∈ (X ×G)2 ∶ (x, y) ∈ T(T ), φ̃(x, y) = s − t}

where φ̃ ∶ T(T )→ Rd is defined by φ̃(x, y) ∶= ∑∞
n=0(φ(T ny) − φ(T nx)).

We prove that T(Tφ) is ergodic by the method of Schmidt (explained
in [Sto66]), by showing that ∀ t ∈ Rd, U a neighbourhood of t and
A ∈ B m(A) > 0, ∃ B ∈ B B ⊂ A and τ ∶ B → B nonsingular such that

(x, τ(x)) ∈ T(T ) and φ̃(x, τ(x)) ∈ U ∀ x ∈ B.
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This boils down to showing that

∀ A ∈ B+ g0 ∈ Rd η > 0, ∃ B ∈ B+ B ⊂ A, n ≥ 1

and τ ∶ B → τB ⊂ A nonsingular such that

T n ○ τ ≡ T n and ∥φn ○ τ − φn − g0∥ < η on B.(‡)

The proof of (‡) will be written as a sequence of minor claims,
¶0,¶1,. . . .

¶0 We first claim that there is no loss in generality in assuming that
N = 1 (i.e. that φ ∶ X → Rd is α-measurable). This is because
(X,B,m,T,αN−10 ) is also a probability preserving Markov map with
the Renyi property and inducing the same (shift) topology on X as
(X,B,m,T,α).
¶1 ∀ s, t ∈ S, ∃ κ = κs,t ≥ 1 and a = as,t = [a1, . . . aκ], b = bs,t =
[b1, . . . bκ] ∈ ακ−10 , a1 = b1 = s aκ = bκ = t such that ∥φκ(b)−φκ(a)−g0∥ < η.

This follows from topological mixing of Tφ.

By the Renyi property, ∃ M > 1 such that

M−1m(u)m(v) ≤m(u∩T −kv) ≤Mm(u)m(v) ∀ u ∈ αk−10 , v ∈ α`−10 , [v1] ⊂ T [uk].
Given u = [u1, . . . , un] ∈ αn−10 with un = t, define τ = τu ∶ u ∩ T −na →
u ∩ T −nb by

τ(u1, . . . , un, a1, . . . aκ, y) ∶= τ(u1, . . . , un, b1, . . . bκ, y).

¶2 τ = τu ∶ u ∩ T −na → u ∩ T −nb is invertible nonsingular and dm○τ
dm =

M±4m(b)
m(a) .

Proof

∫
u∩T−na∩c

dm ○ τ
dm

dm =m(u ∩ T −nb ∩ c)

=M±2m(b)
m(a)m(u)m(b)m(c)

=M±4m(b)
m(a)m(u ∩ T −na ∩ c).

�

¶3 Proof of ‡
Fix 0 < ε <M−1 min{m(as,t), m(bs,t)}, then

m(u ∩ T −nas,t), m(u ∩ T −nbs,t) ≥ εm(u) ∀ u ∈ αn−10 , [s] ⊂ T [un].

Let δ > 0 be so small that δ < m(b)(ε−δ)
M4m(a) .

∃ n ≥ 1 and u ∈ αn−10 such thatm(A∩u) ≥ (1−δ)m(u) and [s] ⊂ T [un].
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Consider τu ∶ u∩T −na→ u∩T −nb as in ¶2. Evidently T n+κ ○ τ ≡ T n+κ
and ∥φn+κ ○ τ − φn+κ − g0∥ < η on u ∩ T −na.

To complete the proof we claim that ∃ B ∈ B+ B ⊂ A∩u∩T −na such
that τB ⊂ A.

To see this, note that

m(u ∩ T −na ∩A) ≥m(u ∩ T −na) −m(u ∖A) ≥ (ε − δ)m(u),

whence using ¶2,

m(τ(u ∩ T −na ∩A)) ≥ m(b)
M4m(a)m(u ∩ T −na ∩A) ≥ m(b)(ε − δ)

M4m(a) m(u).

