INTRODUCTION TO DYNAMICAL SYSTEMS,
COURSE NOTES, WINTER 2013.

JON AARONSON

Week # 1, 16/10/2013.

Basic CONCEPTS

What is a dynamical system? In this course a ”"dynamical system”
will (mainly) be a pair (X,T) where X is a set equipped with some
structure (e.g. a topological space, a measure space or a differentiable
manifold) and 7' : X — X is a map preserving the structure on X,
i.e. T continuous if X is a topological space, T" measurable and ”"non-
singular” (preserving measure zero) if X is a measure space and T" a
differentiable map if X is a differentiable manifold.

Usually (but not always), we are interested in the ”asymptotic be-
havior” of a dynamical system (7" for large n).

(34

It’s also possible to consider °‘generalized" dynamical systems (X,I[') where

X is as above and I' is a semigroup under composition of maps preserving the structure
on X.

Stable behavior, attractors, contracting maps. Let (X,T) be a
continuous map of a metric space.

e An attractor (for (X,T)) is a point a € X for which there is an
open set @ # U ¢ X with T"x — a V x € U. The domain of attraction

n—oo

of the attractor a is the largest such open set. By continuity of 7', an
attractor a for T' is necessarily a fixzed point i.e. Ta = a.

The attractor is called global if its domain of attraction is X.

The map T : X - X is called a contraction with respect to d if
FA=XT)=XT,d) <1 (the contraction factor) such that d(Tx,Ty) <
Ad(z,y).

The metric is important here and we should say that (X,7,d) is a contraction

under these conditions.

1.1 Contraction mapping theorem
If T: X - X is a contraction of a complete metric space (X,d), then
there is a global attractor for T.

(©Jon Aaronson 2006-2013.
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Proof Let A€ (0,1) be the contraction factor and fix z € X. It follows
that for n, k> 1,

k-1
d(T"z, T 2) < Y d(T"Hx, T )

=0
k=1

<Y ANd(z, Tx) < )\”M_
= 1-X

Thus (x,Tx,T?z,...) is a Cauchy sequence in X and by completeness
3 a(x) € X so that d(T"z,a(z)) — 0.

By continuity of 7', Ta(x) = a(z). To see that a(z) does not depend
on X:

d(a(x),a(y)) = d(T"a(x), T"a(y)) < A"d(a(z),a(y)) —— 0. @

ITERATED FUNCTION SYSTEMS & HYPERSPACE

Let (X,d) be a metric space. An iterated function system (IFS) on
(X, d) is a finite collection of contractions wy, ... wy : X - X.

Associated to an iterated function system, there is an interesting con-
traction of the hyperspace H(X) space of nonempty compact subsets
of X:

N
k=1
The Hausdorff metric h on H(X) is defined by
h(K,K') :=max {d(K,K"),d(K' K)}
where
d(A, B) := max(mind(z,y)).
reA ~ yeB

Note that (!)

h(K,K")=min{e>0: K c B(K'¢), & K'c B(K,¢)}

Proposition 2
(H(X),h) is a metric space.

Proof

In case ANB # @ choose a € A\B, then by compactness, mingg d(a,y) >
0, whence d(A, B) > 0. It follows that h(A, B) =0 iff A= B.

To prove the triangle inequality, note first that

d(a,c) <d(a,b) +d(b,c) VaeA, beB, ceC.
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Fixing a € A, ¢ e C' and minimizing over b € B we obtain that 3 by € B
such that

d(CL, C) < d(CL, bO) + d(b07 C) = mlél d(a‘7y) + d(b07 C)J
ye

whence fixing a € A and minimizing over c € C"

migd(a,x) < mind(a,y) + mgl d(by,z) <d(A,B) +d(B,C).
€ ye z€
U

Proposition 3 If (X,d) is either compact, or R? with the Euclidean
distance, then (H(X),h) is complete.

Proof sketch
Suppose that A, € H(X), (n>1) is a h-Cauchy sequence and define

A={xeX: Jx,€eA,st. z, >z}

Q9A+@

Choose n; 1 such that h(Ag, Ay) < 2i V k.0 >n; Fix z; € A,,, then
3 x5 € A, with d(z1,25) < 3. Continuing, get zj, € A,, (k> 1) such
that d(xy, 2re1) < 35 Evidently (1) {@;}s is a d-Cauchy sequence. Let
rr = a. We need to show 3 a, € A,, a, - a. To do this we show
3 a, € A, Cauchy s.t. a,, = ;.

Indeed for n; < k < n;,1, choose ay € Ay such that
d(ay, Tn,,,) = mingea, d(y, T,,,,) < h(Ay, A,y < 55 O
€2 A is closed.

Suppose b; € A, b; - b. 3 n; t such that V ¢, 3 z;, € A,, with
d(z;, b;) < 2—11 As before, 3 a,, € A, Cauchy s.t. a,, = ;. It follows that
a, — b whence b€ A. O
€3V e€>0 3 N such that Ac B(A,,¢) Vn>N.

Fix N > 1 such that h(Ay, Ay) <eV k, £ > N, then Ay c B(Ap,e) V k, 0>
N. Fix ae A and let a,, € A,,, a, > A. Since B(Ay,¢) is closed,

a < a€B(Aye) YV k0> N.

€4 A is compact.
Closed by €2 and precompact by €3.
€5 V €>0 3 N such that A, c B(A,¢) Vn>N.
Fix N > 1 such that h( Ay, Ay) <€/2V k, 0> N, then A, c B(Ag,€) V k£ >
N. We show that Ay c B(A,e) V k> N.
Fix y € Ay. 3 k < N; 1 such that A, c B(4,,5) Ym,n > Nj.
3 z; € Ay, such that d(y,z1) < §, d(zj,7,1) < 55 It follows that
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x; > z € X. As before, z € A. Also d(y,z;) <e V j whence d(y,z) <e.
It follows that y € B(A,¢). 0 O

Exercises

Prove that
1) if (X,d) is compact, then so is (H(X),h).
2) (H(R?),h) is pathwise connected.

Proposition 4
h(W(A),W(B)) < max Mwg)h(A, B).

Proof Note that
h(K,K")=min{e>0: K c B(K'/¢), & K'c B(K,¢)}
Thus
h(W(A), W(B)) < max h(wy(A),wy(B)).
Now for ae A, be B,
d(wg(a), we(b)) < AM(wg)d(a,d)

whence
ml&)d(wk(a), y) < AMwy) mind(a, b)

and
E(wk(A), wi(B)) < )\(wk)a(A, B).

Corollary 5
FEach IFS has a unique attractor.

Proof By propositions 3 and 4 and the contraction mapping theorem,
3 K e H(X) such that Wn(A) > KV Ae H(X). O

Exercise. Let

X= (0,1, wole) = 5 & (o) =

then the attractor of the IFS (wg,w;) is the (middle third) Cantor set.

Hutchinson’s formula Let W(K) = K and suppose that w;(K) (1<
i < N) are disjoint, then the box dimension d of K coincides with its
Hausdorff dimension, and satisfies

; AMw;)?=1.
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Proof Exercise, or see Barnsley’s book Fractals Fverywhere.

PICARD’S SOLUTION OF INITIAL VALUE ODE

Let d>1 & U c R xR9 be open and let f: U — R? be continuous.
Given (to,x0) € U and € > 0, we say that x : (ty — €,tg +€) > R4, C!
solves the initial value problem IVP(ty,xq) if

x(to) =xo, (t,x(t))eU, & Cfl—f(t) = f(t,x(t)) VYV te(to—e€to+e).

Picard’s Theorem If f is Lipschitz continuous, then ¥ (to,x¢) € U, 3
a unique solution of IVP(tg, o).

Proof Fix (to, o) € U. Suppose that V' is open with (to, o) € V and
V cU. Let e >0 with B((tg,z0),€) c V. Let

X = Xg o) = {2 (to—€,to+€) - Re: (t,z(t)) eV Vte(tg—e to+e)}
with the metric d = d( 4,),c defined by

d(z,y) = sup ) |z (t) = y(t) ]2

te(to—e,t() +e

It follows that (X, d) is a complete metric space.
Next, define & : X - X by

O(z)(t) =z + /t:f(a:(s),s)ds

where [’:=-["
We claim that for € > 0 small enough, ® is a contraction.
To see this, for x,y € X(4).20),e:

H@(x)(t)—fb(y)(t)Hz:H/ (f(x(s),8) = f(y(s),8))ds]

< [T1 @) - £0(3). )lds
<Lip(t) [ Ja(s) - (s) s
<Lip(f) - [t = to - d(x, y);

whence
d(®(x), ®(y)) < Acd(z,y)
where A, := Lip(f)e < 1 for € small.
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For such small € > 0, there is a unique global attractor x € X satisfy-
ing ®(z) =z or:

x(t) == + [totf(s,x(s))ds
= x(ty)=x0 & fl—f(t) =f(t,z(t)). @

NEWTON’S METHOD

Suppose that f : R - R is C'. Newton’s method is an iterative
procedure to find z € f~1{0}.
The procedure

Given u € R, draw the tangent line L to the graph of f at (u, f(u))
and take v as the z-coordinate of the intersection of L with the z-axis,
ie. {(v,0)} =Ln(Rx{0}).

The equation of L is &= f (“)
or

= f'(u), whence v satisfies f(“) = f'(u),

S
v=Tru=u Ok

Almost any 7' =T with
f(@) = el et

Set ug = u, Upsr = Tiuy,.
Theorem 1.3 (Raphson)
Suppose that r > 1 and that
fisCrand zeR, f(2)=0, f/(z)=---=f0D(2)=0, f()(2) %0,

then 3 € >0 such that u, - z as n - oo whenever |uy — z| < €.

Proof
WLOG, z=0& f((0)>0. Fix 6 > 0 such that [e*?’ - 1| < 1 and let
€ > 0 satisty:

f) _ f0) us fiw) = 1(0) s

u ol ) (1) 1)'

fw) _
F7Cu)

Ty (u)] = |u— e < (1= Dul + 4 = 1] < (1= 5)[ul < [ul <€

and

Y |ul <e.

For |u| < e: Lex20 whence

[un] =T (u)] < (1 = 5:)"ul > 0.

Example.
If f(z) = 2*-a, (a >0), then Tyz = § + 3- and that T} (z) —
Vva ¥ z>0and Tp(z) > -/a ¥V 2 <0.
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Question for later.
How does T7(z) behave for z € C?

Example.

Let (X,T) be a dynamical system with a global attractor a € X. Fix
d>2 and define Ty : Xy:= X xZy > Xy by Ty(x,i) := (Tx,i+1) where
Zq=1Z[dZ. Tt follows that T! has no attractor for 1 <i < d and that
(a,i) is a global attractor for T.

Exercise 1.0
1) No contraction of a compact metric space is a homeomorphism.

Exercise 1.1.

Let X, :={zeC: |z| <1}, Syz:=22 then Sy: X, - X, Vr<1. Fix
d(z,y) = |z —y|.
(i) Show that (X, Ss,d) is a contraction with respect to d V r < 3 with
A(S2,d) = 2r but not for £ <r<1.
(i) For which r € [3,1] can you find a metric p ~ d so that (X,,Ss, p)
is a contraction?

Exercise 1.2.

Let the continuous map of a Polish space (X, T") be nowhere-expanding
in the sense that d(Tx,Ty) <d(z,y) V z, ye X.

(i) Show that (X,7’) has a global attractor if either

(a) X is compact; or

(b)* there is a complete metric d on X and v : [0, 00) - R continu-
ous, strictly increasing satisfying ¢ (0) = 0 and

d(Tz,Ty) <d(x,y) -v(d(x,y)) V z, ye X.

(ii) Does every nowhere-expanding map (X, 7T") of a Polish space have
a fixed point?

SOME UNSTABLE DYNAMICAL PROPERTIES

An “unstable property” should ensure that there are no attrac-
tors.

Minimality & transitivity.

A homeomorphism 7 : X — X of a metric space X is called:
e (topologically) transitive if some orbit is dense (i.e. 3z € X, {T"x: neZ} =
X);

e minimal if every orbit is dense (i.e. {T"z: neZ} =X V zeX).



8 (©Jon Aaronson 2006-2013

Note that T" minimal == T transitive == no power of T" has an
attractor.

Rotations of T. Recall that T := R/Z = [0,1). For o € T define
R,:T—-Thby Ryx=2+a mod 1.

Proposition
If a ¢ Q, then R, is minimal.

Proof Consider T 2 [0,1) equipped with the metric d(z,y) := min {|z-
y|, 1-|z—yl}, then R, is an isometry in the sense that d(R,z, R,y) =
d(z,y).

e It suffices to show that {na mod 1},5; =T

(as then {RP’x: neZ}=x+{na mod 1},,; =T V zeT).

e To this end, we claim that ¥V ¢ >0, 3 ¢>1, d({fa},0) <e. To see
this, let p be a finite partition of T into sets of diameter < e. Since
{ka} # {K'a} for k + k', we have (using the pigeon-hole principle) that
Fj<k<#p+1andpep with {ja}, {ka} € p, whence d({ja}, {ka}) <
e. If £ =k—-j then (since R, is an isometry), d({¢a},0) < e. This shows
that V 2z €T, 3 neZ, d(x,{nla}) <e. O

AN EXAMPLE

Let C:=Cu{oco} = S2.
Let Sz := 22 & S3(00) = 00, then Sy : C - C.
Note that

0 lz| < 1;
Siz) —— ’
2(¥) T3 { 00 2] > 1.

Proposition 1.2
The dynamical system (S',Sy) is transitive where St := {x e C: |z| =

1.

Proof
Let :={0,1}N and define ¢ : Q - S! by

P(w) = exp [271’i 2 %] :
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Note that for w = (wy,ws,...) €,

Sa((w)) —exp[Zm i ]

- exp [2m‘ (wl + i hadlas )]

= P(ow)

Where o(w) = (wa,ws, ... ) aka the shift.
It follows that S (¢¥(w)) =¥ (c¥w).
Also, if w, 0eQ and w, =6, Y 1<k <N, then

1\3|E

- S]]
n=1 n=1
= |exp [QM Z “n = 0”] _ 1|
n=N+1 2"
e
< —.
SoN

We now use all this to prove the proposition.
We claim first that

(%) Jw*eQsuchthat VN>1, ny,...,nny=0,1;
3 k> 1 such that o"(w*);=m; YV 1<j<N.

To see this enumerate all the finite sequences of Os and 1’s and con-
catenate them to obtain w* € (2:

(i.e.) 0 = U{071}” ={n® =™ i keN) &

_(7](1)77](2) );
then
o X<k 1V1(w ) _77( ) V1<i<y

and w* satisfies (8).
Next we claim that z = ¢)(w*) is as advertised.
Let y €S, y=1(n) and fix e >0. We find x > 1 so that

195(2) -yl < e
To this end, choose N >1 so that ;% <€ and find & so that
o"(w);=n; ¥V 1<j<N;

then, using the above

155 (2) =yl = [S5¢(w™) = (n)| = [P(0"w") - w(n)l<—<6 a
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Exercise 1.3.

Show that S% is

e transitive V k e N;
e not minimal &

o ¢ JzeStwith {S§"(z): n>1}=S! VrelN
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Week # 2, 23/10/2013.
Exercise. There is a gap in the proof of Picard’s theorem. (i) Find
it. (i) Fill it.

NEWTON’S METHOD WHEN f(z) >0V z eR?

Recall the example on p.6:

If g(x) := % -1, then Tyx = £ + 5~ and that T7(z) > 1V x>0 and
Ti(r)>-1Y2<0.

We now check behaviour of 77 (z) for z € C.

For z e R:

where f(z):=22+1>1.

Consider f(z)=x?+1, then Tj(z) = 3(z-1).
Proposition 1.4
3z eR such that {T}x: n>1}=R.

Proof sketch
We first show that 3 a homeomorphism @ : R - St \ {1}, so that

Ty(x) = 271 (2(x)?).

To see this, define W :C - C by ¥(z) := 2L & U(o0) =1, then () W is
a homeomorphism and

U(L(z-1)) = w(2)2,
Moreover for x € R,

1 ox2-1 211

x pa—
m = =

() r+i x2+1 +:1c2+1

Thus © := V| is as required and Ty (x) = ®71(S2(P(x))) where Sa(z) :=
22 as before.

By proposition 1, 3 z € S! so that {Syz: n>1} = S'. Evidently

Sy(2)#1Vn>landsoifw=®7!(2) e Rthen TPz = &7'({Sy2) Vn>1

and

e S'N{1}.

{Tpz: n>1}=71({S3z: n21})=R. @

Exercise 1.4.
For f(z) =1+ 2?2, show that no power of Ty can have an attractor.
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Exercise 1.5. %

For p e (0,1), N e N, set f(z) = fyn = (1 +x2N)%%, then Tjx =
(1-p)z - —k=. Show that 3 p € (0,1), N € N so that Tpr has an
attractor. ’

Hint: Find z € R so that |[(T?)'(z)| < 1.

Exercise 1.6 (Open Problem).
Suppose that f : R — R, is smooth (e.g. C", r > 2 or analytic),
and that log f is strictly convex and satisfies f(x) — oo. Show that

|| 00

3z eRso that {Tfz: n>1} =R

Complex dynamics: Fatou and Julia sets.

