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§1.0. page 9, Insert before line -8:

The function p : X → R defined by p(x) := mπ(x)({x}) is measur-
able. To see this let note that if α ⊂ B is a countable partition of
X, then x 7→ mπ(x)(α(x)) is measurable where x ∈ α(x) ∈ α. If αn
is a refining sequence of countable measurable partitions of X such
that →

a∈αn
sup diam.(a) → 0 as n → ∞ then mπ(x)(αn(x)) → p(x) a.e.,

whence p is measurable.

page 10, line -1 should read

isomorphic if there is an isomorphism between them.

page 13, lines 1 through 6 should read

we have that ψ ◦ φ(x) ≤ x ∀ x ∈ X. Moreover, m ◦ φ−1 = µ × λ
where λ is Lebesgue measure on [0, 1] and µ× λ ◦ ψ−1 = m. It follows
that m ◦ (ψ ◦ φ)−1 = m whence ψ ◦ φ(x) = x for a.e. x ∈ X and
φ : X → Y × [0, 1] is a measure space isomorphism.

page 13 line -4 to page 14 line 4 should read

B(L2(ν)) can be equipped with the strong topology, defined by the
metric

ρ(Q,R) :=
∞∑
n=1

1

2n
(‖Qfn −Rfn‖2 + ‖Q−1fn −R−1fn‖2)

where {fn : n ∈ N} is a orthonormal basis in L2(ν), but it is neither a
Polish space nor a topological group (under composition).

The subgroup of invertible unitary operators (isometries) U(L2(ν))
forms a Polish topological group.

§1.1. page 21, line 5 should read

By assumption an ↑ ∞ as n ↑ ∞, whence φn → 0 as n→∞ on A\A∞.
page 28, lines -3, -4 should read

P1 ∈ P(Y N) 3 P1([A1, · · · , An]) = Pn(A1 × · · · × An),
1
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P2 ∈ P(Y Z) 3 P2([A1, · · · , An]k) = Pn(A1 × · · · × An),

§1.4. page 37, line -11

‖T̂ f‖p ≤M should be ‖T̂ nf‖p ≤M ∀ n ≥ 0

page 40, line -16 should read

and m(B1 ∩ T−(n2−n1)B2) =
∫
B2
T̂ n2−n11B1dm < ε

22
.

page 40, lines -12, -11 should read

k−1∑
j=1

m(Bj∩T−(nk−nj)Bk) =

∫
Bk

T̂ nk−nk−1(
k−1∑
j=1

T̂ nk−1−nj1Bj)dm <
ε

2k
(k ≥ 1).

It follows that W :=
⋂∞
k=1Bk \

⋂
1≤i<j<∞Bi ∩ T−(nj−ni)Bj ∈ W and

m(W ) > m(N)− 2ε. �

§1.5. page 44, line 1 should read

Proof We prove the lemma for B ∈ B of finite measure. The general
case follows by monotonicity. For B ∈ B, m(B) <∞, define for n ≥ 0
.....

§1.6. page 51, line -1 should read

Define maps L, R : G →M(G), the measure multiplying transfor-
mations of (G,B(G),mG), by Lg(x) := gx, Rg(x) := xg.

§2.2. on page 57, line -1 and page 58, lines 2, 6 and 8,

ηn should be ηn+1.

page 59, lines 14-20 should read,
Let f ∈ L1(m). Fix ε > 0. We can write f = g+k, where ‖k‖1 < ε2.

It follows that

lim sup
n→∞

|Rn(f, p)−Φp(f)| ≤ lim sup
n→∞

|Rn(k, p)−Φp(k)| ≤ sup
n∈N
|Rn(k, p)|+|Φp(k)|,

whence, by the maximal inequality,

mp([ lim
n→∞

|Rn(f, p)− Φp(f)| > 2ε]) ≤ mp([|Φp(k)| > ε]) +mp([sup
n∈N
|Rn(k, p)| > ε])

≤ 2‖k‖1

ε
≤ 2ε.

This last inequality holds for arbitrary ε > 0, whence

lim sup
n→∞

|Rn(f, p)− Φp(f)| = 0 a.e.,
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§2.6. page 74, line 14 should read

1

n

n−1∑
k=0

|m(A ∩ T−nB)−m(A)m(B)| → 0 ∀ A,B ∈ B;

page 76, line 19 should read

∃ ψ : e(T )×XT → S1 jointly measurable, such that

ψ(t, Tx) = e2πitψ(t, x) mT − a.e. ∀ t ∈ e(T ).

throughout pages 78 and 79,
γk should be γ(k)

page 80, line 2 should read

Φn(x) := s
n∑
k=1

γ(k)xk =
n∑
k=1

xkεk〈γ(k)s〉 mod 1.

page 80, line 5 should read

Φn(x) := s
n∑
k=1

γ(k)xk =
n∑
k=1

xk(εk〈γ(k)s〉+νk) =
n∑
k=1

xkεk〈γ(k)s〉 mod 1.

page 80, in lines 6,9,15,17,19,24

delete γk
page 80, in line 11 and page 81 in line 8

γk should be γ(k)

