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Introduction

Let (X,B,m) be a standard σ-finite measure space1 A null preserving

transformation (NPT) of X is only defined modulo nullsets, and is a
map T ∶ X0 → X0 (where X0 ⊂ X has full measure), which is measur-
able and has the null preserving property that for A ∈ B, m(T −1A) = 0
implies that m(A) = 0.

A non-singular transformation (NST) is a NPT (X,B,m,T ) with the
stronger property that for A ∈ B, m(T −1A) = 0 iff m(A) = 0.

A measure preserving transformation (MPT) is a NST (X,B,m,T ) with
the additional property that m(T −1A) =m(A) ∀ A ∈ B.

We’ll call a nonsingular transformation NS-invertible if the associated
map is invertible with a nonsingular inverse.

Let

NST(X,B,m) ∶= {nonsingular invertible transformations of X}
MPT(X,B,m) ∶= {invertible measure preserving transformations of X}
PPT(X,B,m) ∶= MPT(X,B,m) in case m(X) = 1.

The are all groups under composition (see the exercise below).

Equivalent invariant measures. If T is a non-singular transforma-
tion of a σ-finite measure space (X,B,m), and p is another measure
on (X,B) equivalent to m (denoted p ∼ m and meaning that p and
m have the same nullsets), then T is a non-singular transformation of
(X,B, p).

Thus, a non-singular transformation of a σ-finite measure space is
actually a non-singular transformation of a probability space.

©Jon Aaronson 2007-2014.
1i.e. an uncountable Polish spec equipped with Borel sets and a

non-atomic, σ-finite measure.
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The first question about a NST (X,B, p, T ) is whether it was obtained
from a measure preserving transformation in this way, or, slightly more
generally:
∃ ? a σ-finite absolutely continuous invariant measure (a.c.i.m., i.e.

m≪ p, with m ○ T −1 =m).

Radon Nikodym Derivatives

Let (X,B,m,T ) be an invertible NST of the probability space (X,B,m).
The measures m & m○T are equivalent (i.e. m○T ≪m & m≪m○T ),
written m○T ∼m. By the Radon Nikodym theorem, ∃ ! T ′ ∈ L1, T ′ > 0
a.e., so that

m(TA) = ∫
A
T ′dm ∀ A ∈ B.

The function T ′ is called the RN derivative of T . The measurable
map f ∶ A→ A′ is called

● null preserving (NP) if for C ∈ B′ ∩A′, m′(C) = 0 ⇒ m(f−1C) = 0;

● nonsingular (NS) if for C ∈ B′ ∩A′, m(f−1C) = 0 iff m′(C) = 0; and

● measure preserving (MP) if m(f−1C) =m′(C) for C ∈ B′ ∩A′.

Exercise 1: Chain rule for RN derivatives.
Let (X,B,m) be a probability space and let S, T ∈ NST (X,B,m).
(i) Show that T ○ S ∈ NST (X,B,m) and

(T ○ S)′ = T ′ ○ S ⋅ S′.

(ii) Let (X,B,m) be the unit interval equipped with Borel sets and
Lebesgue measure, and suppose that T ∶ X → X is nondecreasing and
C1, then

● T ∶X →X is a homeomorphism iff [T ′ = 0]o = ∅;

● T −1 ∶X →X is non-singular iff m([T ′ = 0]) = 0; &

● ∃ a C1 homeomorphism T ∶X →X with T −1 ∶X →X singular.

Transfer Operator.

Let (X,B,m,T ) be a null-preserving transformation, then ∥f ○T ∥∞ ≤
∥f∥∞ ∀ f ∈ L∞(m) and T ∶ L∞(m)→ L∞(m) where Tf ∶= f ○ T .

There is an operator known as the transfer operator T̂ ∶ L∞(m) →
L∞(m) so that T̂ ∗ = T i.e.:

∫
X
T̂ f ⋅ gdm = ∫

X
f ⋅ Tgdm ∀ f ∈ L1(m), g ∈ L∞(m).
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This is given by T̂ f ∶= dνf○T−1
dm where νf(A) ∶= ∫X fdm (!).

