ERGODIC THEORY NOTES TORUN, OCTOBER 2014.

JON AARONSON'S LECTURE NOTES

Lecture \# 1 8/10/2014.

Introduction

Let (X, \mathcal{B}, m) be a standard σ-finite measure space ${ }^{1} \mathrm{~A}$ null preserving transformation (NPT) of X is only defined modulo nullsets, and is a map $T: X_{0} \rightarrow X_{0}$ (where $X_{0} \subset X$ has full measure), which is measurable and has the null preserving property that for $A \in \mathcal{B}, m\left(T^{-1} A\right)=0$ implies that $m(A)=0$.

A non-singular transformation (NST) is a NPT (X, \mathcal{B}, m, T) with the stronger property that for $A \in \mathcal{B}, m\left(T^{-1} A\right)=0$ iff $m(A)=0$.

A measure preserving transformation (MPT) is a NST (X, \mathcal{B}, m, T) with the additional property that $m\left(T^{-1} A\right)=m(A) \forall A \in \mathcal{B}$.

We'll call a nonsingular transformation NS-invertible if the associated map is invertible with a nonsingular inverse.

Let
$\operatorname{NST}(X, \mathcal{B}, m):=\{$ nonsingular invertible transformations of $X\}$
$\operatorname{MPT}(X, \mathcal{B}, m):=\{$ invertible measure preserving transformations of $X\}$ $\operatorname{PPT}(X, \mathcal{B}, m):=\operatorname{MPT}(X, \mathcal{B}, m)$ in case $m(X)=1$.
The are all groups under composition (see the exercise below).
Equivalent invariant measures. If T is a non-singular transformation of a σ-finite measure space (X, \mathcal{B}, m), and p is another measure on (X, \mathcal{B}) equivalent to m (denoted $p \sim m$ and meaning that p and m have the same nullsets), then T is a non-singular transformation of (X, \mathcal{B}, p).

Thus, a non-singular transformation of a σ-finite measure space is actually a non-singular transformation of a probability space.

[^0]The first question about a $\operatorname{NST}(X, \mathcal{B}, p, T)$ is whether it was obtained from a measure preserving transformation in this way, or, slightly more generally:
\exists ? a σ-finite absolutely continuous invariant measure (a.c.i.m., i.e. $m \ll p$, with $m \circ T^{-1}=m$).

Radon Nikodym Derivatives

Let (X, \mathcal{B}, m, T) be an invertible NST of the probability space (X, \mathcal{B}, m). The measures $m \& m \circ T$ are equivalent (i.e. $m \circ T \ll m \& m \ll m \circ T$), written $m \circ T \sim m$. By the Radon Nikodym theorem, $\exists!T^{\prime} \in L^{1}, T^{\prime}>0$ a.e., so that

$$
m(T A)=\int_{A} T^{\prime} d m \forall A \in \mathcal{B} .
$$

The function T^{\prime} is called the $R N$ derivative of T. The measurable $\operatorname{map} f: A \rightarrow A^{\prime}$ is called

- null preserving (NP) if for $C \in \mathcal{B}^{\prime} \cap A^{\prime}, m^{\prime}(C)=0 \Rightarrow m\left(f^{-1} C\right)=0$;
- nonsingular (NS) if for $C \in \mathcal{B}^{\prime} \cap A^{\prime}, m\left(f^{-1} C\right)=0$ iff $m^{\prime}(C)=0$; and
- measure preserving (MP) if $m\left(f^{-1} C\right)=m^{\prime}(C)$ for $C \in \mathcal{B}^{\prime} \cap A^{\prime}$.

Exercise 1: Chain rule for RN derivatives.

Let (X, \mathcal{B}, m) be a probability space and let $S, T \in \operatorname{NST}(X, \mathcal{B}, m)$.
(i) Show that $T \circ S \in \operatorname{NST}(X, \mathcal{B}, m)$ and

$$
(T \circ S)^{\prime}=T^{\prime} \circ S \cdot S^{\prime}
$$

(ii) Let (X, \mathcal{B}, m) be the unit interval equipped with Borel sets and Lebesgue measure, and suppose that $T: X \rightarrow X$ is nondecreasing and C^{1}, then

- $T: X \rightarrow X$ is a homeomorphism iff $\left[T^{\prime}=0\right]^{o}=\varnothing$;
- $T^{-1}: X \rightarrow X$ is non-singular iff $m\left(\left[T^{\prime}=0\right]\right)=0 ; \quad \&$
- \exists a C^{1} homeomorphism $T: X \rightarrow X$ with $T^{-1}: X \rightarrow X$ singular.

Transfer Operator.
Let (X, \mathcal{B}, m, T) be a null-preserving transformation, then $\|f \circ T\|_{\infty} \leq$ $\|f\|_{\infty} \forall f \in L^{\infty}(m)$ and $T: L^{\infty}(m) \rightarrow L^{\infty}(m)$ where $T f:=f \circ T$.

There is an operator known as the transfer operator $\widehat{T}: L^{\infty}(m) \rightarrow$ $L^{\infty}(m)$ so that $\widehat{T}^{*}=T$ i.e.:

$$
\int_{X} \widehat{T} f \cdot g d m=\int_{X} f \cdot T g d m \forall f \in L^{1}(m), g \in L^{\infty}(m)
$$

This is given by $\widehat{T} f:=\frac{d \nu_{f} \circ T^{-1}}{d m}$ where $\nu_{f}(A):=\int_{X} f d m(!)$.

Exercise 2.

Let (X, \mathcal{B}, m, T) be a nonsingular transformation.
(i) Show that if T is invertible, then $\widehat{T} f=T^{-1^{\prime}} f \circ T^{-1}$.
(ii) Show that \exists an absolutely continuous invariant probability for T iff $\exists h \in L_{+}^{1}$ satisfying $\widehat{T} h=h$.

Examples

Rotations of the circle. Let X be the circle $\mathbb{T}=\mathbb{R} / \mathbb{Z}=[0,1), \mathcal{B}$ be its Borel sets, and m be Lebesgue measure. The rotation (or translation) of the circle by $x \in X$ is the transformation $r_{x}: X \rightarrow X$ defined by $r_{x}(y)=x+y \bmod 1$.

Evidently $m \circ r_{x}=m$ for every $x \in X$ and each r_{x} is an invertible measure preserving transformation of (X, \mathcal{B}, m).

The adding machine. Let $\Omega=\{0,1\}^{\mathbb{N}}$, and \mathcal{F} be the σ-algebra generated by cylinders. Define the adding machine $\tau: \Omega \rightarrow \Omega$ by $\tau(\overline{1}):=(\overline{0})$ where $(\bar{a})_{k}=a \forall k \geq 1$; and

$$
\tau\left(1, \ldots, 1,0, \omega_{\ell+1}, \omega_{\ell+2}, \ldots\right)=\left(0, \ldots, 0,1, \omega_{\ell+1}, \omega_{\ell+2}, \ldots\right)
$$

for $\omega \in \Omega \backslash\{(\overline{1})\}$ where $\ell(\omega):=\min \left\{n \geq 1: \omega_{n}=0\right\}$.
The reason for the name "adding machine" is that

$$
\sum_{k=1}^{\infty} 2^{k-1}\left(\tau^{n} \overline{0}\right)_{k}=n \quad \forall n \geq 1
$$

We'll consider the adding machine with respect to various probabilities on Ω.
I For $p \in(0,1)$, define a probability μ_{p} on Ω by

$$
\mu_{p}\left(\left[\epsilon_{1}, \ldots, \epsilon_{n}\right]\right)=\prod_{k=1}^{n} p\left(\epsilon_{k}\right)
$$

where $p(0)=1-p$ and $p(1)=p$.

1.3 Proposition

τ is an invertible, nonsingular transformation of $\left(\Omega, \mathcal{F}, \mu_{p}\right)$ with

$$
\frac{d \mu_{p} \circ \tau}{d \mu_{p}}=\left(\frac{1-p}{p}\right)^{\ell-2}
$$

Proof

We show that $\mu_{p} \circ \tau \sim \mu_{p}$ and calculate $\frac{d \mu_{p} \circ \tau}{d \mu_{p}}$. We show that for any set $A \in \mathcal{F}$,

$$
\mu_{p}(\tau A)=\int_{A}\left(\frac{1-p}{p}\right)^{\ell-2} d \mu_{p}
$$

Consider first a cylinder set $A \subset[\ell=k] \quad(k \geq 1)$

$$
A=[\underbrace{1, \ldots, 1}_{k-1 \text { times }}, 0, a_{1}, \ldots, a_{n}],
$$

then

$$
\tau A=[\underbrace{0, \ldots, 0}_{k-1 \text { times }}, 1, a_{1}, \ldots, a_{n}],
$$

and
(

$$
\begin{aligned}
\mu_{p}(\tau A) & =\mu_{p}([\underbrace{0, \ldots, 0}_{k-1 \text { times }}, 1]) \mu_{p}\left(\left[a_{1}, \ldots, a_{n}\right]\right) \\
& =\left(\frac{1-p}{p}\right)^{k-2} \mu_{p}(A) \\
& =\int_{A}\left(\frac{1-p}{p}\right)^{\ell-2} d \mu_{p} .
\end{aligned}
$$

Let

$$
\mathcal{C}:=\left\{A \in \mathcal{F}:\left({ }^{\circ}\right) \text { holds }\right\} .
$$

As above, $\mathcal{C} \supset$ \{cylinders $\}$.
Since a any finite union of cylinders is also a finite union of disjoint cylinders, $\mathcal{C} \subset \mathcal{A}$, the algebra of finite unions of cylinders.

By σ-additivity of μ_{p}, \mathcal{C} is a monotone class, and by the monotone class theorem, $\mathcal{C} \supseteq \sigma(\mathcal{A})=\mathcal{B}$. \square

Note that $\mu_{\frac{1}{2}} \circ \tau=\mu_{\frac{1}{2}}$.

Rank one constructions.

This method constructs a $T \in \operatorname{MPT}(X, \mathcal{B}, m)$ where $X=\left(0, S_{T}\right)$ is an interval, m is Lebesgue measure and where T is an invertible piecewise translation that is there are intervals $\left\{I_{n}: n \geq 1\right\}$ and numbers $a_{n} \in$ $\mathbb{R}(n \geq 1)$ so that $\bmod m$:

$$
X=\bigcup_{n=1}^{\infty} I_{n}=\biguplus_{n=1}^{\infty}\left(a_{n}+I_{n}\right) \quad \& T(x)=x+a_{n} \quad \text { for } x \in I_{n} .
$$

The rank one transformation (X, \mathcal{B}, m, T) is an invertible piecewise translation of an interval $J_{T}=\left(0, S_{T}\right)$ where $S_{T} \in(0, \infty]$ which is defined as the "limit of a refining sequence of Rokhlin towers".

- A Rokhlin tower is a finite sequence of disjoint intervals $\tau=\left(I_{1}, I_{2}, \ldots, I_{n}\right)$ of equal lengths; considered equipped with the translations $I_{j} \rightarrow I_{j+1}(1 \leq$ $j \leq n-1$). It is thus a piecewise translation

$$
T_{\tau}: \operatorname{Dom} T_{\tau}=\bigcup_{j=1}^{n-1} I_{j} \rightarrow \bigcup_{j=2}^{n} I_{j}
$$

being defined everyhere on $\cup_{j=1}^{n} I_{j}$ except the last interval I_{n}.

- We'll say that the Rokhlin tower $\theta=\left(J_{1}, \ldots, J_{\ell}\right)$ refines the Rokhlin tower $\tau=\left(I_{1}, I_{2}, \ldots, I_{n}\right)($ written $\theta>\tau)$ if

$$
\bigcup_{j=1}^{n} I_{j} \subset \bigcup_{k=1}^{\ell} J_{k} \& I_{j}=\bigcup_{1 \leq k \leq \ell, J_{k} \subset I_{j}} J_{k}
$$

This entails (!) $\cup_{j=1}^{n-1} I_{j} \subset \cup_{k=1}^{\ell-1} J_{k}$, whence $\left.T_{\theta}\right|_{\cup_{j=1}^{n-1} I_{j}} \equiv T_{\tau}$.

Definition.

Let $c_{n} \in \mathbb{N}, c_{n} \geq 2(n \geq 1)$ and let $S_{n, k} \geq 0, \quad\left(n \geq 1,1 \leq k \leq c_{n}\right)$. The rank one transformation with construction data

$$
\left\{\left(c_{n} ; S_{n, 1}, \ldots, S_{n, c_{n}}\right): n \geq 1\right\}
$$

is an invertible piecewise translation of the interval $J_{T}=\left(0, S_{T}\right)$ where

$$
S_{T}:=1+\sum_{n \geq 1} \frac{1}{c_{1} \cdots c_{n}} \sum_{k=1}^{c_{n}} S_{n, k} \leq \infty
$$

To obtain T, we define a refining sequence $\left(\tau_{n}\right)_{n \geq 1}$ of Rokhlin towers where $\tau_{1}=[0,1]$ and τ_{n+1} is constructed from τ_{n} by

- cutting τ_{n} into c_{n} columns of equal width,
- putting $S_{n, k}$ spacer intervals (of the same width) above the $k^{\text {th }}$ column ($1 \leq k \leq c_{n}$);
- and stacking.

Evidently $\tau_{n+1}>\tau_{n}$. Let X be the increasing union of the intervals in the towers τ_{n}.

The sum of the lengths of the last intervals of the towers is $\sum_{n=1}^{\infty} \frac{1}{c_{1} \ldots c_{n}}<$ ∞ and so for a.e. $x \in X, \exists n \leq 1$ so that $x \in \operatorname{Dom} T_{\tau_{k}} \forall k \geq n$ and $T(x):=T_{\tau_{k}}(x) \forall k \geq n$.

The length of X is 1 plus the total length of all the spacer intervals added in the construction i.e. S_{T}.

Exercise 3. Show that the adding machine $(\Omega, \mathcal{F}, \mu, \tau)$ where $\mu=$ $\mu_{\frac{1}{2}}:=\Pi\left(\frac{1}{2}, \frac{1}{2}\right)$ is isomorphic to (X, \mathcal{B}, m, T), the rank one transformation with construction data $\left\{\left(c_{n} ; S_{n, 1}, \ldots, S_{n, c_{n}}\right): n \geq 1\right\}$ with
$c_{n}=2 \& s_{n, 1}=s_{n, 2}=0 \forall n \geq 1$; i.e. show that there are measurable sets $X_{0} \in \mathcal{B}, \Omega_{0} \in \mathcal{F}$ of full measure so that $T X_{0}=X_{0} \& \tau \Omega_{0}=\Omega_{0}$ and $\pi: X_{0} \rightarrow \Omega_{0}$ invertible, measure preserving so that $\pi \circ T=\tau \circ \pi$.

Kakutani skyscrapers.

