ON EXACT GROUP EXTENSIONS

JON AARONSON AND MANFRED DENKER

ABSTRACT. We give conditions for the exactness of \mathbb{R}^d -extensions.

§0 INTRODUCTION

A fibred system $(X, \mathcal{B}, m, T, \alpha)$ is a nonsingular transformation (X, \mathcal{B}, m, T) of a standard probability space equipped with a countable, measurable partition $\alpha \subset \mathcal{B}$, generating \mathcal{B} (in the sense that $\sigma(\{T^{-n}a : a \in \alpha, n \geq 0\}) = \mathcal{B}$) such that $T : a \to Ta$ is invertible, nonsingular for $a \in \alpha$. A fibred system $(X, \mathcal{B}, m, T, \alpha)$ is called a *Markov map* (or Markov fibred system) if $Ta \in \sigma(\alpha) \mod m \quad \forall \ a \in \alpha$.

Write $\alpha = \{a_s : s \in S\}$ and endow $S^{\mathbb{N}}$ with its canonical (Polish) product topology. Let

$$\Sigma = \{ s = (s_1, s_2, \dots) \in S^{\mathbb{N}} : m(\bigcap_{k=1}^n T^{-k} a_{s_k}) > 0 \quad \forall \ n \ge 1 \},\$$

then Σ is a closed, shift invariant subset of $S^{\mathbb{N}}$, and there is a measurable map $\phi: \Sigma \to X$ defined by $\{\phi(s_1, s_2, \dots)\} := \bigcap_{k=1}^{\infty} T^{-(k-1)} a_{s_k}$.

The closed support of the probability $m' = m \circ \phi^{-1}$ is Σ , and ϕ is a conjugacy of (X, \mathcal{B}, m, T) with $(\Sigma, \mathcal{B}(\Sigma), m', \text{shift})$. Thus we may, and sometimes do, assume that $X = \Sigma$, T is the shift, and $\alpha = \{[s] : s \in S\}$.

For $n \ge 1$, there are *m*-nonsingular inverse branches of *T* denoted $v_a: T^n a \to a$ and defined by $v_a(x) \coloneqq (a, x)$ $(a \in \alpha_0^{n-1})$ with Radon Nikodym derivatives denoted

$$v_a' \coloneqq \frac{dm \circ v_a}{dm}.$$

Let (X, \mathcal{B}, m, R) be a nonsingular transformation of a standard probability space.

The Frobenius-Perron operators $P_{R^n} = P_{R^n,m} : L^1(m) \to L^1(m)$ are defined by

$$\int_X P_{R^n} f \cdot g dm = \int_X f \cdot g \circ R^n dm$$

¹⁹⁹¹ Mathematics Subject Classification. Primary: 28D05, 60B15; Secondary: 58F15, 58F19, 58F30.

[©]July 1999, revision 2/12/99.

and for the fibred system $(X, \mathcal{B}, m, T, \alpha)$ (as above) have the form

$$P_{T^n}f = \sum_{a \in \alpha_0^{n-1}} \mathbb{1}_{T^n a} v'_a \cdot f \circ v_a.$$

A fibred system $(X, \mathcal{B}, m, T, \alpha)$ has:

the *Renyi property* if $\exists C > 1$ such that $\forall n \ge 1, a \in \alpha_0^{n-1}, m(a) > 0$: $\left| \frac{v'_a(x)}{v'_a(y)} \right| \le C$ for $m \times m$ -a.e. $(x, y) \in T^n a \times T^n a$.

It is well known (a proof is recalled in [ADU93]) that any topologically mixing probability preserving Markov map with the Renyi property is *exact* in the sense that $\bigcap_{n\geq 1} T^{-n}\mathcal{B} = \{\emptyset, X\} \mod m$.

Examples include:

 \bullet topological Markov shifts equipped with Gibbs measures ([Bow08],[BR75]) and

• uniformly expanding, piecewise onto C^2 interval maps $T:[0,1] \rightarrow [0,1]$ satisfying

Adler's condition $\sup_{x \in [0,1]} \frac{|T''(x)|}{T'(x)^2} < \infty$ ([Adl73]);

or, generalising the above two examples:

• Gibbs-Markov maps as in [AD96],

the Markov map $(X, \mathcal{B}, m, T, \alpha)$ being called *Gibbs-Markov* if it has the *Gibbs property* that $\exists C > 1, 0 < r < 1$ such that $\forall n \ge 1, a \in \alpha_0^{n-1}, m(a) > 0$:

 $\left| \frac{v'_{a}(x)}{v'_{a}(y)} - 1 \right| \le Cr^{t(x,y)} \text{ for } m \times m\text{-a.e. } (x,y) \in T^{n}a \times T^{n}a, \text{ (see §4.6, §4.7 of } [A \circ r^{0}7]).$

[Aar 97]);

and the big image property that $\inf_{a \in \alpha} m(Ta) > 0$.