Exercise 2.
Let (X,B,m,T ) be a nonsingular transformation.

(i) Show that if T is invertible, then T̂ f = T −1 ′f ○ T −1.

(ii) Show that ∃ an absolutely continuous invariant probability for T

iff ∃ h ∈ L1
+ satisfying T̂ h = h.

Examples

Rotations of the circle. Let X be the circle T = R/Z = [0,1), B
be its Borel sets, and m be Lebesgue measure. The rotation (or trans-
lation) of the circle by x ∈ X is the transformation rx ∶ X → X defined
by rx(y) = x + y mod 1.

Evidently m ○ rx = m for every x ∈ X and each rx is an invertible
measure preserving transformation of (X,B,m).
The adding machine. Let Ω = {0,1}N, and F be the σ-algebra gener-
ated by cylinders. Define the adding machine τ ∶ Ω → Ω by τ(1) ∶= (0)
where (a)k = a ∀ k ≥ 1; and

τ(1, ...,1,0, ω`+1, ω`+2, ...) = (0, ...,0,1, ω`+1, ω`+2, ...)
for ω ∈ Ω ∖ {(1)} where `(ω) ∶= min{n ≥ 1 ∶ ωn = 0}.

The reason for the name ”adding machine” is that
∞
∑
k=1

2k−1(τn0)k = n ∀ n ≥ 1.

We’ll consider the adding machine with respect to various probabil-
ities on Ω.

¶ For p ∈ (0,1), define a probability µp on Ω by

µp([ε1, ..., εn]) =
n

∏
k=1

p(εk)

where p(0) = 1 − p and p(1) = p.

1.3 Proposition
τ is an invertible, nonsingular transformation of (Ω,F , µp) with

dµp ○ τ
dµp

= (1 − p
p

)
`−2

.

Proof
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We show that µp ○ τ ∼ µp and calculate
dµp○τ
dµp

. We show that for any

set A ∈ F ,

µp(τA) = ∫
A
(1 − p

p
)
`−2

dµp.

Consider first a cylinder set A ⊂ [` = k] (k ≥ 1)
A = [1, . . . ,1

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
k − 1 times

,0, a1, . . . , an],

then
τA = [0, . . . ,0

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
k − 1 times

,1, a1, . . . , an],

and

µp(τA) = µp([0, . . . ,0
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
k − 1 times

,1])µp([a1, . . . , an])(a)

= (1 − p
p

)
k−2

µp(A)

= ∫
A
(1 − p

p
)
`−2

dµp.

Let
C ∶= {A ∈ F ∶ (a) holds}.

As above, C ⊃ {cylinders}.
Since a any finite union of cylinders is also a finite union of disjoint

cylinders, C ⊂ A, the algebra of finite unions of cylinders.
By σ-additivity of µp, C is a monotone class, and by the monotone

class theorem, C ⊇ σ(A) = B. 2�
Note that µ 1

2
○ τ = µ 1

2
.

Rank one constructions.
This method constructs a T ∈ MPT (X,B,m) where X = (0, ST ) is an

interval, m is Lebesgue measure and where T is an invertible piecewise
translation that is there are intervals {In ∶ n ≥ 1} and numbers an ∈
R (n ≥ 1) so that mod m:

X =
∞
⊍
n=1

In =
∞
⊍
n=1

(an + In) & T (x) = x + an for x ∈ In.

The rank one transformation (X,B,m,T ) is an invertible piece-
wise translation of an interval JT = (0, ST ) where ST ∈ (0,∞] which is
defined as the “limit of a refining sequence of Rokhlin towers”.
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● A Rokhlin tower is a finite sequence of disjoint intervals τ = (I1, I2, . . . , In)
of equal lengths; considered equipped with the translations Ij → Ij+1 (1 ≤
j ≤ n − 1). It is thus a piecewise translation

Tτ ∶ DomTτ =
n−1
⊍
j=1

Ij →
n

⊍
j=2
Ij

being defined everyhere on ⊍nj=1 Ij except the last interval In.