For a rational map R : C — C a point z € C is called Fatou if 3 an
open set U 3 z on which {R": n > 1} is a normal family in the sense
that V ng — oo Elmg=nkl—>oo&¢:U—>@sothat

sup p(R™(w), p(w)) . 0 V KcU compact,
weK 0o

where p is (equivalent to) the spherical metric on C.

The Fatou set F(R) := { Fatou points of R}. It is open and invari-
ant: (R1F(R) = F(R). The Julia set of R is J(R) :=C~ F(R). It is
closed and invariant.

It follows from proposition 1.2 that J(Ss) = St whence (!) for f(z) =
22 -1, J(T}) = iR.

Exercise 1.7. R
Show that for K ¢ C'~\ {0, 00} compact,
Si"(K) = {zeCx S3() e K} = 8,
soisT™V n>1.
Hint: S;1(J) = vi(J) uva(J).

§2 HOMEOMORPHISMS OF THE CIRCLE.

One of the aims in dynamics is " classification” of dynamical systems
up to "conjugacy”. This section is devoted to the classification of
homeomorphisms of the circle up to conjugacy by homeomorphism as
done by Poincaré, Denjoy and Herman.

The additive circle is T := R/Z. 1t is represented by the metric space
([0,1),d) where d(x,y) := min,z |x —y +n|. The multiplicative circle is
St:={zeC: |z| =1} z 2T,
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Lift of a continuous map of T.

Let T:T—>T. Amap R:R - R is called a lift of T if R(z) +Z =
T(x+7Z).

If R is a lift of T', then so is R+ N for any N : R — Z.

Lifting theorem for T
A continuous map of T has a continuous lift.

This is a special case of a more general proposition which we’ll prove
now. We’'ll need other special cases later.

Covering maps & deck transformations. Let X, Y be metric
spaces.

A surjection 7 : X - Y is called a covering map if it is a local
homeomorphism i.e.

e VxeX 3e>0sothat m: B(z,e) - w(B(z,€)) is a homeomor-
phism.

Let m: X - Y be a covering map. A homeomorphism v: X - X is
called a deck transformation of m if moy =m.

Let ', := {deck transformations of 7, then I'; is a group under com-
position.

The covering map 7 : X — Y is called a reqular if

mHyy={y(@): vela} Vaer{y}.

Example. Let X =R &Y =S!, then 7: X - Y defined by 7(x) = e?®
is a regular covering map with I'z = {7, : n € Z} where v, () := x+2mn.

Lifting Theorem Suppose that X is a simply connected, separable
metric space, Y is a compact metric space and w: X =Y 1is a reqular
cover.

If f: X =Y s uniformly continuous, then 3 F : X - X continuous
so that mo F = f.

PROOF OF THE LIFTING THEOREM

e 3 A >0 so that for any ball B c Y of radius A, 3 ¢p: B > X
continuous with mo ¢p = Id|5.

Proof of e

3 an open covering {Uy,Us,...,Uyx} of Y so that for each k 3 ¢ :
Ui — X continuous so that o ¢, = Idy,. It suffices to take A = the
Lebesgue number of {U;,Us,..., Uy} so that for any ball B c Y of
radius A;3 1<k <N with BcU. &
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Path homotopy.

Let Z be a metric space. Two paths P,Q : [0,1] - Z with the
same initial point a = P(0) = Q(0) and endpoint b = P(1) = Q(1) are
path homotopic if 3 h:[0,1] x[0,1] - Z continuous so that h(0,t) =
P(t) & h(1,t) =Q(t) Yt €[0,1] (i-e. hisan homotopy) and in addition:
h(s,0)=a & h(s,1)=bV se[0,1].

Such an h is called a path homotopy (from P to Q).

Lemma

(i) If P : [0,1] = Y is a path and q € X, ©(q) = P(0), then 3 a path
Q:[0,1] > X so that Q(0) =q and mo Q) = P.

(i) If Q1, Q2:[0,1] > X are paths with mo Q1 =mo Q2 and Q1(t) =
Q2(t) for some t €[0,1], then Q1 = Qs .

(i) If Q1, Q2:[0,1] = X are paths satisfying: Q1(0) = Q2(0) and
o (1 is path homotopic in Y to o Qa, then Q1(1) = Q2(1) & @y is
path homotopic in X to Q5.

Proof of (i)
° 10=1ty <ty <ty <---<t,=15s0 that P([tk_l,tk+1]) c By =
B(P(tx),A) for 1 <k <n (where t,;1 :=1). Define Q; : [0,t3] > X by

Q1:=71 0 ¢p, o P where v, € I'; satisfies 1 (¢, (P(0))) = ¢.
Next, define

o (s : [t1,t3] > X by Qg = 72 0 ¢p, o P where 75 € ', satisfies
V2(05,(P(t2))) = Qu(t2);

o Q: [te-1,tke1] > X by Qg = Y 0 ¢p, o P where 7, € I'; satisfies
’)/k(QSBk(P(tk))) = Qk—l(tk) fOI“ l{ = 3, o, n

The required path is defined by
Q(x) = Qr(x) for we[ty1,tp1] (1<k<n). @

Proof of (ii)

Let S:={te[0,1]: Q1(t) = Q2(t)}, then by assumption, S # @. By
continuity, S is closed in [0, 1] and it suffices to show that S is open.
To this end, suppose that s € S and set u = Q1(s) = Q2(s), z =7(u).

By continuity 3 € > 0 so that Q;([s—¢, s+€]) c B:= B(z,A) (i=1,2).
We can choose vy € I'; so that yo ¢p(2) = u.

It follows by continuity that for t € (s —¢€,s+¢€),

Qi(t) =vodp(m(Q1(t))) =7vodp(m(Qa2(t))) = Qa(t). o
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Proof of (iii)
Let h:[0,1] x[0,1] = Y be a path homotopy, that is: a continuous
map satisfying

h(S,j) = Ql(.]) & h(l_ 17t) :T‘-(Qz(t))’ (Z = 1727 j: 0717 Sat € [071])
Fix 0=ty <ty <---<t, =ty =1 so that
R([ti-1,tre1] % [te-1,tes1]) € Bryg = B(h(tg,t),A) V 1<k, £<n.

By (i) for s € [0,1] 3 a path Q,:[0,1] - X so that
Qs(0) = Qu(s) & m(Qs(1)) = h(s,1) ¥ s, € [0,1].

We claim that H : [0,1] x [0,1] - X defined by H(s,t) := Qs(t) is
the required path homotopy.

To see that H is continuous, noting that mo H = h, choose v;¢ € 'z
so that

H(S,t) = "}/klo(ka’Z(h(S,t)) i S,t € [tk,l,tlﬁl] X [tf—lathl]a 1< k’, 14 <n.

This ensures continuity of H on each Ry, = [tg-1,tg1] % [to-1,te1]-
Global continuity follows also because

Ry N Ry ¢ # @ whenever |k —k'| & [0 - '] < 1.

It remains to show that H(1,t) = Q2(t) V t € [0,1]. To see this we
note that H(1,0) = Q1(0) = @Q2(0) and wo H(1,-) = w0, which forces
H(1,t) =Qy(t) YV t€[0,1] by (ii). &

Proof of the Lifting Theorem
For Z a metric space and z € Z, let

p(Z,z):={P:[0,1] > Z:a path, P(0) = z}.

Let a € X with m(a) =a €Y.
By (i) & (ii) of the lemma, 3 ! 1, : P(Y, a) = P(X, @) so that

oo (P)=P & ,(P)(0)=a VYV PeP(Y,a).

Evidently (!) %, is continuous in the sense that V ¢ >0 3 § > 0 so
that

sup dy(P(t),P'(t)) <0 — sup] dx (Vo (P)(t), Vo (P (1)) <e.

te[0,1] te[0,1
Now fix a, be X satisfying m(b) = f(a) and define
\I’p(X,CL)—)p(X,b) by \II(P) :Q/Jf(a)(fOP)
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Using uniform continuity of f : X — Y, it is not hard to show (!)

that U is continuous in the sense that V € >0 3 § > 0 so that
sup dx(P(t),P'(t)) <0 = sup dx(V(P)(t),V(P)(t))<e.

te[0,1] te[0,1]
If P, P'ep(X,a) are path homotopic, then so are fo P & fo P’ and
by (iii), so are W(P) & W¥(P’). In particular U(P)(1) = ¥(P")(1).

Since X is simply connected, if P, P’ € p(X,a) & P(1) = P'(1), they
are path homotopic. Thus 3 F': X - X so that

W(P)(1) = F(P(1)) ¥ Pep(X,a).

To show that F'is the advertised lifting, it remains to show its continu-

ity, which follows because if x,y € X are close then 3 P,, P, e p(X,a)
close, with P,(1) =z, P,(1)=y. «

Exercise. Can you prove the lifting theorem for T without using the
general lifting theorem?

ORIENTATION

The triple (z,y, z) € T3 is in positive order if 3 points z* < y* < z* €
R, z* —ax* <1 such that * +Z =z,y* +Z =y, 2* + Z = z. Note that if
(z,y, 2) is in positive order, then so is (y, z,x). The triple (z,y, z) € T3
is in negative order if (z,y,x) is in positive order.

A map T:T — T is called
e orientation preserving at w € T if 3 € > 0 so that (x,y,2) € B(w, €)?
in positive order = (Tz,Ty,Tz) in positive order and

e orientation reversing at w € T if 3 € > 0 so that (z,y,z) € B(w,€)?
in positive order = (T'z,Ty,Tz) in negative order.

A map is called orientation preserving/reversing if it is orientation
preserving/reversing at every point.

Examples. (i) The maps R, («€R) are orientation preserving, as is
x~qgr mod1l (geN).
(ii) The map x — —x is orientation reversing.

(ili) Concatenations of orientation preserving/reversing maps are also
orientation preserving/reversing according to the formulae

preserving o preserving = reversing o reversing = preserving
and

preserving o reversing = reversing o preserving = reversing.

(iv) The continuous map f: T — T defined by
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20 0<z<i;
f(m)::{ 2(1 el
( - 33) 5ST=

is orientation preserving on (0, 3), orientation reversing on (1,1) and
neither preserving nor reversing orientation at %
Proposition

Let T : T — T be a homeomorphism and let R:R — R be its lifting,
then |R(x + 1) — R(x)| =1 and either:
e R is strictly increasing and T is orientation preserving; or

o R is strictly decreasing and T s orientation reversing.

Proof Evidently 3 N €Z so that
R(x+1)=R(x)+N V zeR.

e If N =0, then 30 < u < wv<1sothat R(u) = R(v) whence
T(m(u)) =T(w(v)) and T is not 1-1 (as w(u) # 7(v))). X

e If N =ev with v >2 & €= =x1, then by the intermediate value
theorem, 3 6 € (0,1) so that R(x +0) = R(x) + ¢, whence T(7(0)) =
T(n(#)) and T is not 1-1 (as w(0) #7(0))). X

Thus € = +1.

If € = 1 then R is strictly increasing (else 7" is not 1-1) and T is
orientation preserving; and if € = =1 then R is strictly decreasing and
T is orientation reversing. v

ROTATION NUMBER

Let T: T — T be an orientation preserving homeomorphism, and let
R:R - R be a continuous lift of T'.

Proposition 2
1) 3 p(R) such that %(m) - p(R) YV zeR;
2) 3 p(T) €T such that p(R) +Z = p(T) for every continuous lift R of
T.
The rotation number of T is p(T') € T.

Proof
We claim first that V n > 1 3 k,, € R such that

R"(z)-x €|k, —1,k,+1] V xeR.
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To see this with k, = R*(0), set F'(z) := R*(z)-x; then F(z+1) = F(x)
and for 0 <x <1,

F(z)-F(0)=R"(z)-z-R"(0)e[-1,1-x] c[-1,1].
Thus

R (0) = 7;:20 RO(R™(0)) = R (0) € [mky — m, mhy, +m]

and
|Rmn(0) _@| < l
mn n o~ n
Consequently,
|Rm(0) ~ R”(0)|
m n
< |Rm_(0) _ k_m| n |k:_m _ Rmn(0)| n |Rmn(0) _ ﬁ| |k_” _ R"_(O)|
T om m m mn mn n n n
2 2
<—+=.
m n

Thus 3lim,, 0 R"n(O) =: p(R).
Evidently | _ B O) ¢ il y g e R 50 £ p(R) ¥ 2 € R.
If R,S are continuous lifts of 7', then S = R+ N (some N € 7Z),

whence S” = R* +nN (neN) and p(S) = p(R) + N. O
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Week # 3, 30/10/2013.

Exercises.
1) For ¢ > 0, consider the map 7, : T — T defined by T,(z) :=
gr mod 1. Find the set

{x € T: T, is orientation preserving at X }.

2) Let T: T - T be an orientation preserving homeomorphism and
let R: R — R be a continuous lift of 7. Show that for k € Z, R* is a con-
tinuous lift of T* and p(RF) = kp(R), whence p(T*) = kp(T) mod 1.
Proposition 3

Let T : T — T be an orientation preserving homeomorphism, then
p(T) € Q/Z iff 3 a periodic point for T in T.

Proof
Let R:R — R be a continuous lift of 7".
Suppose first that T9(z + Z) = x + Z, then 3 p € Z such that R?(z) =
x +p. Evidently, R¥(z) =x+ap (a€Z) and
N aq
p(R) = lim R (z) _ lim Raz) _p Q.

Nooo N a»o  aq q

Now suppose that p(R) =2 € Q, then p(R7) = p € Z. We claim that
FzeT, Ti(z)==x.

To prove this, it suffices to show that
() p(S)eZ — FJzeR, S(x)-z€Z
where S = R4.
Proof of (&)

The map z ~ S(z) — z is periodic and uniformly continuous on R.

Thus, assuming S(z)-z ¢ Z ¥V z € R, we have that 3pe Z & e € (0,1)
such that

p+e<S(z)-z<p+1l-€eV zeR.

[terating,
N N-1
57O LN (554(0)) - S5(0)) € [p+epr1-e] ¥V N> 1
N N %

contradicting p(S) € Z. K

Proposition 4
Suppose that p(T) ¢ Q, then ¥ x € R, my,my,ny,ns € Z,

R™(x)+my < R™(x)+my <=  nyp(T)+my <naop(T) +ms.
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Proof
1 For z,y € R, my,ma,nq,n9 € Z,

R™(x)+my < R™(xz)+my <= R"™(y)+mi<R"™(y)+my.
Else 3 x,y € R, my,mo,nq,no € Z with
R™(x)+my < R™(x)+me & R™(y)+my1>R"™(y)+ms.

Evidently ny # ny (otherwise this is impossible) and so by continuity
3 z € R such that R™(z) + my; = R"(z) + my whence if ny > n; and
w = R™M(z), then R ™ (w) — w € Z contradicting p(T") ¢ Q.

©Q R (0)+my < R™2(0)+my = nyp(T) +my <ngp(T) +ms.
Note first that

R™(0) + my < R™(0) + my
< R™™™(R™(0))-R"(0)=R™(0) - R™(0) <ma—my
L» R ™(x)-x<mg-my VzeR
It follows that if R™(0) +my < R"2(0) + my, then
N-

RN(m—nz)(o) — Z (R(k+1)("1—n2)(0) _ Rk(nl—nz)(o))
e
N-

> (R (A7) (0)) — RHO ) (0)

=0

< N(mg - ml)

—

Lo

Bl

whence N )
n1-na ! _
N(nl—ng) n1 —No
W nip(T) + my < nop(T) +my = R™(0) +my < R*2(0) + my is
shown as in €2, but with the logic reversed. U

Exercises on rational rotation numbers.

Suppose that f: T — T is an orientation preserving homeomorphism
with p(f) = § € Q with p, ¢ relatively prime.
(i) For any periodic point x € T there is an order preserving bijection
fi(z) ~ % defines an order preserving bijection between { f7 (x)}g;é and
{B5

qtj
(i) If f has a unique periodic point z then f4(x) T» 2V zeT.

n|—oo

(iii) If f has more than one periodic point, then for any nonperiodic
point x € T, 3 periodic points z_ # z, so that f"(z) o e

(iv) Show that f is not topologically transitive.
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Proposition 5

Suppose that T : T — T is an orientation preserving homeomorphism
with p(T) ¢ Q, then 3 h: T - T continuous and orientation preserving,
with hoT = Tp(T) © h.

If, in addition, T' is topologically transitive then T = vy, and T is
minimal.

Proof

Let T: T — T be a continuous lift of 7. Given u € R, write [g(u) :=
{R*(u) +m : n,m € Z} and Ty := {np(R) + m : n,m € Z}. By
proposition 4, if 7 : Tg(u) — I'y is defined by (R (u)+m) := np(R)+m,
then 7 is an order preserving bijection. Evidently m(x +1) = 7(z) +
1, toR=m+p(T).

We need the
Claim

If a<b, a,beTy(u) and (a,b) nTo(u) = @, then

m(a=):=  sup w(y)= _inf 7w(y)=7w(b+).

yelo(u), y<a zelo(u), z<b

If the claim is false, then by irrationality of p(R) (denseness of I'y),
Ftelyn(m(a=),n(b+)). It follows that 3 s € Tg(u), t =7(s), but this
is impossible since by order preservation of 7, s€I'g(u)n (a,b) = @.