Now let $\phi : X \to \mathbb{R}^d$ be measurable and consider the skew product $T_{\phi} : X \times \mathbb{R}^d \to X \times \mathbb{R}^d$ defined by $T_{\phi}(x, y) \coloneqq (Tx, y + \phi(x))$ with respect to the (invariant) product measure $m \times m_{\mathbb{R}^d}$ where $m_{\mathbb{R}^d}$ denotes Lebesgue measure.

We say that ϕ is *aperiodic* if $\gamma(\phi) = z\overline{h}h \circ T$ has no nontrivial solution in $\gamma \in \widehat{\mathbb{R}^d}$, $z \in S^1$ and $h: X \to S^1$ measurable.

It is not hard to show that if T_{ϕ} is ergodic, and T is weakly mixing, then T_{ϕ} is weakly mixing iff ϕ is aperiodic.

We're interested in the exactness of T_{ϕ} .

We establish two (partial) results in this direction.

Theorem 1

Suppose that $(X, \mathcal{B}, m, T, \alpha)$ is a probability preserving Markov map with the Renyi property. Let $N \ge 1$ and $\phi : X \to \mathbb{R}^d$ be α_0^{N-1} -measurable (i.e. $\phi(x) = \phi(\alpha_0^{N-1}(x))$ where $x \in \alpha_0^{N-1}(x) \in \alpha_0^{N-1}$).

If T_{ϕ} is topologically mixing, then T_{ϕ} is exact.

For the other result, we assume that $(X, \mathcal{B}, m, T, \alpha)$ is an exact probability preserving fibred system with the property that there is a Banach space $(L, \|\cdot\|_L)$ of functions with $\|\cdot\|_2 \leq \|\cdot\|_L$, such that $P_T : L \to L$ and $\exists H > 0, \ 0 < r < 1, \ N \geq 1$ such that

$$\|P_{T^N}f\|_L \le r\|f\|_L + H\|f\|_1 \ \forall \ f \in L.$$

In this case (see [DF37], [ITM50]) $\exists M > 0, \theta \in (0, 1)$ such that

$$\|P_{T^n}f - \int_X f dm\|_L \le M\theta^n \|f\|_L \ \forall \ f \in L.$$

Given $\phi: X \to \mathbb{R}^d$ measurable, we define the *characteristic function* operators $P_t(f) = P_T(e^{i\langle t, \phi \rangle} f)$ $(t \in \mathbb{R}^d)$.

We assume also that $P_t : L \to L$ $(t \in \mathbb{R}^d)$ and that $t \mapsto P_t$ is continuous $(\mathbb{R}^d \to \text{Hom}(L, L))$.

It is shown in [Nag57] (see also theorem 4.1 of [AD96]) that

(i) there are constants $\epsilon > 0$, K > 0 and $\theta \in (0,1)$; and continuous functions $\lambda : B(0,\epsilon) \to B_{\mathbb{C}}(0,1)$, $g : B(0,\epsilon) \to L$ such that

 $\|P_t^n h - \lambda(t)^n g(t) \int_X h dm\|_L \le K \theta^n \|h\|_L \quad \forall \ |t| < \epsilon, \ n \ge 1, \ h \in L;$

(*ii*) if $\gamma(\phi) = z\overline{h}h \circ T$ where $\gamma \in \widehat{\mathbb{R}^d}$, $z \in S^1$ and $h: X \to S^1$ measurable, then $h \in L$;

and

(ii) in case ϕ is a periodic, then $\forall \ 0 < \delta < M < \infty, \ \exists \ K > 0, \ 0 < \rho < 1$ such that

$$\|P_{\gamma}^{n}h\|_{L} \leq K\rho^{n} \quad \forall \ h \in L, \ n \geq 1, \ \delta \leq |\gamma| \leq M.$$

Examples include:

• (see [AD96]), $(X, \mathcal{B}, m, T, \alpha)$ a Gibbs-Markov maps and $\phi : X \to \mathbb{R}^d$ uniformly Hölder continuous on partition sets. Here *L* is a space of Hölder continuous functions $f : X \to \mathbb{C}$.

• (see [RE83], [Ryc83]), X = [0, 1], *m* Lebesgue measure, α a partition of $X \mod m$ into open intervals, and $T : a \to Ta$ an invertible, *m*nonsingular homeomorphism for each $a \in \alpha$ with $\inf |T'| > 1$ and $\frac{1}{T'}$ of bounded variation on X; and $\phi : X \to \mathbb{R}^d$ either: of bounded variation on X; or constant on each $a \in \alpha$. Here L is the space of functions $f: X \to \mathbb{C}$ of bounded variation on X.

Set $\phi_n = \phi + \phi \circ T + \ldots + \phi \circ T^{n-1}$.

Theorem 2

Suppose that

$$(\diamond) \qquad \forall \ \lambda > 1 \ \exists \ n_k \to \infty \ such \ that \ \frac{\phi_{n_k}}{\lambda^{n_k}} \to 0 \ a.e. \ as \ k \to \infty$$

and that ϕ is aperiodic; then T_{ϕ} is exact.