Suppose that $(\Omega, \mathcal{F}, \mu, S)$ is a NST of the σ-finite measure space ($(\Omega, \mathcal{F}, \mu)$ and that $\varphi: \Omega \rightarrow \mathbb{N}$ is measurable. The Kakutani skyscraper over S with height function φ is the transformation T of the σ-finite measure space (X, \mathcal{B}, m) defined as follows.

$$
\begin{gathered}
X=\{(x, n): x \in \Omega, 1 \leq n \leq \varphi(x)\}, \\
\mathcal{B}=\sigma\{A \times\{n\}: n \in \mathbb{N}, A \in \mathcal{F} \cap[\varphi \geq n]\}, m(A \times\{n\})=\mu(A),
\end{gathered}
$$

and

$$
T(x, n)=\left\{\begin{array}{l}
(S x, \varphi(x)) \text { if } n=\varphi(x), \\
(x, n+1) \text { if } 1 \leq n \leq \varphi(x)-1 .
\end{array}\right.
$$

Evidently T is a NST with

$$
m(X)=\int_{\Omega} \varphi d \mu
$$

Moreover, if S is a MPT, then so is T.

- $\bigcup_{n \geq 1} T^{-n}(\Omega \times\{1\})=X$;
- For $x \in \Omega$, let $\varphi_{N}(x):=\sum_{k=0}^{N-1} \varphi\left(S^{k} x\right)$, then $T^{\varphi_{N}}(x)(x, 1)=\left(S^{N} x, 1\right)$ and

$$
\left\{n \geq 1: T^{n}(x, 1) \in \Omega \times\{1\}\right\}=\left\{\varphi_{N}(x): N \geq 1\right\}
$$

Bernoulli shift.

The (two sided) Bernoulli shift is defined by $X=\mathbb{R}^{\mathbb{Z}}, \mathcal{B}(X)$ the σ-algebra generated by cylinder sets of form

$$
\left[A_{1}, \ldots, A_{n}\right]_{k}:=\left\{\underline{x} \in X: x_{j+k} \in A_{j}, 1 \leq j \leq n\right\}
$$

where $A_{1}, \ldots, A_{n} \in \mathcal{B}(\mathbb{R})$. The shift $S: X \rightarrow X$ is defined by $(S x)_{n}=$ x_{n+1}.

Let $p: \mathcal{B}(\mathbb{R}) \rightarrow[0,1]$ be a probability, and define $\widehat{\mu}_{p}:\{$ cylinders $\} \rightarrow$ $[0,1]$ by

$$
\widehat{\mu}_{p}\left(\left[A_{1}, \ldots, A_{n}\right]_{k}\right)=\prod_{k=1}^{n} p\left(A_{k}\right) \quad\left(A_{1}, \ldots, A_{n} \in \mathcal{B}(\mathbb{R})\right)
$$

By Kolmogorov's existence theorem (see below) \exists a probability measure $\mu_{p}: \mathcal{B}(X) \rightarrow[0,1]$ so that $\mu_{p} \mid\{$ cylinders $\} \equiv \widehat{\mu}_{p}$.

Evidently (!), the two sided Bernoulli shift is measure preserving.

2.1 Kolmogorov's existence theorem

Let Y be a Polish space, and suppose that for $k, \ell \in \mathbb{Z}, k \leq \ell P_{k, \ell} \in$ $\mathcal{P}\left(Y^{\ell-k+1}\right)$ are such that

$$
P_{k, \ell+1}\left(A_{k} \times \cdots \times A_{\ell} \times Y\right)=P_{k-1, \ell}\left(Y \times A_{k} \times \cdots \times A_{\ell}\right)=P_{n}\left(A_{k} \times \cdots \times A_{\ell}\right)
$$

then there is a probability measure $P \in \mathcal{P}\left(Y^{\mathbb{Z}}\right)$ satisfying

$$
P\left(\left[A_{1}, \cdots, A_{n}\right]_{k}\right)=P_{k+1, n}\left(A_{1} \times \cdots \times A_{n}\right) .
$$

Vague sketch of proof

- WLOG Y is uncountable (\because any countable Polish space is measurably embeddable in an uncountable Polish space);
- WLOG $Y=\Omega:=\{0,1\}^{\mathbb{N}}$ (by Kuratowski's isomorphism theorem).
- Now let \mathcal{A} be the collection of cylinder subsets of Ω and set

$$
\mathfrak{A}:=\left\{\left[A_{1}, \ldots, A_{n}\right]_{k}: A_{1}, \ldots, A_{n} \in \mathcal{A}\right\} .
$$

All sets in \mathfrak{A} are both open and compact wrt the compact product topology on $\Omega^{\mathbb{Z}}$.

- Define $\mu: \mathfrak{A} \rightarrow[0,1]$ by

$$
\mu\left(\left[A_{1}, \ldots, A_{n}\right]_{k}\right):=P_{k+1, k+n}\left(A_{1} \times \ldots \times A_{n}\right),
$$

then $\mu: \mathfrak{A} \rightarrow[0,1]$ is additive and hence (!) countably subadditive.

- The reqired probability exists by Caratheodory's theorem. \downarrow

Lecture \# 2 9/10/2014.
Interval maps.
Let $I \subseteq \mathbb{R}$ be an interval, let m be Lebesgue measure on I, and α be a collection of disjoint open subintervals of I such that

$$
m\left(I \backslash U_{\alpha}\right)=0 \text { where } U_{\alpha}=\bigcup_{a \in \alpha} a
$$

For $r \geq 1$, a C^{r} interval map with basic partition α is a map $T: I \rightarrow I$ such that
for each $a \in \alpha,\left.T\right|_{a}$ extends to a C^{r} diffeomorphism $T: \bar{a} \rightarrow T(\bar{a})$.
The C^{r} interval map is called piecewise onto if $T(a)=I \forall a \in \alpha$.

Transfer operator of an interval map.

Let $T: I \rightarrow I$ be a C^{r} interval map with basic partition α. For $a \in \alpha$, let $v_{a}: I \rightarrow a$ be the inverse of $T: a \rightarrow I$ (a C^{r} diffeomorphism). It follows from an integration variable-change argument that with respect to m :

$$
\widehat{T} f=\sum_{a \in \alpha} 1_{T(a)} v_{a}^{\prime} f \circ v_{\underline{a}}
$$

Note that here $v_{a}^{\prime}:=\frac{d m o v_{a}}{d m}=\left|\frac{d v_{a}}{d x}\right|$.

Exercise 4.

(i) Show that for a C^{1} interval map (I, T, α) :

$$
\widehat{T} f(x)=\sum_{y \in I, T y=x} \frac{f(y)}{\left|T^{\prime}(y)\right|} .
$$

(ii) Show that if (I, T, α) is a piecewise onto, piecewise linear interval map (i.e. $T: a \rightarrow T a$ is linear $\forall a \in \alpha$) with $\# \alpha \geq 2$, then $m \circ T^{-1}=m$ and that

$$
m\left(\bigcap_{k=0}^{N} T^{-k} a_{k}\right)=\prod_{k=0}^{N} m\left(a_{k}\right) \quad \forall N \geq 1, a_{0}, a_{1}, \ldots, a_{N} \in \alpha .
$$

Boole transformations \& inner functions.

A Boole transformation is a map $T: \mathbb{R} \rightarrow \mathbb{R}$ of form

$$
T(x)=\alpha x+\beta+\sum_{k=1}^{N} \frac{p_{k}}{t_{k}-x}
$$

where $\alpha \geq 0, p_{1}, \ldots, p_{N}>0 \& \beta, t_{1}, \ldots, t_{N} \in \mathbb{R}$.
A Boole transformation T is an inner function of the upper half plane $\mathbb{R}^{2+}:=\{\omega \in \mathbb{C}: \operatorname{Im} \omega>0\}$ i.e. an analytic endomorphism of \mathbb{R}^{2+} which preserves \mathbb{R}.

The general form of an inner function T of \mathbb{R}^{2+} is given by:

$$
\begin{equation*}
T(\omega)=\alpha \omega+\beta+\int_{\mathbb{R}} \frac{1+t \omega}{t-\omega} d \mu(t) \tag{}
\end{equation*}
$$

where $\alpha \geq 0, \beta \in \mathbb{R}$ and μ is a finite, Lebesgue-singular, measure on \mathbb{R}.
If $\omega \in \mathbb{R}^{2+}$ the upper half plane, and $\omega=a+i b, a, b \in \mathbb{R}, b>0$ then

$$
\operatorname{Im} \frac{1}{x-\omega}=\frac{b}{(x-a)^{2}+b^{2}}=\pi \varphi_{\omega}(x)
$$

where φ_{ω} is the well known Cauchy density.
These are the densities of the Poisson or harmonic measures on \mathbb{R}^{2+} :

If $\phi: \mathbb{R}^{2+} \rightarrow \mathbb{C}$ is bounded, analytic on \mathbb{R}^{2+} and then for a.e. $t \in$ $\mathbb{R}, \exists \lim _{y \rightarrow 0+} \phi(t+i y)=: \phi^{*}(t)$ and

$$
\phi(\omega)=\int_{\mathbb{R}} \phi^{*}(t) d P_{\omega}(t) \quad\left(\omega \in \mathbb{R}^{2+}\right)
$$

where $d P_{\omega}(t)=\varphi_{\omega}(t) d t$.
2.2 Boole's Formula Let T be an inner function, then $(\mathbb{R}, \mathcal{B}, m, T)$ is non-singular and

$$
\begin{equation*}
\widehat{T} \varphi_{\omega}=\varphi_{T(\omega)} \forall \omega \in \mathbb{R}^{2+} \tag{以}
\end{equation*}
$$

Proof (G.Letac) It suffices to show that $P_{\omega} \circ T^{-1}=P_{T(\omega)}$.
The Fourier transform of P_{ω} is given by

$$
\widehat{P_{\omega}}(t):=\int_{\mathbb{R}} e^{i t x} d P_{\omega}(x)=e^{i t \omega} \quad(t \geq 0)
$$

For $t>0, \phi_{t}(\omega)=e^{i t \omega}$ is a bounded analytic functions on \mathbb{R}^{2+} with $\phi_{t}^{*}(x)=e^{i t x}$ on \mathbb{R}. By ($\left.\Delta 屯\right)$,

$$
\widehat{P_{\omega} \circ T^{-1}}(t)=\int_{\mathbb{R}} e^{i t T(x)} d P_{\omega}(x)=e^{i t T(\omega)}=\widehat{P_{T(\omega)}}(t)
$$

whence ($\mathbb{\square}$). $\quad \nabla$

Remark.

As a consequence of $(\mathbb{\square})$, we see that the inner function T has an absolutely continuous invariant probability (acip) if $\exists \omega \in \mathbb{R}^{2+}$ with $T(\omega)=\omega$ (in which case P_{ω} is T-invariant). We'll see later that this is the only way T can have an acip.
2.3 Corollary If T is an inner function with $\alpha>0$ in (then $m \circ T^{-1}=\frac{1}{\alpha} \cdot m$.

Vague sketch of proof that $\widehat{T} \mathbb{1}=\frac{1}{\alpha} \mathbb{1}$

- $\pi b \varphi_{i b} \underset{b \rightarrow \infty}{ } 1$ unifomly on bounded subsets of \mathbb{R};
- if $T(i b)=u(b)+i v(b)$, then $\frac{v(b)}{b} \underset{b \rightarrow \infty}{\longrightarrow} \alpha \& \frac{u(b)}{b} \underset{b \rightarrow \infty}{\longrightarrow} 0$.
- $\widehat{T} \mathbb{1} \underset{b \rightarrow \infty}{\leftrightarrows} \pi b \widehat{T} \varphi_{i b}=\pi b \varphi_{T(i b)} \underset{b \rightarrow \infty}{ } \frac{1}{\alpha} \mathbb{1} . ~ \square$

Exercise 5: Boole \& Glaisher transformations.

For $\alpha, \beta>0$ define $T=T_{\alpha, \beta}: \mathbb{R} \rightarrow \mathbb{R}$ by $T(x):=\alpha x-\frac{\beta}{x}$.
(a) Show that if $\alpha+\beta=1$, then $\widehat{T} \varphi_{i}=\varphi_{i}$ and T has an absolutely continuous, invariant probability (a.c.i.p.).

Consider the Glaisher transformations $T: \mathbb{R} \rightarrow \mathbb{R}$ of form

$$
T_{a, b} x:=a x+b \tan x \quad(a, b \geq 0, a+b>0)
$$

(b) Give conditions on a, b so that $T_{a, b}$ has an absolutely continuous invariant probability.
(c) Show that $T_{1, b}$ preserves Lebesgue measure.
(d) Show that $T_{0,1} x=\tan x$ preserves the measure $d \mu_{0}(x):=\frac{d x}{x^{2}}$.

Hint: $S:=\pi \circ T_{0,1} \circ \pi^{-1}$ preserves Lebesgue measure where $\pi(x):=\frac{-1}{x}$.

RECURRENCE AND CONSERVATIVITY

A set $W \in \mathcal{B}, m(W)>0$ is called wandering (for the NPT (X, \mathcal{B}, m, T)) if the sets $\left\{T^{-n} W\right\}_{n=0}^{\infty}$ are disjoint. and the NPT T is called conservative if $\mathcal{W}(T)=\varnothing$ (i.e. there are no wandering sets).

Remarks.

$\llbracket 1$ A conservative $\operatorname{NPT}(X, \mathcal{B}, m, T)$ is non-singular. Else $\exists A \in \mathcal{B}, m(A)>$ 0 with $m\left(T^{-1} A\right)=0$, whence $m\left(T^{-n} A\right)=0 \forall n \geq 1$. It follows that $W:=A \backslash \bigcup_{n=1}^{\infty} T^{-n} A$ is a wandering set satisfying $m(W)=m(A)$.
$\llbracket 2$ Similarly, a NPT (X, \mathcal{B}, m, T) is conservative iff (!) it is incompressible in the sense that $A \in \mathcal{B}$ and $T^{-1} A \subset A$ imply $A=T^{-1} A \bmod m$.
$\llbracket 3$ If (X, \mathcal{B}, m, T) is a Kakutani skyscraper over the $\operatorname{NST}(\Omega, \mathcal{F}, \mu, S)$, then T is conservative iff S is conservative.
Proof of \Leftarrow If T is not conservative, then $\exists A \in \mathcal{F}_{+}, A \times\{1\} \in \mathcal{W}(T)$ whence $A \in \mathcal{W}(S)$.

Proof of \Rightarrow Let $W \in \mathcal{W}(S)$, then (!) $W \times\{1\} \in \mathcal{W}(T)$.

Halmos recurrence theroem

Let (X, \mathcal{B}, m, T) be a NPT. TFAE:
(i) T is conservative;
(ii) $A \stackrel{m}{\subset} \cup_{n=1}^{\infty} T^{-n} A \quad \forall A \in \mathcal{B}_{+}$;
(iii) $\sum_{n=1}^{\infty} 1_{A} \circ T^{n}=\infty$ a.e. on $A \quad \forall A \in \mathcal{B}_{+}$.

Proof of (i) \Rightarrow (iii)
Suppose that $A \in \mathcal{B}, m(A)>0$. The set $W:=A \backslash \bigcup_{n=1}^{\infty} T^{-n} A$ is wandering if of positive measure, whence $m(W)=0$ and $A \subseteq \cup_{n=1}^{\infty} T^{-n} A \bmod m$. By null preservation, $T^{-N} A \subseteq \cup_{n=N+1}^{\infty} T^{-n} A \bmod m \forall N \geq 1$, whence, $\bmod m$:

$$
A \subseteq \bigcup_{n=1}^{\infty} T^{-n} A \subseteq \cdots \subseteq \bigcup_{n=N+1}^{\infty} T^{-n} A \subseteq \cdots \subseteq \bigcap_{j=1}^{\infty} \bigcup_{n=j}^{\infty} T^{-n} A=\left[\sum_{n=1}^{\infty} 1_{A} \circ T^{n}=\infty\right] .
$$

\square

Conditions for conservativity.

