CALCULUS 1A
LECTURE NOTES SPRING 2017.

JON AARONSON’S LECTURE NOTES

Lmecture # 1

SETS AND NUMBERS

Some set theory notations.

A set (meap ) is a collection of elements (mmaw).
e If an object a is an element of - or belongs to - (-5 77w) the set A,
we denote this a € A. Otherwise the object a is not an element of the
set A (denoted a ¢ A).

o Let A, B be sets. We say that A is a subset (mswp-nn) of B (written
A c B) if every element of A belongs to B (i.e. 1€ A = z€B).

Let X be a set and let A, B c X be subsets.
e The union (mmx) of A and B is the set

AuB:={reX: either x € A or z € B}.

e The intersection (rm) of A and B is the set
AnB:={reX: xeAanduzecB}

o The complement (obwn) of A (in X) is
A={reX: x¢A}.

e The sets A, B are disjoint (mm) if the set An B is empty (written
AnB=g). Note that An B =g if and only if A c Be.

e The set difference (‘nemp wom) between B and A is
B A={zeB: x¢AY Bnac
©Jon Aaronson 2007-2017
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Functions.

Let A, B be sets. A function (mspne) f: A — B is an “assignment”
(“map”) to each element a € A of an element f(a) € B. This is sometimes
denoted x — f(z), or x A f(x).

o A is called the domain (mmn onn) of f, f(A) :={f(a): ae A} is
called the range (mw) of f.

e.g. (i) A:={TAU students}, B :={0,1,2,3,...} and t(a) := number
of teeth a possesses.

e.g. (ii) A X-valued sequence (m10) (X some set) is a function a :
N — X where N = {1,2,3,...} is the set of “natural” numbers defined
below. The sequence a: N — X is sometimes denoted (aq,as,...).

e The function f: A - B is called 1-1 (m>w 7n-m) (injective or an
injection) if f(x) = f(y) = z=y.

e The above “tooth function” t: A — B is possibly not 1-1, but the
function ID: A - B defined by ID(a) := student number of a should be
1-1 so that students are identified by their student numbers.

e The function f : A - B is called onto (5v) B (surjective or a
surjection) if f(A) = B. The above “tooth function” t: A — B is
not onto, since (anatomicaly) t(A) € {0,1,...,32} & B. Note that any
function f: A - B is onto its range f(A).

e The function f : A - B is called bijective, a bijection or a set
correspondence (m2ap pa mwnm) if it is 1-1 and onto.

e The sets A, B are in correspondence (mwnna) if 3 a bijection f :
A - B. For example in a dog trainers school (where each kid attending
learns to train its dog) there is a correspondence between the kids and
the dogs (by the leashes).

e If f: A — B is a bijection, then for each b € B there is a unique
a =: f~1(b) € A so that f(a) =b. This defines a function f~!: B - A

called the inverse function. It is also a bijection(!).

Product sets. Let A, B be sets. The Cartesian product set (nwmp nbnom)
is the set of ordered pairs (oo nuw)

Ax B:={(a,b): ac A, be B}.
The graph (3m) of the function f: A - B is the subset
Gr={(a,f(a))e AxB: aecA}.

e Note that Y ae A, 3be B, (a,b) € G and if (a,b), (a,b') € Gy
then b = b'. Conversely, any subset of A x B with these properties is
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the graph of some function f: A - B. This is considered a better way
to define “function” (as it doesn’t use the word “assignment”).

Collections of functions. The collection of functions defined on the set
A and taking values in the set B is denoted B4 := {f : A - B}. For
example if B is a set, then the collection of B-valued sequences is BN.

Proposition B2} is in correspondence with B x B.

Proof To define a bijection f: B{:2} - B x B, let H € B{1:2} then
H:{1,2} - B. Define f(H):= (H(1),H(2)), then f: B2} - B x B.
It is easy to see (!) that f: B{1:2} - B x B is 1-1 and onto. &

Collections of numbers.
N:={1,2,3,4,...} the natural numbers, orvann osonm;
Z:={0,n, -n: neN} the integers, onbun omnonm;

m
Q:={—: meZ, geN} the rational numbers, ooz oson.
q

R:={all the points on a line} the real line, owmnn omoon.

C:={z+V-1y: x, teR} the complex numbers, cacmn ozonn.
All of these need rigorous definition.

DEFINITION OF N AND INDUCTION (72p1)

"I’ve told you n times, I’ve told you n+1 times..."

Peano’s axiom is that 3 a set N with the following properties:
N1 1 e N: the initial element,

N2 (Follower map) 3 f:N—> N~ {1} 1-1.

N3 (Induction axiom) If K c N satisfies 1e K and e K = f(z)¢
K, then K =N.

(:) If you’ve "counted" a set of numbers (i.e. each number counted has

its follower counted too) AND you started at one, then you counted all the numbers.

@ Domino theory: If the first domino falls and each falling domino
topples the next one, then all the dominoes fall.

o Peano showed that any two such systems are isomorphic (i.e. 3
bijection between them preserving the follower maps).

! Given N as above, find F : N - N satisfying N2 but not N3.
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e Addition (manm) so that n+1 is the follower of n and multiplication
(b23) can be defined (uniquely) on N satisfying

assocz'atz'm’ty (P2): (a+b)+c=a+(b+c), (ab)c=a(bc),

commutativity (m>n): a+b=b+a, ab=ba and

distributivity (n5>®): a(b+c) = ab+ac and then

e Order (-0) is defined on N by a <bif 3 ceN, b=a+c. This order
is linear satisfying:

e Va,beN,either a<b, or b<a or a=b;

e a<b b<c = a<qg

e a<b = ac<bcV ceN.
We write u > v in case v < w and a < b (or b > a) in case either a < b
or a=b.

EQUIVALENCE RELATIONS & THE RATIONALS

When you define the rationals, you consider identities such as
4 3 1

8 6 2
This is formalized via equivalence relations.

Binary relation on a set. Let S be a set. A binary relation on S is
aset Rc . SxS. You think of R as defining a “relationship” between
elements of S and write

r ~y < (x,y)€R.

Equivalence relation on a set. This is the simplest kind of binary
relation. Let S be a set. An equivalence relation on S is a binary
relation

R={(z,y)eSxS: x~y}cSxS
which is:
reflexive: x ~x V x € S, equivalently

R2odiag(SxS):={(z,z): xeS};

symmetric: x ~y = Y~ x;
transitive: z~y & y~2z = T~z

The simplest example of an equivalence relation on S is equality.
Here

r~y <= x=y & R=diag(SxJ5).
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The next simplest example is equality of an image. Here, you're
given another set T and a map f:S — T. The relation is

rey = f(2)=f()
ie. R={(r,y)eSxS: (f(2),f(y))ediag(TxT)}.

This means that the equivalence classes of ~:

[2].={yeS: z~y}={yeS: f(y)=f(z)} zeS
form a partition of S i.e.
S= ) {zeS: f(x)=t}
tef(S)
and for any x, y €S,
either f(z) = f(y) & [z]. =[y]-,
or f(x)# f(y) & [z].n[y]. = 2.

It is easy to see that this last is true of the equivalence classes of any
equivalence relation and so we have the

Theorem All equivalence relations are of the form equality of an
image.

You can take the “image space” T' to be the partition of S into disjoint
equivalence classes which is denoted S/ ~ and the map f : S - T
defined by f(x) :=[z]..

RATIONALS. It’s assumed you know about addition and multiplication
on Z=Nu(-N)u{0} (eg from the exercise class).
Define

Q:=ZxN

and addition and multiplication on Q by

(k>p) + (£7Q) = (qk +p£,pq), (k>p) ' (£> q) = (k gapq)

We'll define the rationals Q := 6/ ~ where ~ is an appropriate equiv-
alence relation on Q.

To this end, define the relation ~ on Q by
e (k,p)~ (4 q)if kq="/p, then ~ is an equivalence relation.

k /
Motivation: - =—,
q

D



6 (©Jon Aaronson 2007-2017

Ifz,2',y,y' €eQand z ~ a2/, y~y, then x+y ~ z'+y" and z-y ~ -y,
so one can define addition and multiplication on

Q:=0Q/~

(+) [(k,p) ]+ [(€;q)] == [(k, p) + (£, )],
It’s not hard to see that these satisfy associativity, commutativity
and distributivity.

By writing [(k,p)] = % you get back the “traditional idea” of a “re-
duced fraction”.

Order on Q defined by a<bif 3 ce NxN, b=a+[c] is linear.
Recall that the integers Z can be defined using an equivalence rela-
tion over Z:= N x N to express identities such as

m-n=(m+J)-(n+J).

COUNTABILITY

e Finite set
A set A is called finite (vow) if it is in correspondence with
{keN: k<n} for some neN.

e Infinite set
A set A is called infinite (owora) if it is not finite.

e Countable set
A set A is called countable (aka denumerable, m=m ma) if it is in
correspondence with N.

e At most countable set
A set A is called at most countable (amm na apra 555) if it is finite or
countable.

Proposition Z is countable.
Proof Define f:N—>Zby f=(0,1,-1,2,-2,...) equivalently
0 J=1,
fG)=4 n j=2n (neN),
-n j=2n+1 (neN).
Evidently f:N — Z is a bijection. &
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Next topics WELL ORDERING PRINCIPLE, COUNTABLE UNIONS OF
COUNTABLE SETS, Q IS COUNTABLE, v/2 ¢ Q, FIELDS, Y. NOTATION, OR-
DERED SETS
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%fcture # 2

Well Ordering Principle (awn v70m pw)
Every nonempty subset A of N has a minimal element (“5xmrn ~2w)
acA (ie. such that a<bV be A).
Proof  Suppose that A c N has no minimal element and let B := N\ A.
We'll show (using the induction property of N) that B = N (whence
A=g).
To this end we claim :
91 1€ B (else 1 would be a minimal element for A);

Qifke BY 1<k<n,thenn+1eB (else n+1 would be a minimal
element for A).

€@ Let C:={neN: ke BY 1<k<n}, then C' c B and:
e by 91, 1eC; and
o bhyf2neC = n+leC.
By induction C=B=Nand A=92. X
Countable unions of countable sets & Q.

Theorem
If A, is non-empty and at most countable for n € N, then U =
Unen A i={x: x €A, for some n e N} is at most countable.

The proof of this theorem is in a series of lemmas.

Lemma 1
Under the conditions of the theorem, there is a surjection f : N —

U:= UneN An

Proof For each i € N there is a surjection f; : N - A;. Define f : N - U
by (f(1),f(2),...)=(B', B?,...) where

B" = (B{",B{",...,B%)
= (f1(1), ..., fi(n), fo(1),..., fa(n), ..., fu(1),..., fu(n)).
Now, let n, 7€ N and let N >n,j. It is not hard to see that
(N) _ :
B(n—l)N+j _fn(])'
Thus

S+ (n=1)N+j) = fu(j)

219/3/2017
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where Sy =1+22+--+ (N -1)2, and
FN) = {£,G) ¢ m. jeNy=U M) =U 4, =0 @

Lemma 2 An infinite subset K c N s countable.

Proof Enumerate K as follows:

ny:=min K, ny:=min K \ {n}, ng:=min K ~ {ng,no}, -

ng :=min K ~{ny,no, ... ,ng_1}.

The process does not stop as K is infinite and ng,q > ny for each k£ > 1.

The map k — ny defines an injection of N into K. To see that it is
onto, fix v € K and ng > v. We claim that v = n; for some J < k since,
if not ng = min K \ {ny,ng,...,ng_1} = v contradicting ny, > v. &

Lemma 3 If A is a set and there exists a surjection f: N — A, then
A is at most countable.

Proof  For each a € A, let k, := min{k € N : f(k) = a} and let
K :={k,: ae A}, then K c N and f: K - A is a bijection. If A is
infinite, so is K which by lemma 2 is countable.

The theorem follows from lemmas 1 & 3.

Countability of Q.
As shown above,

Q%{S: peZ, qeN, gcd{p,q} =1}

where = denotes set correspondence and for K c Z~ {0}, gcd K is the
greatest common divisor
(a7 gown phm) of K

gcd K :=max{neN: nlk V ke K}

where for n € N, ke Z~ {0}, n|k means k = an for some a € Z.
For each ¢ € N, {§ : peZ, gcd{p,q} =1} is at most countable, and
so by the theorem,

Q= L{l{g t peZ, gedi{p,q} =1}

is at most countable, and being infinite, countable.
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Uncountable sets.
A set is called uncountable if it is infinite, but not countable. Cantor
first proved existence of uncountable sets.

Cantor’s Theorem
2N := {subsets of N} is uncountable.

Proof  Since 2N = 2:={0,1}N by (ay,as,...) 2~ {neN: a, =1}), it
suffices to show that (2 is uncountable.

Suppose otherwise, then 2 = {x,, : n € N} and write z,, = (a{™,a{™ ).
For each n > 1, let b, :=1- afln) and let Z := (by,by,--+), then Z € 2
(since b; = 0,1V ¢ >1). However Z # x,, ¥ n > 1 because b, # aﬁf‘)m

FIELDS

A field (mw)is a nonempty set I (say) on which are defined two
binary operations :addition (a,b) = a+ b and multiplication (a,b) — ab
satisfying the

Addition axioms
A1) (commutative law) (p>mipm) a+b=b+a V a,be F
A2) (associative law) (papnpm) (a+b)+c=a+(b+¢) ¥V a,b,ce F
A3) (neutral element) (5xae vaw) 3 0€ F such that a+0=a V ae F
A4) (inverse element) (maw) VY a € F, 3 (-a) € F such that a+(-a) =0

Multiplication axioms
M1) (commutative law) ab=ba V a,be F
M2) (associative law) (ab)c = a(bc) ¥ a,b,ce F
M3) (neutral element) 3 1 € F'\ {0} such that al =a V a € F}

M4) (multiplicative inverse element) (b mmaw) VaeF, a0, 3L
F such that a+ = 1.
Distributive law (a1 pin):

(D) a(b+c) =ab+ac.

e Qis a field.
e Qu:=1{s: peZ neN}isnot a field because M4 fails (e.g.
=15 €Qpo but £ =2 ¢ Qyp).

Square root rational field extension.
For a € Q, define the extension field extension using the ”external

symbol“ \/a:
Q(Wa) = {z+Vay: z,y€Q}

with arithmetic defined by

(z+Vay) + (@' +Vay') = (z+2") + Valy +¢),
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(z+Vay) - (2" +ay') = (z2’ + ayy’) + Va(zy' +2'y).

Exercise
Show that (Q(y/a), +,-) is a field and that Q(\/a) =Q iff 3b¢Q, b = a.

> NOTATION

Finite sums and products.
Let (F,+,-) be a field.

Any finite sequence (ay, as,...,a,) of elements of F' has a sum
aj+ag+-+a,=(..(ar+az)+az)...)+ay,1)+a, €F
and a product

ay-Qag----- an:(...(al-ag)-a3)...)-an_1)-a,nEF.

e By associativity, the sum obtained does not depend on the order
in which the operations are performed and so the brackets (showing
order of operation) are removed. The proof of this (not given) is by
induction.

Higher order commutativity. Let o:{1,2,...,n} > {1,2,...,n}
be a permutation (mwmn) (aka bijection).
A proof by induction (not given) shows that

Ao(1) T Ag(2) T "+ Qo) = A1 +aA2+ -t ay

and

0/0'(1) . O/O'(Q) ..... ao_(n) =Q;-Qg----- Q-

Sum over a finite set.
Let A be a finite set and let f : A - F'. The set A is in correspondence
with {1,2,...,n} (where n = # A) and we can define the sum

Z;lf(w) = f(m(1)) + f(7(2)) + -+ f(m(n));
and the product
Ilf(l’) = f(m(1) - f(7(2)) - f(m(n))

where is any bijection 7 : {1,2,...,n} - A because the expressions do
not depend on 7 by higher order commutativity.
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Higher order distributivity.

> (af(z) +bg(x)) =a ) f(z)+b}, g(x).

zeA zeA zeA

This follows from the distributive law. The proof (not given) uses
induction.

Change of variables in finite sums and products
Suppose that A, B are finite sets, f: A - F and g: B - A is a
bijection (the change of variables), then

> fla(y)) = Z f@), TIfGew)=T]f(z)

yeB yeB zeA

Proof If 7 :{1,2,...,n} - B is a bijection, then so is go 7 :
{1,2,...,n} - A (defined by gom(k) := g(7(k))). The result follows
by higher order commutativity. @

Sum notation. For J, KeZ, J< K, write

S0 X [0 1) [0 1)+ (),

te[JK]nZ
Here [J,K]nZ:={jeZ: J<j<K}.

Proposition  (Gauss)
> -
Proof By the change of variables formula

Jz\gk:g:(N+1—k)

(the change of variables here is k— N + 1 - k).
Thus

N(N+1)

N N N
2Zk: Zk Yk=>k+> (N+1-k)
k=1 k=1 k=1 k=1 k=1

N

= Z[k? + (N +1- k?)] by higher order distributivity
k=1

=N(N+1). d

Next topics ORDERED SETS, COMPLETENESS, ORDERED FIELDS, R,
LIMITS.
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%fcture # 3

LINEARLY ORDERED SETS

e A “line” involves a notion of linear order which we now define.
A (linearly) ordered set (mo awap) is a pair (F, <) where F' is a set
and < is a relation (om) (i.e. a subset R ¢ F' x F' defining z <y <=
(z,y) € R) satisfying
(i) VY x, y € F, precisely one of the following holds:
e T<yory<rorzr=y;
(i) z<y, y<z = x <z
We write u > v in case v < w and a < b (or b > a) in case either a <b
or a=b.

e Evidently if (F,<) is an ordered set and F' c F', then (F”,<) is also
an ordered set.

e Qis an ordered set under the appropriate definition of order:
If z,y€Q, thenx<yifx+§:yfor some p, q€N.

Intervals.
Let (F,<) be an ordered set. An interval (wep) in F is a set of one of
the following forms

[a,b] :={xeF: a<xz<b};
(a,b):={xeF: a<z<b};
[a,b) :={x e F: a<x<b};
(a,b]:=={reF: a<x<b}.

Here, a, be I are aka the endpoints (mzp).

ORDERED FIELDS

An ordered field (m10 aw) is a quadruple (F,<,+,-) where (F,<) is
an ordered set and (F,+,-) is a field so that

a+b, a-b>0V a,b>0.
The collection of positive elements of the ordered field F' is
F,:={xeF: x>0}
e Qs an ordered field with Q, := {§ : p, geN}.

393/03/2017
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Proposition Let (F,<,+,-) be an ordered field, then

(1)  a,beF, a>b < a-bel,;

(2) V aeF, precisely one of the following holds:
aeF,, (-a)eF,, a=0;

ac < be c>0;
(3)  a,b,ceF, a<b = a+c<b+c & ac>bc  ¢<0;

ac=bc=0 ¢=0.

Proof  Exercise.

Absolute value. Let (F,<,+,) be an ordered field. Define the abso-
lute value of x € F' by
r x>0,
|| =

-z x<0.

Proposition (triangle inequality)

la+b| <l|a|+1b| ¥V a,be F
with equality iff either a,b>0 or a,b<0.
Proof  Exercise.

Orderable field.
A field (F,+,-) is called orderable (1105 jm ame) if there is a relation
<on F so that (F,<,+,-) is an ordered field.

Exercise
Let (F,+,-) be a field. Let P c F satisfy

(0) 0¢P, 1eP
(1) a+b, a-be PV abeP
(2) V a € F, precisely one of the following holds: a€ P, (-a) € P, a=0.

Define the relation < on F by x>y < x-yeP.

(a) Show that (F,<,+,-) is an ordered field and that F = P.
A set Pc F asin (a) is called a pre-ordering for F.

(b) Show that the field F is orderable iff it has a pre-ordering.

Exercise

Show that
(i) the only pre-ordering for Q is {g : p, g€ N}
(ii) Q(v/-1) is not orderable.
(iil) ¥¢ Show that Q(\/2) is orderable.
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"HOLES“ IN Q

This section is illustrative, leading up to precise formulations in the
sequel.

We'll see that there is a "hole in Q at V2" and how this hole can be
“filled”.

Pythagoras’ irrationality theorem
3 xeQ with 22 =2.

Proof

Suppose that z € Q, x2 =2, then without loss of generality = > 0 (as
(-z)% =2 also) and

A:={qeN: greN}+a2.

We show that this is impossible contradicting the assumption that x €
Q, 22 =2 and proving the theorem.
e By well ordering, the set A has a minimal element ). Write Qz =:
N €N, then 2Q? = Q%x% = N2,
e Thus N2 is even, and (!) sois N.

o Let M:=% €N, then Q2 =2M?, Mz =Q €N and so M € A but
M < @ contradicting minimality of () in A. O

Note also that 3 z € Q with 22 = -1 but nobody thinks there’s a
“hole in Q at /-1".
To illustrate that Q has a “hole at v/2” let

Ac={zeQ,: 22 <2} “=(0,V2)"

and
Ay ={zeQ,: 22 <2} “=(V2,00)",
then
o recA.,yeA, — <y
and

e Q,=A_.uA. by Pythagoras’ irrationality theorem.
Dedkind’s proposition (filling the hole)
Ac-Ac={zy: =, ye A} =(0,2) & A, - A, = (2, 00).

For the proof of this, you need to know
e Archimedean property of Q: For z, yeQ,, 3 NeN, Nx>y.
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e Bernoulli’s inequality: Forz e Q,, (1+z)">1+nx V n> 1.
This is proved by induction.
Proof that A - A =(0,2)
If x,ye A, x <y, then xy <y? <2, thus A.- AL <€ (0,2).
The reverse inequality relies on
(a) If y e A - A, then (0,y) c Ac- Ac; and
(b) For each z€Q,, 2<2, 3z e A, 22> 2.

Proof of (b) Suppose that (b) is wrong, then 3 A € Q, n (0,3) so
that

(@) reA. = 1?7 <2-4A.

To obtain a contradiction from this fix zy € A<, then by (@), 22 < 2—-4A,
whence

22 <2(1-24) <2(1- A)?
and 27 < 2 where z; := % € A,
Thus, again by (@), 22 <2 -4A and by the same argument,
29= 12 = = A)2 € A..
Induction shows that z,, := Ay A),L ceA. Vn>1.
This is impossible since

Zn = (1_Z2)n
= Zo(l + ﬁ)n
> 20(1+ 25

>2Vn large enough, specifically: n > (2_223#. |

Exercises: Generalizations of Pythagoras’ irrationality theorem

(i) For p > 2 prime, 3 = € Q with 2% = p.
(ii)If n = pq with p,q > 2 prime, then A z € Q with z* = n.
(iii)* If z € Q, >0 and z* € N, then z ¢ N.

BOUNDS FOR SETS IN (F,<)

Upper bounds. Let (F,<) be an ordered set. A set A c F' is called
bounded from above (5w5n mon) if 3M € F such that t <M V x € A. In
this case, M is called an upper bound (5w5» non) for A.

A set A c F is called bounded from below (v~bn mon) if IM € F' such
that © > M V x € A. In this case, M is called a lower bound (v75» oon)
for A.
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A set A c F'is called bounded if it is bounded from above and below.

e Let Ac F be bounded above.

We seek the least upper bound (if it exists), (which is “best” since if
M is an upper bound for A, so is every M’ > M).

e Let Ac F be bounded above. Call s € I a least upper bound (LUB)
( r5v gon = »wm Swbn non) for A if
(7) s is an upper bound for A,
and
(ZZ) Vi<s3IdzeAwithz> {; (i.e. there is no smaller upper bound for A).

e We denote the LUB of A (if it exists) by LUB A

(aka sup A where sup is short for supremum which is a word in Latin).

e For example if the set A has a maximal element (5 o1 1aw), (i.e.
3 max A € A such that x <max A V z € A) then this is a least upper
bound for A.

e There are also bounded sets A c F with LUBA € F'\ A;

e.g. (!) in Q, LUB (0,1) =1¢(0,1).

e There can exist at most one LUB of a set A which is bounded from
above.

Proof Suppose that A is bounded from above and that a,b are both
LUB’s of A. If a > b, then property (ii) applied to a says that b is not
an upper bound for A and therefore not a LUB.Z

Lower bounds. Let A c F' be bounded below. An element s € F' is
called a greatest lower bound (GLB) (2 v5» mon w ponn oon) A if
(i) s is a lower bound for A,
and
(#) V t>s 3 x e A with x <t;ie. there is no larger lower bound for A.
As above, there can exist at most one GLB of A and we denote it (if
1t exists) by GLB A (or inf A where inf is for infimum, another latin word).

COMPLETE ORDERED SETS AND FIELDS

An ordered set (F,<) is called complete, (nbw) if V A c¢ F' bounded
above, 3 LUB A€ F.

Proposition
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The ordered set (F,<): is complete iff ¥ A c F bounded below,
JdGLB AeF.

Proof of =

Let A c F be bounded below, and let B := {lower bounds for A},
then a >b VY a € A, b e B and in particular every a € A is an upper
bound for B (which is thus bounded above).

By completeness, 3 LUBB =: () € F.

We claim that @) € B.
Proof  If not then @ is not a lower bound for A and 3 a€ A, a< Q.
This a is a smaller upper bound for B contradicting ) = LUB B.

It follows from () € B that () is a maximal element in B, i.e. ) =
GLBA. u

Proof of <

Let A c F' be bounded above, and let B := {upper bounds for A},
then a <b V ae A, be B and B is bounded below. By assumption
3 GLBB € F and, as above GLBB =LUBA. &

Evidently, N is complete as bounded sets are finite.

Definition: Complete ordered field.

The ordered field (F,<,+,-) is complete if the ordered set (F,<) is
complete.

Some facts:
Uniqueness Any two complete, ordered fields are isomorphic. In
mathematics, an isomorphism between two sets, each equipped with
some structure is a set correspondence transporting the structures, in
this case the ordered field structures.
Existence As we’ll see, there is a complete ordered field. Because it’s
unique, you call it the real number field and denote it by R.

What about the rationals?

Dedekind’s incompleteness theorem

(Q,<) is not complete.
Proof
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We show that AL :={z €Q, : 22 <2} is (a) bounded above but (b)
does not have a LUB in Q. By Dedekind’s proposition,

(a2: zeA)=(0,2)

so A. is bounded above and if s € Q, is a LUB for A. then s? = 2
contradicting Pythagoras’ irrationality theorem. &

IRRATIONAL NUMBERS, D-CUTS AND DECIMALS

Dedekind Cuts (rp71 *onm)
A Dedekind cut (D-cut) is a nonempty set A ¢ Q so that

(i) (mo0,a)={qeQ: g<a}c AV ac A
(ii) # maximal element in A (i.e. A LUBA€ A).

Dedekind’s construction of the real numbers (ovwnn osonn).

R := {D-cuts}.
Remarks aka exercises

e D-cuts are bounded above.
Proof 1f AeR, thena<M VaeA MeQ\NA &

e (-00,a)isaD-cut V aeQ. A D-cut of this form is called rational.

A D-cut A is rational iff 3 LUB A € Q in which case A = (—oco,LUB A).

A D-cut which is not rational is called #rrational.

As shown in the proof of that Q is not complete,
A={reQ: z<0or x>0 & 2% <2}
is an irrational D-cut.

o If Aisa D-cut, then A =Ugea(—00,a] =Ugzea(-00,a).

e For any C' c Q, bounded above: Ugc(-00,a) is a D-cut, but
Ugec(—00,a] is a D-cut iff 3 LUBC € C.
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R IS A COMPLETE, ORDERED SET

Let R := {D-cuts} and order R by inclusion (i.e. for A, BeR, A<
Bif AS B).

Proposition (R,<) is an ordered set.

Proof  We must show that

(i) if A, B are D-cuts, then either A B or B¢ A or A= DB;

and
(i) if A, B, C are D-cuts and AS B, BES C then ASC.

Since (ii) is true for sets in general, we only prove (i). To this end,
it suffices to show that AN B+ @ = BcA.

Suppose that ¢ € AN B, then (—o00,q) c Aand B c (-00,q) - g€ Q\B
is an upper bound for B. Thus B c A.@

Proposition: Density of the rationals.
Suppose that A, B € R and that A < B, then 3 q € Q so that A <
(—00,q) < B.

Proof

If A=(-00,a) & B = (—00,b) are both rational then ¢ := %2 is as
required.