Remarks

1) Theorem 2 generalises the corresponding theorem on page 443 in [Gui89].

2) The condition (\diamond) is satisfied if *m*-dist(ϕ) is in the domain of attraction of a stable law.

3) The condition (\diamond) is not satisfied iff $\exists \lambda > 1$ and $\epsilon > 0$ such that $m([|\phi_n| > \lambda^n]) \ge \epsilon \quad \forall n \ge 1$ and there are independent processes like this.

4) For examples satisfying the assumptions of the theorems, let X = [0,1], $Tx = \{\frac{1}{x}\}$, then T is a piecewise onto C^2 interval map with Markov partition $\alpha = \{I_n = (\frac{1}{n+1}, \frac{1}{n}] : n \ge 1\}$. The invariant probability is Gauss' measure $dm(x) := \frac{1}{\log 2} \frac{dx}{1+x}$. Since T^2 is uniformly expanding and satisfies Adler's condition, we have (passing to the Polish product topology induced by α) that $(X, \mathcal{B}, m, T, \alpha)$ has the Gibbs property, whence (T is piecewise onto) the Renyi property and is Gibbs-Markov.

It is not hard to show that if $\phi: X \to \mathbb{R}$ is constant on each I_n , takes the value 0 and the semigroup generated by the values of ϕ is dense in \mathbb{R} , then T_{ϕ} is topologically mixing and therefore exact by theorem 1.

Such functions $\phi : X \to \mathbb{R}$ are aperiodic by corollary 3.2 of [A-D], and so the exactness of T_{ϕ} is also established by theorem 2. On the other hand, if $\phi(x) = \log \frac{1}{x}$ then T_{ϕ} is not topologically mixing (since $\phi \ge 0$). Nevertheless, ϕ is aperiodic by corollary 3.2 of [A-D], and so T_{ϕ} is exact by theorem 2 (but totally dissipative).

§1 FROBENIUS-PERRON OPERATORS, EXACTNESS AND RELATIVE EXACTNESS

Let (X, \mathcal{B}, m, R) be a nonsingular transformation of a standard probability space. The *tail* σ -algebra of (X, \mathcal{B}, m, R) is $\mathcal{T}(R) \coloneqq \bigcap_{n=1}^{\infty} R^{-n}\mathcal{B}$ and the nonsingular transformation R is called *exact* if $= \{\emptyset, X\} \mod m$.

Theorem 1.1 [DL84]

$$||P_{R^n}f||_1 \to ||E(f|\mathcal{T}(R))||_1 \text{ as } n \to \infty \ \forall \ f \in L^1(m).$$

In particular (see [Lin71]), R is exact iff $||P_{R^n}f||_1 \to 0 \forall f \in L^1(m), \int_X f dm = 0.$

Proof

First note that $|P_T f| \leq P_T |f|$ whence $||P_{R^n} f||_1 \downarrow$ and $\exists \lim_{n \to \infty} ||P_{R^n} f||_1$. Next, $\forall n \geq 1 \exists g_n \in L^{\infty}(\mathcal{B})$ with $\int_X (P_{R^n} f) g_n dm = ||P_{R^n} f||_1$, whence

$$\|P_{R^n}f\|_1 = \int_X fg_n \circ R^n dm.$$

By weak * compactness, $\exists n_k \to \infty$ and $g \in L^{\infty}(\mathcal{B})$ such that $g_{n_k} \circ R^{n_k} \to g$ weak * in $L^{\infty}(\mathcal{B})$.

It follows that $g \in L^{\infty}(\mathcal{T}(R))$, $||g||_{\infty} \leq 1$ and $\lim_{n\to\infty} ||P_{R^n}f||_1 = \int_X fgdm$. Thus

$$\lim_{n \to \infty} \|P_{R^n} f\|_1 \le \sup \{ \int_X fhdm : h \in L^{\infty}(\mathcal{T}(R)), \|h\|_{\infty} \le 1 \} = \|E(f|\mathcal{T}(R))\|_1$$

To show the converse inequality, note that $\exists g \in L^{\infty}(\mathcal{T}(R)), ||g||_{\infty} = 1$ such that

$$\|E(f|\mathcal{T}(R))\|_1 = \int_X E(f|\mathcal{T}(R))gdm = \int_X fgdm$$

whence
$$\forall n \ge 1$$
, $\exists g_n \in L^{\infty}(\mathcal{B}), g = g_n \circ R^n$ and
 $\|E(f|\mathcal{T}(R))\|_1 = \int_X fgdm = \int_X fg_n \circ R^n dm = \int_X (P_{R^n}f)g_n dm \le \|P_{R^n}f\|_1.$

Let (X, \mathcal{B}, m, R) and (Y, \mathcal{C}, μ, S) be nonsingular transformations of standard probability spaces. A factor map is a function $\pi : X \to Y$ satisfying $\pi^{-1}\mathcal{C} \subset \mathcal{B}, \ \pi \circ T = S \circ \pi, \ m \circ \pi^{-1} = \mu$.

