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Basic Concepts

What is a dynamical system? In this course a ”dynamical system”
will (mainly) be a pair (X,T ) where X is a set equipped with some
structure (e.g. a topological space, a measure space or a differentiable
manifold) and T ∶ X → X is a map preserving the structure on X,
i.e. T continuous if X is a topological space, T measurable and ”non-
singular” (preserving measure zero) if X is a measure space and T a
differentiable map if X is a differentiable manifold.

Usually (but not always), we are interested in the ”asymptotic be-
havior” of a dynamical system (T nx for large n).

It’s also possible to consider ‘‘generalized" dynamical systems (X,Γ) where

X is as above and Γ is a semigroup under composition of maps preserving the structure

on X.

Stable behavior, attractors, contracting maps. Let (X,T ) be a
continuous map of a metric space.

● An attractor (for (X,T )) is a point a ∈ X for which there is an
open set ∅ ≠ U ⊂X with T nx Ð→

n→∞
a ∀ x ∈ U . The domain of attraction

of the attractor a is the largest such open set. By continuity of T , an
attractor a for T is necessarily a fixed point i.e. Ta = a.

The attractor is called global if its domain of attraction is X.
The map T ∶ X → X is called a contraction with respect to d if

∃ λ = λ(T ) = λ(T, d) < 1 (the contraction factor) such that d(Tx,Ty) ≤
λd(x, y).

The metric is important here and we should say that (X,T, d) is a contraction

under these conditions.

1.1 Contraction mapping theorem
If T ∶X →X is a contraction of a complete metric space (X,d), then

there is a global attractor for T .
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Proof Let λ ∈ (0,1) be the contraction factor and fix x ∈X. It follows
that for n, k ≥ 1,

d(T nx,T n+kx) ≤
k−1

∑
j=0

d(T n+jx,T n+j+1x)

≤
k−1

∑
j=0

λn+jd(x,Tx) ≤ λn
d(x,Tx)

1 − λ
.

Thus (x,Tx,T 2x, . . . ) is a Cauchy sequence in X and by completeness
∃ a(x) ∈ X so that d(T nx, a(x))ÐÐ→

n→∞
0.

By continuity of T , Ta(x) = a(x). To see that a(x) does not depend
on X:

d(a(x), a(y)) = d(T na(x), T na(y)) ≤ λnd(a(x), a(y))ÐÐ→
n→∞

0. 2�

Iterated function systems & hyperspace

Let (X,d) be a metric space. An iterated function system (IFS) on
(X,d) is a finite collection of contractions w1, . . .wN ∶X →X.

Associated to an iterated function system, there is an interesting con-
traction of the hyperspace H(X) space of nonempty compact subsets
of X:

W (K) ∶=
N

⋃
k=1

wk(K).

The Hausdorff metric h on H(X) is defined by

h(K,K ′) ∶= max{d(K,K ′), d(K ′,K)}

where

d(A,B) ∶= max
x∈A

(min
y∈B

d(x, y)).

Note that (!)

h(K,K ′) = min{ε > 0 ∶ K ⊂ B(K ′, ε), & K ′ ⊂ B(K, ε)}

Proposition 2
(H(X), h) is a metric space.

Proof
In caseA∖B ≠ ∅ choose a ∈ A∖B, then by compactness, miny∈B d(a, y) >

0, whence d(A,B) > 0. It follows that h(A,B) = 0 iff A = B.
To prove the triangle inequality, note first that

d(a, c) ≤ d(a, b) + d(b, c) ∀ a ∈ A, b ∈ B, c ∈ C.
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Fixing a ∈ A, c ∈ C and minimizing over b ∈ B we obtain that ∃ b0 ∈ B
such that

d(a, c) ≤ d(a, b0) + d(b0, c) = min
y∈B

d(a, y) + d(b0, c),

whence fixing a ∈ A and minimizing over c ∈ C:

min
x∈C

d(a, x) ≤ min
y∈B

d(a, y) +min
z∈C

d(b0, z) ≤ d(A,B) + d(B,C).

�

Proposition 3 If (X,d) is either compact, or Rd with the Euclidean
distance, then (H(X), h) is complete.

Proof sketch
Suppose that An ∈ H(X), (n ≥ 1) is a h-Cauchy sequence and define

A ∶= {x ∈X ∶ ∃ xn ∈ An s.t. xn → x}.

¶1 A ≠ ∅
Choose ni ↑ such that h(Ak,A`) <

1
2i
∀ k, ` ≥ ni. Fix x1 ∈ An1 , then

∃ x2 ∈ An2 with d(x1, x2) <
1
2 . Continuing, get xk ∈ Ank (k ≥ 1) such

that d(xk, xk+1) <
1
2k

. Evidently (!) {xk}k is a d-Cauchy sequence. Let
xk → a. We need to show ∃ an ∈ An, an → a. To do this we show
∃ an ∈ An, Cauchy s.t. ani = xi.

Indeed for ni < k ≤ ni+1, choose ak ∈ Ak such that
d(ak, xni+1) = miny∈Ak d(y, xni+1) ≤ h(Ak,Ani+1) <

1
2i

. �
¶2 A is closed.

Suppose bi ∈ A, bi → b. ∃ ni ↑ such that ∀ i, ∃ xi ∈ Ani with
d(xi, bi) <

1
2i

. As before, ∃ an ∈ An, Cauchy s.t. ani = xi. It follows that
an → b whence b ∈ A. �
¶3 ∀ ε > 0 ∃ N such that A ⊂ B(An, ε) ∀ n ≥ N .

FixN ≥ 1 such that h(Ak,A`) < ε ∀ k, ` ≥ N , thenAk ⊂ B(A`, ε) ∀ k, ` ≥
N . Fix a ∈ A and let an ∈ An, an → A. Since B(A`, ε) is closed,

a ← ak ∈ B(A`, ε) ∀ k, ` ≥ N.

�
¶4 A is compact.

Closed by ¶2 and precompact by ¶3.
¶5 ∀ ε > 0 ∃ N such that An ⊂ B(A, ε) ∀ n ≥ N .

FixN ≥ 1 such that h(Ak,A`) < ε/2 ∀ k, ` ≥ N , thenAk ⊂ B(A`, ε) ∀ k, ` ≥
N . We show that Ak ⊂ B(A, ε) ∀ k ≥ N .

Fix y ∈ Ak. ∃ k ≤ Ni ↑ such that Am ⊂ B(An,
ε

2j
) ∀m,n ≥ Nj.

∃ xj ∈ Anj such that d(y, x1) < ε
2 , d(xj, xj+1) < ε

2j+1
. It follows that
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xj → z ∈ X. As before, z ∈ A. Also d(y, xj) ≤ ε ∀ j whence d(y, z) ≤ ε.
It follows that y ∈ B(A, ε). � �

Exercises
Prove that

1) if (X,d) is compact, then so is (H(X), h).
2) (H(Rd), h) is pathwise connected.

Proposition 4

h(W (A),W (B)) ≤ max
1≤k≤n

λ(wk)h(A,B).

Proof Note that

h(K,K ′) = min{ε > 0 ∶ K ⊂ B(K ′, ε), & K ′ ⊂ B(K, ε)}

Thus
h(W (A),W (B)) ≤ max

1≤k≤n
h(wk(A),wk(B)).

Now for a ∈ A, b ∈ B,

d(wk(a),wk(b)) ≤ λ(wk)d(a, b)

whence
min

y∈wk(B)
d(wk(a), y) ≤ λ(wk)min

b∈B
d(a, b)

and
d(wk(A),wk(B)) ≤ λ(wk)d(A,B).

�

Corollary 5
Each IFS has a unique attractor.

Proof By propositions 3 and 4 and the contraction mapping theorem,
∃ K ∈ H(X) such that W n(A)→K ∀ A ∈ H(X). �

Exercise. Let

X = [0,1], w0(x) ∶=
x

3
& w1(x) ∶=

x + 2

3
;

then the attractor of the IFS (w0,w1) is the (middle third) Cantor set.

Hutchinson’s formula Let W (K) =K and suppose that wi(K) (1 ≤
i ≤ N) are disjoint, then the box dimension d of K coincides with its
Hausdorff dimension, and satisfies

N

∑
i=1

λ(wi)
d = 1.
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Proof Exercise, or see Barnsley’s book Fractals Everywhere.

Picard’s solution of initial value ODE

Let d ≥ 1 & U ⊂ R ×Rd be open and let f ∶ U → Rd be continuous.
Given (t0, x0) ∈ U and ε > 0, we say that x ∶ (t0 − ε, t0 + ε) → Rd, C1

solves the initial value problem IVP(t0, x0) if

x(t0) = x0, (t, x(t)) ∈ U, &
dx

dt
(t) = f(t, x(t)) ∀ t ∈ (t0 − ε, t0 + ε).

Picard’s Theorem If f is Lipschitz continuous, then ∀(t0, x0) ∈ U, ∃
a unique solution of IVP(t0, x0).

Proof Fix (t0, x0) ∈ U . Suppose that V is open with (t0, x0) ∈ V and
V ⊂ U . Let ε > 0 with B((t0, x0), ε) ⊂ V . Let

X =X(t0,x0),ε ∶= {x ∶ (t0−ε, t0+ε)→ Rd ∶ (t, x(t)) ∈ V ∀ t ∈ (t0−ε, t0+ε)}

with the metric d = d(t0,x0),ε defined by

d(x, y) ∶= sup
t∈(t0−ε,t0+ε)

∥x(t) − y(t)∥2.

It follows that (X,d) is a complete metric space.
Next, define Φ ∶X →X by

Φ(x)(t) ∶= x0 + ∫
t

t0
f(x(s), s)ds

where ∫
v

u ∶= − ∫
u

v .
We claim that for ε > 0 small enough, Φ is a contraction.
To see this, for x, y ∈X(t0,x0),ε,

∥Φ(x)(t) −Φ(y)(t)∥2 = ∥∫
t

t0
(f(x(s), s) − f(y(s), s))ds∥2

≤ ∫
t

t0
∥(f(x(s), s) − f(y(s), s))∥2ds

≤ Lip(f)∫
t

t0
∥x(s) − y(s)∥2ds

≤ Lip(f) ⋅ ∣t − t0∣ ⋅ d(x, y);

whence

d(Φ(x),Φ(y)) ≤ Λεd(x, y)

where Λε ∶= Lip(f)ε < 1 for ε small.
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For such small ε > 0, there is a unique global attractor x ∈X satisfy-
ing Φ(x) = x or:

x(t) ∶=x0 + ∫
t

t0
f(s, x(s))ds

Ô⇒ x(t0) = x0 &
dx

dt
(t) = f(t, x(t)). 2�

Newton’s method

Suppose that f ∶ R → R is C1. Newton’s method is an iterative
procedure to find x ∈ f−1{0}.
The procedure

Given u ∈ R, draw the tangent line L to the graph of f at (u, f(u))
and take v as the x-coordinate of the intersection of L with the x-axis,
i.e. {(v,0)} = L ∩ (R × {0}).

The equation of L is y−f(u)
x−u = f ′(u), whence v satisfies −f(u)

v−u = f ′(u),
or

v =∶ Tfu = u −
f(u)
f ′(u) .

Almost any T = Tf with

f(x) = e∫
1

x−Tx
dx.

Set u0 ∶= u, un+1 ∶= Tfun.

Theorem 1.3 (Raphson)
Suppose that r ≥ 1 and that

f is Cr and z ∈ R, f(z) = 0, f ′(z) = ⋅ ⋅ ⋅ = f (r−1)(z) = 0, f (r)(z) ≠ 0,
then ∃ ε > 0 such that un → z as n→∞ whenever ∣u0 − z∣ < ε.

Proof
WLOG, z = 0 & f (r)(0) > 0. Fix δ > 0 such that ∣e±2δ − 1∣ ≤ 1

2 and let
ε > 0 satisfy:

f(u)
ur = f(r)(0)

r! e±δ, f ′(u)
ur−1 = f(r)(0)

(r−1)! e
±δ ∀ ∣u∣ < ε.

For ∣u∣ < ε ∶ f(u)
f ′(u) =

u
r e

±2δ, whence

∣Tf(u)∣ = ∣u − u
r e

±2δ ∣ ≤ (1 − 1
r)∣u∣ +

u
r ∣e

±2δ − 1∣ ≤ (1 − 1
2r)∣u∣ ≤ ∣u∣ < ε

and
∣un∣ = ∣T nf (u)∣ < (1 − 1

2r)
n∣u∣→ 0.

�

Example.
If f(x) ∶= x2 − a, (a > 0), then Tfx = x

2 +
a
2x and that T nf (x) →√

a ∀ x > 0 and T nf (x)→ −
√
a ∀ x < 0 .
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Question for later.
How does T nf (z) behave for z ∈ C?

Example.
Let (X,T ) be a dynamical system with a global attractor a ∈X. Fix

d ≥ 2 and define Td ∶ Xd ∶= X ×Zd → Xd by Td(x, i) ∶= (Tx, i + 1) where
Zd ∶= Z/dZ. It follows that T id has no attractor for 1 ≤ i < d and that
(a, i) is a global attractor for T dd .

Exercise 1.0
1) No contraction of a compact metric space is a homeomorphism.

Exercise 1.1.
Let Xr ∶= {z ∈ C ∶ ∣z∣ ≤ r}, S2z ∶= z2, then S2 ∶ Xr → Xr ∀ r ≤ 1. Fix

d(x, y) ∶= ∣x − y∣.

(i) Show that (Xr, S2, d) is a contraction with respect to d ∀ r < 1
2 with

λ(S2, d) = 2r but not for 1
2 ≤ r ≤ 1.

(ii) For which r ∈ [1
2 ,1] can you find a metric ρ ∼ d so that (Xr, S2, ρ)

is a contraction?

Exercise 1.2.
Let the continuous map of a Polish space (X,T ) be nowhere-expanding

in the sense that d(Tx,Ty) < d(x, y) ∀ x, y ∈X.

(i) Show that (X,T ) has a global attractor if either
(a) X is compact; or
(b)☆ there is a complete metric d on X and ψ ∶ [0,∞)→ R continu-

ous, strictly increasing satisfying ψ(0) = 0 and

d(Tx,Ty) ≤ d(x, y) − ψ(d(x, y)) ∀ x, y ∈X.

(ii) Does every nowhere-expanding map (X,T ) of a Polish space have
a fixed point?

Some unstable dynamical properties

An “unstable property” should ensure that there are no attrac-
tors.

Minimality & transitivity.
A homeomorphism T ∶X →X of a metric space X is called:

● (topologically) transitive if some orbit is dense (i.e. ∃ x ∈X, {T nx ∶ n ∈ Z} =
X);

● minimal if every orbit is dense (i.e. {T nx ∶ n ∈ Z} =X ∀ x ∈X).
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Note that T minimal Ô⇒ T transitive Ô⇒ no power of T has an
attractor.

Rotations of T. Recall that T ∶= R/Z ≅ [0,1). For α ∈ T define
Rα ∶ T→ T by Rαx = x + α mod 1.

Proposition
If α ∉ Q, then Rα is minimal.

Proof Consider T ≅ [0,1) equipped with the metric d(x, y) ∶= min{∣x−
y∣, 1− ∣x− y∣}, then Rα is an isometry in the sense that d(Rαx,Rαy) =
d(x, y).

● It suffices to show that {nα mod 1}n≥1 = T
(as then {Rn

αx ∶ n ∈ Z} = x + {nα mod 1}n≥1 = T ∀ x ∈ T).

● To this end, we claim that ∀ ε > 0, ∃ ` ≥ 1, d({`α},0) < ε. To see
this, let p be a finite partition of T into sets of diameter < ε. Since
{kα} ≠ {k′α} for k ≠ k′, we have (using the pigeon-hole principle) that
∃ j ≤ k ≤ #p+1 and p ∈ p with {jα}, {kα} ∈ p, whence d({jα},{kα}) <
ε. If ` = k−j then (since Rα is an isometry), d({`α},0) < ε. This shows
that ∀ x ∈ T, ∃ n ∈ Z, d(x,{n`α}) < ε. �

An example

Let Ĉ ∶= C ∪ {∞} ≅ S2.

Let S2z ∶= z2 & S2(∞) =∞, then S2 ∶ Ĉ→ Ĉ.
Note that

Sn2 (x) ÐÐ→
n→∞

{
0 ∣x∣ < 1;

∞ ∣x∣ > 1.

Proposition 1.2
The dynamical system (S1, S2) is transitive where S1 ∶= {x ∈ C ∶ ∣x∣ =

1}.

Proof
Let Ω ∶= {0,1}N and define ψ ∶ Ω→ S1 by

ψ(ω) ∶= exp [2πi
∞
∑
n=1

ωn
2n

] .
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Note that for ω = (ω1, ω2, . . . ) ∈ Ω,

S2(ψ(ω)) = exp [2πi2
∞
∑
n=1

ωn
2n

]

= exp [2πi(ω1 +
∞
∑
n=1

ωn+1

2n
)]

= ψ(σω)

Where σ(ω) = (ω2, ω3, . . . ) aka the shift.
It follows that SK2 (ψ(ω)) = ψ(σKω).
Also, if ω, θ ∈ Ω and ωk = θk ∀ 1 ≤ k ≤ N , then

∣ψ(ω) − ψ(θ)∣ = ∣exp [2πi
∞
∑
n=1

ωn
2n

] − exp [2πi
∞
∑
n=1

θn
2n

]∣

= ∣exp [2πi
∞
∑

n=N+1

ωn − θn
2n

] − 1∣

≤
π

2N
.

We now use all this to prove the proposition.
We claim first that

∃ ω∗ ∈ Ω such that ∀ N ≥ 1, η1, . . . , ηN = 0,1;(R)

∃ κ ≥ 1 such that σκ(ω∗)j = ηj ∀ 1 ≤ j ≤ N.

To see this enumerate all the finite sequences of 0s and 1’s and con-
catenate them to obtain ω∗ ∈ Ω:

Ω∗ ∶=
∞
⋃
n=1

{0,1}n = {η(k) = (η
(k)
1 , . . . , η

(k)
νk ) ∶ k ∈ N} &(i.e.)

ω∗ ∶= (η(1), η(2), . . . );

then
σ∑1≤j≤k−1 νj(ω∗)` = η

(k)
` ∀ 1 ≤ ` ≤ νk

and ω∗ satisfies (R).
Next we claim that z = ψ(ω∗) is as advertised.
Let y ∈ S1, y = ψ(η) and fix ε > 0. We find κ ≥ 1 so that

∣Sκ2 (z) − y∣ < ε.

To this end, choose N ≥ 1 so that π
2N

< ε and find κ so that

σκ(ω)j = ηj ∀ 1 ≤ j ≤ N ;

then, using the above

∣Sκ2 (z) − y∣ = ∣Sκ2ψ(ω
∗) − ψ(η)∣ = ∣ψ(σκω∗) − ψ(η)∣ ≤

π

2N
< ε. 2�



10 ©Jon Aaronson 2006-2013

Exercise 1.3.

Show that Sκ2 is
● transitive ∀ κ ∈ N;
● not minimal &
● ☆ ∃ x ∈ S1 with {Sκn2 (x) ∶ n ≥ 1} = S1 ∀ κ ∈ N.
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Week # 2, 23/10/2013.

Exercise. There is a gap in the proof of Picard’s theorem. (i) Find
it. (ii) Fill it.

Newton’s method when f(x) > 0 ∀ x ∈ R?
Recall the example on p.6:
If g(x) ∶= x2 − 1, then Tgx = x

2 +
1

2x and that T ng (x) → 1 ∀ x > 0 and
T ng (x)→ −1 ∀ x < 0 .

We now check behaviour of T nf (z) for z ∈ C.
For x ∈ R:

1

i
Tg(ix) =

1

i
( ix2 + 1

2ix) =
x
2 −

1
2x = Tf(x)

where f(x) ∶= x2 + 1 ≥ 1.

Consider f(x) = x2 + 1, then Tf(x) =
1
2(x −

1
x).

Proposition 1.4

∃ x ∈ R such that {T nf x ∶ n ≥ 1} = R.

Proof sketch
We first show that ∃ a homeomorphism Φ ∶ R→ S1 ∖ {1}, so that

Tf(x) = Φ−1(Φ(x)2).

To see this, define Ψ ∶ Ĉ→ Ĉ by Ψ(z) ∶= z−i
z+i & Ψ(∞) = 1, then (!) Ψ is

a homeomorphism and

Ψ(1
2(z −

1
z)) = Ψ(z)2.

Moreover for x ∈ R,

Ψ(x) =
x − i

x + i
=
x2 − 1

x2 + 1
+

2xi

x2 + 1
∈ S1 ∖ {1}.

Thus Φ ∶= Ψ∣R is as required and Tf(x) = Φ−1(S2(Φ(x))) where S2(z) ∶=
z2 as before.

By proposition 1, ∃ z ∈ S1 so that {Sn2 z ∶ n ≥ 1} = S1. Evidently
Sn2 (z) ≠ 1 ∀ n ≥ 1 and so if x = Φ−1(z) ∈ R then T nf x = Φ−1({Sn2 z) ∀ n ≥ 1
and

{T nf x ∶ n ≥ 1} = Φ−1({Sn2 z ∶ n ≥ 1}) = R. 2�

Exercise 1.4.
For f(x) = 1 + x2, show that no power of Tf can have an attractor.



12 ©Jon Aaronson 2006-2013

Exercise 1.5. ☀

For p ∈ (0,1), N ∈ N, set f(x) = fp,N ∶= (1 + x2N)
1

2pN , then Tfx =
(1 − p)x − p

x2N−1 . Show that ∃ p ∈ (0,1), N ∈ N so that T 2
fp,N

has an
attractor.
Hint: Find x ∈ R so that ∣(T 2

)
′
(x)∣ < 1.

Exercise 1.6 (Open Problem).
Suppose that f ∶ R → R+ is smooth (e.g. Cr, r ≥ 2 or analytic),

and that log f is strictly convex and satisfies f(x) Ð→
∣x∣→∞

∞. Show that

∃ x ∈ R so that {T nf x ∶ n ≥ 1} = R.