● We’ll say that the Rokhlin tower θ = (J1, . . . , J`) refines the Rokhlin
tower τ = (I1, I2, . . . , In) (written θ ≻ τ) if

n

⊍
j=1
Ij ⊂

`

⊍
k=1

Jk & Ij = ⊍
1≤k≤`, Jk⊂Ij

Jk.

This entails (!) ⊍n−1j=1 Ij ⊂ ⊍`−1k=1 Jk, whence Tθ∣⊍n−1j=1 Ij
≡ Tτ .

Definition.
Let cn ∈ N, cn ≥ 2 (n ≥ 1) and let Sn,k ≥ 0, (n ≥ 1, 1 ≤ k ≤ cn). The

rank one transformation with construction data

{(cn;Sn,1, . . . , Sn,cn) ∶ n ≥ 1}
is an invertible piecewise translation of the interval JT = (0, ST ) where

ST ∶= 1 +∑
n≥1

1

c1⋯cn

cn

∑
k=1
Sn,k ≤∞.

To obtain T , we define a refining sequence (τn)n≥1 of Rokhlin towers
where τ1 = [0,1] and τn+1 is constructed from τn by
● cutting τn into cn columns of equal width,

● putting Sn,k spacer intervals (of the same width) above the kth

column (1 ≤ k ≤ cn);
● and stacking.

Evidently τn+1 ≻ τn. Let X be the increasing union of the intervals
in the towers τn.

The sum of the lengths of the last intervals of the towers is∑∞
n=1

1
c1...cn

<
∞ and so for a.e. x ∈ X, ∃ n ≤ 1 so that x ∈ DomTτk ∀ k ≥ n and
T (x) ∶= Tτk(x) ∀ k ≥ n.

The length of X is 1 plus the total length of all the spacer intervals
added in the construction i.e. ST .

Exercise 3. Show that the adding machine (Ω,F , µ, τ) where µ =
µ 1

2
∶= ∏(1

2 ,
1
2) is isomorphic to (X,B,m,T ), the rank one transfor-

mation with construction data {(cn;Sn,1, . . . , Sn,cn) ∶ n ≥ 1} with
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cn = 2 & sn,1 = sn,2 = 0 ∀ n ≥ 1; i.e. show that there are measur-
able sets X0 ∈ B, Ω0 ∈ F of full measure so that TX0 =X0 & τΩ0 = Ω0

and π ∶X0 → Ω0 invertible, measure preserving so that π ○ T = τ ○ π.

Kakutani skyscrapers.
Suppose that (Ω,F , µ, S) is a NST of the σ-finite measure space

((Ω,F , µ) and that ϕ ∶ Ω → N is measurable. The Kakutani skyscraper
over S with height function ϕ is the transformation T of the σ-finite
measure space (X,B,m) defined as follows.

X = {(x,n) ∶ x ∈ Ω, 1 ≤ n ≤ ϕ(x)},
B = σ{A × {n} ∶ n ∈ N, A ∈ F ∩ [ϕ ≥ n]}, m(A × {n}) = µ(A),

and

T (x,n) = { (Sx,ϕ(x)) if n = ϕ(x),
(x,n + 1) if 1 ≤ n ≤ ϕ(x) − 1.

Evidently T is a NST with

m(X) = ∫
Ω
ϕdµ.

Moreover, if S is a MPT, then so is T .

● ⋃n≥1 T −n(Ω × {1}) =X;

● For x ∈ Ω, let ϕN(x) ∶= ∑N−1
k=0 ϕ(Skx), then TϕN (x)(x,1) = (SNx,1)

and
{n ≥ 1 ∶ T n(x,1) ∈ Ω × {1}} = {ϕN(x) ∶ N ≥ 1}.

Bernoulli shift.