If A is irrational, then any ¢ € B \ A is as required since then A ¢
(—o00,q) but A # (-o0,q) by irrationality of A. Moreover (-c0,q) & B
since q € B.

If A= (-o00,a) is rational and B is irrational, then 3 ge {z e B: x>
a}. It follows that A& (-c0,¢) $ B. @

Theorem
(R,<) is a complete ordered set.

Proof
To check completeness, let A c R be a collection of D-cuts which is
bounded above, i.e. 3 a D-cut M eR sothat Ac MV Ae A, then
o L:=UyeqAis a cut.
Proof L+Q '~ LcM=#Q.IfaeL then3aecAeAwhence (—o,a)c AcL. IfaelLis

maximal and a € A € A then a € A is maximal contradicting A € R.ti
e [ is an upper bound for A -+ Ac LV AecA;
e if M €R is also an upper bound for A, then M 2 AV Ae A =
M2 L.
Thus L =LUB A and R is complete.
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ARITHMETIC OF R & DEDEKIND’S THEOREM

Algebra of positive parts.
A D-cut is positive if A>0* (i.e. A2(-00,0) or 0¢A).
The positive part of the positive D-cut A € R, is

A, =AnQ,.

Note that A, =Ugea, (0,2), thus for A, BeR,.
Addition and multiplication of psitive parts are given by regular set
addition and multiplication:

Ay +By={zx+y: zeA,, yeB.}= |J (0,z+vy);

reAy, yeBy

ABy:={zy: A, yeB,}= |J (0,2y).

xeAy, yeBy
Distributive Law for positive parts For A, B, C eR,:
A (B, +C,)=A,B, + A, C,.

Proof
On the one hand

A (B, +C,) U (0,a(b+c))

acAi+, beB,, ceCy

U (0,ab + ac)

a€Ai+, beBy, ceCy

U (0,ab+d’c)

a, a’€eAy+, beBy, ceCy

=A, B, +A.C,.

N

On the other hand,

A.B, +A.C, U (0,ab+a'c)

a, a’eAs+, beBy, ceCy

N

(0,ava'(b+c)) where ava':=max{a,a'}
a, a’eAs+, beBy, ceCy

- U (ab+e)

acAi+, beBy, ceCy

A(B.+Cy). @
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Addition.
Let A, B €R be D-cuts. Define

A+B:={a+b: ac A, be B},

then,
e A+ Bisa cut.
e For A, BeR, we have

A+ B=(-00,0]UA, + B,.
e a neutral element for addition is given by 0* := (-00,0).

Negative cuts.
The negative of the D-cut A is

0A:={-b: 3r>0sothat b-r¢ A} = J(-o0,-a) €R.
atA

This notation avoids confusion with the usual -A := {-x: x € A} for
AcQ.
o A+0A=0".
Proof
A+eA:= |J (-o0,z-y)c(-00,0)

zeA, y¢A
because x € A, y¢ A = x <y. On the other hand V ¢ >0 3 z €
A, y¢ AwithO<y—-z<eand

A+eA:= |J (-o0,z-y)>|J(-00,-€) = (-00,0). &
zeA, y¢gA >0
e For A/BeR, 6(A+B)=6A+6B.
Proof For x, ye€Q,

(—00,2) + (—00,y) = [x,00) + [y, 00) = [ +y,00) = (—00,z +y)°
whence
6(—00,x) +6(-00,y) = 6(—00, 2 + y)°.
It follows that
A+ B°=(A+B)°

and
0A+6B-= U (9(—00,1‘)+9(—00,y))
T¢A, y¢B
= U (e(-00,z+7y)
x¢A, y¢B
= | (e(-,2)
2¢A+B

=o(A+B). d
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Positivity and order.

Let R, := {positive D-cuts}, then
o V AeR, either A=0*, AecR, or eAecRy;
e if A, BeR,, then A+ BeR,;
e let A, BeR, then A< B iff B+6A €R,, in particular (!) (-c0,b) +

(=(=o00,a)) = (—o0,b-a).

Absolute value.
The absolute value of the D-cut A is |A| € R, defined by

0 A=0%
|A| = A AeR,,
-A - AeR,.

In particular (!) |(—o0,a)| = (-o0,]al).

Multiplication.
We first define multiplication on R,.
For A, B eR,, define multiplication by

AB = (-00,0]U A, B,.
and for A, B € R define multiplication by
0 A=0or B=0,
A B:=1 |A|B| A BeR,or A eBeR,
o(JA||B|])  else.
In particular,
(e1")A=0A.

Multiplicative inverse.
Set 1* := (—o0,1); and for A € R, set

A= (~00,a™h).
agA
o AAl=1~
Proof that A, A71 =(0,1) Sincea<bVacA, b¢A,

A A7 = (0,ab7Y) €(0,1)
acA, b¢A

and since V 0<t<13aecA, b¢ Asothat ab™! >t,

A A7 = | (0,ab7h) 2 U (0,8)=(0,1). @
acA, b¢A O<t<1

Evidently, arithmetic on R is associative and commutative.
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Distributive Law for D-cuts For A, B,C €R,
A(B+(C)=AB+ AC.

Proof Assume WLOG that A, B, B+ C €R,. It suffices that
(A(B+C)), =(AB+ AC),.
If C' e R,, then by the Distributive Law for positive parts
(A(B+0)),=A(B,+C,)=A,B,+A.C, =(AB+ AC),
If eC' € R,, then by the Distributive Law for positive parts
(A(B+C)), + (A(6C)). = A,(B, + C,) + A.(C),
=A,((B+C),+eC,)=(AB),
whence A(B+C)+AeC =AB and
A(B+(C)=AB+(+eAe(C)=AB+ AC. @.

Thus:
Dedekind’s theorem (R,<,+,) is a complete ordered field.
Dedekind’s proposition shows that
V2={zeQ: z<0orz>0& z2<2}€R.

FYI: Uniqueness. Any two complete ordered fields are in correspon-
dence by a bijection preserving ordered field structures. See theorem
6 in Birkhoff G., MacLane S. A survey of modern algebra (Macmillan,
ded., 1977).

DECIMAL REPRESENTATION (pnwy mxn) OF D-CUTS

Decimal representation is a map 7:R — Z x DN where
© :={digits} ={0,1,2,3,4,5,6,7,8,9}.
To define w(A) = (N;dy,ds,...) where A is a D-cut,
90 define N :=max AnZ whence N € A, N+1¢ A; and then
q1 define dy :==max{deZ: N+ -LeA};
e toseethat di€e®:d;>0 - NeA;andd; <9 - N+1¢A.
Evidently N+Cll—(1)€Abut N+%+%¢A.
Q2 define dy :==max{deZ: N+%4 + L ¢ A};
e toseethatds €e®:dy>0 - N+Cll—(1)€A; and dy <9 - N+%+%O¢A.
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Continuing, obtain dy,ds,--- € ® so that V n > 1,

n-1 dk d
d, :=max{deZ: N+1;10k Tom € A}
It follows that
2 dy d, +1
N A& N+ —__¢A
+,;1o cAk ka BT

e The decimal expansion of the D-cut A is the sequence
W(A) = (N,dl,dg,...)EZX@N
sometimes written as

7T(A) = N+0d1d2

Proposition
The decimal expansion map 7: R - Z x DN is an injection.

Proof

Suppose that 7(A) = N+0.dydy ..., A"« N'+0.dd,... and A+ A’
We show that (N,dy,ds,...) # (N',d},d,,...). To see this suppose
WLOG that AN A’ # @, then every element of AN A" cQ~ A’ is an
upper bound for A’ whence A" ¢ A. It follows that 3 n > 1, m €

Z such that 1o_n e AN A’ whence

nd,
N’ i E<N Bl
+,§10k<10n‘ T

k=1
and (N,dy,dy,...) # (N',d,,d,,...). @

Examples of decimal expansions.
1 (-00,1) «» 0.9

92 (—oo, 1—10) < 0.09;

3 (—o0,3) « 0.3.

Next topics DECIMAL EXPANSIONS OF CUTS , UNCOUNTABILITY OF
R, R-ARITHMETIC, ARCHIMEDEAN PROPERTY OF R, ROOTS POWERS AND
LOGS, LIMITS.
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%fcture # 4

CORRESPONDENCE OF LOWER D-CUTS WITH DECIMAL
EXPANSIONS

Proposition The decimal expansion map
7:R—=>Zx{ae®N: #{k>1: a;>1} =00}

is a set correspondence (bijection).

Proof As shown above, 7: R — Z x DN is injective. We show that 7
isonto Zx{ae®N: #{k>1: ap>1} = o0}.
To identify m(R) ¢ Zx {a € DN, note that if the D-cut A has decimal
expansion 7(A) = N +0.dydy ..., then Y n>1
od
M, (A):=max{aecA: 10"aeZ} =N+ 1_(;{
k=1
Since cuts do not have maximal elements, no M, (A) is maximal and
there are infinitely many n > 1 with d,, > 1. Thus 7(R) c Z x {a € ©N:
#{k>1: ap>1} = oo},
Let N € Z, (dy,ds,...) € DN such that dy > 1 for infinitely many
k>1.

Let for n > 1,
n dk — n-l dk dn +1
P -y S i S
1;1 10% ,;1 10k 107
Let

A= U(_OO’ An)7

n>1
then A is a D-cut being a union of D-cuts (as shown in the proof of
completeness of R).

Evidently,
(i) Ay <Ap Vn>l;
(ii) Vn>13k>1, dy>21 = A, <A &
(iii) A <A, ¥k, n>l.

We claim that moreover

496/3/2017
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€1 A, € AV n>1; This follows from (ii).

€© A, ¢ AV n>1. This follows from (iii).
Thus we have that
dy;

max{a € A: 10”an}:N+Zl_0k vzl
k=1

whence m(A) = N+0.dydy.... 4

Exercise: Ordering of decimal expansions

Suppose that A, B €R and that
w(A)=m+0.a1az2..., 7©(B)=n+0.bib2...

where m,n € Z and a;,b; = 0,1,...,9 satisfy #{i:a; >0} = #{i: b; >0} = co; then A> B
iff either:

(i) m>nor

(ii) m=nand 3k >1sothat a; =b; V1<i<k-1and ag > bg.
Hint: A>B <« (ANB)nQuo+@.

Exercise: The decimal expansion of rational D-cuts

Let Q:= {(~o00,¢): q€Q} = {rational D-cuts}. Show that:
(i) = 66 < 7(z)=m+0.a1...axb1...b¢ forsomemeZ, k,LeN, a1,...,ak,b1,...,bg€
9;
(ii) z = (—oo, S) € Q with p, g € N having no common divisor has
e a decimal expansion of form m(z) = m + 0.a1...a,9 iff ¢ = 2°5° for some k, £ > 0 in
which case LUB x = m + ¥3_; 1o + 1o
e a purely periodic decimal expansion (7(z) = m +0.@1...an # m + 0.9) iff g is neither
divisible by 2 nor 5.
(iii) The D-cut with decimal expansion
0.1010010001...10...01...
——
k-times

is irrational.

Theorem
A non trivial interval in R is uncountable.

Proof
Let J = (a,b) ¢ R where a,b € R, a < b. For some N € Z, n >
1, dq,...,d, € D, we have

[A,, A+ 2]

10"
where 0y
A, =N Ly
’ kzl 10%
Now define ¢ : {1,2}N - R by

Y(ay,as,...) =7 (N;dy,...,dy,a1,az,...).
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For each (a,as,...) € {1,2}N,
_ 1
An <7T_1(N;d1a"'7dn7a1aa2a"')Sﬂ-_l(N;dl"“’dn’g) :An+m
whence

U(ar,az,...) =7 (N;di,...,dn,a1,a9,...) € (Ap, A+ 5] € J.

Thus ¢ : {1,2}N - J. The set {1,2}N is uncountable by Cantor’s
theorem and ) is injective. So J is uncountable. &

ARCHIMEDEAN PROPERTY OF R

The ordered field (F,<,+,-) is called archimedean if ¥V x>0, 3neN
such that nx:=x +---+x > 1 (ie. there are no “infinitesimals”).
S —

n times

Proposition. Q is archimedean.
Proof DIY.

Proposition A complete, ordered field (F,<,+,-) is archimedean.

Proof  Suppose that x € F,. We must show that 3 n € N such that
nx > 1.

Suppose otherwise, then nz <1V n e N and the set A := {nx: neN}
is bounded above (by 1).

By completeness 3 z € F' a LUB for A. This means that nx <z V n ¢
N but, since z—z < z and is not an upper bound for A, 3 ng € N such that
nox > z—x. But then (ng+1)x € A and (ng+1)x > z contradicting that
z is an upper bound for A. K
BTW 3 non-Archimedean ordered fields.

Next topics REAL POWERS OF POSITIVE NUMBERS, LOGS, ABSOLUTE
VALUE AND DISTANCE IN C, LIMITS.
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%fcture #5

GENERAL EXISTENCE OF REAL ROOTS

We show that positive real numbers have roots of all orders. To do
this we’ll need

Bernoulli’s inequality

(1+a)*>1+na VvV a>-1, neN.

Proof Induction. O

Theorem
VaeR, neN, 3! seR,, s"=a.

. . 1.
Notation For s, a >0 write s =a» if s = a.

Proof

e Unicity follows from the ordered field properties of R: if 0 < z <y
then " <y™ V n e N.

e To prove existence, let A:={xeR,: 2" <a}. We prove that A + &
is bounded above and that s :=LUB A does the job.

Q1 A+a.

We'll show that y := H% € A. Indeed, y > 0 and % =1+ é > 1 whence

y%=(%)”2§>%, y"<aand y€ A.
92 A+ R, and any M € R, \ A is an upper bound for A.
Proof By Bernoulli’s inequality, (1+a)" > 1+na>a and so 1+a ¢ A.

Suppose y € A, then y"* <a < M"™, whence y < M. In particular, A is
bounded above and 3 s:=LUB A € R,.
€3 s" >a.

Suppose otherwise, that s < a and choose € € (0,1) so that e < %
It follows that s™ < a(1 - ne).

By Bernoulli’s inequality, (1-ne) < (1-€)™, so s < a(1-¢€)™ but then
()" <a, s':= 1= € A and s is not an upper bound for A (.- 5" > s).
X.
€4 s" <a.

Suppose otherwise, that s® > a and choose § € (0,1) so that § <

s"—a

—+. It follows that s"(1-nd) > a whence (using Bernoulli’s inequality

530/3/2017
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again), a < s"(1-nd) < (s(1-9))" and s(1-6) ¢ A. By €2, s(1-9) is
an upper bound for A, contradicting s = LUB A.K.
O

THE COMPLEX NUMBERS (@'asm»1 o™oon)

Define the complex numbers by
C=R(V-1):={x+iy: x,yeR},

where ¢ = /-1, with addition and multiplication to satisfy the normal
laws of arithmetic (as with Q(v/-1)).
The complex conjugate of z =x + 1y € C is

z=x—-1yeC.

Absolute value in C. For z := x +iy € C set |z|c := \/22+y%. For
xr € R, we have that

[rle = lizle = |«
where |- | is absolute value in R and so (without danger of confusion)
we can write |z|c = |z].

Proposition

(1) | = 2Z;

(i) |zw] = [2]Jw];

(ii) |2+ w| < [z] + |w|
(iv) 2] = |wl| <[z + w].

Proof of (i) For z:=z+1y,

2Zz=(z+iy)(w-iy)=a?-i*y*=a*+y? = 2] @

Proof of (ii) For z:=z+iy & w=a+ib,
zw = (z+iy)(a+1b) = ax — by +i(ay + bx)
whence
lzw)? = (ax - by)* + (ay + bx)?
= a?2? + b*y? - 2abzy + a’y? + b22? + 2aybx
= a?2? + b2y? + a®y? + b2a?
= a?(2? +9°) + b2 (y* + 2?)

= |z]*w]*. @
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Proof of (iii) in case z+w=1. Here,z+a=1& y+0b=0, whence

|z| + |w| > |z| + |a| > |x +a| =1 =z +w|. @.
Proof of (iii) in in case z+w=a#0.
(i)
|z +w] = Jal|Z + %]
<la(IZ1+15D) (G+3=1)
= lallZ] +lall Z]

W+ ] @
Proof of (iv). Exercise.
Exercise

Let R* =R x...x R={z = (x1,z2,...,24) : Z1,Z2,...,2q € R} and for 2, y e R? define
—— -

d-times
d
(z,y) = > zrye & |z|:=/(z,z).
k=1

(i) Prove the Cauchy-Schwartz inequality: [(z,y)| < |z] - |y].
(ii) Using this (or otherwise) prove the triangle inequality: |z +y| < |z| + [y|.

When is there equality?

Bounded set in C. A set A c C is bounded if 3 M so that
la|] <M V aceA.

LIMIT OF A SEQUENCE

Definition of convergence. Suppose b, € C (n € N). We say that
b, tends to (5 qxw) BeCasn— oo

written
b, > Basn—>oo; or b, — B

if for every € > 0, b, is e-close to B for large enough n. Here the
numbers x and y are called e-close if |x - y| < .
In symbols:

V €>0, 3 n, such that |b, — B| <€ V n>n,.

e The number B € C is called the limit of the sequence (av7on Sw Su1m)
(b1,ba,...) and is denoted

B = lim b,

n—00



32 (©Jon Aaronson 2007-2017

e In the same situation, the sequence is also said to converge (cionm)
(to its limit) and a sequence is a convergent sequence (noim mo) if it
converges to some limit.

e Suppose a, +ib,, a+1ibeC, then

a, +1ib, — a+1b < a,——a & b, —b.

n—00 n—00 n—00

Proof of < Use |(ay, +1ib,) — (a +1ib)| < |a, — a| + |b, = b|.
Proof of = Use |a, —al, |b, —0b| <|(an +1ib,) — (a +1ib)|.

e A convergent sequence has precisely one limit.

Proof 1If a, — L and n —> L', then V € > 0 and n large, a, is

e-close both to L and to L, whence () L and L' are 2e-close. Thus
the numbers L and L' are 26 close V € >0, whence L=L". #

Exercise

Write the above proof in symbols.

e A sequence which is not convergent is called a divergent sequence
(n972nn 71970).

Examples of limits.

e 1 —— 0.

n nooo

Proof Let € >0. By the Archimedean property of R, 3 N = N. € N so
that Ne > 1. It follows that ne > Ne >1 V n > N whence

O<l<e Vn>N.
n

o Forb>1,b%—> 1.

n—o0
Proof

Proof Evidently, bn >1V n>1 and it suffices to show that V e >
0, b <1+ € for sufficiently large n. To see this, fix € >0 & let n > &2,
then by Bernoulli’s inequality,

b- 1>n(bn—1)> L(bn - 1),

whence br <1+ ¢ v

e« L __ 5.

\/_TL"OO
e for|aj<1, a» — 0.

n—oo
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Monotone sequences.
A sequence (ay,as,...) € RN is called

e increasing if a,,1 > a,, decreasing if a,,1 > a,

e monotone non-decreasing (n1w &%) if a, < a,41 and monotone non-
increasing (5w 85) if a, > a,, 1.

A monotone sequence is one which is either monotone non-decreasing
or monotone non-increasing.

Bounded sequences.
A sequence (ay,as,...) € CN is called bounded if A ={a,: neN}is
a bounded subset of C; i.e. 3 M >0 so that |a,| < M V neN.

Theorem (Convergence of bounded monotone sequences)
Suppose that (a1, az, ...) € RN is bounded, monotone, then 3 lim,, o a,, €
R.

Proof We show that if (ai,as,...) is non-decreasing, then a, —
LUB{a, : n > 1} as n - oo. The other case where (ai,as,...) is
non-increasing and a,, > GLB{a, : n > 1} as n — oo is similar.

Proof of the theorem when (a,a,,...) is non-decreasing
Let L :=LUBA. Since L is an upper bound for A, we have

a, < LVYn>1.

Since L is the least upper bound for A, we have that V ¢ >0, L —¢
is not an upper bound for A and so

3 ne such that a,, > L —e.
Since a,, < a,,1, we have that V n > n,,

L-e¢e<a, <a, <L W

Corollary For each x = 0.a1as--- € R, we have x,, < x,,1 —> x where
n—oo

z, = 0.a1as:--a,0.

Proof
As above, x,, — LUB{z,,: neN}=x. O
Proposition

A convergent sequence is bounded.

Proof
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Suppose that a, - L, then 3 Ny > 1 so that |a, - L| <1V n > Ny,
whence
0, < max {|ag|: 1<k<Ni} 1<n<Ny,
Q| <
|L|+1 n>N1
<M

where
M := max {|ai],|az], ..., |an,|, | L] + 1}.
U

Note that the converse is false: we’ll see that the sequence a,, := (-1)"
is bounded, but not convergent.

Example of a divergent, bounded sequence
If a,, := (-1)", then a, +.

Proof Otherwise, for some L, a, — L, and a,, —a,,1 — 0. But
n—oo

n—>oo

lan = api1| =2, ®

Next topics
CONDITIONS FOR CONVERGENCE, DIVERGENCE TO 00, ARITHMETIC
OF LIMITS, LIPSCHITZ FUNCTIONS & CONTINUOUS FUNCTIONS
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L@ecture # 6

Example of a bounded, divergent sequence a,, w. a,—a,;; =0
Construct a: N - Qn (0,1) by
(alaa2>"') = (%7%7%7%7%7%7%7"') = (B(2)7B(3)7)
where

k J
B - Y (G<k<om-1) & BP™ -1 L (1<j<2m).
o7y (sk<am-1) & B omy1 (LET<2m)
q1 a, - a1 — 0.

Proof For N>1& 1<j<N-2,

1
(N) (M) _
|B;,; — B, |_N

J+1

and ) .
B(N+1) _ B(N) - - —
B NUT NN+ SN

Foreachn>1, 3 N,>1& 1<j, <N, -1 so that a, = B](.iv"). Indeed,

Ny (N, - 1)N,
< —1)=—2 2" <o N2,
n —JZ:;(J 1) < Vi
Thus (!)
1
|an+1 - (In| < ES ﬁ n_)—oo> 0. @

92 For each r € Qn (0, 1)
#{n>1: a,=r} =00,

Proof Letr= g €Qn(0,1), then for each n > 1,

Bé;ZQ) =r. @
wa, .
Proof Suppose otherwise, that a, —— L € [0,1] and choose Ny so
that ]
|CLn—L|<1—06 \ TZZNO

Choose 7 € QN (0,1) N (L - 755, L + 755 ), then |r — L| > -%s and by €2

106 106 . =10
3 n> Ny so that a, =r contradicting |a, — L| < 155 X

62/4/2017
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CONDITIONS FOR CONVERGENCE.

Comparison Theorem
Suppose that a, >0, a, —— 0 and that L€ R, M >0, b, €R, |b, -

n—oo

LI <Ma, ¥ n>1, then b, — L.

n—o0

Proof

Let € >0. We show that 3 N, so that |b, — L| <e V n > N,.

Since a, - 0 as n - oo, 3 N, so that a, < 57 V n > N.. It follows
that for n > N,

b, — Ll < Ma, < M-~ =e.
M
0

Sandwich principle
Suppose that a,, <z, <b, ¥ n>1 and that a,, - L, b, > L asn — oo,
then ©, — L.

n—-oo

Proof By assumption V € >0, 3 N, so that |a,—L|, |b,—L| <€V n > N,.
For such n,
L-e<a,<z,<b,<L+e¢

and x, — L. O

Exercise
Suppose that a, < b, V n>1 and that a, > L, b, > M as n - co. Show that L < M.

Exercises: More examples of convergence

=n"
n

(n+1)

a — 0 as n — oo.
b

C

g

—1asn— oo.

=

a® —->0asn—o>o00 V0<a<l.

For |a| < 1, ¥1_,a* — =.
n—oo +7@

— —

e

Limits in C.
Let z, =z, +1y,, z=x+1y € C. We say

c .
2y —— z if |z -2, >0
n—o00
. c . R R
It is not hard to check z, — ziff x, — z & y, —> v.
n—00 n—>o00 n—>00

Neighborhoods.  For e-neighborhood of a point is the collection
N (x,¢e) of all those points which are e-close to the point.
In R, for x € R, this is

N(xz,e)=1I(x,e)={yeR: [y—x|<e}=(r—€,x+¢)
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an interval around x of length 2e.
In C, for w=a+1beC, this is

N(w,e)=D(w,e)={z=x+iyeC: |z—w|=\/(z-a)?+ (y-b)2<e}

adisk in C2R? with center w and radius e.

DIVERGENCE TO INFINITY

Suppose that (x1,z,...) is an increasing sequence in R and that
{z,, :n € N} is unbounded. Let M > 0. Since M is not an upper bound
for {x,, :n e N}, 3 Np; € N so that xy,, > M. But since x, < x,,1, then
Tp>M Y n>Ny.

We say that the sequence (xi1,zs,...) diverges (mmam) to oo (as
n — oo) if for each M > 0, 3 Ny, such that z, > M V n > Ny, (and
write this z,, - o0).

Proposition Let (x1,22,...) be an increasing sequence, then either
(z1,x2,...) is convergent, or x, — oo.

Proof  The dichotomy is based on the boundedness (or not) of the
sequence. Either z,, — LUB{x,: n € N}, or z,, — oco. The proof is

n—oo

immediate from the definitions.

Examples.
€1 As shown above,

| 1
> =2(1- ) — 2.
=2 2n + 17 n—oo
©
LN |
Y- — oo,
i koo

Proof We contradict boundedness of a,, := ZZ=1% by proving that
agn > % (n>1). This is because of the

Proof
1 + 1 4+ L > 2" L L
Aon+l — Aon = e . - —
S O B T 2n 4 2n 242 2
whence
n—1 n
a2n21+2(a2k+1_a2k)21+—. vl
k=0 2

Exercises
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(i) Show that Y5 _; ﬁ - 1

(ii) Show that 3 L € R such that ¥}, 7z — L.

(iii) Show that »j_; ﬁ —

Hint: Comparison.

Theorem (arithmetic of limits)
Suppose that a,, > a and b, - b as n - oo, then

(1) ap +b, > a+basn— oo;
(2) CLnbn —ab asn - 00}
and in case b # 0:

(3) Z—:egasneoo;

Proof
1) Using the absolute value proposition: |a, — al, |b, —b| - 0 whence
V e>0,3 N, so that |a, —al, |b, —b| < § for n> N.. It follows that
|(an +bn) = (a + D) <lan = al + |bn —b] <€

for n> N, and a,, +b,, > a +b.
2) Suppose that |a,|, |bal, 0] < M ¥V n>1, then

lanby, — ab| < |anb, = ayb| + |a,b—ab] < M (|a, — a| + b, —b|]) - 0
by the comparison theorem.
3) We'll show that ;- — ¢ in case b # 0. To see this note that 3 N
such that 0 < % < |bn] < 2|b] ¥V n > Ny whence for such n,

11, |bo-b 2
— <

b b ot <R

and |% - 3| = 0 by the comparison theorem. O

b, = b = 0

For example
2 S ST
n?-n+1 1-2+5

1
= - —.
3n2+2n+1 3+%+# 3

CONTINUOUS FUNCTIONS

A continuous function f : (a,b) - R is one that maps convergent
sequences onto convergent sequences.

Let f:(a,b) = R and fix L€ (a,b). We call f
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e continuous at L if

n € (a,b), 2n — L = f(xn) — f(L);

e and continuous oN (a,b) if it is continuous at each L € (a,b).

It follows from “arithmetic of limits” that f(z) := 22 is contin-
uous on R and that f(z) = 1 is continuous on R~ {0}, also sums and
products of continuous functions are continuous.

For more examples, we consider:

Lipschitz functions. Let f:(a,0) = R and let (¢,d) c (a,b).
We say that f is Lipschitz (Lip) on (¢,d) (Lip) if 3 M € R, such that

(Lip) |f(z) = f(y) <Mz -yl ¥ 2,y € (a,b)

and that f is Lipschitz (Lip) at z € (a,b) if f is Lip on some (c,d)
where z € (¢,d) c (a,b).

Lipschitz’s Theorem If f:(a,b) - R isLip at L€ (a,b), then f is
continuous at z.

Proof
Let L€ (c,d) c (a,b) satisty |f(z) — f(y)| < M|z —y| V z,y € (¢, d).
Suppose that x, € (a,b) & x, - L, then for large n, z, € (¢,d) and

£ @)= F(D) € Ml - 1] — 0. @

Proposition A polynomial is Lip on any bounded interval.