The fibre expectation of the factor map $\pi: X \to Y$ is an operator

 $f \mapsto E(f|\pi), \ L^1(X, \mathcal{B}, m) \to L^1(Y, \mathcal{C}, \mu)$

defined by $\int_Y E(f|\pi)gd\mu = \int_X fg \circ \pi dm$.

The factor map $\pi: X \to Y$ is called *relatively exact* if

$$f \in L^1(\mathcal{B}), \ E(f|\pi) = 0 \text{ a.e.} \implies ||P_{R^n}f||_1 \to 0.$$

The corollary below appears in [Gui89]. For the convenience of the reader, we supply a (possibly different) proof.

Proposition 1.2 Suppose that $\pi : X \to Y$ is relatively exact, then $\mathcal{T}(R) = \pi^{-1}\mathcal{T}(S) \mod m$.

Proof

Evidently, $\pi^{-1}\mathcal{T}(S) \subseteq \mathcal{T}(R)$. We show that $\pi^{-1}\mathcal{T}(S) \supseteq \mathcal{T}(R)$.

By relative exactness and theorem 1.1, if $f \in L^1(\mathcal{B})$ and $E(f|\pi) = 0$ a.e., then $\int_X fgdm = 0 \forall g \in L^{\infty}(\mathcal{T}(R))$.

Thus if $f \in L^2(\mathcal{B}) \ominus L^2(\pi^{-1}\mathcal{C})$, then $E(f|\pi) = 0$ a.e. and so

$$\int_X fgdm = 0 \,\,\forall \,\, g \in L^{\infty}(\mathcal{T}(R)), \implies f \perp L^2(\mathcal{T}(R)).$$

Thus $L^2(\mathcal{B}) \ominus L^2(\pi^{-1}\mathcal{C}) \subset L^2(\mathcal{B}) \ominus L^2(\mathcal{T}(R))$ whence $L^2(\mathcal{T}(R)) \subset L^2(\pi^{-1}\mathcal{C})$ and $\mathcal{T}(R) \subset \pi^{-1}\mathcal{C} \mod m$.

To see that in fact $\mathcal{T}(R) \subseteq \pi^{-1}\mathcal{T}(S) \mod m$, fix $N \ge 1$, then

$$\mathcal{T}(R) = \bigcap_{n \ge 1} R^{-n} \mathcal{B} = \bigcap_{n \ge N+1} R^{-n} \mathcal{B}$$
$$= R^{-N} \mathcal{T}(R) \subset R^{-N} \pi^{-1} \mathcal{C} = \pi^{-1} S^{-N} \mathcal{C}.$$

Taking the intersection over N shows the claim.

Corollary 1.3 ([Gui89], proposition 1)

If S is exact and $\pi: X \to Y$ is relatively exact, then T is exact.

§2 Proof of theorem 1

For a nonsingular transformation (X, \mathcal{B}, m, R) , define the *tail relation* of R:

$$\mathfrak{T}(R) \coloneqq \{ (x, y) \in X \times X : \exists n \ge 0, R^n x = R^n y \}.$$

Evidently $\mathfrak{T}(R)$ is an equivalence relation and if (X, \mathcal{B}, m) is standard, then $\mathfrak{T}(R) \in \mathcal{B}(X \times X)$.

If R is locally invertible, then $\mathfrak{T}(R)$ has countable equivalence classes and is nonsingular in the sense that $m(\mathfrak{T}(R)(A)) = 0 \forall A \in \mathcal{B}, m(A) = 0$ where $\mathfrak{T}(R)(A) := \{y \in X : \exists x \in A (x, y) \in \mathfrak{T}(R)\}.$

A set $A \in \mathcal{B}(X)$ is *invariant* under the equivalence relation $\mathfrak{T} \in \mathcal{B}(X \times X)$ if $\mathfrak{T}(A) = A$ and the equivalence relation \mathfrak{T} is called *ergodic* if \mathfrak{T} -invariant sets have either zero, or full measure.

The collection of invariant sets under $\mathfrak{T}(R)$ is the tail σ -algebra $\mathcal{T}(R)$ (whence the name "tail relation").

