AN INTRODUCTION TO INFINITE ERGODIC THEORY NOTES AND CORRECTIONS
 JUNE 2002

JON AARONSON
§1.0. page 9, Insert before line -8:
The function $p: X \rightarrow \mathbb{R}$ defined by $p(x):=m_{\pi(x)}(\{x\})$ is measurable. To see this let note that if $\alpha \subset \mathcal{B}$ is a countable partition of X, then $x \mapsto m_{\pi(x)}(\alpha(x))$ is measurable where $x \in \alpha(x) \in \alpha$. If α_{n} is a refining sequence of countable measurable partitions of X such that $\underset{a \in \alpha_{n}}{\rightarrow} \sup \operatorname{diam} .(a) \rightarrow 0$ as $n \rightarrow \infty$ then $m_{\pi(x)}\left(\alpha_{n}(x)\right) \rightarrow p(x)$ a.e., whence p is measurable.
page 10, line -1 should read
isomorphic if there is an isomorphism between them.
page 13, lines 1 through 6 should read we have that $\psi \circ \phi(x) \leq x \forall x \in X$. Moreover, $m \circ \phi^{-1}=\mu \times \lambda$ where λ is Lebesgue measure on $[0,1]$ and $\mu \times \lambda \circ \psi^{-1}=m$. It follows that $m \circ(\psi \circ \phi)^{-1}=m$ whence $\psi \circ \phi(x)=x$ for a.e. $x \in X$ and $\phi: X \rightarrow Y \times[0,1]$ is a measure space isomorphism.
page 13 line -4 to page 14 line 4 should read
$\mathfrak{B}\left(L^{2}(\nu)\right)$ can be equipped with the strong topology, defined by the metric

$$
\rho(Q, R):=\sum_{n=1}^{\infty} \frac{1}{2^{n}}\left(\left\|Q f_{n}-R f_{n}\right\|_{2}+\left\|Q^{-1} f_{n}-R^{-1} f_{n}\right\|_{2}\right)
$$

where $\left\{f_{n}: n \in \mathbb{N}\right\}$ is a orthonormal basis in $L^{2}(\nu)$, but it is neither a Polish space nor a topological group (under composition).

The subgroup of invertible unitary operators (isometries) $\mathcal{U}\left(L^{2}(\nu)\right)$ forms a Polish topological group.
§1.1. page 21, line 5 should read
By assumption $a_{n} \uparrow \infty$ as $n \uparrow \infty$, whence $\phi_{n} \rightarrow 0$ as $n \rightarrow \infty$ on $A \backslash A_{\infty}$. page 28, lines $-3,-4$ should read

$$
P_{1} \in \mathcal{P}\left(Y^{\mathbb{N}}\right) \ni P_{1}\left(\left[A_{1}, \cdots, A_{n}\right]\right)=P_{n}\left(A_{1} \times \cdots \times A_{n}\right)
$$

$$
P_{2} \in \mathcal{P}\left(Y^{\mathbb{Z}}\right) \ni P_{2}\left(\left[A_{1}, \cdots, A_{n}\right]_{k}\right)=P_{n}\left(A_{1} \times \cdots \times A_{n}\right),
$$

§1.4. page 37, line -11
$\|\widehat{T} f\|_{p} \leq M$ should be $\left\|\widehat{T}^{n} f\right\|_{p} \leq M \forall n \geq 0$
page 40 , line -16 should read
and $m\left(B_{1} \cap T^{-\left(n_{2}-n_{1}\right)} B_{2}\right)=\int_{B_{2}} \widehat{T}^{n_{2}-n_{1}} 1_{B_{1}} d m<\frac{\epsilon}{2^{2}}$.
page 40 , lines $-12,-11$ should read
$\sum_{j=1}^{k-1} m\left(B_{j} \cap T^{-\left(n_{k}-n_{j}\right)} B_{k}\right)=\int_{B_{k}} \widehat{T}^{n_{k}-n_{k-1}}\left(\sum_{j=1}^{k-1} \widehat{T}^{n_{k-1}-n_{j}} 1_{B_{j}}\right) d m<\frac{\epsilon}{2^{k}} \quad(k \geq 1)$.
It follows that $W:=\bigcap_{k=1}^{\infty} B_{k} \backslash \bigcap_{1 \leq i<j<\infty} B_{i} \cap T^{-\left(n_{j}-n_{i}\right)} B_{j} \in \mathfrak{W J}$ and $m(W)>m(\mathfrak{N})-2 \epsilon$.