Complex dynamics: Fatou and Julia sets.
For a rational map R ∶ Ĉ → Ĉ a point z ∈ Ĉ is called Fatou if ∃ an

open set U ∋ z on which {Rn ∶ n ≥ 1} is a normal family in the sense

that ∀ nk →∞ ∃ m` = nk` →∞ & φ ∶ U → Ĉ so that

sup
ω∈K

ρ(Rm`(ω), φ(ω))ÐÐ→
`→∞

0 ∀ K ⊂ U compact,

where ρ is (equivalent to) the spherical metric on Ĉ.
The Fatou set F (R) ∶= { Fatou points of R}. It is open and invari-

ant: (R−1F (R) = F (R). The Julia set of R is J(R) ∶= Ĉ ∖ F (R). It is
closed and invariant.

It follows from proposition 1.2 that J(S2) = S1 whence (!) for f(x) =
x2 − 1, J(Tf) = iR.

Exercise 1.7.
Show that for K ⊂ Ĉ ∖ {0,∞} compact,

S−n2 (K) ∶= {z ∈ Ĉ ∶ Sn2 (z) ∈K}
H(Ĉ)
ÐÐÐ→
n→∞

S1.

so is T n ∀ n ≥ 1.
Hint: S−1

2 (J) = v1(J) ∪ v2(J).

§2 Homeomorphisms of the circle.

One of the aims in dynamics is ”classification” of dynamical systems
up to ”conjugacy”. This section is devoted to the classification of
homeomorphisms of the circle up to conjugacy by homeomorphism as
done by Poincaré, Denjoy and Herman.

The additive circle is T ∶= R/Z. It is represented by the metric space
([0,1), d) where d(x, y) ∶= minn∈Z ∣x− y +n∣. The multiplicative circle is
S1 ∶= {z ∈ C ∶ ∣z∣ = 1} ≅ e2πiT.
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Lift of a continuous map of T.
Let T ∶ T → T. A map R ∶ R → R is called a lift of T if R(x) + Z =

T (x +Z).
If R is a lift of T , then so is R +N for any N ∶ R→ Z.

Lifting theorem for T
A continuous map of T has a continuous lift.

This is a special case of a more general proposition which we’ll prove
now. We’ll need other special cases later.

Covering maps & deck transformations. Let X, Y be metric
spaces.

A surjection π ∶ X → Y is called a covering map if it is a local
homeomorphism i.e.

● ∀ x ∈ X ∃ ε > 0 so that π ∶ B(x, ε) → π(B(x, ε)) is a homeomor-
phism.

Let π ∶ X → Y be a covering map. A homeomorphism γ ∶ X → X is
called a deck transformation of π if π ○ γ = π.

Let Γπ ∶= {deck transformations of π, then Γπ is a group under com-
position.

The covering map π ∶X → Y is called a regular if

π−1{y} = {γ(x) ∶ γ ∈ Γπ} ∀ x ∈ π−1{y}.

Example. Let X = R & Y = S1, then π ∶X → Y defined by π(x) = eix

is a regular covering map with Γπ = {γn ∶ n ∈ Z} where γn(x) ∶= x+2πn.

Lifting Theorem Suppose that X is a simply connected, separable
metric space, Y is a compact metric space and π ∶ X → Y is a regular
cover.

If f ∶ X → Y is uniformly continuous, then ∃ F ∶ X → X continuous
so that π ○ F ≡ f .

Proof of the Lifting Theorem

● ∃ ∆ > 0 so that for any ball B ⊂ Y of radius ∆, ∃ φB ∶ B → X
continuous with π ○ φB ≡ Id∣B.

Proof of ●
∃ an open covering {U1, U2, . . . , UN} of Y so that for each k ∃ φk ∶

Uk → X continuous so that π ○ φk = IdUk . It suffices to take ∆ = the
Lebesgue number of {U1, U2, . . . , UN} so that for any ball B ⊂ Y of
radius ∆,∃ 1 ≤ k ≤ N with B ⊂ Uk. V
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Path homotopy.
Let Z be a metric space. Two paths P,Q ∶ [0,1] → Z with the

same initial point a = P (0) = Q(0) and endpoint b = P (1) = Q(1) are
path homotopic if ∃ h ∶ [0,1] × [0,1] → Z continuous so that h(0, t) =
P (t) & h(1, t) = Q(t) ∀ t ∈ [0,1] (i.e. h is an homotopy) and in addition:
h(s,0) = a & h(s,1) = b ∀ s ∈ [0,1].

Such an h is called a path homotopy (from P to Q).

Lemma

(i) If P ∶ [0,1] → Y is a path and q ∈ X, π(q) = P (0), then ∃ a path
Q ∶ [0,1]→X so that Q(0) = q and π ○Q ≡ P .

(ii) If Q1, Q2 ∶ [0,1] → X are paths with π ○Q1 ≡ π ○Q2 and Q1(t) =
Q2(t) for some t ∈ [0,1], then Q1 ≡ Q2 .

(iii) If Q1, Q2 ∶ [0,1] → X are paths satisfying: Q1(0) = Q2(0) and
π ○Q1 is path homotopic in Y to π ○Q2, then Q1(1) = Q2(1) & Q1 is
path homotopic in X to Q2.

Proof of (i)

● ∃ 0 = t0 < t1 < t2 < ⋅ ⋅ ⋅ < tn = 1 so that P ([tk−1, tk+1]) ⊂ Bk ∶=
B(P (tk),∆) for 1 ≤ k ≤ n (where tn+1 ∶= 1). Define Q1 ∶ [0, t2] → X by
Q1 ∶= γ1 ○ φB1 ○ P where γ1 ∈ Γπ satisfies γ1(φB1(P (0))) = q.

Next, define

● Q2 ∶ [t1, t3] → X by Q2 ∶= γ2 ○ φB2 ○ P where γ2 ∈ Γπ satisfies
γ2(φB2(P (t2))) = Q1(t2);

● . . .
⋮

● Qk ∶ [tk−1, tk+1] → X by Qk ∶= γk ○ φBk ○ P where γk ∈ Γπ satisfies
γk(φBk(P (tk))) = Qk−1(tk) for k = 3, . . . , n

The required path is defined by

Q(x) ∶= Qk(x) for x ∈ [tk−1, tk+1] (1 ≤ k ≤ n). 2�

Proof of (ii)

Let S ∶= {t ∈ [0,1] ∶ Q1(t) = Q2(t)}, then by assumption, S ≠ ∅. By
continuity, S is closed in [0,1] and it suffices to show that S is open.
To this end, suppose that s ∈ S and set u ∶= Q1(s) = Q2(s), z = π(u).

By continuity ∃ ε > 0 so that Qi([s−ε, s+ε]) ⊂ B ∶= B(z,∆) (i = 1,2).
We can choose γ ∈ Γπ so that γ ○ φB(z) = u.

It follows by continuity that for t ∈ (s − ε, s + ε),

Q1(t) = γ ○ φB(π(Q1(t))) = γ ○ φB(π(Q2(t))) = Q2(t). 2�
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Proof of (iii)

Let h ∶ [0,1] × [0,1] → Y be a path homotopy, that is: a continuous
map satisfying

h(s, j) = Qi(j) & h(i − 1, t) = π(Qi(t)), (i = 1,2, j = 0,1, s, t ∈ [0,1]).

Fix 0 = t0 < t1 < ⋅ ⋅ ⋅ < tn = tn+1 = 1 so that

h([tk−1, tk+1] × [t`−1, t`+1]) ⊂ Bk,` ∶= B(h(tk, t`),∆) ∀ 1 ≤ k, ` ≤ n.

By (i) for s ∈ [0,1] ∃ a path Qs ∶ [0,1]→X so that

Qs(0) = Q1(s) & π(Qs(t)) = h(s, t) ∀ s, t ∈ [0,1].

We claim that H ∶ [0,1] × [0,1] → X defined by H(s, t) ∶= Qs(t) is
the required path homotopy.

To see that H is continuous, noting that π ○H ≡ h, choose γk,` ∈ Γπ
so that

H(s, t) = γk,` ○φBk,`(h(s, t)) ∀ s, t ∈ [tk−1, tk+1]× [t`−1, t`+1], 1 ≤ k, ` ≤ n.

This ensures continuity of H on each Rk,` = [tk−1, tk+1] × [t`−1, t`+1].
Global continuity follows also because

Rk,` ∩Rk′,`′ ≠ ∅ whenever ∣k − k′∣ & ∣` − `′∣ ≤ 1.

It remains to show that H(1, t) = Q2(t) ∀ t ∈ [0,1]. To see this we
note that H(1,0) = Q1(0) = Q2(0) and π ○H(1, ⋅) ≡ π ○Q2, which forces
H(1, t) = Q2(t) ∀ t ∈ [0,1] by (ii). V

Proof of the Lifting Theorem

For Z a metric space and z ∈ Z, let

p(Z, z) ∶= {P ∶ [0,1]→ Z ∶ a path, P (0) = z}.

Let α ∈X with π(α) = a ∈ Y .
By (i) & (ii) of the lemma, ∃ ! ψα ∶P(Y, a)→P(X,α) so that

π ○ ψα(P ) = P & ψα(P )(0) = α ∀ P ∈P(Y, a).

Evidently (!) ψα is continuous in the sense that ∀ ε > 0 ∃ δ > 0 so
that

sup
t∈[0,1]

dY (P (t), P ′(t)) < δ Ô⇒ sup
t∈[0,1]

dX(ψα(P )(t), ψα(P
′)(t)) < ε.

Now fix a, b ∈X satisfying π(b) = f(a) and define

Ψ ∶ p(X,a)→ p(X, b) by Ψ(P ) ∶= ψf(a)(f ○ P ).
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Using uniform continuity of f ∶ X → Y , it is not hard to show (!)
that Ψ is continuous in the sense that ∀ ε > 0 ∃ δ > 0 so that

sup
t∈[0,1]

dX(P (t), P ′(t)) < δ Ô⇒ sup
t∈[0,1]

dX(Ψ(P )(t),Ψ(P ′)(t)) < ε.

If P, P ′ ∈ p(X,a) are path homotopic, then so are f ○ P & f ○ P ′ and
by (iii), so are Ψ(P ) & Ψ(P ′). In particular Ψ(P )(1) = Ψ(P ′)(1).

Since X is simply connected, if P, P ′ ∈ p(X,a) & P (1) = P ′(1), they
are path homotopic. Thus ∃ F ∶X →X so that

Ψ(P )(1) = F (P (1)) ∀ P ∈ p(X,a).

To show that F is the advertised lifting, it remains to show its continu-
ity, which follows because if x, y ∈ X are close then ∃ Px, Py ∈ p(X,a)
close, with Px(1) = x, Py(1) = y. V

Exercise. Can you prove the lifting theorem for T without using the
general lifting theorem?

Orientation

The triple (x, y, z) ∈ T3 is in positive order if ∃ points x∗ ≤ y∗ ≤ z∗ ∈
R, z∗ − x∗ ≤ 1 such that x∗ + Z = x, y∗ + Z = y, z∗ + Z = z. Note that if
(x, y, z) is in positive order, then so is (y, z, x). The triple (x, y, z) ∈ T3

is in negative order if (z, y, x) is in positive order.
A map T ∶ T→ T is called

● orientation preserving at w ∈ T if ∃ ε > 0 so that (x, y, z) ∈ B(w, ε)3

in positive order Ô⇒ (Tx,Ty, Tz) in positive order and

● orientation reversing at w ∈ T if ∃ ε > 0 so that (x, y, z) ∈ B(w, ε)3

in positive order Ô⇒ (Tx,Ty, Tz) in negative order.
A map is called orientation preserving/reversing if it is orientation

preserving/reversing at every point.

Examples. (i) The maps Rα (α ∈ R) are orientation preserving, as is
x↦ qx mod 1 (q ∈ N).

(ii) The map x↦ −x is orientation reversing.

(iii) Concatenations of orientation preserving/reversing maps are also
orientation preserving/reversing according to the formulae

preserving ○ preserving = reversing ○ reversing = preserving

and

preserving ○ reversing = reversing ○ preserving = reversing.

(iv) The continuous map f ∶ T→ T defined by
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f(x) ∶= {
2x 0 ≤ x ≤ 1

2 ;

2(1 − x) 1
2 ≤ x ≤ 1

is orientation preserving on (0, 1
2), orientation reversing on (1

2 ,1) and
neither preserving nor reversing orientation at 1

2 .

Proposition
Let T ∶ T → T be a homeomorphism and let R ∶ R → R be its lifting,

then ∣R(x + 1) −R(x)∣ = 1 and either:

● R is strictly increasing and T is orientation preserving; or

● R is strictly decreasing and T is orientation reversing.

Proof Evidently ∃ N ∈ Z so that

R(x + 1) = R(x) +N ∀ x ∈ R.

● If N = 0, then ∃ 0 < u < v < 1 so that R(u) = R(v) whence
T (π(u)) = T (π(v)) and T is not 1-1 (as π(u) ≠ π(v))). 4

● If N = εν with ν ≥ 2 & ε = ±1, then by the intermediate value
theorem, ∃ θ ∈ (0,1) so that R(x + θ) = R(x) + ε, whence T (π(0)) =
T (π(θ)) and T is not 1-1 (as π(0) ≠ π(θ))). 4

Thus ε = ±1.
If ε = 1 then R is strictly increasing (else T is not 1-1) and T is

orientation preserving; and if ε = −1 then R is strictly decreasing and
T is orientation reversing. �V

Rotation number

Let T ∶ T→ T be an orientation preserving homeomorphism, and let
R ∶ R→ R be a continuous lift of T .

Proposition 2

1) ∃ ρ(R) such that Rn(x)
n → ρ(R) ∀ x ∈ R;

2) ∃ ρ(T ) ∈ T such that ρ(R) +Z = ρ(T ) for every continuous lift R of
T .

The rotation number of T is ρ(T ) ∈ T.

Proof
We claim first that ∀ n ≥ 1 ∃ kn ∈ R such that

Rn(x) − x ∈ [kn − 1, kn + 1] ∀ x ∈ R.
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To see this with kn = Rn(0), set F (x) ∶= Rn(x)−x; then F (x+1) = F (x)
and for 0 ≤ x ≤ 1,

F (x) − F (0) = Rn(x) − x −Rn(0) ∈ [−1,1 − x] ⊂ [−1,1].

Thus

Rmn(0) =
m−1

∑
k=0

Rn(Rkn(0)) −Rkn(0) ∈ [mkn −m,mkn +m]

and

∣
Rmn(0)

mn
−
kn
n

∣ ≤
1

n
.

Consequently,

∣
Rm(0)

m
−
Rn(0)

n
∣

≤ ∣
Rm(0)

m
−
km
m

∣ + ∣
km
m

−
Rmn(0)

mn
∣ + ∣

Rmn(0)

mn
−
kn
n

∣ + ∣
kn
n
−
Rn(0)

n
∣

≤
2

m
+

2

n
.

Thus ∃ limn→∞
Rn(0)
n =∶ ρ(R).

Evidently ∣R
n(x)
n − Rn(0)

n ∣ ≤ 1+∣x∣
n ∀ x ∈ R so Rn(x)

n → ρ(R) ∀ x ∈ R.
If R,S are continuous lifts of T , then S ≡ R + N (some N ∈ Z),

whence Sn ≡ Rn + nN (n ∈ N) and ρ(S) = ρ(R) +N . �
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Week # 3, 30/10/2013.

Exercises.
1) For q > 0, consider the map Tq ∶ T → T defined by Tq(x) ∶=

qx mod 1. Find the set

{x ∈ T ∶ Tq is orientation preserving at X}.

2) Let T ∶ T → T be an orientation preserving homeomorphism and
let R ∶ R→ R be a continuous lift of T . Show that for k ∈ Z, Rk is a con-
tinuous lift of T k and ρ(Rk) = kρ(R), whence ρ(T k) = kρ(T ) mod 1.

Proposition 3
Let T ∶ T → T be an orientation preserving homeomorphism, then

ρ(T ) ∈ Q/Z iff ∃ a periodic point for T in T.

Proof
Let R ∶ R→ R be a continuous lift of T .
Suppose first that T q(x +Z) = x +Z, then ∃ p ∈ Z such that Rq(x) =

x + p. Evidently, Raq(x) = x + ap (a ∈ Z) and

ρ(R) = lim
N→∞

RN(x)

N
= lim
a→∞

Raq(x)

aq
=
p

q
∈ Q.

Now suppose that ρ(R) = p
q ∈ Q, then ρ(Rq) = p ∈ Z. We claim that

∃ x ∈ T, T q(x) = x.
To prove this, it suffices to show that

ρ(S) ∈ Z Ô⇒ ∃ x ∈ R, S(x) − x ∈ Z(R)

where S = Rq.

Proof of (R)
The map z ↦ S(z) − z is periodic and uniformly continuous on R.
Thus, assuming S(x)−x ∉ Z ∀ x ∈ R, we have that ∃ p ∈ Z & ε ∈ (0, 1

2)
such that

p + ε ≤ S(z) − z ≤ p + 1 − ε ∀ z ∈ R.

Iterating,

SN(0)

N
=

1

N

N−1

∑
k=0

(S(Sk(0)) − Sk(0)) ∈ [p + ε, p + 1 − ε] ∀ N ≥ 1

contradicting ρ(S) ∈ Z. 4

Proposition 4
Suppose that ρ(T ) ∉ Q, then ∀ x ∈ R, m1,m2, n1, n2 ∈ Z,

Rn1(x) +m1 < R
n2(x) +m2 ⇐⇒ n1ρ(T ) +m1 < n2ρ(T ) +m2.
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Proof
¶1 For x, y ∈ R, m1,m2, n1, n2 ∈ Z,

Rn1(x) +m1 < R
n2(x) +m2 ⇐⇒ Rn1(y) +m1 < R

n2(y) +m2.

Else ∃ x, y ∈ R, m1,m2, n1, n2 ∈ Z with

Rn1(x) +m1 < R
n2(x) +m2 & Rn1(y) +m1 > R

n2(y) +m2.

Evidently n1 ≠ n2 (otherwise this is impossible) and so by continuity
∃ z ∈ R such that Rn1(z) +m1 = Rn2(z) +m2 whence if n2 > n1 and
w ∶= Rn1(z), then Rn2−n1(w) −w ∈ Z contradicting ρ(T ) ∉ Q.
¶2 Rn1(0) +m1 < Rn2(0) +m2 Ô⇒ n1ρ(T ) +m1 < n2ρ(T ) +m2.
Note first that

Rn1(0) +m1 < R
n2(0) +m2

⇐⇒ Rn1−n2(Rn2(0)) −Rn2(0) = Rn1(0) −Rn2(0) <m2 −m1

¶1
⇐⇒ Rn1−n2(x) − x <m2 −m1 ∀ x ∈ R

It follows that if Rn1(0) +m1 < Rn2(0) +m2, then

RN(n1−n2)(0) =
N−1

∑
k=0

(R(k+1)(n1−n2)(0) −Rk(n1−n2)(0))

=
N−1

∑
k=0

(Rn1−n2(Rk(n1−n2)(0)) −Rk(n1−n2)(0))

< N(m2 −m1)

whence

ρ(T ) ←
RN(n1−n2)(0)

N(n1 − n2)

(!)
<
m2 −m1

n1 − n2

.

¶3 n1ρ(T ) +m1 < n2ρ(T ) +m2 Ô⇒ Rn1(0) +m1 < Rn2(0) +m2 is
shown as in ¶2, but with the logic reversed. �

Exercises on rational rotation numbers.
Suppose that f ∶ T→ T is an orientation preserving homeomorphism

with ρ(f) = p
q ∈ Q with p, q relatively prime.

(i) For any periodic point x ∈ T there is an order preserving bijection
f j(x)↦ j

q defines an order preserving bijection between {f j(x)}q−1
j=0 and

{ jq}
q−1
j=0 .

(ii) If f has a unique periodic point z then fnq(x)ÐÐÐ→
∣n∣→∞

z ∀ z ∈ T.

(iii) If f has more than one periodic point, then for any nonperiodic
point x ∈ T, ∃ periodic points z− ≠ z+ so that fnq(x)ÐÐÐ→

±n→∞
z±.

(iv) Show that f is not topologically transitive.
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Proposition 5
Suppose that T ∶ T→ T is an orientation preserving homeomorphism

with ρ(T ) ∉ Q, then ∃ h ∶ T→ T continuous and orientation preserving,
with h ○ T = rρ(T ) ○ h.

If, in addition, T is topologically transitive then T ≅ rρ(T ), and T is
minimal.

Proof
Let T ∶ T → T be a continuous lift of T . Given u ∈ R, write Γ0(u) ∶=

{Rn(u) + m ∶ n,m ∈ Z} and Γ1 ∶= {nρ(R) + m ∶ n,m ∈ Z}. By
proposition 4, if π ∶ Γ0(u)→ Γ1 is defined by π(Rn(u)+m) ∶= nρ(R)+m,
then π is an order preserving bijection. Evidently π(x + 1) = π(x) +
1, π ○R = π + ρ(T ).

We need the
Claim

If a ≤ b, a, b ∈ Γ0(u) and (a, b) ∩ Γ0(u) = ∅, then

π(a−) ∶= sup
y∈Γ0(u), y<a

π(y) = inf
z∈Γ0(u), z<b

π(y) =∶ π(b+).

If the claim is false, then by irrationality of ρ(R) (denseness of Γ1),
∃ t ∈ Γ1 ∩ (π(a−), π(b+)). It follows that ∃ s ∈ Γ0(u), t = π(s), but this
is impossible since by order preservation of π, s ∈ Γ0(u) ∩ (a, b) = ∅.

The claim with a = b (where (a, b) = (a, a) = ∅) shows that ∃ ! π̃ ∶

Γ0(u)→ R continuous, strictly increasing, with π̃∣Γ0(u) ≡ π.

The claim with a < b, a, b ∈ Γ0(u) and (a, b) ∩ Γ0(u) = ∅ shows
that in this situation, π̃(a) = π̃(b), whence ∃ ! π̂ ∶ R → R, continuous,
non-decreasing such that π̂∣Γ0(u) ≡ π̃.

Evidently π̂(x + 1) = π̂(x) + 1 and π̂ ○ R = π̂ + ρ(R). The required
continuous h ∶ T→ T is defined by h(x +Z) ∶= π̂(x) +Z.

In case T is topologically transitive, ∃ u ∈ R with Γ0(u) = R and the
maps π̂ and h are homeomorphisms. �

Denjoy’s Examples
For any α ∉ Q ∃ T ∶ T → T a C1 orientation preserving homeomor-

phism with ρ(T ) = α and which is not minimal.