The claim with a = b (where (a,b) = (a,a) = @) shows that 3 ! 7 :
To(u) - R continuous, strictly increasing, with Tlro(u) = -

The claim with a < b, a,b € To(u) and (a,b) nTy(u) = & shows
that in this situation, 7(a) = 7(b), whence 3 ! 7: R - R, continuous,
non-decreasing such that #lg ) = 7.

Evidently 7(x + 1) = #(x) + 1 and 7o R = 7 + p(R). The required
continuous h: T — T is defined by h(x + Z) := 7(x) + Z.

In case T is topologically transitive, 3 u € R with To(u) = R and the
maps 7 and h are homeomorphisms. O

Denjoy’s Examples
Foranya¢Q 3 T:T - T a C! orientation preserving homeomor-
phism with p(T) = « and which is not minimal.

Construction sketch a bit different!

Choose A, >0 (n €Z) such that ¥,,.z A\, = 1 and ’\;—: — 1 as|n| > .
Set o, == R2(0) (neZ).

We claim first that
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91 3 a disjoint collection {I,, : n € Z} of open subintervals of (0, 1)
such that |I,,| =\, (ne€Z) and for my, mo,ny,no € Z:

Ly, + |nia] +my < I, + [noa] + my <= nia+my <nga+ms.
To see this, define B:(0,1) - (0,1) by
B(z)= > M\
neZ, an<c
and let
I, := (B(an-), B(aw)) =: (an, by).
Evidentlyf] the collection {I,: n € Z} is as advertised. w91

92 Next, V n € Z we construct a C'° orientation preserving diffeomor-
phism f, : I,, - I,.1 such that f!|o;, = 1 and sup; |log fi| = 0 as
|n| = co. For such a diffeomorphism

=) @)= fule) [ gt where g, £,
and we construct g, : 1, > R, C* so that

(%) /1 gn(t)dt = Apy1, gn(an) = gu(by) =1 & supllog g, m 0

and define f, : I,, - I,.1 by (%1).
Evidentlyf]
6()\n+1_')\n)€

% (b —x)(x-ay)

gn(x) =1+

satisfies (%).
93 Define g : U := Upez I, = R, by ¢|;, = g, and define f: T - T by

f(x)=a+ /(;xg(t)dt mod 1.

Since ag = 0, we have that f|;, = f,.(!)

Moreover, f is differentiable on U := U,z I, with f'=g.

Extend the definition of g to [0,1] by defining g|j01}.g = 1. It follows
from (%) that ¢g:[0,1] - R, is continuous, whence (!) f:T - T is a
C' diffeomorphism, evidently orientation preserving.

To calculate the rotation number of f, let F': R - R be a lift of f.
If z € R projects onto w € Iy, then by 1,

F™(z)+my > F™(2) +my < nia+my > noa + mo

and it follows that p(F') = . &

1i.e.: this proof is an exercise

’see the previous footnote
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Exercises.
1) Prove (and/or correct) lemmas and (!)’s.

2) Let H denote the lifts of orientation preserving homeomorphisms
of T
equipped with the metric d(S,T) := sup,(|S(z) - T(x)| + |S~*(z) -
T-'(x)|). Show that the rotation number p: H — R is continuous.

3) Let T: T — T be an orientation preserving homeomorphism with-
out periodic points. Show that:
a) 3 K c T closed and T-invariant such that

w(z)=({TFx: k>n}=K V zeT.
n>1
(Hint: Prove that w(y) cw(z) V z,yeT.)
b) Either K =T, or K is homeomorphic to the (classical) Cantor set.

Remark

In the sequel, we’ll prove Denjoy’s theorem:

If T: T - T is an absolutely continuous orientation preserving home-
omorphism, p(T) ¢ Q and \/1log DT < oo, then T is topologically tran-
sitive.

Orientation preserving homeomorphisms of T as interval maps.
Let T': T — T is an orientation preserving homeomorphism with
p(T) ¢ Q, and consider the induced mapping f: I :=[0,1] - I. There
is a point ¢ = ¢s € (0,1) such that f is continuous and strictly increas-
ing on [0,c] and [¢,1]. Also f(0) = f(1) and f(c—) =1, f(c+) =0.
Moreover (!), f has no periodic point. Denote the collection of such
maps by S([0,1]). For another compact interval J c R, denote by
S(J) =htS([0,1])h where h: J — [0,1] is the increasing affine home-

omorphism between the intervals.

The ”1st return time renormalisation”. Let f € S(J) be ape-
riodic. Let {J’,J"} be the partition into open intervals defined by
(J~Aepy =T 0J",

Either f(J') c J", or f(J") c J'. Order the partition so that
f(J) c J", define n(f) := min{j > 1: J' n fi*1J + @} and set
J(f):=Ju frhH+1 ],

Define the return time function ¢ = @5y = N by ¢(x) = min{n > 1:
frx e J(f)} < oo and the return time- or induced map frp = R(f):

J(f) = J(f) by fap(z) = fo ().
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Renormalisation Proposition 6 f; e S(J(f)) and

~ 1 zeJ'nJ(f),
90(3:)—{ n(f)+1 xelJ.

Proof Examine the cases J' =[a,c), J' = (c,b] in detail.
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Week # 4, 6/11/2013.

RENORMALIZATION OF IRRATIONAL ROTATIONS
a ¢ Q and let f, € S([0,1]) represent R,, then

B = {

Here c=1-a, J'=(1-a,1) and J” = (0,1 -a). We have that
falJ) = ((i-Dajia) 1<i<d,

Fix 0<a <3,

r+a  xel0,1-a),
r+a-1  xe[l-a,l).

whence
n(fo)=max{j>1: ja<l-a}=[1]-1
It follows that

J(fa) = 70 f297H () = (1=, 1un(fa)a, (n( fa)+1)a] = [([2]-1)a; 1],
that |J(fa)| = +a{i}, and that

(Fa) sty = Fal N 0 falars (Fa) sty asra) = fa

whence (J'nJ(fa)=[1-a,1] and J” nJ(fa) = [([2] - 1)a, 1 -a])

s ={ 7 ol 7€l De o]

z+[f]a-1ze[l-a,l]

Proposition 7

1) If o€ (0,3)\Q, then
n(fa) = [51=1 & (Jadugga) 2 [ where G(a) = {3}
2) If e (%, 1)\ Q, then
n(fo) =[51-1& (fa)ura) 2 [ oo -

1+G(1-a)

Proof In exercises (below).

DENJOY’S THEOREM

Omega limit set.
Let (X,T) be a topological dynamical system. The omega limit set
of Tat v € X is

wr(z):={ye X, 3 ngp > oo such that Tz - y}.
For T a homoeomorphism, the alpha limit set of T at x € X is

ar(z) = wp-1(x).
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If X is a compact metric space, then (!) wr(x) is a non-empty closed
set V xeX.

Proposition: Uniqueness of w limit set for circle maps
Suppose that T : T — T is an orientation preserving homeomorphism

with p(T) =« ¢ Q, then

(i) there is a perfect subset of T so that wr(z)=E VY xeT; &

(i) either E =T or E is nowhere dense.

Proof

Q1 For z € T, m #+ n € Z, let I c T be a closed interval with 0I =
{T™z, Tz} (there are 2 such), then

Urtr=".
£>0

Proof of 1 Let
fo = T Lottt ombn@)] 2 [, b,

Since agy1 = by, Uszo I, is an interval V N > 1 and either U]kV:O Iyt T,
or 3 limy_,o T-mk-n(k-Dg =: 2 ¢ T.

In the second case, by continuity of T, T-%(m=")» = » contradicting
irrationality of p(T'). #q1
Q wr(y) =wr(z) ¥V x, yeT.
Proof of €2 It suffices to show that wr(y) c wr(x). Let z € wr(y),
then 3 ¢, > oo with T (x) - z. By 1, for each n > 1, 3 k, > 1 so
that T%(z) € [Ty, Tt+1y]. Tt follows (!) that T%(z) - z whence
zewr(zr). VY2
93 Either £ :=wr(0) =T or E is nowhere dense.

Proof of €3 The set £ :=wy(0) is a closed T-invariant subset of T
and, by 92, T is minimal on F. OF is a closed T-invariant subset of
E. By minimality of (E,T), either OF = @ in which case E =T (being
both open and closed), or F = E in which case E is nowhere dense.
v

To see that E is perfect, let z € E/, then 3 ny - oo so that 77z — 2.
The points {T™z: k > 1} are distinct as otherwise there would be a
period for T' contradicting p(7") ¢ Q. Thus z € E'. O

Denjoy’s theorem
If T : T - T is an absolutely continuous orientation preserving home-
omorphism, p(T) ¢ Q and \/tlog DT < oo, then T is m.
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The proof is in a series of steps:

€1 (Rokhlin interval tower I) Let T: T — T is an orientation

preserving homeomorphism with p(7") = « ¢ Q, then 3 ¢, 1 oo so that
V x €T, the intervals {(T*(x), T+ (z)): 0<k<q,} are disjoint.

Proof of 1 By minimality of R,, 3 ¢, - oo so that
d(R% (0),0) < d(Re(0),0) V [k] < ga-
It follows that the intervals {(RE(0), Ri"(0)) : 0 < k < g,} are
disjoint.
By proposition 4 the intervals {(T*(z),T* % (z)): 0<k < q,} are
disjoint V x € T. &

92 Suppose that J c T is an interval & {T7.J: 0< j < ¢q,} are disjoint,
then B
|log T%'(x) —log T (y)| < \/logT" V x,y € J.

Proof of €2 Since (T%(x),T*(y)) c T*J, we have

Adn

ViogT" >} [log T'(T% (x)) —log T (T (y))|

s | 2(1054 (T (2)) - log T'(T% ()))|

= [logT™'(x) = log T (y)|. @9

€3 For ¢, as in proposition 8,
T ()T~ (2) 2 e” V8T v 2 eT.
Proof of 3 FixxzeT.
By €1, the assumptions for 92 hold for ¢, as in q1, with with J =
[Tz, x] for x & y =T Iz,
Thus, using €2:
[log (T ()T (x))| = [log (T (x) +log T™"'(x))]
= [log(T""(z) ~log T (T~" (x)x))|
<\VlogT”

and T¢'(z)T-%'(x) > e~ ViesT' 243
To finish, if Denjoy’s theorem fails, then 7" is not minimal and 3z € T
with {T"x: neZ} = K ¢ T. Let U := T\ K, then TU = U is open.
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Let I c U be a maximal interval, then so is T™I V n € Z. Irrationality
of p(T') means that the T"I are disjoint (else the endpoints would be
periodic). Thus for ¢, —» oo as in {1,

L2 3(Tn 1|+ [T )
-3 fI (T%"(z) + T~/ (z))dz
> Z;/;\/an’(x)Tq”’(x)dx

1
> N|I| exp[—§ \/ logT"]

—> 00. KX
N—oo

DENJOY-KOKSMA INEQUALITY

Interval tower lemma
For each a ¢ Q, 3 ¢, < gns1 1 o0 (aka the principal denominators
of a) so that whenever T : T — T is an orientation preserving homeo-
morphism with p(T) = a ¢ Q, we have
Gn+1-1
1< > lyweT’(z)<2 V zeT
=0

where J,, = [T (z), T (z)].

Proof  See exercises.

Corollary

Suppose that T : T — T is an orientation preserving homeomorphism
with p(T) = ¢ Q, then ¥V n>1, x,y €T, 3 a permutation k =k,
{O, 1... yQn — 1} - {O, 1... yQn — 1} such that Zgzal 1(Tj(x)7Tk(j)(y)) <2.

Denjoy-Koksma Inequality
Suppose that a ¢ Q, then for F: T — R integrable with [ Fdm =0,
gn-1
| > F(Rix)|<2\/FVzeT, n>1.
k=0
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Proof
Setting F, := Y775 F o R¥

¥, we see using the corollary that for =,y €
T, n>1:

gn—1

|y (@) = Fy (y)] < z |F(RS(x) - F(R&D(y))| < 2\/ F.
To finish
Fun@)| = 1By, () = [ B, )y

< [P0 (@) = Fuldy
<2\/F.

ErRGoODICITY

Suppose that T': T — T is an absolutely continuous, orientation
preserving homeomorphism, then 7' is non-singular with respect to
Lebesgue measure m in the sense that for

AeB, m(T'A)=0 < m(A)=0.

The measure theoretic analogue of transitivity is ergodicity:
e T'is ergodic if
AeB, TT'A=A = m(A)=0o0r m(T\A)=0.

Theorem (Herman)

If T : T - T is an absolutely continuous, orientation preserving
homeomorphism with \/logT’ < oo and p(T) = a ¢ Q, then T is ergodic
w.r.t. m.

Proof

Let AeB(T), TA=A with m(A) >0. Let z € T be a density point
of A, and set for n> 1, J,, := (T4 (z), T (x)).

By the interval tower lemma,

qn+1-1 )
1< Y 1;,0T7<2.
j=0

Consequently, for F': T - R,

|Fo(y) - Fo(2)| <2\ F VYnxl, yzed,, 0<0<qy—1
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where Fj := Zfﬁé FoTi. In particular,

T '(y) 2V log T’
Tél(z)_E:ze 85 Vn>1, yzed,, 0<l<qgyq—1
whence fixing yo € J,,:
qn+1_1 .
m(TNA)< > m(T9(J,) N A)
=0
qn+1-1

_ Z m(T (J, ~ A))

dn+1— 1
]‘ 7' (y)d
JnNA

qn+1-1

<Em(J,~A) Y T7(yo)
j—O
m(JanA) TN
< B Z (T77.)

2 m(JpNA)
<2p?mtnd) g,

TOPOLOGICAL RECURRENCE

Suppose that (X,T) is a continuous map of a Polish space.

e An open set U c X is a wandering neighborhood if UnT"U =
@ V neN. Let 20 denote the collection of wandering neighborhoods.
e A point is called wandering if it belongs to a wandering neighbor-
hood. Let W denote the set of wandering points, then W is open and
T-invariant. The collection of nonwandering pointsis NW := X \W (which
is closed and T-invariant).

Exercise 1.7. Show that

(i) if T: X - X is continuous and X is compact, then NW # @.
Hint If T"*x — z, then z ¢ NW.

(ii) 3 (X,T), a homeomorphism of a Polish space with NW = &.
Proposition 1.5

If (X, T) is a homeomorphism of a Polish space, then 3 a wandering
neighborhood U so that WA(,ez TU) is meagre.
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Proof By separability 3 wandering neighborhoods U,, (n > 1) so that

e Denote A:= U, T"A (for Ac X) and define sets V,, (n>1) by
Vi = U, Vit = Voo U (Unis ~ V).

Evidently, each V} is open and Vj, c V4.

e We claim that the V), are wandering neighborhoods.
To see this by induction, assume that V}, is a wandering neighborhood
and let n # 0, then

Vil nT"Vii=AuBuCuD
where
A=Vin TV =@, B=VinT"(Upi \ Vi) = 2,
C=(Upn "\ V) nT"Vi =@, D= (Upr \ Vi) N T"(Up1 ~ Vi) = @.
It follows tha’t\ U = U,s1 Vi is a wandering neighborhood, and that
UAW c Ups1 OV which is meagre. O

RECURRENCE.
The continuous T : X — X is called regionally recurrent if W = &, ie
if V U open, nonempty 3n>1, UnT"U # @.

A recurrent point for T is a point x € X so that I ny - oo, Tz — x.
Let R = Ry := {recurrent points for T'}.

Proposition 1.6
Suppose that T : X — X 1s continuous, regionally recurrent and X is
Polish space, then R is residuaﬁ mn X.

Proof Next time.

EXERCISES: INTERVAL TOWER LEMMA

1. Continued fractions and Denominators. Define the denomi-
nators of « e R\ Q by

D, ={qeN: |qaf <}

where |z| := min, |z + n| for z € R.

3Residual set = MW 78¥13p = contains a dense G
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It is not hard to show that #0, =00 V a e R\ Q. Indeedﬁ consider
the Farey sequences Fp :={2: 0<p<q<@Q, (p,q) =1} If £ and
;i: are adjacent in some Fy then |§ - ’q1:| = ﬁ, and the next element to
come between them is g:g;. Thus V a € (0,1) ~ Q, 3 infinitely many

£ (0,1) such that |- E[ < q%, ie. |qof < %, whence #9,, = c.

The Gauss map. G : (0,1] - [0,1] is defined by G(z) := {3}. Note
that = = m where CL(.I‘) = [%]
If £e(0,1)nQ, then (!) 3 n > 1 such that G"(%) = 0. Setting

ry = GF(2) and ay, 1= a(rg-1), we have .y = ﬁ, whence
p__1 _ 1 S
q ~ ai+ri T = i T
a1+a2+r2 ! ag+ 1
o
an
If «€(0,1)~Q then rp:=G*(a) #0 ¥V k> 1 and
a=—2L1  ¥Ynp>1
(I1+71
G.2+ 1
“tan+rn

where a,, := a(r,-1).

Exercise 1.
1) Suppose that a € (0,1) \ Q and let f, : [0,1] = [0,1] be defined
by
rz+a 0<z<l-a,
r+a-1 z>21-a.

fa(x) = {

a) Suppose that a € (0,3) \ Q and let h : [0,1] - J(fa) be the
increasing affine homeomorphism. Prove that

hlo(fa)sgyoh=f_1

1+G ()

where G(a) := {1}.
b) Show that if o € (3,1) N Q, then n(f,) = [{&] - 1 and that

(fa)atra) 2 f gter -
2) For n > 1, define f, : R? - R, by
fa(@y,. o an) = ﬁ
12+-erL

Show that f, 1 as xox 1 and f,, | as xor,1 1.