§1.5. page 44, line 1 should read

Proof We prove the lemma for $B \in \mathcal{B}$ of finite measure. The general case follows by monotonicity. For $B \in \mathcal{B}, m(B)<\infty$, define for $n \geq 0$
\qquad
§1.6. page 51 , line -1 should read
Define maps $L, R: G \rightarrow \mathcal{M}(G)$, the measure multiplying transformations of $\left(G, \mathcal{B}(G), m_{G}\right)$, by $L_{g}(x):=g x, R_{g}(x):=x g$.
§2.2. on page 57, line -1 and page 58 , lines 2,6 and 8 , η_{n} should be η_{n+1}.
page 59 , lines $14-20$ should read,
Let $f \in L^{1}(m)$. Fix $\epsilon>0$. We can write $f=g+k$, where $\|k\|_{1}<\epsilon^{2}$.
It follows that

$$
\limsup _{n \rightarrow \infty}\left|R_{n}(f, p)-\Phi_{p}(f)\right| \leq \limsup _{n \rightarrow \infty}\left|R_{n}(k, p)-\Phi_{p}(k)\right| \leq \sup _{n \in \mathbb{N}}\left|R_{n}(k, p)\right|+\left|\Phi_{p}(k)\right|
$$

whence, by the maximal inequality,

$$
\begin{aligned}
m_{p}\left(\left[\varlimsup_{n \rightarrow \infty}\left|R_{n}(f, p)-\Phi_{p}(f)\right|>2 \epsilon\right]\right) & \leq m_{p}\left(\left[\left|\Phi_{p}(k)\right|>\epsilon\right]\right)+m_{p}\left(\left[\sup _{n \in \mathbb{N}}\left|R_{n}(k, p)\right|>\epsilon\right]\right) \\
& \leq \frac{2\|k\|_{1}}{\epsilon} \leq 2 \epsilon .
\end{aligned}
$$

This last inequality holds for arbitrary $\epsilon>0$, whence

$$
\limsup _{n \rightarrow \infty}\left|R_{n}(f, p)-\Phi_{p}(f)\right|=0 \quad \text { a.e. }
$$

§2.6. page 74 , line 14 should read

$$
\frac{1}{n} \sum_{k=0}^{n-1}\left|m\left(A \cap T^{-n} B\right)-m(A) m(B)\right| \rightarrow 0 \quad \forall \quad A, B \in \mathcal{B}
$$

page 76, line 19 should read

$$
\exists \psi: e(T) \times X_{T} \rightarrow S^{1} \text { jointly measurable, such that }
$$

$$
\psi(t, T x)=e^{2 \pi i t} \psi(t, x) m_{T}-\text { a.e. } \forall t \in e(T) .
$$

throughout pages 78 and 79,
γ_{k} should be $\gamma(k)$
page 80, line 2 should read

$$
\Phi_{n}(x):=s \sum_{k=1}^{n} \gamma(k) x_{k}=\sum_{k=1}^{n} x_{k} \epsilon_{k}\langle\gamma(k) s\rangle \quad \bmod 1
$$

page 80 , line 5 should read
$\Phi_{n}(x):=s \sum_{k=1}^{n} \gamma(k) x_{k}=\sum_{k=1}^{n} x_{k}\left(\epsilon_{k}\langle\gamma(k) s\rangle+\nu_{k}\right)=\sum_{k=1}^{n} x_{k} \epsilon_{k}\langle\gamma(k) s\rangle \bmod 1$.
page 80 , in lines $6,9,15,17,19,24$
delete γ_{k}
page 80 , in line 11 and page 81 in line 8
γ_{k} should be $\gamma(k)$
§3.2. page 94, lines 1,2 should read
It follows that if $Q: T \xrightarrow{c} \leftrightarrow T$, then $Q(x, n)=(q x, n+\psi(x))$ where
$q: W \rightarrow W$ is an invertible nonsingular map with $\mu \circ q^{-1}=c \mu$ and
$\psi: W \rightarrow \mathbb{Z}$ is measurable, whence
page 98, the remark should read
Remark
It was shown in [A11] that $\exists L:\{0,1\} \rightarrow[0, \infty)$ such that for every conservative, ergodic measure preserving transformation $T, \exists c_{T}, 0<$ $c_{T}<\infty$ such that
$L\left(1_{A}, 1_{A} \circ T, \ldots\right)=c_{T} m_{T}(A) \bmod \Delta(T) m_{T}-$ a.e. $\forall A \in \mathcal{B}_{T}, m_{T}(A)<\infty$.
Thus if $\Delta(T)=\{1\}$, then
$L\left(1_{A}, 1_{A} \circ T, \ldots\right)=c_{T} m_{T}(A) m_{T}-$ a.e. $\forall A \in \mathcal{B}_{T}, \quad m_{T}(A)<\infty$.
This does not entail existence of a law of large numbers for T. A suitable example is given in chapter 8 (in view of which it is seen
that the definition of "a law of large numbers for T " given in [A11] is different from the one here).
§3.4. page 102, line -17 should read (see chapter 8 for more on skew products).
§3.5. page 109, line 5 should read
Call $R \in \mathfrak{A}_{0} n$-cyclic if $R^{n}=\mathrm{Id}$, and \exists a partition $\left\{A_{1}, \ldots, A_{n}\right\} \subset \mathcal{B}$ page 109, line 13 should read