Since τ(u∩T −na∩A) ⊂ u, the condition on δ > 0 ensures that m(τ(u∩

T −na∩A)∩A) > 0 whence m(B) > 0 where B ∶= τ−1(τ(u∩T −na∩A)∩

A) ⊂ A. �

§3 Proof of theorem 2

We prove theorem 2 via corollary 1.3. To do this, we must consider
Tφ as a nonsingular transformation with respect to some probability
P ∼m ×mRd .

Let p ∶ Rd → R+ be continuous with ∫Rd p(y)dy = 1 and define a prob-
ability P on X × Rd by dP (x, y) ∶= p(y)dm(x)dy; then (X × Rd,B(X ×
Rd), P, Tφ) is a nonsingular transformation with Frobenius-Perron op-
erators given by

PTn
φ
,Pf(x, y) =

1

p(y)PT
n
φ
(f ⋅ 1⊗ p)(x, y)

where PTn
φ
∶= PTn

φ
,m×mRd

.

Consider the map π ∶ X × Rd → X defined by π(x, y) = x. This is a
factor map as it satisfies π−1B(X) ⊂ B(X ×Rd), π ○Tφ = T ○π, P ○π−1 =
m.

The fibre expectation of π is given by

E(f ∣π)(x) = ∫
Rd
f(x, y)p(y)dy (f ∈ L1(X × Rd,B(X × Rd), P )).

By corollary 1.3 and exactness of T , it suffices to show that π is
relatively exact.
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To do this, we show that

∫
Rd
f(x, y)p(y)dy = 0 a.e. Ô⇒

∫
X×Rd

∣PTn
φ
,Pf ∣dP = ∫

X×Rd
∣PTn

φ
(f ⋅ 1⊗ p)∣d(m ×mRd)→ 0

as n→∞; equivalently (taking F (x, y) ∶= f(x, y)p(y)),

∫
Rd
F (x, y)dy = 0 a.e. Ô⇒ ∫

X×Rd
∣PTn

φ
F ∣d(m ×mRd)→ 0(⋆)

as n→∞.

To prove (⋆), we first claim that
¶1 for λ > 1, h ∈ L1(m) and f ∈ L1(Rd),

∥PTnk
φ

(h⊗ f)∥1 ≤ Cλ
nkd

2 ∥PTnk
φ

(h⊗ f)∥2 + o(1)

as k →∞ where C = 2
d
2m(B(0,1)) and

φnk
λnk → 0 a.e..

Proof As can be checked,

PTn
φ
(h⊗ f)(x, y) = PTn(h(⋅)f(y −φn(⋅)))(x) (h ∈ L1(m), f ∈ L1(Rd)).

Denoting E(H) ∶= ∫XHdm for H ∈ L1(m), we have

∥PTnk
φ

(h⊗f)∥1 = ∫
Rd

∣E(PTnk (h(⋅)f(y−φnk(⋅))))∣dy ≤ ∫
∣y∣≤2λnk

+∫
∣y∣>2λnk

.

(2)
By the Cauchy-Schwartz inequality,

∫
∣y∣≤2λnk

≤
√
mRd(B(0,2λnk))∥PTnk

φ
(h⊗ f)∥2 = Cλ

nkd

2 ∥PTnk
φ

(h⊗ f)∥2
(3)

whereas

∫
∣y∣>2λnk

≤ ∫
∣y∣>2λnk

∣E(PTnk (h(⋅)f(y − φnk(⋅))1[∣φnk(⋅))∣≤λ
nk ])∣dy

+ ∫
∣y∣>2λnk

∣E(PTnk (h(⋅)f(y − φnk(⋅))1[∣φnk(⋅)∣>λ
nk ]))∣dy = I + II.