2.4 Maharam Recurrence theorem

Let (X, \mathcal{B}, m, T) be MPT.
If $\exists A \in \mathcal{B}, m(A)<\infty$ such that $X=\bigcup_{n=1}^{\infty} T^{-n} A \bmod m$, then T is conservative.

Proof We have that $\sum_{n=1}^{\infty} 1_{A} \circ T^{n}=\infty$ a.e. If $W \in \mathcal{W}, m(W)>0$, then $\forall n \geq 1$,

$$
\begin{aligned}
m(A) & \geq \int_{T^{-n} A}\left(\sum_{k=1}^{n} 1_{W} \circ T^{k}\right) d m=\sum_{k=1}^{n} m\left(T^{-k} W \cap T^{-n} A\right) \\
& =\sum_{j=0}^{n-1} m\left(W \cap T^{-j} A\right)=\int_{W}\left(\sum_{j=0}^{n-1} 1_{A} \circ T^{j}\right) d m \rightarrow \infty .
\end{aligned}
$$

Contradiction. \square
For example, any PPT is conservative. This statement is known as Poincaré's recurrence theorem.

A MPT of a σ-finite, infinite measure space need not be conservative. For example $x \mapsto x+1$ is a measure preserving transformation of \mathbb{R} equipped with Borel sets, and Lebesgue measure, which is totally dissipative.

Example.

The original Boole transformation $T: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
T(x)=x-\frac{1}{x}
$$

is conservative.

Proof By corollary 2.3, $m \circ T^{-1}=m$. By inspection, $\bigcup_{n=0}^{\infty} T^{-n}[-1,1]=$ \mathbb{R}. \quad

Exercise 6. Let

$$
T(x)=x+\sum_{k=1}^{N} \frac{p_{k}}{t_{k}-x} \text { where } p_{1}, \ldots, p_{N}>0 \& t_{1}, \ldots, t_{N} \in \mathbb{R}
$$

Show that $\bigcup_{n=1}^{\infty} T^{-n}(u, v)=\mathbb{R} \bmod m$ where $u:=\min T^{-1}\{0\} \& v:=$ $\max T^{-1}\{0\}$; and hence that T is conservative.
Hint WLOG, $N \geq 2, u<0<v \& T(0)=0$.

Exercise 7: Skyscaper conservativity.

Let (X, \mathcal{B}, m, T) be a Kakutani skyscaper over the NST $\Omega, \mathcal{F}, \mu, S)$. Show that T is conservative iff S is conservative.

Exercise 8: Stronger recurrence properties.

Let (X, \mathcal{B}, m, T) be a conservative NST.
(i) Show that if (Y, d) is a separable, metric space and $h: X \rightarrow Y$ is measurable, then

$$
\varliminf_{n \rightarrow \infty} d\left(h, h \circ T^{n}\right)=0 \text { a.e.. }
$$

(ii) What about when (Y, d) is an arbitrary metric space (not necessarily separable) and $h: X \rightarrow Y$ is measurable?

Induced transformation.

This is the "reverse" of the skyscraper construction.
Suppose (X, \mathcal{B}, m, T) is a NST and let $A \in \mathcal{B}_{+}$be such that m-a.e. point of A returns to A under iterations of T (e.g. if (X, \mathcal{B}, m, T) is conservative). The return time function to A, defined for $x \in A$ by $\varphi_{A}(x):=\min \left\{n \geq 1: T^{n} x \in A\right\}$ is finite m-a.e. on A.

The induced transformation on A is defined by $T_{A} x=T^{\varphi_{A}(x)} x$.
The first key observation is that $\left(A, \mathcal{B} \cap A, T_{A}, m_{A}\right)$ is a NST and, if T is a MPT, then so is T_{A}. These follows from

$$
T_{A}^{-1} B=\bigcup_{n=1}^{\infty}[\varphi=n] \cap T^{-n} B
$$

It follows that $\varphi_{A} \circ T_{A}$ is defined a.e. on A and an induction now shows that all powers $\left\{T_{A}^{k}\right\}_{k \in \mathbb{N}}$ are defined a.e. on A, and satisfy

$$
T_{A}^{k} x=T^{\left(\varphi_{A}\right)_{k}(x)} x \text { where }\left(\varphi_{A}\right)_{1}=\varphi_{A},\left(\varphi_{A}\right)_{k}=\sum_{j=0}^{k-1} \varphi_{A} \circ T_{A}^{j} .
$$

Exercise 9: Inducing inverse to skyscraping.

Let (X, \mathcal{B}, m, T) be an invertible, conservative NST and suppose that $A \in \mathcal{B}, m(A)>0$ satisfies $\cup_{n=1}^{\infty} T^{-n} A=X \bmod m$.

Show that
(i) (X, \mathcal{B}, m, T) is isomorphic to the the Kakutani skyscraper over $\left(A, \mathcal{B} \cap A, m_{A}, T_{A}\right)$ with height function φ_{A}.
(ii) T is conservative $\Longrightarrow T_{A}$ is conservative.

Both constructions can be generalized to the nonsingular case.

Hopf DECOMPOSITION

Let (X, \mathcal{B}, m, T) be a NPT. The collection $\mathcal{W}(T)$ of wandering sets is a hereditary collection (any measurable subset of a member is also a member), and T-sub-invariant (W wandering or null $\Longrightarrow T^{-1} W$ wandering or null).

By exhaustion, \exists a countable union of wandering sets $\mathfrak{D}(T) \in$ \mathcal{B} with the property that any wandering set $W \in \mathcal{B}$ is contained in $\mathfrak{D}(T) \bmod m$ (i.e. $m(W \backslash \mathfrak{D}(T))=0)$. This measurable union $\mathfrak{D}(T)$ of $\mathcal{W}(T)$ is unique $\bmod m$ and $T^{-1} \mathfrak{D} \subseteq \mathfrak{D} \bmod m$. It is called the dissipative part of the nonsingular transformation T.

Evidently T is conservative on $\mathfrak{C}(T):=X \backslash \mathfrak{D}(T)$, the conservative part of T.

The partition $\{\mathfrak{C}(T), \mathfrak{D}(T)\}$ is called the Hopf decomposition of T.
The nonsingular transformation T is called (totally) dissipative if $\mathfrak{D}(T)=X \bmod m$.
2.7 Proposition. Any inner function T with $\alpha>1$ in is dissipative.
Proof By corollary 2.3,

$$
\sum_{n=1}^{\infty} m\left(T^{-n} A\right)<\infty \quad \forall A \in \mathcal{B}, 0<m(A)<\infty
$$

and is dissipative. ∇

Exercise 10:

In this exercise, you show that if (X, \mathcal{B}, m, T) is an invertible NST, then \exists a wandering set $W \in \mathcal{B}$ such that

$$
\mathfrak{D}=\bigcup_{n \in \mathbb{Z}} T^{n} W .
$$

Hints For $A \in \mathcal{B}$ set $A^{T}:=\bigcup_{n \in \mathbb{Z}} T^{n} A$.
WLOG, $m(X)=1$.

- Define $\epsilon_{1}:=\sup \{m(W): W \in \mathcal{W}\}$;
- choose $W \in \mathcal{W}$ with $m\left(W_{1}\right) \geq \frac{\epsilon_{1}}{2}$;
- define $\epsilon_{2}:=\sup \left\{m(W): W \in \mathcal{W}, W \cap W_{1}^{T}=\varnothing\right\}$;
- choose $W_{2} \in \mathcal{W}, W \cap W_{1}^{T}=\varnothing$ with $m\left(W_{2}\right) \geq \frac{\epsilon_{2}}{2}$.

Continue this process to obtain $\left\{W_{n}: n \in \mathbb{N}\right\} \subset \mathcal{W} \&\left\{\epsilon_{n}: n \in \mathbb{N}\right\} \subset$ \mathbb{R}_{+}so that

- $W_{k} \cap W_{\ell}^{T}=\varnothing \forall k>\ell$;
- $2 m\left(W_{n}\right) \geq \epsilon_{n}:=\sup \left\{m(W): W \in \mathcal{W}, W \cap W_{k}^{T}=\varnothing \forall 1 \leq k \leq n-1\right\}$.

Show that $W:=\cup_{n \geq 1} W_{n}$ is as required.
Exercise 11: Hopf decomposition not T-invariant.
Let $(X, \mathcal{B}, m, T)=([0,2], \mathcal{B}([0,2])$, Leb $)$ where $T:[0,2) \rightarrow[0,2)$ is defined by

$$
T(x):=\left\{\begin{array}{l}
2 x \quad x \in[0,1) \\
1+(2(x-1) \bmod 1)
\end{array} \quad x \in[1,2)\right.
$$

Show that T is non-singular, $\mathfrak{D}(T)=[0,1), \mathfrak{C}(T)=[1,2)$ and that

$$
T^{-1} \mathfrak{D}(T)=\left[0, \frac{1}{2}\right) \& m\left(T^{-1} \mathfrak{D}(T) \Delta \mathfrak{D}(T)\right)=\frac{1}{2}
$$

Conservativity and transfer operators

2.10 Hopf's recurrence theorem

If $T: X \rightarrow X$ is nonsingular then

$$
\begin{align*}
& \mathfrak{C}(T) \supset\left[\sum_{n=1}^{\infty} \widehat{T}^{k} f=\infty\right] \quad \text { mod } m \forall f \in L^{1}(m)_{+} ; \quad \& \tag{i}\\
& \mathfrak{C}(T)=\left[\sum_{n=1}^{\infty} \widehat{T}^{k} f=\infty\right] \quad \text { mod } m \forall f \in L^{1}(m), f>0 .
\end{align*}
$$

Proof (i) Fix $f \in L^{1}(m)_{+}$and $W \in \mathcal{W}_{T}$, then

$$
\infty>\int_{X} f d m \geq \int_{X} f\left(\sum_{n \geq 0} 1_{W} \circ T^{n}\right) d m=\int_{W}\left(\sum_{n \geq 0} \widehat{T}^{n} f\right) d m .
$$

This shows that $\mathfrak{D}(T) \subset\left[\sum_{n=1}^{\infty} \widehat{T}^{k} f<\infty\right] . \nabla$
(ii) Assume otherwise and fix $f \in L^{1}(m), f>0, A \in \mathcal{B}_{+}, A \subset \mathfrak{C}(T)$ s.t. $\sum_{n=1}^{\infty} \widehat{T}^{k} f<\infty$ on A.

WLOG $f(x) \geq c>0 \forall x \in A$, and the series converges uniformly on A whence $\int_{A}\left(\sum_{n=1}^{\infty} \widehat{T}^{k} f\right) d m<\infty$.

On the other hand, by Halmos' recurrence theorem $\sum_{n \geq 0} 1_{A} \circ T^{n}=\infty$ a.e. on A.

Thus

$$
\begin{aligned}
\infty & >\int_{A}\left(\sum_{n=0}^{\infty} \widehat{T}^{k} f\right) d m=\int_{X} f\left(\sum_{n \geq 0} 1_{A} \circ T^{n}\right) d m \\
& \geq \int_{A} f\left(\sum_{n \geq 0} 1_{A} \circ T^{n}\right) d m \geq c \int_{A}\left(\sum_{n \geq 0} 1_{A} \circ T^{n}\right) d m=\infty \quad \boxtimes \quad \square
\end{aligned}
$$

2.11 Corollary.

If $T x=x+\beta+\int_{\mathbb{R}} \frac{d \nu(t)}{t-x}$ where ν is a finite, Lebesgue-singular, measure on \mathbb{R} with compact support, then T is conservative if $\beta=0$ and dissipative if $\beta \neq 0$.

Proof By Hopf's recurrence theorem, it suffices to show that $\sum_{n \geq 0}^{\infty} \widehat{T}^{n} \varphi_{\omega}$ diverges a.e. for some $\omega \in \mathbb{R}^{2+}$ when $\beta=0$; and converges a.e. for some $\omega \in \mathbb{R}^{2+}$ when $\beta \neq 0$.

By Boole's formula

$$
\widehat{T}^{n} \varphi_{\omega}(x)=\varphi_{T^{n} \omega}(x)=\frac{1}{\pi} \cdot \frac{v_{n}}{\left(x-u_{n}\right)^{2}+v_{n}^{2}} \quad \text { where } T^{n} \omega=u_{n}+i v_{n}
$$

Elementary estimations show that

- when $\beta \neq 0$. $\exists B=B(\omega) \in \mathbb{R}_{+} \& C=C(\omega) \in \mathbb{R}$ so that

$$
\begin{equation*}
v_{n} \uparrow B \& \quad u_{n}=\beta n-\frac{\nu}{\beta} \log n+C+O\left(\frac{\log n}{n}\right) \quad \text { as } n \rightarrow \infty ; \tag{I}
\end{equation*}
$$

and

- when $\beta=0$,

$$
\begin{equation*}
\sup _{n \geq 1}\left|u_{n}\right|<\infty \quad \& \quad v_{n} \sim \sqrt{2 \nu n} \text { as } n \rightarrow \infty \text { where } \nu:=\sum_{k=1}^{n} p_{k} \tag{II}
\end{equation*}
$$

It follows that T is

- conservative when $\beta=0\left(\because \widehat{T}^{n} \varphi_{\omega} \propto \frac{1}{\sqrt{n}}\right.$ uniformly on bounded subsets of \mathbb{R});
- and totally dissipative when $\beta \neq 0\left(\because \widehat{T}^{n} \varphi_{\omega} \ll \frac{1}{n^{\frac{3}{2}}}\right.$ on $\left.\mathbb{R}\right)$.

Exercise 11: Hopf recurrence theorem for MPTs.

Suppose that T is a MPT of the σ-finite measure space (X, \mathcal{B}, m). Show that

$$
\left[\sum_{n=1}^{\infty} f \circ T^{n}=\infty\right]=\mathfrak{C}(T) \quad \bmod m \quad \forall f \in L^{1}(m), f>0
$$

Lecture \# 3 15/10/2014 10-12.

Ergodicity

A transformation T of the measure space (X, \mathcal{B}, m) is called ergodic if

$$
A \in \mathcal{B}, T^{-1} A=A \bmod m \Rightarrow m(A)=0, \text { or } m\left(A^{c}\right)=0
$$

In general, let

$$
\mathfrak{I}(T):=\left\{A \in \mathcal{B}, T^{-1} A=A\right\} .
$$

Remarks.

It is not hard to see that:

- $\mathfrak{I}(T)$ is a σ-algebra (and that T is ergodic iff $\mathfrak{I}^{m}\{\varnothing, X\}$);
- an invertible ergodic nonsingular transformation of a non-atomic measure space is necessarily conservative;
- a nonsingular transformation (X, \mathcal{B}, m, T) is conservative and ergodic iff

$$
\sum_{n=1}^{\infty} 1_{A} \circ T^{n}=\infty \text { a.e. } \forall A \in \mathcal{B}_{+} .
$$

Exercise 13.