§3.2. page 94, lines 1,2 should read

It follows that if Q : T
c→↔ T , then Q(x, n) = (qx, n + ψ(x)) where

q : W → W is an invertible nonsingular map with µ ◦ q−1 = cµ and
ψ : W → Z is measurable, whence

page 98, the remark should read

Remark
It was shown in [A11] that ∃ L : {0, 1} → [0,∞) such that for every

conservative, ergodic measure preserving transformation T, ∃ cT , 0 <
cT <∞ such that

L(1A, 1A◦T, . . . ) = cTmT (A) mod ∆(T )mT− a.e. ∀A ∈ BT , mT (A) <∞.
Thus if ∆(T ) = {1}, then

L(1A, 1A ◦ T, . . . ) = cTmT (A) mT − a.e. ∀ A ∈ BT , mT (A) <∞.
This does not entail existence of a law of large numbers for T . A

suitable example is given in chapter 8 (in view of which it is seen
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that the definition of ”a law of large numbers for T” given in [A11] is
different from the one here).

§3.4. page 102, line -17 should read

(see chapter 8 for more on skew products).

§3.5. page 109, line 5 should read

Call R ∈ A0 n-cyclic if Rn =Id, and ∃ a partition {A1, . . . , An} ⊂ B
page 109, line 13 should read

Rx =


Tx x ∈

⋃n−2
k=0 T

kE,

T−(n−1)x x ∈ T n−1E,

Rkx x ∈ Ek (1 ≤ k ≤ n)

page 109, line -8 should read

Given ε > 0, ∃ a partition α ⊂ B with m(a) = c ∀ a ∈ α and subsets

page 111, line 15, delete by step 1,

page 111, line -15 should read

The lemma is now established by ergodicity of T and Hopf’s theorem.

§3.6. page 113, line 9 should read

Suppose that nk, dk →∞, then ∃ m` := nk` →∞ and a random

page 114, lines -6 to -3 should read

Proof Choose A ∈ B, m(A) = 1. In case dk → ∞, by proposition
3.6.1, and positivity ∃ m` := nk` → ∞, and a random variable Y on
[0,∞] such that

STm`(1A)

dk`

L→ Y.

In case dk is bounded,
Snk (1A)

dk

L→ ∞. The result follows from Hopf’s
theorem. �

§3.7. page 121, line 2 should read

∞∑
n=0

e−λn|
∫
A

Sn(1A)pdm−p!
∫
A

a(p, n)dm| ≤
p−1∑
q=1

γp(q)
∞∑
n=0

e−λn
∫
A

a(q, n)dm

page 122, line 1 should read

Putting it all together, we obtain that for λ < λp−1,
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page 122, line -1 should read

a(p, k)2 ≤ Sk(1A)2p =

2p∑
q=1

γ2p(q)a(q, k) ≤Mpa(2p, k),

page 126, line -4, and page 127, line 4 should read

N∑
n=0

T̂ n1B =
N∑
k=0

T̂ k(1Ak

N−k∑
n=0

T̂ n1B) +
N∑
n=0

T̂ n1B\⋃nj=0 T
−jA.

page 127, line -2 should read

Let Mk ↓ 1 be such that

page 128, line 5 should read

≤ m(A)a(N)
N∑
k=0

MN−kT̂
k1A′k

page 128, line -1 should read

1

a(n)

n−1∑
k=0

T̂ k1B ≤M a.e. on X ∀ n ≥ 1.

§3.8. page 134, lines 9 to 10 should read

The next result (theorem 3.8.3) shows that pointwise dual ergodic
transformations with regularly varying return sequences have this prop-
erty (i.e. have sets with minimal wandering rates).

page 134, lines -7 to -5 should read

3.8.3 Theorem Suppose that T is pointwise dual ergodic, and that
an(T ) is regularly varying. There is a sequence L(n) ↑ ∞ such that

LA(n) ∼ L(n) ∀ A ∈ U(T ).

Remark It is possible that the assumption of regular variation of the
return sequence in theorem 3.8.3 is superfluous. The methods of [Tha2]
show that an arbitrary transformation with the weak distortion prop-
erty (see §4.3) has sets with minimal wandering rates.

page 137, delete lines 1 to 11

line 13 should read

The next proposition gives a method of finding return sequences given
wandering rates, and also establishes theorem 3.8.3.
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§4.2. page 142, line 15 should read

the subgroup generated by Kx −Kx = Per (x)Z.

§4.3. page 143, line -7 should read

f ′ :=
dm ◦ f
m

≡ |Df |.

page 147, lines 10, 11 should read

. . . An indifferent fixed point xa ∈ a ∈ α is a regular source if DT ↓
on a− := a ∩ (−∞, xa), and DT ↑ on a+ := a ∩ (xa,∞) strictly.

page 148, line 10 should read

|D2vg| ≤ C|Dvg| on D(vg) ∀ g ∈ α∗ (4).3.1

§4.4. page 152, line 8 should read

In particular, C, and D are both unions of sets in r.