$$
R x=\left\{\begin{array}{l}
T x \quad x \in \bigcup_{k=0}^{n-2} T^{k} E \\
T^{-(n-1)} x \quad x \in T^{n-1} E, \\
R_{k} x \quad x \in E_{k} \quad(1 \leq k \leq n)
\end{array}\right.
$$

page 109, line -8 should read
Given $\epsilon>0, \exists$ a partition $\alpha \subset \mathcal{B}$ with $m(a)=c \forall a \in \alpha$ and subsets
page 111, line 15, delete by step 1 ,
page 111, line -15 should read
The lemma is now established by ergodicity of T and Hopf's theorem.
§3.6. page 113, line 9 should read Suppose that $n_{k}, d_{k} \rightarrow \infty$, then $\exists m_{\ell}:=n_{k_{\ell}} \rightarrow \infty$ and a random
page 114, lines -6 to -3 should read
Proof Choose $A \in \mathcal{B}, m(A)=1$. In case $d_{k} \rightarrow \infty$, by proposition 3.6.1, and positivity $\exists m_{\ell}:=n_{k_{\ell}} \rightarrow \infty$, and a random variable Y on $[0, \infty]$ such that

$$
\frac{S_{m_{\ell}}^{T}\left(1_{A}\right)}{d_{k_{\ell}}} \xrightarrow{\mathfrak{L}} Y .
$$

In case d_{k} is bounded, $\frac{S_{n_{k}}\left(1_{A}\right)}{d_{k}} \xrightarrow{\mathfrak{L}} \infty$. The result follows from Hopf's theorem.
§3.7. page 121 , line 2 should read
$\sum_{n=0}^{\infty} e^{-\lambda n}\left|\int_{A} S_{n}\left(1_{A}\right)^{p} d m-p!\int_{A} a(p, n) d m\right| \leq \sum_{q=1}^{p-1} \gamma_{p}(q) \sum_{n=0}^{\infty} e^{-\lambda n} \int_{A} a(q, n) d m$
page 122, line 1 should read
Putting it all together, we obtain that for $\lambda<\lambda_{p-1}$,
page 122, line -1 should read

$$
a(p, k)^{2} \leq S_{k}\left(1_{A}\right)^{2 p}=\sum_{q=1}^{2 p} \gamma_{2 p}(q) a(q, k) \leq M_{p} a(2 p, k)
$$

page 126 , line -4 , and page 127 , line 4 should read

$$
\sum_{n=0}^{N} \widehat{T}^{n} 1_{B}=\sum_{k=0}^{N} \widehat{T}^{k}\left(1_{A_{k}} \sum_{n=0}^{N-k} \widehat{T}^{n} 1_{B}\right)+\sum_{n=0}^{N} \widehat{T}^{n} 1_{B \backslash \bigcup_{j=0}^{n} T^{-j} A}
$$

page 127, line -2 should read
Let $M_{k} \downarrow 1$ be such that
page 128, line 5 should read

$$
\leq m(A) a(N) \sum_{k=0}^{N} M_{N-k} \widehat{T}^{k} 1_{A_{k}^{\prime}}
$$

page 128 , line -1 should read

$$
\frac{1}{a(n)} \sum_{k=0}^{n-1} \widehat{T}^{k} 1_{B} \leq M \text { a.e. on } X \forall n \geq 1
$$