In order to prove theorem 1, it suffices to show that $\mathfrak{T}(T_{\phi})$ is ergodic. The tail relation of T_{ϕ} is given by

$$\begin{aligned} \mathfrak{T}(T_{\phi}) \\ &= \{ ((x,s), (y,t)) \in (X \times G)^2 : \exists n \ge 0, \ T^n x = T^n y, \ s - t = \phi_n(y) - \phi_n(x) \} \\ &= \{ ((x,s), (y,t)) \in (X \times G)^2 : \ (x,y) \in \mathfrak{T}(T), \ \tilde{\phi}(x,y) = s - t \} \end{aligned}$$

where $\tilde{\phi}: \mathfrak{T}(T) \to \mathbb{R}^d$ is defined by $\tilde{\phi}(x, y) \coloneqq \sum_{n=0}^{\infty} (\phi(T^n y) - \phi(T^n x)).$

We prove that $\mathfrak{T}(T_{\phi})$ is ergodic by the method of Schmidt (explained in [Sto66]), by showing that $\forall t \in \mathbb{R}^d$, U a neighbourhood of t and $A \in \mathcal{B} \ m(A) > 0$, $\exists B \in \mathcal{B} \ B \subset A$ and $\tau : B \to B$ nonsingular such that $(x, \tau(x)) \in \mathfrak{T}(T)$ and $\tilde{\phi}(x, \tau(x)) \in U \ \forall x \in B$.

 $\mathbf{6}$

This boils down to showing that

$$\forall A \in \mathcal{B}_+ \ g_0 \in \mathbb{R}^d \ \eta > 0, \ \exists B \in \mathcal{B}_+ \ B \subset A, \ n \ge 1$$
and $\tau : B \to \tau B \subset A$ nonsingular such that
$$T^n \circ \tau \equiv T^n \text{ and } \|\phi_n \circ \tau - \phi_n - g_0\| < \eta \text{ on } B.$$

The proof of (\ddagger) will be written as a sequence of minor claims, $\P0, \P1, \ldots$

¶0 We first claim that there is no loss in generality in assuming that N = 1 (i.e. that $\phi : X \to \mathbb{R}^d$ is α -measurable). This is because $(X, \mathcal{B}, m, T, \alpha_0^{N-1})$ is also a probability preserving Markov map with the Renyi property and inducing the same (shift) topology on X as $(X, \mathcal{B}, m, T, \alpha)$.

¶1 $\forall s,t \in S, \exists \kappa = \kappa_{s,t} \geq 1$ and $a = a_{s,t} = [a_1, \dots a_{\kappa}], b = b_{s,t} = [b_1, \dots b_{\kappa}] \in \alpha_0^{\kappa-1}, a_1 = b_1 = s a_{\kappa} = b_{\kappa} = t$ such that $\|\phi_{\kappa}(b) - \phi_{\kappa}(a) - g_0\| < \eta$. This follows from topological mixing of T_{ϕ} .

By the Renyi property, $\exists M > 1$ such that

$$\begin{split} M^{-1}m(u)m(v) &\leq m(u \cap T^{-k}v) \leq Mm(u)m(v) \ \forall \ u \in \alpha_0^{k-1}, \ v \in \alpha_0^{\ell-1}, \ [v_1] \subset T[u_k]. \\ \text{Given } u &= [u_1, \dots, u_n] \in \alpha_0^{n-1} \text{ with } u_n = t, \text{ define } \tau = \tau_u : u \cap T^{-n}a \rightarrow u \cap T^{-n}b \text{ by} \end{split}$$

$$\tau(u_1,\ldots,u_n,a_1,\ldots,a_{\kappa},y) \coloneqq \tau(u_1,\ldots,u_n,b_1,\ldots,b_{\kappa},y).$$

 $\P2 \ \tau = \tau_u : u \cap T^{-n}a \to u \cap T^{-n}b$ is invertible nonsingular and $\frac{dm \circ \tau}{dm} = M^{\pm 4}\frac{m(b)}{m(a)}.$ PROOF

$$\int_{u\cap T^{-n}a\cap c} \frac{dm \circ \tau}{dm} dm = m(u\cap T^{-n}b\cap c)$$
$$= M^{\pm 2} \frac{m(b)}{m(a)} m(u)m(b)m(c)$$
$$= M^{\pm 4} \frac{m(b)}{m(a)} m(u\cap T^{-n}a\cap c).$$

¶3 Proof of ‡

Fix $0 < \epsilon < M^{-1} \min \{ m(a_{s,t}), m(b_{s,t}) \}$, then $m(u \cap T^{-n}a_{s,t}), m(u \cap T^{-n}b_{s,t}) \ge \epsilon m(u) \ \forall \ u \in \alpha_0^{n-1}, \ [s] \subset T[u_n].$

Let $\delta > 0$ be so small that $\delta < \frac{m(b)(\epsilon - \delta)}{M^4 m(a)}$. $\exists n \ge 1 \text{ and } u \in \alpha_0^{n-1} \text{ such that } m(A \cap u) \ge (1-\delta)m(u) \text{ and } [s] \subset T[u_n].$ Consider $\tau_u : u \cap T^{-n}a \to u \cap T^{-n}b$ as in $\P 2$. Evidently $T^{n+\kappa} \circ \tau \equiv T^{n+\kappa}$ and $\|\phi_{n+\kappa} \circ \tau - \phi_{n+\kappa} - g_0\| < \eta$ on $u \cap T^{-n}a$.