§4.7. page 165, lines 7-8 should read

4) The collection of Lipschitz continuous functions on X is denoted
by L and equipped with the norm ‖f‖L := ‖f‖L1(m) +DXf .

page 165, lines -11 - -7 should read

We’ll call a pair of Banach spaces (C,L) adapted if L ⊂ C, ‖ · ‖C ≤
‖ · ‖L, (L)C = C,

xn ∈ L (n ≥ 1), sup
n
‖xn‖L <∞, xn

C→−→ x =⇒ x ∈ L, ‖x‖L ≤ sup
n
‖xn‖L,

and L-bounded sets are precompact in C.
page 166, lines -15, -12, -9 and -8

fn should be vn.

§4.8. page 172, lines -8,-7 should read:
It follows from theorem 4.8.3 (below) that T has minimal wandering

rates in the sense that

page 173, line -6:
by (4.8.1) should read by (4.3.2)

page 178, line -7 should read:
We first prove the lemma for slowly varying L with constant k. In

this case, it follows that

page 179, line 5 should read:
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An arbitrary slowly varying L is asymptotically approximated by
one with constant k, and the general case of the lemma follows from a
standard monotonicity argument. �

page 180, line 14 should read:
Next, B ∈ U(T ) (being a Darling-Kac set). By theorem 4.8.3,

L(n) ∼ LB(n).

§5.2. page 187, line -19 should read

Since S × Tu is the natural extension of S × T , we have that S × Tu
is

page 187, lines -6, -5 should read

3) Show using the Darling-Kac theorem that for β ∈ (0, 1), ∃ cβ ∈ R+

such that E(e
− t

Y
β
β ) = e−cβt

β
where Yβ has the Mittag-Leffler distribu-

tion of order β.

page 187, in line -2

α should be 1− α.

§6.1. page 203, in lines 2, 3, and 5,
dm should be dy.

page 203, in line -3,

ϕ ◦ g should be ϕ ◦ γ.

page 205, line 14. Change 6.1.4 to 6.1.5

page 206, lines -10, -9 should read

Proof. For z ∈ U by proposition 6.1.1,

T̂ npz(x) =
1− |fn(z)|2

|e2πix − fn(z)|2
→ 0 as n→∞

page 207, line 7 should read

bf (z) :=
∞∑
n=1

1− |fn(z)|.

§6.2. page 210, line 2 should read

v(z) = αT Im z+

∫ 1

0

Im
1 + tan πxz

tanπx− z
dµ(x) = αT Im z+

∫
R

Im
1 + tz

t− z
dµT (t)

page 210, line 22. Add

Remark The formula Pω ◦ T−1 = PT (ω) was established in [Boo] for
inner functions of form Tx = αx+ β +

∑∞
k=1

pk
tk−x

.

page 211, lines 2,3 should read
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Proof. Choose β ∈ ∂U and set f := φ−1
β ◦T ◦φβ, then f has Denjoy-

Wolff point β iff αT ≥ 1; this following from (1) in the Denjoy-Wolff
theorem.

page 211, line 6 should read

If T : R2+ → R2+ is an inner function and αT > 0, then, m ◦ T−1 =
1
αT
m.

page 211, line 10 should read

then ImT (ib)
b
→ αT and ReT (ib)

b
→ 0 as b→∞ whence

§6.3. page 212, lines -6 to -1 should read

To see this, note first that

ImT n(z) ↑ as n ↑,

whence

ImG(T nz) = lim
k→∞

T n+k(x)− ak
bk

↑ as n ↑ .

In particular,

ImAn(i) = ImAn ◦G(i) = ImG ◦ T n(i) ↑ as n ↑ .

§6.4. page 218. Delete line -6:

≤ 1 +
µ(R)

bn

and add after the formula: The convergence
∫
R

(
1+t2

t2+b2n

)
dµ(t)→

0 as n→∞ is established by the bounded convergence theorem.

page 220, line -10 insert

b) We perform the next estimation for L with constant k. The
general case will follow by a standard monotonicity argument (c.f. the
(corrected) proof of lemma 4.8.6).

§7.4. page 233, line 13.

∀ s ∈ R should be ∀ s 6= 0.

§7.5. page 235, line -8 should read

aΓ(x, y; J) :=
∑

γ∈Γ, ρ(x,γy)∈J

e−ρ(x,γy) for intervals J ⊂ [0,∞).
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page 236, line -2 should read

=
∑
γ∈Γ

∫
T

∫ tanh( v
2

)

tanh(u
2

)

1ϕ−1
z γNρ(y,ε)(re

2πiθ)
drdθ

1− r2

page 240, line -9 should read

Since Nρ(y, ε) is the Euclidean ball with centre (1−δ2)y
1−δ2|y|2 and radius

δ(1−|y|2)
1−δ2|y|2

page 243, line 5 should read

mΓ((∆(x, ε))2a(t) ∼
∫ t

0

mΓ(∆(x, ε) ∩ ϕ−sΓ ∆(y, ε))ds

§8.1. page 249, lines 1-5 should read

Remark The ”only if” part of proposition 8.1.2 can be generalised to
the case where T is a conservative, ergodic non-singular transformation
(see theorem 5.5 in [Schm1]).

The ”if” part may fail in case T is a conservative, ergodic measure
preserving transformation of an infinite measure space.
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