The (two sided) Bernoulli shift is defined by X = RZ, B(X) the
σ-algebra generated by cylinder sets of form

[A1, . . . ,An]k ∶= {x ∈X ∶ xj+k ∈ Aj, 1 ≤ j ≤ n}
where A1, . . . ,An ∈ B(R). The shift S ∶ X → X is defined by (Sx)n =
xn+1.

Let p ∶ B(R)→ [0,1] be a probability, and define µ̂p ∶ {cylinders}→
[0,1] by

µ̂p([A1, ...,An]k) =
n

∏
k=1

p(Ak) (A1, . . . ,An ∈ B(R)).

By Kolmogorov’s existence theorem (see below) ∃ a probability measure
µp ∶ B(X)→ [0,1] so that µp∣{cylinders} ≡ µ̂p.

Evidently (!), the two sided Bernoulli shift is measure preserving.
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2.1 Kolmogorov’s existence theorem
Let Y be a Polish space, and suppose that for k, ` ∈ Z, k ≤ ` Pk,` ∈

P(Y `−k+1) are such that

Pk,`+1(Ak ×⋯ ×A` × Y ) = Pk−1,`(Y ×Ak ×⋯ ×A`) = Pn(Ak ×⋯ ×A`)
then there is a probability measure P ∈ P(Y Z) satisfying

P ([A1,⋯,An]k) = Pk+1,n(A1 ×⋯ ×An).

Vague sketch of proof

● WLOG Y is uncountable (∵ any countable Polish space is mea-
surably embeddable in an uncountable Polish space);

● WLOG Y = Ω ∶= {0,1}N (by Kuratowski’s isomorphism theorem).

● Now let A be the collection of cylinder subsets of Ω and set

A ∶= {[A1, ...,An]k ∶ A1, ...,An ∈ A}.
All sets in A are both open and compact wrt the compact product
topology on ΩZ.

● Define µ ∶ A→ [0,1] by

µ([A1, ...,An]k) ∶= Pk+1,k+n(A1 × ... ×An),
then µ ∶ A→ [0,1] is additive and hence (!) countably subadditive.

● The reqired probability exists by Caratheodory’s theorem.V
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Lecture # 2 9/10/2014.

Interval maps.

Let I ⫅ R be an interval, let m be Lebesgue measure on I, and α be
a collection of disjoint open subintervals of I such that

m(I ∖Uα) = 0 where Uα = ⋃
a∈α

a.

For r ≥ 1, a Cr interval map with basic partition α is a map T ∶ I → I
such that

for each a ∈ α, T ∣a extends to a Cr diffeomorphism T ∶ a→ T (a).
The Cr interval map is called piecewise onto if T (a) = I ∀ a ∈ α.

Transfer operator of an interval map.
Let T ∶ I → I be a Cr interval map with basic partition α. For a ∈ α,

let va ∶ I → a be the inverse of T ∶ a → I (a Cr diffeomorphism). It
follows from an integration variable-change argument that with respect
to m:

T̂ f =∑
a∈α

1T (a)v
′
af ○ va

Note that here v′a ∶= dm○va
dm = ∣dvadx ∣.

Exercise 4.

(i) Show that for a C1 interval map (I, T,α):

T̂ f(x) = ∑
y∈I, Ty=x

f(y)
∣T ′(y)∣ .

(ii) Show that if (I, T,α) is a piecewise onto, piecewise linear interval
map (i.e. T ∶ a → Ta is linear ∀ a ∈ α) with #α ≥ 2, then m ○ T −1 = m
and that

m(
N

⋂
k=0
T −kak) =

N

∏
k=0

m(ak) ∀ N ≥ 1, a0, a1, . . . , aN ∈ α.

Boole transformations & inner functions.
A Boole transformation is a map T ∶ R→ R of form

T (x) = αx + β +
N

∑
k=1

pk
tk − x

where α ≥ 0, p1, . . . , pN > 0 & β, t1, . . . , tN ∈ R.