Construction sketch a bit different!

Choose λn > 0 (n ∈ Z) such that ∑n∈Z λn = 1 and λn+1
λn
→ 1 as ∣n∣→∞.

Set αn ∶= Rn
α(0) (n ∈ Z).

We claim first that
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¶1 ∃ a disjoint collection {In ∶ n ∈ Z} of open subintervals of (0,1)
such that ∣In∣ = λn (n ∈ Z) and for m1,m2, n1, n2 ∈ Z:

In1 + ⌊n1α⌋ +m1 < In2 + ⌊n2α⌋ +m2 ⇐⇒ n1α +m1 < n2α +m2.

To see this, define B ∶ (0,1)→ (0,1) by

B(x) ∶= ∑
n∈Z, αn≤x

λn

and let
In ∶= (B(αn−),B(αn)) =∶ (an, bn).

Evidently1, the collection {In ∶ n ∈ Z} is as advertised. V¶1

¶2 Next, ∀ n ∈ Z we construct a C∞ orientation preserving diffeomor-
phism fn ∶ In → In+1 such that f ′n∣∂In ≡ 1 and supIn ∣ log f ′n∣ → 0 as
∣n∣→∞. For such a diffeomorphism

fn(x) = fn(an) + ∫
x

an
gn(t)dt where gn = f

′
n,(Ý)

and we construct gn ∶ In → R+ C∞ so that

∫
In
gn(t)dt = λn+1, gn(an) = gn(bn) = 1 & sup

In

∣ log gn∣ÐÐÐ→
∣n∣→∞

0(a)

and define fn ∶ In → In+1 by (Ý).
Evidently2

gn(x) ∶= 1 +
6(λn+1 − λn)e

λ3
n

⋅ (bn − x)(x − an)

satisfies (a).

¶3 Define g ∶ U ∶= ⋃n∈Z In → R+ by g∣In ≡ gn and define f ∶ T→ T by

f(x) ∶= a1 + ∫
x

0
g(t)dt mod 1.

Since a0 = 0, we have that f ∣In ≡ fn.(!)
Moreover, f is differentiable on U ∶= ⋃n∈Z In with f ′ = g.
Extend the definition of g to [0,1] by defining g∣[0,1]∖E ≡ 1. It follows

from (a) that g ∶ [0,1] → R+ is continuous, whence (!) f ∶ T → T is a
C1 diffeomorphism, evidently orientation preserving.

To calculate the rotation number of f , let F ∶ R → R be a lift of f .
If z ∈ R projects onto w ∈ I0, then by ¶1,

F n1(z) +m1 > F
n2(z) +m2 ⇔ n1α +m1 > n2α +m2

and it follows that ρ(F ) = α. V

1i.e.: this proof is an exercise
2see the previous footnote
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Exercises.
1) Prove (and/or correct) lemmas and (!)’s.

2) Let H denote the lifts of orientation preserving homeomorphisms
of T
equipped with the metric d(S,T ) ∶= supx∈R(∣S(x) − T (x)∣ + ∣S−1(x) −
T −1(x)∣). Show that the rotation number ρ ∶ H → R is continuous.

3) Let T ∶ T→ T be an orientation preserving homeomorphism with-
out periodic points. Show that:

a) ∃ K ⊂ T closed and T -invariant such that

ω(x) ∶= ⋂
n≥1

{T kx ∶ k ≥ n} =K ∀ x ∈ T.

(Hint: Prove that ω(y) ⊂ ω(x) ∀ x, y ∈ T.)
b) Either K = T, or K is homeomorphic to the (classical) Cantor set.

Remark
In the sequel, we’ll prove Denjoy’s theorem:
If T ∶ T→ T is an absolutely continuous orientation preserving home-

omorphism, ρ(T ) ∉ Q and ⋁T logDT <∞, then T is topologically tran-
sitive.

Orientation preserving homeomorphisms of T as interval maps.
Let T ∶ T → T is an orientation preserving homeomorphism with
ρ(T ) ∉ Q, and consider the induced mapping f ∶ I ∶= [0,1] → I. There
is a point c = cf ∈ (0,1) such that f is continuous and strictly increas-
ing on [0, c] and [c,1]. Also f(0) = f(1) and f(c−) = 1, f(c+) = 0.
Moreover (!), f has no periodic point. Denote the collection of such
maps by S([0,1]). For another compact interval J ⊂ R, denote by
S(J) = h−1S([0,1])h where h ∶ J → [0,1] is the increasing affine home-
omorphism between the intervals.

The ”1st return time renormalisation”. Let f ∈ S(J) be ape-
riodic. Let {J ′, J ′′} be the partition into open intervals defined by
(J ∖ {cf} = J ′ ∪ J ′′.

Either f(J ′) ⊂ J ′′, or f(J ′′) ⊂ J ′. Order the partition so that
f(J ′) ⊂ J ′′, define n(f) ∶= min{j ≥ 1 ∶ J ′ ∩ f j+1J ′ ≠ ∅} and set

J(f) ∶= J ′ ∪ f n(f)+1J .
Define the return time function ϕ = ϕJ(f) → N by ϕ(x) ∶= min{n ≥ 1 ∶

fnx ∈ J(f)} ≤ ∞ and the return time- or induced map fJ(f) = R(f) ∶
J(f)→ J(f) by fJ(f)(x) ∶= fϕ(x)(x).



24 ©Jon Aaronson 2006-2013

Renormalisation Proposition 6 fJ(f) ∈ S(J(f)) and

ϕ(x) = {
1 x ∈ J ′′ ∩ J(f),

n(f) + 1 x ∈ J ′.

Proof Examine the cases J ′ = [a, c), J ′ = (c, b] in detail. �



Dynamical Systems 25

Week # 4, 6/11/2013.

Renormalization of irrational rotations

Fix 0 < α < 1
2 , α ∉ Q and let fα ∈ S([0,1]) represent Rα, then

fα(x) = {
x + α x ∈ [0,1 − α),

x + α − 1 x ∈ [1 − α,1).

Here c = 1 − α, J ′ = (1 − α,1) and J” = (0,1 − α). We have that

f iα(J
′) = ((i − 1)α, iα) 1 ≤ i ≤ 1

α ,

whence
n(fα) = max{j ≥ 1 ∶ jα ≤ 1 − α} = [ 1

α] − 1.

It follows that

J(fα) ∶= J ′ ∪ f
n(fα)+1
α (J ′) = [1−α,1]∪[n(fα)α, (n(fα)+1)α] = [([ 1

α]−1)α,1],

that ∣J(fα)∣ = α + α{
1
α}, and that

(fα)J(fα)∣J ′∩J(fα) = fα∣
n(fα)
J” ○ fα∣J ′ , (fα)J(fα)∣J”∩J(fα) = fα

whence (J ′ ∩ J(fα) = [1 − α,1] and J” ∩ J(fα) = [([ 1
α] − 1)α,1 − α])

(fα)J(fα)(x) = {
x + 1 − [ 1

α]α x ∈ [([ 1
α] − 1)α,1 − α],

x + [ 1
α]α − 1x ∈ [1 − α,1].

Proposition 7
1) If α ∈ (0, 1

2) ∖Q, then

n(fα) = [ 1
α] − 1 & (fα)J(fα) ≅ f 1

1+G(α)
where G(α) ∶= { 1

α}.

2) If α ∈ (1
2 ,1) ∖Q, then

n(fα) = [ 1
1−α] − 1 & (fα)J(fα) ≅ f G(1−α)

1+G(1−α)

.

Proof In exercises (below).

Denjoy’s theorem

Omega limit set.
Let (X,T ) be a topological dynamical system. The omega limit set

of T at x ∈X is

ωT (x) ∶= {y ∈X, ∃ nk →∞ such that T nkx→ y}.

For T a homoeomorphism, the alpha limit set of T at x ∈X is

αT (x) ∶= ωT−1(x).
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If X is a compact metric space, then (!) ωT (x) is a non-empty closed
set ∀ x ∈X.

Proposition: Uniqueness of ω limit set for circle maps
Suppose that T ∶ T→ T is an orientation preserving homeomorphism

with ρ(T ) = α ∉ Q, then
(i) there is a perfect subset of T so that ωT (x) = E ∀ x ∈ T; &
(ii) either E = T or E is nowhere dense.

Proof

¶1 For x ∈ T, m ≠ n ∈ Z, let I ⊂ T be a closed interval with ∂I =
{Tmx,T nx} (there are 2 such), then

⋃
`≥0

T −`I = T.

Proof of ¶1 Let

Ik ∶= T
−k(m−n)I

!
= [T −m(k−1)−nkx,T −mk−n(k−1)x] =∶ [ak, bk].

Since ak+1 = bk, ⋃
N
k=0 Ik is an interval ∀ N ≥ 1 and either ⋃Nk=0 Ik ↑ T;

or ∃ limk→∞ T −mk−n(k−1)x =∶ z ∈ T.
In the second case, by continuity of T , T −k(m−n)z = z contradicting

irrationality of ρ(T ). V¶1

¶2 ωT (y) = ωT (x) ∀ x, y ∈ T.

Proof of ¶2 It suffices to show that ωT (y) ⊂ ωT (x). Let z ∈ ωT (y),
then ∃ `n → ∞ with T `n(x) → z. By ¶1, for each n ≥ 1, ∃ kn ≥ 1 so
that T kn(x) ∈ [T `ny, T `n+1y]. It follows (!) that T kn(x) → z whence
z ∈ ωT (x). V¶2

¶3 Either E ∶= ωT (0) = T or E is nowhere dense.

Proof of ¶3 The set E ∶= ωT (0) is a closed T -invariant subset of T
and, by ¶2, T is minimal on E. ∂E is a closed T -invariant subset of
E. By minimality of (E,T ), either ∂E = ∅ in which case E = T (being
both open and closed), or ∂E = E in which case E is nowhere dense.
V¶3

To see that E is perfect, let z ∈ E, then ∃ nk →∞ so that T nkz → z.
The points {T nkz ∶ k ≥ 1} are distinct as otherwise there would be a
period for T contradicting ρ(T ) ∉ Q. Thus z ∈ E′. �

Denjoy’s theorem
If T ∶ T→ T is an absolutely continuous orientation preserving home-

omorphism, ρ(T ) ∉ Q and ⋁T logDT <∞, then T is m.
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The proof is in a series of steps:

¶1 (Rokhlin interval tower I) Let T ∶ T → T is an orientation
preserving homeomorphism with ρ(T ) = α ∉ Q, then ∃ qn ↑ ∞ so that
∀ x ∈ T, the intervals {(T k(x), T k−qn(x)) ∶ 0 ≤ k ≤ qn} are disjoint.

Proof of ¶1 By minimality of Rα, ∃ qn →∞ so that

d(Rqn
α (0),0) < d(Rk

α(0),0) ∀ ∣k∣ < qn.

It follows that the intervals {(Rk
α(0),R

k−qn
α (0)) ∶ 0 ≤ k ≤ qn} are

disjoint.
By proposition 4 the intervals {(T k(x), T k−qn(x)) ∶ 0 ≤ k ≤ qn} are

disjoint ∀ x ∈ T. V

¶2 Suppose that J ⊂ T is an interval & {T jJ ∶ 0 ≤ j ≤ qn} are disjoint,
then

∣ logT qn′(x) − logT qn′(y)∣ ≤⋁ logT ′ ∀ x, y ∈ J.

Proof of ¶2 Since (T k(x), T k(y)) ⊂ T kJ , we have

⋁ logT ′ ≥
qn

∑
j=0

∣ logT ′(T qn(x)) − logT ′(T qn(y))∣

≥ ∣
qn

∑
j=0

(logT ′(T qn(x)) − logT ′(T qn(y)))∣

= ∣ logT qn′(x) − logT qn′(y)∣. 2�¶

¶3 For qn as in proposition 8,

T qn′(x)T −qn′(x) ≥ e−⋁ logT ′ ∀ x ∈ T.

Proof of ¶3 Fix x ∈ T.
By ¶1, the assumptions for ¶2 hold for qn as in ¶1, with with J =

[T −qnx,x] for x & y = T −qnx.
Thus, using ¶2:

∣ log(T qn′(x)T −qn′(x))∣ = ∣ log(T qn′(x) + logT −qn′(x))∣

= ∣ log(T qn′(x) − logT qn′(T −qn(x)x))∣

≤⋁ logT ′

and T qn′(x)T −qn′(x) ≥ e−⋁ logT ′ . V¶3
To finish, if Denjoy’s theorem fails, then T is not minimal and ∃ x ∈ T

with {T nx ∶ n ∈ Z} = K ⊊ T. Let U ∶= T ∖K, then TU = U is open.
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Let I ⊂ U be a maximal interval, then so is T nI ∀ n ∈ Z. Irrationality
of ρ(T ) means that the T nI are disjoint (else the endpoints would be
periodic). Thus for qn →∞ as in ¶1,

1 ≥
N

∑
n=1

(∣T qnI ∣ + ∣T −qnI ∣)

=
N

∑
n=1
∫
I
(T qn′(x) + T −qn′(x))dx

≥
N

∑
n=1
∫
I

√
T qn′(x)T −qn′(x)dx

≥ N ∣I ∣ exp[−
1

2
⋁ logT ′]

ÐÐÐ→
N→∞

∞. 4

�

Denjoy-Koksma Inequality

Interval tower lemma
For each α ∉ Q, ∃ qn < qn+1 ↑∞ (aka the principal denominators

of α) so that whenever T ∶ T → T is an orientation preserving homeo-
morphism with ρ(T ) = α ∉ Q, we have

1 ≤
qn+1−1

∑
j=0

1Jn(x) ○ T
j(x) ≤ 2 ∀ x ∈ T

where Jn ∶= [T −qn(x), T qn(x)].

Proof See exercises.

Corollary
Suppose that T ∶ T→ T is an orientation preserving homeomorphism

with ρ(T ) = α ∉ Q, then ∀ n ≥ 1, x, y ∈ T, ∃ a permutation k = kx,y ∶

{0,1 . . . , qn − 1}→ {0,1 . . . , qn − 1} such that ∑
qn−1
j=0 1(T j(x),Tk(j)(y)) ≤ 2.

Denjoy-Koksma Inequality
Suppose that α ∉ Q, then for F ∶ T→ R integrable with ∫TFdm = 0,

∣
qn−1

∑
k=0

F (Rk
αx)∣ ≤ 2⋁F ∀ x ∈ T, n ≥ 1.
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Proof
Setting Fn ∶= ∑

n−1
k=0 F ○Rk

α, we see using the corollary that for x, y ∈
T, n ≥ 1:

∣Fqn(x) − Fqn(y)∣ ≤
qn−1

∑
k=0

∣F (Rj
α(x) − F (R

kx,y(j)
α (y))∣ ≤ 2⋁F.

To finish

∣Fqn(x)∣ = ∣Fqn(x) − ∫
T
Fqn(y)dy∣

≤ ∫
T
∣Fqn(x) − Fqn(y)∣dy

≤ 2⋁F.

�

Ergodicity

Suppose that T ∶ T → T is an absolutely continuous, orientation
preserving homeomorphism, then T is non-singular with respect to
Lebesgue measure m in the sense that for

A ∈ B, m(T −1A) = 0 ⇐⇒ m(A) = 0.

The measure theoretic analogue of transitivity is ergodicity:

● T is ergodic if

A ∈ B, T −1A = A Ô⇒ m(A) = 0 or m(T ∖A) = 0.

Theorem (Herman)
If T ∶ T → T is an absolutely continuous, orientation preserving

homeomorphism with ⋁ logT ′ <∞ and ρ(T ) = α ∉ Q, then T is ergodic
w.r.t. m.

Proof
Let A ∈ B(T), TA = A with m(A) > 0. Let x ∈ T be a density point

of A, and set for n ≥ 1, Jn ∶= (T −qn(x), T qn(x)).
By the interval tower lemma,

1 ≤
qn+1−1

∑
j=0

1Jn ○ T
j ≤ 2.

Consequently, for F ∶ T→ R,

∣F`(y) − F`(z)∣ ≤ 2⋁F ∀ n ≥ 1, y, z ∈ Jn, 0 ≤ ` ≤ qn+1 − 1
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where F` ∶= ∑
`−1
j=0F ○ T j. In particular,

T ` ′(y)

T ` ′(z)
≤ E ∶= e2⋁ logT ′ ∀ n ≥ 1, y, z ∈ Jn, 0 ≤ ` ≤ qn+1 − 1

whence fixing y0 ∈ Jn:

m(T ∖A) ≤
qn+1−1

∑
j=0

m(T j(Jn) ∖A)

=
qn+1−1

∑
j=0

m(T j(Jn ∖A))

=
qn+1−1

∑
j=0

∫
Jn∖A

T j′(y)dy

≤ Em(Jn ∖A)
qn+1−1

∑
j=0

T j′(y0)

≤ E2m(Jn∖A)
m(Jn)

qn+1−1

∑
j=0

m(T jJn)

≤ 2E2m(Jn∖A)
m(Jn) → 0.

�

Topological Recurrence

Suppose that (X,T ) is a continuous map of a Polish space.

● An open set U ⊂ X is a wandering neighborhood if U ∩ T −nU =
∅ ∀ n ∈ N. Let W denote the collection of wandering neighborhoods.

● A point is called wandering if it belongs to a wandering neighbor-
hood. Let W denote the set of wandering points, then W is open and
T -invariant. The collection of nonwandering points is NW ∶=X∖W (which
is closed and T -invariant).

Exercise 1.7. Show that

(i) if T ∶X →X is continuous and X is compact, then NW ≠ ∅.
Hint If Tnkx→ z, then z ∉ NW.

(ii) ∃ (X,T ), a homeomorphism of a Polish space with NW = ∅.

Proposition 1.5
If (X,T ) is a homeomorphism of a Polish space, then ∃ a wandering

neighborhood U so that W∆(⊎n∈Z T nU) is meagre.
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Proof By separability ∃ wandering neighborhoods Un (n ≥ 1) so that
W = ⋃∞

n=1Un.

● Denote Â ∶= ⋃n∈Z T nA (for A ⊂X) and define sets Vn (n ≥ 1) by

V1 = U1, Vn+1 ∶= Vn ∪ (Un+1 ∖ V̂n).

Evidently, each Vk is open and Vk ⊂ Vk+1.

● We claim that the Vk are wandering neighborhoods.
To see this by induction, assume that Vk is a wandering neighborhood

and let n ≠ 0, then

Vk+1 ∩ T
nVk+1 = A ∪B ∪C ∪D

where

A = Vk ∩ T
nVk = ∅, B = Vk ∩ T

n(Uk+1 ∖ V̂k) = ∅,

C = (Uk+1 ∖ V̂k) ∩ T
nVk = ∅, D = (Uk+1 ∖ V̂k) ∩ T

n(Uk+1 ∖ V̂k) = ∅.

It follows that U ∶= ⋃n≥1 Vk is a wandering neighborhood, and that
Û∆W ⊂ ⋃k≥1 ∂V̂k which is meagre. �

Recurrence.
The continuous T ∶ X → X is called regionally recurrent if W = ∅, ie

if ∀ U open, nonempty ∃ n ≥ 1, U ∩ T −nU ≠ ∅.

A recurrent point for T is a point x ∈X so that ∃ nk →∞, T nkx→ x.
Let R =RT ∶= {recurrent points for T}.

Proposition 1.6
Suppose that T ∶X →X is continuous, regionally recurrent and X is

Polish space, then R is residual3 in X.

Proof Next time.

Exercises: Interval tower lemma

1. Continued fractions and Denominators. Define the denomi-
nators of α ∈ R ∖Q by

Dα ∶= {q ∈ N ∶ ∥qα∥ < 1
q}

where ∥x∥ ∶= minn∈Z ∣x + n∣ for x ∈ R.

3Residual set = שמנה! קבוצה = contains a dense Gδ
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It is not hard to show that #Dα =∞ ∀ α ∈ R ∖Q. Indeed4 consider
the Farey sequences FQ ∶= {pq ∶ 0 ≤ p < q ≤ Q, (p, q) = 1}. If p

q and
p′

q′ are adjacent in some FQ then ∣pq −
p′

q′ ∣ =
1
qq′ , and the next element to

come between them is p+p′
q+q′ . Thus ∀ α ∈ (0,1) ∖Q, ∃ infinitely many

p
q ∈ (0,1) such that ∣α − p

q ∣ <
1
q2 , i.e. ∥qα∥ < 1

q , whence #Dα =∞.

The Gauss map. G ∶ (0,1] → [0,1] is defined by G(x) ∶= { 1
x}. Note

that x = 1
a(x)+G(x) where a(x) ∶= [ 1

x].

If p
q ∈ (0,1) ∩ Q, then (!) ∃ n ≥ 1 such that Gn(pq ) = 0. Setting

rk ∶= Gk(pq ) and ak ∶= a(rk−1), we have rk−1 =
1

ak+rk , whence

p
q =

1
a1+r1 =

1

a1+
1

a2+r2
= ⋅ ⋅ ⋅ = 1

a1+ 1

a2+
1

⋱+

1
an

.

If α ∈ (0,1) ∖Q then rk ∶= Gk(α) ≠ 0 ∀ k ≥ 1 and

α = 1
a1+ 1

a2+
1

⋱+

1
an+rn

∀ n ≥ 1

where an ∶= a(rn−1).

Exercise 1.
1) Suppose that α ∈ (0,1) ∖Q and let fα ∶ [0,1] → [0,1] be defined

by

fα(x) ∶= {
x + α 0 ≤ x ≤ 1 − α,

x + α − 1 x ≥ 1 − α.

a) Suppose that α ∈ (0, 1
2) ∖ Q and let h ∶ [0,1] → J(fα) be the

increasing affine homeomorphism. Prove that

h−1 ○ (fα)J(fα) ○ h = f 1
1+G(α)

where G(α) ∶= { 1
α}.

b) Show that if α ∈ (1
2 ,1) ∖ Q, then n(fα) = [ 1

1−α] − 1 and that
(fα)J(fα) ≅ f G(1−α)

1+G(1−α)

.

2) For n ≥ 1, define fn ∶ Rn
+ → R+ by

fn(x1, . . . , xn) ∶=
1

x1+ 1

x2+
1

⋱+

1
xn

.