4as in Hardy, G. H.; Wright, E. M. An introduction to the theory of numbers.
Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979.
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3) Suppose that a, € N (n e N)and set
o =1, ¢1=a1, Gns1 = ns1n + Gn-1;

Po=0, p1 =1, Ppi1 = Aus1Dn + Pn-1-
Show that Prn-19n = Pndn-1 = (_1)71’ fn(ala . 7@71) = Z_:a whence
—1)n
fn(ala ceeyQpt ]-) - fn(ah s 7an) = Qn(((ln+)(ln—1)7
and
. —1)" .
fn+1(a17 s aana.]) - fn(a17 . 7a’n) = lIn(j((In'BIInfl) (j 2 1)
4) Now suppose that a € (0,1) N Q, set r, :== GF(a) # 0, a; =
a(rg-1) (k>1). Show that
P2n <a< P2n+1
q2n q2n+1
and
Pn _ Puer _ (D™
dn dn+1 dnqn+1
5) Show that {jg, + gn1: 21, 1<j<an}cDa.
6) The reqular continued fraction expansion of a € (0,1) \ Q is given
by
o= 11 = hm fn(al,CLQ, '70’7’L)
a1+ T n—»oo
a2+a3+%
where a,, = a(G"ta) (the partial quotients of /). Show that
1
(al,ag,...) g ﬁ
a2+a3+%

is a homeomorphism NY < (0,1) \ Q.
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2. Renormalization.

Translations. Given a compact interval J = [a,b] c R consider 7 (J) :=
{feS([a,b]): 3 f =10on Jx{c}}. Evidently V ce (a,b), 3! f e T(J)
with ¢y = ¢, namely

r+b-c ze(a,c),

-

a-c+x xe€(cb).
We'll write f = (a,c¢,b). To exercise this notation, note that rotation
by a € (0,1) in T is represented by f, = (0,1-«,1), and that (a,c,b) =

(0,%%,1). Thus (a,c,b) has no periods iff =2 ¢ Q.
If feT(J), then fyp e T(J(f)). If f=(a,c,b)set f) = (a',c,b).

It follows from previous propositions and exercises (!) that

(a’,c V') = (a+[%]g_}_c)’qb) ° %;’
(a,0.b-[£](c=a)) < ohy

and

0 b = 1((1/,0/) + ([%] + 1)1(61,1,/) = 1(a’,c’) + (Il(f) + 1)1(0’,17’) C> aTﬁ-b’
(@et) (E]+ Dy + Lwwy = ((F) + Doy + Loy c< %

7

where fp(z) = fPeen® (2). Also if £2 ¢ Q, then g,:g: ¢Q, (a/, b))
has no periods and

14 /
c<“7+b — c’>%.

Renormalisation and the tower lemma.
Fix a = —215— € (0,1) \ Q and define Jy :=[0,1] and ¢y := f,, = f =

ay%—%
ag+zi-

(0,1-a,1) e T(Jy). Set
Jl _ { J(¢0) Q< %7

JO o>

Y

1
2
¢1:=((ay - Do, 1-a,1) = (¢o) s, = { (P0)ssn) <3,

1
¢0 Oé>§

and for n > 1, set ¢pi1 = (0n)s(,)- By the above, ¢, has no periods
V n >1 and the process may be continued. Set J, := J(¢,,).
Evidently

7{L+1 = J'I’L+1 N J;;; & 7{L,+1 = JTL+1 n J;L = J?{L'
Thus (bn : J1,1 — JT’L’ and
Onlay = (d)n-l!J,’;,l)n(%*l) °© (¢n—1\J;,1)a & gnlgy = ¢n—1|J;LQl-
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Now define Qp =0, @ =1if a > 1 and @y :=n(fa)+1if o> 1

(equivalently, Q1 = a; := [1]). Then define Q41 := n(¢,)Qy + Qny for
n>1.
By induction,
Bul, = 191, & Bulgy = frO@1s@rz - 0,
It follows that (!)
gy, = (¢, f9(e)), J} = (¢, [ (e))

and
{0 Sj < Qn+1 : fj(c) € Jn} = {Qn—l +iQn : 0 Sj < an+1}-

Tower lemma 0
Up to boundary overlap,

Qn-1-1 Qn-
L:'(J) ) L:(J) f1(J7) =[0,1].

Sketch proof To see disjointness, f@-1J/ n f@J" = f; (@) = @
whence UQ" i (J’)ﬁUQ"_1 fUJN) =@, else Tz e fi(J)nfi(J") (0<
i< Qn-1, 0<j <@ whence fO17(x) € fO1(J) n fO ().

To see that the tower covers, fix x € Jy and let k = K, := min{k >0 :
f*(x) e J,. If f~ 5(r) € J!, then k < Q,_; since ¢; = Qu_q on J,. If
not then f~#(z) e J”, then k < Q,, since ¢;, = Q, on J. O

Exercise Lemma 1
n odd,

n even;

1
On 2 fam) € T([0,1]) where a(n) = { Reto
1+G" ()

and
n(¢n) = [gr@y] = @ ¥V 021,
whence Q, =q, Y n>1.

Fix a € (0,1) \ Q and define for n > 1 the collections of intervals:

T, = {R[0,{q2n}) : 0< 7 < qone1} U{R [ {qons1a},1): 0<k <qon}.

Tower lemma 1
Forn>1, %, is a disjoint collection and that U, J =T.

Sketch proof Follows from tower lemma 0 via the exercise lemma
(which proves the statement for 1 - a+%,,). O
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Tower lemma 2
Suppose that T : T — T is an orientation preserving homeomorphism

with p(T) = a ¢ Q. Fiz x €T and show that ¥ n > 1,
By = {T7[2, T () : 0< < qopsr} U{T[TP(2),2): 0<k<qop}
is a disjoint collection and that Ujey, J =T.

Sketch proof The truth of the nth statement depends only on the
order of {7T7(x)}j2" in T. By proposition 4, this is the same as the
order of {R%(0) gi’(‘fl in T. The lemma therefore follows from tower
lemma 1. 0

Interval Tower lemma Suppose that T : T — T is an orientation
preserving homeomorphism with p(T) = o ¢ Q and let n > 1, x € T,
then

o {Ti(x,Ti1(x)): 0<j<q,—1} are disjoint;

o Y00 lpian-i(e), 1o (a)) = 1, 2-
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Week # 5, 13/11/2013.

Proposition 1.6
Suppose that T : X — X 1is continuous, regionally recurrent and X is
Polish space, then R is residuaﬂ mn X.

Proof For k> 1, let U, be a countable open cover of X by open balls
of radius %, and let Ry, = Uy, UNnU;2, T7"U. Evidently each Ry, is
open.

e We claim that Ry =X V k> 1.

To see this, let z € X, e >0. 32 €U €Uy and 3 0< 4§ <€ so
that B,(z,0) ¢ U. Since T is regionally recurrent, @ # Boy(z,4) n
U, T "B,(x,0) ¢ Bo(x,0) nRg. Thus Ry = X. O
e By Baire’s theorem, M1 Ry is dense, whence residual in X.

e To finish, we claim that R = N> Rk.

Evidently R ¢ Mis1 Re. To see the reverse inclusion, suppose x €
Nis1 Re, then V £ > 1, I3 ng > 1, Uy € U, with x, T x € U, whence
d(z,Tz) <1 >0and zeR. O

Exercise 1.8.

(i) Suppose that T': X - X is a homeomorphism of a perfect Polish
spaceﬂ. Show that if (X,7T") has an attractor, then it has a wandering
neighborhood.

Hint: Suppose that (a) W = &; and (b) U c X is open and 7"z — a ¥V x € U, whence
JzeRnU~{a} ...(1).... & = =ae.

(ii) Let T: X — X be continuous map of a Polish space. Show that if
T is regionally recurrent, then sois 7" V n > 1.

TwO SIDED & FORWARD

For a topological dynamical system (X, T") the forward T-orbit (aka
forward semi-orbit) of z € X is O () := {T"z: neN}; and

for an invertible topological dynamical system (X, T") the (two-sided)
T-orbit of v € X is O (x) = {Trx: nel}.

The topological dynamical system (X, T') is called
o forwards transitive if 3 z € X, O (z) = X and

5Residual set = MW 78¥12p = contains a dense G

6i.e. no isolated points
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o forwards minimal if OErT)(a:) =X V zeX.

The invertible topological dynamical system (X, T) is called
o two-sided transitive if 3 x € X, O (z) = X and
o two-sided minimal if O (z)=X V zeX.

MINIMALITY.

Proposition 2.1

A homeomorphism T : X — X of a metric space X 1is two-sided
mainimal iff

there are no non-trivial, T-invariant, closed subsets of X, i.e.
o EcX closed, T'E=F = E=0g or X.

Proof

For each z € X, F, := OT)(z) is a T-invariant, non-empty, closed
subset of X. Thus & =— T minimal.

Each T-invariant, non-empty, closed subset of X contains some FE,
and so the converse implication is also valid. &

Proposition 2.2
If a continuous map of a compact, metric space is minimal, then it
s forward minimal.

Proof
Let (X,T) be a minimal continuous map of a compact, metric space.
For each x € X, the w-limit set of x under T

w(T,z):={yeX: In,— oo, Tz -y}

is a closed T-invariant, subset of X. By compactness, w(T,z) + @ V = €
X. By minimality, w(7T,z) = X V x € X. Forward minimality follows
from this. &

Proposition 2.3

Let (X,T) be a continuous map of a compact, metric space, then
(X, T) is minimal iff YV U c X, open and non-empty, 3 Ny > 1 so that
X =Upy T+U.

Proof

Evidently, (X,T) is minimal iff V x € X & U c X open and non-
empty, 3 n > 1, T"x € U; equivalently X = U2, T*U V U c X open
and non-empty. The finite union statement follows from compactness.

vl
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Almost periodic points.

A subset K c N is called syndetic if it has bounded gaps, i.e. 3 L >0
so that K intersects with every interval in N, longer than L.

For T': X — X continuous, a point = € X is almost periodic (for T)
if for every non-empty open set U ¢ X, {n e N: T"(z) € U} is either
empty, or syndetic.

For example, periodic points (i.e. TNz = x for some N > 1) are
almost periodic.

Proposition 2.4
Let (X, T) be a continuous map of a compact, metric space.
(i) If (X,T) is minimal then all points are almost periodic for T

(i1) If there is an almost periodic point with dense forward orbit, then
T is minimal.

Proof of (ii)
Let x € X be an almost periodic point with dense forward orbit.
We'll show that if y € X and @ # U ¢ X is open, then 3k > 1, T*(y) €
U.

Proof
e WLOG zeU.
e dopensets U c X, VcX xX sothat

zelU cU, VoAXxX)& (UxX)nV)c X xU.
Here A(X x X) = {(z,z): z€X}.
e FK(U)st. Vnx213ke[0,K(U")) with T™*(z) e U".
e By continuity of T'xT, 3 V’'>A(X x X) so that

K(U") ‘
U (TxT)yVv'eV,

=0
e JyeW opensothat WxW cV’.
I n>1 such that T"(x) e W & 3 0 < k < K(U') such thatT™**(z) e U’

thus
(T2, TH(y)) c (U'x X)n(TxT)*(WxW)c (UxX)nVcXxU @
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Exercise 2.3.

Show that proposition 2.4 is true for a continuous map of a compact
Hausdorft space.

Minimal sets.

Let (X,T) be a minimal continuous map of a compact, metric space.
A closed subset @ # M c X is a minimal set for T if T-*M = M and
(M, T) is minimal.

Proposition 2.5
A continuous map of a compact, metric space has a minimal set.

Proof
Let (X,T) be a minimal continuous map of a compact, metric space
and let

M := {closed, non-empty, T-invariant subsets of X}.

Order 9 by inclusion. A set M € 9 is a minimal set iff it is a minimal
element of 901.

Existence of these follows from Zorn’s lemma because
e cvery chain C c M has a non-empty intersection in M.

This is because an arbitrary intersection of closed invariant sets is
a closed invariant set e.g. Nyree M. Also, C has the finite intersection
property and so by compactness, @ # Nyrec M € M. &

Corollary Fvery continuous map of a compact, metric space has an
almost periodic point.

Exercises on Minimality

Exercise M1. Let (X,T):=({0,1}%,shift). Show that there is an
almost periodic, nonperiodic point for 7'.

Exercise M2 “Cycle of fifths”.
According to music theory, the operation of raising pitch by a ”per-
fect fifth” is periodic:

CoGe Do A EsBeomudlogtaeDl s Al=B' - FeC.

See e.g.
http://tamingthesaxophone.com/jazz-cycle-of-5ths.html
According to “Pythagorean music theory”, raising pitch by a perfect
fifth is attained by increasing the frequency by % Lowering pitch by
an octave is attained by halving the frequency.
Show that the collection of frequencies obtained by raising pitch by
perfect fifths and lowering by octaves is dense in R,.
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See http://en.wikipedia.org/wiki/Well temperament

Exercise M3.

For d > 1, a = (a1,...,aq) € R? define R, : T¢ - T by R,(x) :=
x+a mod 1 (ie. Ry(x)r:=xr+ap mod 1V 1<k<d).
Show that (T4, R,) is minimal iff (1,qq,aq,...,ay) are linearly inde-
pendent over Q.

TRANSITIVITY.

Proposition 2.7 (two sided transitivity)
Let T be an homeomorphism of a Polish (i.e. complete, separable)
metric space X. TFAE:

(i) T s two-sided topologically transitive;
(ii) (topological ergodicity)
V U c X open and non-empty, U,z 17U = X ;

(iii) 3 Xo ¢ X a dense G5 so that T Xy = Xo and so that (Xo,T) is
minimal.

Proof  of (i) = (ii):
Suppose that {T"z: neZ} = X and let U c¢ X be open and non-
empty, then 3 ng, T™x € U whence T"*"0x e T"U V n>1 and

UTU > {TrmzeZ) = X.0

nez

Proof  of (ii) = (iii)

Let U be a countable base of open sets for the topology of X. By
assumption, YV U eUd, U+ @ Ay :={zx e X: IneZ TrxeU} =
Unez T™U is open and dense in X. By Baire’s theorem,

A={reX: {Tra: neZ}=X}= () Ay

Ueld, Usw

is a dense (G5 set of transitive points in X. So is X := Npez T"A which
is also T-invariant. &

PI‘OpOSitiOIl 2.8 (forward transitivity)
Suppose that X is a perfect Polish space, and that T : X — X is
continuous. TFAE:

(i) T is forward topologically transitive;
(ii) V Uc X open and non-empty, Upen T "U = X ;
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(i) 3 Xo ¢ X a dense G5 so that T Xy = Xo and so that (Xo,T) is
forward minimal.

Proof
Proof of (i) = (ii):
Suppose that {T™z: n>1} = X. Since X has no isolated points,

ON(z)=w(T,z)={T"z: n>N}=X V¥ N>1.

Now let U, V c X be open and non-empty. We claim that 3 n >
1, T="UnV # @ (which proves U,s; T7"U = X). To establish the claim,
AN>1, TNz eV. Since {T"z: n>N+1} =X, 3n>1, TNz eU.
Thus TNz e VnT"U +@. &
Proof  of (ii) = (iii):

As above, let U be a countable base of open sets for the topology of
X. By assumption, VU eld, U+ @ Ay ={xeX: In>1 Trze
U} =Ups1 T7"U is open and dense in X. By Baire’s theorem,

Xo={xzeX: {Trz: n>21}=X}= () Ay
Ueld, U+g

is a dense Gy set in X, clearly T-invariant and (X, T") is minimal. @

PI‘OpOSitiOIl 2.9 (recurrence and transitivity)
Suppose that T : X — X is a regionally recurrent, topologically transitive
homeomorphism of a Polish space, then T is forward topologically transitive.

Proof  We claim first that U,-; TV = X V @ # V open. To see
this, we fix @ # U,V open and show 3 n>1, UnT™"V # @&. Indeed
by topological transitivity of 7', 3 N € Z with W :=UnTNV # @. By
regional recurrence, 3 n > |N|, W nT"W # @, whence

GEWAT"W=UnTVnT"UnT "NV cUnT My, O

Now fix a countable base U for the topology on X, then by Baire’s
theorem

A={eeX: Tz nslj=X}= | UT"U+o

g+Ueld n=1
and T is forward topologically transitive. 0
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Transitivity Exercises

Exercise T1.
Show that a topologically transitive homeomorphism of a Polish
space either

e has a residual orbit O (z);
e is a permutation of a finite set; or

e the Polish space is perfect and the homeomorphism is regionally
recurrent.

Exercise T2.

(i) Exhibit a compact metric space X with a continuous map 7': X - X
so that (X, T) is positively transitive but for which 3 @ + U ¢ X open
with Upso T "U + X.
(ii) Let X be a perfect Polish space, and let T': X — X be a regionally
recurrent, topologically transitive homeomorphism.

Show that

3z eX sothat O (z) = (’)frT_l)(x) = X.

(iii) Show that an isometry of a perfect metric space is forward minimal
iff it is forward topologically transitive.