To complete the proof we claim that $\exists B \in \mathcal{B}_+ B \subset A \cap u \cap T^{-n}a$ such that $\tau B \subset A$.

To see this, note that

$$m(u \cap T^{-n}a \cap A) \ge m(u \cap T^{-n}a) - m(u \setminus A) \ge (\epsilon - \delta)m(u),$$

whence using $\P 2$,

$$m(\tau(u \cap T^{-n}a \cap A)) \ge \frac{m(b)}{M^4m(a)} m(u \cap T^{-n}a \cap A) \ge \frac{m(b)(\epsilon - \delta)}{M^4m(a)} m(u).$$

Since $\tau(u \cap T^{-n}a \cap A) \subset u$, the condition on $\delta > 0$ ensures that $m(\tau(u \cap T^{-n}a \cap A) \cap A) > 0$ whence m(B) > 0 where $B \coloneqq \tau^{-1} \left(\tau(u \cap T^{-n}a \cap A) \cap A \right) \subset A$.

§3 Proof of theorem 2

We prove theorem 2 via corollary 1.3. To do this, we must consider T_{ϕ} as a nonsingular transformation with respect to some probability $P \sim m \times m_{\mathbb{R}^d}$.

Let $p : \mathbb{R}^d \to \mathbb{R}_+$ be continuous with $\int_{\mathbb{R}^d} p(y) dy = 1$ and define a probability P on $X \times \mathbb{R}^d$ by dP(x, y) := p(y) dm(x) dy; then $(X \times \mathbb{R}^d, \mathcal{B}(X \times \mathbb{R}^d), P, T_{\phi})$ is a nonsingular transformation with Frobenius-Perron operators given by

$$P_{T^n_{\phi},P}f(x,y) = \frac{1}{p(y)} P_{T^n_{\phi}}(f \cdot 1 \otimes p)(x,y)$$

where $P_{T_{\phi}^n} \coloneqq P_{T_{\phi}^n, m \times m_{\mathbb{R}^d}}$.

Consider the map $\pi: X \times \mathbb{R}^d \to X$ defined by $\pi(x, y) = x$. This is a factor map as it satisfies $\pi^{-1}\mathcal{B}(X) \subset \mathcal{B}(X \times \mathbb{R}^d), \ \pi \circ T_{\phi} = T \circ \pi, \ P \circ \pi^{-1} = m$.

The fibre expectation of π is given by

$$E(f|\pi)(x) = \int_{\mathbb{R}^d} f(x,y)p(y)dy \quad (f \in L^1(X \times \mathbb{R}^d, \mathcal{B}(X \times \mathbb{R}^d), P)).$$

By corollary 1.3 and exactness of T, it suffices to show that π is relatively exact.

To do this, we show that

$$\int_{\mathbb{R}^d} f(x,y)p(y)dy = 0 \text{ a.e.} \implies$$
$$\int_{X \times \mathbb{R}^d} |P_{T^n_{\phi},P}f|dP = \int_{X \times \mathbb{R}^d} |P_{T^n_{\phi}}(f \cdot 1 \otimes p)|d(m \times m_{\mathbb{R}^d}) \to 0$$

as $n \to \infty$; equivalently (taking $F(x, y) \coloneqq f(x, y)p(y)$),

$$(\star) \qquad \int_{\mathbb{R}^d} F(x, y) dy = 0 \text{ a.e.} \implies \int_{X \times \mathbb{R}^d} |P_{T^n_{\phi}} F| d(m \times m_{\mathbb{R}^d}) \to 0$$

as $n \to \infty$.

To prove (\star) , we first claim that ¶1 for $\lambda > 1$, $h \in L^1(m)$ and $f \in L^1(\mathbb{R}^d)$,

$$\|P_{T_{\phi}^{n_{k}}}(h \otimes f)\|_{1} \leq C\lambda^{\frac{n_{k}d}{2}} \|P_{T_{\phi}^{n_{k}}}(h \otimes f)\|_{2} + o(1)$$

as $k \to \infty$ where $C = 2^{\frac{d}{2}}m(B(0,1))$ and $\frac{\phi_{n_k}}{\lambda^{n_k}} \to 0$ a.e.. PROOF As can be checked,

$$P_{T_{\phi}^{n}}(h \otimes f)(x, y) = P_{T^{n}}(h(\cdot)f(y - \phi_{n}(\cdot)))(x) \quad (h \in L^{1}(m), \ f \in L^{1}(\mathbb{R}^{d})).$$

Denoting $E(H) \coloneqq \int_X H dm$ for $H \in L^1(m)$, we have

$$\|P_{T_{\phi}^{n_{k}}}(h \otimes f)\|_{1} = \int_{\mathbb{R}^{d}} |E(P_{T^{n_{k}}}(h(\cdot)f(y-\phi_{n_{k}}(\cdot))))|dy \leq \int_{|y| \leq 2\lambda^{n_{k}}} + \int_{|y| > 2\lambda^{n_{k}}} (2)$$