(i) Suppose that (X, \mathcal{B}, m, T) is a Kakutani skyscraper over the ergodic NST $(\Omega, \mathcal{F}, \mu, S)$, then T is ergodic.
(ii) Suppose that (X, \mathcal{B}, m, T) is a conservative, NST and that $A \in$ $\mathcal{B}, \cup_{n=1}^{\infty} T^{-n} A \stackrel{m}{=} X$, then T is ergodic $\Longleftrightarrow T_{A}$ is ergodic.

Exercise 14.

Let (X, \mathcal{B}, m, T) be a conservative, ergodic nonsingular transformation and let (Z, d), a separable metric space. Show that if $f: X \rightarrow Z$ is a measurable map, then for a.e. $x \in X$,

$$
\overline{\left\{f\left(T^{n} x\right): n \in \mathbb{N}\right\}}=\operatorname{spt} m \circ f^{-1}
$$

SOME ERGODIC TRANSFORMATIONS

Rotations of the circle. Let X be the circle $\mathbb{T}=\mathbb{R} / \mathbb{Z}=[0,1), \mathcal{B}$ be its Borel sets, and m be Lebesgue measure. The rotation (or translation) of the circle by $x \in X$ is the transformation $r_{x}: X \rightarrow X$ defined by $r_{x}(y)=x+y \bmod 1$.

Evidently $m \circ r_{x}=m$ for every $x \in X$ and each r_{x} is an invertible measure preserving transformation of (X, \mathcal{B}, m).

3.2 Proposition

If α is irrational, then r_{α} is ergodic.

Proof

We use harmonic analysis. Suppose that $f: X \rightarrow \mathbb{R}$ is bounded and measurable, and that $f \circ r_{\alpha}=f$, then

$$
\begin{aligned}
\widehat{f}(n) & =\int_{[0,1)} f(y) e^{-2 \pi i n y} d y \\
& =\int_{[0,1)} f(\alpha+y) e^{-2 \pi i n y} d y=\lambda^{n} \widehat{f}(n) \text { where } \lambda:=e^{2 \pi i \alpha} .
\end{aligned}
$$

It follows that

$$
\lambda^{n}=1 \text { whenever } \widehat{f}(n) \neq 0,
$$

whence, since $\lambda^{n} \neq 1 \forall n \neq 0, \widehat{f}(n)=0$ whenever $n \neq 0$ and f is constant.
\square

Ergodicity of rank one constructions.

3.3 Proposition

Let (X, \mathcal{B}, m, T) be a rank one MPT as above, then T is ergodic.

Proof Let

$$
R_{n}=\bigcup_{I \in \mathfrak{r}_{n}} I \uparrow X
$$

be the refining sequence of Rokhlin towers defining T; where each

$$
\mathfrak{r}_{n}=\left\{T^{j} I_{n}: 0 \leq j \leq k_{n}-1\right\}
$$

is a partition of R_{n} into intervals with equal lengths $m\left(I_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$.
We claim first that it suffices to show that
For $\epsilon>0 \& A \in \mathcal{B}_{+}, \exists N=N_{\epsilon, A}$ so that

$$
\forall n>N \exists I \in \mathfrak{r}_{n} \text { s.t. } m(A \mid I)>1-\epsilon .
$$

Proof of sufficiency of

Suppose that $A \in \mathcal{B}_{+}, T A=A$. We'll show assuming that $\forall N \geq 1$ large enough,

$$
m\left(A \cap R_{N}\right)>(1-\epsilon) m\left(R_{N}\right) \quad \forall \epsilon>0
$$

whence $A \supset R_{N} \uparrow X \bmod m$.
To see this, choose (by) $n \geq N \& J \in \mathfrak{r}_{n}$ satisfying $m(A \mid J)>1-\epsilon$. Then for each $K=T^{i} K \in \mathfrak{r}_{n}$, we have using T-invariance of $m \& A$:

$$
m(A \mid K)=\frac{m\left(A \cap T^{i_{K}} J\right)}{m\left(T^{i} K J\right)}=m(A \mid J)>1-\epsilon
$$

whence

$$
m\left(A \cap R_{N}\right)=\sum_{K \in \mathfrak{r}_{n}, K \subset R_{N}} m(A \mid K) m(K)>(1-\epsilon) m\left(R_{N}\right) .
$$

Proof of

Suppose that $A \in \mathcal{B}_{+}$and fix $N \geq 1$ so that $B:=A \cap R_{N} \in \mathcal{B}_{+}$. For $n \geq N$, let

$$
\mathfrak{s}_{n}:=\left\{I \in \mathfrak{r}_{n}: I \subset R_{N}\right\} .
$$

Fix $0<\epsilon<1$ and for $n \geq N$ let

$$
\mathcal{Z}_{n}:=\left\{I \in \mathfrak{s}_{n}: m(B \mid I)>1-\epsilon\right\} \& \mathcal{Y}_{n}:=\mathfrak{s}_{n} \backslash \mathcal{Z}_{n}
$$

We show that $\forall n$ large enough, $\mathcal{Z}_{n} \neq \varnothing$.
Since $\sigma\left(\cup_{n \geq N} \mathfrak{s}_{n}\right)=\mathcal{B}\left(R_{N}\right), \exists n \geq N \& C_{n}$, a union of sets in \mathfrak{s}_{n} so that $m\left(B \Delta C_{n}\right)<\frac{\epsilon^{2} m(B)}{9}$. It follows that

$$
\begin{aligned}
m\left(C_{n}\right)-\frac{\epsilon^{2} m(B)}{9} & <m\left(B \cap C_{n}\right) \\
& =\sum_{I \in \mathfrak{s}_{n}, I \subset C_{n}} m(B \mid I) m(I) \\
& =\sum_{I \in \mathcal{Z}_{n}, I \subset C_{n}} m(B \mid I) m(I)+\sum_{I \in \mathcal{Y}_{n}, I \subset C_{n}} m(B \mid I) m(I) \\
& \leq \sum_{I \in \mathcal{Z}_{n}, I \subset C_{n}} m(I)+(1-\epsilon) \sum_{I \in \mathcal{Y}_{n}, I \subset C_{n}} m(I) \\
& =m\left(\bigcup \mathcal{Z}_{n}\right)+(1-\epsilon) m\left(C_{n}\right)
\end{aligned}
$$

whence

$$
\begin{aligned}
m\left(\bigcup \mathcal{Z}_{n}\right) & \geq m\left(C_{n}\right)-\frac{\epsilon^{2} m(B)}{9}-(1-\epsilon) m\left(C_{n}\right) \\
& =\epsilon m\left(C_{n}\right)-\frac{\epsilon^{2} m(B)}{9} \\
& >\epsilon m(B)-\frac{\epsilon^{3} m(B)}{9}-\frac{\epsilon^{2} m(B)}{9} \\
& >\frac{7 \epsilon m(B)}{9}>0 . \quad \square
\end{aligned}
$$

Ergodicity via stronger properties

Sometimes it's easier to prove more than ergodicity.

One-sided Bernoulli shifts.

Let $X=\mathbb{R}^{\mathbb{N}}$ and let $\mathcal{B}(X)$ be the σ-algebra generated by cylinder sets of form $\left[A_{1}, \ldots, A_{n}\right]:=\left\{\underline{x} \in X: x_{j} \in A_{j}, 1 \leq j \leq n\right\}$, where $A_{1}, \ldots, A_{n} \in$ $\mathcal{B}(\mathbb{R})$ (the Borel subsets of \mathbb{R}), and let the shift $S: X \rightarrow X$ be defined by

$$
(S x)_{n}=x_{n+1} .
$$

For $p: \mathcal{B}(\mathbb{R}) \rightarrow[0,1]$ a probability, let $\mu_{p}: \mathcal{B}(X) \rightarrow[0,1]$ be the probability ${ }^{2}$ satisfying

$$
\mu_{p}\left(\left[A_{1}, \ldots, A_{n}\right]\right)=\prod_{k=1}^{n} p\left(A_{k}\right) \quad\left(A_{1}, \ldots, A_{n} \in \mathcal{B}(\mathbb{R})\right)
$$

Evidently $S^{-1}\left[A_{1}, \ldots, A_{n}\right]=\left[\mathbb{R}, A_{1}, \ldots, A_{n}\right]$ whence $\mu_{p} \circ S^{-1}=\mu_{p}$.
The one-sided Bernoulli shift with marginal distribution p is the probability preserving transformation S of $\left(X, \mathcal{B}, \mu_{p}\right)$.

Tail, exactness. Let T be a nonsingular transformation of (X, \mathcal{B}, m). The tail σ-algebra of T is

$$
\mathfrak{T}(T):=\bigcap_{n=1}^{\infty} T^{-n} \mathcal{B} .
$$

The transformation T is called exact if $\mathfrak{T}(T)=\{\varnothing, X\} \bmod m$.
Evidently $\mathfrak{I}(T) \subset \mathfrak{T}(T) \bmod m$ and so exact transformations are ergodic.

3.4 Kolmogorov's zero-one law

Any one-sided Bernoulli shift is exact.

Proof

Suppose that $B \in \mathcal{B}$ is a finite union of cylinders. If the length of the longest cylinder in the union is n, then

$$
\mu_{p}\left(B \cap S^{-n} C\right)=\mu_{p}(B) \mu_{p}(C) \quad \forall C \in \mathcal{B} .
$$

Now suppose $A \in \mathfrak{T}$. Since, for each $n \in \mathbb{N}$,

$$
A=S^{-n} A_{n} \text { where } A_{n} \in \mathcal{B}, \mu_{p}\left(A_{n}\right)=\mu_{p}(A)
$$

we have that

$$
\mu_{p}(B \cap A)=\mu_{p}(B) \mu_{p}(A)
$$

for $B \in \mathcal{B}$ a finite union of cylinders, and hence (by approximation) $\forall B \in \mathcal{B}$. This implies that

$$
0=\mu_{p}\left(A \cap A^{c}\right)=\mu_{p}(A)\left(1-\mu_{p}(A)\right)
$$

demonstrating that \mathfrak{T} is trivial $\bmod \mu_{p} \quad \quad \square$
Note that no invertible nonsingular transformation can be exact (except the identity no a $1-\mathrm{pt}$. space). Hence an irrational rotation of \mathbb{T} is ergodic, but not exact.

[^1]Two sided Bernoulli shift.
Recall that the two sided Bernoulli shift is defined with $X=\mathbb{R}^{\mathbb{Z}}$, $\mathcal{B}(X)$ the σ-algebra generated by cylinder sets of form

$$
\left[A_{1}, \ldots, A_{n}\right]_{k}:=\left\{\underline{x} \in X: x_{j+k} \in A_{j}, 1 \leq j \leq n\right\}
$$

where $A_{1}, \ldots, A_{n} \in \mathcal{B}(\mathbb{R})$. The shift $S: X \rightarrow X$ is defined as before by $(S x)_{n}=x_{n+1}$, and the S-invariant probability $\mu_{p}: \mathcal{B}(X) \rightarrow[0,1]$ is defined (for $p: \mathcal{B}(\mathbb{R}) \rightarrow[0,1]$ a probability) by

$$
\mu_{p}\left(\left[A_{1}, \ldots, A_{n}\right]_{k}\right)=\prod_{k=1}^{n} p\left(A_{k}\right) \quad\left(A_{1}, \ldots, A_{n} \in \mathcal{B}(\mathbb{R})\right)
$$

The two sided Bernoulli shift is an invertible measure preserving transformation (and hence cannot be exact).

3.5 Proposition.

A two sided Bernoulli shift is mixing in the sense that

$$
\mu_{p}\left(A \cap T^{-n} B\right) \rightarrow \mu_{p}(A) \mu_{p}(B) \text { as } n \rightarrow \infty \quad \forall A, B \in \mathcal{B}(X),
$$

and hence ergodic.
Proof True in the combinatorial sense for A, B finite unions of cylinders, and hence (by approximation) $\forall A, B \in \mathcal{B}$. \square

Exercise 15.

Show that an exact probability preserving transformation (X, T, μ) is mixing.
Hint Show first that if $f \in L^{2}, n_{k} \rightarrow \infty$ and $f \circ T^{n_{k}} \rightarrow g \in L^{2}$ weakly in L^{2}, then g is tail measurable.

Nonsingular Adding Machine.

Let $\Omega=\{0,1\}^{\mathbb{N}}$, and \mathcal{B} be the σ-algebra generated by cylinders. We consider again the adding machine $\tau: \Omega \rightarrow \Omega$ defined by

$$
\tau\left(1, \ldots, 1,0, \epsilon_{n+1}, \epsilon_{n+2}, \ldots\right)=\left(0, \ldots, 0,1, \epsilon_{n+1}, \epsilon_{n+2}, \ldots\right)
$$

The adding machine has
the odometer property.
$\Theta \quad\left\{\left(\left(\tau^{k} x\right)_{1}, \ldots,\left(\tau^{k} x\right)_{n}\right): 0 \leq k \leq 2^{n}-1\right\}=\{0,1\}^{n} \forall x \in \Omega, n \geq 1$.
The next lemma illustrates how the odometer "parametrizes" the tail of the one-sided shift $S: \Omega \rightarrow \Omega$.

3.6 Lemma

For $x \in \widetilde{\mathbb{Z}}:=\left\{\tau^{n}(\overline{0}): n \in \mathbb{Z}\right\}$,

$$
\left\{y \in \Omega: \exists n \geq 0, S^{n}(y)=S^{n}(x)\right\}=\left\{\tau^{n}(x): n \in \mathbb{Z}\right\} .
$$

Proof Note that $\widetilde{\mathbb{Z}}=\left\{x \in \Omega: \exists \lim _{n \rightarrow \infty} x_{n}\right\}$. Thus for $x \notin \widetilde{\mathbb{Z}}$, both $\ell(x):=\min \left\{n \geq 1: x_{n}=0\right\}$ and $(x):=\min \left\{n \geq 1: x_{n}=q\right\}$ are finite, whence

$$
\exists n \geq 1 \text { s.t. } S^{n} x=S^{n} \tau(x)=S^{n} \tau^{-1}(x)
$$

Since $\tau \widetilde{\mathbb{Z}}=\widetilde{\mathbb{Z}}$,

$$
\left\{y \in \Omega: \exists n \geq 0, S^{n}(y)=S^{n}(x)\right\} \supset\left\{\tau^{n}(x): n \in \mathbb{Z}\right\} .
$$

For the other inclusion, suppose $S^{n} x=S^{n} y=z$, then using the odometer property,

$$
(\underbrace{0, \ldots, 0}_{n \text { times }}, z)=\tau^{-\nu_{n}(x)}(x)=\tau^{-\nu_{n}(y)}(y)
$$

where $\nu_{n}(\omega):=\sum_{k=1}^{n} 2^{k-1} \omega_{n}$. Thus

$$
y=\tau^{\nu_{n}(y)-\nu_{n}(x)}(x)
$$

For $p \in(0,1)$, set $\mu_{p}=\Pi(1-p, p) \in \mathcal{P}(\Omega)$ and recall that

$$
\frac{d \mu_{p} \circ \tau}{d \mu_{p}}=\left(\frac{1-p}{p}\right)^{\phi}
$$

where $\phi(x):=\min \left\{n \geq 1: x_{n}=0\right\}-2=: \ell(x)-2$.