Proof
We’ll show first that for z, ye C & n>1,

n-1
(®) 2"yt = (v -y) p 2ty
k=0
This is clear for y =0. Forn>1, x € C and y = 1, we have
n—-1 n—1
(x-1)Y ab=> (a"" -ab)=2" -1
k=0 k=0

which is (&).
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For z, yeC, y #0,
T
$”—y"=1f((§)n—1)

T

=y”((§)—1)k§)(§)

n—1
=(z-y) Yty @ (@)
k=0
It follows that for x,y € [-M, M],
2" = y"| < |z - y[nM".

Let P(x) = X0, apz®, then for x,y e [-M, M],

N

|P(x) - P(y)| < ;;) |ag|[2" - |

N
<|lw -yl klax|M*. @
k=0

Exercises
Show that

(i) if f.g : (a,b) - R are continuous, then so are af + 8¢ : (a,b) - R (defined by (af +
B9)(x) = af(x) + Bg(x)) and f-g: (a,b) » R (defined by (f-g)(z) := f(z)g(x));

(ii) « — % + & satisfies (Lip) on (a,00) V a>0;
(iii) = — / is locally Lipschitz at each z € (0,1) but does not satisfy (Lip) on (0, 1).

Next topics

DIOPHANTINE APPROXIMATION, DIRICHLET & LIOUVILLE THEO-
REMS, D’ALEMBERT’S RATIO THEOREM, ¢, Lip OF log & exp.

I an
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IrJZIecture H# 7

NUMBER THEORY

Approximation by rationals.

We saw before that any real number can be approximated by ratio-
nals. The question arose as to the ”playoftf* between the approxima-
tion error and the denominator (~ “complexity”) of the approximating
rational. This kind of approximation is called Diophantine after the
Alexandrian number theorist Diophantus.

Dirichlet’s theorem Let x € (0,1)\Q, then 3 p,, ¢, €N, g, 1 o0 so

that
n 1
& |x—p—| <— .
G Gl(gn+1)
Proof
We'll prove:
o VQeN,Ip,geNsuchthat 0<p<g<Q &
P 1
r—=|< —.
| q| q(Q+1)

Proof of Dirichlet’s theorem given & Suppose that for p,, g, €
N (1<n<N, g1 <g<--<qy satisfy &. Let

en =min{glr - £[: 1<p<g<gn}
and choose Q > $ Let 1< pyi1 € gns1 € @ be so that

PN+1 1
|z — < :
gN+1 QN+1(Q+1)
1

Since g1 <En, it follows that qy;1 > qn. Dirchlet’s theorem follows by
induction. &

Proof of & Let |gz|:=max{neN: n<qgx} and let {qz} = gz —|qx]
and for 1<k <@ +1, let
k-1 &k

I =
vl +17Q+1

]

O

720/3/2017
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If {gx} el for 1 <q<@Q then

1 lgz | 1
O<qgr—-|qz|< = O<z- < .
Loz Q+1 ¢ a(@+1)
If {qz} € g4 for 1 < g <@ then
- 1
Q+1<qx lgz| <
1
:>0<1+[q:cj—q9c<Q+1
lgz|+1 1

= 0<

—r<—r.
q g(Q+1)

If neither of the above holds, then {q:p}qul c U2, I and
Jk,rs, 2<k<Q, 1<r<s<q

so that {rz}, {sz} e l}. Set ¢:=s—r and p:=|sz|-|rz], then
1 P 1
>|{sz}-{rz}|=|gz-p| = |z-~|<——.
o7 > o) = ol =las -3l —> lo-2j< L

Bad approximation by algebraic numbers.
e A number x € R is said to have bad approximation of order N € N if

GLB ¢V|a - £ > 0;
b 1 1Ty

equivalently 3 ¢ > 0 so that
a-Z1> S v Peq
q g q

Algebraic numbers.
e Let N e N. The number x € R is called algebraic of degree < N if
3 ag,a1,...,ay € Z with i, apz® = 0.

The degree of the algebraic number x € R is N if z is of degree < N
but not of degree < N —1.

The collection numbers of degree 1 is Q.

There are countably many algebraic numbers. This is because of the
proposition:
q If P(x) = ¥, arz* where (ag,...,ay) € R¥ ~ {0}, then

#{zeR: P(z)=0} < N.
Liouville’s theorem

Suppose that a € R is algebraic and has degree N > 2, then o has bad
approximation of order N.
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Proof  We show that 3 ¢ >0 so that

p,_C p
a-Zl>— VZeQ.
| q| N q

We can assume WLOG that |a - £[ <1 since otherwise

P C
la-=[212—=Ve<l
q q

o Letag,ay,...,ay€Z with P(a) = Yo arak = 0.
e Asabove, PisLipon [a-1,a+1]: 1.e.: 3 K >0 so that
K :=LUB, yefa-1,0+1]|P(y) = P(x)| < K|y — 2| V z,y e [ = 1,0 + 1].

e P(r)#+0 VreQ,elseif P(r)=0 then

P(x)=P(x)-P(r) = k;)ak(xk — k)
=(zx-r) ];)ak Z)mjrk_l_j

=(x-r) gbkxk
= (z-7)R(x)

where R(x) = Y0y bexk = 0 where by, by, ..., by_1 € Q. Thus R(a) =0
and the degree of o is < N — 1 contradicting the assumption that the
degree of v is N.

o [P(B)]> qLN V 2eQ, since P(£) € qLNZ7 P(%) 0.
To finish the proof,

1 P P P
— <|P(2)=|P(=) - P(a)| < |= - oK. @
q q q q

Liouville numbers. e A Liouville number is a number x € R which
does not have bad approximation of any order, equivalently (!)

1
Vvn>1,326Q [o-Z<—.
q ¢ q

Exercise

(i) Show that « := 0.a1a2... where apy:=1 (n>1)and ar =0if k¢ {J!: J>1}isa
Liouville number.
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; 7 1 1
Hint: 0<a-0.a1a2...any10=a-0.a1a2...a(N41)1-10< ToN+ T

(ii) Show that for any €, > €441 | 0 there is an irrational number « € (0,1) and a sequence

of rationals £2 so that gn — oo and |a — 22| < ¢, .
n n

Hint: Try with ¢, = 10%n with k, — oo fast enough.
CONVERGENCE OF AVERAGES

Theorem (convergence of arithmetic means)

Suppose that x,, — L, then

n—>00

1 n
- Z Ty —> L.
n -1 n—00
Proof  when L =0:
Suppose that x, — 0, then 3 M > 0 such that |z,|< M V n>1.

n—00

Let € > 0. We show that 3 N, such that |% Yioixk| <€ VY n>N. To
see this,
e 3 Ny such that |z, < § ¥ n> N;
e 3 N.> Ny such that 20 < 5.

For n > N,
1x» 1 No 1 n
=D k| S = ) fmR + = ||
N()M n—Ng €
< + =
n n 2
<e. @

Theorem (convergence of geometric means)
Suppose that x, >0 and x,, — L >0, then

n—oo

([Tzx)* — L.
k=1

n—>00

Proof of convergence of geometric means when L =1 :
We'll show that V r>1, 3 N, such that

1 n
—<(ka)%<'rVn>Nr.
T k=t

To see this,

e IM>1sothat 57<z, <M Vn>1

. Fixr>1thenE|Nozlsuchthat%<xn<\/7_"Vn>N0.

e by the lemma, 3 N, > Nj so that (MNO)% <1V n>N,.
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It follows that for n > N,.,

n

(Ifllmi _ (lﬁmi-( 1 =)

< (M) - (e
<\r-\r=r

and
n L No L n L
(ITzw)» = (TToe)= - T )=
k=1 k=1 k=Ng+1
1 1 1 n-No\ L
> (m)" '((%) )w
1 1 1
—.—=>.
AN
Exercise

Suppose that =, > 0 and that x, — 0. Show that ([Tj;_; :ck)% — 0.

D’Alembert’s ratio theorem )
Suppose that a, >0 (neN) and that ag—: — L, then a;;
Proof  when L€ (0,00):

an

Let ag =1, = 7 (n>1), then z, — L and

ay az ap,

=T1X2 " Tp.-
ap a1 Gp-1

By convergence of geometric means

1
an = (x129xy)7n — L. @
n—oo

Corollary(i) nr —s 1; (ii) (2:)5 4

n—oo

Proof "T“ — 1; (2”+2)/(2n) — 4.

n—»oo0 n+l n/ nooo

Exercise

For x > 2, find lim,— oo (“n")%

Proposition
Assume that a,, >0 and a,, — a.

n—00

(i) If a> 1, then (a,)" — oo.

— L.
n—oo

45
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(ii) If a <1, then (a,)” — 0.

n—00

Proof  We claim first that
QAN — c0oVA>Tand \* — 0V O< A< 1.

n—>o00 n—oo

Proof : For A>1, Ay :={A\": n > 1} is not bounded above and for
0<A<1, GLBAy=0. 11
Proof  of (i) We show that ¥ M >0, 3 Ny, € N so that a? > M V n >
Ny
To this end fix M >0 and 1 < X\ < a, then (since a, - a)
e 1N, sothat a,>AV n>N,.
e By 91, 3 Ny > N, so that A\ > M V n> Ny,.
It follows that for n > Ny, a? > A" > M.
Proof  of (ii) If a<1, then £ >1, - — 1 whence by (i)

n n—o0o
1

— —> OQ.
N n—soo
an

Now fix € > 0, then 3 N, so that - > ¥ n > N, whence a» <€V n> N..
vl

Proposition e
n+1

3 lim ( )" =te€(2,3).
n—00 n
Proof A, = (%) A, ~a, = (2 4, > 1
An—l_ n n n n+l _ n 7’L2 n
A, _(n—l) (n+1) _n+1(n2—1)
n 1 n n
= 1 ’I’L> —
n+1( +n2—1) “n+1 +n2—1)

n 1
n+1(1+ﬁ):1'

LA, > Ana, A :ZGLB{A,L: n > 1}. Since A, ~ a,, a, ?;GLB{A,L:
n>1}=e. ' '

e To see that e< 3, e< A5 < 3.

>

Next topics
e ctd., Lip OF log & exp, ACCUMULATION POINTS, SUBSEQUENCES,
BoOLZANO-WEIERSTRASS THEOREM, UPPER AND LOWER LIMITS, CAUCHY
SEQUENCES.
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%fcture # 8

e To see that e > 2 we show that a,, < a,;; whence e >a, = (1+ %)" >
2V n>2.
Proof  that a, < a,1:

By the binomial theorem,

1
n = 1+-=)"
an, = ( +n)
< n! 1
‘,Z%k!(n—k;)!ﬁ
Sn(n-1)...(n-k+1) 1

=1+

o nk k!

=1+1+i(1—%)(1—%)...(1-%)%
k=2 :

n
= Z bn,k
k=0

where

by k=0,1;
T a-hHa-2) . (a-EYHL 2<k<n

Now for each 0 <k <n, b, j < byi1 (equality 'iff k=0,1).

For k < n this follows from (1-21) < (1--L).

Since there is strong inequality for some k, it follows that

n n+1
ap = Z bn,k < Z bn+1,k < Qp+1- m
k=0 k=0

Next topics

ACCUMULATION & LIMIT POINTS, BOLZANO-WEIERSTRASS THE-
OREM, SUBSEQUENCES, CLOSED SETS, UPPER AND LOWER LIMITS,
CAUCHY SEQUENCES, INFINITE SERIES.

893/3/2017
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LOG FUNCTIONS

Landau’s log theorem There is a continuous, increasing bijection

{:R, - R so that

(X) Uo(z):=2"(z7 1) | U(z) asnt ooV z>0;
I —Ll<l(z)<z-1VY 2>0;

f ((zy) = £(x) +L(y) ¥ x,y >0,

A) [(z) = (y)| < t-|lz-y| YV a>0, z,y¢€[a,o00);
?) l(e) =1.

— ~—

(
(
(
(

Proof
For x>0, lo(z) =x -1 & for n € Ny,

(i) Ly () >0V 2>1, £,(x)<0V ze(0,1) & £,(1) =0;
(i) €n(z) = 20 (27 = 1) = =077 (,(3);
(ifi) €(zy) = 2 (237 yam = 1) = Yo7 L, (2) + Lo (y).
Next,
ba() = 2" (03 ~ 1) = 2227 )2 - 1)
= 2" (a7 +1) (a7 - 1)
>9m. 2. (27 — 1) =l (2)

(where the last inequality is established considering the cases = >
1 & 0 <z <1 separately); whence ¢,,(z) — ¢(x) > —o0.

Proof of (1)
By monotonicity, Y x >0, {(z) < £,(x) < ly(z) = v -1 < oo and
1

recalling that z2» —— 1,

ii 1
f(l’) <n— En(x) (:) _x2n£n(%) n—> _E(%) 2 _KO(%) =1- % vl
In particular, ¢(z) e RV z > 0.
Proof of (1) For z, y >0,

Uay) —— La(ay) Dy, (2) + a(y) — L) + ((y). @
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To see that £: R, — R is strictly increasing, let 0 <z <y, then £ > 1
whence

() =tz 2) Yoy + o) S ey +1-2 5 1(a).

Proof of (X) Fix a>0. For z >y > a,
®)
[0(x) =) =€(5) < §-1< 3 |x -yl @

Proof of (®)

Write @, :=1+ 1.

On the one hand, 2" - e and by continuity of 7,

((ag) —— L(e).
On the other hand, by (1)
$:1—$<€(wn)<xn—1:%
whence
1e—nl(z,) Yoy — t(e).

Natural logarithm.
The function ¢ = log = In : R, - R is called the natural logarithm
function.

REAL POWERS OF POSITIVE REAL NUMBERS

Theorem exp
3 a continuous, increasing bijection exp : R - R, so that exp(1) = e
and

(@) exp(z +y) =exp(z)exp(y) V x, yeR.

Proof Define exp: R — R, by exp :=log™, then exp is an increasing
bijection, exp(1) = e and

exp(z +y) =exp(x)exp(y) V =, yeR.
Also, by (1),
(&) l-exp(-z)<x<exp(x)-1 Y xeR
whence, for x,y € R, z <y,
exp(y) —exp(z) = exp(y) (1 - exp(=(y - )))
<exp(y)(y - ).
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It follows that for any a,beR, a <b, exp: (a,b) - R, satisfies
(Lip) |exp(z) —exp(y)| < exp(b)|lz —y| V 2,y € (a,b).

Thus exp : R = R, is continuous. &

Powers and logs.
e Ifa=exp(t) and g € N, then
t = t ees t — 4 & — t - 04
exp(qt) =exp(t+---+t)=a exp(-qt) =a
q times

whence
1

exp(é “=exp(t)=a =— exp(é) =ad

p _
andfora—reQ,

(a1} = exp(rt) = (a?)7.

Accordingly, we define for a > 0
a":=exp(rlog(a)) ¥V reR.
It follows that for a, b>0, r, s€R
(ab)" =a’b", & ™ =a"a’.
Moreover
(a")? :=exp(slog(a”)) = exp(srlog(a)) =:a’™.
Write E,(z) :=a* (a>0, zeR),

(i) if @ > 1 , then E, : R - R, is a strictly increasing, continuous
bijection and;

(i) if 0 <b< 1, then Ej: R - R, is a strictly decreasing, continuous
bijection.

The inverse function to E, is known as logarithm base a, is denoted

log, := E;! and satisfies z = a!°8#  equivalently log,(z) = }Zggzg

Exponential continuity proposition
Suppose that a >0, t € R and a,,z, €R, a, >0 satisfy x, — t€R

and a, — a >0, then ay” — a’.

n—oo n—oo

Proof By assumption and continuity of log, x,log(a,) — tlog(a),
whence by continuity of exp,

Tn —

ap = exp(log(ay")) = exp(xy log(an)) —> exp(tlog(a)) =a'. @
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Corollary e
(e) (I+2)" — e" V zeR.

We need

Lemma e
(1+L)m seV a, > oo
an

Proof Recall that by proposition e, (1 + %)" — e. It follows (!)
that (1+ —5)" - e and (1 + 1)™! - e. Lemma e now follows from
monotonicity and the sandwich principle:

e « (1+ 1]+1)[“"] <(L+E)m<(1+

o Jlanltt e

1
lan]
U

n
Proof of corollary (¢) For x>0, by lemma e, (1+ %)z — e whence
using the exponential continuity proposition,

(1+2)" = ((1 N %)5) s

To complete the proof, we show that (1-2)" - e™* ¥V 2 >0. To see
this, note first that

(L= 1+ )= (1-5)"
Using Bernoulli’s inequality and the sandwich principle,
1>(1-5)">1-2 51

whence

2
T
(lim)n _x

(=)= =

Corollary
(i) For a € R, the function P, : R, - R, defined by P,(x) = z% is
continuous.
(ii) For a > 0, the function P, : [0,00) — [0,00) defined by P,(0) =

0 & P,(x):=x% for x>0 is continuous.

Proof (i) follows directly from the exponential continuity proposition.

(i) To see continuity at 0 assume otherwise, then (!) 3e>0, 0<x, <1
so that x,, > 0 and 2% >¢e V n>1. Fix @ > 1 so that Qa > 1, then

@<29<r,-0. X @
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%fcture #9

ACCUMULATION POINTS AND ISOLATED POINTS

Neighborhoods in R & C. For € > 0, the e-neighborhood of z is the
set

N(z,e)={y: ly-x|<e}.
In R, N(z,¢) = (x —€,x+€) and in C, for z = u + iv,
N(z,e)={w=a+ib: |w-2z|=\/(u-a)?+ (v-b)<e},

the interior of the disc with center z and radius e.

Isolated points. Let EcV (V=Ror V=C). A point x € E is called
an isolated point of E if for some € >0, En N(z,¢) = {z}.
If = € F is not isolated, then V € >0, #FEn N(x,€)>2.
Here # A := the number of elements in the set A.

Accumulation points. For V=R or V = C, an accumulation point of
E is a point x € V so that V € >0, #EnN(x,¢)>2.

So a non-isolated point of F is an accumulation point of £, but there
may be accumulation points of E outside E (see examples below). The
collection of accumulation points of E is denoted E’ and is called the
derived set of E (5w namm meap).

Examples
1) B= {0}, E'-
2) E:=[0,1], E' = E'
3) B=(0,1)nQ, E'=[0,1]
4) E = {1: neN}, E'={0}.
5) If £ is bounded and LUB ¢ E, then LUB € E".

Proposition
ForV =R orV =C, the following are equivalent for EcV and x e V:
(i) = is an accumulation point of E;
(i) Ve>0, #EnN(z,€)=00
(iii) 3 (21,29,...) € EN such that zy # 2 ¥V k+ ¢ & 2, — .

Proof of (i) = (iii):

9 27/4/2017
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Assume that z € V is such that V e >0, 3y e EnN(x,€), y + .
We show (iii). By assumption, 3 y; € E, y; # x, |y1 — x| = ¢ < L
Similarly, 3 yo € E, y2 # x, |y2 — x| =t €2 < §. Evidently y, # y; since
lya — x| < |y1 — x|. Continuing, we obtain y, € £ (n > 1) such that
[Yn+1 = | < |y — 2| < 5% < £, whence

o y,# Yy forn+n’ and y, — =x.

Proof of (iii) = (ii):
Suppose that (21, 29,...) € ENissuch that z;, # 2, Vk # L & 2, — .
Let € >0 and let N, be such that |z, — x| < € for n > N,, then

EnN(z,e)o{z: k>N.} = #EnN(x,€)=00.
U

Bolzano-Weierstrass theorem (accumulation points) Let V=R or
V=C. If EcV is an infinite, bounded set, then £’ + &.

The proof of the Bolzano-Weierstrass theorem. uses:

“Chinese boxes” AND CANTOR’S LEMMA.
A nested sequence (nmpn ma0)) of intervals (aka Chinese box (man
mro)) is a sequence of closed intervals {I,, : n € N} such that I, 5 [,,41.

Cantor’s Lemma (or the Chinese box theorem)
A nested sequence of non-empty, closed intervals in R has a non-
empty intersection.

Proof  Since I, = [an,b,] o Iy = [ag,bi] ¥V k > n, we have a, < a; <
bi. < b, whence the sets {a, : n>1} and {b,: n > 1} are bounded; and
a:=LUB{a,: n>1}<b=GLB {b,: n>1}.

Thus [a,b] EN52y Iy + 2.

To see [a,b] 2 N:2, I, suppose that x € [, = [an,b,] V n > 1, then
a, <x<b, ¥ n>1. Equivalently, z is an upper bound for {a, : n >1}
and a lower bound for {b, : n>1};

whence a:=LUB {a,,: n>1} <z <b:=GLB {b,: n>1} and z € [a,b].
v

Proof of the Bolzano-Weierstrass theorem for V=R :

Suppose that E c I a closed, finite interval. For I = [a,b], write
I :=[a, %] and I+ := [%2,b]. Evidently, I = [-ul* and 3 I; = I* with
# En ]1 = 00.

Similarly 3 I = If with # E n Iy = co and continuing, we obtain
closed intervals I,, o I,,.1 so that

o Lin=Irand#Enl,=00Vnxl1.
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Since |I] = 2L — 0, by Cantor’s lemma, N2, I, = {Z} for some

2TL
Z eR.
To see that Z € £ note that for e >0 & n large,

EnN(Z,e)oo Enl,
whence # EnNN(Z,e) > # En 1, = co.ld
Proof of BW theorem for V=C = R2

Proof Suppose that £ c R=1xJ, a closed, finite box (i.e. I, J are
closed, finite intervals).

We have

IxJ=|J R(e0)
€,0=+

where R(e,0) := I¢x J° with I¢ & J° as above. and 3 Ry € {R(¢,0) :
6,0 =+} with #FEn Ry = oo.

Similarly 3 Ry € {R1(¢,0) : €,0 = £} with # E'n Ry = 0o and contin-
uing, we obtain closed intervals R, > R, so that

e R, 1€{Ri(c,0): e,0=x}and #ENR, =00 V n>1.

Writing R, = I,, x J,, we have |I,| = U5 0 and | Jn| = O] R By

n n
2 n—oo 2 n—oo

Cantor’s lemma, 3 a,b € R so that

f.jl[n:{a} & ﬁjnz{b}.
It follows that .
QRn ={(a,b)}.
To see that (a,b) € £ not;a that for € >0 & n large
EnN((a,b),e) > EnR,
whence # E n N((a,b),€) = 0o and (a,b) € E'.I

Limit points.
Let EcV (for V=RorV=C). A point z €V is called a limit point
Gaompy of B if 3y, € E (n>1) such that y, — .

e Asshown above, x is an accumulation point of F iff 3y, € E (n>1)

such that y,, # y,» for n # n’ and y,, - x. In particular, an accumulation

point is a limit point.

e The converse is false. Each x € F is necessarily a limit point of F,

but not necessarily an accumulation point of £ (e.g. if E is finite).
The collection of limit points of E is denoted E and is called the

closure (o) of E.
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Proposition
E=EUFE

Proof of EC EUE' :

IfxeE, 3 (21,29,...), € E, z, > x. Either #{x,: neN} < oo
whence x,, = x Vn large and z € E; or #{x,,: n €N} = oo. In this case,
V e€>0, 3 N(e) such that|z, —z| <e V¥ n> N(e) whence

#HEn(r—e,x+€)>#{x,: n>N(e)} =00
and xe E'. W

Closed sets and open sets.
A set E cV (where V =R, C) is closed if E = E and open if V z €
E 3€>0, N(xz,e)c E.

Proposition
The set E cV is closed if and only if its complement E°¢ is open.

Proof

Suppose that E is closed and let x € E°. If there is no € > 0 with
N(z,¢e) c E, then

Vn>13z,e EnN(z, ).

It follows that z,, —— z and x € E = E. This contradicts x € F¢.K

n—>00
Now suppose that E° is open and let x € £. We must show that

rekl.
Let x, € E, x, - x. If x € E° then, for some € > 0, N(z,¢) c E°.

On the other hand x,, - = and 3 n so that x, € N(x,¢). Thus z, €
EnN(z,e)cEnE‘=@. K

Exercise

Show that a closed subset of R which is bounded above has a maximal element.

Subsequences.

An integer subsequence (ombw bw mvTo-nn) is an infinite subset K c
N, K ={nq,no,...} arranged in increasing order n; < ng <--- - 0o.

A subsequence of the sequence {aj,as,...} is a sequence of form
{an,, an,, ...} where ny — oo is an integer subsequence.

For a bounded, non-convergent sequence, different subsequences may
have different limits. For example if {r,}>*; is defined by

1
ey N = 371,
rN=Y 3t oy N =3n+l

1+-% N=3n+2

n+1
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so that
3 1
(Tlar27T37 v ) = (1727_57 s )7
then

1
r3n = 0: T3n+1 = 57 & T3n+2 —> 1.

Bolzano-Weierstrass Theorem (convergent subsequences)
Every bounded sequence has a convergent subsequence.

Proof Suppose that (x1,x2,...) is a bounded sequence.

o If E:={x,: neN} is infinite then by the BW theorem (accumula-
tion points), it has an accumulation point x € E’, which is a limit point
and 3 ny —» o0, x,, — .

k—oo
o If E is finite then 3 ny - oo, x € E so that x,, =2 V k> 1, whence

T 2 @ M

PARTIAL LIMITS OF A SEQUENCE

Let (ai,as,...) be a bounded sequence, and let PL(aq,as,...), the
partial limit set (o»pbmn mbm pxap) (of the sequence) be the collection of
limits of its subsequences:

PL(ay,ag,...):={a€R: 3 ny - oo, &nkk—>a}¢®.

Proposition For (ay,as,...) a bounded sequence,
#PL(a1,0az,...) =1 <= 3 lim, o a,.

Proof of <

If a sequence converges, then every subsequence converges to the
same limit.
Proof of =: Fix a € PL(ay,aq,...).

If a,, » a, then for some € > 0:

e VEkx1, Ing>k, |an, —al>e

In other words,

e 3 a subsequence ny - oo with |a,, —a|>eV k> 1.

By the Bolzano-Weierstrass theorem, 3 a subsequence (of the sub-
sequence) my = ny, — oo and b € R so that a,, — b. Evidently,
bePL(ay,as,...) and |b—a| < |am, —a| > €so b+ a. O
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Example. The above proposition fails for an unbounded sequence.
Let as, =1 &agny1 =n, then (1) PL(ay,az,...)={1} but z » 1.

Proposition Let (a1, as,...) be a bounded sequence, then PL(ay,as, .. .)
1s closed and bounded.

Proof

Bounded: Suppose that |a,| < M. If 2 € PL(ay,as,...) then 3 a,, — .
For k large, |a,, — x| <1 whence

|z < |z = an, |+ |an,| <1+ M. @

Closed: Suppose that x € PL(a1,az,...)", then V k> 1, 3:

o 2™ ePL(ar,a,...), [z -z|<1; and

o 1y > 00, |ay, —z®|< i (- z® ePL(ar,as,...)).
Thus |an, — x| < %, Uy, —> T and z € PL(ay, ag,...). @

Exercise
Let a: N - Qn(0,1), ((11,(12,...):(%7§,%7i,%,%,%,...)be as on p. Show that
PL(al,ag,...):[O,l].

Exercise: Covers (om0'2)
Let Y cR. S, a collection of subsets of R covers Y, if Y cUS:={x€R: 35S, x€S}.
i.e. every point in Y belongs to some set in S

(i) Let Y c R. Show that S := {Y'} covers Y and so does Sz := {{y}: yeY}.
Eii) S)}}low that Ss := {(-1,3),(%,3)} covers [0,1] and so does Sy :={(z-3,2-1): ze
0,1)}.

(iii) Show that S5 :={(n—-1,n+1): neZ} covers R, but no proper subset of Ss covers R.

Exercise: Prove the Heine Borel theorem
DAY

Show that if a collection S of open sets covers a closed, bounded set E, then 3 Sp ¢ S
finite, which covers F.

Hint: Suppose otherwise, and show there is an infinite Chinese box of closed intervals (boxes

11

ﬁv
of §. Then use Cantors lemma to obtain a contradiction.

if you're proving it in C) I, o In41, |[In|= no one of which is covered by a finite subcollection

Next topics
UPPER AND LOWER LIMITS, CAUCHY SEQUENCES, CANTOR’S CON-
STRUCTION OF R, CONVERGENCE OF SERIES.
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Lecture # 10
[

UPPER AND LOWER LIMITS

The upper limit (jr5v 51) of the bounded sequence (ay,as,...) is
lim a,, := max PL(ay, as, ...)
and the lower limit (ponn 5121) of the sequence (ay, as,...) is

lim a,, := min PL(ay,as,...).

n—oo

Note that lim denotes “limsup” which means “upper limit” in Latin (and lim denotes
“liminf” which means “lower limit”).