Show that fn ↑ as x2k ↑ and fn ↓ as x2k+1 ↑.

4as in Hardy, G. H.; Wright, E. M. An introduction to the theory of numbers.
Fifth edition. The Clarendon Press, Oxford University Press, New York, 1979.
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3) Suppose that an ∈ N (n ∈ N)and set

q0 = 1, q1 = a1, qn+1 = an+1qn + qn−1;

p0 = 0, p1 = 1, pn+1 = an+1pn + pn−1.

Show that pn−1qn − pnqn−1 = (−1)n, fn(a1, . . . , an) =
pn
qn

, whence

fn(a1, . . . , an + 1) − fn(a1, . . . , an) =
(−1)n

qn(qn+qn−1) ,

and

fn+1(a1, . . . , an, j) − fn(a1, . . . , an) =
(−1)n

qn(jqn+qn−1) (j ≥ 1).

4) Now suppose that α ∈ (0,1) ∖ Q, set rk ∶= Gk(α) ≠ 0, ak ∶=
a(rk−1) (k ≥ 1). Show that

p2n
q2n

< α < p2n+1
q2n+1

and
pn
qn
− pn+1
qn+1

= (−1)n+1
qnqn+1

.

5) Show that {jqn + qn−1 ∶ n ≥ 1, 1 ≤ j ≤ an+1} ⊂Dα.
6) The regular continued fraction expansion of α ∈ (0,1)∖Q is given

by
α = 1

a1+ 1

a2+
1

a3+
1
⋱

∶= lim
n→∞

fn(a1, a2, . . . , an)

where an = a(Gn−1α) (the partial quotients of α). Show that

(a1, a2, . . . )↦
1

a1+ 1

a2+
1

a3+
1
⋱

is a homeomorphism NN↔ (0,1) ∖Q.



34 ©Jon Aaronson 2006-2013

2. Renormalization.

Translations. Given a compact interval J = [a, b] ⊂ R consider T (J) ∶=
{f ∈ S([a, b]) ∶ ∃ f ′ ≡ 1 on J∖{cf}}. Evidently ∀ c ∈ (a, b), ∃ ! f ∈ T (J)
with cf = c, namely

f(x) = {
x + b − c x ∈ (a, c),

a − c + x x ∈ (c, b).

We’ll write f = (a, c, b). To exercise this notation, note that rotation
by α ∈ (0,1) in T is represented by fα = (0,1−α,1), and that (a, c, b) ≅
(0, c−ab−a ,1). Thus (a, c, b) has no periods iff c−a

b−a ∉ Q.
If f ∈ T (J), then fJ(f) ∈ T (J(f)). If f = (a, c, b) set fJ(f) = (a′, c′, b′).

It follows from previous propositions and exercises (!) that

(a′, c′, b′) = {
(a + [ c−ab−c ](b − c), c, b) c > a+b

2 ,

(a, c, b − [ b−cc−a](c − a)) c < a+b
2 ;

and

ϕ(a,c,b) = {
1(a′,c′) + ([ c−ab−c ] + 1)1(c′,b′) = 1(a′,c′) + (n(f) + 1)1(c′,b′) c > a+b

2 ,

([ b−cc−a] + 1)1(a′,c′) + 1(c′,b′) = (n(f) + 1)1(a′,c′) + 1(c′,b′) c < a+b
2

where fJ(f)(x) = f
ϕ
(a,c,b)(x)(x). Also if c−a

b−a ∉ Q, then c′−a′
b′−a′ ∉ Q, (a′, c′, b′)

has no periods and

c < a+b
2 ⇐⇒ c′ > a′+b′

2 .

Renormalisation and the tower lemma.
Fix α = 1

a1+ 1

a2+
1
⋱

∈ (0,1) ∖Q and define J0 ∶= [0,1] and φ0 ∶= fα = f =

(0,1 − α,1) ∈ T (J0). Set

J1 = {
J(φ0) α < 1

2 ,

J0 α > 1
2

,

φ1 ∶= ((a1 − 1)α,1 − α,1) = (φ0)J1 = {
(φ0)J(φ0) α < 1

2 ,

φ0 α > 1
2

and for n ≥ 1, set φn+1 ∶= (φn)J(φn). By the above, φn has no periods
∀ n ≥ 1 and the process may be continued. Set Jn ∶= J(φn).

Evidently

J ′n+1 = Jn+1 ∩ J
′′
n , & J ′′n+1 = Jn+1 ∩ J

′
n = J

′
n.

Thus φn ∶ J ′n → J ′′n and

φn∣J ′′n = (φn−1∣J ′′n−1)
n(φn−1) ○ (φn−1∣J ′n−1), & φn∣J ′n = φn−1∣J ′′n−1 .
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Now define Q0 = 0, Q1 = 1 if α > 1
2 and Q1 ∶= n(fα) + 1 if α > 1

2

(equivalently, Q1 = a1 ∶= [ 1
α]). Then define Qn+1 ∶= n(φn)Qn +Qn−1 for

n ≥ 1.
By induction,

φn∣J ′n = f
Qn−1 , & φn∣J ′′n = f

n(φn−1)Qn−1+Qn−2 = fQn .

It follows that (!)

J ′n = (c, fQn(c)), J ′′n = (c, fQn−1(c))

and

{0 ≤ j ≤ Qn+1 ∶ f
j(c) ∈ Jn} = {Qn−1 + iQn ∶ 0 ≤ j ≤ an+1}.

Tower lemma 0
Up to boundary overlap,

Qn−1−1

⊍
i=0

f i(J ′n) ⊍
Qn−1

⊍
i=0

f i(J ′′n ) = [0,1].

Sketch proof To see disjointness, fQn−1J ′n ∩ f
QnJ ′′n = fJn(∅) = ∅

whence⊍
Qn−1−1
i=0 f i(J ′n)∩⊍

Qn−1
i=0 f i(J ′′n ) = ∅, else ∃ x ∈ f i(J ′n)∩f

j(J ′′n ) (0 ≤
i < Qn−1, 0 ≤ j < Qn whence fQn−1−i(x) ∈ fQn−1(J ′n) ∩ f

Qn(J ′′n ).
To see that the tower covers, fix x ∈ J0 and let κ = κn ∶= min{k ≥ 0 ∶

f−k(x) ∈ Jn. If f−κ(x) ∈ J ′n, then k < Qn−1 since ϕJn = Qn−1 on J ′n. If
not then f−κ(x) ∈ J ′′n , then k < Qn since ϕJn = Qn on J ′′n . �

Exercise Lemma 1

φn ≅ fα(n) ∈ T ([0,1]) where α(n) =

⎧⎪⎪
⎨
⎪⎪⎩

1
1+Gn(α) n odd,
Gn(α)

1+Gn(α) n even;

and
n(φn) = [ 1

Gn(α)] = an+1 ∀ n ≥ 1,

whence Qn = qn ∀ n ≥ 1.

Fix α ∈ (0,1) ∖Q and define for n ≥ 1 the collections of intervals:

Tn ∶= {Rj
α[0,{q2nα}) ∶ 0 ≤ j < q2n+1} ∪ {Rk

α[{q2n+1α},1) ∶ 0 ≤ k < q2n}.

Tower lemma 1
For n ≥ 1, Tn is a disjoint collection and that ⋃J∈Tn J = T.

Sketch proof Follows from tower lemma 0 via the exercise lemma
(which proves the statement for 1 − α +Tn). �
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Tower lemma 2
Suppose that T ∶ T→ T is an orientation preserving homeomorphism

with ρ(T ) = α ∉ Q. Fix x ∈ T and show that ∀ n ≥ 1,

Pn ∶= {T j[x,T q2n(x)) ∶ 0 ≤ j < q2n+1} ∪ {T k[T q2n+1(x), x) ∶ 0 ≤ k < q2n}

is a disjoint collection and that ⋃J∈Pn J = T.

Sketch proof The truth of the nth statement depends only on the
order of {T j(x)}q2n+1j=0 in T. By proposition 4, this is the same as the

order of {Rj
α(0)}

q2n+1
j=0 in T. The lemma therefore follows from tower

lemma 1. �

Interval Tower lemma Suppose that T ∶ T → T is an orientation
preserving homeomorphism with ρ(T ) = α ∉ Q and let n ≥ 1, x ∈ T,
then
● {T j(x,T qn−1(x)) ∶ 0 ≤ j ≤ qn − 1} are disjoint;
● ∑

qn−1
j=0 1T j(T−qn−1(x),T qn−1(x)) = 1,2.
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Week # 5, 13/11/2013.

Proposition 1.6
Suppose that T ∶X →X is continuous, regionally recurrent and X is

Polish space, then R is residual5 in X.

Proof For k ≥ 1, let Uk be a countable open cover of X by open balls
of radius 1

k , and let Rk ∶= ⋃U∈Uk U ∩⋃∞
n=1 T

−nU . Evidently each Rk is
open.

● We claim that Rk =X ∀ k ≥ 1.
To see this, let x ∈ X, ε > 0. ∃ x ∈ U ∈ Uk and ∃ 0 < δ ≤ ε so

that Bo(x, δ) ⊂ U . Since T is regionally recurrent, ∅ ≠ Bo(x, δ) ∩

⋃∞
n=1 T

−nBo(x, δ) ⊂ Bo(x, δ) ∩Rk. Thus Rk =X. �

● By Baire’s theorem, ⋂k≥1 Rk is dense, whence residual in X.

● To finish, we claim that R = ⋂k≥1 Rk.
Evidently R ⊂ ⋂k≥1 Rk. To see the reverse inclusion, suppose x ∈

⋂k≥1 Rk, then ∀ k ≥ 1, ∃ nk ≥ 1, Uk ∈ Uk with x,T nkx ∈ Uk whence
d(x,T nkx) ≤ 1

k → 0 and x ∈R. �

Exercise 1.8.

(i) Suppose that T ∶ X → X is a homeomorphism of a perfect Polish
space6. Show that if (X,T ) has an attractor, then it has a wandering
neighborhood.
Hint: Suppose that (a) W = ∅; and (b) U ⊂ X is open and Tnx → a ∀ x ∈ U , whence

∃ x ∈ R ∩U ∖ {a} ....(!).... & x = ae.

(ii) Let T ∶X →X be continuous map of a Polish space. Show that if
T is regionally recurrent, then so is T n ∀ n ≥ 1.

Two sided & forward

For a topological dynamical system (X,T ) the forward T -orbit (aka

forward semi-orbit) of x ∈X is O
(T )
+ (x) ∶= {T nx ∶ n ∈ N}; and

for an invertible topological dynamical system (X,T ) the (two-sided)
T -orbit of x ∈X is O(T )(x) ∶= {T nx ∶ n ∈ Z}.

The topological dynamical system (X,T ) is called

● forwards transitive if ∃ x ∈X, O
(T )
+ (x) =X and

5Residual set = שמנה! קבוצה = contains a dense Gδ
6i.e. no isolated points
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● forwards minimal if O
(T )
+ (x) =X ∀ x ∈X.

The invertible topological dynamical system (X,T ) is called

● two-sided transitive if ∃ x ∈X, O(T )(x) =X and

● two-sided minimal if O(T )(x) =X ∀ x ∈X.

Minimality.

Proposition 2.1
A homeomorphism T ∶ X → X of a metric space X is two-sided

minimal iff
there are no non-trivial, T -invariant, closed subsets of X, i.e.

E ⊂X closed, T −1E = E Ô⇒ E = ∅ or X.o

Proof
For each x ∈ X, Ex ∶= O(T )(x) is a T -invariant, non-empty, closed

subset of X. Thus o Ô⇒ T minimal.
Each T -invariant, non-empty, closed subset of X contains some Ex

and so the converse implication is also valid. V

Proposition 2.2
If a continuous map of a compact, metric space is minimal, then it

is forward minimal.

Proof
Let (X,T ) be a minimal continuous map of a compact, metric space.

For each x ∈X, the ω-limit set of x under T :

ω(T,x) ∶= {y ∈X ∶ ∃ nk →∞, T nkx→ y}

is a closed T -invariant, subset of X. By compactness, ω(T,x) ≠ ∅ ∀ x ∈
X. By minimality, ω(T,x) = X ∀ x ∈ X. Forward minimality follows
from this. V

Proposition 2.3
Let (X,T ) be a continuous map of a compact, metric space, then

(X,T ) is minimal iff ∀ U ⊂X, open and non-empty, ∃ NU ≥ 1 so that
X = ⋃

NU
k=1 T

−kU .

Proof
Evidently, (X,T ) is minimal iff ∀ x ∈ X & U ⊂ X open and non-

empty, ∃ n ≥ 1, T nx ∈ U ; equivalently X = ⋃∞
k=1 T

−kU ∀ U ⊂ X open
and non-empty. The finite union statement follows from compactness.
2�
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Almost periodic points.
A subset K ⊂ N is called syndetic if it has bounded gaps, i.e. ∃ L > 0

so that K intersects with every interval in N, longer than L.
For T ∶ X → X continuous, a point x ∈ X is almost periodic (for T )

if for every non-empty open set U ⊂ X, {n ∈ N ∶ T n(x) ∈ U} is either
empty, or syndetic.

For example, periodic points (i.e. TNx = x for some N ≥ 1) are
almost periodic.

Proposition 2.4
Let (X,T ) be a continuous map of a compact, metric space.

(i) If (X,T ) is minimal then all points are almost periodic for T .

(ii) If there is an almost periodic point with dense forward orbit, then
T is minimal.

Proof of (ii)
Let x ∈X be an almost periodic point with dense forward orbit.
We’ll show that if y ∈X and ∅ ≠ U ⊂X is open, then ∃ k ≥ 1, T k(y) ∈

U .

Proof

● WLOG x ∈ U .

● ∃ open sets U ′ ⊂X, V ⊂X ×X so that

x ∈ U ′ ⊂ U, V ⊃ ∆(X ×X) & (U ′ ×X) ∩ V ) ⊂X ×U.

Here ∆(X ×X) ∶= {(x,x) ∶ x ∈X}.

● ∃ K(U ′) s.t. ∀ n ≥ 1 ∃ k ∈ [0,K(U ′)) with T n+k(x) ∈ U ′.

● By continuity of T × T, ∃ V ′ ⊃ ∆(X ×X) so that

K(U ′)
⋃
j=0

(T × T )jV ′ ⊂ V,

● ∃ y ∈W open so that W ×W ⊂ V ′.

∃ n ≥ 1 such that T n(x) ∈W & ∃ 0 ≤ k <K(U ′) such thatT n+k(x) ∈ U ′

thus

(T n+kx,T k(y)) ⊂ (U ′×X)∩(T ×T )k(W ×W ) ⊂ (U ×X)∩V ⊂X ×U. 2�
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Exercise 2.3.

Show that proposition 2.4 is true for a continuous map of a compact
Hausdorff space.

Minimal sets.
Let (X,T ) be a minimal continuous map of a compact, metric space.

A closed subset ∅ ≠ M ⊂ X is a minimal set for T if T −1M = M and
(M,T ) is minimal.

Proposition 2.5
A continuous map of a compact, metric space has a minimal set.

Proof
Let (X,T ) be a minimal continuous map of a compact, metric space

and let

M ∶= {closed, non-empty, T -invariant subsets of X}.

Order M by inclusion. A set M ∈M is a minimal set iff it is a minimal
element of M.

Existence of these follows from Zorn’s lemma because
● every chain C ⊂M has a non-empty intersection in M.

This is because an arbitrary intersection of closed invariant sets is
a closed invariant set e.g. ⋂M∈CM . Also, C has the finite intersection
property and so by compactness, ∅ ≠ ⋂M∈CM ∈M. V

Corollary Every continuous map of a compact, metric space has an
almost periodic point.

Exercises on Minimality

Exercise M1. Let (X,T ) ∶= ({0,1}Z,shift). Show that there is an
almost periodic, nonperiodic point for T .

Exercise M2 “Cycle of fifths”.
According to music theory, the operation of raising pitch by a ”per-

fect fifth” is periodic:

C ↦ G↦ D ↦ A↦ E ↦ B ↦ F ♯ ↦ C♯ ↦ G♯ ↦ D♯ ↦ A♯ = B♭ ↦ F ↦ C.

See e.g.
http://tamingthesaxophone.com/jazz-cycle-of-5ths.html

According to “Pythagorean music theory”, raising pitch by a perfect
fifth is attained by increasing the frequency by 3

2 . Lowering pitch by
an octave is attained by halving the frequency.

Show that the collection of frequencies obtained by raising pitch by
perfect fifths and lowering by octaves is dense in R+.
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See http://en.wikipedia.org/wiki/Well temperament

Exercise M3.
For d ≥ 1, α = (α1, . . . , αd) ∈ Rd define Rα ∶ Td → Td by Rα(x) ∶=

x + α mod 1 (i.e. Rα(x)k ∶= xk + αk mod 1 ∀ 1 ≤ k ≤ d).

Show that (Td,Rα) is minimal iff (1, α1, α2, . . . , αd) are linearly inde-
pendent over Q.

Transitivity.

Proposition 2.7 (two sided transitivity)

Let T be an homeomorphism of a Polish (i.e. complete, separable)
metric space X. TFAE:

(i) T is two-sided topologically transitive;

(ii) (topological ergodicity)

∀ U ⊂X open and non-empty, ⋃n∈Z T nU =X;

(iii) ∃ X0 ⊂ X a dense Gδ so that T −1X0 = X0 and so that (X0, T ) is
minimal.

Proof of (i) ⇒ (ii):

Suppose that {T nx ∶ n ∈ Z} = X and let U ⊂ X be open and non-
empty, then ∃ n0, T n0x ∈ U whence T n+n0x ∈ T nU ∀ n ≥ 1 and

⋃
n∈Z

T nU ⊃ {T n+n0x ∈ Z} =X.2�

Proof of (ii) ⇒ (iii)
Let U be a countable base of open sets for the topology of X. By

assumption, ∀ U ∈ U , U ≠ ∅ ∆U ∶= {x ∈ X ∶ ∃ n ∈ Z, T nx ∈ U} =

⋃n∈Z T nU is open and dense in X. By Baire’s theorem,

∆ ∶= {x ∈X ∶ {T nx ∶ n ∈ Z} =X} = ⋂
U∈U , U≠∅

∆U

is a dense Gδ set of transitive points in X. So is X0 ∶= ⋂n∈Z T n∆ which
is also T -invariant. V

Proposition 2.8 (forward transitivity)

Suppose that X is a perfect Polish space, and that T ∶ X → X is
continuous. TFAE:

(i) T is forward topologically transitive;

(ii) ∀ U ⊂X open and non-empty, ⋃n∈N T −nU =X;
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(iii) ∃ X0 ⊂ X a dense Gδ so that T −1X0 = X0 and so that (X0, T ) is
forward minimal.

Proof

Proof of (i) ⇒ (ii):

Suppose that {T nx ∶ n ≥ 1} =X. Since X has no isolated points,

O
(T )
+ (x) = ω(T,x) = {T nx ∶ n ≥ N} =X ∀ N ≥ 1.

Now let U, V ⊂ X be open and non-empty. We claim that ∃ n ≥
1, T −nU∩V ≠ ∅ (which proves ⋃n≥1 T −nU =X). To establish the claim,

∃ N ≥ 1, TNx ∈ V . Since {T nx ∶ n ≥ N + 1} = X, ∃ n ≥ 1, TN+nx ∈ U .
Thus TNx ∈ V ∩ T −nU ≠ ∅. V
Proof of (ii) ⇒ (iii):

As above, let U be a countable base of open sets for the topology of
X. By assumption, ∀ U ∈ U , U ≠ ∅ ∆U ∶= {x ∈ X ∶ ∃ n ≥ 1, T nx ∈
U} = ⋃n≥1 T −nU is open and dense in X. By Baire’s theorem,

X0 ∶= {x ∈X ∶ {T nx ∶ n ≥ 1} =X} = ⋂
U∈U , U≠∅

∆U

is a dense Gδ set in X, clearly T -invariant and (X0, T ) is minimal. V

Proposition 2.9 (recurrence and transitivity)

Suppose that T ∶X →X is a regionally recurrent, topologically transitive
homeomorphism of a Polish space, then T is forward topologically transitive.

Proof We claim first that ⋃∞
n=1 T

−nV = X ∀ ∅ ≠ V open. To see
this, we fix ∅ ≠ U,V open and show ∃ n ≥ 1, U ∩ T −nV ≠ ∅. Indeed
by topological transitivity of T, ∃ N ∈ Z with W ∶= U ∩ TNV ≠ ∅. By
regional recurrence, ∃ n > ∣N ∣, W ∩ T −nW ≠ ∅, whence

∅ ≠W ∩ T −nW = U ∩ TNV ∩ T −nU ∩ T −(n−N)V ⊂ U ∩ T −(n−N)V. �

Now fix a countable base U for the topology on X, then by Baire’s
theorem

∆ ∶= {x ∈X ∶ {T nx ∶ n ≥ 1} =X} = ⋂
∅≠U∈U

∞
⋃
n=1

T −nU ≠ ∅

and T is forward topologically transitive. �
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Transitivity Exercises

Exercise T1.
Show that a topologically transitive homeomorphism of a Polish

space either

● has a residual orbit O(T )(x);

● is a permutation of a finite set; or

● the Polish space is perfect and the homeomorphism is regionally
recurrent.

Exercise T2.

(i) Exhibit a compact metric spaceX with a continuous map T ∶X →X
so that (X,T ) is positively transitive but for which ∃ ∅ ≠ U ⊂ X open
with ⋃n≥0 T −nU ≠X.

(ii) Let X be a perfect Polish space, and let T ∶X →X be a regionally
recurrent, topologically transitive homeomorphism.

Show that

∃ x ∈X so that O
(T )
+ (x) = O

(T−1)
+ (x) =X.

(iii) Show that an isometry of a perfect metric space is forward minimal
iff it is forward topologically transitive.

Generic ergodicity

For X a polish space, let

B(X) ∶= {Borel subsets of X} & N (X) ∶= {A ∈ B(X) ∶ A meagre}.

Recall from topological measurability theory:

∀ A ∈ B(X), ∃ U ⊂X open s.t. A∆U ∈ N (X).R

A Polish dynamical system (X,T ) is called genericically ergodic if

A ∈ B(X) T −1A = A Ô⇒ A ∈ N (X) or X ∖ A ∈ N (X).