3.7 Proposition

τ is an invertible, conservative, ergodic nonsingular transformation of $\left(\Omega, \mathcal{B}, \mu_{p}\right)$.

Proof It is not hard to show, using lemma 3.6, that $\mathfrak{I}(\tau)=\mathfrak{T}(S) \bmod \mu_{p}$ and the ergodicity of $\left(\Omega, \mathcal{B}, \mu_{p}, \tau\right)$ follows from the exactness of $\left(\Omega, \mathcal{B}, \mu_{p}, S\right)$. As above, conservativity is automatic in this case. ∇
3.8 Rigidity proposition For $0<p<1,\left(\Omega, \mathcal{B}, \mu_{p}\right)$ is rigid in the sense that if $f: \Omega \rightarrow \mathbb{R}$ is measurable, then $\forall \epsilon>0$,

$$
\mu_{p}\left(\left[\left|f \circ \tau^{2^{n}}-f\right| \geq \epsilon\right]\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

Proof Firstly, note that if $f: \Omega \rightarrow \mathbb{R}$ and f is defined by $f(x)=$ $g\left(x_{1}, \ldots, x_{n}\right)$ for some $n \in \mathbb{N}$, then $f \circ \tau^{2^{k}} \equiv f$ for every $k \geq n$. To enable approximation, we show that $\exists \Delta>0 \& M>1$ so that

$$
\mu_{p}\left(\tau^{-2^{n}} A\right) \leq M \mu_{p}(A)^{\Delta} \quad \forall A \in \mathcal{B} .
$$

Proof of (4)

As before,
$\frac{d \mu_{p} \circ \tau^{-1}}{d \mu_{p}}=\left(\frac{p}{1-p}\right)^{\psi}$ where $\psi(x):=\min \left\{n \in \mathbb{N}: x_{n}=1\right\}-2$;
Using the odometer property:
(

$$
\begin{aligned}
\sum_{j=0}^{2^{n}-1} \psi\left(\tau^{-k} x\right) & =\sum_{\epsilon \epsilon\{0,1\}^{n} \backslash\{\underline{1}\}} \psi(\epsilon)+n+\psi\left(S^{n} x\right) \\
& =\sum_{k=1}^{n}(k-2) 2^{n-k}+n+\psi\left(S^{n} x\right) \\
& =\psi\left(S^{n} x\right) .
\end{aligned}
$$

By ()

$$
\begin{aligned}
\frac{d \mu_{p} \circ \tau^{-2^{n}}}{d \mu_{p}} & =\prod_{k=0}^{2^{n}-1}\left(\frac{d \mu_{p} \circ \tau^{-1}}{d \mu_{p}}\right) \circ \tau^{-k} \\
& =\prod_{k=0}^{2^{n}-1}\left(\frac{p}{1-p}\right)^{\psi \circ \tau^{-k}} \\
& =\left(\frac{p}{1-p}\right)^{\psi \circ S^{n}} .
\end{aligned}
$$

Fix (!) $q>1$ be such that $\frac{p^{q}}{(1-p)^{q-1}}<1$, then

$$
M^{q}:=\left\|\left(\frac{p}{1-p}\right)^{\psi}\right\|_{L^{q}\left(\mu_{p}\right)}^{q} \propto \sum_{n \geq 1}\left(\frac{p^{q}}{(1-p)^{q-1}}\right)^{n}<\infty
$$

and for $A \in \mathcal{B}$,

$$
\mu_{p}\left(\tau^{-2^{n}} A\right)=\int_{A}\left(\frac{p}{1-p}\right)^{\psi \circ S^{n}} d \mu_{p} \leq\left\|\left(\frac{p}{1-p}\right)^{\psi}\right\|_{q} \mu_{p}(A)^{\frac{q-1}{q}}=M \mu_{p}(A)^{\frac{q-1}{q}}
$$

by Hölder's inequality. $\nabla(\mathbf{*})$
Now, suppose that $F: \Omega \rightarrow \mathbb{R}$ is measurable, and let $\epsilon>0$ be given. There exist $n \in \mathbb{N}$, and $f: \Omega \rightarrow \mathbb{R}$ and f defined by $f(x)=g\left(x_{1}, \ldots, x_{n}\right)$ for some $g:\{0,1\}^{n} \rightarrow \mathbb{R}$ such that $\mu_{p}([|F-f| \geq \epsilon / 2])<\epsilon$. For $k \geq n$, we have $f \circ \tau^{2^{k}} \equiv f$, whence

$$
\begin{aligned}
\mu_{p}\left(\left[\left|F \circ \tau^{2^{k}}-F\right| \geq \epsilon\right]\right) & \leq \mu_{p}\left(\left[\left|F \circ \tau^{2^{k}}-f \circ \tau^{2^{k}}\right| \geq \epsilon / 2\right]\right)+\mu_{p}([|F-f| \geq \epsilon / 2]) \\
& \leq \epsilon+M \epsilon^{\frac{1}{q^{t}}},
\end{aligned}
$$

establishing that indeed

$$
F \circ \tau^{2^{n}} \xrightarrow{\mu_{p}} F .
$$

Lecture \# 4 15/10/2014 18-20.
Ergodic Maharam extension for the non-singular adding machine.

Define $\tau_{\phi}: \Omega \times \mathbb{Z} \rightarrow \Omega \times \mathbb{Z}$ by

$$
\tau_{\phi}(x, z):=(\tau x, z+\phi(x))
$$

For $0<p<1$ define the measure $m_{p}: \mathcal{B}(\Omega \times \mathbb{Z}) \rightarrow[0, \infty]$ by

$$
m_{p}(A \times\{z\}):=\mu_{p}(A)\left(\frac{p}{1-p}\right)^{z} .
$$

This kind of transformation is aka a Maharam extension.
3.9 Theorem For each $0<p<1,\left(\Omega \times \mathbb{Z}, \mathcal{B}(\Omega \times \mathbb{Z}), m_{p}, \tau_{\phi}\right)$ is a conservative, ergodic measure preserving transformation.

Proof that $m_{p} \circ \tau_{\phi}=m_{p}$
Any $A \in \mathcal{B}(\Omega \times \mathbb{Z})$ has a measurable decomposition $A=\cup_{z, \ell \in \mathbb{Z}} A_{z, \ell} \times$ $\{z\}$ where $\phi=\ell$ on $A_{z, \ell}$. Thus:

$$
\begin{aligned}
m_{p}\left(\tau_{\phi} A\right) & =\sum_{z, \ell \in \mathbb{Z}} m_{p}\left(\tau_{\phi}\left(A_{z, \ell} \times\{z\}\right)\right)=\sum_{z, \ell \in \mathbb{Z}} m_{p}\left(\tau A_{z, \ell} \times\{z+\ell\}\right) \\
& =\sum_{z, \ell \in \mathbb{Z}} \mu_{p}\left(\tau A_{z, \ell}\right)\left(\frac{p}{1-p}\right)^{z+\ell}=\sum_{z, \ell \in \mathbb{Z}} \mu_{p}\left(A_{z, \ell}\right)\left(\frac{p}{1-p}\right)^{z} \\
& =\sum_{z, \ell \in \mathbb{Z}} m_{p}\left(\left(A_{z, \ell} \times\{z\}\right)\right)=m_{p}(A) . \quad \square
\end{aligned}
$$

Proof of ergodicity of τ_{ϕ} Suppose that $F: \Omega \times \mathbb{Z} \rightarrow \mathbb{R}$ is bounded, measurable and τ_{ϕ}-invariant. We'll show first that $F(x, z)=F(x, z-1)$ m_{p}-a.e..

A similar calculation to shows that

$$
\phi_{2^{n}}(x)=\phi\left(S^{n} x\right) .
$$

Iterating τ_{ϕ}, we have that

$$
F(x, z)=F \circ \tau^{2^{n}}(x, z)=F\left(\tau^{2^{n}} x, z+\phi_{2^{n}}(x)\right)=F\left(\tau^{2^{n}} x, z+\phi\left(S^{n}(x)\right) .\right.
$$

By the rigidity proposition, $\exists n_{k} \rightarrow \infty$ and $\Omega_{0} \in \mathcal{B}(\Omega), \mu_{p}\left(\Omega_{0}\right)=1$ such that

$$
F\left(\tau^{2^{n_{k}}} x, z\right) \underset{k \rightarrow \infty}{\longrightarrow} F(x, z) \quad \forall x \in \Omega_{0}, z \in \mathbb{Z}
$$

The events

$$
A_{n}=\left[\phi \circ S^{n}=-1\right]=\left\{x \in \Omega: x_{n+1}=0\right\}
$$

are independent under μ_{p}, and $\mu_{p}\left(A_{n}\right)=1-p$.

By the Borel-Cantelli lemma, $\exists \Omega_{1} \in \mathcal{B}(\Omega), \Omega_{1} \subset \Omega_{0}, \mu_{p}\left(\Omega_{1}\right)=1$ such that $\forall x \in \Omega_{1}, \exists k_{\ell}=k_{\ell}(x) \rightarrow \infty$ with

$$
\phi\left(S^{n_{k}} x\right)=-1 \quad \forall \ell \geq 1,
$$

whence

$$
F(x, z)=F\left(\tau^{2^{n_{k_{\ell}}}} x, z+\phi\left(S^{n_{k_{\ell}}}(x)\right)=F\left(\tau^{2^{n_{k}}} x, z-1\right) \underset{\ell \rightarrow \infty}{\longrightarrow} F(x, z-1) .\right.
$$

Thus $\exists f: \Omega \rightarrow \mathbb{R}$, measurable, such that $F(x, z)=f(x) \mu_{p}$-a.e. $\forall z \in$ \mathbb{Z}. Since F is τ_{ϕ}-invariant, f is τ-invariant and μ_{p}-a.e. constant by ergodicity of $\left(\Omega, \mathcal{B}, \mu_{p}, \tau\right)$. $\quad \square$

3.10 Corollary

The nonsingular adding machine $\left(\Omega, \mathcal{B}, \mu_{p}, \tau\right)$ has no σ-finite, absolutely continuous, invariant measure.

Proof Suppose otherwise, that $m \ll \mu_{p}$ is a σ-finite, τ-invariant measure and let $d m=h d \mu_{p}$ where $h \geq 0$ is measurable, then(!) $h>0$ μ_{p}-a.e. $\left(\because m \sim \mu_{p}\right)$ and

$$
h=\widehat{\tau^{-1}} h=\tau^{\prime} h \circ \tau \Longrightarrow \tau^{\prime}=\frac{h}{h \circ \tau} .
$$

Since $\tau^{\prime}=\left(\frac{1-p}{p}\right)^{\phi}$ we have that $\phi=k-k \circ \tau$ where $k: \Omega \rightarrow \mathbb{R}$ satisfies $h=\left(\frac{1-p}{p}\right)^{k}$.

Define $F: \Omega \times \mathbb{Z} \rightarrow \mathbb{R}$ by $F(x, z)=z+k(x)$, then

$$
F\left(\tau_{\phi}(x, z)\right)=F(\tau x, z+\phi(x))=z+\phi(x)+k(\tau x)=z+k(x)=F(x, z) .
$$

By ergodicity, F is constant, but it isn't $(\because \quad F(x, z+1)=F(x, z)+1)$. \square

Exercise 16: Dissipative exact MPTs.

Let $\Omega=\{0,1\}^{\mathbb{N}}$ let $S: \Omega \rightarrow \Omega$ be the shift, let $\tau: \Omega \rightarrow \Omega$ be the adding machine and let $\mu_{p}=\Pi(1-p, p) \in \mathcal{P}(\Omega), \quad(0<p<1)$. Define $f, \phi: \Omega \rightarrow \mathbb{Z}$ by

$$
\left.f(x):=x_{1} \quad \& \quad \phi(x):=\ell(x)-2\right), \quad \ell(x):=\min \left\{n \geq 1: x_{n}=0\right\}
$$

and S_{f}, τ_{ϕ} by

$$
S(x, z)=\left(\sigma(x), z+x_{1}\right), T(x, z):=(\tau(x), z+\ell(x)-2) .
$$

Show that
(i) $\left(\Omega \times \mathbb{Z}, \mathcal{B}(\Omega \times \mathbb{Z}), \mu_{p} \times \#, S_{f}\right)$ is a totally dissipative MPT;
(ii) $\mathfrak{T}\left(S_{f}\right)=\mathfrak{I}\left(\tau_{\phi}\right)$.
(iii) $\left(\Omega \times \mathbb{Z}, \mathcal{B}(\Omega \times \mathbb{Z}), \mu_{p} \times \#, S_{f}\right)$ is exact.

RATIO ERGODIC THEOREM

Suppose that (X, \mathcal{B}, m, T) is a conservative, nonsingular transformation.

4.6 Hurewicz's Ergodic Theorem

$\frac{\sum_{k=1}^{n} \widehat{T}^{k} f(x)}{\sum_{k=1}^{n} \widehat{T}^{k} p(x)} \underset{n \rightarrow \infty}{\longrightarrow} E_{m_{p}}\left(\left.\frac{f}{p} \right\rvert\, \mathfrak{I}\right)(x)$ for a.e. $x \in X, \forall f, p \in L^{1}(m), \quad p>0$, where $d m_{p}=p d m$, and \mathfrak{I} is the σ-algebra of T-invariant sets in \mathcal{B}.

Conditional expectations.

Here, given a probability space (Ω, \mathcal{F}, P), and a sub- σ-algebra $\mathcal{C} \subset \mathcal{F}$, the conditional expectation wrt \mathcal{C} is a linear operator $f \mapsto E_{P}(f \mid \mathcal{C}), \quad L^{1}(\Omega, \mathcal{F}, P) \rightarrow$ $L^{1}(\Omega, \mathcal{C}, P)$ satisfying

$$
\int_{C} E_{P}(f \mid \mathcal{C}) d P=\int_{C} f d P \quad \forall C \in \mathcal{C}
$$

Such operators are unique by their defining equations,. They exist $L^{2}(\Omega, \mathcal{F}, P) \rightarrow L^{2}(\Omega, \mathcal{C}, P)$ as orthogonal projections and extend to L^{1} by approximation.

Proof of Hurewicz's theorem

Set, for $f, p \in L^{1}(m), p>0, \widehat{S}_{0} f=0$, and $n \in \mathbb{N}$,

$$
\widehat{S}_{n} f:=\sum_{k=0}^{n-1} \widehat{T}^{k} f, \quad R_{n}(f, p):=\frac{\widehat{S}_{n} f}{\widehat{S}_{n} p}
$$

Let

$$
\mathcal{H}_{p}:=\left\{f=h p+g-\widehat{T} g \in L^{1}(m): h \circ T=h \in L^{\infty}(m), g \in L^{1}(m)\right\} .
$$

We claim that for $f=h p+g-\widehat{T} g \in \mathcal{H}_{p}$,

$$
R_{n}(f, p)=h+\frac{g-\widehat{T}^{n} g}{\widehat{S}_{n} p}
$$

We show that $R_{n}(h p, p)=h$ where $h \circ T=h \in L^{\infty}(m)$. For $g \in$ $L^{\infty}(m), n \in \mathbb{N}$,
$\int_{X} \widehat{T}^{n}(h p) \cdot g d m=\int_{X} p h g \circ T^{n} d m=\int_{X} p h \circ T^{n} g \circ T^{n} d m=\int_{X} h \widehat{T}^{n} p \cdot g d m$ for every whence $\widehat{T}^{n} f=h \widehat{T}^{n} p$, and $R_{n}(f, p)=h$. The convergence

$$
R_{n}(f, p) \underset{n \rightarrow \infty}{\longrightarrow} h \text {, a.e. } \forall f=h p+g-\widehat{T} g \in \mathcal{H}_{p}
$$

follows immediately from the

4.7 Chacon-Ornstein Lemma

$$
\frac{\widehat{T}^{n} g}{\widehat{S}_{n} p} \underset{n \rightarrow \infty}{\longrightarrow} 0 \text {, a.e. } \forall g \in L^{1}(m) .
$$

Proof Choose $\epsilon>0$, and let $\eta_{n}=1_{\left[\widehat{T}^{n} g>\epsilon \widehat{S}_{n} p\right]}$. We must show that $\sum_{n=1}^{\infty} \eta_{n}<\infty$ a.e. $\forall \epsilon>0$.