Here as k →∞:

II ≤ ∥f∥1E(∣h∣1[∣φnk(⋅)∣>λ
nk ])→ 0 (4)
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since
φnk
λnk → 0 a.e.; and

I ≤ ∫
∣y∣>2λnk

E(∣h∣∣f(y − φnk)∣1[∣φnk(⋅)∣≤λ
nk ])dy

= E(∣h∣1[∣φnk ∣≤λ
nk ]∫

∣y∣>2λnk
∣f(y − φnk)∣dy)

≤ E(∣h∣)∫
∣y∣>λnk

∣f(y)∣dy → 0,(5)

Substituting (3),(4) and (5) into (2) proves ¶1. �
To complete the proof of (⋆), let F ∈ L1(m×mRd) satisfy ∫Rd F (x, y)dy =

0 for m-a.e. x ∈X and fix ε > 0. We show that

lim sup
n→∞

∫
X×Rd

∣PTn
φ
F ∣d(m ×mRd) < ε.(⋆ε)

Standard approximation techniques show that ∀ ε > 0, ∃N ∈ N, h1, . . . , hN ∈
L, g1, . . . , gN ∈ L1(Rd) such that ∫Rd gk(y)dy = 0 (1 ≤ k ≤ N) and

∥F −
N

∑
k=1

hk ⊗ gk∥L1(m×mRk)
< ε

2
.

Next, it follows from theorems 1.6.3 and 1.6.4 in [Rud74] that
∃ f1, . . . , fN ∈ L1 ∩L2 such that

● [f̂k ≠ 0] is compact and bounded away from 0 (1 ≤ k ≤ N);
and

● ∥fk − gk∥L1(mRd)
< ε

2N∥hk∥L1(m)
(1 ≤ k ≤ N), whence

∥
N

∑
k=1

hk ⊗ fk −
N

∑
k=1

hk ⊗ gk∥L1(m×mRd)
≤

N

∑
k=1

∥hk∥L1(m) ⋅ ∥fk − gk∥L1(Rd) <
ε

2
,

∥F −
N

∑
k=1

hk ⊗ fk∥L1(m×mRd)
< ε.

We claim
¶2 If h ∈ L and f ∈ L1∩L2 is such that [f̂ ≠ 0] is compact and bounded
away from 0, then ∃ 0 < ρ < 1 such that

∥PTn
φ
(h⊗ f)∥2 = O(ρn) as n→∞. (6)

Proof
Let [f̂ ≠ 0] ⊂ B(0,M) ∖B(0, δ). By (ii) (above), ∃ K > 0, 0 < ρ < 1

such that

∣P n
γ h(x)∣ ≤Kρn ∀ x ∈X, n ≥ 1, δ ≤ ∣γ∣ ≤M,

whence using the fact that the Fourier transform of y ↦ P n
Tφ

(h⊗f)(x, y)
is γ ↦ f̂(γ)P n

γ h(x) and Plancherel’s formula, we have
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∥PTn
φ
(h⊗ f)∥22 = ∫

X
(∫

Rd
∣PTn

φ
(h⊗ f)(x, y)∣2dy)dm(x)

= ∫
X
(∫

Rd
∣f̂(γ)∣2∣P n

γ h(x)∣2dγ)dm(x)

= ∫
Rd

∣f̂(γ)∣2∥P n
γ h∥22dγ ≤K2ρ2n∫

Rd
∣f̂(γ)∣2dγ

proving ¶2. �
To finish the proof of theorem 2, we claim

¶3 if (6) holds for h ∈ L and f ∈ L1 ∩L2, then

∥PTn
φ
(h⊗ f)∥1 → 0. (7)

Proof
Fix λ > 1 such that λ

d
2ρ < 1. Suppose that

φnk
λnk → 0 a.e.. Using (6),

we have by ¶1,

∥PTnk
φ

(h⊗ f)∥1 ≤ Cλ
nkd

2 ∥PTnk
φ

(h⊗ f)∥2 + o(1) = O(λ
nkd

2 ρnk) + o(1)→ 0

as k →∞; establishing (7) since ∥PTn
φ
(h⊗ f)∥1 ↓. �

This completes the proof of theorem 2.
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