Another interpretation of “limsup” & “liminf” is given via the the
tails of the bounded sequence a = (ay, as,...) which are defined by

To=Aar: k>n}={an, an1,...}.
Evidently LUB 7,,1 <LUB7, ¥V n>1 and GLB 7,,1 >GLB7, V n>1.

Tails proposition

(a) L,:=LUBT,, —> lima, &
(b) L,:=GLB7, — lim a,.

Proof of (a)

Since (Ly,)n»1 18 bounded and non-decreasing, 3 lim,, o, L, =: L and
we must show that

L = lim a,.
e Ifa, —JePL(a,as,...), then
J «—ay, gfnk - L.
Thus L is an upper bound for PL(ay,as,...) and
L >max PL(ay,as,...) = lim a,,.

e I ng >k so that |ay, - Ll < % whence ay,, - L & LePL(ay,as,...).
Consequently

L < max PL(a,az,...) = lima,. @
n—00

10 30/4/2017



Calculus T 59

Corollary
A bounded sequence (ai,as,...) converges iff im _ _ a, = lim,_,co ay,.

Proof lim, . a, =lim, e a, iff #PL(a1,as,...)=1. @

Proposition Let a = (ay,as,...) be a bounded sequence, then
(i) Va<lim, _  a,, 3 N, such that a,>a ¥V n>N,;

(i) V g>lim,  _a,, K>1, 3 N>K such that ay < 3;
(i)

(i) v w > limye0 @y, 3 N, such that a, <w ¥ n> N,;

(ii) V € <limpoo an, K >1, 3 N > K such that ay > &;

Proof  Follows from the tails proposition.

Exercise
Let (a1,a2,...) & (b1,b2,...) be bounded sequences.

Show that if b, —an, — 0, then PL(a1,a2,...) =PL(b1,b2,...).
Exercises
1) Show that every sequence a : N - R has a monotonic subsequence.
2) Show that if a : N - R is bounded and an —an+1 —> 0, then PL(a1, a2, ...) is a (possibly

n—oo

trivial) closed interval.
3) Are there a bounded sequences a : N - R with a, — an+1 —> 0 and PL(a1,a2,...) =
[0,1]?

Exercise: Alternative proof of the Bolzano-Weierstrass theorem in R.

Here you show that if E c R is bounded and infinite, then £’ # @.
Let F:={yeR: #(En(y,00)) = oo}. Show that:

(i) F+g; (ii) te F & s<t = se¢F; (iii) F is bounded above and (iv) LUBF ¢ E'.

CAUCHY SEQUENCES

Or how to prove a sequence converges without knowing the limit.

Definition. A sequence (ay,as,...) is called a Cauchy sequence if
Ve>0, 3 N, >1 such that

lay, —an|<e ¥V n,n >N,

e [t follows directly from the definitions that any convergent sequence
is a Cauchy sequence.

Cauchy’s Theorem
A sequence converges <= it is a Cauchy sequence.
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Proof  of <: Suppose that (aj,as,...) is a Cauchy sequence. We'll
show

(i) (ai,as,...) is bounded and (ii) 3 lim,,_,c0 Gp.

Proof  of (i): Let Ny > 1 be such that |a; —ax|<1 V J, K > N; and
let M := maxj<g<n, |ax|- We claim that |a,| < M +1V n > 1. To see this,
if n < Ny, then |a,| < M < M +1 and if n > Ny, then

|lan| <lan —an,| +|an,| <1+ M.

Proof  of (ii): By the Bolzano-Weierstrass theorem 3 ny — o0, a € R
so that a,, - a. We show that a, — a. To this end fix € > 0, then
3 N so that |a;—ag|<§ V J, K >N Also 3 k. so that nj,_ > N, and
|ay,, —al < 5. It follows that for n > N,

€ €
|azn_az|<|an_a/nk,€|+|a/nk6 —(L|<—+—:€.m

2 2

Sketch of Cantor’s construction of R.
Let

R := {rational Cauchy sequences}
={q= (q1,q2,...)€QV: ¥V reQ, 3 N, st |gn —qu| <7 ¥V n,n' >N, }.
Define a relation ~ on R by

(Q17Q27"') ~ (qivqév"') iff |Qn—q;|—) 07
n—oo

then (') ~ is an equivalence relation.
Let g € Q. Call the Cauchy sequence (q1,q2,-..) g-rational if
(QIaq27"')N (q?q7q7) ::a
i.e. g — q.

n—oo

Now define another (order) relation < on R by

(q1,92,---) <(q],q5,...)iff 3e>0& Nstq,-qg,>eVn>N,
then (')
(i) Vg, reR, either ¢ <7, or ¢ >, or ¢~ and
(ii) that if g <7, ¢~ ¢ & r~ 7' then ¢’ <71’
The rational Cauchy sequences are dense in R: If z, ye€ Rand z < y then 3 ¢€Q

so that z <g <y.
The Cantor reals are defined by

R:=R/~.
Define a relation < on R by
[g] < [r] ifﬂge[g] & ser] st g <s,

then (!) (R,<«) is an ordered set.
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To see that the ordered set (R, <) is complete, let E c R be bounded. For each
n>1, set

kp :==min{k eN: 2’1, is an upper bound for E}.

Define the sequence z € QN by z,, := g—n
To see that z € R, note that |2n = Zn41] < 2% (since (1) zp — 2% < 2Zp+1 < 2zp). Thus

k-1 1 1 .
(1) |2n = 2nsk| € X720 5wt < 5= and z is Cauchy.

Since V n > 1, Z, is an upper bound for E we have that z is an upper bound for

FE. On the other hand, YV n>1, z, - QL

if U is an upper bound for FE, then z, — %g U V n>1, whence

%: n>1)< U.

is not an upper bound for £. Consequently

2= (2 -

But 2/ ~2s02 <« Uand z=LUBE.

Define addition and multiplication on R by

(152, --)@(r1,72,...) = (1+q1, @2+ G5 - - - ) & (q1,q2,...)0(r1,72,...) = (171, q2r2, - - .

then (!)
(i) (R, ®,0) satisfies the associative, commutative and distributive laws;
(ii) ifg~ ¢ & r~ r' theng @1 ~qor & ¢ or' ~qor.
Now define addition and multiplication on R by
[delr]=[ger] &[da[r]:=[qgor]
Cantor’s theorem. (ﬁ, «,®,[) is a complete, ordered field.
As mentioned above, any two complete ordered fields are in correspondence by

a bijection preserving ordered field structures. In particular, Cantor’s reals and
Dedekind’s.

SERIES (o)

A series (mn) is a sequence (si,Ss,...) of form s, = ¥}_; ar where
Note that any sequence is of this form. We’ll study convergence
properties of s, in terms of the a,’s.

Notation. The series Y ;o ax converges if

3 lim iakz:iakeR.
k=1 k=1

n—o0

Proposition (tails of a series) If Y;2; ai; converges, then
(i) V N >1 so does Y52 ap and

(ii) > ap — 0.
k=N
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Proof (i) Fix N > 1, then

N+n N+n

N-1
> ak= Y ar- Y a
k=N k=1 k=1
oo N-1
— Z ap — Z Qg
k=1

n—-oo

k=1

(ii) Fix €>0 then V N > 1 large

00 N-1 )
e>|2ak— Zak|=| Zak| .
k=1 k=1 k=N

Proposition: (linearity of series)
Suppose that the series Y poiar & Y.ioq b both converge, then for
any s,t € R, the series ¥ poi(say +tby) also converges and

i(sak+tbk) = Siak-i-tibk.
k=1 k=1 k=1

SERIES WITH NON-NEGATIVE TERMS (25— 0™ax oy o)

If a, >0V n >1 then Yy ,ar 1. As proved before, either the
sequence Y ,_; ax is bounded and

k=1 k=1
or
n [oe]
Yoar too=> a
k=1 k=1

Thus, for a series with non-negative terms, we have the shorthand:
(o] [ee]

Yheq ap < oo for Y77, ap converges; and
oo 00 .

Yheq ar = oo for Y27, ay diverges.

Examples.

° Yoo rt=00 YV r>1,

° Z:Lo:l%: 00, . izliz %

o YrXyrm<ooVO0<r<l s NN et o Ly N>,

o L .. _1__1__1
n=1 n(n+1) ~ * n(n+l) T n n+l”
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o ¥, H<2(ie Zﬁ;#N—> L €[0,2]) because & < 2~V n>1

n=1n n2 = n(n+l)
whence
N1 N 1 5
— <2y ———<2.
,;1 n? nz::l n(n+1)

Exercise (comparison of positive term series)
Suppose that a,,b, >0 (n>1) and that M >0, N > 1 are such
that a,, < Mb, ¥V n> N.
Show that if Y77, b, < oo , then ¥, a, < co.

Exercise: Prove the Heine Borel theorem

W
Show that if a collection S of open sets covers a closed, bounded set
E, then 3 §y c S finite, which covers E.

Corrected Hint: Suppose otherwise, and show there is an infinite
Chinese box of closed intervals (boxes if you're proving it in C) I,, o
L, |In] = %, each one of which intersects with £ and no one of which
is covered by a finite subcollection of §. Show that the ”Chinese box
intersection is a singleton subset of E and obtain a contradiction.

Next topics
ABSOLUTE CONVERGENCE, EXPONENTIAL SERIES, ROOT TEST, CON-
DENSATION TEST, POWER SERIES.
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Lecture #11
[

ABSOLUTE CONVERGENCE OF SERIES (2 5w wbnma moionm)

The series Y, a, is said to converge absolutely (wbnma oo mam) if
> 1 |lan] < oo, This implies convergence.

Theorem
If >0 1 |lan| < 0o, then Y7 a, converges .

Proof We prove that (si,s,...) is a Cauchy sequence where s,, :=
}:?;1 Qaj.

The assumptions imply that (¢,s,...) is a Cauchy sequence where
tn =25 |aj|. Given € >0, let N, € N be such that

n+k
toek —tn = Z laj|<eV n>Ng, k>1.
j=n+1
It follows that
n+k n+k
|Snik — Sn| = | Z ajl < Z laj| =tpsr —tn<e VYV n 2N, k>1
j=n+1 Jj=n+1
and (s1,S2,...) is indeed a Cauchy sequence. O

Exercises

(i) Show that ifa, € R (n >1) and 3,7, an converges absolutely, then | Y, an| < Yooy |an]
with equality iff all nonzero a,,’s have the same sign;

(ii) Now show that if a, € C (n >1) and Y5, an converges absolutely, then | Y7 an| <
Yot lan|.

(iii) Y¥ Show equality occurs in in (ii) iff 3 A e C; XA =1 so that an = Nan| V n > 1.
Proposition (convergence of exponential series)

For x € C, the series Y p.o "””k—lf converges absolutely.
Proof It suffices to show that

k. M
VaxeR, 3 M,Q>1 such that |ﬁ|32_k Vik>Q.

To see this, fix @ > 2|z|. For n > @, we have

)2 || N O N R TN 2 ) A S 4

n'|—Tm§ n —(Q_l)!Qn—Q+1 - (Q—]_)' AL - 2n'
U

1y /5 /2017
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EXPONENTIAL SERIES

Theorem ¢

Z x— reR.
= n!
Proof By corollary e,
(1+= )” — "

and so it suffices to show that

(e) (1+= )” — L VaeRr
n—eo =)

Proof of (¢) : Fix z € R and let L := Y72 % < oo which converges
absolutely by the proposition.

By the binomial theorem,

x\" & n! xk
142y -y
( +n) L =Ryt

_1+x+zn(n ...(n-k+1)aF

nk k!
1 2 k-1 _xk
=1 1-—)(1-— - ——
+x+k§( n)( n) N n)
o ok
=) bur—
where
1 k=0, 1
ba={ (L=H)(1-3)..(1-5Y)  2<ksn
0 k>n.

We must show that
ok

ix— ib J;—k—i(l ) —— 0
e = R T bnk) 7T o

Fix e > (0. Since Z,QN% e 0, 3 K = K, so that

jzF e
Z —'<§

k>K k!
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e Since 0 < by, <1, it follows that

DR S RN P!
k>K k>K
e Since b, —— 1 V k>1, we have
K |z |k
Z(l bnk) —>O
k‘: n— 00
and
e Q> K so that
2(1 bnk)m <<vVnxQ..
k=0 2
qIt follows that for n > Q).:
k k k
Z(l bnk)|x||<2(1 by, )|x| Z ﬂ Cifoe @
kKlk' 2 2

Corollary e ¢ Q.

Proof  Suppose otherwise that e € Q then since 2<e< 3, e = ; where
p, ¢ € N, g > 2. It follows that e = 2—3! (with P = p(q —1)!), whence

e— 3 0 ]1, > q, (being a positive fraction with denominator ¢!).
Thus
1 a1
452
q j=0J"
st
J=q+1 j'

1 e 1
:<q+1>!(1+j=§2(q+2)-..(j—1)j)

J=q+2
I B
OEDIF-ET
4 1 41
= - < X
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TESTS FOR CONVERGENCE OF SERIES

Cauchy’s Root test
Suppose that a, > 0.

1
1) If limsup,,_, . a; <1, then Y0 a, < .
1

2) If limsup,,_., an > 1, then a, + 0.

Proof ) )

1) If limsup,,_, ., an <1, then 3 g€ (0,1), Ny such that a; <qV n>
Ny, whence a,, < ¢" V n > Ny and Y7, a, < oo by comparison with
Y1 "

2) If limsup,,_, a,% > 1, then 3 R > 1 and nj, — oo such that a,E >
RV E, whence a,, > R" — oo. O

1

D’Alembert’s ratio theorem im version). Suppose that a, > 0
for large n € N.

1
(i) imsup,,_ . an <limsup,, . “=L.

Qn

1
(ii) liminf, . ap > liminf,, . 2L,

Qn

Proof

(i) If ax > 0 and “2L < g for n > N then

aN+1 a _
an = an o <ang" N =Mg®

an Qp-1

1
with M > 0, whence a;; < qM% - q.

(ii) If ay >0 and “2 > 7 for n > Ny then

aN+1 a _
ap = aN o — >anr N = M
an Ap-1
1 1
with M = ayr=N >0; whence a); >rM= —r. O

Cauchy’s condensation test
Suppose that a, > a,.1 |0, then

oo oo
Zan<oo < 22”a2n<oo.
n=1 n=1

Proof
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=)
00 o 2F_1 o 2F-1 1&
oo>2an—z Z anZZ a2k=522ka2k
n=1 k=1 p=2k-1 k=1 p=2k-1 k=1
<)
) oo 2k+1_7 oo 2k+1_1 )
Zanzz ansz a2k222ka2k<oo.
n=1 k=0 n=2F k=0 n=2k k=0
U
Corollary

Let t >0, then

Exercise

For which ¢ > 0 is it true that 5, m < o0?

Next topics

POWER SERIES, RADIUS OF CONVERGENCE & LIPSCHITZ PROP-
ERTY, LEIBNIZ’S THEOREM ON CONDITIONAL CONVERGENCE, CAUCHY
& HEINE DEFINITIONS OF LIMITS OF FUNCTIONS OF A REAL VARI-
ABLE.
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Lecture # 12
POWER SERIES AND RADIUS OF CONVERGENCE

Cauchy-Hadamard Theorem
Let a,, € C (n>0) and set
1
R == € [0, OO]
lim ™\/|a,|
a) If |x| < R, then the series Y o) a,x™ converges absolutely,

and
b) if |x| > R, then the series ¥.,"q a,z™ diverges.

Proof Root test. O

The series Y .7, a,z™ is known as a power series and

1
R:= T € [0, oo]
lim sup,,_, oo ||

is known as its radius of convergence.
By the Cauchy-Hadamard theorem, the power series Y .°; a,z" con-
verges for |x| < R and diverges for |z| > R.

Examples.
1
e The radius of convergence of }.,°, n"2" is R =0, since a,;; =n — oo.

Consequently Y.>°, n"a™ converges only for x = 0.

e By (e), X2, ‘%L converges V x € C and the radius of convergence of
Yol L is R = oo.
To calculate R directly, we use D’Alembert’s ratio theorem:

1
if b, := &, then bg—;l = —— — 0, whence b; - 0 and R = oo.

. 2 .
e The radius of convergence of ¥, (T:‘)x” is R= i.

Set A, = (27?), then Aﬁ;l = (2"22(12)72“2) — 4 whence

1 1
Ri=— ==,

1
lim sup Ay 4

The convergence of Y7, a,(R)™ depends on a,,.

1275 /2017
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If a, = # where ¢ > 0, then R = 1 but the convergence of .77, a,
depends on t. To see this use condensation. See exercises below.

Proposition (Radius of convergence of derived power series)

0

For 0 e R, the radius of convergence R’ of the power series Y., n’a,x"

is the same as R, the radius of convergence of Yo" a,x™.

Proof Write A, :=|a,| & B, :=nay|, then nw —» 1 and so

1
B 0
1 =nNnNn — 1
- n—oo
Ay
whence
1 1
limsup Ay = limsup B
and

1 1

R:= =R. U

T - I
limsup Ay limsup By
FUNCTIONS DEFINED BY POWER SERIES

Proposition  (Lipschitz property of power series) Suppose
that the power series S(x) := Yo"y a,x™ has radius of convergence R > 0.
For each 0<r< R,

[ee]
M, =" nla,|r"™! < oo
n=1

and

(Lip) ‘S(l’) _S(y)‘ < Mr|x_y’ v T, ye N(O,T’)

Note that N(a,R) ={z: |z —a| < R} — the closure of N(a, R).

Proof The power series Y. na,x" ! also has radius of convergence
R and so M, < oo.
To see (Lip), for x,y € N(0,r),

n-1
[z =y =z -yl D Fy T < et Ha -y
k=0
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whence

15(x) - S(y)| = | i (2" — ")

Z |ay| - =™ -

< |z -y Z |ap e

n=1

=M, |x-y|. &

Corollary (continuity of power series) Suppose that the power
series Yoo @™ has radius of convergence R >0, then S: N(0,R) - R
defined by S(x) := Yoy anx™ is continuous.

Proof To see continuity at = € N(0, R), fix r € (|z|, R). By the propo-

sition, f is Lip on N(0,r), whence, by Lipschitz’s theorem, continuous
at e N(0,7). @

Conditional convergence. The series Y, a, is said to converge
conditionally if (1) ¥;°; a, converges and (ii) Y.r74 |a,| = oo
Leibniz’s Theorem

Suppose that a, > a,.1 4 0, then

the series Yoo 1 a,(=1)"*1 converges and 0 < Y0 a,(-1)"*! < ay.

Proof Set S, :=Y;_; a,(=1)"*!, then
() Zp = San = Y p_q(agk-1 — agx) and so 0 < Z,, < Z,,,1; and
(b) Zn = San = a1 — Y321 (agp — gii1) —agn < a; ¥ n> 1.

It follows from (a) and (b) that

(@) S2n — S € [0,@1]

n—00

Since ap - 0 we have that Sy,.1 = Sa,, + @2,41 = S. This proves the
theorem. 0

Leibniz’s theorem shows that the series

converges V t > 0. Using the condensation test, we see that the conver-
gence is absolute for ¢ > 1 and conditional for 0 <t < 1.

Exercise: Convergence of power series at the endpoints of the interval of
convergence
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The radius of convergence of the power series S(z) := Yo, fl—? isR=1 V teR. Show
that

(i) for t > 1, S(x) converges absolutely for = = £1;
(ii) for t € (0,1] S(z) converges conditionally for z = -1 and diverges for = = 1;

(iii) for t € (—o0,0] S(z) diverges for x = +1.
Exercises

€1 Show that

(i) Z:;:lm<00 iff >1;

(i) If @n > @ns1 > 0 and 52 an = oo, then 357 min {an, 2} = oo.
()" 1F an > 0 and S, 5= £y ax —» oo then ¥, 2 < oo iff f> 1
@

(a) Show that in the situation of Leibniz’s theorem
Vm>1,0<(-1)" ¥ 001 an(-1)"" < a1

(b) Using Leibniz’s theorem (or otherwise), show that:

o ok 2N-1 .k
Zﬁz > HV|$|§2N+17NEN.
k=0 k=0

LIMITS OF VALUES OF FUNCTIONS
Let f:(a,b) - R and suppose that A c (a,b), ce A"

Heine’s definition of limit (sequences).
Heine

We say that f(z) — Lif

r—c, reA
rn€A, ¥, >c = f(z,)—>L.
Cauchy’s definition of limit (e - ¢).
We say that f(x) Cow i

r—c, reA

VY €>0, 36 >0 such that |f(z) - L| < € whenever x € A, |z —¢| <.

Equivalence Theorem
Let f:(a,b) > R and suppose that A c (a,b), ce A’, then

Heine Cauchy

f(x) xeT;GA L = f(l') z—»?;EA L.
Proof of <)
Suppose that f(x) CﬂlyA L, and let x,, € A, x, — ¢, fixing € >0. By

assumption, 3 § > 0 such that |f(z) — L| < e whenever x € A, |z - ¢| <.
Since z, - ¢, 3 Ns so that |r, —c| < d V n > Ns. It follows that
|f(x,) - L| <€V n>Ns.
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proof of =)

in Cauch; . ..
Suppose that f(x) He—>eA L but not f(x) E,YA L, i.e. that it is

not true that e e
V e€>0, 36 >0 such that |f(z) - L| <e when 3 A, |z -] <J;
then
Je>0such that V6 >0, 32(0) € (c—0,c+)nA with |f(x(0))-L| > €.
In particular, if 2,, := (), then z, € A, x, - ¢ (since |z, —¢c| < L), and
Heine

|f(zn) - L|>€ VY n>1 contradicting f(x) — L. O

r—c, TeA

Accordingly, we write f(x) — L, and L =lim,_. zea f(2).

r—c, reA
The equivalence theorem provides us with useful tools.

Continuity proposition The function f: N(a,r) - C is continuous

at z € N(a,r) iff f(x) f(2).

x—z, reN(a,c)

Proof By definition, f is continuous at z € N(a,r) iff

@) == [(2). @

z—z, zeN(a,c
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Proposition Suppose that fi, fa,..., fx : N(¢,7) = R are continuous
on N(c,r). Define g: N(c,r) - R by g(x) :==min{f;(x): 1<j <K},
then g : N(c,r) = R is continuous on N(c, 7).

Proof
To show continuity of g at x € N(¢,r) it suffices, given € > 0 to find
0 >0 so that

zeN(e,r), |z-2]<d = |g(2) - g(z)| <e.

Let Y¥(z):={1<j<K: fj(x)=g(z)}. By possibly shrinking e > 0,
we can ensure that

fo(x)>g(x)+e V¢ X(x)

(even if there are no such v). Next, by continuity (Cauchy version),
36 >0 so that

zeN(e,r), |z-z|<d = |f;j(2) - f;(z)] <ZE1 V1<j<K.
Fix z € N(c,r), |z —2| < . We claim that g(z) = f;(z) for some
jeX(z).
To see this, fix k€ X(z) & v ¢ X(z), then
fo(z)> fu(z) - i by continuity
>g(x) + % because v ¢ X(x)
= fr(x) + % because k € X (x)

> fk(Z) - ZE_L + % > fk(Z)

showing that f,(z) > g(2).
Accordingly, suppose that g(z) = f;(2) where j € X(x), then

9(=) - 9(@)| = 1,(2) - @) < S <e. @
Next topics

LIMITS AS x — 0o, ARITHMETIC OPERATIONS AND LIMITS, CONTI-
NUITY POINTS, CONTINUITY OF SERIES, TAKAGI-RUDIN FUNCTION.
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Lecture #13
i

Proposition Leta<b & f:(a,b) > R. Suppose that Ay c (a,b) (1<
k< K) and let A=\, Ay.. Suppose that t € Ai N (a,b) V 1<k < K.
If L eR and

f(x)

LV1<k<K,

r— t, xeAg

then

f(l’) r— t, €A L.

Proof Fix e>0. By assumption, for each 1 <k < K, 3 4, > 0 so that
reAy, |lx—t|<dh = |f(x)-L|<e.
Now suppose that
reA& |r-t|<A:=min{dy: 1<k<K}.
For some 1 <k < K,
reAy, l[v-t|<A<y, = |f(x)-Ll<e @

One sided limits. Let f:(a,b) > R and let c€ (a,b] .

Write f(x) - Lif f(x) — L. In this case, write L =

x—c, ze(a,c)
fle=) =lim,. f(x).
Similarly for ¢ € [a,b), write f(x) — Lif f(xr) — Landin

z—c, ze(ce,b)

this case, write L = f(c+) := lim, ., f(z).

Two sided and unrestricted limits. Let f: (a,b) - R and suppose
ce(a,b).
Write f(x) — L if f(x) — L. In this case, write L :=

z—c, ze(a,b)

lim, . f(x).
Analogously, f(z) — Lif f(z) —
T, TEC z—c, ze(a,c)u(c,b)
Proposition

Let f:(a,b) > R and suppose c € (a,b), then
f@) — L e f@)— L& [@) — L.

T—c, T*EC

Proof Follows from the proposition above.

1311/5/2017
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Note that
flx) — L < f(r) — L & L-=f(c).

T—C, TEC

lim, .
Suppose f:(a,00) >R, Ac (a,00) is unbounded and L €R.

° f(m) Hellﬁ Lifr,eA, x, >0 =— f(l‘n)—>L;

r—00, TEA
Cauchy

e f(r) — LifVe>0, 3 M>0suchthat |f(x)-L|<eV x>

r—>00, TEA

M, x e A.

In this situation, we have

Proposition

F) L = fr) Y L

Proof Exercise.

Proposition

(i) (1+ %)I — e.
1

(iii) (1+x)= o0 ©

Proof

Statement (i) is lemma e on p. [51}
We use (i) to show that (1+z)z — e.

x—0, >0
Suppose that z,, >0, z, - 0 and let a, = ﬁ, then a,, - oo and

1
(1+xn)ﬂ%n = (1+—)" >e o
an

It suffices to show that (1-z)= —y e L.
-0+
To establish (ii)

(-1 — ¢

Tr—>00

we show that

1\
Ay —> 00 — (an——) — el
an
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Indeed (1 - %)™ —— ¢! whence, constructing a sandwich (as in

n n—»00

lemma e),

[an]+1 [an]
1 1\ 1
et 1- <(1——) <|1- — et
n—>00 [an] ay, [a,] +1 n—>o0

establishing (ii). @
Lastly, we use (ii) to show that (1 + x)

1
T —> €.
z—0, <0

Suppose that z,, <0, z, - 0 and let a, = %, then a,, - —oo and

1 an
(1+xn)i = (1+—) —e
an
by (ii). @«
Statement (iii) now follows from

(1+2)s — ecand (1+2)s — e O
z—0, >0 z—0, <0

Arithmetic operations on limits
Let f,g:(a,b) >R, ce(a,b) and let Ac (a,b), ce A’. Suppose that
flr) — AL and g(x) — M, then

T—C, TE r—c, TeA

(f+9)(x) — L+M,

r—c, TEA

(o)) —

, X€

LM,
A

and, in case M #0:

Loy — L
g

r—>c, TEA M

Proof Follows from the Heine definition of limit and analogous propo-
sitions for limits of sequences.

Continuity on an interval. Let J be an interval. The function f :
J = R is continuous at L e J if f(x) — . f(L).

z—L, z€[a,
This definition corresponds with previous definitions in case L is in
the interior of J (i.e. not an endpoint of .J).

e The collection of continuous functions on the interval J is denoted
by C(J).

Example.
Define f : (-1,1) > R by f(z) = (1 +2)z when z # 0 and define
f(0) := e. By the exponential continuity proposition f is continuous

at each 0 # x € (-1,1) and (iii) above shows that f is continuous at 0.
Thus feC((-1,1)).
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Proposition

Let f,g:(a,b) > R, ce(a,b). If f and g are continuous at c, then
so are f+g and fg. If in addition g(c) # 0, then £ 15 also continuous
at c.

CONTINUITY POINTS OF FUNCTIONS

Suppose that f : (a,b) > R. A continuity point of f is a point c €
(a,b) satisfying f(z) — f(c). Let C := {continuity points of f}.