We have

$$
\epsilon p+\widehat{T}^{n+1} g-\epsilon \widehat{S}_{n+1} p=\widehat{T}\left(\widehat{T}^{n} g-\epsilon \widehat{S}_{n} p\right)
$$

whence

$$
\epsilon p+\widehat{T}^{n+1} g-\epsilon \widehat{S}_{n+1} p \leq \widehat{T}\left(\widehat{T}^{n} g-\epsilon \widehat{S}_{n} p\right)_{+}
$$

where g_{+}denotes $g \vee 0, f \vee g=\max \{f, g\}$.
Multiplying both sides of the inequality by η_{n+1} :

$$
\begin{aligned}
\eta_{n+1} \epsilon p+\eta_{n+1}\left(\widehat{T}^{n+1} g-\epsilon \widehat{S}_{n+1} p\right) & =\eta_{n+1} \epsilon p+\left(\widehat{T}^{n+1} g-\epsilon \widehat{S}_{n+1} p\right)_{+} \\
& \leq \eta_{n+1} \widehat{T}\left(\widehat{T}^{n} g-\epsilon \widehat{S}_{n} p\right)_{+} \\
& \leq \widehat{T}\left(\widehat{T}^{n} g-\epsilon \widehat{S}_{n} p\right)_{+} .
\end{aligned}
$$

Equivalently,

$$
\eta_{n+1} \epsilon p \leq \widehat{T} J_{n}-J_{n+1}
$$

where $J_{n}:=\left(\widehat{T}^{n} g-\epsilon \widehat{S}_{n} p\right)_{+}$.
Integrating, we get

$$
\epsilon \int_{X} p \eta_{n+1} d m \leq \int_{X}\left(J_{n}-J_{n+1}\right) d m
$$

and, summing over n, we get

$$
\epsilon \int_{X} p \sum_{n=2}^{N} \eta_{n} d m \leq \int_{X} J_{1} d m<\infty .
$$

This shows that indeed

$$
\sum_{n=1}^{\infty} \eta_{n}<\infty \text { a.e. }
$$

and thereby proves the lemma. \square
We next establish that
©

$$
\overline{\mathcal{H}_{p}}=L^{1}(m) .
$$

To see this, we show that

$$
k \in L^{\infty}(m), \int_{X} k f d m=0 \forall f \in \mathcal{H}_{p} \Rightarrow k=0 \text { a.e. }
$$

To see this, let

$$
k \in L^{\infty}(m) \ni \int_{X} k f d m=0 \forall f \in \mathcal{H}_{p},
$$

then, in particular

$$
\int_{X} g k \circ T d m=\int_{X} \widehat{T} g \cdot k d m=\int_{X} g k d m \forall g \in L^{1}(m)
$$

whence $k \circ T=k$ a.e., and $k p \in \mathcal{H}_{p}$.
Hence,

$$
\int_{X} k^{2} p d m=0 \Rightarrow k=0 \text { a.e. }
$$

© \cdot now follows from the Hahn-Banach theorem.

Proof of Hurewicz's theorem ctd.

Identification of the limit.
We now identify the limit of $R_{n}(f, p) \quad f \in \mathcal{H}_{p}$. Define $\Phi_{p}: L^{1}(m) \rightarrow$ $L^{1}\left(m_{p}\right)$ by

$$
\Phi_{p}(f):=E_{m_{p}}\left(\frac{f}{p} \| \mathfrak{I}\right),
$$

then

$$
\left\|\Phi_{p}(f)\right\|_{L^{1}\left(m_{p}\right)} \leq\|f\|_{1} \forall f \in L^{1}(m) .
$$

We claim that

$$
\begin{equation*}
R_{n}(f, p) \underset{n \rightarrow \infty}{\longrightarrow} \Phi_{p}(f) \quad \forall f \in \mathcal{H}_{p} \tag{※}
\end{equation*}
$$

For this, it suffices that

$$
\Phi_{p}(h p+g-\widehat{T} g)=h \quad \forall f=h p+g-\widehat{T} g \in \mathcal{H}_{p}
$$

Indeed, if $k \circ T=k \in L^{\infty}(m)$, then

$$
\begin{aligned}
\int_{X} k \frac{f}{p} d m_{p} & =\int_{X} k f d m \\
& =\int_{X} k(h p+g-\widehat{T} g) d m \\
& =\int_{X} k h p d m+\int_{X} k(g-\widehat{T} g) d m \\
& =\int_{X} k h d m_{p} . \not \square
\end{aligned}
$$

We extend (w) to all $f \in L^{1}(m)$, by an approximation argument which uses the

5.1 Maximal inequality

For $f, p \in L^{1}$, such that $p>0$ a.e., and $t \in \mathbb{R}_{+}$,

$$
m_{p}\left(\left[\sup _{n \in \mathbb{N}} R_{n}(f, p)>t\right]\right) \leq \frac{\|f\|_{1}}{t}
$$

where $d m_{p}=p d m$.
Proof of theorem 4.6 given the maximal inequality
Let $f \in L^{1}(m)$. Fix $\epsilon>0$.

By \odot, we can write $f=g+k$, where $g \in \mathcal{H}_{p}$ and $\|k\|_{1}<\epsilon^{2}$. I t follows that

$$
\varlimsup_{n \rightarrow \infty}\left|R_{n}(f, p)-\Phi_{p}(f)\right| \leq \sup _{n \in \mathbb{N}}\left|R_{n}(k, p)\right|+\left|\Phi_{p}(k)\right|
$$

whence, by the maximal inequality, and by Tchebychev's inequality,

$$
\begin{aligned}
m_{p}\left(\left[\varlimsup_{n \rightarrow \infty}\left|R_{n}(f, p)-\Phi_{p}(f)\right|>2 \epsilon\right]\right) & \leq m_{p}\left(\left[\sup _{n \geq 1}\left|R_{n}(k, p)\right|>\epsilon\right]\right)+m_{p}\left(\left[\left|\Phi_{p}(k)\right|>\epsilon\right]\right) \\
& \leq \frac{2\|k\|_{1}}{\epsilon} \leq 2 \epsilon .
\end{aligned}
$$

This last inequality holds for arbitrary $\epsilon>0$, whence

$$
\varlimsup_{n \rightarrow \infty}\left|R_{n}(f, p)-\Phi_{p}(f)\right|=0 \text { a.e. }
$$

and the ergodic theorem is almost established, it remaining only to prove the maximal inequality.

5.2 Hopf's Maximal ergodic theorem

$$
\int_{\left[M_{n} f>0\right]} f d m \geq 0, \forall f \in L^{1}(m), n \in \mathbb{N},
$$

where

$$
M_{n} f=\left(\bigvee_{k=1}^{n} \widehat{S}_{k} f\right)_{+}=\left(\bigvee_{k=0}^{n} \widehat{S}_{k} f\right)
$$

Proof Note first that if $M_{n} f(x)>0$, then

$$
\begin{aligned}
M_{n} f(x) & \leq M_{n+1} f(x)=\bigvee_{k=1}^{n+1} \widehat{S}_{k} f(x) \\
& =f(x)+\bigvee_{k=0}^{n} \widehat{S}_{k} \widehat{T} f(x)=f(x)+M_{n} \widehat{T} f(x) .
\end{aligned}
$$

Also (!) $M_{n} \widehat{T} f \leq \widehat{T} M_{n} f$, whence

$$
M_{n} f>0 \Rightarrow f \geq M_{n} f-\widehat{T} M_{n} f
$$

and

$$
\int_{\left[M_{n} f>0\right]} f d m \geq \int_{\left[M_{n} f>0\right]}\left(M_{n} f-\widehat{T} M_{n} f\right) d m
$$

Since $\widehat{T} M_{n} f \geq 0$ a.e., and $M_{n} f=0$ on $\left[M_{n} f>0\right]^{c}$, we get

$$
\begin{aligned}
\int_{\left[M_{n} f>0\right]} f d m & \geq \int_{\left[M_{n} f>0\right]} M_{n} f d m-\int_{\left[M_{n} f>0\right]} \widehat{T} M_{n} f d m \\
& \geq \int_{X} M_{n} f d m-\int_{X} \widehat{T} M_{n} f d m \\
& =0
\end{aligned}
$$

whence the theorem.

Proof of the maximal inequality Suppose f, p, t are as in the maximal inequality, then

$$
M_{n}(f-t p)>0 \Leftrightarrow \max _{1 \leq k \leq n} R_{k}(f, p)>t
$$

Thus, using Hopf's maximal ergodic theorem, we obtain

$$
\int_{\left[M_{n}(f-t p)>0\right]}(f-t p) d m \geq 0
$$

whence

$$
\begin{aligned}
\operatorname{tm}_{p}\left(\left[\max _{1 \leq k \leq n} R_{k}(f, p)>t\right]\right) & \leq \int_{\left[\max _{1 \leq k \leq n} R_{k}(f, p)>t\right]} f d m \\
& \leq\|f\|_{1} .
\end{aligned}
$$

The maximal inequality follows from this as $n \rightarrow \infty$. \square
Hurewicz's ergodic theorem is now established.
Hurewicz's theorem for a conservative, ergodic nonsingular transformation T, states that

$$
\frac{\sum_{k=0}^{n-1} \widehat{T}^{k} f(x)}{\sum_{k=0}^{n-1} \widehat{T}^{k} g(x)} \rightarrow \frac{\int_{X} f d m}{\int_{X} g d m} \text { for a.e. } x \in X
$$

whenever $f, g \in L^{1}(m), \int_{X} g d m \neq 0$.

Exercise 17: von Neuann's ergodic theorem.

Let \mathcal{H} be a Hilbert space and let $U: \mathcal{H} \rightarrow \mathcal{H}$ be a unitary operator.
Show that
(i) $\mathcal{H}_{0}:=\{f \in \mathcal{H}: U f=f\}$ is a closed, invariant subspace of \mathcal{H} and that

$$
\begin{equation*}
\left\|\frac{1}{n} \sum_{k=0}^{n-1} U^{k} f-P f\right\|_{n \rightarrow \infty}^{\longrightarrow} 0 \quad \forall f \in \mathcal{H} \tag{ii}
\end{equation*}
$$

where $P: \mathcal{H} \rightarrow \mathcal{H}_{0}$ is orthogonal projection.

Exercise 18: Hopf's ergodic theorem.

Suppose that (X, \mathcal{B}, m, T) is a conservative measure preserving transformation.
(i) Prove that

$$
\frac{\sum_{k=1}^{n} f\left(T^{k} x\right)}{\sum_{k=1}^{n} p\left(T^{k} x\right)} \underset{n \rightarrow \infty}{\longrightarrow} E_{m_{p}}(f \mid \Im)(x) \text { for a.e. } x \in X, \forall f, p \in L^{1}(m), \quad p>0
$$

Hint Hopf's ergodic theorem is a special case of Hurewicz's theorem in case T is invertible. It can be proved analogously for T non-invertible.
(ii) Now suppose that T is a conservative, ergodic, measure preserving transformation of the σ-finite, infinite measure space (X, \mathcal{B}, m). Prove that

$$
\frac{1}{n} \sum_{k=1}^{n} f\left(T^{k} x\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \text { for a.e. } x \in X, \forall f \in L^{1}(m)
$$

Lecture \# 5 16/10/2014 12-14.

Ergodicity via the ratio ergodic theorem

Boole transformations.

Let (X, \mathcal{B}, m) be \mathbb{R} equipped with Borel sets and Lebesgue measure, and consider Boole's transformations:

$$
\left(\boldsymbol{s}^{\boldsymbol{s}}\right) \quad T x=x+\beta+\sum_{k=1}^{N} \frac{p_{k}}{t_{k}-x}
$$

where $N \geq 1, \quad p_{1}, \ldots, p_{N}>0$ and $\beta, t_{1}, \ldots, t_{N} \in \mathbb{R}$.
By corollary 2.3 , for T as in $\left(s^{8}\right),(X, \mathcal{B}, m, T)$ is a
measure preserving transformation. By proposition $2.11, T$ is conservative iff $\beta=0$.

5.3 Proposition

(i) If $\beta=0$, then T is conservative, ergodic.
(ii) If $\beta \neq 0$, then $\exists F: \mathbb{R}^{2+} \rightarrow \mathbb{R}^{2+}$ analytic, so that $F \circ T=F+\beta$. In particular, T is not ergodic.