Proposition 3.1
Let X be a perfect, polish space and let T ∶ X → X be a forward

transitive, continuous map, then T is generically ergodic.



44 ©Jon Aaronson 2006-2013

Proof
Let X0 ⊂ X be a T -invariant, dense Gδ so that (X0, T ) is minimal,

and suppose that

A ∈ B(X) ∖N (X), T −1A = A.

We’ll show that X ∖ A ∈ N (X).
Let U ⊂ X be open so that A∆U ∈ N (X). Since A ∉∈ N (X), we

have that U ≠ ∅ whence U ∩X0 ≠ ∅.
Now let

X1 ∶=X0 ∖ ⋃
n≥0

T −n(A∆U),

then X1 is a dense Gδ and T ∶X1 →X1.
Moreover, A∩X1 = U ∩X1 ≠ ∅, whence, by minimality of (X1, T ), A

is open and dense in X1 proving that

X ∖ A ⊂ (X ∖ X1) ∪ (X1 ∖ A) ∈ N (X). 2�

Remark. It can be shown analogously (!) that any two sided tran-
sitive, invertible, polish dynamical system is also generically ergodic.

Example. of a continuous map of a perfect, compact, metric space

which is generically ergodic but not regionally recurrent.

Let Ẑ = Z ∪ {∞} be the one point compactification of Z, let X ∶=

{1,2}N × Ẑ and define T ∶X →X by

T (x, y) ∶= {
(Sx, y + x1) y ∈ Z;

(Sx, y) y =∞

where x = (x1, x2, . . . ), Sx ∶= (x2, x3, . . . ), then X is a perfect, compact,
metric space, and T is continuous, onto. The recurrent points of T are
given by R(T ) = R(S) × {∞}. This is not a residual set in X and so
(X,T ) is not regionally recurrent.
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Week # 6, 20/11/2013.

Proposition 6.1
(X,T ) is generically ergodic.

Idea of Proof
We’ll exhibit a countable group Γ ⊂ Homeo. (X) which is generically

ergodic and so that T −1A = A Ô⇒ γA = A ∀ γ ∈ Γ.
Generic ergodicity will bew established using:

Proposition 6.2 (group action transitivity)

Let Γ be a countable group of homeomorphisms of the Polish metric
space X. TFAE:

(i) ∃ x ∈X with {γ(x) ∶ γ ∈ Γ} =X;

(ii) (topological ergodicity)

∀ U ⊂X open and non-empty, ⋃γ∈Γ γU =X;

(iii) ∃ X0 ⊂X a dense Gδ so that γX0 =X0 ∀ γ ∈ Γ and so that (X0,Γ)

is minimal ({γ(x) ∶ γ ∈ Γ}X0
=X0 ∀ x ∈X0;

(iv) A ∈ B(X), ΓA = A Ô⇒ A ∈ N (X) or X ∖A ∈ N (X).

Proof Exercise.
Hint: See propositions 2.7 & 3.1.

Proof of propn. 6.1
Suppose that k ≥ 1 and v = (v1, . . . , vk), w = (w1, . . . ,wk) ∈ {1,2}k.

Write sk(v) ∶= ∑
k
j=1 vj,

[b] ∶= {x ∈ {1,2}N ∶ xj = bj ∀ 1 ≤ j ≤ k} (b = v,w)

and define

πv,w ∶ [v] ×Z→ [w] ×Z

by

πv,w((v, x), n) ∶= ((w,x), n + sk(v) − sk(w)).

It follows that πv,w ∶ [v] × {N} → [w] × {N + sk(v) − sk(w)} is a home-
omorphism ∀ N ∈ Z and that πw,v = π−1

v,w.
Moreover,

For ξ ∈ [v] ×Z, ζ ∈ [w] ×Z ∶(w)

πw,v(ξ) = ζ ⇐⇒ T k(ξ) = T k(ζ).
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Now define Φv,w ∶X →X by

Φv,w(z) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

πv,w(z) z ∈ [v] ×Z,
πw,v(z) z ∈ [w] ×Z,
z else.

Evidently, each Φv,w ∈ Homeo. (X) and Φ2
v,w ≡ Id.

Let Γ ∶= ⟨γ⟩ be the group of homeomorphisms of X generated under
composition.

It follows from (w) that for ξ, ζ ∈X0 ∶= Ω ×Z,

∃ γ ∈ Γ, y = γ(x) ⇐⇒ ∃ N ≥ 1, TN(x) = TN(y).

Thus (!) for A ⊂X0,

T −1A = A Ô⇒ γA = A ∀ γ ∈ Γ

and topological ergodicity of T follows from that of Γ.
By proposition 6.2, to establish this, it suffices to show

⋃
γ∈Γ

γU =X ∀ U ⊂ X open, nonempty.(o)

To prove (o), it suffices to show that if U, W ⊂X are non-empty, open
sets, then

∃ k ≥ 1, u, w ∈ {1,2}k, N ∈ Z such that(ý)

[u] × {N} ⊂ U & [w] × {N + sk(u) − sk(w)} ⊂ W.

Proof of (ý)
Fix i ∈ N, a, b ∈ {1,2}i, K,L ∈ Z so that

[a] × {K} ⊂ V & [b] × {L} ⊂ W.

Next, ∃ j ∈ N, c, d ∈ {1,2}j so that

L = (K + si(a) − si(b)) + sj(c) − sj(d)

=K + si+j(a, c) − si+j(b, d).

Setting k = i + j, v = (a, c) & w = (b, d) establishes (ý). 2�

Exercise 6.1 ( generical exactness).
The topological dynamical system (X,T ) is generically exact if

T(X) ∶= ⋂
n≥1

T −nB(X) ⊆ {A ∶ either A ∈ N (X) or X ∖A ∈ N (X)}.

(i) Show that generical exactness ⇒ generical ergodicty but not con-
versely.

(ii) Show that
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T(X) = {A ∈ B(X) ∶ x ∈ A, (x, y) ∈ TT ⇒ y ∈ A}

where

TT ∶= {(x, y) ∈X ×X ∶ ∃ N ≥ 1 such that TN(x) = TN(y)}.

(iii) Show that (X,T ) as in the example is generically exact.

Exercise 6.2. Let (X,T ) be a [forward] topologically transitive
homeomorphism of the metric space (X,d). Show that if {T n ∶ n ∈ Z}
[{T n ∶ n ∈ N}] is an equicontinuous family (of continuous mapsX →X),
then (X,T ) is [forward] minimal.

Structure

Homomorphism of topological dynamical systems. Suppose that
X, Y are topological spaces and that S ∶ X → X, T ∶ Y → Y are con-
tinuous maps.

A topological homomorphism π ∶ (X,S) → (Y,T ) is a continuous,
surjective map π ∶X → Y satisfying π ○ S = T ○ π
aka : topological: -factor map, -extension map, and -semiconjugacy.

In this case, (Y,T ) is known as a topological factor or image of (X,S)
which itself is known as a topological extension of (Y,T ).

A topological isomorphism (aka conjugacy) is an invertible homo-
morphism i.e. a homomorphism π ∶ (X,S) → (Y,T ) with π ∶ X → Y a
homeomorphism.

● Two dynamical systems are called weakly topologically isomorphic
if they are both factors of each other.

● For Polish dynamical systems there is also a generic homomorphism
π ∶ (X,S) → (Y,T ) where there are residual subsets X0 ⊂ X, Y0 ⊂ Y ,
invariant under S & T respectively so that π ∶ (X0, S) → (Y0, T ) is a
topological homomorphism. Also, analogously, generic isomorphism &
generic weak isomorphism.

Invertible extensions and inverse limits

The question here is to find a “canonical” invertible extension of
(X,T ), a continuous map of a metric space: i.e. (X̃, T̃ ) a homeomor-

phism of a metric space together with π ∶ X̃ → X continuous, onto st
π ○ T̃ = T ○ π.
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The inverse limit construction. Given (X,T ), a surjective, contin-
uous map of a metric space define

X̃ ∶= {(x1, x2, . . . ) ∈X
N ∶ Txn+1 = xn ∀ n ≥ 1},

then X̃ is a closed subset of XN (with respect to the product topology).

Equip X̃ with the inherited product topology.

● If X is Polish (compact) then so is X̃.

Define T̃ ∶ X̃ → X̃ by T̃ (x1, x2, . . . ) ∶= (Tx1, x1, x2, . . . ), then T̃ ∶ X̃ →

X̃ is a homeomorphism (with T̃ −1=shift).

The map (x1, x2, . . . )↦ x1 is a semiconjugacy (X̃, T̃ )→ (X,T ).

● (X̃, T̃ ) is “smallest” as an invertible extension of (X,T ) in the
following sense,:

Proposition 6.3 If (Y,R) is an invertible extension of (X,T ), then it

is also an extension of (X̃, T̃ ).

Proof Suppose that φ ∶ Y → X is a semiconjugacy (Y,R) → (X,T )
and define ψ ∶ Y →XN by ψ(y)n ∶= φ(R−(n−1)y). Evidently ψ ∶ Y →XN

is continuous. To see that ψ ∶ Y → X̃,

T (ψ(y)k+1) = T (φ(R−ky) = φ(R−k+1y) = ψ(y)k.

This last equation also shows that ψ ○R = T̃ ○ ψ. �

● This property of “smallness” defines (X̃, T̃ ) up to weak isomor-
phism and it is called the natural extension of (X,T ).

Proposition 6.4
Suppose that T ∶X →X is a continuous map of a Polish space.

● If (X,T ) is regionally recurrent, then so is (X̃, T̃ ).

● If (X,T ) is topologically transitive, then so is (X̃, T̃ ).

Proof Both claims follow easily from the following

Lemma 3.4
If ∅ ≠ U ⊂ X̃ is open, then ∃ N ≥ 0, ∅ ≠ W ⊂ X open so that

U ⊇ T̃Nπ−1W where π ∶ (x1, x2, . . . )↦ x1 (X̃ →X).

Proof By the definition of the product topology, ∃ k ≥ 1, ∅ ≠
U1, U2, . . . Uk ⊂X open so that

U ⊇ [U1, U2, . . . , Uk] ∶= {x ∈ X̃ ∶ xj ∈ Uj ∀ 1 ≤ j ≤ k} ≠ ∅.
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Now

[U1, U2, . . . , Uk] ∶= {x ∈ X̃ ∶ xj ∈ Uj ∀ 1 ≤ j ≤ k}

!
= [X, . . . ,X

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k−1 times

,
k

⋂
j=1

T −(k−j)Uj]

= T̃ k−1[
k

⋂
j=1

T −(k−j)Uj]

=∶ T̃ k−1π−1W. �

Subshifts

The two- [one-] sided full shift over the state space S is SZ [SN]. If
S is countable, it is equipped with the product discrete topology which
is always Polish and compact when #S < ∞. The shift is defined by
(σx)n ∶= xn+1.

A two-sided subshift Σ (of SZ) is a closed, σ-invariant subset. A
one-sided subshift Σ+ (of SN) is a closed, σ-invariant subset.

Let Σ ⊂ SZ be a subshift. The associated language is L(Σ) ∶=
{xba ∶= (xa, xa+1, . . . , xb) ∶ a ≤ b, x ∈ Σ} ⊂ S∗ ∶= ⋃∞

n=1 S
n (here xba ∶=

(xa, xa+1, . . . , xb) for a ≤ b). Write ∣w∣ ∶= n for w = (w1,w2, . . . ,wn) ∈ L.
The associated one- and two-sided subshifts are

Σ+(L) ∶= {x ∈ SN ∶ xba ∈ L ∀ a ≤ b} & Σ±(L) ∶= {x ∈ SZ ∶ xba ∈ L ∀ a ≤ b}.

Exercise 6.3.
Suppose that Σ ⊂ SN is a one-sided subshift and that σ is the shift

on Σ. Show that (Σ̃, σ̃) ≅ (Σ±(L(Σ)), σ) where ≅ denotes topological
isomorphism.

Topological Markov shift. The subshift Σ ⊂ SZ (SN) is a topological
Markov shift (TMS) if there is a matrix A ∶ S × S → {0,1} so that
ΣA = {x ∈ SZ ∶ A(xn, xn+1) = 1 ∀ n ≥ 1}.

Exercise 6.4.

(i) Show that a TMS (ΣA, σ) is forward topologically transitive ⇐⇒
∀ s, t ∈ S, ∃ n ≥ 1 such that An(s, t) > 0 where A1 ∶= A and An+1(s, t) ∶=
∑u∈S A(s, u)An(u, t).

(ii) Let S2 ∶ S1 → S1 be S2(z) ∶= z2. Show that the compact dynami-
cal systems (S1, S2) and ({0,1}N,shift} are Baire isomorphic but not
topologically isomorphic.
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Exercise 6.5 the solenoid. The solenoid is

S̃ ∶= {(z1, z2, . . . ) ∈ S1N ∶ zn = S2(zn+1) ∀ n ≥ 1}.

(i) Show that S̃ is homeomorphic with T × {0,1}N via

(t, (ε1, ε2, . . . ) ↦ π(t, (ε1, ε2, . . . )) ∶= (t, ε1+t2 , ε12 + ε2+t
22 , . . . ).

(ii) Show that S̃ is connected but not pathwise connected.

(iii) Define a group structure on S̃ so that it
(a) it is a compact, abelian topological group and

(b) S̃2 ∶ S̃→ S̃ is a group endomorphism.

Invariant probabilities

Given a measurable space (X,B) and a measurable transformation
T ∶X →X, set M(X,T ) ∶= {µ ∈ P(X,B) ∶ µ ○ T −1 = µ}.

Proposition 6.5 If X is a compact metric space and T ∶ X → X is
continuous, then M(X,T ) ≠ ∅.

Proof Fix xn ∈X (n ≥ 1) and set µn ∶=
1
n ∑

n−1
j=0 δT jxn .

● If µnk → ν ∈ P(X) weak ∗ in C(X)∗, then ν ∈M(X,T ).

● The Banach-Alaoglu theorem ensures such an nk →∞. �

Example Let X ∶= (0,1) and Tx ∶= x2, then M(X,T ) = ∅. To see
this, note that ∀ x ∈ (0,1), the sets {T n(Tx,x]}n∈Z are disjoint and
⊍n∈Z T n(Tx,x] = (0,1). If µ ∈M(X,T ), then

1 = µ(⊍
n∈Z

T n(Tx,x]) =∑
n∈Z

µ(T n(Tx,x]) =∞ ⋅ µ((Tx,x]) = 0,∞ ≠ 1.
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Week # 7, 27/11/2013.
¶3 Unique ergodicity A measurable transformation T ∶ X → X of
the measurable space (X,B) is called uniquely ergodic if #M(X,T ) = 1.

Proposition 7.1 Suppose that X is a compact metric space, that T ∶
X →X is continuous and that µ ∈M(X,T ), then
M(X,T ) = {µ} ⇐⇒

1
n

n−1

∑
k=0

f(T kx)→ ∫
X
fdµ ∀ f ∈ C(X), x ∈X.

In this case, the convergence is uniform on X ∀ f ∈ C(X).

Proof
⇐) Let p ∈M(X,T ), then ∀ f ∈ C(X)

∫
X
fdp = ∫

X
(

1

n

n−1

∑
k=0

f ○ T k)dp→ ∫
X
fdµ.

⇒ and uniform convergence) Suppose that f ∈ C(X) but that 1
n ∑

n−1
k=0 f○

T k does not converge uniformly to ∫X fdµ, then ∃ ε > 0 and xk ∈
X, nk →∞ with

∣ 1
nk

nk−1

∑
j=0

f(T jxk) − ∫
X
fdµ∣ ≥ ε ∀ k ≥ 1.

As before, set µk ∶=
1
nk
∑
nk−1
j=0 δT jxk . If µk` → ν ∈ P(X) weak ∗ in

C(X)∗, then (!) ν ∈M(X,T ). The Banach-Alaoglu theorem ensures
this for some subsequence k` →∞. But this time, we also get that

∣∫
X
fdν − ∫

X
fdµ∣← ∣ 1

nk

nk−1

∑
j=0

f(T jxk) − ∫
X
fdµ∣ ≥ ε

so ν ≠ µ. �

Convex analysis of M.

● Note thatM(X,T ) is convex; and a closed subset of P(X) (equipped
with the weak ⋆ topology. A measure ν ∈M(X,T ) is called extreme if

p1, p2 ∈ P(X), 0 ≤ t ≤ 1, ν = tp1 + (1 − t)p2 ⇒ p1 = p2 = ν.

● Let ExtM(X,T ) = {extreme points of M} and
Me(X,T ) = {p ∈M(X,T ) ∶ (X,B(X), p, T ) ergodic}.

Theorem 7.2 Let (X,T ) be a compact dynamical system, thenM(X,T )
is a compact convex set (in P(X)) and ExtM(X,T ) =Me(X,T ).

Proof of ExtM(X,T ) ⊆Me(X,T )
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Suppose that µ ∈M(X,T ) ∖Me(X,T ), then ∃ A ∈ B(X) so that

T −1A = A & µ(A) = p ∈ (0,1).

We have that

µ = pµA + (1 − p)µAc

where µB(C) ∶= µ(B∩C)
µ(B) .

Since T −1A = A we have that µA, µAc ∈ M(X,T ) whence µ ∉
ExtM(X,T ). V

Proof that ExtM(X,T ) ⊇Me(X,T ) for T invertible
Suppose that µ ∈Me(X,T ). If p, q ∈M(X,T ) & t ∈ (0,1) are so

that µ = tp + (1 − t)q, then p, q ≪ µ.
By the Radon-Nikodym theorem ∃ h ∈ L1(µ) so that p(A) = ∫A hdµ (A ∈

B). Thus

∫
A
h ○ T −1dµ = ∫

T−1A
hdµ = p(T −1A) = p(A) = ∫

A
hdµ

and h = h ○T a.s.. By ergodicity of µ, h = ∫X hdµ = p(X) = 1 and p = µ.
2�

Remarks.
The proof of ExtM(X,T ) ⊇Me(X,T ) is uses the

Proposition If (X,B,m,T ) is an ergodic, probability preserving trans-
formation (EPPT) and if µ ∈ P(X,B), µ○T −1 = µ & µ≪m, then µ =m.

This proposition is proved for T an invertible EPPT and its proof uses
the

Lemma Let (X,B,m,T ) be an EPPT. If h ∶ X → R is measurable and
h ○ T = h a.e., then ∃ c ∈ R so that h = c a.e..

Sketch proof of the Lemma

¶ If A ∈ B(X) & T −1A
m
= A (i.e. m(T −1A∆A) = 0), then m(A) = 0,1.

Proof A
m
= ⋂n≥1⋃k≥n T −kA =∶ B & T −1B = B.

Now let αn ∶= {[ k2n ,
k+1
2n ) ∶ k ∈ Z+}, and for n ≥ 1, k ∈ Z+ let An(k) ∶=

[h ∈ [ k2n ,
k+1
2n ).

Since h ○ T = h a.e., we have T −1An(k)
m
= An(k) ∀ n ≥ 1, k ∈ N and

by ¶:

∃ k ∶ N→ Z+ such that m(An(k(n))) = 1 ∀ n ≥ 1.

Evidently An(k(n) ↓ as n ↑ whence
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● m(⋂
n≥1

An(k(n))) = 1;

●
k(n)

2n
ÐÐ→
n→∞

c;

● h = c on ⋂
n≥1

An(k(n)). 2�

Exercise 7.1 (almost invariant functions).

(i) Let (X,B,m,T ) be an ergodic non-singular transformation, and
let Y be a separable metric space.

If f ∶ X → Y is measurable and f ○ T = f a.e., then ∃ y ∈ Y, f = y
a.e..

(ii) Suppose that T ∶ X → X is a regionally recurrent, forward transi-
tive, continuous map of a Polish space X, Y is a separable metric space
and f ∶X → Y is Borel measurable and f ○T = f on a residual set, then
then f is constant on a residual set.

Examples

1. The Dyadic Integers. :

Ω = {0,1}N, (x+y)n = xn+yn+δn mod 2 where δ1 = 0, δn+1 ∶= [xn+yn+δn2 ].

The reason for the name ”dyadic integers” is that
∞
∑
k=1

2k−1(n(1,0))k = n ∀ n ≥ 1

The adding machine
Define the adding machine τ ∶ Ω→ Ω by τ(x) ∶= x + (1,0), i.e.

τ(1, ...,1,0, εn+1, εn+2, ...) = (0, ...,0,1, εn+1, εn+2, ...).

The Odometer Property.

{((τ kx)1, ..., (τ
kx)n) ∶ 0 ≤ k ≤ 2n − 1} = {0,1}n ∀ x ∈ Ω, n ≥ 1.

Proposition 7.3
τ is uniquely ergodic (with M(Ω, τ) = {m}).

Proof It suffices to prove that

1

N

N−1

∑
k=0

f ○ τ k → ∫
Ω
fdm as N →∞ uniformly on Ω ∀ f ∈ C(Ω).(G)

Proof of (G):
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If n ∈ N is fixed, and g ∶ {0,1}n → R, and f ∶ Ω → R is defined by
f(x) = g(x1, ..., xn), then by the odometer property,

1

2n

2n−1

∑
k=0

f ○ τ k ≡ ∫
Ω
fdm,

whence (!)

1

N

N−1

∑
k=0

f ○ τ k → ∫
Ω
fdm as N →∞ uniformly on Ω

and (G) follows since functions of this form are uniformly dense in
C(Ω). V

Exercise 7.2. Show that Ω is a compact topological group with Haar
measure m ∈ P(Ω) given by m([ε1, ..., εn]) = (1

2)
n..

2. Rotations of Td.
Proposition 7.4

If α = (α1, α2, . . . , αd) ∈ Rd and {1, α1, . . . , αd) are linearly indepen-
dent over Q, then (Td,Rα) is uniquely ergodic with M(Td,Rα) = {m =
Leb}.