Example: No continuity points.
Let D :R - R be defined by

D)

Here, C; =@ as V ceR,

1 x€Q,
0 x ¢ Q.

2 lim f(z).
To see this, Iz, > ¢, r, € Qand f(x,)=1—- 1butalso Iy, > ¢, y, ¢Q
and f(y,)=0-0.

Example: Continuity points. =R\ @)
Let q: R — R be defined by

1 x =0,
q(z) = . r=2peZ {0}, qeN, ged(p,q) =1,
0  z¢Q,
Proposition
Cy = RNQ
Proof

If ceQ, then q(c¢) >0 and 3 =, ¢ Q, =, - ¢ whence 0 = q(z,) +» q(c)
and q is not continuous at c.

If ¢ ¢ Q, then q(¢) =0 and if z,, = *Z—: € Q, ged(pn,qn) = 1, z, = ¢,
then ¢, - oo and q(x,) = i - 0=q(c). Thus if z,, - ¢, then q(x,) —
0 = q(c) (as above for the rational subsequence, and q(x,) = 0 on the
irrational subsequence). This shows that q is continuous at c. U

Exercises
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(i) Show that V z € R, q(y) — 0.
Y-, Y+

(ii) Suppose that F': R - R is a bounded function with the property that V z € R, F(y) —

Yo, yET
0. Show that 3 z € R with F(x) =0.
Hint V e>0, {zxe€R: |F(z)|2€e} =@.

(iii)* Suppose that F' : R - R is a bounded function with the property that V z €

R, 3 limy.4, y=2 F'(y). Is there a point at which F' is continuous?

CONVERGENCE OF SEQUENCES OF SERIES

Example 1. For N, k>1, let

ak(N) = (1—%)i

ok’
then
ak(N)m ajg Z—ka>1
and
o0 o0 1
> ar(N)=(1-4) 3 e = (1= 4)
k=1 k=1

This is a situation where aix(N), ai >0, ai(N) o VE>1,all

the series
Zak(N) (NZl)& Zak
k=1 k=1

converge to finite limits and

Zak(N)N—> Zak.
k=1 T k=1

This is not always the case:

Example 2. Let

1
vyl 7w 1<k<N;
0 k>N +1,

then
ak(N)N—> ak:OVk‘Zl,
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all the series converge to finite limits, but for each N > 1,

=) N 0
YNap(N)=Y =1 »0=) a.
k=1 k=1 k=1

Without more assumptions, one cannot ensure that
o0 o0
Z ak(N) N—) Z Qg .
k=1 T k=1

However,

Discrete Fatou Lemma
Suppose that for each N, k>1, ap(N) >0 and that

ak(N)m Qg Vk21,

then
lim Y ap(N) > a.
k=1

N—oo k=1

Note that here, the series, having non-negative terms, are not required
to converge and may diverge to oo.

Proof
WLOG, limy,_,  >7; ai(N) < oo. Fix K > 1, then

K K
2 k<= ) ar(N)
k=1 T k=1
< Z ak(N)
k=1
It follows that

PL((gak(N) : N>1))c [kz_:l A, 00).

But K > 1 was arbitrary and

oo K [
lim Zak(N) > Zak—> Zak. val
N—oo =1 =

Next topics

CONVERGENCE OF SEQUENCES OF SERIES, CONTINUITY OF SERIES,
TAKAGI-RUDIN FUNCTIONS, INTERMEDIATE VALUE THEOREM, CON-
TINUITY OF COMPOSITIONS AND INVERSE FUNCTIONS, CONTINUOUS
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FUNCTIONS ON CLOSED, BOUNDED INTERVALS; UNIFORM CONTINU-
ITY, DIFFERENTIABILITY.
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Lecture #1417

Dominated convergence theorem for series
Suppose that for each N, k > 1, ap(N) € C, the series Yoy ap(N)
converges absolutely and that

(a) Zsup|ak(N)|<oo &
k=1 N>1
(b) ak(N)N—> akaZL

then ¥ oy aj converges absolutely and

() gjlak(zv) — gak.

Proof
Set My, := supysq |ax(N)|, then by the discrete Fatou lemma,

> larl < lim Y Jarp(N)| < S My, < oo.
k=1 k=1

N—oo k=1

To prove (c), we'll "break the error estimate® into a large initial
finite sum and a tail sum. The finite sum is chosen so large so that the
tail sum is small by the "domination* assumption (a). The finite sum
converges by (b), wherever the ”break “was made.

Let € > 0. Choose K, > 1 so that

Now choose N, > K, so that

€
N) - — V1<k<K., N>N,.
|ax () ak|<2K <K<

1494/5/2017
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It follows that for N > N,

o [ K. 0o
|2 ae(N) = ar] < Y lar(N) —ax[+ > (Jar(N)| +axl)
g pg pr} k=Ko+1
K oo
SZ|ak(N)—ak|+2 Z Mk
k=1 k=Ke+1

K e €

< +2--
,;12[(6 4
=e.

CONTINUITY OF SERIES

Theorem
Suppose that u, : [a,b] > R are continuous, and that

o0

Z sup |u,(x)| < oo
n=1z€[a,b]

then
(i) the series U(t) := Yoy un(t) converges absolutely ¥ t € [a,b];
(ii) the function U :[a,b] - R is continuous.

Proof  of (ii)
To see that U is continuous at Z € [a,b], let zy € [a,b], zy - Z and
set ar(N) := ug(zy), then by continuity of each uy,

CLk(N) = Uk(ZN) - uk(Z) = Qg Vk>1.
Next
Y. suplag(N)| < > sup |ug(x)| < oo

k>1 N21 k>1z€[a,b]
and so by the dominated convergence theorem for series,

U(ZN)=ZCL;€(N)R> Zak=U(Z) {Z

k>1 k>1

In addition to power series, this also covers

Takagi-Rudin functions.

Let (z) :=min{|z —2n|: neZ}.
Proposition (periodicity and Lip of z ~ (z))
(i) (x+2n)=(x) VxeR, neZ;
(i) (z) = (y) < |z —yl.
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Proof of (ii) For z,y € R, x <y < x + 1, there are two cases to
consider:

(a) (r,y)nZ=@ & (b) IneZ x<n<y.

In case (a), [(z) = (y)| = [z - y|.

In case (b), write x =n-A & y=n+& where A, £€>0, A+€& =
ly —z| < 1.

If n is even, then (z) = A, (y) = € whence

(z) = (W) =€ -Al<A+E =]y x|

If nis odd, then () =x-(n-1)=1-Aand (y)=n+1-y=1-¢
whence
(o) =W =[(1-A)-(1-E)[=[€-A[<A+E& =y -]

For other z,y € R, y = z + 2k where |x - 2| <1 & |k| > 1.
We see that here
|z — 2| < |z + 2k — x|

whence

() = ()] = (=) = ()]
<|z -z

<|lz+2k-zx|=|y-z|. @

A Takagi-Rudin function is a function of form

re Tua(x) = i a™{(d"z)

n=1

where O <a <1, d>0.

Because of the shape of the graph of T% 2, Takagi-Rudin functions are

aka blancmange functions (in English) and courbes du pouding (in
French). For more information and graphics, see
http://en.wikipedia.org/wiki/Blancmange curve.

Proposition
Any Takagi-Rudin function T,q (0<a<1, d>0) is continuous.
Proof  The functions u, : R - [0,1] (n > 1) defined by w,(x) :=
a™(d"z) are LIP, whence continuous. Moreover,
> sup un(z)] = ) a” < oo.
n>1 zeR n>1

Thus by the continuity of series theorem, ¥, ;R — R is continuous. “
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Takagi’s functionﬁ is T1 5 and Rudin’s function ﬁ is Ts , .
27 4’

Proposition R1
Rudin’s function T'(z) = 3%74(115) = Y2 (3)M(4rx) is continuous but

not Lip on any subinterval of R.

Proof  Continuity follows from the above proposition. To see that T'
is nowhere LIP, we’ll need the following lemma.

Lemma R2  For every Z €R, 3 6n(Z) = 5% so that

T (Z +0n)-T(Z)| 3N
®) |On] * 2

Proof of (&)
For N > 1 write

@) T()= YO+ X () ar) = Tu(r) + Ru(x).
n=1 n>N
For each Z € R, Jw(Z) = £1 so that there is no integer strictly between
Z and Z + 2.
This ensures that

w 1
(2 +22) (2)|= 5.
Now define
w(4dN7) 1
on(Z) = =
M2)= 5T T
obtaining

(4 (Z + 6x)) = (4N Z)| = (4N Z + 2UT2) (4N 7)) =

DN | —

For n> N,
(A4™(Z + 6n)) = (47 Z£22(=N)=1y = (yn 7)
(because 2(n - N)-1>1 & (z+2) = (x)) whence

T(Z+ 5N) = TN(Z+ 5N) + RN(Z)

15Teiji Takagi, A Simple Example of a Continuous Function without Derivative, Proc. Phys.
Math. Japan, (1903) Vol. 1, pp. 176-177.

Walter Rudin, Principles of mathematical analysis, theorem 7.18.
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It follows that
T(Z +0n)-T(Z)| = |Tn(Z +6n) = TN(Z)|

S| (D2 0)) - (4 2)

Aineguality(Z)N|<4N(Z+5N) (4N Z)| Z ) 4(Z +6n)) - (4" Z)|

N13

> (V0N = X Qo] o+ h) = Gl < i

N-1
= on] (3" - Zl 3")

N
> 3—|5N| a

Proof of nowhere Lip of T Suppose that a,beR, a<b & M >0
are such that

(X) T(Z)-TW)|<M|Z-W|Y Z,W €la,b].
Fix Z € (a,b), then for large N, Z + dn(2) € (a,b),
3N
00— —
N—oo 2
< (2 (Tg)|_ r2)l by lemma R2
N

<M by (X) X
Thus (X) leads to a contradiction and is therefore impossible. &

Remark. We'll see later from (#) that Rudin’s function is nowhere
differentiable.

Exercise: more on Rudin’s function

Let T'=%s 4, and for N €N, let Ty, Rnx be as in (@) (above).
(i) Show that 3 M > 0 so that

[T (z+h)-Tw ()| < M3V|h| = MEnj, & | Ry (z+h)-Ry (z)] < M(%)N = MAn,Vaz,heR, N>1.

(ii) Show that if h#0 & N = N(h) :=2log, % then

Enn=Ann = b T

(iii) Deduce that
log
IT(y) - T(x)| < 2MJy 2| 557 V 2, yeR.
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1

(iv) Show that for every z € R, N € N and for either dn = ﬁ or oy = — AN

log3
log 4

1 _
|T(I+5N)—TYINZ;1W5NP

Exercise: Lip Rudin-Takagi functions

Let0<a<l<d< % and let T'(z) = Tpa(z) = Xorpa™(d"x). Show that 3 M = M, q € R,
so that
T(z)-T(y)|<Mlz-y| Vaz yeR.

For example, T%’Q(az) =2z(1-x).

Next topics

INTERMEDIATE VALUE THEOREM; CONTINUOUS FUNCTIONS ON
CLOSED, BOUNDED INTERVALS; UNIFORM CONTINUITY, DIFFEREN-
TIABILITY.
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Lecture #15
[

CONTINUITY OF INVERSE FUNCTIONS

Theorem

Suppose that I c R is a bounded, closed interval and that f: I - R is
continuous and strictly monotone, then f: 1 — f(I) is a bijection and
ftf(I) > I is continuous.

Proof
To check continuity of f~! at f(x) we must show that
zpel, f(xn) > f(z) = 2, > 2.

Suppose otherwise, that f(z,) - f(z), z, » x, then () 3 €>0
and ny — oo so that |z, — x| > e. By the Bolzano-Weierstrass theorem
3 z eR, my =ng, - oo so that x,,, - 2. Since [ is closed, z € [. Also
z # T since

|z -] < |rm, -z > e

By continuity, and assumption (respectively):

f(z2) < f(zm,) = [(2).
Thus f(z) = f(z) and since f is 1-1, z = z. Contradiction. O

The complex case. Let F cC. A function T': F' - C is continuous
if z,€F, 2z, >2e F = T(z,) > T(2).

Generalized Theorem Let ' c C a closed, bounded set and let T :
F — C continuous and 1-1, then T-1 : T(F) - F is continuous.
Proof As above!

Theorem (Continuity of composition of functions)

Suppose that I,J c R are intervals, and that f : [ - J, g:J - R.
Let x €.

If f is continuous at x and g is continuous at f(x), then go f is
continuous at x.

Proof We show that go f(y) — go f(z). Let x, € I, x, - x, then
y—T
by continuity of f at x, f(x,) - f(z). By continuity of g at f(x),
go f(xn) =g(f(xn)) > 9(f(x)) =go f(x). @

17118/5/2017
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INTERMEDIATE VALUE PROPERTY

We say that f: (a,b) - R has the intermediate value property (IVP)
if f(J) is an interval V intervals J c (a,b)

(i.e. if a<a<fB<b and = is between f(a) and f(5), then 3 ce(a,) with
fe) = :c)

By Cauchy’s theorem below, continuous functions have the IVP.

Cauchy’s Intermediate value theorem (IVT) (o™mn 77w nown)
The continuous image of an interval is an interval.

“Explanation” You can draw the graph of a function with the IVP
without taking your pencil off the paper. (777)

Proof
Note that a bounded set A c R is an interval iff (GLB A,LUB A) c A.
Thus, it suffices to show that if f :[a,b] — R is continuous, and that

f(a) < f(b), then
(%) V Le(f(a),f(b)), 3 ce(a,b) such that f(c) = L.

Proof  of (%):

Let f(a) <L < f(b). By f(t) = f(a) and f(t) = f(b),Ja<d <
b' < b such that f(t) <LV te(a,a’)and f(t)> LV te(V,b).

Define ¢ € [a,b] by ¢ := GLB{t € [a,b] : f(t) > L}. By the above,
cela’ V'] c(a,b).
Proof  that f(c) = L. On the one hand (by the properties of GLB):
3 t, | ¢ such that f(¢,) > L ¥V n >1 whence by continuity

f(C) = TP_)Holo f(tn) 2 L;

whereas on the other hand, V ¢, € (a,¢), t, 1 ¢, f(t,) <L V n> 1.
Again by continuity,

f(c) = lim f(t,) < L.
The conclusion is f(c) = L. O
Corollary  FEvery polynomial of odd degree has a real zero.

Proof
Let P(x) = ap+ a1z + agax? + -+ + ayx™ where ay #+0 and N =2k +1
for some ke Z, :=Nu{0}. We assume that ay >0 and write

P(z)=anz™ +--+aw+ag=2x N
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Now for |z|> 1,

|P(x) = 1+ 1 e 1 |<M
—-a =lan_1— an_o— an—| < —
N N N-1+aN-273 0N 7]

where M = Yo" |ax|.

Consequently,
P
N |z|—>o00
and for M > 0 large
P 1
Plz) > =V |z| > M.
N T2

For such M >0 P(-M) <0< P(M). By continuity of P and the IVT,
3 ze (=M, M) such that P(z)=0. &

Note that a polynomial of even degree may have no real zeros (e.g.
P(x)=2?+1).

The fundamental theorem of algebra (which we'll prove later)
says that every polynomial of degree N > 1 has a complex zero.

Example: “continuous” functions on Q need not have IVP.
Define f:Q — {0,1} by

fa) = {

then f:Q — R is continuous in the sense that

1 x? < 2;

0 else,

Tn, T€Q, z, >0 = f(x,) > f(2).

However f(-3,3) ={0,1} is not an interval in Q.

Example: nowhere continuous functions on [0,1] may have IVP.
To define a suitable function, expand x € [0, 1] into binary expansion:

xzzl%;—f) where €, =0,1 & ¢, » 1.

Define F':[0,1] - [0, 1], by

1 X
n=1

If z, ' € [0,1] & 3 N > 1 so that €,(z) = €,(x') ¥V n > N, then
F(x) = F(«'). This shows that for any nonempty interval J c [0, 1],
F(J)=F([0,1]).

To show IVP for F, it suffices to show that F'([0,1]) is an interval.
We claim that F'([0,1]) = [0,1] which also shows that F' is nowhere

continuous.
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If y=2€(0,1)nQ and z € [0,1] has binary expansion

(€n(2))n21 = (b(p,q)) = (b(p,q),b(p, q), - .. )

where
b(p,q) :=(0,...,0,1,...,1) € {0,1}¢
—_——— ——
q — p-times  p-times
then
1 N
(i) — > eaz)<yV N>1;
Nk:l
1 N
(ii) N 2 ex(z) grawdt F(x).

If y € (0,1) \ Q, choose y, = 2= 1 y and set

(€n(2))ns1 = (b(p1,q1)5 -, 0(P1,q1), - O(Prs Q)5 - - O(Prs Q)5 - - )

Ni-times

Np-times
where Nj 1 will be chosen to be very large.

Note that whatever the choice of Ny, if M} := Z;ﬂ N;, then by (i)
above

1 N
an::len(x)Syk V1< N<M,
whence (yx 1 )

1 N
— > e(z)<yVN2>1
Nn=1
whence F(x) <y.
To ensure F'(x) =y, choose Ny, recursively so large so that (ii) ensures
1 & 1

— n > Y — T
Mkn=16 (x) Yk 2

It follows from y, 1y that

whence F(z)>y. v
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MONOTONE FUNCTIONS

Proposition (one sided limits)
Suppose that f: (a,b) > R is monotone and that c € (a,b), then

3 xh_)r?if(x) = f(cx).

Proof
It suffices to prove that if f: (a,b) — R is non-decreasing, then

f(x) —> LUB {f(x): ze(a,0)}, & f(x) = inf{f(z): ze(c,b)}.
We only prove that f(z) — L= LUB{f(z): = € (a,c)} (the other

proof being similar).

Let € > 0, then L-e¢ is not an upper bound for { f(z): z € (a,c)} and
so 3 z. € (a,c) with f(x.) > L —e€. It follows from the non-decreasing
property that V y € (z, ¢):

L-e<f(z)< fp) <L
whence |f(y) - L| <e. O

Corollary (continuity of monotone functions)
Suppose that f: (a,b) - R is monotone and that c € (a,b), then f is
continuous at ¢ iff f(c=) = f(c+).

Next topics
MONOTONE FUNCTIONS CTD., MAXIMA FOR CONTINUOUS FUNC-
TIONS, UNIFORM CONTINUITY, DIFFERENTIABILITY.
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Lecture #16
i

Proposition (IVP of monotone functions)
Suppose that I c R is a bounded interval and that f : I - R is
monotone, then f is continuous <> f(I) is an interval.

Proof of <)
Suppose that f is non-decreasing, and that f is not continuous at

cel=(a,b), then f(c-) < f(c+) and (f(c-), f(c+)) 0 f(I) € {f(c)}.
Ju,ve f(I), u< f(c=), v f(c+). Since [u,v] c f(I) fails, f(I) is

not an interval. O

Proposition (continuity points of monotone functions)
Suppose that I = (a,b) c R is an open interval and that f: 1 — R is
monotone, then

INCy={xel: f discontinuous at z}

18 at most countable.

Proof for f:I - R monotone, non-decreasing : Firstly,
{rel: f discontinuous at x}={zel: f(z+)> f(z-)}.

We show that this set is at most countable by expressing it as an at
most countable union of finite sets.
Note that possibly f(x) ——— —oo and/or f(z) —— oo

r—a,r>a r—b,x<b
Given s, t € I such that s <t and € > 0 we claim that Ji ), = {z €
(s,t): f(z+)— f(x—) > €} is finite.
To see this, let N >3, w1 <@y <---<xy € (5, then

F@)=f(s) 2 f(an+)-f(21-) = kZ;f($k+)—f(xk71+)+f($1+)—f(561—)-
For 2<k <N, f(axp+) - f(zp1+) > f(ap+) - f(zr—) whence

(1) - £(5) > Flons) - flz1-) > i Flare) - fzi-) > Ne

1891/5/17
19T his possibility was not considered for in class.
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and N < M This shows that #.J ). < w Next, choose
Spytn € 1 with s, >s,,1 4 a and t,, < t,,1 1 b, then

{zel: f(z+)> f(z-)} = Ssmitn), L
n=1
which is at most countable being an at most countable union of finite
sets.
Example: Monotone f:(0,1) - R with C;=(0,1)\Q.
Define f:(0,1) —» R by
Lgz]
f)=y

q12q

where |2| =max{n € Z: n < x}. The series converges absolutely and
forO<z<y<l,

F) - f(@) = z ;g—
:qz:;(l qulqﬁ)
— g (lqyJ;qquJ)
> 0.

To see that f(y) > f(z), note that 3 g € Q, so that z < g <y whence
[Qy] - Qx| >1 and X
F) - 1) 2 o
This shows that f is strictly increasing.

Claim This function f is continuous at irrational points of (0,1) and
discontinuous at rational points of (0,1).

Proof
9 Discontinuity at r = g € (0,1): here

|Qr| = P whereas for z<r, |Qr|]<P-1

() = f(x) 2 WZQLQ

and f(r) - f(r-) > 55.

whence

9 Continuity of f(z):= Y2 laol 45 7 ¢ (0,1)\Q:

q12q
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Let |z| := min{|z —n|: n € Z} and note that
(i) 2 ¢ Qiff [gz| >0V geN;
(i) if ¢ Z and y € R, |y — x| < |z|, then |y]| =|z].
Proof: Draw a picture.

Now fix Z € (0,1) ~ Q and let € > 0, then

e 3Q=QceNsuchthat Y25, 55 <6
e 3§ =0g >0 suchthat if [y — Z| < 0, then |qy - ¢Z| < ||¢Z| and

consequently |qy|=1¢Z] ¥V 1<q<Q.
Thus, for |y — Z| < 4,

1f(y) - f(2)] =

|

~

—

)

<

| S—

|

—

LS
N

| S

~

g=1 24
- lay] - 14Z]]
q=0Q+1 24
< Z L. ¢

q=Q+12

CONTINUOUS FUNCTIONS ON CLOSED, BOUNDED INTERVALS

Weierstrass’ Theorem
Suppose that A c C is a closed, bounded set and that f : A - C is
continuous on A, then f(A) is closed and bounded.

Proof
Proof  of boundedness:

Suppose that f(A) is not bounded, then no n € N is an upper bound
for the set {|f(x)]: x € A}, and so V n € N 3 z, € A such that
|f(zn)] > n. By the BW theorem, 3 n; — oo and z € C such that
Tn, — x. Since A is closed, we have x € A and since f: A - C is
continuous, we have f(x,,) - f(x). Thus, the contradiction:

0o« < |f(@n,)| ~|f(x)] < o0.

Proof  of closure:
Let w, € f(A) and assume that w, - w. We show that w e f(A).
Indeed 3 z, € A with w, = f(z,). Again by the BW theorem,
3 ng - oo and z € C such that z,, - x. Since A is closed, we have
z € A and since f: A — C is continuous, we have f(z,,) — f(z). Thus

fx) < flan,) > w
and w = f(x) e f(A). d
Corollary
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Suppose that A c C is closed and bounded. If f: A — R is continuous
on A, then 3 o, we A so that

fla)> f(z) > f(w) V zeA.

Proof Since f(A) cR is closed and bounded, we have
LUBf(A) e f(A) & GLBf(A) e f(A). &

UNIFORM CONTINUITY (mm 773 ma'sn)

Definition
Suppose that A ¢ R and that f: A - R. Say that f is uniformly
continuous on A if

@) Ve>0, 30=0d(e, A) >0 such that
z,yed, |r-yl<é = |[f(2)-[f(y)l<e

Evidently. if f : A - R is uniformly continuous on A, then f is
continuous at every x € A.
Proposition

If f: A—> R isLip on A, then f is uniformly continuous on A.

Proof Suppose that M >0 and that
[f (@) = f(l < Mlz-y| ¥V z,yeA,
then f satisfies © with (e, A) = 17 O

Examples.
1) Define f:R - R by f(x) = z2. Note that for z, n > 0:

fle+n) = f(x) = (22 +n)n > 2,
thus V 6 >0, 3 2,y €R, |z —y| <0 such that |f(x) - f(y)|>1 and f is
NOT uniformly continuous on R.
2) We claim that f(z) = /z is uniformly continuous on [0, 00). To
see this we prove first the inequality

Y-Vl <]z -yl ¥V z,y>0

To see the inequality, let 0 <z <y =z + h, then

_ x| = y-=x - h — —
ViVl == e < ViVl

Thus f satisfies © with 6(e, [0, 00)) = €2.
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Theorem (Cantor)
Suppose that A c R is closed and bounded. If f: A — R is continuous
on A, then uniformly continuous on A.

Proof

Suppose that f: A - R is not uniformly continuous on A, then ()
3 €>0such that V n > 1, 3 z,,y, € A such that |z, — y,| < % and
f(@a) = fyn)] 2 €.

The sequence {z,} is bounded (being in the bounded set A) and so
by the BW theorem 3 nj; - oo and z € R such that z,, - z. Since A is
closed, z € A and by continuity of f at z, f(zn,) —> f(2).

However, y,, — z too, whence (again) by continuity of f at z:
f(yn,) = f(2). Thus the contradiction

e <|f(@n) = f(yn ) <1 (@n) = F 1 (yni) = f(2)] = 0.

Next topics
MODULUS OF CONTINUITY, DIFFERENTIABILITY, POWER SERIES,
MEAN SLOPES, GRAPH SKETCHING.
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Lecture #17
Y

MoODULUS OF CONTINUITY.

Proposition
The function f: AcC— C is uniformly continuous on A iff

wra(t) =LUB{|f(2) - f(y)|: w,yeA, [x-y|<t} —0.

t—0+
Proof of =) Let e>0. By uniform continuity, 3 6 > 0 such that
IL’,yEA, |l’-y|<6 ad |f(fL')—f(y)|S€7

whence for t < §:

wra(t) =LUB {|f(z) - f(y)l: wye A |r-y[<t}<e
“)
Let € >0. 3§ >0 such that LUB {|f(z) — f(y)|: z,ye A, |[x-y|<
d} <e. Tt follows that

r,yeA, lvr-yl<d = |f(2)-f(y)|l<wpa(lz-y|) <e
O

The function w4 : Ry — Ry is known as the modulus of continuity
of the function f: A — C.

The function f: A - R is Lip in case 3 M > 0 so that w4 () <
Mt (t>0).

For Rudin’s function T = S% 4 (ason p. , by (iii) of the exercise
on p. [86, 3 C' >0 so that
log 3
wTR(t) < Ctl_@.
Exercise

For N €N, show that wp | [0,e0)(t) = ¥ where Py (t) = tv.
~

Exercise
Let J be a bounded interval. Prove that f:J — R is uniformly continuous <= f has
a continuous extension to J.

Exercise

2095 /52017
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Which of the following functions f : (0,1) - R are uniformly continuous on (0,1)?
)z~ (1 +x)%; (i) z %; (iii) z ~ zlogx.
Exercise

Y% Suppose that f:[0,1] - [0, 1] has the IVP. Suppose also that for each ¢ € [0, 1], the
set {x €[0,1]: f(x) =t} is closed. Show that f:[0,1] — [0,1] is continuous.
Hint: Suppose that f is not continuous at z € (0,1], then 3 0 < a < b <1 and up, vp —

Z, Un, vnp < so that f(un) <a & f(vn)>bVn>1...

TANGENTS AND DIFFERENTIALS

Definition
The function f : (a,b) - R is said to be differentiable at (-a am)
x € (a,b) if 3 f'(x) € R such that

h h—0, h#0

The number f’(x) € R is known as the derivative (nwm) of f at z. It is
sometimes denoted f/(x) = %(x). It f7 is also differentiable at z, its
derivative, the second derivative of f at z is denoted by f(z) = f (),
ete. (f(®)(x) being the k** derivative of f at z).

Proposition (differentiability = continuity)
Suppose that f:(a,b) - R. If [ is differentiable at c € (a,b), then f

18 continuous there.

Proof By assumption,

fleth) = f(e)

h h—0, h=0 f'(e) eR.
We'll show f(x) Helli f(c). To this end suppose that h, — 0, h, 0,

then
f(c+hn) —f(C)
ha,

— 0.

flethn) = f(c) = I

O

o  We'll see later that if f: (a,b) - R is differentiable on (a,b), then
f is Lipschitz continuous on (a,b) iff | f’| is bounded on (a,b).