Proof sketch

For $\omega \in \mathbb{R}^{2+}$, write $T^{n}(\omega):=u_{n}+i v_{n}$, then

$$
\begin{aligned}
& v_{n+1}=v_{n}+v_{n} \sum_{k=1}^{N} \frac{p_{k}}{\left(t_{k}-u_{n}\right)^{2}+v_{n}^{2}} \\
& u_{n+1}=u_{n}+\beta+\sum_{k=1}^{N} \frac{p_{k}\left(t_{k}-u_{n}\right)}{\left(t_{k}-u_{n}\right)^{2}+v_{n}^{2}} .
\end{aligned}
$$

As before, elementary calculations show that

- when $\beta \neq 0$. $\exists B=B(\omega) \in \mathbb{R}_{+} \& C=C(\omega) \in \mathbb{R}$ so that

$$
\begin{equation*}
v_{n} \uparrow B \quad \& \quad u_{n}=\beta n-\frac{\nu}{\beta} \log n+C+O\left(\frac{\log n}{n}\right) \quad \text { as } n \rightarrow \infty ; \tag{I}
\end{equation*}
$$

and

- when $\beta=0$,

$$
\begin{equation*}
\left.\sup _{n \geq 1}\left|u_{n}\right|<\infty \quad \& \quad v_{n} \sim \sqrt{2 \nu n}\right) \text { as } n \rightarrow \infty \text { where } \nu:=\sum_{k=1}^{n} p_{k} \tag{II}
\end{equation*}
$$

Proof of (i)
Set $p:=\varphi_{i}$, then $\forall x \in \mathbb{R}, \omega \in \mathbb{R}^{2+}$,

$$
\widehat{S}_{n} \varphi_{\omega}(x):=\sum_{k=0}^{n-1} \widehat{T}^{k} \varphi_{\omega}(x) \sim \sum_{k=0}^{n-1} \frac{1}{\pi v_{k}} \sim a(n):=\frac{1}{\pi} \sqrt{\frac{2 n}{\nu}}
$$

By Hurewicz's theorem, for $f \in L^{1}(m)$ and a.e. $x \in X$,

$$
\frac{\widehat{S}_{n} f(x)}{a(n)} \sim \frac{\widehat{S}_{n} f(x)}{\widehat{S}_{n} p(x)} \underset{n \rightarrow \infty}{\longrightarrow} E_{m_{p}}(f \mid \mathfrak{I}) .
$$

On the other hand, for $f=g * \varphi_{i b} \quad\left(g \in L^{1}(m)\right)$,

$$
f(x):=\int_{\mathbb{R}} g(t) \varphi_{i b}(x-t) d t=\int_{\mathbb{R}} g(t) \varphi_{t+i b}(x) d t
$$

whence

$$
\widehat{T}^{n} f=\int_{\mathbb{R}} g(t) \varphi_{T^{n}(t+i b)}(x) d t
$$

and by (I)

$$
\frac{\widehat{S}_{n} f(x)}{a(n)}=\int_{\mathbb{R}} g(t) \frac{\widehat{S}_{n} \varphi_{t+i b}}{a(n)} d t \underset{n \rightarrow \infty}{\longrightarrow} \int_{\mathbb{R}} g d m=\int_{\mathbb{R}} f d m
$$

whence $E_{m_{p}}(f \mid \mathfrak{I})$ is constant. Since such f are dense in $L^{1}(m), T$ is ergodic. \quad (i)
Proof of (ii) By (II),

$$
T^{n}(\omega)-n \beta+\frac{\nu}{\beta} \log n \underset{n \rightarrow \infty}{\longrightarrow} C(\omega)+i B(\omega)=: F(\omega) \in \mathbb{R}^{2+} .
$$

It follows that $F: \mathbb{R}^{2+} \rightarrow \mathbb{R}^{2+}$ is analytic. Moreover

$$
\begin{aligned}
F(T \omega) & \underset{n \rightarrow \infty}{\leftarrow} T^{n+1}(\omega)-n \beta+\frac{\nu}{\beta} \log n \\
& =\left(T^{n+1}(\omega)-(n+1) \beta+\frac{\nu}{\beta} \log (n+1)\right)+\beta+O\left(\frac{1}{n}\right) \\
& \underset{n \rightarrow \infty}{ } F(\omega)+\beta . \quad \not \subset(\mathrm{ii})
\end{aligned}
$$

Aperiodicity and Rokhlin towers

Periodicity. Let (X, \mathcal{B}, m) be a standard probability space and let $T \in \operatorname{NST}(X, \mathcal{B}, m)$.

For each $p \geq 1$ consider the set of p-periodic points

$$
\operatorname{Per}_{p}(T):=\left\{x \in X: T^{p} x=x, \quad T^{j} x \neq x \forall 1 \leq j<p\right\} .
$$

Exercise 19. Show that for $p \in \mathbb{N}$:
(i) $\operatorname{Per}_{p}(T) \in \mathcal{B}$;
(ii) there is a set $A \in \mathcal{B}$ so that $\left\{T^{j} A: 0 \leq j \leq p-1\right\}$ are disjoint and

$$
\operatorname{Per}_{p}(T) \stackrel{m}{=} \bigcup_{j=0}^{p-1} T^{j} A
$$

Hints for (ii) Using the polish structure of X, show that $\forall A \in$ $\mathcal{B}_{+}, \exists B \in \mathcal{B}_{+}, B \subset A$ so that $\left\{T^{j} B: 0 \leq j \leq p-1\right\}$ are disjoint. Then perform an exhaustion argument.

Aperiodicity.

The non-singular transformation (X, \mathcal{B}, m, T) is called aperiodic if $m\left(\operatorname{Per}_{n}(T)\right)=0 \forall n \geq 1$.

Sweepout sets. Let (X, \mathcal{B}, m, T) be a NST. A set $A \in \mathcal{B}$ is called a sweepout set if $\cup_{n=1}^{\infty} T^{-n} A \stackrel{m}{=} X$.

The next exercise shows that an aperiodic, conservative NST has sweepout sets of arbitrarily small measure.

Note that this is immediate for a conservative, ergodic NST (X, \mathcal{B}, m, T), for then for any $A \in \mathcal{B}_{+}, \cup_{n=1}^{\infty} T^{-n} A$ has positive measure and is T invariant mod $m \ldots$

Exercise 20. Let (X, \mathcal{B}, m, T) be an aperiodic, conservative NST. Show that $\forall \epsilon>0 \exists E \in \mathcal{B}, m(E)<\epsilon$ s.t. $\widetilde{E}:=\bigcup_{n \geq 1} T^{-k} E=X \bmod m$.
Directions: ${ }^{3}$
Fix $N>\frac{1}{\epsilon}$ and let

$$
\mathcal{Z}_{N}:=\left\{A \in \mathcal{B}_{+}:\left\{T^{-j} A: 0 \leq j<N\right\} \text { disjoint }\right\} .
$$

【1 Show that $\forall J \in \mathfrak{B}_{+}, \exists A \in \mathcal{Z}_{N}$ so that $m(A \cap J)>0$.
Hints (i) Assume WLOG that $T^{n} x \neq x \forall x \in X, n \geq 0$. Fix a polish metric d on X and find (!) $C \subset J$ compact so that $m(C)>0$ and $T^{j}: C \rightarrow X$ is continuous for $0 \leq j \leq N$.
(ii) Find $x \in C$ so that $m(C \cap B(x, \epsilon))>0 \forall \epsilon>0$ where $B(x, \epsilon)$ is the d-ball of radius ϵ around x and then find (!) $\eta>0$ so that $\left\{T^{j}(C \cap B(x, \eta)): 0 \leq j \leq p-1\right\}$ are disjoint.
【2 Obtain using exhaustion: sets $A_{1}, A_{2}, \cdots \in \mathcal{Z}_{N}$ and numbers $\epsilon_{n} \geq 0$ so that

$$
\widetilde{A_{n+1}} \cap \widetilde{A_{k}}=\varnothing \forall 1 \leq k \leq n ;
$$

$2 m\left(\widetilde{A_{n+1}}\right) \geq \epsilon_{n+1}:=\sup \left\{m(A): A \in \mathcal{Z}_{N}, \widetilde{A_{n+1}} \cap \widetilde{A_{k}}=\varnothing \forall 1 \leq k \leq n\right\}$ and show that for some $0 \leq J<N, T^{-J} \cup_{k=1}^{\infty} A_{k}$ is as required.
6.2 Rokhlin's tower theorem Let T be a conservative, aperiodic nonsingular transformation of the Polish, probability space (X, \mathcal{B}, m). For $N \geq 1$, and $\eta>0, \exists E \in \mathcal{B}$ such that $\left\{T^{-j} E\right\}_{j=0}^{N-1}$ are disjoint, and $m\left(X \backslash \cup_{j=0}^{N-1} T^{-j} E\right)<\eta$.

[^2]
Proof

By non-singularity $\exists \delta>0$ so that

$$
m(A)<\delta \Longrightarrow m\left(\bigcup_{k=0}^{N-1} T^{-k} A\right)<\eta
$$

Using this and exercise 20 , we can choose choose $A \in \mathcal{B}$ such that $\widetilde{A}=X$ and $m\left(\cup_{k=0}^{N-1} T^{-k} A\right)<\eta$.

Set $A_{0}:=A, A_{n}:=T^{-n} A \backslash \bigcup_{j=0}^{n-1} T^{-j} A,(n \geq 1)$, then $\left\{A_{n}: n \geq 0\right\}$ are disjoint and $\cup_{n=0}^{\infty} A_{n}=\bigcup_{n=0}^{\infty} T^{-n} A=X$.

Set $E:=\cup_{p=1}^{\infty} A_{p N}$, then for $0 \leq k \leq N-1$:

$$
T^{k} E \subset \bigcup_{p=1}^{\infty} A_{p N-k}
$$

whence $\left\{T^{j} E\right\}_{j=0}^{N-1}$ are disjoint.
We claim that $\left\{T^{-j} E\right\}_{j=0}^{N-1}$ are disjoint. To see this, fix $1 \leq k \leq N-1$, then $E \subset T^{-k} T^{k} E$ whence

$$
T^{-k} E \cap E \subset T^{-k} E \cap T^{-k} T^{k} E=T^{-k}\left(E \cap T^{k} E\right)=\varnothing
$$

On the other hand, for $0 \leq k \leq N-1$,

$$
T^{-k} E \supset \bigcup_{p=1}^{\infty} A_{p N+k},
$$

whence $\bigcup_{k=0}^{N-1} T^{-k} E \supset \cup_{n=N}^{\infty} A_{n}$, and

$$
m\left(X \backslash \bigcup_{j=0}^{N-1} T^{-j} E\right) \leq m\left(\bigcup_{n=0}^{N-1} A_{n}\right)=m\left(\bigcup_{k=0}^{N-1} T^{-k} A\right)<\epsilon .
$$

Skew Products

Let (X, \mathcal{B}, m, T) be a NST and let G be a locally compact, polish, abelian topological group.

Given a measurable function $\phi: X \rightarrow G$, define the skew product transformation $T_{\phi}: X \times G \rightarrow X \times G$ by $T_{\phi}(x, g):=(T x, \phi(x)+g)$.

1.1 Proposition (Hopf decomposition of skew products)

Suppose that T is ergodic and either a MPT, or an invertible NST. Let $\varphi: X \rightarrow G$ be measurable, then T_{φ} is either conservative, or totally dissipative.

Proof By the assumption, T_{ϕ} is also either a MPT, or an invertible NST. In either case, $\mathfrak{D}\left(T_{\varphi}\right)$ is T_{ϕ}-invariant. We'll show that it's invariant under an ergodic action of a larger semigroup.

Let $\Gamma \subset G$ be a countable dense subgroup of G. The action of Γ on G by translation is ergodic with respect to Haar measure on G. It follows that the $\mathbb{N} \times \Gamma$ action S on $\left(X \times G, \mathcal{B}(X \times G), m \times m_{G}\right)$ given by $S_{(n, a)}(x, y):=\left(T^{n} x, y+a+\phi_{n}(x)\right)$ is ergodic.

Let $a \in G$, then since $S_{0, a}$ is invertible and $S_{0, a} \circ T_{\varphi}=T_{\varphi} \circ S_{0, a}$ we have that $W \in \mathcal{W}\left(T_{\varphi}\right)$ iff $S_{0, a} W \in \mathcal{W}\left(T_{\varphi}\right)$, whence $S_{0, a} \mathfrak{D}\left(T_{\varphi}\right)=\mathfrak{D}\left(T_{\varphi}\right)$. Since $T_{\varphi}^{-1} \mathfrak{D}\left(T_{\varphi}\right)=\mathfrak{D}\left(T_{\varphi}\right)$, it follows that $\mathfrak{D}\left(T_{\varphi}\right)$ is S-invariant, whence the proposition by ergodicity of $S . \square$
1.2 Proposition Let (X, \mathcal{B}, m, T) be a PPT, then T_{ϕ} is conservative iff

$$
\liminf _{n \rightarrow \infty}\left\|\phi_{n}(x)\right\|=0 \text { for a.e. } x \in X
$$

Proof

Assume first that T_{ϕ} is conservative and let $\epsilon>0$. By Halmos' recurrence theorem

$$
\sum_{n=1}^{\infty} 1_{X \times B_{G}(0, \epsilon / 2)} \circ T_{\phi}^{n}=\infty \text { a.e. on } X \times B_{G}(0, \epsilon / 2)
$$

So for a.e. $x \in X, y \in B_{G}(0, \epsilon / 2)$,

$$
\sum_{n=1}^{\infty} 1_{B_{G}(0, \epsilon / 2)}\left(y+\phi_{n}(x)\right)=\infty
$$

whence for a.e. $x \in X, \liminf _{n \rightarrow \infty}\left\|\phi_{n}(x)\right\| \leq \epsilon$.
Now assume that

$$
\liminf _{n \rightarrow \infty}\left\|\phi_{n}(x)\right\|=0 \text { for a.e. } x \in X
$$

Fix $f: G \rightarrow \mathbb{R}_{+}$be continuous, positive and integrable and let $0<\epsilon<\kappa_{G}$. For $y \in G$, let $\delta(y, \epsilon):=\inf _{B_{G}(y, \epsilon)} f$. By compactness of $B_{G}(y, \epsilon), \delta(y, \epsilon)>0$.

We have that $\forall y \in G$, for a.e. $(x, z) \in X \times B_{G}\left(y, \frac{\epsilon}{2}\right)$,
$\sum_{n=1}^{\infty}(1 \otimes f) \circ T_{\phi}^{n}(x, z)=\sum_{n=1}^{\infty} f\left(z+\phi_{n}(x)\right) \geq \delta(y, \epsilon) \sum_{n=1}^{\infty} 1_{B_{G}\left(0, \frac{\epsilon}{2}\right)}\left(\phi_{n}(x)\right)=\infty$ and T_{ϕ} is conservative.
1.3 Proposition If $\phi=\Psi-\Psi \circ T$ with $\Psi: X \rightarrow G$ measurable, then T_{ϕ} is conservative.

Proof Evidently T_{0} is conservative, and if ϕ is a coboundary, then T_{ϕ} is isomorphic to T_{0}.

Persistencies and Essential values

Let (X, \mathcal{B}, m) be a standard probability space, and let $T: X \rightarrow X$ be an ergodic, NST. Suppose that $\phi: X \rightarrow G$ is measurable. The collection of persistenciesof ϕ is
$\Pi(\phi)=\left\{a \in G: \forall A \in \mathcal{B}_{+}, \epsilon>0, \exists n \geq 1, m\left(A \cap T^{-n} A \cap\left[\left\|\phi_{n}-a\right\|<\epsilon\right]\right)>0\right\}$.

For T invertible, the collection of essential values of ϕ is
$E(\phi)=\left\{a \in G: \forall A \in \mathcal{B}_{+}, \epsilon>0, \exists n \in \mathbb{Z}, m\left(A \cap T^{-n} A \cap\left[\left\|\phi_{n}-a\right\|<\epsilon\right]\right)>0\right\}$.

2.1 Proposition [?Schm1]

Either $\Pi(\phi)=\varnothing$, or $\Pi(\phi)$ is a closed subgroup of G.

Proof

To see that $\Pi(\phi)$ is closed let $a \in \overline{\Pi(\phi)}$ and let $\epsilon>0, A \in \mathcal{B}_{+}$.
$\exists a^{\prime} \in \Pi(\phi)$ such that $\left\|a-a^{\prime}\right\|<\epsilon / 2$, and $\exists n \geq 1$ such that $m\left(A \cap T^{-n} A \cap\left[\left\|\varphi_{n}-a^{\prime}\right\|<\epsilon / 2\right]\right)>0$.

It follows that
$m\left(A \cap T^{-n} A \cap\left[\left\|\varphi_{n}-a\right\|<\epsilon\right]\right) \geq m\left(A \cap T^{-n} A \cap\left[\left\|\varphi_{n}-a^{\prime}\right\|<\epsilon / 2\right]\right)>0$.
Thus, $a \in \Pi(\phi)$ and $\Pi(\phi)$ is closed.
To show that $\Pi(\phi)$ is a group, we show that $a, b \in \Pi(\phi) \Longrightarrow a-b \in$ $\Pi(\phi)$.