A Boole transformation T is an inner function of the upper half plane
R2+ ∶= {ω ∈ C ∶ Imω > 0} i.e. an analytic endomorphism of R2+ which
preserves R.
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The general form of an inner function T of R2+ is given by:

T (ω) = αω + β + ∫
R

1 + tω
t − ω dµ(t)(R)

where α ≥ 0, β ∈ R and µ is a finite, Lebesgue-singular, measure on R.
If ω ∈ R2+ the upper half plane, and ω = a + ib, a, b ∈ R, b > 0 then

Im
1

x − ω = b

(x − a)2 + b2 = πϕω(x)

where ϕω is the well known Cauchy density.
These are the densities of the Poisson or harmonic measures on

R2+:
If φ ∶ R2+ → C is bounded, analytic on R2+ and then for a.e. t ∈

R, ∃ limy→0+ φ(t + iy) =∶ φ∗(t) and

φ(ω) = ∫
R
φ∗(t)dPω(t) (ω ∈ R2+)(J)

where dPω(t) = ϕω(t)dt.
2.2 Boole’s Formula Let T be an inner function, then (R,B,m,T )
is non-singular and

T̂ϕω = ϕT (ω) ∀ ω ∈ R2+.(L)

Proof (G.Letac) It suffices to show that Pω ○ T −1 = PT (ω).
The Fourier transform of Pω is given by

P̂ω(t) ∶= ∫
R
eitxdPω(x) = eitω (t ≥ 0).

For t > 0, φt(ω) = eitω is a bounded analytic functions on R2+ with
φ∗t (x) = eitx on R. By (J),

̂Pω ○ T −1(t) = ∫
R
eitT (x)dPω(x) = eitT (ω) = P̂T (ω)(t),

whence (L). V

Remark.

As a consequence of (L), we see that the inner function T has an
absolutely continuous invariant probability (acip) if ∃ ω ∈ R2+ with
T (ω) = ω (in which case Pω is T -invariant). We’ll see later that this is
the only way T can have an acip.

2.3 Corollary If T is an inner function with α > 0 in (R), then
m ○ T −1 = 1

α ⋅m.
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Vague sketch of proof that T̂1 = 1
α1

● πbϕib ÐÐ→
b→∞

1 unifomly on bounded subsets of R;

● if T (ib) = u(b) + iv(b), then v(b)
b ÐÐ→

b→∞
α & u(b)

b ÐÐ→
b→∞

0.

T̂1←ÐÐ
b→∞

πbT̂ϕib = πbϕT (ib) ÐÐ→
b→∞

1
α1. 2�●

Exercise 5: Boole & Glaisher transformations.

For α, β > 0 define T = Tα,β ∶ R→ R by T (x) ∶= αx − β
x .

(a) Show that if α + β = 1, then T̂ϕi = ϕi and T has an absolutely
continuous, invariant probability (a.c.i.p.).

Consider the Glaisher transformations T ∶ R→ R of form

Ta,bx ∶= ax + b tanx (a, b ≥ 0, a + b > 0).
(b) Give conditions on a, b so that Ta,b has an absolutely continuous

invariant probability.
(c) Show that T1,b preserves Lebesgue measure.
(d) Show that T0,1x = tanx preserves the measure dµ0(x) ∶= dx

x2 .
Hint: S ∶= π ○ T0,1 ○ π−1 preserves Lebesgue measure where π(x) ∶= −1

x .

Recurrence and conservativity

A setW ∈ B, m(W ) > 0 is called wandering (for the NPT (X,B,m,T ))
if the sets {T −nW}∞n=0 are disjoint. and the NPT T is called conservative
if W(T ) = ∅ (i.e. there are no wandering sets).

Remarks.

¶1 A conservative NPT (X,B,m,T ) is non-singular. Else ∃A ∈ B, m(A) >
0 with m(T −1A) = 0, whence m(T −nA) = 0 ∀ n ≥ 1. It follows that
W ∶= A ∖⋃∞

n=1 T
−nA is a wandering set satisfying m(W ) =m(A).

¶2 Similarly, a NPT (X,B,m,T ) is conservative iff (!) it is incompress-
ible in the sense that A ∈ B and T −1A ⊂ A imply A = T −1A mod m.