Examples. q1 % =0,

@2 L =ngn! (neN).
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Proof
“(n
(z+h)"—a"=2"+hnz" '+ ( )x”‘khk,

whence

|(m +h)r—an na" | = | i (n)mn—khk—l‘
h k=2

4 % = e,

Proof By (#) on p. 49,
r<e’—1<xe® ¥V reRN{0}

whence

and for x € R,

h h k=0, hz0

115 dlogx _ l.

dx T

Proof By (f) on p4g] for z, y > 0,
S(y—z) < log(y) —log(z) = log(¥) < ;(y-=).
It follows that
log(x + h) —log(x) 1
h h—0, h#0 T

€6 Rudin’s function T'(z) = Yoo, (3)"(4"x) is nowhere differentiable
by (%) on p. [35]

One sided derivatives. Let f:[a,b) — R. We say that f is differen-
tiable from the right at ce€ [a,b) if
3 lim, e, 2O = pr() e R

Similarly f is differentiable from the left at ce€ (a,b] if

3 limye. {91 = pr(c) €R.

Evidently if f : (a,b) - R is differentiable at c € (a,b) iff f is differ-
entiable from both the right and the left at ¢ and f’(¢) = f/(¢).
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Example. Let A(z) := |x| (z € R), then A is differentiable at each
x#0 with A/(z) =1 for x>0 & A’(z) = -1 for x < 0. A is onesidedly
differentiable at 0 with A%.(0) =1 & A’ (0) = -1.

Routine Theorem on arithmetical operations
Suppose that u,v : (a,b) - R are differentiable at c € (a,b), then u+v
and wv are also differentiable at ¢ with

(a) (u+v)'(c) =u'(c) +v'(c),
(uv)'(c) =u'(c)v(c) +v'(c)u(c).
In case v'(c) #0, & is differentiable at ¢ with

(b) (E)’(C) _ UI(C)U(C) B U(C)UI(C) )

v v(c)?

Proof Using the relevant theorems on arithmetic operations with
limits, let h # 0, then
(ut+v)(c+h)—(u+v)(c) u(c+h)-u(c) . v(c+h)-v(c)
h B h h

! / .
po e W)V (0);

(uwv)(c+ h) = (uv)(c) _
h

_ u(c+h)v(c+h) —u(c)v(c+h) +u(c)v(c+h) —u(c)v(c)

h
u(c+h) —u(c) v(c+h)-v(c)
=v(c+h) . +u(c) .
e v(c)u'(c) +u(c)v'(c).
Y(c+h)-2(c) _
h
_ u(c+h)v(c) —u(c)v(c+h)
hv(c)v(c+ h)
_ u(c+ h)v(c) —u(c)v(c) +u(c)v(c) —u(c)v(c+h)
hv(c)v(c+ h)
_ v(c)  u(c+h)-u(c) u(e)  wv(c+h)-v(c)
v(c)v(c+h) h v(c)v(c+h) h

u'(c)v(e) —ulc)v'(c)

h—0, h0 U(C)2 '
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Corollary 1  Any rational function is differentiable on its domain of
definition.

Proof

The constant functions (C(x) = ¢) and the identity function (I(z) =
x) are differentiable on R (as can be shown directly) with derivatives
C'"=0 & I’ =1. Applying (a) successively, we see that any polynomial
is differentiable on R.

A rational function is a function of form R = g where P, () are poly-

nomials and is thus differentiable (by (b)) on its domain of definition:
{xeR: Q(x) % 0}. O

DERIVATIVES OF COMPOSITIONS AND INVERSES

Derivative of composition (chain rule)
Suppose that I, J c R are open intervals and that f:1 - J, g:J - R.
If f is differentiable at a € I and g is differentiable at f(a), then
g o fis differentiable at a with

(gof)(a)=9'(f(a))- f'(a).

Proof Suppose first that f/(a) # 0, then 3 n > 0 so that f(a+h) #
f(a) ¥V 0 <|h| <n. Thus if h, - 0, h, # 0 and |h,| < n, then setting
ky = f(a+h,) - f(a) # 0 and noting that k,, — 0 (by continuity of f at
a), we have
9(f(a+hn))—g(f(a)) _g(f(a)+kn)—g(f(a)) fa+hy) - f(a)
hn kn h’n
e 9'(f(a))f'(a)

and

h)) —
Now suppose that f’(a) =0. We show that

g(f(a+h)) -g(f(a))

h h—0, h+0

To see this, let h, - 0, h, #0 and set k, := f(a+h,)— f(a) Vn>1,

Ko:={neN: k,=0}, Ky:={neN: k,#0}.
o If #Kj= o0, then

9(f(a+h.)) -g(f(a)) _g(f(a) +ki) ~9(f(®)) '\ &
P P ’
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and 20t -g(/@)

— 0.
n—oo, neKy

o If #K; = oo, then
9(f(a+hn)) —g(f(a)) _g(f(a)+kn) - g(f(a)) kn

hn k}n hn A n e Kl
whence
g(fla+hy))-9(f(a )
D Zgt@D) () (@) 0.
n n—o00, neKy
This shows that g(f(“m)})b_g(f(“)) — 0. O
h—0, h+0
Corollary

ForaeR, F,(x)=x% is differentiable on R, with F'(z) = ax®1.

Proof  We first write F;, = expoA olog(x) where A(zx) = az. By the
chain rule,

F!(z) = exp’(Aolog(z))-A’(log(x))-log'(x) = exp(alog(x))-aé = az® .
U

Theorem (Derivative of inverse function)

Let I = (a,b), let f: I —R be continuous and strictly monotone and
let f=1: f(I) > I be the inverse function.

If x € (a,b) and f is differentiable at x with f'(x) # 0, then f~1 is

differentiable at f(x) with f~V(f(z)) = f,(lx).

€ Note that the assumption f’(x) # 0 is necessary: = = f(z) = 23 is a
differentiable bijection (-1,1) — (=1,1) with f/(0) =0 and f~': (-1,1) -
(=1,1) is not differentiable at 0 = f(0).
Proof Set y:= f(x). We’ll show that
-1 o
fly+rh) -y 1
h h=0, h=0 f'(x)
Write k== f~Y(y+h) — f~'(y), then
e k—0ash— 0 by continuity of f~! at y; and
e k+0iff h+0 by bijectivity of f~1.
Let h, - 0, h, #0, then k,, - 0, k, # 0 and
[y +ha) - 71 (y) kn !
hn f@+ky) = f(x)  f(x)
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Lecture #18
BT

HIGHER DERIVATIVES

Let f:(a,b) > R. We say that f is twice differentiable on (a,b) if
(i) f is differentiable on (a,b),

and
(i) f7 is differentiable on (a,b). We denote f(2) = f:= (f')’, the second
derivative of f on (a,b).

More generally, for n > 2, say that f is n-times differentiable on (a,b)
if
(i) f is n— 1-times differentiable on (a,b),

and
(ii) f(=1 is differentiable on (a,b). We denote f(™ := (f(»=1)/ the
nth derivative of f on (a,b).

Say that f is n-times continuously differentiable on (a,b) (or fis C™
on (a,b)) if f is n-times differentiable on (a,b) and f(") is continuous
there.

Exercise

Define a: R - R by a(z +n) := (-1)"z(1-z) for n € Z & z € [0,1]. Show that a is
continuously differentiable on R with a’(z +n) = (-1)"(1-2z) for ne Z & z € [0,1].
Hint Take one-sided derivatives at integer points

Exercise: Differentiable with discontinuous derivative
Let a:R — R be as above and define b: R - R by

N R

Show that
(i) b is differentiable on R with

Y (x) 2za(L)-a'(L) =z +0;
0 =x=0.
(ii) b’(z) is not continuous at x = 0.

Exercise: Leibniz’s “product derivative theorem”

Suppose that u,v: (a,b) > R are n-times differentiable on (a,b).
1) Prove Leibniz’s theorem: that uv is also n-times differentiable on (a,b) and

(uv)™ = i (:)u(’“)v("—k).

k=0

2198 /5 /2017
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2) Given that f : (-1,1) - R is C? and f®(z) = zf(x) ¥V z € (~1,1) show using
Leibniz’s “product derivative theorem” (or otherwise) that f is infinitely differentiable
(i.e. n-times differentiable ¥ n) on (-1,1) and find (™ (0) in terms of a = £(0), b= f'(0).

3) Suppose that z, y : (a,b) - R are twice differentiab(lQe) and y(t()2)= f(z(t)) where
f:R = Ris twice differentiable. Show that f® (x(t)) = £—1= (;/)(_53 Wy @ whenever
x'(t) # 0.

DIFFERENTIATION OF POWER SERIES

Let S(x) := Y07 a,x™ be a power series with radius of convergence
R > 0. Recall that for 6 € R, the radius of convergence of the power
series Yo7  nfa,xz™ ! is also R (see p.67).

Theorem

Let S(x) == ¥ ga,x™ be a power series with radius of convergence
R>0; then S: (=R, R) — R is differentiable on (-R, R) with derivative
T(x) =¥ naz™ !,

Proof  The power series T'(x) has the same radius of convergence as
S(x) and also as Yoo n2a,x™. It suffices to show differentiability on
(-r,r) VO<r<R.

Fix r € (0, R), then

> n?lan|r"? = M < oo.

n>2
We'll show that for x € (=r,r), h # 0 so that x + h € (-r,r), we have

S(z+h)-S(x)
h

() - T(x)| < M.

To this end, let x,y € [-r,r], then for n > 1

n-1
yn_xn: (y_l') Zykxn—k—l _—
k=0

() - < ly -]



106 (©Jon Aaronson 2007-2017

It follows that for n > 2,

yn_xn ~
—nx" Zyk n—-k-1 _ nl

— Z :L‘n_k_l(yk _ xk)
k=1

whence for n > 2,
yn — mn
y-—x

n-1
(@) — ™t < Z Tn_k_llyk _ $k|
k=1

n—1
<y -z Z "l by (s)

k=1
<|y $|n2n2

Now fix x € (-r,7) and let h € R be so small that y := z + h € (-r,r),
then T'(x) converges absolutely and

S(x+h)-S(x) ()| < Z 0| (x+h)" -z el
h o] h
_ im | (x+h)r—an R
n=2 " h
< |h| Y, n®lan|r"™® by ()
n=2

Corollary
Let S(x) = ¥ ga,a™ be a power series with radius of convergence
R>0; then S: (=R, R) — R is infinitely differentiable on (-R, R) with

derivatives

[ee)

S(k)(l‘) — n—k

and
S (0)

n!

n:
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SLOPES & GRAPH SKETCHING

Local extrema & stationarity. Suppose that f:(a,b) > R.

A point c € (a,b) is called
e a local mazimum (wpn owopn nmpy)  [minimum (wmpn owren nmpy)]  if
3 € > 0such that (c—¢,c+e) c (a,b) and f(x) < f(c) [f(z) > f(c)]V xe
(c—€,c+e);
e a strong local mazimum [minimum] if 3 € > 0 such that in addition,
flx)y<fle) [f(z)<f(c)]Ve+taxe(c—€,c+e)); and
e an extreme point (pep nmpy) if ¢ is either a local maximum or a local
minimum.
Fermat’s theorem

Suppose that f : (a,b) - R is differentiable on (a,b). If c € (a,b) is

an extreme point, then f'(c) = 0.

Proof
Suppose that f(z) < f(c) YV x € (c—€,c+e€), then

@)= @) _,

f'(¢) = lim
T+ €T —C
and
- L@ TS
g—e- r—c g—e- c-T

Consequences of Fermat’s theorem.

Darboux’s IVT for derivatives
Suppose that f : [a,b] > R is continuous on [a,b], differentiable on
(a,b) and one-sidedly differentiable at a and b, then

V Kel(fi(a),f (b)), 3 ce(a,b) such that f'(c) = K.

Here I(X,Y) := (min{ X, Y}, max{X,Y}).

Proof in case f[(a) < f’(b)

Fix K € (fl(a), f'(b)) and define F : [a,b] - R by F(z) = f(x) -
K(z - a)— continuous on [a,b] and differentiable on (a,b). By Weier-
strass’ theorem 3 ¢ € [a,b] such that F(z) > F(¢) V x € [a,b] and we
claim that c € (a,b).

To see that ¢ # a note that F’(a) = f/(a)- K <0 whence 3 x > a such
that F(z) < F(a) and a # c. Similarly, ¢ # b as F'(b) = f'(b) - K >0
whence 3 x < b such that F(x) < F(b).

Thus, c € (a,b) and is a local minimum for F', whence F'(¢) =0 =
f'(e) = K. O
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Remark. Darboux’s IVT is not a consequence of Cauchy’s IVT as
there are derivatives which are not continuous. Actually, the reverse is
true. Every continuous function is a derivative (of its ”integral“, see
calculus 2A) and so Cauchy’s IVT is a consequence of Darboux’s.

Rolle’s theorem

Suppose f : [a,b] = R is continuous on [a,b] and differentiable on
(a,b). If f(a)= f(b), then 3 c€ (a,b) with f'(c)=0.

Proof

Let M := LUB ye[a5) f (%), m = infycpap) f(2). Incase M =m, f= f(a)
on [a,b] and f'=0 on (a,b).

To treat the remaining cases, we consider only the case M > f(a)
(the others being analogous). By Weierstrass’ theorem, 3 ¢ € [a,b] such
that f(c) = M. Since M > f(a) = f(b), we have c € (a,b) whence c is a
local maximum for f. By Fermat’s theorem, f’(c) = 0. O

Exercise

Suppose f : [a,b] — R is continuous on [a,b] and differentiable on (a,b). Let M :=
LUB yefa,0]f (), M := GLB 4¢[q51.f (). Show that either {f(a), f(b)} = {m, M} or I ce (a,b)
with f'(c) = 0.

Lagrange’s mean slope theorem MST (vsmn mow vown)
Suppose I = [a,b] c R is an interval, and that f: 1 - R is continuous

on I and differentiable on (a,b), then 3 c € (a,b) with f'(c) = %

Proof ,

Define g(z) := f(z) - D(z - a) with D := £ l)):f:(a), then g(a) = g(b)
and by Rolle’s theorem, 3 c € (a,b) with ¢’(c) = 0, whence f'(c¢) =D =
f(bl);_f(a)' ]

Corollary (bounded derivative vs. Lip) Let f: (a,b) > R be dif-
ferentiable, then f is Lipschitz continuous on (a,b) iff Sup,eap) |f(7)] <
Q.

Proof of =

Suppose |f(x) - f(y)| < M|z -y| ¥ z,y € (a,b), then

fat =@, o

h—0, h#0 |h|

| ()]

Proof of «
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Suppose Sup,¢(qp |f/(z)| =2 M <oco.  Fix a <z <y<b, then by MST
3 ze(x,y) so that f(y) - f(z) = f'(2)(y - z), whence

f@) = F@)] =)y -2l < Mly-=|. @
Remark. It is easy to see that Lipschitz in (a,b) # differentiabil-
ity there. However it follows from an (advanced) theorem of Henri

Lebesgue that if f: (a,b) - R is Lipschitz continuous, then f is differ-
entiable at some point of (a,b).

Graph-sketching.
Consider a differentiable f : (a,b) - R.

(1) f">0o0n (a,b) <= f is non-decreasing on (a,b).

Proof of = Suppose that a < x <y < b. By Lagrange’s MST 3 z € (z,y)
with f(y) - f(z) = (y —2) f'(2) 20 O

(2) f'>0o0n (a,b) = f is strictly increasing on (a,b).
Proof Similar to 1).

(3) f is strictly increasing on (a,b) # f'>0 on (a,b).
Proof 1f f:(-1,1) > R is defined by f(z) := a3 then f is strictly
increasing on (-1,1), but f/(0) =0. O

Proposition Let f:(a,b) = R be differentiable.

f s strictly increasing on (a,b) <~
(i) ' >0 on (a,b), and (i) A a nontrivial subinterval J c (a,b) with
ff=0o0nJ.

Proof

=) Suppose that f is strictly increasing on (a,b), then evidently,
fr>0. If f/=0o0n (x,y) c (a,b), then by MST, 3 z € (x,y) so that
fy)=f(z)=(y—x)f'(2) =0 whence f|(z,y) = f(x) contradicting the
strict increase of f on (a,b).

<) Suppose (i) and (ii). As before, f is non-decreasing on (a,b). If
f does not increase strictly, 3 (z,y) c (a,b) with f(z) = f(y) whence
fl(x,y) = f(z), f'|(x,y) =0 contradicting (ii). O

Proposition: (condition for strict local maximum):
Suppose that f is C? on (a,b). If c € (a,b) satisfies f'(c) =0, f"(c) <

0, then c is a strict local mazimum for f.
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Proof By continuity of f”, 3 € >0 such that f” <0 on (c-€,c+¢€) c
(a,b) whence f’ strictly decreases on (c—¢€,c+¢).

It follows that f’ > f’(¢) = 0 on (c—-¢,¢) and f' < f'(c) = 0 on
(c,c+e).

Thus f strictly increases on (c—¢,¢). and strictly decreases on (¢, c+
¢). Consequently,

flx)y<f(c) Yaxe (c—€c)u(ccte). @
Exercise: Prove Bernoulli’s inequalities

(i) For x >0, a >0, ,

<l-«o O<a<l;
% - azx =0 a=1;
>l-o else.

Hint: Consider the regions of positivity-negativity of the derivative of the function f(x) = 2% -
az+a-1 (z>0).
(ii) Using (i) or otherwise, prove that
(1+2)’>1+8z Ya>-1&B>1.
When is there equality?
(iii) Show that for >0, 0<a <1, (1+z)% <1+z™

(iv) Show that for 0 < aw < 1, wp, [0,00)(t) =™ where Py (x) = 2.

Next topics

TRIGONOMETRIC FUNCTIONS, POLAR COORDINATES IN C, FUNDA-
MENTAL THEOREM OF ALGEBRA, EULER-MACLAURIN-TAYLOR EX-
PANSIONS I, REMOVAL OF SINGULARITIES
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Lecture #19
&

DIFFERENTIAL EQUATIONS & ANTIDERIVATIVES

For differentiable functions F': (a,b) - R:

91 F'=0on (a,b) = F constant on (a,b).
Proof Suppose that a <z <y < b, then by the MST, 3 z € (x,y) such

that F(y)—F(x):(y—x)F’(z)=0. O
@2 F' = 2% on (a,b) (keZ,) = F(x)="%17 "+ ¢ on (a,b) for some
ceR.

Proof  Define G : (a,b) - R by G(z) :== F(x) - k+1 , then G’ =0 and
by q1, G is constant. O

@G F:(a,b) >R, F'=F = F(x)=Ke* on (a,b) for some K €R.
Proof  We ShOW first that if />0 on (¢,d) c (a,b), then F(z) = Ke®
on (¢,d) for some K €R,.

To see this,

F/
F'=F = (nF)=— -12 WmF(z)=x+k (some k eR)

and F(x) = eFe =: Ke®.

To finish, we now claim that either F =0, F' <0, or F'>0 in (a,b).

If not, then (maybe passing to —F') we can find a subinterval (¢, d) c
(a,b) where F'>0 on (c,d) but inf(. 4 F = 0. By the first part, F'(z) =
Ke® on (c,d) where K € R, and inf(. 4 F' = Ke¢ > 0. Contradiction. X
€4 Let S(x):=>,",a,z™ be a power series With radius of convergence
R > 0; then the power series T(x) := Yoo, 2L ~ also has radius of con-
vergence R > 0. Moreover by the power serles differentiation theorem,
T:(-R, R) - R is differentiable on (-R, R) with 7" = S.

DIFFERENTIATION OF SERIES

Proposition Suppose that I c R is an open interval and that f,: I —
R (n>1) are differentiable on I and satisfy

(i) X2y v, <00 and (i) Yoo, w, where

vy = sup | fu(2)| & wy, = sup|fy, (z)] < oo,
xel zel

221 /62017
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then both S(z) = Y27, fu(z) and T(z) = Y00, f(x) converge abso-
lutely ¥V x €I and
S : I - R is differentiable with S" =T

Proof Suppose that z, x+h e I where h #0, then z+0h e IV 0 € (0,1)
and by the MST,
Vn>1, 36,¢(0,1) so that M = fl(z+0,h).

It follows that
fa(x + D) = fu(x)
h

= fo(@)| = [fa(@+ 0,h) = fr(2)] < 2wy,
Now let hy #0, x+hpel YV k>1hy -0, x, then V n>1,
(k) 1= [ — f ()] —— 0
and |a, (k)| < 2w, V k,n>1.
It follows that
S(x+hg) - S(x)
hy

fn(x + hk) fn(x)

-T(x)| <

>

n=1

- [u(2)

o0

= > an(k) — 0 by the dominated convergence theorem for series.

Exercise
Let ||z| := min {|x —n|: n€Z} and define
Y]

(0) Show that t(z + 1) = t(z) and that T%’Q(m) =2t(3) VO<z<2

In this exercise, you show that
® t:(0,1) - R is differentiable with t'(z) = 2 - 4z

whence t(z) =2z(1-z) V z €(0,1).
(i) Let J(x) := |z| (z € R). Show that .J is onesidedly differentiable on R with Ji(z) =
1-21p 1)Jrz(x) and Ji(z)=1- 211y Lz(@).

Here la(z)=1ifze A& 1a(z)=0if 2 ¢ A and for B c[0,1],

B+Z:={zx+n: ze B, neZ}=J(B+n).
neZ

ii) For n > 0, set J,(z) := ‘](27:9”), then J, is differentiable both from the right and from
1

the left with

1*21[%,1)+z(2n$) 1*21(%,1]+z(2nx)

Ji() = » & Jy(x) = -

(iii) Show (using binary expansion theory or otherwise) that for x € (0,1), the following
series converge absolutely and

M Jne(@) =Y Jho(w) =2 - 4a.
n=0 n=0
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(iv) Show that for x € (0,1), h >0 so that  + h € (0,1), the series

v (z,h) = iw & v (z,h) = iow

converge absolutely and that for n = +,
ty(z,h) ——— 2-4a.

h—0, h>0

(vi) Prove ©.

TRIGONOMETRIC FUNCTIONS

The geometric definitions of SIN & COS.

The classical geometric SIN & COS functions are defined as a func-
tion of an angle. An angle is defined in geometry as an equivalence
class of corners (ordered pairs of half lines emanating from the same
point).

Representative corners are indexed by the unit circle

St:={(z,y) eR®: 2®+y*=1}={z€C: |2]=1}
by
4P=(Li,Lp) PeS!
where for P = (z,y) € S!,
Lp:={(at,yt): t>0} & Ly :={(t,0): ¢t >0}.

A classical geometry result is that any corner is equivalent (i.e. can
be geometrically copied on-) to a corner of this form.
Here, the geometric definitions of SIN & COS are

SIN¢P=y & COS<P=x2 (2P=(x,y)eS").

Thus, the representation of angles as real numbers (via polar
coordinates below) requires functions sin, cos : R - R with certain
properties, which we now proceed to define and construct analytically.

Theorem sin by differential equation
There is a unique C? function sin: R - R so that

sin” = —sin, sin(0)=0 & sin’(0) =1.
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Proof of existence The power series

1)”5[}2n+1

_ o (=)t
sin(z) = Z @+ 1)

which converges absolutely on R, is infinitely differentiable there with

sin”(z) = 2(271 +1)2n - (E;?Zn—fln)_'
-5
= —sin(x)

and satisfies sin(0) =0, sin’(0)=1. ©
Proof of uniqueness This follows from the

Uniqueness Lemma
If F:R - R is twice differentiable on R with

F"=—F, F(0)=0 & F'(0) =0,
then F'=0 on R.
Proof  Define S:R—>R by S:=F?+ F’?2 then
S'"=2FF'"+2F'F"=2FF"-2F'F =0.
Thus S is constant and S = S(0) =0, whence F'= 0. @

Historical note.
The expression of trigonometric functions as power series goes back
(at least) to Madhava of Sangamagrama (~ 1350 — 1425).

Exercise: solutions of differential equations by power series

Show using power series (or otherwise) that

YV n>1, ap,a1,...,an-1 €R, 3 f:R—>R C" sothat f™ = f and f®(0) = ay, for
k<n-1;

(i
0<
(ii)* Airy’s equation 3 f:R >R C?, f#0 so that f’(z) = zf(x).

Definition of cos.

cos(z) :=sin'(z) = RZ%( (12)7:;%

Theorem: Trigonometric uniqueness

If f:R—R s twice differentiable on R and " =—f, then
f=f(0)sin+f(0) cos.

Proof  Follows from the uniqueness lemma.
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PROPERTIES OF sin & cos.

Proposition (addition formula)
sin (z +y) =sin (x) cos (y) + cos (z) sin (y) &
cos(z+y) =cos(x)cos(y) —sin(x)sin(y) V z,yeR;

Proof
For fixed y, define f,g:R - R by

f(x)=sin(z+y) - (sin(x)cos(y)+cos(x)sin(y)) &
g(z) :=cos (x +y) — (cos () cos (y) —sin (x) sin (y));

then ' =g, ¢’ = —f whence (f2+¢?) =0 and f2+¢%= f(0)2+¢(0)2 =0,
whence f = g =0 and the addition formulese hold. &

Proposition

sin(—x) = —sin(x) & cos(-x) = cos(x).

Proof By inspection of the power series. &

Corollary.

2+cos=1on R.

sin
Proof
1 =cos(x —x) = coszcosx —sin(—z)sinx = sin® z + cos’ z. I
Definition of m.
m:=2inf{Z >0: cos(Z) =0}.
Proposition.
7€ (0,8) & cos(§) =0.

Proof  of m>0: By continuity of cos & cos(0) =1, 3 € >0 so that
cos(z) > % V |z| <€, whence m > 2¢. &
Proof of w<8: By the MST for sin, 3 £ € (0,2) such that

sin2 =sin2 —sin0 = 2sin’(§) = 2cos ¢

whence

cos(e)] = N ¢ L
It follows that

cos (2€) = 2cos?(£) -1 <0.
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By the IVT for cos, 3 ¢ € (0,&] such that cos(¢) =0. Thus 7 < 2¢ <
26 < 8.
By continuity, cos(3) =0. @

Properties.
90 cos >0 on (-3,%).
Proof cos>0on (0,75) by definition and hence on (-7, %) by evenness.

€1 sin>0on (0,%).
Proof Fix x€(0,%). By MST 3 £ € (0,2) such that

sin(z) =xcos(§)>0. @

942 cos strictly decreases and sin strictly increases on (0, % ).
Proof On (0, %),

sin=cos>0 & cos’'=-sin<0. &

€3 sin(f) =1, cos(m) =-1, sin(m) =sin(27) =0, cos(2m) = 1;
Proof  that sin(5) = 1: Since cos(%) = 0 we have sin(5) = 1.
Positivity follows from q1.

The other bits follow from the addition formulee.

Proposition
|sinz| < |z| V xzeR.

Proof It suffices to prove the inequality for x > 0. To this end, define
f:[0,00) > R by f(z):=sinx -z, then f is differentiable with

f'(x) =cosz - 1.

Now, cosz <1V 2 >0 and f' <0 on (0,00). Thus f:[0,00) > R is
monotonic, non-increasing, whence

f(z)<f(0)=0VY x>0

and the inequality follows. &
There is no subinterval of (0, 00) where f/ =0 and so |sinx| < |z| V x +

0.

Exercise: Trigonometric Periodicities

Using the addition formulee, show that
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(0) sin(nm) =0 & cos(nw) = (-1)" V neZ;

(i) cos(z +2m) =cos(z) & sin(z+27) =sin(z) VY z € R;
(ii) cos(x) =sin(F +x) V z € R;

(iii) sin >0 on (0, 7).

(iv) sin (z) =0 iff € 7Z and cos (z) = 0 iff w e 7(Z + 3);
(

v) if ce R, then 3 z € R such that sin (z + ¢) = sin (z) and cos (z + ¢) = cos (z) iff c € 27Z.

Exercise: a discontinuous derivative

Define f:R - R by

1

z%cos L z#+0
x) = z
@) { 0 z=0.

(i) Show that f is differentiable on R with

1 1
sin = + 2x cos = z+0
/() { P

0 z =0,

(ii) Show that f’ is not continuous at 0.