Let $a, b \in \Pi(\phi), \epsilon>0, A \in \mathcal{B}_{+}$and let $n \geq 1$ be such that $m(A \cap$ $\left.T^{-n} A \cap\left[\left\|\phi_{n}-a\right\|<\epsilon / 2\right]\right)>0$.

By Rokhlin's lemma, $\exists B \in \mathcal{B}_{+}, B \subset A \cap T^{-n} A \cap\left[\left\|\phi_{n}-a\right\|<\epsilon / 2\right]$ such that $B \cap T^{-k} B=\varnothing$ for $1 \leq k \leq n$.

Since $b \in \Pi(\phi), \exists N \geq 1$ such that $m\left(B \cap T^{-N} B \cap\left[\left\|\phi_{N}-b\right\|<\epsilon / 2\right]\right)>0$. The construction of B implies that $N>n$ whence

$$
\begin{aligned}
& B \cap T^{-N} B \cap\left[\left\|\phi_{N}-b\right\|<\epsilon / 2\right] \\
&=B \cap T^{-N} B \cap\left[\left\|\phi_{n}-a\right\|<\epsilon / 2\right] \cap\left[\left\|\phi_{N}-b\right\|<\epsilon / 2\right] \\
& \subset B \cap T^{-N} B \cap\left[\left\|\phi_{N-n} \circ T^{n}-(b-a)\right\|<\epsilon\right], \\
& 0<m\left(B \cap T^{-N} B \cap\left[\left\|\phi_{N-n} \circ T^{n}-(b-a)\right\|<\epsilon\right]\right) \\
& \leq m\left(A \cap T^{-n} A \cap T^{-N} A \cap\left[\left\|\phi_{N-n} \circ T^{n}-(b-a)\right\|<\epsilon\right]\right) \\
& \leq m\left(T^{-n}\left(A \cap T^{-(N-n)} A \cap\left[\left\|\phi_{N-n}-(b-a)\right\|<\epsilon\right]\right)\right)
\end{aligned}
$$

whence $m\left(A \cap T^{-(N-n)} A \cap\left[\left\|\phi_{N-n}-(b-a)\right\|<\epsilon\right]\right)>0$ and $b-a \in \Pi(\phi)$.

Lecture \# 6 17/10/2014 12-13.

2.2 Theorem [K.Schmidt]

Let (X, \mathcal{B}, m, T) be a conservative NST, and let $\phi: X \rightarrow G$, then T_{ϕ} is conservative $\Longleftrightarrow 0 \in \Pi(\phi)$.

Proof of \Rightarrow

Suppose first that T_{ϕ} is conservative and let $A \in \mathcal{B}_{+}, \epsilon>0$. $\exists n \geq$ 1 such that $m \times m_{G}\left(A \times B_{G}(0, \epsilon / 2) \cap T_{\phi}^{-n} A \times B_{G}(0, \epsilon / 2)\right)>0$. Since $A \times B_{G}(0, \epsilon / 2) \cap T_{\phi}^{-n} A \times B_{G}(0, \epsilon / 2) \subset\left(A \cap T^{-n} A \cap\left[\left\|\phi_{n}\right\|<\epsilon\right]\right) \times B_{G}(0, \epsilon / 2)$, we have $m\left(A \cap T^{-n} A \cap\left[\left\|\phi_{n}\right\|<\epsilon\right]\right)>0$ and $0 \in \Pi(\phi)$.

Proof of \Leftarrow

In case G is countable, every $B \in \mathcal{B}(X \times G)_{+}$contains a set Conversely, suppose that T_{ϕ} is not conservative. Let $A \in \mathcal{B}$. Consider the sections

$$
A_{x}:=\{y \in G:(x, y) \in A\} \quad(x \in X) .
$$

A calculation shows that

$$
\left(T_{\phi}^{-n} A\right)_{x}=A_{T^{n} x}-\phi_{n}(x) .
$$

By Fubini's theorem, $A_{x} \in \mathcal{B}(G) \forall x \& x \mapsto m_{G}\left(A_{x}\right)$ is measurable. Let

$$
X_{A}:=\left\{x \in X: m\left(A_{x}\right)>0\right\},
$$

then $m\left(X_{A}\right)>0$. Now let $W \in \mathcal{W}\left(T_{\phi}\right)$. We claim that
I there is a measurable subset $V \subset W$ with

$$
0<m\left(V_{x}\right)<\infty \text { for a.e. } x \in X_{W} .
$$

Proof of \mathbb{I}

Define $R: X \rightarrow[0, \infty)$ by

$$
R(x):=\inf \left\{r>0: m\left(W_{x} \cap B(0, r)\right)>\min \left\{\frac{m\left(W_{x}\right)}{2}, 1\right\},\right.
$$

then

$$
V_{0}:=\left\{(x, y): y \in W_{x} \cap B(0, R(x))\right\}
$$

is Lebesgue measurable and $m \times m_{G}\left(V_{0}\right)>0$. It follows that $\exists V \in$ $\mathcal{B}(X \times G), V \subset V_{0}$ with $m \times m_{G}\left(V_{0} \backslash V\right)=0$.

It follows that for a.e. $x \in X_{W}, V_{x}=\left(V_{0}\right)_{x}$ whence

$$
0<m\left(V_{x}\right)<\infty \text { for a.e. } x \in X_{W} . \square \mathbb{\mathbb { I }}
$$

Let

$$
\overline{\mathcal{F}}:=\left\{f \in L^{1}\left(m_{G}\right): \exists A \in \mathcal{B}, f=1_{A} \text { a.e. }\right\},
$$

then $\overline{\mathcal{F}}$ is a polish space with the metric

$$
\rho([A],[B]):=\left\|1_{A}-1_{B}\right\|_{1}=m_{G}(A \Delta B)
$$

for $A, B \in \mathcal{B}, 0<m(A), m(B)<\infty$ where $[C]:=\{B \in \mathcal{B}(G): \mu(B \Delta C)=$ $0\}$.

By Fubini's theorem, $x \mapsto\left[V_{x}\right]$ is a Borel map $X \rightarrow \overline{\mathcal{F}}$.
By Lusin's theorem, \exists a compact set $C \in \mathcal{B}_{+}, C \subset X_{W}$ so that $x \mapsto V_{x}$ is continuous on C.

Also, for $A \in \mathcal{F}_{+}, t \mapsto m_{G}(A \cap(t+A))$ is continuous $G \rightarrow[0, \infty)$.
By compactness, $m_{G}\left(V_{x}\right) \leq \Delta>0 \forall x \in C$.
By continuity, $\exists \epsilon>0 \&$ a compact set $D \in \mathcal{B}_{+}, D \subset C$ so that

$$
m_{G}\left(V_{x} \cap\left(V_{y}+t\right)\right) \geq \epsilon \quad \forall x, y \in D,\|t\|<\epsilon
$$

Set $U=V \cap(D \times G)$ then

$$
U_{x}=\left\{\begin{array}{cc}
V_{x} & x \in D, \\
\varnothing & \times \notin D .
\end{array}\right.
$$

It follows from Fubini that $m \times m_{G}(U)>0$ whence $U \in \mathcal{W}(T)$.
Thus, we have, for $n \geq 1$

$$
U \cap T_{\phi}^{-n} U \stackrel{m}{\subset}\left(D \cap T^{-n} D\right) \times G
$$

and for a.e. $x \in D \cap T^{-n} D$, we have

$$
\begin{aligned}
\varnothing & =\left(U \cap T_{\phi}^{-n} U\right)_{x}=U_{x} \cap\left(U_{T^{n} x}-\phi_{n}(x)\right) \\
& =U_{x} \cap\left(U_{T^{n} x}-\phi_{n}(x)\right)=V_{x} \cap\left(V_{T^{n} x}-\phi_{n}(x)\right) .
\end{aligned}
$$

$$
U \cap T^{-n} U \subset\left[\left\|\phi_{n}\right\| \geq \epsilon\right] \quad \forall n \geq 1
$$

and $0 \notin \Pi(\phi)$.

2.3 Proposition

Suppose that $\phi, \varphi: X \rightarrow G$ are cohomologous, then $\Pi(\phi)=\Pi(\varphi)$.

Proof

By symmetry, it is sufficient to show that $\Pi(\phi) \subseteq \Pi(\varphi)$.
Suppose that $\varphi=\phi+h \circ T-h$ where $h: X \rightarrow G$ is measurable.
Let $a \in \Pi(\phi)$ and let $A \in \mathcal{B}_{+}, \epsilon>0$.
Since X is a standard space, by Lusin's theorem $\exists B \subset A, B \in \mathcal{B}_{+}$ such that $\|h(x)-h(y)\|<\frac{\epsilon}{2} \forall x, y \in B$.

Since $a \in \Pi(\phi), \exists n \geq 1$ such that $m\left(B \cap T^{-n} B \cap\left[\left\|\phi_{n}-a\right\|<\frac{\epsilon}{2}\right]\right)>0$.
By construction of B, if $x \in B \cap T^{-n} B$, then $\left\|\varphi_{n}(x)-\phi_{n}(x)\right\|=$ $\left\|h\left(T^{n} x\right)-h(x)\right\|<\frac{\epsilon}{2}$ whence

$$
m\left(B \cap T^{-n} B \cap\left[\left\|\varphi_{n}-a\right\|<\epsilon\right]\right) \geq m\left(B \cap T^{-n} B \cap\left[\left\|\phi_{n}-a\right\|<\frac{\epsilon}{2}\right]\right)>0,
$$

and $a \in \Pi(\varphi)$.
Periods. Define the collection of periods for T_{ϕ}-invariant functions:

$$
\operatorname{Per}(\phi)=\left\{a \in G: Q_{a} A=A \bmod m \forall A \in \Im\left(T_{\phi}\right)\right\}
$$

where $Q_{a}(x, y)=(x, y+a)$.

2.4 Theorem [K.Schmidt]

(i) Suppose that T_{ϕ} is conservative, then

$$
\Pi(\phi)=\operatorname{Per}(\phi) .
$$

(ii) Suppose that T is invertible, then

$$
E(\phi)=\operatorname{Per}(\phi)
$$

Remark. (i) fails for some non-invertible T with T_{ϕ} dissipative
Proof of (i)
I1 $\operatorname{Per}(\phi) \subset \Pi(\phi)$
Suppose $0 \neq a \notin \Pi(\phi)$, then $\exists 0<\epsilon<d(0, a)$, and $A \in \mathcal{B}_{+}$such that $m\left(A \cap T^{-n} A \cap\left[\left\|\phi_{n}-a\right\|<2 \epsilon\right]\right)=0 \forall n \geq 1$.

For $z \in G \& \epsilon>0$, set

$$
B_{z}=\bigcup_{n \in \mathbb{N}} T_{\phi}^{-n}\left(A \times B_{G}(z, \epsilon)\right) .
$$

We have that $T_{\phi}^{-1} B_{z} \subset B_{z}$, whence by conservativity $T_{\phi}^{-1} B_{z} \stackrel{m}{=} B_{z}$. Moreover $1_{B_{0}} \circ Q_{a}=1_{B_{a}}$.

To see that $a \notin \operatorname{Per}(\phi)$, it suffices to prove that

$$
m\left(B_{0} \cap B_{a}\right)=0
$$

This holds because $\forall n \in \mathbb{N}$,

$$
\begin{gathered}
\left(A \times B_{G}(0, \epsilon) \cap T_{\phi}^{-n}\left(A \times B_{G}(a, \epsilon)\right)\right) \cup\left(A \times B_{G}(a, \epsilon) \cap T_{\phi}^{-n}\left(A \times B_{G}(0, \epsilon)\right)\right) \\
\subset \quad A \cap T^{-n} A \cap\left[\left\|\phi_{n}-a\right\|<2 \epsilon\right] \times G . \quad \nabla \mathbb{1}
\end{gathered}
$$

T2 $\Pi(\phi) \subset \operatorname{Per}(\phi)$
Now assume that $a \notin \operatorname{Per}(\phi)$, then $\exists A, B \in \Im\left(T_{\phi}\right)_{+}$disjoint such that $B=Q_{a} A$. Set for $x \in X$,

$$
A_{x}=\{y \in G:(x, y) \in A\}
$$

Note that

$$
A_{T x}=\left\{y \in G:(T x, y)=T_{\phi}(x, y-\phi(x)) \in A\right\}=A_{x}+\phi(x),
$$

whence $m_{G}\left(A_{x}\right)=m_{G}\left(A_{T x}\right)$, and by ergodicity, $m_{G}\left(A_{x}\right)=m \times m_{G}(A)>$ 0 for m-a.e. $x \in X$.

Next, as in the proof of \Leftarrow in theorem 2.2:

- $\exists \theta \in \mathcal{B}(A)$ such that $0<m_{G}\left(\theta_{x}\right)<\infty$ a.e.;
- $\exists \epsilon>0$ and $D \in \mathcal{B}(X)_{+}$such that

$$
m_{G}\left(\theta_{x} \cap\left(\theta_{y}+t\right)\right) \geq \epsilon \forall x, y \in D,\|t\|<\epsilon
$$

Lastly, we show that $a \notin \Pi(\phi)$. This will follow from

$$
D \cap T^{-n} D \cap\left[\left\|\phi_{n}(x)-a\right\|<\epsilon\right]=\varnothing \forall n \geq 1 .
$$

Indeed, supposing that $x, T^{n} x \in D$, we note that

$$
\left(a+\theta_{T^{n} x}\right) \cap\left(\theta_{x}+\phi_{n}(x)\right) \subset B_{T^{n} x} \cap A_{T^{n} x}=\varnothing,
$$

whence,
$m_{G}\left(\theta_{x} \cap\left(\theta_{T^{n} x}+a-\phi_{n}(x)\right)\right)=m_{G}\left(\left(a+\theta_{T^{n} x}\right) \cap\left(\theta_{x}+\phi_{n}(x)\right)\right) \leq m_{G}\left(B_{T^{n} x} \cap A_{T^{n} x}\right)=0$
and

$$
\left\|\phi_{n}(x)-a\right\| \geq \epsilon .
$$

Exercise 21: Essential values.

Let (X, \mathcal{B}, m, T) be an invertible NST and let $\phi: X \rightarrow \mathbb{G}$ be measurable (G a LCAP group). Show that
(i) $E(\phi)=\Pi(\phi) \cup\{0\}$; (ii) $E(\phi)=\operatorname{Per}(\phi)$.

Exercise 22: Dissipative exact example.

This is a counterexample to theorem 2.4 for dissipative, non-invertible skew products..

Let (X, \mathcal{B}, m, S) be an EPPT and let $f: X \rightarrow \mathbb{Z}$ be such that S_{f} is an ergodic, totally dissipative MPT (as in e.g. exercise 16).

Show that
(i) $\Pi(f, S)=\varnothing$;
(ii) $\operatorname{Per}(f, S)=\mathbb{Z}$.

End of minicourse

[^0]: (C)Jon Aaronson 2007-2014.
 $1_{i . e}$ an uncountable Polish spec equipped with Borel sets and a non-atomic, σ-finite measure.

[^1]:

[^2]: ${ }^{3}$ Here, I'm breaking up the proof into "easy stages".