By the Cauchy-Schwartz inequality,

$$\int_{|y| \le 2\lambda^{n_k}} \le \sqrt{m_{\mathbb{R}^d}(B(0, 2\lambda^{n_k}))} \|P_{T_{\phi}^{n_k}}(h \otimes f)\|_2 = C\lambda^{\frac{n_k d}{2}} \|P_{T_{\phi}^{n_k}}(h \otimes f)\|_2$$
(3)

whereas

$$\begin{split} &\int_{|y|>2\lambda^{n_k}} \leq \int_{|y|>2\lambda^{n_k}} |E(P_{T^{n_k}}(h(\cdot)f(y-\phi_{n_k}(\cdot))1_{[|\phi_{n_k}(\cdot))|\leq\lambda^{n_k}]})|dy \\ &+ \int_{|y|>2\lambda^{n_k}} |E(P_{T^{n_k}}(h(\cdot)f(y-\phi_{n_k}(\cdot))1_{[|\phi_{n_k}(\cdot)|>\lambda^{n_k}]}))|dy = I + II. \end{split}$$

Here as $k \to \infty$:

$$II \le \|f\|_1 E(|h| \mathbf{1}_{[|\phi_{n_k}(\cdot)| > \lambda^{n_k}]}) \to 0$$
(4)

since $\frac{\phi_{n_k}}{\lambda^{n_k}} \to 0$ a.e.; and

(5)

$$I \leq \int_{|y|>2\lambda^{n_k}} E(|h||f(y-\phi_{n_k})|1_{[|\phi_{n_k}(\cdot)|\leq\lambda^{n_k}]})dy$$

$$= E\left(|h|1_{[|\phi_{n_k}|\leq\lambda^{n_k}]}\int_{|y|>2\lambda^{n_k}}|f(y-\phi_{n_k})|dy\right)$$

$$\leq E(|h|)\int_{|y|>\lambda^{n_k}}|f(y)|dy \to 0,$$

Substituting (3),(4) and (5) into (2) proves $\P 1$.

To complete the proof of (\star) , let $F \in L^1(m \times m_{\mathbb{R}^d})$ satisfy $\int_{\mathbb{R}^d} F(x, y) dy = 0$ for *m*-a.e. $x \in X$ and fix $\epsilon > 0$. We show that

$$(\star_{\epsilon}) \qquad \qquad \limsup_{n \to \infty} \int_{X \times \mathbb{R}^d} |P_{T_{\phi}^n} F| d(m \times m_{\mathbb{R}^d}) < \epsilon.$$

Standard approximation techniques show that $\forall \epsilon > 0, \exists N \in \mathbb{N}, h_1, \ldots, h_N \in L, g_1, \ldots, g_N \in L^1(\mathbb{R}^d)$ such that $\int_{\mathbb{R}^d} g_k(y) dy = 0$ $(1 \le k \le N)$ and

 \square

$$\left\|F-\sum_{k=1}^{N}h_{k}\otimes g_{k}\right\|_{L^{1}(m\times m_{\mathbb{R}^{k}})}<\frac{\epsilon}{2}.$$

Next, it follows from theorems 1.6.3 and 1.6.4 in [Rud74] that $\exists f_1, \ldots, f_N \in L^1 \cap L^2$ such that

• $[\widehat{f}_k \neq 0]$ is compact and bounded away from 0 $(1 \le k \le N)$; and

•
$$||f_k - g_k||_{L^1(m_{\mathbb{R}^d})} < \frac{\epsilon}{2N ||h_k||_{L^1(m)}}$$
 $(1 \le k \le N)$, whence

$$\begin{split} \left\| \sum_{k=1}^{N} h_k \otimes f_k - \sum_{k=1}^{N} h_k \otimes g_k \right\|_{L^1(m \times m_{\mathbb{R}^d})} &\leq \sum_{k=1}^{N} \|h_k\|_{L^1(m)} \cdot \|f_k - g_k\|_{L^1(\mathbb{R}^d)} < \frac{\epsilon}{2}, \\ \left\| F - \sum_{k=1}^{N} h_k \otimes f_k \right\|_{L^1(m \times m_{\mathbb{R}^d})} < \epsilon. \end{split}$$

We claim

¶2 If $h \in L$ and $f \in L^1 \cap L^2$ is such that $[\widehat{f} \neq 0]$ is compact and bounded away from 0, then $\exists \ 0 < \rho < 1$ such that

$$\|P_{T^n_{\phi}}(h \otimes f)\|_2 = O(\rho^n) \text{ as } n \to \infty.$$
(6)