¶3 If (X,B,m,T ) is a Kakutani skyscraper over the NST (Ω,F , µ, S),
then T is conservative iff S is conservative.

Proof of ⇐ If T is not conservative, then ∃ A ∈ F+, A × {1} ∈W(T )
whence A ∈W(S). V

Proof of ⇒ Let W ∈W(S), then (!) W × {1} ∈W(T ). V

Halmos recurrence theroem
Let (X,B,m,T ) be a NPT. TFAE:

(i) T is conservative;
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(ii) A
m⊂ ⋃∞

n=1 T
−nA ∀ A ∈ B+;

(iii) ∑∞
n=1 1A ○ T n =∞ a.e. on A ∀ A ∈ B+.

Proof of (i) ⇒ (iii)
Suppose that A ∈ B, m(A) > 0. The set W ∶= A ∖⋃∞

n=1 T
−nA is wan-

dering if of positive measure, whencem(W ) = 0 andA ⊆ ⋃∞
n=1 T

−nA mod m.
By null preservation, T −NA ⊆ ⋃∞

n=N+1 T
−nA mod m ∀ N ≥ 1, whence,

mod m:

A ⊆
∞
⋃
n=1

T −nA ⊆ ⋅ ⋅ ⋅ ⊆
∞
⋃

n=N+1
T −nA ⊆ ⋅ ⋅ ⋅ ⊆

∞
⋂
j=1

∞
⋃
n=j

T −nA = [
∞
∑
n=1

1A ○ T n =∞].

2�

Conditions for conservativity.

2.4 Maharam Recurrence theorem
Let (X,B,m,T ) be MPT.
If ∃ A ∈ B, m(A) < ∞ such that X = ⋃∞

n=1 T
−nA mod m, then T is

conservative.

Proof We have that ∑∞
n=1 1A ○T n =∞ a.e. If W ∈W, m(W ) > 0, then

∀ n ≥ 1,

m(A) ≥ ∫
T−nA

(
n

∑
k=1

1W ○ T k)dm =
n

∑
k=1

m(T −kW ∩ T −nA)

=
n−1
∑
j=0

m(W ∩ T −jA) = ∫
W
(
n−1
∑
j=0

1A ○ T j)dm→∞.

Contradiction. 2�
For example, any PPT is conservative. This statement is known as

Poincaré’s recurrence theorem.

A MPT of a σ-finite, infinite measure space need not be conserva-
tive. For example x ↦ x + 1 is a measure preserving transformation
of R equipped with Borel sets, and Lebesgue measure, which is totally
dissipative.

Example.
The original Boole transformation T ∶ R→ R given by

T (x) = x − 1

x

is conservative.
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Proof By corollary 2.3, m○T −1 =m. By inspection, ⋃∞
n=0 T

−n[−1,1] =
R. V

Exercise 6. Let

T (x) = x +
N

∑
k=1

pk
tk − x

where p1, . . . , pN > 0 & t1, . . . , tN ∈ R.

Show that ⋃∞
n=1 T

−n(u, v) = R mod m where u ∶= min T −1{0} & v ∶=
max T −1{0}; and hence that T is conservative.
Hint WLOG, N ≥ 2, u < 0 < v & T (0) = 0.

Exercise 7: Skyscaper conservativity.
Let (X,B,m,T ) be a Kakutani skyscaper over the NST Ω,F , µ, S).

Show that T is conservative iff S is conservative.

Exercise 8: Stronger recurrence properties.
Let (X,B,m,T ) be a conservative NST.

(i) Show that if (Y, d) is a separable, metric space and h ∶ X → Y is
measurable, then

lim
n→∞

d(h,h ○ T n) = 0 a.e..

(ii) What about when (Y, d) is an arbitrary metric space (not neces-
sarily separable) and h ∶X → Y is measurable?