GENERIC ERGODICITY

For X a polish space, let
B(X) := {Borel subsets of X} & N(X):={AeB(X): Ameagre}.

Recall from topological measurability theory:
& VAeB(X), 3U c X open s.t. AAU e N(X).
A Polish dynamical system (X, T) is called genericically ergodic if
AeB(X) T'A=A = AeN(X)or X\ AeN(X).
Proposition 3.1

Let X be a perfect, polish space and let T : X - X be a forward
transitive, continuous map, then T is generically ergodic.
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Proof
Let Xy ¢ X be a T-invariant, dense G so that (Xo,T") is minimal,
and suppose that

AeB(X)\N(X), T'A=A.

We'll show that X \ A e N(X).

Let U ¢ X be open so that AAU € N(X). Since A ¢ge N(X), we
have that U # @ whence U n X # @.

Now let

X1:=XoN T T(AAD),
n>0

then X; is a dense G and T': X| — X;.

Moreover, An X; = Un X, # @, whence, by minimality of (X,T), A
is open and dense in X; proving that

XN Ac (XN XDu((XiNs A)eN(X). o

Remark. It can be shown analogously (!) that any two sided tran-
sitive, invertible, polish dynamical system is also generically ergodic.

Iﬂxalnlﬂfh of a continuous map of a perfect, compact, metric space

which is generically ergodic but not regionally recurrent.
Let Z = Z u{oo} be the one point compactification of Z, let X :=
{1,2}N x Z and define T : X - X by
(Sz,y+x1) y € Z;

T(@y) { (Sr.y)  y=oo

where x = (x1,22,...), St := (xa,x3,...), then X is a perfect, compact,
metric space, and 71" is continuous, onto. The recurrent points of 1" are
given by R(T') = R(S) x {oo}. This is not a residual set in X and so
(X,T) is not regionally recurrent.
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Week # 6, 20/11/2013.

Proposition 6.1
(X,T) is generically ergodic.

Idea of Proof

We'll exhibit a countable group I' ¢ Homeo. (X') which is generically
ergodic and so that T"1A=A = A=AV ~el.

Generic ergodicity will bew established using:

Proposition 6.2 (group action transitivity)
Let T' be a countable group of homeomorphisms of the Polish metric
space X . TFAE:

(i) 3zeX with {y(z): yel'} =X;
(ii) (topological ergodicity)
V U c X open and non-empty, U,er YU = X;
(i) 3 Xo ¢ X a dense Gs so that vXo =X Y v €D and so that (Xo,T")
is minimal ({y(z): veT}y, =Xo ¥ xeXo;
(iv) Ae B(X), TA=A = AeN(X) or X~AeN(X).

Proof  Exercise.
Hint: See propositions 2.7 & 3.1.

Proof of propn. 6.1
Suppose that £ > 1 and v = (vq,...,0), w = (wy,...,wg) € {1,2}F.
Write si(v) := Z;?:l vj,
(0] ={ze{l,2}: a;=b; V1<ji<k} (b=v,w)
and define
Tow : [V] X Z —» [w] x Z
by
Tow((v,2),1) = ((w,2),n+ sp(v) = sp(w)).

It follows that 7, : [v] x {N} = [w] x {N + sx(v) — sg(w)} is a home-
omorphism ¥V N € Z and that 7y, = 7,1,
Moreover,

(8) For £e[v]xZ, (e[w]xZ:
Tww(§)=C = TH(&) =T"().
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Now define ®,,,: X - X by
Tow(2) z e [v] xZ,
D, ,(2) = Tww(2) z€e|w]xZ,
z else.

Evidently, each ®,,, € Homeo. (X) and 2  =1Id.

Let I" := () be the group of homeomorphisms of X generated under
composition.

It follows from (8) that for &, ¢ € Xy:=Q xZ,

Ivel, y=v(z) <= 3IN21, TN(2)=TN(y).
Thus (!) for A c X,
TlA=A = ~A=AV yel

and topological ergodicity of T" follows from that of I'.
By proposition 6.2, to establish this, it suffices to show

(%) U =XV Uc X open, nonempty.

~yel’

To prove (%), it suffices to show that if U, W c X are non-empty, open
sets, then

() 3k>1, u, we{1,2}*, N eZ such that
[u] x {N}c U & [w]=x{N+sp(u)-sp(w)}c W.
Proof of (=)
Fix 1eN, a, be{1,2}!, K,L €Z so that
[a] x{K}c V & [b]x{L}c W.
Next, 3 jeN, ¢, de{1,2}7 so that
L= (K +5:(a) = 5,(b)) + 55(c) - ;(d)
= K+ s445(a, ¢) = si15(b,d).
Setting k =i+ 7, v =(a,c) & w = (b,d) establishes ("¥*®).
Exercise 6.1 ( generical exactness).
The topological dynamical system (X, T') is generically exact if
T(X):= (T "B(X)c{A: either Ae N(X) or X\ Ae N(X)}.

n>1

(i) Show that generical exactness = generical ergodicty but not con-
versely.

(i) Show that
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T(X)={AeB(X): z€A, (v,y)eTr = yeA}
where

Tr={(x,y) e X x X : 3 N >1 such that TN(x) =TN(?J)}-

(iii) Show that (X,T) as in the example is generically exact.

Exercise 6.2. Let (X,T) be a [forward] topologically transitive
homeomorphism of the metric space (X,d). Show that if {T™: neZ}
[{T™: n e N}|is an equicontinuous family (of continuous maps X - X),
then (X,7") is [forward] minimal.

STRUCTURE

Homomorphism of topological dynamical systems. Suppose that
X, Y are topological spaces and that S: X - X, T:Y - Y are con-
tinuous maps.

A topological homomorphism 7 : (X,S) - (Y,T) is a continuous,
surjective map 7: X - Y satisfying moS=Torx
aka : topological: -factor map, -extension map, and -semiconjugacy.

In this case, (Y, T) is known as a topological factor or image of (X, S)
which itself is known as a topological extension of (Y,T).

A topological isomorphism (aka conjugacy) is an invertible homo-
morphism i.e. a homomorphism 7 : (X,5) - (YV,T) with 7: X - Y a
homeomorphism.

e Two dynamical systems are called weakly topologically isomorphic
if they are both factors of each other.

e For Polish dynamical systems there is also a generic homomorphism
m:(X,S) = (Y,T) where there are residual subsets Xy c X, Yy c Y,
invariant under S & T respectively so that 7 : (X, S) - (Yo, 7T) is a
topological homomorphism. Also, analogously, generic isomorphism &
generic weak isomorphism.

INVERTIBLE EXTENSIONS AND INVERSE LIMITS

The question here is to find a “canonical” invertible extension of
(X,T), a continuous map of a metric space: i.e. (X,T) a homeomor-

phism of a metric space together with 7 : X — X continuous, onto st
mol =Tom.
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The inverse limit construction. Given (X, T), a surjective, contin-
uous map of a metric space define

X = {(21,79,...) e XN : T2y =2, ¥V n>1},

then X is a closed subset of XN (with respect to the product topology).
Equip X with the inherited product topology.
e If X is Polish (compact) then so is X.

Define 7: X - X by T(l’l,xg,...) = (Txy,21,9,...), then T:X -
X is a homeomorphism (with T-'=shift).

The map (1,s,...) = & is a semiconjugacy (X,T) — (X, T).
e (X,7)is “smallest” as an invertible extension of (X,7) in the
following sense,:

Proposition 6.3 If (Y, R) is an invertible extension of (X,T), then it
is also an extension of (X,T).

Proof  Suppose that ¢ : Y — X is a semiconjugacy (Y, R) - (X,T)
and define ¢ : Y - XN by ¢(y),, := ¢(R-(»Dy). Evidently ¢: Y - XN
is continuous. To see that ¢ :Y - X

T (Y)kn) = T(H(Ry) = 9(R1y) = ¥y
This last equation also shows that ¥ o R = To Y. O

e This property of “smallness” defines (X,T") up to weak isomor-
phism and it is called the natural extension of (X,T).

Proposition 6.4
Suppose that T : X — X is a continuous map of a Polish space.

o If(X,T) is regionally recurrent, then so is (X,T).
o If(X,T) is topologically transitive, then so is (X, T).

Proof Both claims follow easily from the following

Lemma 3.4
If @ # U c X is open, then 3 N 20, @+ W c X open so that
UTNg= YW where 7 : (x1,22,...) > 21 (X > X).

Proof By the definition of the product topology, 3 k£ > 1, @& #
Uy,Us,,...U, c X open so that

Ug[Ul,UQ,...,Uk] II{.xEXI .Z'jeU] V1SJSI§} ¥ .
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Now

[Ul,UQ,...,Uk]IZ{xEXZ l'jEUj N 1S]Sl{f}

k
S[X,.. X, T %))
—— j=1
k-1 times

k
PR 7]
j=1

=Tz lw. O

SUBSHIFTS

The two- [one-] sided full shift over the state space S is S% [SN]. If
S is countable, it is equipped with the product discrete topology which
is always Polish and compact when #S < oo. The shift is defined by
(O'x)n = Tn41-

A two-sided subshift > (of S%) is a closed, o-invariant subset. A
one-sided subshift ¥, (of SY) is a closed, o-invariant subset.

Let ¥ c S%Z be a subshift. The associated language is L(X) :=
{2l = (Ta, Tas1,--,2p) : a<b xeX}cS* =2 S (here 2t :=
(T, Tast,---,2p) for a <b). Write |w|:=n for w = (wy,wy, ..., w,) € L.

The associated one- and two-sided subshifts are

Yo(L)={zeSN: al e LVa<by &S, (L):={reS?: e LV a<b}.

Exercise 6.3.

Suppose that ¥ c SV is a one-sided subshift and that o is the shift
on . Show that (£,5) = (2.(L(X)),0) where = denotes topological
isomorphism.

Topological Markov shift. The subshift ¥ c S% (SV) is a topological
Markov shift (TMS) if there is a matrix A : S xS — {0,1} so that
Ya={xeS?: A(xp,xp1) =1V n>1}.

Exercise 6.4.

(i) Show that a TMS (X 4,0) is forward topologically transitive <=
V s,t €S, 3n>1such that A*(s,t) >0 where A! := A and A"*1(s,t) :=
Yues A(s,u) A (u, t).

(i) Let Sy : St - St be S3(2) = 2z2. Show that the compact dynami-
cal systems (S!,S2) and ({0,1}", shift} are Baire isomorphic but not
topologically isomorphic.
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Exercise 6.5 the solenoid. The solenoid is
S := {(21,20,...) €eS™: 2, = S9(2p41) Y 21}

(i) Show that S is homeomorphic with T x {0, 1}V via

(t,(e1,€0,...) = 7(t, (e1,€0,...)) = (L, LE, D+ 2 ).

(i) Show that S is connected but not pathwise connected.

iii) Define a group structure on S so that it
g
(a) it is a compact, abelian topological group and
(b) S2:S - S is a group endomorphism.

INVARIANT PROBABILITIES

Given a measurable space (X,B) and a measurable transformation
T:X - X,set M(X,T)={peP(X,B): poT ' =pu}.

Proposition 6.5 If X is a compact metric space and T : X - X 1is
continuous, then M(X,T) # @.

Proof Fix z,€¢ X (n>1) and set u, = - Z o Oz, -
o If pp, »veP(X) weak * in C’(X)*,thenye/\/l(X,T).
e The Banach-Alaoglu theorem ensures such an n; — oco. 0

Example Let X :=(0,1) and Tz := 22, then M(X,T) = @. To see
this, note that V z € (0,1), the sets {T"(Tx,x]},z are disjoint and
Unez T(Tz, 2] = (0,1). If pe M(X,T), then

L=p(J T (Tz,2]) = > W(T™(Tx,2]) = 00 - pu((Tx,x]) =0, 00 # 1.

nez nez
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Week # 7, 27/11/2013.
€3 Unique ergodicity A measurable transformation 7": X - X of
the measurable space (X, B) is called uniquely ergodic it #M(X,T) = 1.

Proposition 7.1 Suppose that X is a compact metric space, that T :
X - X is continuous and that pe M(X,T), then
M(X,T) ={p} =

n—1
LY f(Tha) > [ fdp ¥ feC(X), weX.
k=0 X
In this case, the convergence is uniform on X ¥V f e C(X).

Proof
<) Let pe M(X,T), then V f e C(X)

ﬂ(fdp:A(%:szoTk)dpaLfdu.

= and uniform convergence) Suppose that f € C(X) but that £ ¥37
T* does not converge uniformly to fX fdu, then 3 € > 0 and =z €
X, ng — oo with

nk—l

e f(zjk)—f fdu|>eV k>1.
i=0 X

nkfl

As before, set py := nlkzjﬁo Orig,. If py, - v € P(X) weak = in
C(X)*, then () v e M(X,T). The Banach-Alaoglu theorem ensures
this for some subsequence k;, — co. But this time, we also get that

ng—1 )
|fodu—fodu|<— P ]Z_E)f(T”k)‘fod/ublZe

SO V # [U. U

Convex analysis of M.

e Note that M (X, T') is convex; and a closed subset of P(X) (equipped
with the weak  topology. A measure v € M(X,T) is called extreme if

p1, p2€P(X), 0<t<l, v=tpi+(1-1)ps = p1=p2=v.
o Let Ext M(X,T) = {extreme points of M} and
Me(XaT) = {p € M(X7T) : (X7B(X)ap7T) ergodic}.

Theorem 7.2 Let (X,T) be a compact dynamical system, then M(X,T)
is a compact convex set (in P(X)) and Ext M(X,T) = M.(X,T).

Proof of Ext M(X,T)c M. (X,T)
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Suppose that pe M(X,T) N M. (X,T), then 3 A e B(X) so that
T'A=A & u(A)=pe(0,1).
We have that

p=ppia+ (1=p)pac

where pug(C) := “85(};)0).

Since T-'A = A we have that pa, pac € M(X,T) whence p ¢
Ext M(X,T). ©

Proof that Ext M(X,T) 2 M. (X,T) for T invertible

Suppose that p e M (X, T). If p, g e M(X,T) & t € (0,1) are so
that pu=1tp+ (1-1t)g, then p, g < p.

By the Radon-Nikodym theorem 3 h € L' (1) so that p(A) = [, hdp (A€
B). Thus

fhoT_ld,u=f hd,uzp(T‘lA)zp(A)thdu
A T-1A A

and h = hoT a.s.. By ergodicity of u, h = [ hdp=p(X) =1 and p = p.
val

Remarks.
The proof of Ext M(X,T) 2 M .(X,T) is uses the

Proposition If (X, B,m,T) is an ergodic, probability preserving trans-
formation (EPPT) and if p e P(X,B), poT=' = p & p<<m, then p=m.

This proposition is proved for T an invertible EPPT and its proof uses
the

Lemma Let (X,B,m,T) be an EPPT. If h: X — R is measurable and
hoT =h a.e., then 3 ceR so that h =c a.e..

Sketch proof of the Lemma
QIfAeB(X) & T 1A= A (i.e. m(T-'AAA) =0), then m(A4) =0, 1.
Proof AZ M1 Upsn T *A=B & T7'B = B.

Now let a, = {[£,52): keZ,}, and for n>1, keZ, let A,(k):=
[ €[5, 5)-

Since hoT = h a.e., we have T1A, (k) £ A,(k) YV n>1, keN and
by €

3 k:N - Z, such that m(A,(k(n))) =1V n>1.

Evidently A, (k(n) | as n 1 whence
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o m((Au(k(n)) =1;

n>1

o)

271 n—»o0o0

e h=con [(JA.(k(n)). @
nx1
Exercise 7.1 (almost invariant functions).

(i) Let (X,B,m,T) be an ergodic non-singular transformation, and
let Y be a separable metric space.

If f: X - Y is measurable and foT = f a.e., then 3yeY, f=y
a.e..

(ii) Suppose that T': X - X is a regionally recurrent, forward transi-
tive, continuous map of a Polish space X, Y is a separable metric space
and f: X — Y is Borel measurable and foT' = f on a residual set, then
then f is constant on a residual set.

EXAMPLES
1. The Dyadic Integers. :

0= {0, 1}N> (x+y)n = xn+yn+(5n mod 2 where 51 = ()7 5n+1 - [xn+y2n+6n]_

The reason for the name ”dyadic integers” is that

o0

> 25 (n(1,0))k=n Vn>1
k=1

The adding machine 3
Define the adding machine 7:Q - Q by 7(x) ==z + (1,0), i.e.

T(l7 ceny 17076n+176n+27 ) = (07 "'707 1;€n+1;€n+27 )

The Odometer Property.
{((7*2)1, ..., (7F2),) 1 0< k<27 =1} = {0,1}" V 2€Q, n>1.

Proposition 7.3
T is uniquely ergodic (with M(Q, 1) ={m}).

Proof 1t suffices to prove that

N-1
(¢) % > fOTkeffdm as N — oo uniformly on Q V feC(Q).
k=0 &

Proof of (¢):
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If n e Nis fixed, and g : {0,1}" - R, and f: Q — R is defined by
f(x) =g(x1,...,x,), then by the odometer property,

12"—1 L
— = d
A | gam,

whence (!)