Proof
For k ∈ Zd & x ∈ Td, define χk(x) ∶= e2πi⟨k,x⟩. The condition on α

ensures that χk(α) ≠ 1 ∀ k ≠ 0. Thus

N−1

∑
j=0

χk ○R
j
α(x) =

⎧⎪⎪
⎨
⎪⎪⎩

1 k = 0;

χk(x)
1−χk(α)N
1−χk(α) k ≠ 0

with the consequence that for f = χk, k ∈ Z,

1

N

N−1

∑
j=0

f ○Rj
α → ∫

Td
fdm as N →∞ uniformly on Td.(X)

Now, (X) persists for linear combinations of χk’s and their uniforma
limits which are unifornmly dense in C(Td) by the Stone-Weierstrass
theorem. By proposition 7.1, M(Td,Rα) = {m}. V

3. The one-sided full shift.
Let Ω ∶= {0,1}N and let S = shift.

Proposition 7.5

∣Me(Ω, T )∣ = c.
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Proof sketch We exhibit an injection t↦ µt ( (0,1)→Me(Ω, T ) ).
To this end, fix t ∈ (0,1) and define

µt ∶ {cylinders}→ [0,1]

by

µt([a1, . . . , aN]) ∶=
N

∏
j=1

pt(j) for a1, . . . , aN = 0.1

where pt(0) = 1 − t & pt(1) = t.

It follows that µt is extends to an additive and T -invariant set function
on A ∶= {finite unions of cylinders} whence by Caratheodory
theory ∃ an extension (also denoted) µt to B(Ω). By T -invariance
on A, we have µt ∈M(Ω, T ).

To prove ergodicity we prove a stronger property called mixing

µt(A ∩ T −nB)ÐÐ→
n→∞

µt(A)µt(B) ∀ A, B ∈ B(Ω).(i)

Note first that (i) holds for A, B cylinders whence for A, B ∈ A.
Since A is dense in B(X) with respect to the sermi-metric ρ(A,B) ∶=
µt(A∆B), (i) holds ∀ A, B ∈ B(Ω). V

Ergodicity ⇏ mixing.
For α ∉ Q, (T,Rα,m) is ergodic but ∃ qn →∞ so that

m(A∆R−qn
α A)ÐÐ→

n→∞
0 ∀ A ∈ B(T).

Anzai skew products

For ψ ∶ T → T continuous and α ∈ T define the Anzai skew product
T = Tα,ψ ∶ T2 → T2 by

T (x, y) ∶= (x + α, y + ψ(x)) mod 1,

a Haar measure preserving homeomorphism.

Proposition 7.6
The following are equivalent for α ∉ Q:
1) Tα,ψ is minimal,
2) Tα,ψ is topologically transitive,
3) ∄ k ∶ T→ T continuous and q ≥ 1 such that qψ = k ○ T − k.

Proof
Evidently 1) Ô⇒ 2).
To see that 2) Ô⇒ 3), assume that ∃ k ∶ T→ T continuous and q ≥ 1

such that qψ = k ○Rα − k. Define f ∶ T2 → T by f(x, y) ∶= e2πik(x)−qy.
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Evidently, f is continuous, non-constant and T -invariant, so T is not
topologically transitive.

To see that 3) Ô⇒ 1), suppose that T is not minimal, and letM ⊊ T2

be minimal (ie closed, T -invariant and such that T ∣M is minimal).
For β ∈ T define qβ ∶ T2 → T2 by qβ(x, y) = (x, y + β), then:

● qβ ○ T = T ○ qβ whence (!) qβM is minimal ∀ β ∈ T; thus

● if β ∈ T, qβM ∩M ≠ ∅ then qβM =M .

Set H ∶= {β ∈ T ∶ qβM =M}, then

● H is a subgroup of T and closed since β ↦ qβM is continuous
T→ H(T2) where

H(T2) ∶= {non-empty closed subsets of T2}

equipped with the Hausdorff metric (a compact metric space); and

● Mx ∶= {y ∈ T ∶ (x, y) ∈M} = j(x) +H where j ∶ T→ T.

It follows that

j(x) +H =Mx = (T −1M)x =Mx+α − ψ(x) = j(x + α) − ψ(x) +H.

● We have that H ≠ T since otherwise M = T2 contradicting non-
minimality of T , thus

● ∃ q ≥ 1 such that qH = {0}
whence setting k ∶= qj we obtain qψ(x) = k(x + α) − k(x).
To establish continuity of k ∶ T → T, define Zq ∶ T2 → T2 → by

Zq(x, y) ∶= (x, qy), then Zq is continuous,

ZqM = {(x, qy) ∶ (x, y) ∈M} = {(x, k(x)) ∶ x ∈ T},

is closed and (!) k ∶ T→ T is continuous. �

Proposition 7.7
For α ∉ Q and ψ ∶ T→ T measurable,
Tα,ψ is ergodic iff ∄ k ∶ T → T measurable and q ∈ N such that

qψ = k ○Rα − k.

Proof
Assume first that ∃ k ∶ T → T measurable and q ∈ N such that

qψ = k ○Rα − k. Define f ∶ T2 → T by f(x, y) ∶= e2πi(k(x)−qy). It follows
that f is not a.e. constant and that f ○T = f whence T is not ergodic.

Conversely, suppose that T is not ergodic and let f ∶ T2 → R be
bounded, measurable, not constant and T -invariant. For n ∈ Z define
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fn ∶ T→ C by

fn(x) ∶= ∫
T
f(x, y)e−2πinydy.

By T -invariance of f ,

fn(x) ∶= ∫
T
f ○ T (x, y)e−2πinydy

= ∫
T
f(x + α, y + ψ(x))e−2πinydy

= e2πinψ(x)fn(x + α).

Evidently, ∣fn∣ is Rα-invariant, whence constant a.e.. Since f is not
constant, ∃ q ∈ N such that ∣fq(x)∣ > 07; whence qψ = k ○Rα − k where
fq = re−2πik. �

7else f(x, y) = g(x) a.e. with g ○Rα = g a.e. ⇒ g constant
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Week # 8, 4/12/2013.

Proposition 8.1 (Furstenberg)
For α ∉ Q and ψ ∶ T→ T continuous,
if Tα,ψ is ergodic, then it is uniquely ergodic.

Proof
We’ll use

von Neumann’s ergodic theorem
If (X,B.m,T ) is an invertible, ergodic probability preserving trans-

formation then

A
(T )
n f

L2(m)
ÐÐÐ→
n→∞ ∫

X
fdm ∀ f ∈ L2(m)

where A
(T )
n f ∶= 1

n ∑
n−1
k=0 f ○ T

k.

Sketch of proof Let H ∶= L2(m)0 = {f ∈ L2(m) ∶ ∫X fdm = 0} a T -
invariant, closed linear subspace and define U ∶ H → H by Uf = f ○T .

It suffices to show that

∥An(f)∥
H
ÐÐ→
n→∞

0 ∀ f ∈ H.(m)

Let H0 ∶= {g −Ug ∶ g ∈ H}. We claim first that (m) holds for f ∈ H0,
indeed if f = g −Ug, then

An(f) = An(g −Ug) =
g −Ung

n

H
ÐÐ→
n→∞

0.

By approximation, we see that (m) also holds for f ∈ H0:
For f ∈ H0g ∈ H0 with ∥f − g∥ < ε,

∥An(f)∥ ≤ ∥An(f − g)∥ + ∥An(g)∥ ≤ ε + o(1).

Lastly, by ergodicity:

H⊥0 = {f ∈ H ∶ ⟨f, g −Ug⟩ = 0 ∀ g ∈ H} = {f ∈ H ∶ U−1f = f} = {0}

and H0 = H. V

Proof of theorem 8.1
Evidently mT2 ∈Me(T2, Tα,ψ).

¶1 Every sequence has a subsequence nk →∞ so that for mT-a.e. x ∈ T,
∀ f ∈ C(T2), y ∈ T,

A
(Tα,ψ)
nk f(x, y)ÐÐ→

n→∞ ∫
X
fdmT2 .(R)
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Proof Let Γ ⊂ C(T2) be countable and uniformly dense.
By von Neumann’s theorem, for each f ∈ Γ and for every subse-

quence, ∃ a subsequence so that the convergence (R) holds for f at each
m-a.e. (x, y) ∈ T2. Ordering Γ and performing a Cantor-type diago-
nalization yields a subsequence nk → ∞ and M ∈ B(T2), mT2(M) = 1
so that the convergence (R) holds for every f ∈ Γ at each (x, y) ∈M .

Since Γ is uniformly dense, the convergence (R) holds for every f ∈
C(T2) at each (x, y) ∈M .

For t ∈ T, define qt ∶ T2 → T2 by qt(x, y) = (x, y + t), then qt ○ Tα,ψ =
Tα,ψ ○ qt and mT2 ○ qt =mT2 .

For (x, y) ∈M, f ∈ C(T2), t ∈ T,

A
(Tα,ψ)
n f(x, y + t) = A

(Tα,ψ)
n f ○ qt(x, y)

ÐÐ→
n→∞ ∫

X
f ○ qtdmT2

= ∫
X
fdmT2 .

Now let M0 ∶= {x ∈ T ∶ ∃ y ∈ T, (x, y) ∈ M}, then mT(M0) = 1 and
the convergence (R) holds for every f ∈ C(T2) at each (x, y) ∈M0 ×T.
2�¶1

Now suppose that µ ∈Me(T2, Tα,ψ). We’ll show µ =mT2 .

¶2 ∃ a subsequence nk → ∞ satisfying (R) and also so that ∃ Q ∈
B(T2), µ(Q) = 1 so that ∀ f ∈ C(T2), (x, y) ∈ Q,

A
(Tα,ψ)
nk f(x, y)ÐÐ→

n→∞ ∫
X
fdµ.(K)

Proof Using the first paragraph of the proof of ¶1, show that there
is a subsequence of the one satisfying (R) satisfying (K). V
¶3 µ ○ π−1 =mT where π(x, y) = x.

Proof Since π ○ Tα,ψ = Rα ○ π we have µ ○ π−1 ∈M(T,Rα) = {mT}. V
To finish, we see that µ(π−1M0 ∩ Q) = 1 with the conclusion that

µ =mT2 . V

Example: An ergodic Anzai skew product. Consider ψ(x) = x
and T = Tα,ψ defined by T (x, y) ∶= (x + α, y + x) where α ∈ T ∖Q. To
see that T is ergodic, suppose that N ≥ 1 and k ∶ T → S1 measurable
such that e2πiNx = k(x + α)k(x).

Fix qk →∞ such that qkα → 0 in T, then f ○Rqk
α

L2(m)
ÐÐÐ→
k→∞

f ∀ f ∈ L2(m)

whence:
● e2πiNqkxeπiNqk(qk−1)α = e2πiNψqk = k(x + qkα)k(x)

m
ÐÐ→
k→∞

1 whence
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● 0 = eπiNqk(qk−1)αm̂(Nqk) = ∫T k(x + qkα)k(x)dx → 1.

This contradiction establishes ergodicity. V

Minimality ⇏ Ergodicity

Essential continuity. Let X be a metric space and let m ∈ P(X). A
measurable function f ∶X → C is called m-essentially continuous (e.c.)
if ∃ g ∶X → C continuous such that g = f m-a.e.

Given f ∶X → R measurable, set

Gf ∶= {a ∈ R ∶ eiaf is essentially continuous }.

Lemma 8.1
For f ∶ X → R measurable, if Gf = R, then f is essentially continu-

ous.

Proof

Set dP (a) ∶= 1√
2π
e−

a2

2 da.

By assumption ∃ G ∶ R × X → S1 satisfying eiaf = G(a, ⋅) m-a.e.
∀ a ∈ R and x↦ G(a, x) is continuous (X → S1) ∀ a ∈ R.

It follows from Fubini’s theorem that for P × m-a.e. (a, x) ∈ R ×
X, G(a, x) = eiaf(x), whence

● G is P ×m-Lebesgue measurable;

● for m-a.e. x ∈X and ∀ t ∈ R,

∫
R
G(a, x)eiatdP (a) = ∫

R
eia(f(x)+t)dP (a) = e−

(f(x)+t)2

2 .

Write gt(x) ∶= ∫RG(a, x)eiatdP (a). If xn
X
ÐÐ→
n→∞

x, then G(a, xn)ÐÐ→
n→∞

G(a, x) ∀ t ∈ R and, by bounded convergence, gt(xn)ÐÐ→
n→∞

gt(x), Thus

gt ∶X → C is continuous ∀ t ∈ R.

It follows that F ∶X → R defined by F (x) ∶= log g0(x)
g 1
2
(x) −

1
4 is continu-

ous. But (!)

F = f m − a.e. 2�

Lemma 8.2
Let m be Lebesgue measure on T. Suppose that f ∶ T→ R is measur-

able, but not m-essentially continuous; then ∃ a ∈ R such that eianf is
not essentially continuous ∀ n ∈ N.

Proof
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For f ∶ T→ R measurable, set

Gf ∶= {a ∈ R ∶ eiaf is essentially continuous }.

Evidently Gf is a subgroup of R.

We claim that Gf ∈ B(R)
To see this, define the linear operators PN ∶ L1(T)→ C(T) (N ≥ 1)

by

PNh(t) ∶=
1

N

N

∑
n=1

∑
∣k∣<n

ĥ(k)e2πikt.

Each operator PN is continuous and we have that t ↦ PNeitf is
continuous R→ C(T) ∀ N ≥ 1.

Recall (!) that h ∈ L1(T) is essentially continuous iff {PNh ∶ N ≥ 1}
is a Cauchy sequence in C(T).

Now consider

Y ∶= C(T)N = {y = (y1, y2, . . . ) ∶ yn ∈ C(T) ∀ n ≥ 1}

which becomes a Polish space (!) when metrized by

d(x, y) ∶=
∞
∑
n=1

∥xn − yn∥C(T) ∧ 1

2n
,

and define π ∶ R → Y by π(t)n = Pneitf , then π is continuous and
Gf = π−1C where C ∶= {Cauchy sequences in C(T)}.

To see measurability,

C = {y ∈ Y ∶ ∃ C(T) − lim
n→∞

yn}

=
∞
⋂
N=1

∞
⋃
q=1

⋂
k,`≥q

{y ∈ Y ∶ ∥yk − y`∥C(T) <
1

N
} ∈ B(Y )

whence Gf = π−1C ∈ B(R).
Now that Gf is a Borel subgroup of R, we claim that either Gf = R,

or Gf is meagre in R. To see this suppose that Gf is not meagre in R,
then ∃ U ≠ ∅ open in R so that Gf ∩U is residual in U . It follows that
∃ ε > 0 such that

(Gf ∩U) ∩ (Gf ∩U + x) ≠ ∅ ∀ ∣x∣ < ε,

whence (−ε, ε) ⊂ Gf and Gf = R.
Thus, if f ∶ T→ R is measurable and not essentially continuous, then

Gc
f is residual in R and ∃ a ∈ ⋂∞

q=1
1
qG

c
f which is as required. V
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Example: Minimality ⇏ ergodicity

Proposition 8.3 (Furstenberg, Kolmogorov)
For each α ∈ T ∖Q, ∃ ψ ∶ T → T continuous so that Tα,ψ is minimal

and not ergodic.

Proof
Fix a sequence qn ∈ N, qn ↑ ∞ so that ∣1 − e2πiqnα∣ ≤ 2−n ∀ n ≥ 1.
Define Ψ = Ψ(α) ∶ R→ R by the Fourier series with coefficients

Ψ̂(±∣k∣) = {
1−e±2πiqnα

n ∣k∣ = qn,

0 else.

This function is continuous as the Fourier series converges absolutely

and since Ψ̂(−k) = Ψ̂(k),

Ψ(x) ∶=∑
n≥1

1 − e2πiqnα

n
e2πiqnx ∈ R.

For r > 0, rΨ mod 1 ∶ T → T is continuous. We’ll show that for
suitable r > 0, rΨ mod 1 is as advertised.

Next, let

ck ∶=
Ψ̂(k)

1 − e2πikα
= {

1
n ∣k∣ = qn,

0 else,
.

then ∑k∈Z ∣ck∣2 <∞ and by the Riesz-Fischer theorem there is a function
g ∈ L2(T) such that ĝ(k) = ck.

Evidently ̂g − g ○Rα = Ψ̂, whence Ψ = g − g ○Rα mod m.
By proposition 7.7 Tα,rΨ mod1 is non-ergodic ∀ r > 0.
The rest of this proof is to show that ∃ r > 0 so that Tα,rΨ mod1 is

minimal.

Since
1

N

N

∑
n=1

∑
∣k∣≤n

ĝ(k) =
2

N

N

∑
n=1

∑
{k≥1∶ qk≤n}

1

k
ÐÐÐ→
N→∞

∞

it follows that g is not essentially continuous. By lemma 8.2, ∃ r0 > 0
such that e2πir0ng is not essentially continuous ∀ n ∈ N.

Define ψ ∶ T → T by ψ(x) ∶= r0ψ(x) mod 1. This is continuous and
ψ = k ○Rα − k where k ∶= r0g mod 1.

If Tα,ψ is not minimal then by proposition 7.6 ∃K ∶ T→ T continuous
and q ≥ 1 such that qψ = K ○Rα −K. By ergodicity of Rα, K − qr0g
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is constant a.e., contradicting non essential continuity of e2πiqr0g. Thus
Tα,ψ is minimal. V

Exercise 8.1.

(i) Show that ∃ α ∈ T such that ∃ qn ∈ N, qn ↑∞ with so that

∣1 − e2πiqnα∣ ≍ 2−qn ∀ n ≥ 1.

(ii) Show that (for this α) Ψ(α) ∶ R → R is a real analytic function and
that the skew product of proposition 6.1 is real analytic.

(iii) Suppose that α ∈ T∖Q has “bad approximation” in the sense that
∃ ε > 0 so that ∣α − p

q ∣ ≥
ε
q3 , and let Ψ ∶ T → T be twice continuously

differentiable (C2(T)). Define φ ∶= Ψ mod 1 ∶ T → T. Show that Tα,φ
is not ergodic.

PERIODIC POINTS

Let T ∶ X → X. A point x ∈ X is called a periodic point if ∃ p ∈ N
such that T px = x. In this case, p ∈ N is called the period of x and
the collection {T kx ∶ 0 ≤ k ≤ p − 1} is called (the associated) periodic
orbit. The minimal period of x is the smallest period, or the size of x’s
periodic orbit.

Define

Πn(T ) ∶= {x ∈X ∶ T nx = x}, Π(T ) ∶=
∞
⋃
n=1

Πn(T ),

Pn(T ) ∶= ∣Πn(T )∣, p(T ) ∶= lim
n→∞

log(Pn(T ) + 1)

n
and the (dynamical) zeta function of T :

ζT (z) ∶= e∑
∞

n=1
Pn(T )
n

zn (∣z∣ < e−p(f)).

Example 0
Consider Rα ∶ T→ T defined by Rαx = x + α.

Πn(Rα) = {
T nα ∈ Z,
∅ else,

Π(Rα) = {
T α ∈ Q,
∅ else.

Example 1
Consider Eq ∶ T → T defined by Eqx ∶= qx mod 1 (for q ∈ N). Evi-

dently

Πn(Eq) = Ker(En
q − 1) = {

k

qn − 1
∶ 0 ≤ k ≤ qn − 2},
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Pn(Eq) = q
n − 1, p(Eq) = log q, ζEq(z) =

1 − z

1 − qx
.

Example 2
Let T ∈ Aut (Td) = {T ∶ Td → Td ∶ cts & T (x + y) = T (x) + T (y)}.

¶0 m ○ T −1 =m

Proof Since T is an automorphism, m○T −1 is translation invariant.....

¶1 ∃ a d × d matrix A with integer entries so that

detA = ±1 & T (x +Zd) = A(x) +Zd.

Proof sketch: Use the lifting theorem (on p.13).

¶2 If (Td,B(Td),m,T ) is ergodic then At ∶ Zd → Zd has no non-zero
periodic points.

Proof For n ∈ Zd, let χn ∶ Td → S1 be defined by χn(x) ∶= e2πi⟨n,x⟩. We
have that (!)

χn ○ T = χAtn.

Thus if N ∈ Zd ∖ {0} & p ∈ N are so that AtpN = N & AtkN ≠ N ∀ 0 ≤
k < p, then 0 ≠ ∑

p
k=1 χN ○ T k =∶ F is not constant (∵ {χj ∶ j ∈ Zd} are

orthogonal) and T -invariant. V
¶3 (Exercise 8.2): Show that if At ∶ Zd → Zd has no non-zero periodic
points, then

AtnN ÐÐ→
n→∞

∞ ∀ N ∈ Zd ∖ {0};(a)

χN ○ T n
weakly in L2(m)
ÐÐÐÐÐÐÐÐ→

n→∞
0;(b)

m(A ∩ T −nB)ÐÐ→
n→∞

m(A)m(B) ∀ A, B ∈ B(T2);(c)

whence (Td,B(Td),m,T ) is ergodic.

¶4 Π(T ) ⊇ Td ∩Qd

Proof Set

Xq ∶= {1
q ⋅ x ∈ Q

d ∶ x ∈ Zd} ∩Td (q ∈ N).

Since T (x) = A(x) mod 1, T (Xq) ⊂ Xq and since T is injective and
∣Xq ∣ = qd <∞, T ∶Xq →Xq is a bijection.

Thus ∀ x ∈ Xq, ∃ k > ` ≥ 1 such that T kx = T `(x) =∶ y), whence if
` − k = p ≥ 1 then T py = y ⇒ T px = x ∈ Π(T ). V
¶5 If At ∶ Zd → Zd has no non-zero periodic points, then Π(T ) ⊆ Td∩Qd.
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Proof Suppose that x ∈ Π(T ) and that T px = x, then ∃k ∈ Zd such
that Apx = x + k. By aperiodicity of At, 1 is not an eigenvalue of Ap

and k ≠ 0, whence we have x = (Ap − I)−1k ∈ Td ∩Qd. �
¶6 If At ∶ Zd → Zd has no non-zero periodic points, then Pn(T ) =
∣det(An − I)∣.

Proof To see this, note that as above Πn(T ) = T −1
An−I{0} whence

Pn(T ) = ∣det(An − I)∣. �

Exercise 8.3.

(i) Consider T ∶ T2 → T2 defined by T (x, y) = (2x + y, x + y) mod 1.
Show that

(a) P (T ) = logλ+;
and
(b) ζTA(z) =

(1−z)2
(1−λ+z)(1−λ−z)

where λ± ∶=
3±

√
5

2 .

(ii) Consider E ∶ T2 → T2 defined by E(x, y) = (4x+2y,2x+2y) mod 1.
Show that Π(T ) ⫋ Td ∩Qd.