Induced transformation.
This is the “reverse” of the skyscraper construction.
Suppose (X,B,m,T ) is a NST and let A ∈ B+ be such that m–a.e.

point of A returns to A under iterations of T (e.g. if (X,B,m,T ) is
conservative). The return time function to A, defined for x ∈ A by
ϕA(x) ∶= min{n ≥ 1 ∶ T nx ∈ A} is finite m–a.e. on A.

The induced transformation on A is defined by TAx = TϕA(x)x.
The first key observation is that (A,B ∩A,TA,mA) is a NST and, if

T is a MPT, then so is TA. These follows from

T −1
A B =

∞
⋃
n=1

[ϕ = n] ∩ T −nB.

It follows that ϕA ○TA is defined a.e. on A and an induction now shows
that all powers {T kA}k∈N are defined a.e. on A, and satisfy

T kAx = T (ϕA)k(x)x where (ϕA)1 = ϕA, (ϕA)k =
k−1
∑
j=0
ϕA ○ T jA.
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Exercise 9: Inducing inverse to skyscraping.
Let (X,B,m,T ) be an invertible, conservative NST and suppose that

A ∈ B, m(A) > 0 satisfies ⋃∞
n=1 T

−nA =X mod m.
Show that

(i) (X,B,m,T ) is isomorphic to the the Kakutani skyscraper over
(A,B ∩A,mA, TA) with height function ϕA.

(ii) T is conservative Ô⇒ TA is conservative.

Both constructions can be generalized to the nonsingular case.

Hopf decomposition

Let (X,B,m,T ) be a NPT. The collection W(T ) of wandering sets
is a hereditary collection (any measurable subset of a member is also
a member), and T -sub-invariant (W wandering or null Ô⇒ T −1W
wandering or null).

By exhaustion, ∃ a countable union of wandering sets D(T ) ∈
B with the property that any wandering set W ∈ B is contained in
D(T ) mod m (i.e. m(W ∖ D(T )) = 0). This measurable union

D(T ) of W(T ) is unique mod m and T −1D ⊆ D mod m. It is called
the dissipative part of the nonsingular transformation T .

Evidently T is conservative on C(T ) ∶= X ∖D(T ), the conservative
part of T .

The partition {C(T ), D(T )} is called the Hopf decomposition of T .
The nonsingular transformation T is called (totally) dissipative if

D(T ) =X mod m.

2.7 Proposition. Any inner function T with α > 1 in (R) is dissi-
pative.

Proof By corollary 2.3,
∞
∑
n=1

m(T −nA) <∞ ∀ A ∈ B, 0 <m(A) <∞

and is dissipative. V

Exercise 10:
In this exercise, you show that if (X,B,m,T ) is an invertible NST,

then ∃ a wandering set W ∈ B such that

D = ⊍
n∈Z

T nW.
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Hints For A ∈ B set AT ∶= ⋃n∈Z T nA.

WLOG, m(X) = 1.

● Define ε1 ∶= sup{m(W ) ∶ W ∈W};
● choose W ∈W with m(W1) ≥ ε1

2 ;
● define ε2 ∶= sup{m(W ) ∶ W ∈W, W ∩W T

1 = ∅};
● choose W2 ∈W, W ∩W T

1 = ∅ with m(W2) ≥ ε2
2 .

Continue this process to obtain {Wn ∶ n ∈ N} ⊂W & {εn ∶ n ∈ N} ⊂
R+ so that
● Wk ∩W T

` = ∅ ∀ k > `;
● 2m(Wn) ≥ εn ∶= sup{m(W ) ∶ W ∈W, W ∩W T

k = ∅ ∀ 1 ≤ k ≤ n− 1}.

Show that W ∶= ⊍n≥1Wn is as required.

Exercise 11: Hopf decomposition not T-invariant.
Let (X,B,m,T ) = ([0,2],B([0,2]),Leb) where T ∶ [0,2) → [0,2) is

defined by

T (x) ∶= { 2x x ∈ [0,1),
1 + (2(x − 1) mod 1) x ∈ [1,2).