1 N-1
il Z fOTkeffdm as N — oo uniformly on {2
N = Q

and (#) follows since functions of this form are uniformly dense in

ci). v

Exercise 7.2. Show that () is a compact topological group with Haar
measure m € P(2) given by m([e1, ....€,]) = (3)"..

2. Rotations of T¢.

Proposition 7.4

If a = (aq,0,...,aq) € RY and {1, a1, ...,aq) are linearly indepen-
dent over Q, then (T?, R,) is uniquely ergodic with M(T? R,) ={m =
Leb}.

Proof
For k € Z¢ & x € T?, define y;(x) = €2k2). The condition on «
ensures that yx(a) #1V k#0. Thus

Seri@=] LAY

Xk © Lg(T) = 1- a)N

i=0 X () L) k#0
with the consequence that for f =y, k€Z,

1 N-1

(X) N Y foR,~> de fdm as N - oo uniformly on T¢.
=0

Now, () persists for linear combinations of y;’s and their uniforma
limits which are unifornmly dense in C'(T?) by the Stone-Weierstrass
theorem. By proposition 7.1, M(T4 R,) ={m}. &

3. The one-sided full shift.
Let ©2:={0,1}N and let S = shift.

Proposition 7.5
IM(Q,T)|=c.
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Proof sketch We exhibit an injection ¢ = p; ( (0,1) > M(Q,T) ).
To this end, fix ¢ € (0,1) and define

s : {cylinders} - [0,1]
by

N
pe(lar, ..., an]) =[] p:(4) forai,...,ay=0.1
j=1

where p(0)=1-t & p(1) =t¢.

It follows that p; is extends to an additive and T-invariant set function
on A := {finite unions of cylinders} whence by Caratheodory
theory 3 an extension (also denoted) p; to B(£2). By T-invariance
on A, we have p; € M(2,T).

To prove ergodicity we prove a stronger property called mizing

(1) p(AnT"B) — (A)m(B) V A, BeB(Q).

Note first that ([£]) holds for A, B cylinders whence for A, B € A.
Since A is dense in B(X) with respect to the sermi-metric p(A, B) :=
pu(AAB), (1)) holds V A, BeB(R2). v«

Ergodicity + mixing.
For a ¢ Q, (T, Ry, m) is ergodic but 3 ¢, - oo so that

m(AAR"A) — 0 ¥ AeB(T).

ANZAI SKEW PRODUCTS

For ¢) : T - T continuous and « € T define the Anzai skew product
T=T,,:T?->T?by

T(z,y):=(z+a,y+1(x)) mod 1,
a Haar measure preserving homeomorphism.

Proposition 7.6
The following are equivalent for a ¢ Q:
1) T, is minimal,
2) Ty is topologically transitive,
3) A k:T—>T continuous and q > 1 such that qp =koT — k.

Proof

Evidently 1) = 2).

To see that 2) == 3), assume that 3 k: T — T continuous and ¢ > 1
such that g = ko Ry — k. Define f:T? - T by f(z,y) := e?mk(@)-a,
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Evidently, f is continuous, non-constant and T-invariant, so 71" is not
topologically transitive.

To see that 3) = 1), suppose that 7" is not minimal, and let M ¢ T?
be minimal (ie closed, T-invariant and such that 7’|, is minimal).

For 5 € T define g5 : T? - T? by ¢s(x,y) = (z,y + 5), then:
e ggoT =T oqs whence (!) ¢gsM is minimal V § € T; thus
o if feT, ggMn M+ then ggM = M.

Set H:={8eT: gsM = M}, then
e H is a subgroup of T and closed since 8 = ¢gM is continuous
T — H(T?) where
H(T?) := {non-empty closed subsets of T2}

equipped with the Hausdorff metric (a compact metric space); and
o M,={yeT: (x,y)e M} =j(x)+H where j: T - T.

It follows that
j(w)"'H:Mx: (TﬁlM)a: :Mx+a_w($) :j(x+a)—¢(x)+H.

e We have that H # T since otherwise M = T? contradicting non-
minimality of T, thus
e 3 ¢>1such that ¢H = {0}

whence setting k := ¢j we obtain qy(x) = k(z + «) - k(x).

To establish continuity of £ : T — T, define Z, : T? - T? - by
Z,(x,y) = (x,qy), then Z, is continuous,

ZM ={(x,qy): (z,y) e M} ={(z,k(x)): zeT},

is closed and (!) k:T — T is continuous. O

Proposition 7.7

For a¢ Q and ¢ : T - T measurable,

Toy is ergodic iff 3 k : T — T measurable and q¢ € N such that
qU=koR,-k.

Proof
Assume first that 3 £ : T — T measurable and ¢ € N such that
q = ko R, —k. Define f:T? - T by f(x,y) = e2mi(k(x)-av) Tt follows
that f is not a.e. constant and that foT = f whence T is not ergodic.
Conversely, suppose that T is not ergodic and let f : T? —» R be
bounded, measurable, not constant and 7T-invariant. For n € Z define
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Jn:T—>Cby
fa(2) Z:fo(w,y)e‘m”ydy-
By T-invariance of f,

fu(x) = '/Tf o T(x,y)e ™™ dy
- [ fa+ay+v@)e iy

= 2@ £ (2 + Q).

Evidently, |f,| is Rq-invariant, whence constant a.e.. Since f is not
constant, 3 ¢ € N such that |f,(z)| > (ﬂ; whence ¢ = ko R, — k where
fq = re?mik, d

Telse f(z,y) = g(x) a.e. with go R =g a.e. = g constant
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Week # 8, 4/12/2013.

Proposition 8.1  (Furstenberg)
Fora¢Q and ¢ : T - T continuous,
if Ty is ergodic, then it is uniquely ergodic.

Proof
We'll use

von Neumann’s ergodic theorem
If (X,B.m,T) is an invertible, ergodic probability preserving trans-
formation then

where A £ := Ly foTk.

Sketch of proof Let H := L2(m)o={f e L*(m): [, fdm =0} a T-
invariant, closed linear subspace and define U:H - H by Uf = foT.
It suffices to show that

() A = 0 ¥ feh,

Let Ho:={g-Ug: geH}. We claim first that (&) holds for f € H,,
indeed if f =¢g—-Uyg, then

A(f) = Au(g-Ug) =170 #

n n—oo

By approximation, we see that (#) also holds for f € H:
For f e Hog e Ho with || f - ¢ <e,

|4, < 140(f = )] + [ An(0)] < €+ o(1).
Lastly, by ergodicity:

Hy={feH: (fg-Ug)=0VgeH}={feH: U'f=f}={0}
and Ho=H. @

Proof of theorem 8.1
Evidently mr2 € M (T2, T,,.4).

€1 Every sequence has a subsequence n; — oo so that for mr-a.e. x €T,
V feC(T?), yeT,

() A fay) o [ fdmee

n—oo
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Proof Let I' c C'(T?) be countable and uniformly dense.

By von Neumann’s theorem, for each f € I' and for every subse-
quence, 3 a subsequence so that the convergence (&) holds for f at each
m-a.e. (x,y) € T2, Ordering I" and performing a Cantor-type diago-
nalization yields a subsequence nj — oo and M € B(T?), mp(M) =1
so that the convergence (&) holds for every f eI at each (z,y) € M.

Since I' is uniformly dense, the convergence (8) holds for every f €
C(T?) at each (z,y) € M.

For t € T, define ¢ : T? - T? by ¢:(z,y) = (z,y +1t), then g0 T, =
Ty o g and my2 o ¢ = my2.

For (z,y)e M, feC(T?), teT,

AT fayy+ 1) = AT fo gz, y)

n—oo

= /;(fmeQ.

Now let My:={zeT: 3yeT, (z,y) e M}, then mp(My) =1 and
the convergence (&) holds for every f e C'(T?) at each (z,y) € MyxT.
791

Now suppose that e M (T?%,T,,). We'll show p = mre.

— [ o qdmy:
X

€2 3 a subsequence ny — oo satisfying (&) and also so that 3 @ ¢
B(T?), u(Q) =1 so that V feC(T?), (z,y) €Q,

(#) AL (@) — [ fan.

Proof  Using the first paragraph of the proof of €1, show that there

is a subsequence of the one satisfying (&) satisfying (s). @

€3 por ™t =my where 7(x,y) = z.

Proof Since moT, = Ryom we have ponte M(T,R,) ={mr}. &
To finish, we see that (7 'Myn Q) = 1 with the conclusion that

n=mym2. ¥

Example: An ergodic Anzai skew product. Consider ¢ (x) = x

and T =T, defined by T'(z,y) := (z + o,y + ) where a € T~ Q. To

see that T is ergodic, suppose that N > 1 and k : T — S' measurable

such that e2miNe = k(z + a)k(x).

2 m
Fix g — oo such that gra - 0in T, then fo R % fY felL?(m)

whence:
) A . _ "
o e2miNapzemiNg(gp-1)o = e27iNVe, = k(g + gra) k() PR 1 whence
—00
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o 0 = emNalaDam(Ng,) = [pk(x+ gra)k(x)dr — 1.

This contradiction establishes ergodicity. @

MINIMALITY # ERGODICITY

Essential continuity. Let X be a metric space and let m € P(X). A
measurable function f: X — C is called m-essentially continuous (e.c.)
if 3 g: X - C continuous such that g = f m-a.e.

Given f: X — R measurable, set

Gy:={aeR: ¢ is essentially continuous }.

Lemma 8.1
For f: X — R measurable, if Gy =R, then f is essentially continu-
ous.

Proof ,

Set dP(a) := \/%e‘%da. |

By assumption 3 G : R x X — S! satisfying ¢'*f = G(a,-) m-a.e.
V aeR and z ~ G(a,x) is continuous (X - S') V aeR.

It follows from Fubini’s theorem that for P x m-a.e. (a,z) € R x
X, G(a,r) = €@ whence
e (7 is P x m-Lebesgue measurable;

e for m-a.e. xeX and V t e R,

x)+t 2
/G(a,m)emth(a) = fei“(f(x)+t)dP(a) e
i R

Write g¢(z) == [ G(a,z)edP(a). If x,, SR x, then G(a,x,) —
G(a,z) Y teR and, by bounded convergence, g;(x,) — ¢:(x), Thus

g; : X — C is continuous V t € R.
It follows that F : X — R defined by F(z) := log 2% _ 1 is continu-

gy (@) 4
ous. But (!)

F=f m-ae

Lemma 8.2

Let m be Lebesque measure on T. Suppose that f: T — R is measur-
able, but not m-essentially continuous; then 3 a € R such that e is
not essentially continuous ¥ n € N.

Proof
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For f:T — R measurable, set
Gj:={aeR: ¢ is essentially continuous }.

Evidently G is a subgroup of R.

We claim that G € B(R)
To see this, define the linear operators Py : L'(T) - C(T) (N >1)
by

Pyh(t) = % i S B(k)e>

n=1|k|<n

Each operator Py is continuous and we have that t — Pye®f is
continuous R - C(T) V N > 1.

Recall (!) that h e L1(T) is essentially continuous iff {Pyh: N > 1}
is a Cauchy sequence in C(T).

Now consider

Y=C(T)N={y=(y1,y2,...): yn € C(T) ¥V n 21}
which becomes a Polish space (!) when metrized by

- Hxn_yn”C(T)/\l
og) = 3 e plem L

n=1

and define 7 : R > Y by 7n(t), = P,e®/, then 7 is continuous and
Gy = m1C where C := {Cauchy sequences in C(T)}.
To see measurability,

C={yeY: 3C(T)- lim y,}

oo oo 1
=U N{veY: ln-vlor < N}EB(Y)
N=1q=1k>q

whence Gy = 771C € B(R).

Now that G is a Borel subgroup of R, we claim that either Gy = R,
or Gy is meagre in R. To see this suppose that Gy is not meagre in R,
then 3 U # @ open in R so that Gy nU is residual in U. It follows that
3 € >0 such that

(GpnU)n(GpnU+z)#D V |z] <€,

whence (—¢€,€) c Gy and Gy =R.
Thus, if f: T — R is measurable and not essentially continuous, then
G is residual in R and 3 a € N2, %G; which is as required. v
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EXAMPLE: MINIMALITY # ERGODICITY

Proposition 8.3 (Furstenberg, Kolmogorov)
For each a € TNQ, 3¢ : T - T continuous so that Ty, is minimal
and not ergodic.

Proof
Fix a sequence ¢, €N, ¢, 1 oo so that |1 — 2™ <277V n > 1.
Define ¥ = U(®) : R - R by the Fourier series with coefficients

. 1_ej:27riqna |k‘| _ qn’
O

This function is continuous as the Fourier series converges absolutely
and since W(-k) = U(k),

1-— 2migna )
U(x):= Z SO T prmianr R,

n>1 n

For r >0, ¥ mod1:T - T is continuous. We’ll show that for
suitable r >0, r¥ mod 1 is as advertised.

Next, let

o U(k) _{ L k| = gn,
Cp = ———— .

1 — g2miko 0 else,

then Y.z |ck|? < oo and by the Riesz-Fischer theorem there is a function
g € L*(T) such that g(k) = cx.

Evidently g = go R, = ¥, whence ¥ = g — go R, mod m.

By proposition 7.7 Tf, ;wmoed1 18 non-ergodic V r > 0.

The rest of this proof is to show that 3 r > 0 so that T}, ;¢ mod1 is
minimal.

Since
1 X - 2 X 1
NZ: Zg(k)=ﬁz_j{k 12 T vow
kl<n >1: gp<n}
it follows that g is not essentially continuous. By lemma 8.2, 3 r4 > 0
such that e?™on9 is not essentially continuous V n € N.
Define ¢ : T - T by ¢(x) := roto(z) mod 1. This is continuous and
Y =ko R, —k where k :=ryg mod 1.
If T,  is not minimal then by proposition 7.6 3 K : T — T continuous
and ¢ > 1 such that ¢ = K o R, — K. By ergodicity of R,, K —qrog
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is constant a.e., contradicting non essential continuity of 74709, Thus
T, is minimal. @

Exercise 8.1.
(i) Show that 3 « € T such that 3 g, € N, g, 1 oo with so that

|1 - e2mian®| x 270 Y > 1.

(ii) Show that (for this a) ¥(®) : R - R is a real analytic function and
that the skew product of proposition 6.1 is real analytic.

(iii) Suppose that o € T\ Q has “bad approximation” in the sense that
3 e>0so that -2 > 5, and let ¥ : T — T be twice continuously

differentiable (C?(T)). Define ¢ := ¥ mod 1: T — T. Show that T, 4
is not ergodic.

PERIODIC POINTS

Let T: X - X. A point x € X is called a periodic point if 3 p e N
such that TPz = x. In this case, p € N is called the period of x and
the collection {T%x: 0 <k < p-1} is called (the associated) periodic
orbit. The minimal period of x is the smallest period, or the size of x’s

periodic orbit.
Define

M,(T) = {xeX: T =g}, TI(T):= QHH(T),

Po(T) = |IL,(T)|, p(T):=Tim log(Pn;T) +1)

oo

and the (dynamical) zeta function of T

Cr(2) = eZnm o (J2] < eP).
Example 0
Consider R, : T - T defined by R,z =x + a.
1, (R,) - T no € 7, M(R,) = T «aeQ,
e %) else, “ %) else.

Example 1
Consider E, : T - T defined by E,x := gr mod 1 (for ¢ € N). Evi-
dently

1, (E,) = Ker(E" 1) = {Ll L 0<k<q -2},
qn_
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1-2

P.(Ey) =q" -1, p(E,) =logq, C(g,(2) = et

Example 2
Let T e Aut (T?) ={T:T? > T: cts & T(x+y) =T (x)+T(y)}.
WmoT1=m

Proof Since T is an automorphism, moT ! is translation invariant.....

€1 3 a d x d matrix A with integer entries so that
det A=+1 & T(x+7Z%) = A(z) + Z°.

Proof  sketch: Use the lifting theorem (on p.13).
Q2 If (T4, B(T4),m,T) is ergodic then A’ :Z¢ - Z? has no non-zero
periodic points.
Proof For neZ let x, : T¢ > S be defined by yx,(z) := 272}, We
have that (1)

XnoT = Xatn.
Thus if N € Z4~ {0} & p e N are so that APN =N & A*N + NV 0<
k <p, then 0 # ¥7_, xny oT* =t F is not constant (- {x;,: j € Z4} are
orthogonal) and T-invariant. &
€3 (Exercise 8.2): Show that if A?: Z? - Z¢ has no non-zero periodic
points, then

(a) AMN —— 00 ¥V N € Z\ {0};
(b) v o n weakly in L*(m) O’
(c) m(AnT"B) — m(A)m(B) ¥V A, BeB(T?);

whence (T? B(T%),m,T) is ergodic.
Q4 I(T) 2 T¢n QA
Proof  Set
X, = {%-me@d: reZ%nT? (geN).

Since T'(z) = A(z) mod 1, T(X,) c X, and since T is injective and
| X4l =¢% <00, T: X, - X, is a bijection.

Thus V 2 € X,, 3 k> ¢ >1 such that T*x = T%(z) =: y), whence if
(—k=p>1then Try=y = Trex=xcll(T). ©
€5 If At : Z¢ — Z< has no non-zero periodic points, then I1(7T") € TnQ<.
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Proof  Suppose that x € TI(T) and that TPx = z, then 3k € Z¢ such
that APx = x + k. By aperiodicity of Af, 1 is not an eigenvalue of AP
and k # 0, whence we have x = (A? - [) 'k eT¢nQ¢. O

€6 If At : Z¢ - Z¢ has no non-zero periodic points, then P,(T) =
|det(A"™ - 1)

Proof  To see this, note that as above IL,(T") = T';+ {0} whence
P,(T) =|det(A™ - I)|. O

Exercise 8.3.