§3.8. page 134, lines 9 to 10 should read
The next result (theorem 3.8.3) shows that pointwise dual ergodic transformations with regularly varying return sequences have this property (i.e. have sets with minimal wandering rates).
page 134, lines -7 to -5 should read
3.8.3 Theorem Suppose that T is pointwise dual ergodic, and that $a_{n}(T)$ is regularly varying. There is a sequence $L(n) \uparrow \infty$ such that

$$
L_{A}(n) \sim L(n) \quad \forall A \in \mathcal{U}(T)
$$

REmark It is possible that the assumption of regular variation of the return sequence in theorem 3.8.3 is superfluous. The methods of [Tha2] show that an arbitrary transformation with the weak distortion property (see §4.3) has sets with minimal wandering rates.

```
page 137, delete lines 1 to 11
```

line 13 should read
The next proposition gives a method of finding return sequences given wandering rates, and also establishes theorem 3.8.3.
§4.2. page 142 , line 15 should read
the subgroup generated by $K_{x}-K_{x}=\operatorname{Per}(x) \mathbb{Z}$.
§4.3. page 143 , line -7 should read

$$
f^{\prime}:=\frac{d m \circ f}{m} \equiv|D f| .
$$

page 147, lines 10 , 11 should read
\ldots An indifferent fixed point $x_{a} \in a \in \alpha$ is a regular source if $D T \downarrow$ on $a_{-}:=a \cap\left(-\infty, x_{a}\right)$, and $D T \uparrow$ on $a_{+}:=a \cap\left(x_{a}, \infty\right)$ strictly.
page 148 , line 10 should read

$$
\begin{equation*}
\left|D^{2} v_{g}\right| \leq C\left|D v_{g}\right| \text { on } \mathcal{D}\left(v_{g}\right) \forall g \in \alpha^{*} \tag{4}
\end{equation*}
$$

§4.4. page 152 , line 8 should read
In particular, \mathfrak{C}, and \mathfrak{D} are both unions of sets in \mathfrak{r}.
§4.7. page 165 , lines $7-8$ should read
4) The collection of Lipschitz continuous functions on X is denoted by L and equipped with the norm $\|f\|_{L}:=\|f\|_{L^{1}(m)}+D_{X} f$.
page 165, lines -11 - -7 should read
We'll call a pair of Banach spaces $(\mathcal{C}, \mathcal{L})$ adapted if $\mathcal{L} \subset \mathcal{C},\|\cdot\|_{\mathcal{C}} \leq$ $\|\cdot\|_{\mathcal{L}},(\overline{\mathcal{L}})_{\mathcal{C}}=\mathcal{C}$,
$x_{n} \in \mathcal{L}(n \geq 1), \sup _{n}\left\|x_{n}\right\|_{\mathcal{L}}<\infty, x_{n} \xrightarrow{\mathcal{C}} \longrightarrow x \Longrightarrow x \in \mathcal{L},\|x\|_{\mathcal{L}} \leq \sup _{n}\left\|x_{n}\right\|_{\mathcal{L}}$,
and \mathcal{L}-bounded sets are precompact in \mathcal{C}.
page 166, lines $-15,-12,-9$ and -8
f_{n} should be v_{n}.
§4.8. page 172, lines $-8,-7$ should read:
It follows from theorem 4.8.3 (below) that T has minimal wandering rates in the sense that
page 173, line -6:
by (4.8.1) should read by (4.3.2)
page 178, line -7 should read:
We first prove the lemma for slowly varying L with constant k. In this case, it follows that
page 179, line 5 should read:

An arbitrary slowly varying L is asymptotically approximated by one with constant k, and the general case of the lemma follows from a standard monotonicity argument.
page 180, line 14 should read:
Next, $B \in \mathcal{U}(T)$ (being a Darling-Kac set). By theorem 4.8.3, $L(n) \sim L_{B}(n)$.

§5.2. page 187, line -19 should read

Since $S \times T_{u}$ is the natural extension of $S \times T$, we have that $S \times T_{u}$ is
page 187, lines $-6,-5$ should read
3) Show using the Darling-Kac theorem that for $\beta \in(0,1), \exists c_{\beta} \in \mathbb{R}_{+}$ such that $E\left(e^{-\frac{t}{Y_{\beta}^{\beta}}}\right)=e^{-c_{\beta} t^{\beta}}$ where Y_{β} has the Mittag-Leffler distribution of order β.
page 187, in line -2
α should be $1-\alpha$.
§6.1. page 203, in lines 2, 3, and 5, $d m$ should be $d y$.
page 203, in line -3 ,
$\varphi \circ g$ should be $\varphi \circ \gamma$.
page 205, line 14. Change 6.1.4 to 6.1.5
page 206, lines $-10,-9$ should read
Proof. For $z \in U$ by proposition 6.1.1,

$$
\widehat{T}^{n} p_{z}(x)=\frac{1-\left|f^{n}(z)\right|^{2}}{\left|e^{2 \pi i x}-f^{n}(z)\right|^{2}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