Show that for T ∈ End (Td),
(iii) Pn(T ) = ∆(An − I);

(iv) T is ergodic iff T is topologically transitive;

(v) T is not minimal.
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Week # 9, 18/12/2013.

Subshifts via “grammar”

Let S be a finite set. The word set of S is

S∗ ∶= ⋃
n≥1

Sn.

For Γ ⊂ S∗, the subshift with forbidden word-set Γ is

XΓ ∶= {x ∈ SZ ∶ xba ∶= (xa, . . . , xb) ∉ Γ ∀ −∞ < a < b <∞}

if this set is non-empty.

Exercise 9.1. Show that the subshift with forbidden word-set Γ ⊂ S∗

is a subshift (as defined on page 49) and that any subshift is a subshift
with some forbidden word-set.

Subshift of finite type.
A subshift is a subshift of finite type (SFT) if it is a subshift with a

finite forbidden word-set. For example a topological Markov shift

(TMS – as defined on page 49) is a SFT.

Exercise 9.2. Show that a SFT is topologically isomorphic to some
TMS.

Calculations

Πn(T ) ≅ {(x1, x2, . . . , xn) ∈ S
n
∶ axk,xk+1 = 1 ∀ 1 ≤ k ≤ n − 1, axn,x1 = 1}.

Pn(ΣA, T ) = Tr(A
n
).

ζΣA,T (z) = e
∑∞

n=1
Tr(An)zn

n = eTr(∑
∞

n=1
Anzn

n
)
=

1
det(1−Az) .

The asymptotics of Tr(An) are given by the

Frobenius-Perron Theorem
Suppose that P ∈Md×d (∶= d×d matrices) is such that pi,j ≥ 0 ∀ i, j and

∃ N ≥ 1 such that p
(N)
i,j > 0 ∀ i, j.

Let λmax ∶= max{∣λ∣ ∶ λ ∈ C ∶ ∃ x ∈ Cd, Px = λx}, then
(A) ∃ x+ ∈ Rd

+, Px+ = λmaxx+;
(B) {x ∈ Cd ∶ Px = λmaxx} = {cx+ ∶ c ∈ C};
(C) λ ∈ C ∖ {λmax}, x ∈ Cd such that Px = λx Ô⇒ ∣λ∣ < λmax and

x ∉ Rd
+.
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Before proceeding with the proof, we recall some basics of linear dy-
namics:

(1) For A ∈ Hom(Rd,Rd) the spectral radius of A is

r(A) = max{∣λ∣ ∶ ∃ x ∈ Cd, Ax = λx}.

(2) Gelfand’s formula For any norm ∥⋅∥ on Rd, ∃ limn→∞ ∥An∥
1
n =

r(A) where ∥A∥ ∶= max{∥Ax∥ ∶ ∥x∥ = 1}, whence r(A) ≤ ∥A∥.
(3) ∀ A ∈ Hom(Rd,Rd) and ε > 0, ∃ a norm ∥ ⋅ ∥ on Rd such that

∥A∥ ≤ r(A) + ε.

For λ ∈ C an eigenvalue of A ∈ Hom(Rd,Rd), let

Eλ ∶= {x ∈ Rd ∶ ∃ n ≥ 1 (A − λI)nx = 0},

Eλ ∶= {x ∈ Cd ∶ ∃ n ≥ 1 (A − λI)nx = 0}

and
Ẽλ ∶= (Eλ ⊕Eλ) ∩Rd.

Note that Eλ = {0} if λ ∉ R, and for λ ∈ R, Ẽλ = Eλ.
(4) If λ = ρeiθ ∉ R, then dim Ẽλ = 2 and there is a basis of Ẽλ such

that

A∣Ẽλ = ρRθ ∶= (
ρ cos θ ρ sin θ
−ρ sin θ ρ cos θ

) ,

whence ∥Anx∥ ≍ ρn ∀ x ∈ Ẽλ ∖ {0}.

Proof of the Frobenius-Perron Theorem
Let Π ∶= [0,∞)d. Evidently PΠ → Π. Let Σ ∶= {x ∈ Π ∶ ∥x∥1 = 1}.

Evidently, Σ is convex. We claim that

¶0 PNΠ ∖ {0} ⊂ Πo.

Proof Let xj ≥ 0 ∀ & xj0 > 0, then for any i,

(PNx)i =∑
j

p
(N)
i,j xj ≥ p

(N)
i,j0

xj0 > 0. 2�

¶1 0 ∉ PΣ.

Proof By ¶0, 0 ∉ PNΣ. If N > 1 and 0 = Py, y ∈ σ, then 0 = PN−10 =
PNy ≠ 0.4

Define T ∶ Σ→ Σ by T (x) ∶= ∥Px∥−1Px.

● We claim that
¶2 T ∶ [x, y] → [Tx,Ty] is continuous ∀ x, y ∈ Σ, x ≠ y where [x, y] ∶=
{tx + (1 − t)y ∶ t ∈ [0,1]} and a homeomorphism iff Tx ≠ Ty.

● This property is called weak convexity.

Proof

T (tx+(1− t)y) = ∥tPx+(1− t)Py∥−1
1 (tPx+(1− t)Py) = sTx+(1−s)Ty
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where

s = s(t) ∶=
t∥Px∥1

t∥Px∥1 + (1 − t)∥Py∥1

.

Evidently s ∶ [0,1] → [0,1] is continuous and a homeomorphism iff
Tx ≠ Ty. �

By ¶2, if C ⊂ Σ is convex, then so are TC and T −1C. We claim that
for C ⊂ Σ convex:

¶3 T (Ext C) ⊇ Ext TC.

Proof

T (∫
C
xdµ(x)) = ∫ TCTxdν(x). 2�

Let Σ0 ∶= ⋂n≥1 T nΣ, then Σ0 ⊂ Σ is closed, convex and T -invariant.

¶4 Σ0 ⊂ Σo.

Proof By ¶0, PN ∶ Π ∖ {0} → Πo and we have TN ∶ Σ → Σo, whence
Σ0 ⊂ TNΣ ⊂ Σo. �.

¶5 #Ext Σ0 ≤ d.

Proof We have that Ext Σ = {e1, . . . , ed} where (ek)j = δk,j. ∃ nk →
∞, E1, . . . ,Ed ∈ Σ0 so that T nkej → Ej ∀ 1 ≤ j ≤ d. It follows from
Σ0 ⊂ T nkΣ and weak convexity of T that

∀ x ∈ Σ0 ∃ p
(k) ∈ P({1, . . . , d}), x =

d

∑
j=1

p
(k)
j T nkej,

whence for some k` →∞, p(k`) → p ∈ P({1, . . . , d}), x = ∑
d
j=1 pjEj and

x ∉ {E1, . . . ,Ed} Ô⇒ x ∉ ExtΣ0.
In other words, ExtΣ0 ⊂ {E1, . . . ,Ed}.V

Connection with positive eigenvalues.

Since ExtΣ0 is finite, we have by ¶3 that T ∶ ExtΣ0 → ExtΣ0 is
bijective. Thus ∀ e ∈ ExtΣ0 ∃ ke ≥ 1 such that T kee = e. Multiplying
the ke’s,

● ∃ κ ≥ 1 so that ∀ e ∈ ExtΣ0 ∃ λ = λe > 0 such that P κe = λe.

¶6 #Σ0 = 1.

Proof If not ∃ e ≠ f ∈ ExtΣ0 and λe, λf > 0 such that P κe = λee, P κf =
λff .
In case λe = λf , choose a, b ≥ 0 such that g ∶= ae − bf ∈ ∂Σ, then
P κ(ae − bf) = λe(ae − bf), whence Σo ∋ T κN(ae − bf) = (ae − bf) ∈ ∂Σ -
contradiction.4
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In case λe > λf , note that f − εe ∈ Π ∀ ε > 0 small enough, whence
(fixing such ε > 0) 1

λne
P κn(f − εe) ∈ Π ∀ n ≥ 1; but

1
λne
P κn(f − εe) =

λnf
λne
f − εe − ελne e + o(1) ∉ Π for n large. 4 2�

Write Σ0 = {σ}, then T nx→ σ ∀ x ∈ Σ and Tσ = σ whence Pσ = λ+σ
where λ+ > 0. This proves (A).

¶7 ∄ x ∈ Rd, x ≠ cσ (some c ∈ R) such that Px = ±λ+x.

Proof Otherwise (similar to the above) ∃ a ≥ 0, b ∈ R such that
g ∶= aσ − bx ∈ ∂Σ whence g = T 2Ng ∈ T 2NΣ ⊂ Σo - contradiction.4

Statement (B) follows from ¶7.

¶8 If µ ∈ R is another e.v. of P , then ∣µ∣ < λ.

Proof By ¶7, if not, then ∣µ∣ > λ. Fix Pe = µe. For ε > 0 sufficiently
small, σ±εe ∈ Πo whence also {P n(σ±εe)} ⊆ Πo. However {P n(σ±εe)} =
{±εµne + o(µn)} ⊈ Πo for large n. �

¶9 If µ ∈ C, µ ≠ λ+ is an e.v. of P , then ∣µ∣ < λ.

Proof Suppose that µ = ρeiθ ∉ R and let x ∈ Ẽµ ∖Π.
In case ρ = ∣µ∣ > λ, note that for ε > 0 sufficiently small, σ ± εx ∈ Πo,
whence also P n(σ ± εx) ∈ Πo. However, ∥P nx∥ ≍ ρn whence by (4),

P n(σ ± εx) = ±εP nx + λnσ = ±εP nx(1 + o(1))

are not both in Πo.
In case ρ = ∣µ∣ = λ, note that for appropriate a, b ∈ R and x ∈ Ẽµ, aσ+bx ∈
∂Σ, whence as before, T n(aσ + bx) → σ ∈ Σo. However, ∃ nk →∞ such
that nkθ mod 2π → 0 (i.e. Rnk

θ → Id.), whence 1
λnk P

nk(aσ + bx) →
aσ + bx and T nk(aσ + bx)→ aσ + bx ∈ ∂Σ. V

Statement (C) follows from ¶8 & ¶9. The theorem is established.
�

Corollary

p(ΣA, T ) = logλ+(A).

Proof

Pn(ΣA, T ) = Tr(An)∝ λ+(A)n.

�
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Exercise 9.3.
(i) Show that the TMS (ΣA, T ) is topologically mixing iff ∃ N > 1

so that ANi,j > 0 ∀ i, j ∈ S.
(ii) Exhibit a TMS which is topologically transitive but not topolog-

ically mixing.
(iii) Show that if (X,S) is a topologically mixing topological dynam-

ical system and (Y,T ) is topologically transitive, then (X × Y,S × T )
is topologically transitive.

TOPOLOGICAL ENTROPY

Given a compact topological space X, and an open cover A of X,
define

N (A) ∶= min{∣U ∣ ∶ U ⊂ A a subcover}.

The open cover A refines the open cover B (written A ≻B) if ∀ A ∈
A, ∃ B ∈B so that A ⊂ B.

Proposition E1 If B ≺ A, then N (B) ≤ N (A).

Proof Suppose that A′ ⊂ A is a subcover, then since B ≺ A, ∃ f ∶
A′ → B so that A ⊂ f(A). Evidently, f(A′) ⊂ B is a subcover and
∣f(A′)∣ ≤ ∣A′∣. �

Given open covers A and B let A ∨B ∶= {A ∩B ∶ A ∈ A, B ∈B}.
Evidently,

(0) N (A ∨B) ≤ N (A)N (B).

Now let T ∶X →X be continuous.
For an open cover A of X, set

a(n) ∶= logN (An−1
0 ) where An−1

0 = An−1
0 (T ) ∶=

n−1

⋁
k=0

T −kA.

By (0), a(m + n) ≤ a(m) + a(n) whence (!) a(n)
n Ð→

n→∞
inf`

a(`
` and

∃ lim
n→∞

1
n logN (An−1

0 (T )) =∶ h(T,A).

By proposition E1, if B ≺ A, then h(T,B) ≤ h(T,A).

● h(T,AK−1
0 ) = h(T,A) ∀ K ≥ 1.

Proof

(AK−1
0 )K−1

0 = An+K−1
0 . �
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Exercise 9.4. Show that if T ∶ X → X is a homeomorphism, then
h(T,AK

J ) = h(T,A) ∀ A open cover, J,K ∈ Z, J < K where AK
J ∶=

⋁K`=J T
−`A.

Define the topological entropy of T by

h(T ) ∶= sup
A
h(T,A).

Proposition E2
If (Y,S) is a factor of (X,T ) then

h(T ) ≥ h(S).

Proof
Suppose that π ∶ X → Y is onto, continuous and π ○ T = S ○ π.

If A is an open cover of Y , then π−1A is an open cover of X and
N (π−1A) = N (A). Also π−1⋁K−1

k=0 S
−kA = ⋁K−1

k=0 T
−kπ−1A, whence

h(S,A) = h(T,π−1A) ≤ h(T )

and h(S) = supA h(S,A) ≤ h(T ). �

Calculation of h(T ) for T a subshift.
Let S be a finite set, let X ⊂ SZ be a subshift and let T be the shift

on X.
Consider the open cover α ∶= {[s]0 ∩X ∶ s ∈ S}.

¶1 h(T,α) = limn→∞
1
n log ∣αn−1

0 ∣.

Proof Since αn−1
0 is a partition of X, there are no (nontrivial) sub-

covers and N (αn−1
0 ) = ∣αn−1

0 ∣. V
For n ≥ 1, consider

αn−n =
n

⋁
k=−n

T −kα = {[s−n, . . . , sn]−n ∩X ∶ s−n, . . . , sn ∈ S}.

¶2 If B is another open cover, then ∃ N ≥ 1 such that each αN−N ≻B.

Proof Define t(x, y) ∶= min{∣n∣ ∶ xn ≠ yn} ≤ ∞ (eq. iff x = y) and
d(x, y) ∶= (1

2)
t(x,y) then d is a metric generating the topology on X

with B0(x,
1

2n+1 ) = [x−n, . . . , xn]−n.
Since B is an open cover, ∀ x ∈ X, ∃ B ∈ B, Nx ≥ 1 such that

Cx ∶= [x−Nx , . . . , xNx]−Nx ⊂ B. The collection {Cx ∶ x ∈ X} is an open
cover of X and by compactness ∃ F ⊂X finite such that X = ⋃x∈F Cx.
Let N ∶= maxx∈F Nx, then B ≺ {Cx ∶ x ∈ F} ≺ αN−N . V
¶3 h(T ) = h(T,α).
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Proof For any open cover B, by ¶2 ∃ N ≥ 1 such that αN−N ≻ B
whence

h(T,B) ≤ h(T,αN−N)
exercise

= h(T,α). V

Proposition E3
If X = ΣA is a topological Markov shift with transition matrix A ∶

S × S → {0,1}, s.t. ∃ N ≥ 1, ANs,t > 0 ∀ s, t ∈ S; then

h(T ) = logλ+(A) = P (T ).

Proof By ¶1 & ¶3,

h(T ) = h(T,α) = lim
n→∞

1

n
log #αn−1

0 .

By the Perron-Frobenius theorem,

#αn−1
0 = ∑

s,t∈S
Ans,t ∝ λ+(A)n,

whence
1

n
log #αn−1

0 ÐÐ→
n→∞

logλ+(A). 2�

Exercise 9.5: Conjugacy of TMS’s.
Let S & S′ be finite sets and let ΣA ⊂ SZ & ΣB ⊂ S′Z (where A ∶

S × S → {0,1}, B ∶ S′ × S′ → {0,1}) be mixing TMS’s and let T denote
the shift map.

(a) Show that if (ΣA, T ) & (ΣB, T ) are topologically conjugate, then
λ+(A) = λ+(B).

(b) Show that for k, ` ≥ 2, k ≠ ` that ({1,2, . . . , k}Z, T ) and ({1,2, . . . , `}Z, T )
are not topologically conjugate to (X`, T ) for k ≠ `.

Exercise 9.6: Frobenius theory of positive matrices ctd.
Suppose that A ∈ Md×d (∶= d × d matrices) is such that Ai,j ≥ 0 ∀ i, j

and ∃ N ≥ 1 such that A
(N)
i,j > 0 ∀ i, j. Let λmax(A) be the maximal

eigenvalue of A.

(a) Show that λmax(At) = λmax(A) =∶ λ+ where Ati,j ∶= Aj,i.

Let x, y ∈ Rd
+ be the positive eigenvectors Ax = λ+x & Aty = λ+y.

Define P ∈Md×d by

pi,j ∶=
Ai,jyj
λ+yi

.
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(b) Show that P is a stochastic matrix in the sense that pi,j ≥ 0 ∀ 1 ≤

i, j ≤ d and ∑
d
j=1 pi,j = 1 ∀ 1 ≤ i ≤ d.

(c) Show that ∃ π ∈ P({1, . . . , d}) so that ∑
d
i=1 πipi,j = πj ∀ 1 ≤ j ≤ d.

Hint Normalize xiyi.
The probability vector π is aka the invariant distribution of P .

Exercise 9.7: Stochastic matrices.
Suppose that S is a finite set and P ∶ S×S → R is a stochastic matrix

in the sense that pi,j ≥ 0 ∀ i, j ∈ S and ∑j∈S pi,j = 1 ∀ i ∈ S; and suppose

that ∃ q ≥ 1 such that p
(q)
i,j > 0 ∀ i, j ∈ S.

(a) Prove that ∃ 0 < θ < 1 <M such that

∣p
(n)
i,j − πj ∣ ≤Mθn ∀ n ≥ 1, ∀ i, j ∈ S

where π ∈ P(S) is the invariant distribution of P .

b) Show that ∃ µ ∈ P(SZ) such that

µ([s0, s1, . . . , sN]) = πs0ps0,s1 . . . psN−1,sN ∀ s0, s1, . . . , sN ∈ S.

The closed support of µ is Supp (µ) ∶= {x ∈ SZ ∶ µ(U) > 0 ∀ x ∈ U ∈ T }
(where T denotes the open sets in SZ).

c) Show that Supp (µ) = ΣA where A ∶ S × S → {0,1} is defined by
A(s, t) = 1 if P (s, t) > 0 and A(s, t) = P (s, t) = 0 otherwise.

d) Show that (ΣA, T, µ) is a mixing probability preserving transforma-
tion.

d-entropy

Separated sets.
Let Y be a set, and let ρ be a metric on Y . Recall that F ⊂ Y is

(ρ, ε)-separated if ρ(x, y) ≥ ε ∀ x, y ∈ F, x ≠ y; and that F is (ρ, ε)-dense
in Y if ∀ y ∈ Y, ∃x ∈ F such that ρ(x, y) < ε. Using Zorn’s lemma it
can be shown that ∃ maximal ε-separated sets.

Define

S(ρ, ε) ∶= max{∣F ∣ ∶ F ⊂ Y (ρ, ε) − separated},

D(ρ, ε) ∶= min{∣F ∣ ∶ F ⊂ Y (ρ, ε) − dense in Y },

and
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N(ρ, ε) ∶=

min{N ≥ 1 ∶ Y =
N

⋃
k=1

Ak, Aj ⊂ Y, ρ − diam (Aj) < ε ∀j}.

Proposition E4

(i) D(ρ, ε) ≤ S(ρ, ε) ≤D(ρ, ε/2).

(ii) D(ρ, ε) ≤ N(ρ, ε) ≤D(ρ, ε/2).

Proof
(i) S(ρ, ε) ≥ D(ρ, ε) since a maximal (ρ, ε)-separated set is (ρ, ε)-

dense.
To see S(ρ, ε) ≤ D(ρ, ε/2) let F be (ρ, ε)-separated and let G be

(ρ, ε/2)-dense. ∃ f ∶ F → G such that d(x, f(x)) < ε/2 ∀ x ∈ F . It
follows that f is injective, since f(x1) = f(x2) = y Ô⇒ d(x1, x2) ≤
d(x1, y) + d(y, x2) < ε Ô⇒ x1 = x2. Thus ∣F ∣ ≤ ∣G∣ whence S(ρ, ε) ≤
D(ρ, ε/2).

(ii) Suppose that Y = ⋃Nk=1Ak where ρ − diam (Aj) ≤ ε and choose
xi ∈ Ai (1 ≤ i ≤ N). Evidently {xi ∶ 1 ≤ i ≤ N} is (ρ, ε)-dense whence
D(ρ, ε) ≤ N(ρ, ε). Now let F be (ρ, ε/2)-dense, then X = ⋃y∈F B(y, ε/2)
and ρ − diam (B(y, ε/2)) ≤ ε ∀y ∈ F thus N(ρ, ε) ≤ ∣F ∣. �

Minkowski-Besicovitch Box dimension.
The box dimension of Y with respect to ρ is

dimb(Y, ρ) ∶= lim
ε→0

logD(ρ, ε)

log 1/ε
.

Exercise 9.8: Box dimension.
Show that:

a) if X ⊂ Rκ, X =Xo and d is the Euclidean metric, then dimb(X,d) =
κ;

b) dimb(X,d(r)) =
log 2

log 1/r where X ∶= {0,1}N, 0 < r < 1 and d(r)(x, y) ∶=

rt(x,y);

c) dimb(C,d) = log 2
log 3 where C ⊂ [0,1] is the classical “middle third”

Cantor set where d(x, y) = ∣x − y∣.
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d-entropy and separated sets.
For (X,d) a compact metric space, T ∶ X → X a continuous map,

define the sequence of dynamical metrics

dn(x, y) = max
0≤k≤n−1

d(T kx,T ky).

Note that D(dn, ε) is the minimum number of ”initial conditions”
which ensure ε-approximation up to time n of the dynamical system
(under any initial condition).

The d- entropy of (X,T ) is

hd(T ) ∶= lim
ε→0

lim
n→∞

logD(dn,ε)
n .

The d-entropy can be thought of as measuring the “degree of sensi-
tivity of the dynamical system’s dependence on initial conditions” (one
of the components of so-called “chaos”).

Example. Let (X,T ) = ({0,1}N, shift) and define d = d(r)(x, y) ∶= rt(x,y)

where 0 < r < 1 and min{n ≥ 1 ∶ xn ≠ yn} ≤∞, then (X,dr) is a compact
metric space, the metrics d(r) (0 < r < 1) are equivalent and (fixing
0 < r < 1)

● dn(x, y) = min{d(x,y)rn−1 , r}

Proof

dn(x, y) = r
min0≤k≤n−1 t(Tkx,Tky) = r(t(x,y)−n+1)∨1 = d(x,y)

rn−1 ∧ r. �

● For ε ∈ [rK+1, rK),

B(dn)(x, ε) = {y ∈X ∶ d(x,y)
rn−1 ∧ r ≤ ε} = B(d)(x, rn+K) = [x1, . . . , xn+K−1].