Exercise: an unbounded derivative
Define f:R - R by

0 z=0.
Show that f is differentiable on R with f’ unbounded at 0 and thus not Lip at 0.

|:v|%cosl z#0
fz) = ’

POLAR COORDINATES IN C

Trigonometrical & complex exponentials.
Define cis: R - C by cis(t) := cost + isint, then

(520) cis(f@+1t) = cis(f)cis(t).

Proof Apply the addition formulae.
Now define Exp : C - C by

Exp(z +1y) := e"cis(y).
Euler’s formula.

Exp(z +w) = Exp(2)Exp(w) V z,weC.

Proof Let z =z +1iy, w=a+1b, then
Exp(z+w) =e*cis(y +b)
=e"e%cis(y)cis(b)
= Exp(z)Exp(w). @
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Exercise:
Let c € R. Show that sin(z +c¢) =sin(z) V z e R iff ce 2nZ.

Theorem (Polar coordinates in C) For each z€C, |z| =1, there
is a unique t € [0,27) so that

z = cis(t).

Proof

Both sin & cos: [0,Z) — [0, 1) are bijections and that sin®+cos? = 1
whence for each z,y > 0, 22+y? =1, 3 !¢ € [0,5] so that (z,y) =
(cost,sint); equivalently x + iy = cis(t).

The rest of the proof is based on extending this.
For 0,k = £1 write

Spr={z=x+iyeS: nx>0& ky >0},
then

S= U S«

n,k==%1

The above shows that cis:[0,5] - S, . is a bijection.
Next, using again by (583), for t € [0,2] & K =1,2,3, we see that
cis(t+ %) =i%cis(t)
and consequently that

Kr (K+1)7w

2 1S

cis: [
is a bijection.
Now

iS,.=S_., %S, ,=S__&i%S,,=S,_

whence (checking that there’s no problem with the overlaps)

3
cis:[0,27] » |J i*S,, =S

K=0

is a bijection. @
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Fundamental theorem of trigonometry. Fix 0<t< 2,
SIN(<«cis(t)) =sint & COS(<«cis(t)) = cost.

ALGEBRA OF C

Proposition (complex roots) For eachzeC& n>1, 3weC so
that w™ = z.

Proof WLOG z # 0 and so z = rcis(t) for some r >0 & ¢ € R. Define
1
w:=rncis(L),
then w" =z. &
In fact it is not hard to show that V 2z e Cx {0}, n>1: #{weC:
w" =z} =n.
The above proposition is a special case of the

Next topics

FUNDAMENTAL THEOREM OF ALGEBRA, POWER SERIES EXPAN-
SIONS OF SOME ELEMENTARY FUNCTIONS, REMOVAL OF SINGULARI-
TIES, RELATIVE MST, L’HOSPITAL’S RULES, LAGRANGE ERROR THE-
OREMS
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Lecture #20
&

Fundamental theorem of algebra. (FTA) Let F': C —» C be a
polynomial, then 3 z € C so that F(z) = 0.

Proof The proof is a sequence of lemmas. Let F(2):= Y ,arz* be a
polynomial of degree n >2 (i.e. where a; €C, a, #0).

Lemma 1
(min) FweC such that |F(z)|>|F(w)|V zeC.
Proof
Since ) 1| |
F(z Lt o VT
> lay| — an| >0
s [ ]; o [

we have |F(2)| e c0.

z|—>00

Fix R > 0 such that [F(2)|>|F(0)| V |z| > R.
It follows that

m:=GLB{|F(z)|: zeC}=GLB{|F(2)|: e N(0,R)}.

Thus 3 z,, € N(0, R) so that |F(z,)] —— m.

The sequence (z, : n > 1) is bounded and by the BW theorem
an»oo&weCsothatxnkT w.

By continuity of F': C — C (it’s Lip on bounded sets)

m— [F(zp)| — [F(w)l. @

The proof of the Fundamental theorem of algebra is completed by
showing that
F(w)=0.

e WLOG w=0.
Proof  Let G(z) := F(z+w), then G is a polynomial and

G(2)] 2 G(0)] ¥ 2 €C.

Lemma 2

(no-pos-min) |[F(0)|>0 = 3 5eC s.t. |[F(5)|<|F(0).

234/6/2017



Calculus T 121

This establishes a contradiction if, as above

GLB{|F(z)|: z€C} =|F(0)|> 0.

Proof :
This is in stages.
WIfF(z)=1-zm+ Y} .1 apz® with 1 <m < n, then |F(t)| <1 =
|F'(0)] V t >0 sufficiently small.
Proof  If m=nthen F(z)=1-2zmand F(8)<1=F(0)VY >0.
Otherwise, write

F(z)=1-2"+&(z) and set M ==T‘~[|IBI’ :5|(Z+)1| <%
z|< z|m

For 0 <t< 57 A1,
|IF(#)| <1=tm+|E)] < 1—t™+ Mt
tm
:1—157"(1—1\@)31—7 <1=F(0). @91

QI F(2)=1+Y} apz®, then 3 u e Cso that |F(tu)| <1 =|F(0)| V ¢t >
0 sufficiently small.

Let m:=min{k >1: a; # 0} <n. By the complex roots existence
proposition, 3 u € C~ {0} such that u™ = (1—_1 Let

Q(z):=F(uz)=1-2"+ i apuf 2F

k=m+1

By €1, for ¢t > 0 small
[F(ut)] = |Q(1)| < 1= F(0). @12
Proof of Lemma 2  Set Q(z) := L F(z) where w := F(0) # 0, then
Q(0) =1 and by 92, 3 v € C such that |Q(v)| < 1. But then
[E(0)] = [wl|Qv)] < |w| = [F(0)]. @

More trigonometric functions.
Define tanz : R\ %Z - R by

sinx

tanx := .
cosT

Evidently (!) tan(z+7) = tan(z) and tan: (-7, %) — R is differentiable
with

tan'(x) = @
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Proposition For0<z < Z,

tanx
i > 1;
() 2,
.. sinx 2
> —.
(ii) " -

Proof of (i) Set f(x):= 22 then f:(-%,5) — R is differentiable
with

() = xtan’(z) — tan(z) _ - sin(x) cos(x) _2x- sin(2x)

x? 22 cos(x)? 222 cos(x)?

because sin(2z) <2z. Thus for 0 <z <, 1= f(0+) < f(z). &

Proof of (ii) Set g(x) := ®2%, then g : (0,7) — R is differentiable

>0

with
, xsin’(z) —sin(z)  xcos(x) - sin(x x —tan(z)) cos(x
§(x) = ()2 (z) _ ()2 () _( (2)) ()
x x x
by (i). Thus for 0 <z < 7,
sin(z)

gy >9(5)=2 @

INVERSE TRIGONOMETRIC FUNCTIONS

e sin:[-F,5] - [-1,1] is a strictly increasing bijection.

To see this: sin’ = cos >0 on [-5, 5] so by MST, sin: [-5,5] - [-1,1]
is strictly increasing and hence 1-1.

The surjective property of sin: [-7, 7] - [~1,1] follows from

sin(+%) = +1 and the IVT.

The inverse function is arcsin =sin™" : [-1,1] > [-3, Z].
e tan:(-%,7) — Ris a strictly increasing bijection.
To see this: tan’ = 1+tan® >0 on [-%, 5] so by MST, tan: (-%,%) - R
is strictly increasing and thus 1-1.
Surjectivity follows from tan(+%) = +co and the IVT.
m™ T

The inverse function is arctan = tan™ : R - (=3, 3).

e cos:[0,7] = [-1,1] is a strictly decreasing bijection.
Proof. Exercise.
The inverse function is arccos = cos™ : [-1,1] - [0, 7].

Derivative of arctan
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arctan: R — (=5, %) is differentiable on (-1,1) with

t = —.
(arctanx) 1522
Proof For z €R,
- 1 - ' 1
(arctan)'(@) = tan™(2) = oty ~ o () = s @

Power series for arctan.
For |z| < 1 the power series S(x) := Y
over,

00 (71)nm2n+1

ne0 — 5 — converges. More-

l+a2
Moreover, S(0) = arctan(0) = 0. Therefore
S(z) = arctan(x) Y |z| < 1.

This series is known as the Madhava-Gregory series.

S'(x) = 2(—1)"1:2" . (arctanx)’.

Derivative of arcsin
arcsin : [-1,1] » [, 7] is differentiable on (-1,1) with

1
(arcsinzx)’ = :
1-2a?
Proof For ze[-1,1],
1 1 ! 1
arcsin)’(z) =sin™"'(x) = = = i
( V(@) (z) sin’(sin™'(x)) cossin™'(x) 1 - 22

Power series for arcsin depends on the

General binomial theorem. For a € R,

(1+:z:)“:1+ia(“‘l)---(a—nﬂ)

n=1

" ¥z < 1.
n!

Proof for ae R\ Z,
Define f:(-1,00) > R, by f(z) = (1+ )%, then
/ _ a-1 _ a
F() = a1+ )" = = (),
This gives a differential equation for f:

(L+2)f'(x) = af (2).
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Try to mimic this with a power series:
o If G(x)=Y,s0Anx" for |z| <r and (1+ 2)G'(x) = aG(z), then

(1+2)G'(z) = Y (nAyz" ' + nA,z")

n>1
- Z((n +1)A,0 + nAn)m"
n>0
=a ) A" =aG(x)
n>0

whence for n >0, A,.1 = =5 A, and setting Ay := 1, we obtain

a(a-1)...(a-n+1)
n!

A, = (n>1).

Evidently
Apl o=
| Al n
whence by D’Alembert’s ratio theorem, the radius of convergence of
Yoo Apa™ is 1.
Accordingly, we define G : (-1,1) - R by G(z) := ¥y A,z™. This
G is differentiable on (-1,1) and as above
e (1+2)G'(x)=aG(x).
e To finish, we claim G = f.
Proof Since f(x)#0V x € (-1,1) we may define g := (7; :(-1,1) » R,
which is differentiable on (-1,1) with

,_SG -G a fG-fG

-1

g f? Cl+ax f2 =0
whence
G_ _G(0)
j o= 00= Gy =t

Arcsine series.

(9 2n+1
arcsin(z) = )’ ( n)x— Vx| < 1.
Z\ ) 2n+ 1)an

Proof Recall that arcsin’(z) = == for |z| < 1. We claim first that

V1-x2
1 & (Qn)xQ”
= = — V |z| < 1.
=) VR O T
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Proof By the general binomial theorem,

! )14y )" V¥ |
m:(1+(—m)) 1 ;An( OV r| <1
where
W DR (hne)

n!

_G 1)n( )( )...(%+n—1)

(2‘”172‘ 1.35.....2n-1)
:(_1)n (2n)!
mnl 2.4.....2n
(-1 (2n)! _ (20 (-1)"
~ar o (a) @ @

e The radius of convergence of this power series is R = 1 as is the radius
of convergence of S(z) = Yoo, (2 )% Thus S is differentiable on
(-1,1) and

S(x):i(%)xz S

-0 1-z
whence
S(x) = arcsin(x) — arcsin(0) + S(0) = arcsin(z) V |z| < 1.4

In particular,
ad 1
8 = arcsm( = Z ( )—(Qn Thyar

Next topics

REMOVAL OF SINGULARITIES, ANTIDERIVATIVE TEST, CAUCHY’S
RELATIVE MST, L’HOSPITAL’S RULE, LAGRANGE’S ERROR THEOREM,
CONVEXITY.
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Lecture #21
&

Logarithmic series.

log(1+x) = Z

Eortan 1)n e (-1).

Proof For |z| <1,

Alox(1+2) = 1= Y1)
Set —
S() = 3 S

then S'(z) = 11> whence
S(x)=log(l+z)+C

where

C=5(0)-logl=0. &

Exercise
Prove that log2 = 2 Y7 5= o

2n+1 97" [
Hint: Find a power series for log 2.

Exercise

REMOVAL OF SINGULARITIES (7977 nnbwi)

Proposition: one-sided singularity (vap mepb a7ma nnbwm)
Suppose that [ : (a,b) - R is differentiable on (a,b) and suppose that
f'(x) —— L¢R, then

(i) 3 xlggf(x) =M eR
f(z) -

(11> €T —a Toa+
i.e. if we set f(a):=M, then f is right-differentiable at a with fl(a) =
L.

L.

Proof
248 /6/2017
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To prove (i), we establish the Cauchy condition for 3 lim,_.. f(x) €
R.

Given € € (0,1), we’ll find § = 6(€) such that |f(x) - f(y)| <€, YV z,y ¢
(a,a+0).

To do this, fix K > |L| and let n = n(e) > 0 be such that |f'(x)| <
K V z e (a,a+n), and let 6 = min{n, %}. Given a <z <y <a+/,
we have by Lagrange’s MST that 3 z € (z,y) such that f(y) - f(z) =
(y —x)f'(2). Since § < n, we have |f'(z)| < K, and since § < &,
|f(y) = f(z)| =y —z||f'(2)] < K < e establishing (a).

To see (ii), let € > 0 and fix § > 0 such that |f'(x)-L| < € V x € (a, a+9).
We claim that

-M
|&—L|<e YV xe(a,a+).
T—a
To see this fix x € (a,a+0). By Lagrange’s MST, 3 z € (a,x) such that
flx)-M=(y-a)f'(z). It follows that

L= ey - Li<e

Symmetrically and analogously, if f/(x) — L eR, then

(iii) 3 li_gl_ f(x)=:MEeR
. flz)-M
(iv) b e L.

Proposition: two-sided singularity
Suppose that [ : (a,b) N~ {c} = R is differentiable on x € (a,b) \ {c}
where c € (a,b).
If
3 lim f(z), & lim# f'(x) eR,

Tr—c, TEC

then f can be assigned a value at ¢ to make it differentiable at c.

Proof As above.

Example Define f: (-1,1) ~ {0} > R by f(z) == (1 + )=, then if
f(0):=e, then f is continuously differentiable on (-1,1).

Proof As shown before

f(l‘ z—0, z+0 e
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Evidently f is a concatenation of continuously differentiable functions
and therefore continuously differentiable on (-1,1)~{0}. We complete

the proof by showing that f'(z) ——— -5.

x—0, x+0
Using the logarithmic series

00 _1 n—1,n
log(1+x)=z()—x Vx| <1,
n=1 n
we see that
z?  2Jxf3 1
log(1 —(z-—=)|[<—— V¥V —.
flog(1+2) = (2= T < - ¥ [a] < 5

Thus for x # 0,

o) - f(;) (11 . 1og<z+x>)
LD LD o) ma )
=I(x)+11(x).

Now 1
I(x) = f(z) —— -

2(1 +Q;) x—0, z+0 _5

and for |z|< 1,

1) = 2210 2y “tog(1+2)

s
_f@) 2lap
Toa2 3
=0
—— 0. ¢
z—0, z+0

RATES OF DIVERGENCE OF SERIES

Suppose that a,, >0. When does ¥}_; a, — oo and if so, how fast?

Notations. For A,, B, >0 write

o A, ~Byif g2 -1

e A,<B,if3IM>0sothat A, <MB, VY n>1;
e A,xB,if A, < B, & B, <A,.
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Antiderivative test for series
Suppose that [ :[1,00) = R, is differentiable with f' positive, non-
increasing, then

(Ob) (]Zi[:f'(k)—f(NnLl))TceRasHNToo.
It follows easily from (&) that

(a) kif’(k) <oo = LUBf(N)<oo &

(b) (N 1)Zf(k)—>11f2f(k

Proof of (3®) By MST, 3 6, € (0,1) such that

FIN+1)=f(1)+ ;(f(k +1) - f(k)) = f(1)+ I;f’(k +0)
whence
= k;f’(/f) - f(N+1)=-f(1)+ k;(f’(k) = f'(k+0k)).

Foreach k> 1, 0< f'(k)—f'(k+0) < f'(k)—f'(k+1), whence J,, < Jp41
and

N

kZ(f’(k) = [/ (E+0x)) < f'(1) - f/(N) < f'(1).

=l

Thus Y72, (f"(k) = f'(k+0;)) < o0 and the J, 1 ¢<oo. @

Examples.

QU f(z)=logz f'(xz)=1. Here

3 lim Z——logn— veR

n—oo

and consequently,

1 &1
- — 1.
logn 74 k n—eo

In this situation, divergence can be obtained by condensation, but not
Py % ~logn. The constant v appearing is aka Euler’s constant. It
is not known if v € Q.

@2 For 0<a<1,set f(z):= 1= 2!, then f'(z) = -z and

1-a

noq 1-a
3 lim ( _a_n
n—>00 k::lk 1-a

)=tcs€R



130 (©Jon Aaronson 2007-2017
1-a
and consequently, Y, 75 ~ 2—.
The constants ¢, are not as famous as v but it is not known which

cq € Q.

Exercise
Show that if f:(0,00) — R, is differentiable with f’ positive, non-decreasing, then

0<F(N+1) —;Z_V:f’(k’) <N +1) - (1) + ().

Exercise
For an, b, >0 write a, ~ b, as n — oo if $2 — 1.

bn n—oo
(i) Suppose that f:[1,00) = R is unbounded and differentiable with f’ positive, non-
increasing. Show that Y7, f'(k) ~ f(N +1) as N — oo.

(ii)X Show that 7_, k*(log(k +2)) ~ %Of’")b asn—>ooVa>-1, beR.

a+

Exercises

(i) Show that for « >0, 3

lim = (1 + %) €R,.

n—oco N k=1

(ii)* Let a, > 0. Show that
An+1 + 1

Tim (

n—oo an

)" >e.
Hint: Assume otherwise and use (1+ 2)™ — €™ to hit it with (i).
(iii) Find a sequence a, > 0 so that

_— 1
lim (7(1"“ hl )" =e.

n—oo QAn,

RELATIVE MST’s

Cauchy’s MST

Suppose that f,g : [a,b] - R are continuous on [a,b] and differen-
tiable on (a,b).

If ¢(z) #0 VY x € (a,b), then (a) g(a) # g(b), and (b) 3 c € (a,b)

such that
f0)-f(@) _ F(0)
g(b) —g(a) g'(c)

Proof
By Rolle’s theorem, g(a) # g(b).
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Define F': [a,b] = R by
Fa) = 1) - ) - L8 (600 - g0,

Evidently F' is continuous on [a,b] and differentiable on (a,b) with
F/ — f/ (b) f(a) /

9(0) - g(a)’
Moreover F(a) = F'(b) = f(b) — f(a). By Rolle’s theorem, 3 ¢ € (a,b)
such that
f) - f(a) ,

0=F'(c) = f'(c) - g'(c).

9(0) —g(a)”
U

Note that Lagrange’s MST is a special case of Cauchy’s MST (with
9(x) = ).
L’Hospital’s rule (LHR )

Let —oo < a < b < oo and suppose that f,g : (a,b) N {¢} - R are
differentiable on (a,b) \ {c} where c € [a,b]. Suppose also that
(i) g(z), ¢'(z) #0 YV z € (a,b) ~ {c}, and either
(i) f(z), g(x) — 0, 0r

T—c, TEC

(iif) |g(x)] — oo

T—C, TEC

If 3 limy e, pec 58; =: L eR, then

f(x)

g(x) T—=c, TFEC

Proof in case c=a

Remark. By (i) and Darboux’s IVT, ¢’ does not change sign on
(a,b). Thus g is monotonic on (a,b).
Fix a <z < b, and define
IHON
g'(t)
By assumption, m(x), M (x) —— L.

r—a+

By Cauchy’s MST, for each y € (a,z), 3 z € (y,z) such that

f@)- 1) F)
() FOEOREIO

Cte(an)) & M(x) = LUB{ch:Eg: te(a,2)).

m(x) = GLB{——=

e [m(x), M(z)].
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€Under assumption (ii), we have that

f(r) f(x) - f(y)
g(x) voar g(x)-9g(y)

e [m(x), M(z)]

whence

)
o(z) o L. U

{Now assume (iii) and let € € (0, 3).

e I X.>asothat [m(x), M(z)]c(L-¢,L+e)Va<z<X..

e IV e (a,X,) 50 that [f(X)] 9(X)| < elg()] ¥ y € (a,Y,). Now
set for a <y <Y,

fy) f(Xo) _9(Xo)
B= gy W=y €AW =70y
We have |£(y)|, |A(y)| < € and, using (X) that
R(y)_g(y) _ f(Xe)_f(y) €(L—€,L+€)

L-Aly)  9(X)-9()
whence since 1 - A(y) > 0,

(1-AW)(L-e)+E(y) < R(y) < (1+ A(y))(L+e) +E(y)

and
|R(y) - LI < (|[L|+2+¢€)e. &

Next topics
LAGRANGE’S ERROR THEOREM aka LET(N); CONVEXITY; INFLEX-
ION; NEWTON’S METHOD.
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Lecture #22
&

Example (LHR not perfect).

1
] 2?sin —, sinz 0 &
€T z—0, z+0
) 22 sin % ) . o1
lim - = lim — - lim xsin—=0, BUT
z—0, z+0 SINnx z—0, z+0 SIn x -0, z+0 x

(z2sin 1)’ 27 sin + — cos
T _ T T

lim 2 iy . AND
-0, +0 (s1n x)’ -0, %0 CcOS T
. . 2x sin% - COS%
(%) 3 lim :
x—0, x+0 CcOoSsx

So LHR is not perfect, but is it wrong? ©

Corollary: Higher order LHR
Suppose that f,g: [a,b) > R are n-times differentiable on [a,b), that

f®(a)=g®(a)=0V 0<k<n-1, g™ (a)#0

(@) " (a)
and that ) ool g ()’ then

(i) 3 €>0 such that g(z) #0 on (a,a+¢€) and

f(x) f(a)
g(x) = gM(a)’

(i)

Proof First we prove (i), assuming WLOG that ¢( (a) > 0. Tt follows
that 3 € > 0 such that ¢g» > 0 on (a,a + €) (since "D

r-a T—>a+
g™ (a) > 0), whence:

e ¢(™2) increases strictly on [a,a+¢€) whence ("2 > g(»=2)(q) =0 on
(a,a+ €) whence

e ¢(3) increases strictly on [a,a + €) whence ¢(*=2) >0 on (a,a + ¢)
whence « « « « . . whence g >0 on (a,a+¢€).

By LHR, we have

fo () f(a)
g(n_l)(x) T—a+ g(n)(a) ’

2511/6/2017



134 (©Jon Aaronson 2007-2017

whence again by LHR,
fo2(x) f™(a),
g2 (z) e—at g(n)(a)’
whence again by LHR ...... , whence again by LHR

AR C)) S (a)
g(”—k)(g;) T—>a+ g(”)(a)

V1<k<n

and in particular (for k =n),

f(x) f(a)

. 4
g(x) w=er glm(a)

APPROXIMATION BY POLYNOMIALS

The idea is to approximate a CN function f : (-a,a) - R by a Taylor
polynomial, ie one of form

Py (x) - Z f(")(U)

e This can be done around any c € (-a,a). If P(x) is a polynomial of
degree N, Q(h) := P(c+ h) is also a polynomial in h of degree N and
Q™ (0) = P® (¢). Thus

Fepn(z) = Z P(n) ) (@ = )"
The error (aka remainder) is

R:Rc,f,N IZf—PC,ﬂN.
It satisfies R®(c) =0V 0<k<n-1and R™ = f(")(c),

If f:(a,b) > R1is C™ on (a,b), then by the higher order LHR, for
ce(a,b),

Rc,f,n—l(x) N f'(n)(c)
(g} — C)n T—C, T*EC n!

The following theorem improves this.

Lagrange’s error theorem (LET(/V)).
If f:]a,b] = R is N-times differentiable, then 3 £ € (a,b) such that

A - @3 IOy SO gy

k=1
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Remark. LET(1) is the same as MST.
Proof of LET(N)
Fix A € R such that
N (b-a)k (b-a)N
b) - (k) ———X=0.
10~ ¥ E o - 5

We'll show that A = f(M) (&) for some £ € (a,b). To this end, define
H:[a,b] = R by

=70 kz: O iy - LDy =y - L

e Clearly, H : [a,b] — R is continuous on [a, b], differentiable in (a,b)
and H(b) = 0.
e From the choice of A\, H(a) =0.
e By Rolle’s theorem 3 £ € (a,b) such that H'(£) = 0.
To use this we compute J’ and then H':

Nl(b l’)

J'(z) =-f"(z) - Z( F® (@)
_ / (b (ﬂ) ! k (b £L‘) k+1
@)= % G 0w s L e )
=—f'(z) - ((b )" (N)(x)—f’(x)) (telescope!)
b-x N
((N )1)' f( )(x)

Thus
() = 7(@) - (205

=) (o)
(N-1)! f( (@) + No1)
@) -
and H'(§) =0, £+b = \= fN)(£), whence
f(b)—];)l(b W 0 (a) = L2 00 ). (&) @

Two sided LET
Suppose that f:(a,b) > R is N-times differentiable. Let c € (a,b),



136 (©Jon Aaronson 2007-2017

then ¥ z € (a,b) ~ {c}, 3 &€ l(c,z) such that

N-1 (k) (o (V)
@)=, fk—!()($ o) 4 le(g)(a:—c)N.

Exercise

Show that 3 at most one f:R—>R C® so that f&® =—f, f£(0) = f(0) = f”(0) = 1.
Hint: LET.

CONDITION FOR A LOCAL MAXIMUM /MINIMUM VS
INCREASING / DECREASING.

Suppose that f: [a,b] - R is C2%. As before, if ¢ € (a,b), f'(c) >0
then f increases strictly on some neighborhood of c and if ¢ € (a,b), f'(¢) =
0 and f”(c) <0, then c is a strict local maximum for f, ie 3 € > 0 such
that f(z) < f(c) V ze(c—€,c+¢€)€(a,b).

The following generalizes this:

Theorem

(i) Suppose that f:[a,b] - R is C?VN.

Ifce(a,b), f®W(c)=0V 1<k<2N -1 and fCN)(c) >0, then c is
a strict local minimum for f.

(ii) Suppose that f:[a,b] - R is C?N+1L,

Ifce(a,b), fF(c)=0V 1<k<2N and fCN*D(c) >0, then 3 € >0
such that f increases strictly on (c—¢,c+e€).

Proof

(i): By continuity of fN) 3 e> 0 such that fN) >0 on (c—¢,c+e) c
(a,b). By the error theorem LET(2N), V z € (c—€,c+¢€), xw#c¢, 3¢
I(c,x) such that

Oz =) | O (=0

f@)= 1)+ X = oV
_ fENE©) (@ - )Y
- f(C) + (2N)'
> f(c).

(ii) By (i), ¢ is a strict local minimum for f’ and 3 € > 0 so that
f'(z)>f'(c)=0,Y xe(c—€c+e), z#c.

Thus, f increases strictly on (¢ —¢€,c+€). O
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CONVEXITY  (mmp)

A function f : (a,b) - R differentiable on (a,b) is said to be convex
(mmp) at ce€ (a,b) if 3 € >0 such that (c—¢€,c+€) c (a,b) and

Ge(z) =(z-c)f'() + f(c) < fz) V |z —c|<e
and strictly conver (pmn namp) there if 3 (a possibly smaller) € > 0 such
that the inequality is strict except at x = ¢. The function G, is the
tangent line (pwm p) to the graph of f at (¢, f(c¢)) aka a supporting
line (pon p) (for f at c).

The function is convexr on A if it is convex at each point of A.

The function is said to be concave (mmwp) at a point (or on a set) if
the function —f is convex at the point (or on the set). Note that the
strict local maximum above is a point of strict local concavity (with
zero slope).

Convexity proposition I

Suppose that f: (a,b) - R is twice differentiable on (a,b).

If f7>0 [£”>0] on (a,b), then f is convex [strictly convex] on
(a,b).

Proof Suppose that f” >0 on (a,b) and let ¢ € (a,b). If x € (a,b),
then by the error theorem LET(2), 3 £ € I(c,x) such that

1) = 1)+ (=)0 + L8 (0 ey

=Ge(x) + f”T(f)(x -¢)? > G.(7).

A similar argument establishes strict global convexity in case [£” > 0]
on (a,b). @

Convexity proposition 11
Suppose that f: (a,b) > R is C? on (a,b). If f is convezr on (a,b),
then f" >0 on (a,b).

Proof Suppose otherwise, i.e. that f is convex on (a,b) but 3 c € (a,b)
with f”(c) < 0. By continuity of f”, 3 ¢ > 0 such that f” < 0 on
(c-€,c+e) c (a,b). By the convexity proposition I, —f is strictly
convex on (c—e€,c+¢€). This contradicts convexity of f at c. D

Next topics
GLOBAL CONVEXITY; JENSEN’S INEQUALITY, INFLEXION; NEW-
TON’S METHOD; C'*® BUMP FUNCTIONS, POWER SERIES EXPANSIONS.
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Lecture #23
PY

Global convexity.