(i) Consider T : T? — T? defined by T'(x,y) = (2x +y,x +y) mod 1.
Show that
(a) P(T) =logAs;

and

1-2)2
(b) ¢r,(2) = iy
where A, = %

(ii) Consider E : T? —» T? defined by E(x,y) = (4dx+2y,2x+2y) mod 1.
Show that II(T") ¢ T¢ n Q.
Show that for T € End (T%),
(iii) P.(T) = A(A™ - 1);
(iv) T is ergodic iff T' is topologically transitive;
(v) T is not minimal.
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Week # 9, 18/12/2013.

SUBSHIFTS VIA “grammar”

Let S be a finite set. The word set of S is
S*=J s

n>1

For I c §*, the subshift with forbidden word-set T" is
Xp={reS?: abi=(2,4,...,7) ¢V —c0<a<b< oo}
if this set is non-empty.
Exercise 9.1. Show that the subshift with forbidden word-set I" c S*

is a subshift (as defined on page 49) and that any subshift is a subshift
with some forbidden word-set.

Subshift of finite type.
A subshift is a subshift of finite type (SFT) if it is a subshift with a

finite forbidden word-set. For example a topological Markov shift
(TMS — as defined on page 49) is a SF'T.

Exercise 9.2. Show that a SF'T is topologically isomorphic to some
TMS.

Calculations
IL(T) 2z {(z1,22,...,25) €S": Qapzp, =1V 1<k<n—-1, az, 4, =1}

Poy(24,T) = Tr(A™).

o Tr(A™)z" oo AT
Coar(2) = eZn= O (S A5

_ 1
~ det(1-Az) "

The asymptotics of Tr(A") are given by the

Frobenius-Perron Theorem

Suppose that P € Mg.q (:=dxd matrices) is such that p;; >0V 4,5 and
I3 N >1 such thatp;]j) >0V, .

Let Apax :=max {|A\|: NeC: 3 xeC? Px=\z}, then

(A) Fx, eRY, Pry = Apax®s;

(B) {zeCe: Pr=Npaxx}={cx,: ceC};

(C) Me C~{Apax}, ©€C such that Px = Az = || < Apax and
x ¢ RZ.
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Before proceeding with the proof, we recall some basics of linear dy-
namics:

(1) For A € Hom(R? R?) the spectral radius of A is
r(A) =max{|\|: 3 zeC? Ax=\z}.

1
(2) Gelfand’s formula For any norm |- on R?, 3 lim,, o |A"|n =
r(A) where |Al| := max{|Az|: |z| =1}, whence r(A) < |A].
(3) V A e Hom(R% R9) and € >0, 3 a norm |- | on R? such that
|A] <r(A) +e.
For A € C an eigenvalue of A € Hom(R¢,R?), let
Ey:={reR?: In>1(A-\)"z=0},
Ey:={reC?: In>1(A-A\)"zv=0}
and _ o
FE, = (E)\ @ Ex) n R,
Note that Ey = {0} if A ¢ R, and for A e R, E) = E}.
(4) If X = pe?? ¢ R, then dim F)\ = 2 and there is a basis of E) such

that
o [ pcosO psind
Alg, = R = (—psin9 p COS «9)’

whence |Amz| < p* ¥ z € E\~ {0}.
Proof of the Frobenius-Perron Theorem
Let IT := [0,00)?. Evidently PIl - II. Let X :={x e Il: |z]; = 1}.
Evidently, 3 is convex. We claim that
90 PNTI\ {0} c II°.
Proof Let z;>0 Vj & x;, >0, then for any ¢,

N N
(PYx); = sz(,j )xj 2 Pg,jo)xjo >0. @
j

q10¢ PY.
Proof By 90,0¢ PNY. If N>1and 0= Py, ye€o, then 0= PN-10=
PNy #0.x
Define T: ¥ - ¥ by T'(z) := | Pz |~ Pz.
e We claim that
QT:[x,y] > [Tx,Ty] is continuous V z,y € ¥, x #y where [x,y] :=
{tx+(1-t)y: te[0,1]} and a homeomorphism iff Tx + Ty.
e This property is called weak convewity.

Proof
T(tx+(1-t)y) = [tPx+(1-t)Py|;'(tPx+(1-t)Py) = sTx+(1-3)Ty
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where
t| Pz,

t| Pzl + (1-t)| Pyl

Evidently s : [0,1] - [0,1] is continuous and a homeomorphism iff

Tx+Ty. U
By €2, if C c ¥ is convex, then so are T'C' and T-'C. We claim that

for C'c ¥ convex:

B TExt C)2Ext TC.

Proof

s=s(t):=

7( fc rdp(z)) = [ TCTwdv(z). @

Let Xg :=MN,s1 7%, then ¥ c X is closed, convex and T-invariant.
€4 3 c Xe.
Proof By 90, PN : I\ {0} — II° and we have TV : ¥ —» 3°, whence
SocTNY c Xe. .
95 #Ext g <d.
Proof ~ We have that Ext ¥ = {ej,...,eq} where (e;); = 0x;. 3 ng >

oo, Fy,...,FEq € Xy so that T™e; — F; V 1< j<d. It follows from
Yo c T™3 and weak convexity of T that

d
VaoeXydp®eP({l,...,d}), z= Zp§k)T"kej,
j=1

whence for some k; - oo, p) - peP({1,...,d}), x = Z?zlijj and
v ¢{E,..., By} — x¢Exty.
In other words, ExtYy c {Ey,..., Eq4}.»

Connection with positive eigenvalues.

Since ExtY is finite, we have by €3 that T : Ext¥X, — ExtX, is
bijective. Thus V e € Ext3y 3 k. > 1 such that T*ee = e. Multiplying
the k.’s,

e Jk>1sothat VeeExtly I A=A, >0 such that Pre = Xe.

116 #20 =1.

Proof Ifnot Je# feExtyyand A, Af >0 such that Pfe = A\ce, Pof =
Arf.

In case A\. = Ay, choose a,b > 0 such that g := ae - bf € 0%, then
Pr(ae-bf) = Ae(ae-bf), whence 305 T*N(ae-bf) = (ae —bf) € 0% -

contradiction.X
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In case A\ > Ay, note that f —ee € Il V¥ € > 0 small enough, whence
(fixing such € > 0) =P *(f —ee) eI V n > 1; but

éP“”(f—ee)zg —ee—eNle+0o(1) ¢ Il for n large. ® @

Write ¥ = {0}, then T"z - 0 ¥V z € ¥ and To = 0 whence Po = \,0
where A\, > 0. This proves (A).

€7 3 xR z#co (some c€R) such that Px = £\, x.

Proof  Otherwise (similar to the above) 3 @ > 0, b € R such that
g:=ac —bxr € 0¥ whence g=T?NgeT?NY, c ¥° - contradiction.®
Statement (B) follows from 7.

€8 If 1 € R is another e.v. of P, then |u| < .

Proof By €7, if not, then |u| > X\. Fix Pe = pe. For € > 0 sufficiently
small, o+ee € [1° whence also { P*(o+ee)} ¢ TI°. However { P*(c+ee)} =
{xeume + o(pu™)} ¢ 11° for large n. O

OIfpeC, p+ A, isan ev. of P, then |u| < .

Proof  Suppose that u = pe®® ¢ R and let z € B, NI
In case p = |u| > A, note that for € > 0 sufficiently small, o + ex € TI°,
whence also P"(o + ex) € TI°. However, |P"x| % p® whence by (4),

P"(o +ex) =+eP"r+ \'o = £ P"x(1 + o(1))

are not both in IT°.
In case p = |u| = A, note that for appropriate a,b € R and z € EVM, ac+bx €
0%, whence as before, T"(ac + bx) - o € ¥°. However, 3 nj — oo such
that ng mod 27 - 0 (i.e. Ry* — Id.), whence 1 P (ac +bx) —
ac +bx and T™ (ao + bx) > aoc + br € 0¥. &
Statement (C) follows from 98 & 99. The theorem is established.
O

Corollary
p(X4,T) =log A\, (A).

Proof

Po(34,T)=Tr(A") < A, (A)".
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Exercise 9.3.

(i) Show that the TMS (X4,7") is topologically mixing iff 3 N > 1
so that AY, >0V i, jeS.

(ii) Exhibit a TMS which is topologically transitive but not topolog-
ically mixing.

(iii) Show that if (X, .S) is a topologically mixing topological dynam-
ical system and (Y, T) is topologically transitive, then (X x Y, S x T)
is topologically transitive.

TOPOLOGICAL ENTROPY

Given a compact topological space X, and an open cover 2 of X,
define

N () :=min{|Ud|: U c 2 a subcover}.
The open cover 2 refines the open cover B (written 2 > B) if V A e
A, 3 Be*B so that Ac B.
Proposition E1 If B <2, then N (B) < N ().
Proof Suppose that 2’ c 2 is a subcover, then since 8 < 2, 3 f:

A" > B so that A ¢ f(A). Evidently, f(2’) c B is a subcover and
F )] < |20, O

Given open covers 2 and B let AvB:={AnB: AecA, Be‘B}.
Evidently,
(0) NV B) < NN (B).

Now let T': X - X be continuous.
For an open cover 2 of X, set

n-1
a(n) :=log N (A57) where A3~ =A71(T):=\/ T
k=0

By (0), a(m +n) < a(m) + a(n) whence (!) @ —> inf, C”TSZ and

n—>00

3 lim Llog N (A71(T)) =: h(T, ).

By proposition E1, if B <2, then h(T,B) < h(T,2A).
o WT, A= (T, )V K >1.
Proof

R R s
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Exercise 9.4. Show that if T': X - X is a homeomorphism, then
h(T,AK) = h(T,2) V 2 open cover, J,K € Z, J < K where ¥ :=
VK, T

Define the topological entropy of T by
Rh(T) :=sup h(T,2).
2

Proposition E2
If (Y,S) is a factor of (X,T) then

h(T) > h(S).

Proof
Suppose that 7 : X - Y is onto, continuous and woT = S o .

If 2 is an open cover of Y, then 7~!2( is an open cover of X and
N(77120) = N (). Also 71 Vit SR = Vi T-Fn-12(, whence

h(S,2A) = h(T, 7 'A) < h(T)
and h(S) = supy h(S,2A) < h(T). O

Calculation of h(T) for T a subshift.
Let S be a finite set, let X c S% be a subshift and let T be the shift
on X.
Consider the open cover «:= {[s]on X : s€S}.
U T, a) =lim, . + log|ag™t|.
Proof  Since ™! is a partition of X, there are no (nontrivial) sub-
covers and N'(af™t) = |af7!|. @
For n > 1, consider

O/;L’n: \/ T_ka:{[87n7...78n],nmX: S,n’,SnES}
k=-n

€2 If B is another open cover, then 3 N > 1 such that each ol > B.
Proof  Define t(z,y) == min{|n| : =, # Yo} < 0 (eq. iff z = y) and
d(z,y) = (3)"®¥ then d is a metric generating the topology on X
with By(z, 2,%) =[x ny . 0]

Since B is an open cover, V x € X, 3 B € B, N, > 1 such that
Cy:=[x_Nn,, .- 2N,]-N, € B. The collection {C, : x € X} is an open
cover of X and by compactness 3 F' c X finite such that X = U,r C..
Let N := max,ep N, then B < {C,: xe F} <al,. v
B r(T) =T, ).
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Proof  For any open cover B, by €2 3 N > 1 such that o”, > B
whence

WT,B) < h(T,ay) = W(T,0). V

Proposition E3
If X = X4 is a topological Markov shift with transition matriz A :
SxS—{0,1},st. IN21, A}, >0V s, teS; then

h(T) =log A (A) = P(T).

Proof By 941 & 93,
1
h(T) = W(T,a) = lim —log#aft.
n—-oo n

By the Perron-Frobenius theorem,

#048_1 = Z Ag,t o< A (A)",

s,teS
whence .
—log#af™ —— log A, (4). @
n n—00

Exercise 9.5: Conjugacy of TMS’s.

Let S & S’ be finite sets and let ¥4 ¢ S% & Yp ¢ S”Z (where A :
Sx8S—{0,1}, B: 5" xS - {0,1}) be mixing TMS’s and let 7" denote
the shift map.
(a) Show that if (¥4,7) & (Xp,T) are topologically conjugate, then
/\+(A) = /\+(B)
(b) Show that for k, ¢ > 2, k # ¢ that ({1,2,...,k}%,T) and ({1,2,...,0}2,T)
are not topologically conjugate to (X,,T) for k + ¢.

Exercise 9.6: Frobenius theory of positive matrices ctd.

Suppose that A € Mgyxq (= dxd matrices) is such that A;; >0V 7,5
and 3 N > 1 such that AZ(]]Y) >0V i,7. Let Apax(A) be the maximal
eigenvalue of A. 7
(a) Show that Apnax(A?) = Amax(A) =2 Ay where A’;’j =A,

Let x, y € R be the positive eigenvectors Az = A,z & Aly = \,y.
Define P € My.q by

Aiyy;

Dij =

A+Yi .
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(b) Show that P is a stochastic matrix in the sense that p;; >0V 1<
i,j<dand X0 p;=1V 1<i<d.

(c) Show that 3 e P({1,...,d}) so that X%, mp;; =7; ¥ 1 <j<d.
Hint Normalize z;y;.
The probability vector « is aka the invariant distribution of P.

Exercise 9.7: Stochastic matrices.
Suppose that S is a finite set and P : Sx S — R is a stochastic matrix
in the sense that p; ; >0V 4,7 €S and ¥ .gp;; =1V i€S; and suppose

that 3 ¢ > 1 such that pgfj) >0V i,jesS.
(a) Prove that 3 0 <6 <1< M such that

|ﬁ?—ﬂﬂgﬂM"V“217vLjES

where 7 € P(S) is the invariant distribution of P.
b) Show that 3 u € P(S%) such that

p([S05 81,3 SN]) = TsoPso.sy - - - Psnorusn ¥ S05S15---5 SN €S,
The closed supportof pis Supp (p) == {x e S%: p(U)>0V 2z eUeT}
(where 7 denotes the open sets in S%).
c¢) Show that Supp (p) = ¥4 where A : S xS - {0,1} is defined by
A(s,t) =11if P(s,t)>0 and A(s,t) = P(s,t) =0 otherwise.

d) Show that (X4, T, 1) is a mixing probability preserving transforma-
tion.

d-ENTROPY

Separated sets.

Let Y be a set, and let p be a metric on Y. Recall that F c Y is
(p,€)-separated if p(x,y) > €V x,y € F, x +y; and that F'is (p, €)-dense
in Y ifVyeVY, 3x € F such that p(z,y) < e. Using Zorn’s lemma it
can be shown that 3 maximal e-separated sets.

Define

S(p,€) =max{|F|: FcY (p,e)-separated},

D(p,¢e) =min{|F|: FcY (p,e)—dense in Y},

and
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N(p,e) =
N
min{N >1: Y =JA;, A;jcY, p-diam(A;) <e Vj}.
k=1
Proposition E4
(i) D(p,e) <S(p,€) < D(p,e[2).
(i) D(p.) < N(p.€) < D(p.¢f2).

Proof

(i) S(p,€) 2 D(p,¢€) since a maximal (p,€)-separated set is (p, €)-
dense.

To see S(p,e) < D(p,€e/2) let F be (p,e)-separated and let G be
(p,€/2)-dense. 3 f: F - G such that d(x, f(z)) <€/2 VaxeF. It
follows that f is injective, since f(z1) = f(x2) =y =— d(x1,x2) <
d(zy,y) +d(y,x2) <e = 1z =x9. Thus |F| < |G| whence S(p,€) <
D(p.cf2).

(ii) Suppose that Y = UL, A;, where p — diam (A;) < € and choose
r;€A; (1<i<N). Evidently {z;: 1<i< N} is (p,€)-dense whence
D(p,e) < N(p,e). Now let F' be (p,€/2)-dense, then X = U,er B(y, €/2)
and p — diam (B(y,€/2)) <€ Yy € F thus N(p,e) <|F]. O

Minkowski-Besicovitch Box dimension.
The boz dimension of Y with respect to p is
—log D(p, €)

di Y.p):=1
(V. ) = Ty 0

Exercise 9.8: Box dimension.

Show that: L
a) if X cR*, X = X°¢ and d is the Euclidean metric, then dim(X,d) =
K;
b) dimy(X,d™)) = hi‘;gir where X = {0,1}N, 0<r <1 and d®)(x,y) :=
T.t(:p,y);
¢) dim,(C,d) = 1222 where C' c [0,1] is the classical “middle third”

log3
Cantor set where d(z,y) = |z —y|.




Dynamical Systems 75

d-entropy and separated sets.
For (X,d) a compact metric space, T': X - X a continuous map,
define the sequence of dynamical metrics

dn(w,y) = max d(T*z,T"y).

Note that D(d,,¢€) is the minimum number of ”initial conditions”
which ensure e-approximation up to time n of the dynamical system
(under any initial condition).