● For ε ∈ [rK+1, rK), D(dn, ε) = 2n.

● hd(T ) = log 2.
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Week # 10, 25/12/2013.

Lemma E5

∃ lim
n→∞

logN(dn,ε)
n ∀ ε > 0.

Proof
This is based on the (easy) observation that for k, ` ≥ 1,

dk − diam (A) < ε, d` − diam (B) < ε Ô⇒ dk+` − diam (A ∩ T −kB) < ε.

Thus N(dk+`, ε) ≤ N(dk, ε)N(d`, ε) and by subadditivity

logN(dn,ε)
n → inf

j≥1

logN(dj ,ε)
j .

�

Corollary E6

hd(T ) = lim
ε→0

lim
n→∞

logN(dn,ε)
n

= lim
ε→0

lim
n→∞

logD(dn,ε)
n = lim

ε→0
lim
n→∞

logD(dn,ε)
n

= lim
ε→0

lim
n→∞

logS(dn,ε)
n = lim

ε→0
lim
n→∞

logS(dn,ε)
n .

Proposition E7
If d′ is another metric on X equivalent to d, then hd′(T ) = hd(T ).

Proof
∀ ε > 0, ∃ δ(ε) > 0 such that d′(x, y) < δ(ε) Ô⇒ d(x, y) < ε. It

follows that for n ≥ 1, d′n(x, y) < δ(ε) Ô⇒ dn(x, y) < ε. Thus if
F ⊂X, then
F (dn, ε)-separated Ô⇒ F (d′n, δ(ε))-separated,

whence

S(dn, ε) ≤ S(d
′, n, δ(ε)), & hd(T ) ≤ hd′(T ).

�

Before proving that hd(T ) = h(T ), we need the concept of “Lebesgue
number”.

Definition Given an open cover Λ of a set subset K of a metric space
(X,d), the Lebesgue number of Λ with respect to K is

ε(Λ,K) ∶= sup{ε ≥ 0 ∶ ∀ x ∈K, ∃ U ∈ Λ such that B0(x, ε) ⊂ U}.

Lebesgue’s lemma says that if K is compact, then ε(Λ,K) > 0.
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Lebesgue’s Lemma Suppose that X is a metric space, and that K ⊂
X is compact. If Λ is an open cover of K, then ∃ ε = ε(Λ,K) > 0 such
that

∀ x ∈K, ∃ U ∈ Λ such that B(x, ε) ⊂ U.

Proof If not, then

∀ ε > 0 ∃ x(ε) such that B(x(ε), ε)) ⊈ U ∀ U ∈ Λ.

In particular, ∃ xn ∈K and εn → 0 such that

B(xn, εn) ⊈ U ∀ U ∈ Λ.

Passing to a subsequence, ∃ y ∈ K such that xn → y and ∃ V ∈ Λ such
that y ∈ V . Since V is open, ∃ d > 0 such that B(y, δ) ⊂ V . For n ≥ 1
large enough, εn, d(y, xn) < δ/2

z ∈ B(xn, δ/2) ⇒ d(y, z) ≤ d(y, xn) + d(xn, z) < δ

and B(xn, εn) ⊂ B(xn, δ/2) ⊂ B(y, δ) ⊂ V contradicting B(xn, εn) ⊈
U ∀ U ∈ Λ.

�

Theorem E8

hd(T ) = h(T ).

Proof

≤) If supA∈A diam (A) ≤ ε, then dn − diam. (a) ≤ ε ∀ a ∈ An−1
0 , whence

N (An−1
0 ) ≥ N(dn, ε). Thus, hd(T ) ≤ h(T ). V

≥) Let A be an open cover of X, and suppose that η > 0 is smaller
than its Lebesgue number (i.e. ∀ x ∈X ∃ A ∈ A, B(x, η) ⊂ A), then (!)
∀ x ∈X ∃ a ∈ ⋁n−1

k=0 T
−kA such that Bdn(x, η) ⊂ a.

Thus, for F (dn, η)-dense, ∃ f ∶ F → An−1
0 such that Bdn(x, η) ⊂ f(x),

whence f(F ) ⊂ An−1
0 is a subcover with ∣f(F ) ≤ ∣F ∣. This shows that

N (An−1
0 ) ≤D(dn, η), whence hd(T ) ≥ h(T ). V

Exercise 10.1.
Let (X,T ) be a continuous map of a compact metric space. Show

that

(i) If Y ⊂X is closed and T -invariant, then h(T ∣Y ) ≤ h(T ).

(ii) If X = ⋃Li=1 Yi where each Yi is closed and T -invariant, then

h(T ) = max
1≤i≤L

h(T ∣Yi).
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(iii) h(T n) = nh(T ) ∀ n ∈ N and h(T −1) = h(T ) if T is a homeomor-
phism.

(iv) h(T × S) = h(T ) + h(S) whenever (Y,S) is also a continuous map
of a compact metric space.

(iv) Is there a topological dynamical system (X,T ) with h(T ) > 0 but
Π(T ) = ∅?

More calculations of h(T )

¶1 If T ∶ X → X is an isometry then h(T ) = 0. To see this note that

d
(T )
n ≡ d and D(dn, ε)↛∞.

¶2 Lipschitz maps. The box dimension of the metric space (X,d) is

dimb(X) ∶= lim
ε→0

logD(d,ε)
log 1/ε .

Lemma E9
Let (X,T ) be a Lipschitz continuous map of a compact metric space,

then

h(T ) ≤ dimb(X)max{0, logDT}

where DT ∶= supx,y∈X
d(Tx,Ty)
d(x,y) .

Proof
Let L > 1 ∨DT , then given ε > 0, n ≥ 1,

d(x, y) ≤ L−nε Ô⇒

d(T kx,T ky) ≤ Lk−nε ≤ ε ∀ 0 ≤ k ≤ n Ô⇒

dn(x, y) ≤ ε,

whence S(T )(dn, ε) ≤ S(d,L−nε) and

lim
n→∞

logS(T )(dn,ε)
n ≤ lim

n→∞
logS(d,L−nε)

n ≤ lim
n→∞

logD(d,L−nε/2)
n

≤ lim
δ→0

logD(d,δ)
log 1/δ logL

dimb(X) logL. �
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¶3 Anzai skew products.
Consider T = Tα,ψ ∶ T2 → T2 defined by T (x, y) = (x + α, y + ψ(x))

where ψ ∶ T → T is C1 (i.e. ∃ Ψ ∶ R → R, C1 such that Ψ(x) =
ψ(x mod 1) mod 1). We have that DT (x) = ( 1 0

ψ′(x) 1 ), whence (!)
∥DT (x)∥ = O(∣ψ′(x)∣) and DT = O(supx ∣ψ

′(x)∣).
Fixing ψ, we have that (for n ≥ 1) T n(x, y) = (x + nα, y + ψn(x))

where ψn(x) ∶= ∑
n−1
k=0 ψ(x + kα)), whence DTn = O(n) as n→∞.

By lemma E9 and exercise 10.2 (iii), we have that

h(T ) = h(Tn)
n = O( logn

n ) as n→∞

whence h(T ) = 0. �

¶4 “Hyperbolic” endomorphisms of T2.
Let A ∈ G2(Z) ∶= {A ∈ Gl(2,R) ∶ ai,j ∈ Z} with eigenvalues λ1, λ2 ∈

R, ∣λ1∣ > ∣λ2∣ and let T = TA ∶ T2 → T2, TA(x+Z2) ∶= Ax+Z2. We show
that

© h(T ) = ∑i=1,2, ∣λi∣>1 log ∣λi∣.

Proof Set µi ∶= ∣λi∣ ∨ 1, then µ1 = ∣λ1∣ > 1 ∵ ∣detA∣ = ∣λ1∣ ⋅ ∣λ2∣ ≥ 1.

It suffices to show that

- h(T ) = ∑i=1,2 logµi.
Let ui ∈ R2, Aui = λi (i = 1,2) and consider T2 equipped with the

metric d induced by the norm ∥a1u1 + a2u2∥ ∶= ∣a1∣ ∨ ∣a2∣. Evidently for
x ∈ T2, n ≥ 0, h, k ∈ R small,

T k(x + hu1 + ku2) = T
nx + hλn1u1 + kλ

n
2u2 (0 ≤ k < n)

whence

dn(x,x + hu1 + ku2) ∶= max
0≤k<n

d(T kx,T k(x + hu1 + ku2)) = µ
n
1 ∣h∣ ∨ µ

n
2 ∣k∣.

Thus
B(dn)(x, ε) = {x + hu1 + ku2 ∶ ∣h∣ ≤ ε

µn1
, ∣k∣ ≤ ε

µn2
}.

If F ⊂ T2 is (dn, ε)-dense, then T2 ⊂ ⋃x∈F 1B(dn)(x,ε) whence

1 =m(T2) ≤ ∑
x∈F

m(B(dn)(x, ε)) = ∣F ∣ε2 sin θ
µn1µ

n
2

where θ =∠(0, u1, u2). Thus D(dn, ε) ≥
µn1µ

n
2

ε2 sin θ and h(T ) ≥ logµ1+logµ2.

To show D(dn, ε) ≪ µn1µ
n
2 (for fixed ε > 0) choose Γ ⊂ R2 countable

so that {γ +B(dn)(0, ε) = B(dn)(γ, ε) ∶ γ ∈ Γ} tiles R2 in the sense that

⋃
γ∈Γ

B(dn)(γ, ε) = R2 & m(B
(dn)
0 (γ, ε) ∩B

(dn)
0 (γ′, ε)) = 0 (γ ≠ γ′ ∈ Γ).
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Let Γ0 ∶= {γ ∈ Γ ∶ B
(dn)
0 (γ, ε)∩ [0,1]2 ≠ ∅, then F ∶= {γ +Z2 ∶ γ ∈ Γ0} is

(dn, ε)-dense and D(dn, ε) ≤ ∣F ∣ ≤ ∣Γ0∣. To estimate ∣Γ0∣, note that

B(dn)(γ, ε) ⊂ [−ε,1 + ε]2 ∀ γ ∈ Γ0

whence

∣Γ0∣ ≤
m([−ε,1+ε]2)
m(B(dn)(0,ε)

and (-) follows. V

General endomorphisms of Td

Theorem 10.1 Let T ∶ Td → Td be a surjective endomorphism with
T (x + Zd) = A(x) + Zd with A ∈ Gd(Z) ∶= {A ∈ Gl(d,R) ∶ ai,j ∈ Z}. Let
{λi ∶ 1 ≤ i ≤ d} ⊂ C be the eigenvalues of A (counting multiplicity),
then

h(T ) = ∑
1≤j≤d, ∣λj ∣>1

log ∣λj ∣.

Non-compact metric spaces.
Let (Y, ρ) be a metric space and let K ⊂ Y be compact.

● F ⊂K is (ρ, ε)-separated if ρ(x, y) ≥ ε ∀ x, y ∈ F, x ≠ y; and that F
is (ρ, ε)-dense in K if ∀ y ∈K, ∃x ∈ F such that ρ(x, y) < ε.

Define

S(K,ρ, ε) ∶= max{∣F ∣ ∶ F ⊂K (ρ, ε) − separated},

D(K,ρ, ε) ∶= min{∣F ∣ ∶ F ⊂ Y (ρ, ε) − dense in K},

and

N(K,ρ, ε) ∶=

min{N ≥ 1 ∶ K ⊆
N

⋃
k=1

Ak, Aj ⊂ Y, ρ − diam (Aj) < ε ∀j}.

Proposition 10.2

(i) D(K,ρ, ε) ≤ S(K,ρ, ε) ≤D(K,ρ, ε/2).

(ii) D(K,ρ, ε) ≤ N(K,ρ, ε) ≤D(K,ρ, ε/2).

Proof See propn. E4
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d-entropy on non-compact spaces.
For (X,d) a metric space, T ∶X →X continuous define as before,

dn(x, y) = max
0≤k≤n−1

d(T kx,T ky).

.

For K ⊂X compact, the d- entropy of (X,T ) on K is

hd(T,K) ∶= lim
ε→0

lim
n→∞

logD(dn,ε)
n .

The d-entropy of (X,T ) is

hd(T ) ∶= sup{hd(T,K) ∶ K ⊂X compact}.

Call a metric dynamical system (X,d,T ) uniformly continuous (UCMDS)
if T is uniformly continuous w.r.t. d (abbr. T ∈ UC (X,d). Note that

if d′ is a metric on X uniformly equivalent to d (d
unif.
≅ d′) in the sense

that
Id ∶ (X,d)→ (X,d′) & Id ∶ (X,d′)→ (X,d)

are both uniformly continuous, then (X,d,T ) is also a UCMDS.

10.2 Equivalence proposition Let (X,d,T ) be a UCMDS and let

d
unif.
≅ d′, then

hd(T ) = hd′(T ).

Proof sketch It follows that ∀ ε > 0 ∃ 0 < δ(ε) < ε so that

d(x, y) < δ(ε) Ô⇒ d′(x, y) < ε & d′(x, y) < δ(ε) Ô⇒ d(x, y) < ε.

It follows that for each n ≥ 1,

dn(x, y) < δ(ε) Ô⇒ d′n(x, y) < ε & d′n(x, y) < δ(ε) Ô⇒ dn(x, y) < ε

whence for each K ⊂X compact,

S(K,dn, ε) ≤ S(K,d
′
n, δ(ε)) & S(K,d′n, ε) ≤ S(K,dn, δ(ε)). . . . 2�

10.3 Localization proposition Let (X,d,T ) be a UCMDS and let
K, K1, . . . ,KN ⊂X be compact. If K ⊂ ⋃Nj=1Kj, then

hd(T,K) ≤ max
1≤j≤N

hd(T,Kj).

Proof sketch For each ε > 0 & n ≥ 1,

S(K,dn, ε) ≤
N

∑
j=1

S(Kj, dn, ε) ≤ N max
1≤j≤N

S(Kj, dn, ε).

∃ nt →∞ so that
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● 1
nt

logS(K,dnt , ε)ÐÐ→t→∞
limn→∞

1
n logS(K,dn, ε);

● ∃ J so that max1≤j≤N S(Kj, dnt , ε) = S(KJ , dnt , ε) ∀ t.

It follows that

lim
n→∞

1

n
logS(K,dn, ε)←ÐÐ

t→∞

1

nt
logS(K,dnt , ε)

≲
1

nt
logS(KJ , dnt , ε)

≲ lim
n→∞

1

n
logS(KKJ,dn, ε).

Thus hd(T,K) ≤ max1≤j≤N hd(T,Kj). V

10.4 Small set corollary For a UCMDS (X,d,T ), for each ε > 0,

hd(T ) = sup{hd(T,K) ∶ K ⊂X compact & diamK < ε}.

10.5 Entropy lifting proposition
Let (Z,ρ,R) & (X,d,T ) be a UCMDSs and suppose that π ∶ Z →X is

continuous, surjective & a uniform, local isometry8.
If π ○R = T ○ π, then

hd(T ) = hρ(R).

Proof sketch Fix 0 < ε < ∆ so that ρ(x, y) < ε Ô⇒ ρ(Rx,Ry) < ∆
and d(x, y) < ε Ô⇒ d(Tx,Ty) < ∆.

Let K ⊂ Bρ(x,∆) be compact and let F ⊂ K be (ρn, ε)-separated.
It follows that π(F ) ⊂ π(K) is (dn, ε)-separated since for x ≠ y ∈
F, ∃ 0 ≤ k < n so that ε ≤ ρ(Rkx,Rky) < ∆ whence d(T kπ(x), T kπ(y)) =
ρ(Rkx,Rky) ≥ ε. Thus S(K,ρn, ε) ≤ S(π(K), dn, ε).

The reverse inequality follows analogously, so S(K,ρn, ε) = S(π(K), dn, ε)
................V

10.6 Lemma Let T ∶ Rd → Rd be a linear mapping. Suppose that
ρ(x, y) = ∥x−y∥ where ∥⋅∥ is a norm on Rd. Let m be Lebesgue measure,
then

hρ(T ) = H ∶= lim
n→∞

1

n
log

1

m(Bdn(0,1))
.

Proof sketch

Proof that hd(T,K) ≥ H whenever m(K) > 0:

8in the sense that ∃ ∆ > 0 so that π ∶ Bρ(x,∆)→ Bd(π(x),∆) is an isometry ∀ x ∈X
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Fix K ⊂ Rd compact with m(K) > 0. If F is (ρn, ε)-dense in K, then
K ⊂ ⋃x∈F Bρn(x,2ε) whence

m(K) ≤ ∑
x∈F

m(Bρn(x,2ε)) = ∣F ∣m(m(Bρn(0,2ε)) = ∣F ∣(2ε)dm(m(Bρn(0,1))

since

Bρn(0, r) ∶=
n−1

⋂
k=0

T −kB(T kx, r) = rBρn(0,1),

whence

S(K,dn, ε) ≥
m(K)

(2ε)dm(m(Bρn(0,1))
Ô⇒

1

n
S(K,dn, ε) ≳

n→∞

1

n
log

1

m(Bdn(0,1))
.

Proof that hd(T ) ≤ H:
Let Cr = z + [−r, r]d & 0 < ε < r. If E ⊂ Cr is (ρn,2ε)-separated, then

C3r ⊃ Cr+2ε ⊇ ⊍
x∈E

Bρn(x, ε) &

m(C3r) ≥ ∑
x∈E

m(Bρn(x, ε)) = ∣E∣εdm(m(Bρn(0,1))

whence

S(Cr, ρn, ε) ≤
m(C3r)

εd
⋅

1

m(m(Bρn(0,1))
.

It follows from this that hd(T,Cr) ≤ H. V
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Week # 11, 1/1/2014.

11.1 Proposition (Entropy of a linear map) Let T ∶ Rd → Rd

be a linear mapping. Suppose that ρ(x, y) = ∥x − y∥2, Let Λ ⊂ C be the
collection of eigenvalues of T ocuuring with multiplicities dλ, λ ∈ Λ,
then

hρ(T ) = ∑
λ∈Λ ∣λ∣>1

dλ log ∣λ∣.

Proof sketch
By Jordan’s theorem

Rd ≅⊕
λ∈Λ

Vλ

where dimVλ = dλ and (T −λId)dλ ∣Vλ ≡ 0. In particular, TEλ ⊂ Eλ ∀ λ ∈
Λ. Let

W+ ∶= ⊕
λ∈Λ, ∣λ∣>1

Vλ ≅ Rd+ & W0 ∶= ⊕
λ∈Λ, ∣λ∣≤1

Vλ = V
⊥
+ ≅ Rd0

where d+ = ∑λ∈Λ, ∣λ∣>1 dλ & d0 = d − d+.
Let ρj(x, y) = ∥x− y∥2, x, y ∈Wj, j = +,0 and set η((x, y), (x′, y′)) ∶=

ρ+(x,x′) ∨ ρ0(y, y′) & m = m+ ×m0 where mj is Lebesgue measure on
Wj, j = +,0.

By lemma 10.6

hρ(T ) = hη(T )

= lim
n→∞

1

n
log

1

m(Bηn(0,1))

== lim
n→∞

(
1

n
(log

1

m+(Bρ+n(0,1))
+ log

1

m0(Bρ0n
(0,1))

).

Now

m0(Bρ0n
(0,1)) ≤m(T −nBρ0(0,1)) =

m(Bρ0(0,1))

∣detT ∣W0 ∣
n

≥m(Bρ0(0,1))

and

m+(Bρ+n(0,1)) ≤m(T −nBρ+(0,1)) =
m(Bρ+(0,1))

∣detT ∣W+
∣n−1
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whence

hρ(T ) = lim
n→∞

(
1

n
(log

1

m+(Bρ+n(0,1))
+ log

1

m0(Bρ0n
(0,1))

≥ lim
n→∞

1

n
log

1

m+(Bρ+n(0,1))

≥
n − 1

n
log ∣detT ∣W+

∣ ≈ ∑
λ∈Λ ∣λ∣>1

dλ log ∣λ∣.

Proof that hρ(T ) ≤ ∑λ∈Λ ∣λ∣>1 dλ log ∣λ∣.
We have that m =∏λ∈λmλ where mλ is Lebesgue measure on Vλ. As

above

hρ(T ) = lim
n→∞

1

n
∑
λ∈Λ

log
1

m+(Bρλn
(0,1))

where ρλ(x, y) = ∥x − y∥2, x, y ∈ Vλ & ρ(x, y) = maxλ ρλ(xλ, yλ).
It thus suffices to show that

lim
n→∞

1

n
log

1

mλ(Bρλn
(0,1))

≤ 0 ∨ dλ log ∣λ∣ ∀ λ ∈ Λ.

Fix λ ∈ Λ & µ > ∣λ∣ and for x ∈ Vλ, set

∥x∥µ ∶=∑
n≥0

∥T nx∥2

µn
.

The series converges

∵ n

√
∥T nx∥2

µn
=

n

√
∥T nx∥2

µ
ÐÐ→
n→∞

∣λ∣

µ
< 1

and thus defines a norm on Vλ. Moreover,

∥Tx∥µ =∑
n≥0

∥T n+1x∥2

µn
= µ∑

n≥1

∥T nx∥2

µn
≤ µ∥x∥µ.

Writing ∆(x, y) = ∥x−y∥µ, we have Bρ(0,1)) ⊃ B∆(0, r) for some r > 0,
whence

Bρλn
(0,1)) ⊃ B∆n(0, r)) =

n−1

⋃
j=0

T −jB∆(0, r))

⊇
n−1

⋃
j=0

B∆(0,
r

µj
)) = B∆(0,

r

µn−1
))

and

mλ(Bρλn
(0,1)) ≥mλ(B∆(0,

r

µn−1
)) =mλ(B∆(0,1))

rdλ

µ(n−1)dλ
.
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Thus,

1

n
log

1

m+(Bρλn
(0,1))

≤
1

n
log

1

m+(B∆(0,1))
+
n − 1

n
dλ logµ −

dλ log r

n

= dλ logµ +O(
1

n
). 2�

End of course ”dynamical systems”
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