Proof

Let $[\widehat{f} \neq 0] \subset B(0, M) \smallsetminus B(0, \delta)$. By (*ii*) (above), $\exists K > 0, 0 < \rho < 1$ such that

$$|P_{\gamma}^{n}h(x)| \le K\rho^{n} \quad \forall \ x \in X, \ n \ge 1, \ \delta \le |\gamma| \le M,$$

whence using the fact that the Fourier transform of $y \mapsto P_{T_{\phi}}^{n}(h \otimes f)(x, y)$ is $\gamma \mapsto \widehat{f}(\gamma) P_{\gamma}^{n} h(x)$ and Plancherel's formula, we have

$$\begin{split} \|P_{T^n_{\phi}}(h\otimes f)\|_2^2 &= \int_X \left(\int_{\mathbb{R}^d} |P_{T^n_{\phi}}(h\otimes f)(x,y)|^2 dy \right) dm(x) \\ &= \int_X \left(\int_{\mathbb{R}^d} |\widehat{f}(\gamma)|^2 |P_{\gamma}^n h(x)|^2 d\gamma \right) dm(x) \\ &= \int_{\mathbb{R}^d} |\widehat{f}(\gamma)|^2 \|P_{\gamma}^n h\|_2^2 d\gamma \leq K^2 \rho^{2n} \int_{\mathbb{R}^d} |\widehat{f}(\gamma)|^2 d\gamma \end{split}$$

$$\inf \P 2.$$

proving $\P 2$.

To finish the proof of theorem 2, we claim $\P 3$ if (6) holds for $h \in L$ and $f \in L^1 \cap L^2$, then

$$\|P_{T^n_{\phi}}(h \otimes f)\|_1 \to 0.$$
(7)

Proof

Fix $\lambda > 1$ such that $\lambda^{\frac{d}{2}} \rho < 1$. Suppose that $\frac{\phi_{n_k}}{\lambda^{n_k}} \to 0$ a.e.. Using (6), we have by $\P 1$,

$$\|P_{T^{n_k}_{\phi}}(h \otimes f)\|_1 \leq C\lambda^{\frac{n_k d}{2}} \|P_{T^{n_k}_{\phi}}(h \otimes f)\|_2 + o(1) = O(\lambda^{\frac{n_k d}{2}}\rho^{n_k}) + o(1) \to 0$$

as $k \to \infty$; establishing (7) since $\|P_{T^n_{\phi}}(h \otimes f)\|_1 \downarrow$. \Box

This completes the proof of theorem 2.

References

- [Aar97] Jon Aaronson. An introduction to infinite ergodic theory, volume 50 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997.
- [AD96] Jon. Aaronson and Manfred Denker. Local limit theorems for generated by Gibbs-Markov maps. *Preprint*, 1996.
- [Adl73] Roy L. Adler. F-expansions revisited. pages 1–5. Lecture Notes in Math., Vol. 318, 1973.
- [ADU93] Jon Aaronson, Manfred Denker, and Mariusz Urbański. Ergodic theory for Markov fibred systems and parabolic rational maps. Trans. Amer. Math. Soc., 337(2):495–548, 1993.
- [Bow08] Rufus Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms, volume 470 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, revised edition, 2008. With a preface by David Ruelle, Edited by Jean-René Chazottes.
- [BR75] Rufus Bowen and David Ruelle. The ergodic theory of Axiom A flows. Invent. Math., 29(3):181–202, 1975.
- [DF37] Wolfgang Doeblin and Robert Fortet. Sur des chaînes à liaisons complètes. Bull. Soc. Math. France, 65:132–148, 1937.
- [DL84] Y. Derriennic and M. Lin. Sur le comportement asymptotique des puissances de convolution d'une probabilité. Ann. Inst. H. Poincaré Probab. Statist., 20(2):127–132, 1984.

- [Gui89] Y. Guivarc'h. Propriétés ergodiques, en mesure infinie, de certains systèmes dynamiques fibrés. Ergodic Theory Dynam. Systems, 9(3):433– 453, 1989.
- [ITM50] C. T. Ionescu Tulcea and G. Marinescu. Théorie ergodique pour des classes d'opérations non complètement continues. Ann. of Math. (2), 52:140–147, 1950.
- [Lin71] Michael Lin. Mixing for Markov operators. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 19:231–242, 1971.
- [Nag57] S. V. Nagaev. Some limit theorems for stationary Markov chains. Teor. Veroyatnost. i Primenen., 2:389–416, 1957.
- [RE83] J. Rousseau-Egele. Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux. Ann. Probab., 11(3):772-788, 1983.
- [Rud74] Walter Rudin. Real and complex analysis. McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, second edition, 1974. McGraw-Hill Series in Higher Mathematics.
- [Ryc83] Marek Rychlik. Bounded variation and invariant measures. *Studia Math.*, 76(1):69–80, 1983.
- [Sto66] Charles Stone. Ratio limit theorems for random walks on groups. Trans. Amer. Math. Soc., 125:86–100, 1966.

(Aaronson) School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.

Email address: aaro@math.tau.ac.il

(Denker) Institut für Mathematische Stochastik, Universität Göttingen, Lotze-str. 13, 37083 Göttingen, Germany

Email address: denker@math.uni-goettingen .de