page 207, line 7 should read

$$
\mathfrak{b}_{f}(z):=\sum_{n=1}^{\infty} 1-\left|f^{n}(z)\right| .
$$

§6.2. page 210 , line 2 should read
$v(z)=\alpha_{T} \operatorname{Im} z+\int_{0}^{1} \operatorname{Im} \frac{1+\tan \pi x z}{\tan \pi x-z} d \mu(x)=\alpha_{T} \operatorname{Im} z+\int_{\mathbb{R}} \operatorname{Im} \frac{1+t z}{t-z} d \mu_{T}(t)$
page 210, line 22. Add
Remark The formula $P_{\omega} \circ T^{-1}=P_{T(\omega)}$ was established in [Boo] for inner functions of form $T x=\alpha x+\beta+\sum_{k=1}^{\infty} \frac{p_{k}}{t_{k}-x}$.
page 211, lines 2,3 should read

Proof. Choose $\beta \in \partial U$ and set $f:=\phi_{\beta}^{-1} \circ T \circ \phi_{\beta}$, then f has DenjoyWolff point β iff $\alpha_{T} \geq 1$; this following from (1) in the Denjoy-Wolff theorem.
page 211 , line 6 should read
If $T: \mathbb{R}^{2+} \rightarrow \mathbb{R}^{2+}$ is an inner function and $\alpha_{T}>0$, then, $m \circ T^{-1}=$ $\frac{1}{\alpha_{T}} m$.
page 211, line 10 should read
then $\frac{\operatorname{Im} T(i b)}{b} \rightarrow \alpha_{T}$ and $\frac{\operatorname{Re} T(i b)}{b} \rightarrow 0$ as $b \rightarrow \infty$ whence
§6.3. page 212 , lines -6 to -1 should read
To see this, note first that

$$
\operatorname{Im} T^{n}(z) \uparrow \text { as } n \uparrow,
$$

whence

$$
\operatorname{Im} G\left(T^{n} z\right)=\lim _{k \rightarrow \infty} \frac{T^{n+k}(x)-a_{k}}{b_{k}} \uparrow \text { as } n \uparrow
$$

In particular,

$$
\operatorname{Im} A^{n}(i)=\operatorname{Im} A^{n} \circ G(i)=\operatorname{Im} G \circ T^{n}(i) \uparrow \text { as } n \uparrow
$$

§6.4. page 218. Delete line -6 :

$$
\leq 1+\frac{\mu(\mathbb{R})}{b_{n}}
$$

and add after the formula: The convergence $\int_{\mathbb{R}}\left(\frac{1+t^{2}}{t^{2}+b_{n}^{2}}\right) d \mu(t) \rightarrow$ 0 as $n \rightarrow \infty$ is established by the bounded convergence theorem.
page 220 , line -10 insert
b) We perform the next estimation for L with constant k. The general case will follow by a standard monotonicity argument (c.f. the (corrected) proof of lemma 4.8.6).
§7.4. page 233, line 13. $\forall s \in \mathbb{R}$ should be $\forall s \neq 0$.
§7.5. page 235 , line -8 should read

$$
a_{\Gamma}(x, y ; J):=\sum_{\gamma \in \Gamma, \rho(x, \gamma y) \in J} e^{-\rho(x, \gamma y)} \text { for intervals } J \subset[0, \infty) .
$$

page 236, line -2 should read

$$
=\sum_{\gamma \in \Gamma} \int_{\mathbb{T}} \int_{\tanh \left(\frac{u}{2}\right)}^{\tanh \left(\frac{v}{2}\right)} 1_{\varphi_{z}^{-1} \gamma N_{\rho}(y, \epsilon)}\left(r e^{2 \pi i \theta}\right) \frac{d r d \theta}{1-r^{2}}
$$

page 240, line -9 should read
Since $N_{\rho}(y, \epsilon)$ is the Euclidean ball with centre $\frac{\left(1-\delta^{2}\right) y}{1-\delta^{2}|y|^{2}}$ and radius $\frac{\delta\left(1-|y|^{2}\right)}{1-\delta^{2}|y|^{2}}$
page 243 , line 5 should read

$$
m_{\Gamma}\left((\Delta(x, \epsilon))^{2} a(t) \sim \int_{0}^{t} m_{\Gamma}\left(\Delta(x, \epsilon) \cap \varphi_{\Gamma}^{-s} \Delta(y, \epsilon)\right) d s\right.
$$

§8.1. page 249, lines $1-5$ should read
Remark The " only if" part of proposition 8.1.2 can be generalised to the case where T is a conservative, ergodic non-singular transformation (see theorem 5.5 in [Schm1]).

The "if" part may fail in case T is a conservative, ergodic measure preserving transformation of an infinite measure space.