The d- entropy of (X,T) is
ha(T) = lim lim L RuC.y
The d-entropy can be thought of as measuring the “degree of sensi-
tivity of the dynamical system’s dependence on initial conditions” (one
of the components of so-called “chaos”).

Example. Let (X,7T) = ({0,1}N shift) and define d = d(") (z,y) := rt@v)
where 0 <r <landmin{n >1: z, # y,} < oo, then (X, d,) is a compact
metric space, the metrics d(") (0 < r < 1) are equivalent and (fixing
O<r<l)

o dy(z,y) =min{,r}

Proof

i k. Tk
dn(x’y) = pMiNogk<n-1 (T, T y) _ T(t(w,y)—m—l)vl _ d,ffﬂ) Ar. [

e Foree[rK+l rK),

Bl (z,€) = {yeX: —d,ffl?{) Ar<ey=BD(zrEY =[x, .. 20k ]

e Foree[rE+l rK) D(d,, €)= 2"
o hy(T)=log2.
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Week # 10, 25/12/2013.

Lemma E5

3 lim 26M09 v 5 0,

n—oo

Proof
This is based on the (easy) observation that for k,¢ > 1,

dj, — diam (A) <€, dy —diam (B) <e = dj,o—diam(AnT*B) <e.
Thus N(dgse,€) < N(dg,€)N(dg, €) and by subadditivity

log N (dp ,e€) Sinf logN(d]',e)
n g>1 J '

Corollary E6

hg(T) = lim lim w

e—>0 n—oo

_ log D(dn,e) _ logD(d ,€)
-y lim BB iy Ty b
n—o00
log S(d. log S(d.
— lim lim M — lim lim M
e—0 N— 00 e—0 n—oo

Proposition E7
If d' is another metric on X equivalent to d, then hy(T) = hq(T).

Proof

Ve>0, 3(e) >0 such that d'(x,y) < d(e) = d(z,y) <e. It
follows that for n > 1, d'(z,y) < 6(¢) =— d,(x,y) <e. Thus if
F c X, then
F (d,,€)-separated = F (d!,,d(¢))-separated,

whence

S(dy,,e) <S(d',n,0(€)), & ha(T) < ha(T).
U

Before proving that hy(7T) = h(T'), we need the concept of “Lebesgue
number”.

Definition Given an open cover A of a set subset K of a metric space
(X,d), the Lebesque number of A with respect to K is

e(A,K):=sup{e>0: YaxeK, 3UeA such that By(z,e) cU}.
Lebesgue’s lemma says that if K is compact, then e(A, K) > 0.
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Lebesgue’s Lemma Suppose that X is a metric space, and that K c
X is compact. If A is an open cover of K, then 3 € = (A, K) >0 such
that

VrezeK, 3UeA suchthat B(z,e)cU.

Proof If not, then
V e>0 3 x(e) such that B(xz(e),e)) ¢ U V U € A.
In particular, 3 z,, € K and ¢, - 0 such that
B(z,,e,) 2U VY U €A,

Passing to a subsequence, 3 y € K such that x,, - y and 3 V € A such
that y € V. Since V' is open, 3 d > 0 such that B(y,d) c V. For n > 1
large enough, €,, d(y,x,) < J/2

z € B(x,,0/2) = d(y,z) <d(y,z,) +d(z,,z) <0

and B(z,,€,) ¢ B(x,,0/2) ¢ B(y,0) c V contradicting B(x,,€,) ¢
UV UceA.
U

Theorem E8
ha(T) = h(T).

Proof

<) If sup g diam (A) <€, then d,, — diam. (a) <€ V a € A2~!, whence
N(QE1) > N(d,,€). Thus, ha(T) < W(T). @
>)  Let 2 be an open cover of X, and suppose that > 0 is smaller
than its Lebesgue number (i.e. V2 e X 3 A€, B(x,n)c A), then (!)
VreX JaeVy)T*Asuch that By, (z,m) c a.

Thus, for F (d,,n)-dense, 3 f : F - A2~ such that By, (z,n) c f(z),
whence f(F) c 207! is a subcover with |f(F') < |F|. This shows that
N(®B1) < D(d,,n), whence hqa(T) > h(T). @

Exercise 10.1.
Let (X,T) be a continuous map of a compact metric space. Show
that

(i) If Y c X is closed and T-invariant, then h(T|y) < h(T).
(ii) If X = UL, Y; where each Y; is closed and T-invariant, then

h(T) = max h(Tly,).

1<i<
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(iii) A(T™) = nh(T) ¥ n e N and h(T') = h(T) if T is a homeomor-
phism.

(iv) h(T'x S) = h(T) + h(S) whenever (Y, 5) is also a continuous map
of a compact metric space.

(iv) Is there a topological dynamical system (X,7T") with A(7") >0 but
I(T) = 2?

MORE CALCULATIONS OF h(T)

QIfT:X > X is an isometry then h(7) = 0. To see this note that
d" = d and D(d,,€) + oo.

92 Lipschitz maps. The box dimension of the metric space (X,d) is

. 1. log D(d,e
dimy(X) := 161_{% Olgog—i/e).

Lemma E9
Let (X, T) be a Lipschitz continuous map of a compact metric space,
then
h(T) < dimy(X) max{0,log Dr}

. d(Tz,Ty)
where D :=sup, ,x oy

Proof
Let L >1v Dy, then given € >0, n>1,

d(z,y) < L =
d(TFz, Try) < LF"e<eV 0<k<n =
dn(z,y) <€,

whence S(T)(d,,¢) < S(d, L"¢) and

_— (T) - -n - -n
im log S (dn ,€) < lim log S(d,L™"€) < lim log D(d,L™"¢/2)
n—00 n n—>00 n n—>00 n
—— log D(d,d)
< %{% ogifs log L

dim,(X) log L. 0
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€3 Anzai skew products.

Consider T' = T, : T? - T? defined by T'(x,y) = (z + o,y + ¢¥(x))
where ¢p : T - T is C! (ie. 3 ¥ :R - R, C! such that ¥(z) =
¢(z mod 1) mod 1). We have that DT(z) = (.5 1), whence (!)
| DT ()| = O(J¢'(x)]) and Dy = O(sup, [¢'(2)]).

Fixing ¢, we have that (for n > 1) T"(z,y) = (z + na,y + ¥,(x))
where ¥, () = Y320 ¥ (z + ka)), whence Drn = O(n) as n — oo.

By lemma E9 and exercise 10.2 (iii), we have that

W(T) = 2T = O as n - oo
whence h(T)=0. O

94 “Hyperbolic” endomorphisms of TZ2.

Let A e Go(Z) = {AeGl(2,R): a;; € Z} with eigenvalues \;, Ay €
R, [A1| > |Ae| and let T' =Ty : T? - T2, Ty(x +Z?) := Ax +Z*. We show
that
@ h(T) = Zi=1,2, [Asl>1 log |)\z|
Proof  Set p; :==|\| v 1, then py =|A\|>1 - |det A| = [A\i] | Ao > 1.

It suffices to show that
o h(T) = Yi-1,2log p;.

Let u; € R?2, Au; = \; (i =1,2) and consider T? equipped with the
metric d induced by the norm ||aju; + asusl| := |a1| v |as|. Evidently for
xeT?, n>0, h,keR small,

TH(z + huy + kug) = T2 + hATuy + kAjug (0 <k <n)

whence
dy(z,x + huy + kug) = Iax d(TFz, T*(z + huy + kug)) = pi|h| v u3|k|.
Thus

o
If F'cT?is (dn,€)-dense, then T? ¢ Uper 1 pian) (4,) Whence
1=m(T?) < Z m(B@) (z,¢)) = |F|e? sin 0

MYy
zel 172

B (€)= {x+ huy +kuy: |h] < i k| < @}

where 6 = 2 (0,uy, us). Thus D(d,,€) > 222 and h(T) > log 1 +log pa.

€2 sin 6

To show D(d,,€) < utul (for fixed € > 0) choose I' ¢ R? countable
so that {y+ B(@)(0,¢) = Bldn)(~,€): vel} tiles R? in the sense that

U B (y,e) =R? & m(B"™(y,e) n B (v',€)) =0 (y++ €l).
~yel’
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Let Tg:= {yeD: B (7,6)n[0,1]2+ @, then F := {y+Z2: vy ey} is

(dn,€)-dense and D(d,,€) < |F| < |T'g|. To estimate |I'g|, note that
Bl (v e)c[-e,1+€]> V yely

whence

m([—¢,1+€]?)
|F0| S m(B(dn;L(O,e)

and (®) follows. &

GENERAL ENDOMORPHISMS OF T¢

Theorem 10.1 Let T : T¢ - T be a surjective endomorphism with
T(x+2Z%) = A(x) + Z4 with A e G4(Z) :={Ae G(d,R): a;;€Z}. Let
{Ni:+ 1<i<d} cC be the eigenvalues of A (counting multiplicity),
then

WT)= N loglyl

1Sj$d, |)\j|>1

Non-compact metric spaces.
Let (Y, p) be a metric space and let K c Y be compact.

o FcKis(p,e)-separated if p(z,y) >e ¥V x,y € F, x #+y; and that F'
is (p,€)-dense in K if V y € K, 3x € F such that p(z,y) <e.
Define

S(K,p,e):=max{|F|: FcK (p,e)—separated},
D(K,p,e) :==min{|F|: FcY (p,e)—dense in K},

and

N(K,p,e) =

N
min{N >1: KEkUIAk, A;cY, p-diam(A4;) <e Vj}.

Proposition 10.2
(i) D(K, p,e) < S(K, p,€) < D(K, p,¢€[2).

(i1) D(K,p,e) < N(K,p,e) < D(K,p,€e/2).

Proof See propn. E4
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d-entropy on non-compact spaces.
For (X,d) a metric space, T': X - X continuous define as before,

dn(z,y) = max d(T*z,T"y).
0<k<n-1

For K c X compact, the d- entropy of (X,T) on K is

ha(T, K) = lim Tim 22409

e—0 n—oo
The d-entropy of (X, T) is
hg(T) :=sup{hq(T,K): K c X compact}.

Call a metric dynamical system (X, d, T) uniformly continuous (UCMDS)
if T is uniformly continuous w.r.t. d (abbr. T € UC(X,d). Note that

if.
if d’' is a metric on X wuniformly equivalent to d (d ' d') in the sense

that
Id: (X,d) > (X,d) & Id: (X,d) - (X,d)
are both uniformly continuous, then (X,d, T is also a UCMDS.

10.2 Equivalence proposition Let (X,d,T) be a UCMDS and let
unif.

d =~ d, then
ha(T) = ha(T).

Proof sketch It follows that V e >0 3 0<d(¢) < € so that
d(z,y) <o(e) = d'(z,y)<e & d'(z,y) <d(e) = d(z,y)<e.
It follows that for each n > 1,
do(z,y) <d(e) = d(z,y)<e & d,(z,y)<d(e) = d,(x,y)<e
whence for each K ¢ X compact,

S(K,dy,¢) < S(K,d,,5(c)) & S(K.,d,,€) < S(K,dy,5(c)). ... @

'

10.3 Localization proposition Let (X,d,T") be a UCMDS and let
K, Ki,...,Ky c X be compact. If K c Uévzl K;, then

hd(T, K) < max hd(T, KJ)
1<j<N
Proof sketch Foreache>0& n>1,
N
S(K,dy,€) <> S(Kj,dy,€) < N max S(Kj,dy,e€).
1<j<N

j=1
3 n;, — oo so that
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. nitlogS(K,dnt,e)zmn%m%logS(K,dn,e);
e 3 J so that maxcjon S(Kj,dy,, €) = S(Ky,dp,, €) V t.
It follows that
i — log S(K, dn,€) <— nitlog S(K,dy,,,e€)

n—oo n,

N

i log S(K,dy,,€)
Uz

1
lim — log S(KKJ,d,,, €).

n—oo n

Thus hd(T, K) < maxi<j<N hd(T, KJ) v
10.4 Small set corollary For a UCMDS (X,d,T), for each € >0,
hg(T) =sup {ha(T, K): Kc X compact & diam K < €}.

N

10.5 Entropy lifting proposition

Let (Z,p,R) & (X,d,T) be a UCMDSs and suppose that w: Z — X is
continuous, surjective & a uniform, local isometryﬁ.

If roR=Tom, then

ha(T) = h,(R).

Proof sketch  Fix 0 <e< A so that p(z,y) <e = p(Rz, Ry) < A
and d(x,y) <e = d(Tz,Ty) < A.

Let K c B,(z,A) be compact and let F' ¢ K be (pj,,€)-separated.
It follows that w(F') c w(K) is (d,,€)-separated since for = # y €
F, 30< k<nsothat e < p(RFx, RFy) < A whence d(T*m(x), T*n(y)) =
p(RFx, RFy) > €. Thus S(K, pn,€) < S(m(K),d,,¢€).

The reverse inequality follows analogously, so S(K, pp,€) = S(n(K),d,, €)

10.6 Lemma Let T :R% - R? be a linear mapping. Suppose that
p(x,y) = |-yl where ||| is a norm on R?. Let m be Lebesque measure,

then
1

1
h,(T)=%:=lim —log —————.
)= 0= o B (0 1))

Proof sketch
Proof  that he(T, K) > $) whenever m(K) > 0:

8in the sense that 3 A > 0 so that 7 : B,(xz,A) - Bg(w(z),A) is an isometry V z € X



Dynamical Systems 83

Fix K ¢ R? compact with m(K) > 0. If F is (p,, €)-dense in K, then
K c Uyer B,, (x,2€) whence

m(K) < 3. m(By, (x,2€)) = |Flm(m(B,, (0, 2€)) = [F|(2€)'m(m(B,,(0,1))

zeF
since .,
B,.(0.r) = (\THB(T"2.1) =B, (0.1).
k=0
whence
m(K) 1 1 1
S(K, dy,€) > SS(K,dpye) 3z —log—— .
(B €) 2 Gt (B, 0.1) 0 ) Z 78 B 0D

Proof  that he(T) < $:
Let Cp = z+[-r,r]* & 0<e<r. If EcC, is (py,2¢)-separated, then

C3r 2 r+2¢ 2 U Bpn(x7€) &

rel)
m(Cs,) 2 Y m(B,,(z,€)) = |Ele*m(m(B,,(0,1))
el
whence o .
S(Cry puse€) < m(C)

el m(m(B,,(0,1))
It follows from this that he(T,C,) <$. @
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Week # 11, 1/1/2014.

11.1 Proposition (Entropy of a linear map) Let T: R¢ - R?
be a linear mapping. Suppose that p(x,y) = ||x —y|2, Let A c C be the
collection of eigenvalues of T ocuuring with multiplicities dy, X € A,
then

h(T)= 3 dylog |\l

AeA | A>1
Proof sketch
By Jordan’s theorem
Rd = @ A%\
AeA

where dim V), = d) and (T'-AId)%|y, = 0. In particular, TE, c E\ V A\ €
A. Let

Wy= @ VizR*& Wo= @ Vai=VizRb
AeA, [A>1 AeA, A1

where d+ = Z)\EA, [Al>1 d)\ & d(] = d—d+.

Let p/(z,y) = [z -yla, z,y e W;, j=+,0 and set n((z,y), (2',y)) :=
pr(z,2") v py,y") & m =m, x my where m; is Lebesgue measure on
Wi, 7 =+,0.

By lemma 10.6

hp(T) = hoy(T')

Tm 1l 1
= lim —log ———————
nme 0 m(By, (0,1))

— i (Lo L et
(B (0.1))  mo(Byg (0,1))

Now

m(Bp(0,1)) >m(B,(0,1))

mo(B,o (0,1)) <m(T"B,0(0,1)) = (et Tl -
0

and
~m(B,+(0,1))

my (B (0,1)) <m(T™"B,(0,1)) = et Ty, [0
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whence

— 1 1
ho(T) = gl—{go(ﬁ(log m.(B,:(0,1)) W

> lim 1 1 1
2 11m — 10
noeo 12y (Bye (0, 1))

-1
log|det Tlw,|~ > dilog|Al.

AeA [A]>1

Proof  that h,(T) < Xep rs1 dalog |Al-
We have that m = [],., m, where m, is Lebesgue measure on V). As
above
1
h,(T) llm lo
AT) =105 Z & (B, (0,1))
where py(7,y) = [z -yl2, w,y€ Vi & p(x,y) = maxy px(2?,97).
It thus suffices to show that
1

— 1
li log <0vdylog|A| V AeA.
weo S (B (0,1)) Aog[Al ¥ A e
Fix A e A & p> |\ and for x € V}, set
||T 95||2
[l = 20—

n>0

The series converges

Tl T
H" M neee i
and thus defines a norm on V). Moreover,

| P HT xllz
| T, = Z o py o <plrl

n>1

- n

Writing A(z,y) = |z -y|,, we have B,(0, 1)) > BA(0,r) for some r > 0,
whence

B, (0,1)) o Ba,(0,7)) =QT‘jBA(O,r))

U Ba(0, —) = Ba(0, nl))

and
dy

ma(B,x(0,1)) > : ))m-
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Thus,
1 1 1 1

lo lo +
& m(Ba(0,1))

dylogr
n ~my(By(0,1)) n

-1
L dylogp -
n

1
= dAlogu+O(ﬁ). |

End of course ”dynamical systems”
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