Call the differentiable function f : (a,b) = R globally convez on (a,b)
if G. < fon (a,b) Y ce (a,b) and strictly globally convex on (a,b) if
G.< fon (a,b)~{c} V ce(a,b).

Note that global convexity on (a,b) is a priori stronger than con-
vexity which only requires G, < f on a neighborhood of ¢ V ce€ (a,b).
However by Convexity propositions I & II, we have

Convexity proposition III
Suppose that f: (a,b) - R is C? on (a,b), then f is globally convex
on (a,b), iff f" >0 on (a,b).

Jensen’s Inequality For f:(a,b) - R globally convex on (a,b),
Xl""7XN € (avb)’ bi,-.-,PN 2 07 Z;cvzlpk =1:

N N
f(Zkak) < pef(Xi).
k=1 k=1
Proof  Using the "mean notations

N _ N
=1 =1

we must show that o
f(X) < F(X)).
By global convexity, G < f on (a,b), whence

GY(Xk:) Sf(Xk) for 1<k<N.
It follows that

’:Zi[:kaX(Xk) < ,:Zi/:pkf(Xk) = m

Evaluating the LHS,
N N
ZkaY(Xk) = Zpk[f'(Y) (Xk —Y) + f(7)] by definition of G+(Xy)
k=1 k=1
= f'(X) ;pk(Xk -X)+ f(X)
= f(X).

2615/6/2017
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Thus
f(X) = k;pkf(Xk) > l;kaY(Xk) - f(X). @

The following shows that for ¢? functions, Jensen’s inequality char-
acterizes convexity.

Convexity proposition IV
Suppose that f: (a,b) = R is C? on (a,b), then f is convex on (a,b)
—

(J)  fx+Q-t)yy)<tf(z)+(1-)f(y) ¥V z,y € (a,b), 0<t<1.

Proof
=) Suppose [ >0 on (a,b), then (as shown above) f is globally convex

on (a,b) and (J) follows from Jensen’s inequality.
<) Suppose (J). We first

claim : if a <z <w <y < b, then f(w) f(w) < f(y) f(w).
Proof of §: To see this, note that w = tx +(1- t)y with ¢ = u'

« By (J),
Fw) () + (=0 f ) = = f () +

whence
(y—w)f(w) + (w-2z)f(w) =(y-=z)f(w)
<(y-w)f(@)+ (w-=z)f(y),

and

(y—w)(f(w) - f(2)) < (w-2)(f(y) - f(w))
flw) = f(x) _ f(y) - f(w)

w-—1x - Y—w
Next, if a <z <v<w<y<b, then by 9,
f) = f(x) _flw)-f) _ fly) - f(w)
v-x ~  w-v  y-w
It follows that for a < x <y <b, 0<¢€,6 small enough:
fe+0)-f(x) [(y)-fly=-e)
) - €

and

. 9.

whence f'(z) < f'(y).
Thus f” >0 on (a,b). O

Exercises
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(i) Show that if f : (a,b) - R is convex at c € (a,b) but not strictly convex there then
3 A, BeR, n>0such that f(z)=Az+B VY |z -/ <n.

(ii) When is there equality in Jensen’s inequality?

(iii) Suppose that f: (a,b) - R is C*. Show that f is strictly convex on (a,b) iff f” >0
on (a,b) and f” does not vanish on any nontrivial subinterval of (a,b).

(iv) Prove that for a >0, ¢ > 1,

0 <(t-1D)*+(@+1)* a>1,
>t-1D)+(+1)* a<l.

(v) Prove that for n>1, z1,...,2, € (0,7) and p1,...,pn >0, Y11 Pk =1,

sin( ) pewr) > [[(sinag)?*.
k=1 k=1

Hint: logsin: (0,7) — R.

(vi) Prove that for n> 1, z1,...,2, >0:
e 1\ (VoL
— — < Tk < — Tk
(Ea) «(n) <12
INFLEXION

Points of inflexion  (5me mmpy) Suppose that f: (a,b) > R is C2.
The point ¢ € (a,b) is a point of inflexion (5wa pmpy) of fif f"(c) =0
and 3 € >0 so that

either f” <0 on (c-€,¢) and >0 on (c¢,c+¢€);

or f”>0on (c—¢c) and f” <0 on (c,c+¢€). A point of inflexion
indicates a change in the direction of (strict) convexity (i.e. convexity
— concavity, or concavity — convexity).

Theorem (condition for inflexion)

Suppose that f:[a,b] - R and that c € (a,b). Let N > 1.

(@) If fisC?N (N >1), f®(c)=0V 2<k<2N-1 and fCN)(c) >0,
then 3 € >0 such that f is convex on (c—€,c+e€).

(b) If f is C2N+1, {0 (c) =0
V 2<k<2N and fCN*D(c) 0, then c is a point of inflexion for f.

Proof

(a) In case N =1, (i) follows from the ”Convexity proposition I”
above. In case N > 2, by the condition for a local minimum (i), ¢
is a strict local minimum for f” and 3 € > 0 so that f”(z) > f"(c) =
0V 0<|z—¢| <ewhence (by Convexity I) f is convex on (c—¢,c+e€).
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(ii) in case fGN*D(¢) > 0. By the condition for a local minimum
(i), 3 € > 0 so that f” increases strictly on (c—¢,c+¢€), thus
f"<f"(c)=0 on (c—¢€), & f"> f"(¢)=0 on (c,c+e),

whence f is concave on (¢ —¢€,¢); convex on (¢,c+€) and ¢ is a point
of inflexion for f. O

The following complements LET.

Peano’s theorem Suppose that f: (a,b) > R is N —1-times differen-
tiable, and that f(N —1) is differentiable at c € (a,b), then

| Bepn ()]

|IL‘ — c|N Tr—c, T#C

0.

As shown above, Peano’s theorem follows from higher order LHR when
fis CN on (a,b).

Proof when ¢ =0 ¢ (a,b)
Write

Y

N (k) () gk
9(x) = Royn(x) = f(x) - Z %
k=0

then g: (a,b) > R is N — 1-times differentiable with
g™ (0)=0VY1<k<N-1
and g(V-1 is differentiable at 0 € (a,b) with
g (o) = 0.

To begin, for x + 0,
g V(@) _ g™ h(x) - g™ (0)

X - x z—0, x+0
Setting h(x) := 2V, we have that h is CN with h®)(0) =0V 0<k <
N -1& hN-D(z) = Nlz.

By higher order LHR,
g(z) .. g™ () _
x—0, x+0 h(l‘) - x—»l(%,niqto N':L‘ =0.d

g0 = 0.

POWER SERIES AND UNIQUENESS

Theorem (Euler-MacLaurin)
Suppose that f : [a,b] — R is C*= in [a,b] (i.e. C™ ¥ n>1), that
ce (a,b) and that

1
—LUB )| f](b-a)" — 0



142 (©Jon Aaronson 2007-2017

then the series Y12, M converges for x € [a,b] and

Z f(’f)(c)(x—c)’“ V z €[a,b].

Proof  Fix x € [a,b]. For each n > 1, by the error theorem LET(n),
3¢, € I(c,r) such that f(z) = X1, e )(C)(x o f(”)(@;)!(x—c)n whence

) - ”Zl f(’“)(C)(x - C)k| |f(”)(€n)(96 - C)"|

s n!

1
< —LUB[, sl F™(b-a)
— 0.

n—oo

Corollary (uniqueness of solutions of differential equations).
If F:(-R,R) >RisC* (keN)and F®) =-F then Ve (-R,R):

00 F F’ F(k-1) k-1
F(z) = Y (-1)"z™ (0) n (0)z +...+¢
= (kn)!  (kn+1)! (kn+k—-1)!
Proof  Evidently, F is C* with F(+7) = (-1)»F (). Thus for each
0<p<R,n=krN,+r, where 0 <r, < k, we have
LUB [, )| ™| = LUB [, .| F("Nn*n)| = LUB [, .| ("))
= max LUB[_,.,1|[F("] =t M < oo

0<r<wk

and the series expansion follows from the Euler-MacLaurin theorem.
v

Example 1: a C* function with NO power series expansion.
Define f:R - R by

e x>0,
f(x)_{ 0 z<0.

Proposition. This f is C* on R and f(™(0)=0V n>1.

Proof Evidently f C>~ on R\ {0}. Also f is left-differentiable of all
orders at 0 and f%*(0) =0V k> 0. We must prove the
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Claim. This f is right-differentiable of all orders at 0 and f; (k)(O) =
0V Ek>0.
Proof  (in steps):

q1 f is infinitely differentiable at each z > 0 and f("(z) = P,(1)e™=
where P, is a polynomial of degree at most 2n.
Proof. This is seen by induction:

(Pu(B)ee) = =5 Pi(2)e s + 5 Pu(2)e s = Pra(2)e >
where P,.1(2) = 22(P,(2) - Pl(2)). »
92 If P is a polynomial, then P( )e = — 0.
Proof: 1t suffices to prove this for P(z) = z¥ where N > 1. For z > 0,

1 1
=nlen (N+1)'xN+1’

whence

€3 f is infinitely right-differentiable at 0 with fi")(O) =0Vn2>1.
Proof: By induction. Assume that this is the case V 1 < k <n, then for
x #0,

£ (&) = 0 (0) sssumpron ()

x i
1
’L_p( Ye

L o= f+”+1>(0).m3

z—>0+

Thus, f is C* on R, but there is no power series expansion about 0.
Otherwise, 3 € > 0 such that

f(z) = Zf (O)x =0V |z]<e ®

Exercise

Define f: R - R by

L
=2 x#0,

f(x):{ 0 =0

Show that f is C* on R and f™(0)=0V n>1.
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Next topics NEWTON’S METHOD, (C'® BUMP FUNCTIONS, POWER
SERIES CONTINUITY AT ENDPOINTS OF THE CONVERGENCE INTER-
VAL,PRODUCT FORMULA FOR sin, WALLIS PRODUCT, STIRLING’S
FORMULA.
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Lecture #24
B

NEWTON’S METHOD

Suppose that f : R - R is C''. Newton’s method is an iterative
procedure to find x € f~1{0}.

The procedure

Given u € R, draw the tangent line L to the graph of f at (u, f(u))
and take v as the xz-coordinate of the intersection of L with the z-axis,
ie. {(v,0)} =Ln(Rx{0}).

The equation of L is %(u“) = f"(u), whence v satisfies %(u") = f'(u),
or

Remark. Notethatif f(Z)=0& f'(Z) #0, then T(Z) = Z. The map
T is not defined when f’(z) =0, in particular when f(Z) = f'(Z) = 0.
If fis O and f(Z) = f'(Z) = f/(Z) =+ = fOD(Z) = 0 & f0)(Z) +

0, then by the higher order LHR,
for some € >0, f'+0 on N(Z,e)\{Z} and

) @

fru) vz f0N(Z)
and T'(u) — Z. So in this case we define T'(Z) = Z.

The map T is called Newton’s transformation. The idea is to study
sequences (T™(u): n>0) where T°(u) == u, T (u) :=T(T"(u)).

Examples.
QU f(r):=2% Tx=75, then T"(u) = 55 -0V ueR.
Q f(x)=22-a (a>0) then T'(u) =u- “;:a = 4 +5-. You'll see below
that T"(u) > v/a ¥V u > 0.
Raphson-Lagrange Convergence Theorem

Suppose that r > 1 and that
fisCrand Z €R, f(Z)=f(Z)="-=f0)(Z)=0, f)(Z) %0,
then 3 € >0 such that
(i) f(z)+0V xzeN(Ze):=(Z-¢,7Z+¢€);
(i) |[Tz-Z|<(1-L)z-Z|V xzeN(Ze)~{Z};

2718/6/2017
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(iii) If u e N(Z,¢€), then T (u) := T(T™(u)) € N(Z,e) ¥V n>1 and
T"(u) — Z.

n—>00

Proof Choose ¢y >0 such that f()(z)#0V 2 € N(Z,¢).
By Lagrange’s error theorem (LET), Y u € N(Z,¢), 3, 3 € I(u, Z) such that

oy = LDy SOD 2

(r—1)!
It follows that
(i) f'(x) +0V z e N(Z,e) N {Z}, and that
fw 0@ 1
(- 2) () 1fOF) vtz

Let 0 < € < ¢ satisfy:

f(u) 1, 1
|m_;|<2_7“ VO<|u-Z|<e.

Multiplying by (u—Z) we see that for ue N(Z,e): |40 - (=2 ¢

] f(u) T
"2Z whence
o forr=1,
10, gy o2 g
1)~ 21 = 1305~ (u= 2)] < (i)
e and for r > 2,
[
1) -2 - L5 - (u-2)
- D - -2y,
whence
()~ 215 (1= D=2+ A 1= Dyj-21. i)

To establish (iii), let u € N(Z,¢€), ug # Z, then by induction using
(ii): for r=1,
T (w) :=T(T™(u)) € N(Z,€) & |T"(u)-Z| < (1-3)"|u-Z| < eV n>1,
whence T (u) — 7
and for r > 2 uging (ii) and (ii"),
T (w) :=T(T™(u)) € N(Z,e)~{Z} and |T"(u) - Z| < (1 - 5 )"|u-Z| <
eVn2l @&
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Exercise
As above let f(x) =2®> —a & Z = \/a. Show that

(o) Newton’s transformation is T'(u) = 5 + 5-;
(i) for some € > 0,

T (u) — Va v ueN(Va,e)
where T°(u) = u & T (u) = T(T™(u)).
(ii) Fory>0 T(y) <y < y*>aand T(y) =y < 3°=a.
(i) T(y)?>a ¥V y>0, y> #a .

(iv) For y >0, y* >a, T"(y) 2 T"" (y) > Va.

(V) T"(y) —= Va vV y>0.

SMOOTH BUMP FUNCTIONS

These are “continuous indicator functions”.
Namely, a bump function is a continuous function B : R — [0,1] so
that for some a < o < 3 < b, one has

1(a,g) <B< 1[a,b]

with B increasing on (a,a) & decreasing on (,b).
Here 15 is the indicator function of F c R:

0 x ¢ F
lp(z) =
1 z € [a, B].
For example a piecewise linear bump function is defined by:
0 x ¢ (a,b);
1 .
B(zx) := ~ vela. Bl
=4 x € [a,a]
1- 4 z € [5,b].

The question arises as “how smooth” can a bump function be?

C° bump functions.
Define S: R - [0,00) by

_ A(x)
@) = I+ ai—o)
where
e x> 0;
Auﬁ:{ 0 <0
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€1 Claim S'is C>~,0<S<1 and

0 z <0:;
S — - )
() { 1 x> 1.

Proof that S is C'*>

As shown above, A is C*. Sois J(x) := A(x)+ A(1-x) which is also
positive V z € R. Using the formula for the derivative of a quotient, we
see that S is differentiable on R with

w0583

where «; is C*°. Repeating this (i.e. by induction), we see that ¥ n > 1,
S is n-times differentiable with

) () = n(E)
with o, C*.
For 0 < a < b, define

Bay(z) :=1-S(5=%

b2—a2 /)

€2 Claim B,;: R - [0,1] is a smooth bump function, i.e. B, is
C* and that

1 x€[-a,al.

Ba,b(x) = {

Proof that B,;, is C>~ We have that B,;(z) = B=C o D(x) where
C'is C* and D is a degree 2 polynomial (with D" constant).

We claim that in this situation, there are polynomials Py (1 <k <
N) so that

BN (z) = ]ZV: C®) o D(z) - Py (D' ()).

To see this by induction, note that

PU,O = 17 PN+1,O($) = D,’PJI\/70($), PN+1’N+1(1‘) = 'rPN,N(x) &
PN+1,k(x) = xPMk,l(x) + D"P]'V’k(q;) (1<k<N).

Thus BisC*® on R. ©#
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CONTINUITY OF POWER SERIES AT ENDPOINTS OF THE
CONVERGENCE INTERVAL

Abel’s continuity theorem

Let a, € R (n > 0) and suppose that Y.7>ya,xz™ converges ¥V |z| < 1
G.e. RxD. If ¥ a, converges, then

o0 o0
Z apr’t — Z Ay,
n=0 =0

r—>1-
n=

i.e. f:(-1,1] = R defined by f(x) = ¥, ga,x™ is continuous on
(_171]'

In particular

)n—lxn

n r—>1-

(o5 _1 %) _1 n—1
log2 «—— log(1+a:):z( Z( ) :
z—~>1- n=1 n=1 n

Proof Set A, =%} oar (n>0), A_;:=0,and A:= Y a, then for
|z <1, n >0,

Z akxk = Z(Ak - Ak_l)ZL’k
k=0 k=0
= zn: AkCCk - zn: Ak,lxk
k=0 k=0

n—-1
=(1-2) ) A"+ A,z"
k=0

Now A,, > A € R by assumption, so for |z| < 1:

o A,x"—>0asn—ooand Y, Apr® converges; and

f(@) «— > apa’ — (1-2) ) Apa®.
n—oo k:() n—-oo kj:O

Recall that also (1-z) Y 2b =1 V |z < 1.
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e Using these, we show that f(z) — A. For |z| <1, N eN,
[f(z) = Al =1(1-2) ) (Ap - A)"|
k=0
<(1-2z)) |Ax - Allz]*
k=0

N oo
S(l—x)Z|Ak—A||x|k+(1—a7) Z | Ay, — Al|z|*
k=0

k=N+1
N
S(1—$)Z|Ak—A|+SUp|Ak—A|. O
k=0 k>N

To see that f(z) — A, let €>0.

e I N such that sup,. v |Ar — A| <¢; and
e 36>0suchthat (1-2)¥n,|Ax—Al<eV 1-6<2<1, whence

|f(x)-Al<eV1-e<z<l. d

Corollary
o (_1)n 2n+1
arctanz = ) Gt V|z| < 1.
= 2n+1

Exercise: Convergence at the endpoints

*

Show that arcsin(z) = Y (2")

n

mine: (37) e =TT, (1 ) = .

z2n+1

EULER’S SINE PRODUCT FORMULA

n 2
Tz [](1- %) —> sinmr.
k=1
The proof is in stages
Q1 For|z|<1,

n—oo

n 2
(1) 3 lim 1‘[(1—% = F(z)>0 V |z|<1;
k=1

(2) F:(~1,1) >R is C1.

28This proof is an example of the “Herglotz trick” to prove equality of func-
tions. See Carathéodory, C. Theory of functions of a complex variable, Vol. 1,
§259-262 & Aigner, M., Ziegler, GM. Proofs from The Book, Ch. 23 & Landau.
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Proof  of (1):
For |z| < 1,
n 33'2 n
[1(1- 1) =exp[- ) au(@)]
k=1 k=1
where a;,(z) = f(%) with f(¢) = ~log(1-1t) €R,, for t € (0,1).
By MST 3 6, € (0,1) such that

0< f(t) = f(0) +f(0ut) =
Thus, for k> 2,

t < t
1-64 1-t

2 1 42
< =

22
ar(x) zf(ﬁ < ﬁl—&(k’)ﬁ = 32
k2

(=) > sup |ag(z)] < oo.
k22 [2[<1

In particular, 3 lim, . Y-y ax(z) = g(x) € R, and

n 2
101 - %) = e Tk ar(@) s ¢9(@) = P(z) € (0,1).7(1)

k:l n—oo

Next topics
EULER’S PRODUCT FORMULA FOR sin ctd., WALLIS’ PRODUCT,
STIRLING’S FORMULA.
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Lecture #25
P

Proof  of (2):
For F': (-1,1) > R to be C!, it suffices that g: (-1,1) > R is C.
To see this we’ll need (=) and

(%) Z sup |ay,(z)| < oo.
k>2|z|<1
Proof of (&)
1 2
<
1— sz n2-1

/ 2z 8
|an(x)|:ﬁ SQVnZQ, lz|<1. @

Proof that ¢ is C!
Write A(x) = Yo ar(x) and B(z) := Ypsp af ().

e By the continuity of series theorem (on p. [83),
A,B:(-1,1) -» R are continuous.

e By the differentiation of series proposition (on p. ,
A:(-1,1) - R is differentiable with A’ = B.

Thus g = A+ a4 is differentiable with ¢’ = A’ +a which is continuous.
v

q2

n—oo

) n 1'2
3 lim xg(l—ﬁ) = f(r)eR VY xzeR

where f:R >R is C! and f(z+1) =-f(x).

Proof
Set fn(z):=xT (1~ i—z), then by €1,

fa() o cF(x) = f(z) V |z| < 1.

Since f,(z) =0V z€Z, n> |z, it suffices to show that

fo(z+1)
Wﬂ—)_o)o -1V xeRNZ.

2992/6 /2017
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We develop first some alternate expressions for f,(z).

@) fuw) =[]0 ) =
k=1
Lrx-k x+k

. H :13+k:

1<|k|<n

(1)n ﬁ(erk)

k=-n

Using (@),

fu(z+1) (E+x+1)
falz) an (k+x)
n+l+zx

-n+x
— 1. &

n—o0

Next we show that f shares another property with x ~ sinmx:

3

F@)f(r+3) = 5 F(3)f(20).
To see this for z ~ sin7x =: s(x):

s(z)s(z+ 1) =sinmzcosma = 5 sin 27z = 55(%)5(2@

153
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Proof  of €3: Using (@), we have
f@)f(@+3) — fal@)fulz+3)

k+x k+x+3
=z(z+3) [] : 2

1<|k|<n k k
2k +2x 2k+1+2x 2k+1
=ry) 1 =g %
1<lk|<n
v+2T k+3
=z(z+3) I - ] p 2
-2n<v<2n+1, v#0,1 v 1<|kl<n
Cx(z+ ) v+2r 2n+l+ao 0 k+31
L +2x 1<lv|<2n v 2n+1 1<|k|<n k
Lz v+2r 2n+1l+x k+3
2 1<|v|<2n v 2n+1 1<lkl<n k
1 2r+n+1
== fon(22) fr(%)  ——-——
1
e éf(%)f(%) a
To finish the proof we show that
q4
f@) =20 v zeR.
s
Proof  Let
sinrr & wA(—a?)n

Cla) = x - ,;) (2n+1)!

then C'is infinitely differentiable on R, C'(z) >0on (-1,1) & C(0) = ..
Thus, @ : R - R defined by

d(x):

is positive and C' on (-1,1).
Moreover, on R,

(a) B(z+1)=d(x) & (b) B(1)d(27)=d(x)d(x+1).

_Fz) _ f(x)

- C(x) sinmz

By (a), @ is positive and C*! on R and it follows that
H:=log®-logd(3):R—->R is C' on R
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with
(c) H(z+1)=H(z) & (d) H(2z)=H(x)+H(z+3).
It suffices to show that H is constant for then so is @ and

ng@(O):%

Proof that H is constant :
By (¢), H'(x+1) = H'(z). We claim next that V n > 1,

2"-1

(€)n H(z)= ), H(=

k=0

r+k

),

This proven by induction using (d) which is (e);. To show (e), =
(€)n+1, assume that

221 T+ k
H(fB)=ZH( —).
k=0
By (d), for each k,
Tz +k z+k r+k 1 z+k T+ k+27
( —) = H(2n+1) H(W+§):H(W)+H(T)
andso
©n 23 x+k
H(z) = ZH( —)
k=0
22l x+k x+k+2n
= ) (H(G) + H(——)
2l o4k 2001 a4k
- ZH(27L+1)+ Z H(2n+1)
k=0 k=2n
2n+11
T+ k
=S HES): D ()
k=0

Differentiating (e), we obtain the averaging property

2"-1

(f) H(x)——z

Since H' is continuous and periodic 3 £ € [O, 1] such that

H'(§) = M :=max{H'(z): zeR}.

ac+k

By maximality

§+k

H(—)<MVYn>1,0<k<2"-
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and by the averaging property (f) (!)
E+k
H' (5~

By continuity of H, for x € [0,1],

—)=MVn>1, 0<k<2"-

H(z) — H (M) M.

By (¢), H' =M and H(z) =Mz + H(0) V z €R.
Moreover
M=H(zx+1)-H(x)=0
whence H is constant as advertised. @

Corollary: Wallis’ Product

_:ﬁl( 4n2)

Proof
.
—H( _4k2 51115:1. |

Basel problem.
The Zeta function ¢ : (1,00) - R, is defined by

()=

The “Basel problem” wad’|to give a “closed formula” for ¢(2).
Corollary: (Euler)

2
2)=—.
2)-"
Proof
By the sine product formula, for |z| < 1,

S(x) = sm7r\/_\/_ = exp[ilog(l - %)] = o 9(2)

where

o)== Y lox(1- ).

30proposed 1644 by Mengoli, solved 1734 without proof by Euler, many proofs in
1800°’s
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From the definition of sin,

S(e) = Z (2 +1)! o

whence
(’I’L) _ (—1)”71,'7T2n
57(0) 2n+1)!
In particular
2
S'(0) = ——.
(0)=-%

By (repeated application of) the differentiation of series theorem, g is
C* on (-1,1) with

OB e = ()

and
g™ (0) =¢(2k) (k21).
In particular S: (-1,1) - R is C'! with
§'(z) = -g'(2)S(x)
whence
5°(0) = =24'(0)5(0) = -2¢(2).
On the other hand, using the power series for S as above,

(2) = - S"(O) %2 a

Exercise

(i) C(4) = Zos (i) C(6) = 2=
STIRLING’S FORMULA

1 _
nl ~ V2mn™2e™ as n — oo.

Here a,, ~ b, means §* — 1. Stirling’s formula is important in combi-
natorics and probability theory.
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Proof of Stirling’s formula.
We show first that 3 C > 0 such that

(A) nl ~ Cn™2e™ as n - oo

and then calculate C using Wallis” Product.

Too see (A), it suffices to show that
1

(&) log(n!)znlogn—n+§logn+cn

where ¢, > c€R (and then C = e° in (A)).

Accordingly, define

A, :=log(n!) - nlogn,
then log(n!) = nlogn + A, and
Ap1—Ap=log(n+1)-[(n+1)log(n+1)-nlogn]

1
=-nlog(l+ —)
n

= log((l + %)‘”) — 1

n—oo

and

An 1n1
—Z—Z(Ak+1—Ak)+——> -1

n n— 00

Thus,
log(n!) =nlogn-n+ B,

where % — 0. To continue,
1
B, =log(n!) —nlogn +n, whence B,;1 — B, =1-nlog(1+—).
n

By the error theorem LET(3), 36, € (0,£) (n>1) so that

1 1 1 1
log(l+—)=—- +
og( n) n 2n? 3n3(1+6,)%
whence
1 1 1 1
Buyyi-By=1l-n(—-—+———)=—-7,
H n(n 2n? 3n3(1+0n)3) on
Where%zmég%.

It follows that ¥ ,5; |a| < 00 whence

[\Dll—
wIH
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where
n [ele)
[=Bi+Y %—>C=B+Y %eR.
k=1 k=1

To finish the proof of (¥¥7), we recall that by the antiderivative test

3 lim(Z%—logn)eR. O(&y)
n—o0o k=1

To finish the proof of Stirling’s formula, we show that C' = /2.
Firstly, Wallis’ partial products can be written in the form

n 1 noAk? -1
H(l—m):ﬂ
|)2 H(2k+1)(2k: 1)

Mm+1 [ 2
()2 (ﬂ(%‘ ”)

1 (2n)Y?
- 4”(n!)2( 2nn) )

_2n+1(2n)2
o4\ )

(Qn) C(2n)! V2
a2 Oyn
whence using Wallis” product theorem:
2 M +1 (2n)2 m+1( V2 .\ 4
n 42n \C\/n

By (A),

n

T 7:—>_oo 42n
and C' =/27. @

Demoivre’s local, central limit theorem (LCLT. A fair coin is
tossed n-times yielding “heads” s, times and “tails” n —s,, times. The
probability distribution of s, is “binomial”, given by

Prob(s, = k) := (Z)Qi”

Exercise



160 (©Jon Aaronson 2007-2017

Prove Demoivre’s LCLT: that V t € R,

™ m™m 1 ( 2n _2
— Prob(sg, =n+x,)=\/— — — €
2 2 \n+x,) e

‘,'Un
as n—->oo & x,€Z, — — t.

\/ﬁ n—>00

end of coursenotes
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