Show that T is non-singular, D(T ) = [0,1),C(T ) = [1,2) and that

T −1D(T ) = [0, 12) & m(T −1D(T )∆D(T )) = 1
2 .

Conservativity and transfer operators

2.10 Hopf’s recurrence theorem
If T ∶X →X is nonsingular then

C(T ) ⊃ [
∞
∑
n=1

T̂ kf =∞] mod m ∀ f ∈ L1(m)+; &(i)

C(T ) = [
∞
∑
n=1

T̂ kf =∞] mod m ∀ f ∈ L1(m), f > 0.(ii)

Proof (i) Fix f ∈ L1(m)+ and W ∈WT , then

∞ > ∫
X
fdm ≥ ∫

X
f (∑

n≥0
1W ○ T n)dm = ∫

W
(∑
n≥0

T̂ nf)dm.

This shows that D(T ) ⊂ [∑∞
n=1 T̂

kf <∞]. V
(ii) Assume otherwise and fix f ∈ L1(m), f > 0, A ∈ B+, A ⊂ C(T )

s.t. ∑∞
n=1 T̂

kf <∞ on A.
WLOG f(x) ≥ c > 0 ∀ x ∈ A, and the series converges uniformly on

A whence ∫A(∑
∞
n=1 T̂

kf)dm <∞.
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On the other hand, by Halmos’ recurrence theorem ∑n≥0 1A ○T n =∞
a.e. on A.

Thus

∞ > ∫
A
(
∞
∑
n=0

T̂ kf)dm = ∫
X
f (∑

n≥0
1A ○ T n)dm

≥ ∫
A
f (∑

n≥0
1A ○ T n)dm ≥ c∫

A
(∑
n≥0

1A ○ T n)dm =∞ 4 2�

2.11 Corollary.

If Tx = x + β + ∫R
dν(t)
t−x where ν is a finite, Lebesgue-singular, mea-

sure on R with compact support, then T is conservative if β = 0 and
dissipative if β ≠ 0.

Proof By Hopf’s recurrence theorem, it suffices to show that∑∞
n≥0 T̂

nϕω
diverges a.e. for some ω ∈ R2+ when β = 0; and converges a.e. for some
ω ∈ R2+ when β ≠ 0.

By Boole’s formula

T̂ nϕω(x) = ϕTnω(x) =
1

π
⋅ vn
(x − un)2 + v2n

where T nω = un + ivn.

Elementary estimations show that

● when β ≠ 0. ∃ B = B(ω) ∈ R+ & C = C(ω) ∈ R so that

vn ↑ B & un = βn −
ν

β
logn +C +O( logn

n
) as n→∞;(I)

and

● when β = 0,

sup
n≥1

∣un∣ <∞ & vn ∼
√

2νn as n→∞ where ν ∶=
n

∑
k=1

pk(II)

It follows that T is

● conservative when β = 0 (∵ T̂ nϕω ∝ 1√
n

uniformly on bounded

subsets of R);

● and totally dissipative when β ≠ 0 (∵ T̂ nϕω ≪ 1

n
3
2

on R). 2�

Exercise 11: Hopf recurrence theorem for MPTs.
Suppose that T is a MPT of the σ-finite measure space (X,B,m).

Show that

[
∞
∑
n=1

f ○ T n =∞] = C(T ) mod m ∀ f ∈ L1(m), f > 0.
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Lecture # 3 15/10/2014 10-12.

Ergodicity

A transformation T of the measure space (X,B,m) is called ergodic
if

A ∈ B, T −1A = A mod m ⇒ m(A) = 0, or m(Ac) = 0.

In general, let
I(T ) ∶= {A ∈ B, T −1A = A}.

Remarks.
It is not hard to see that:

● I(T ) is a σ-algebra (and that T is ergodic iff I
m= {∅,X});

● an invertible ergodic nonsingular transformation of a non-atomic
measure space is necessarily conservative;

● a nonsingular transformation (X,B,m,T ) is conservative and er-
godic iff

∞
∑
n=1

1A ○ T n =∞ a.e. ∀A ∈ B+.

Exercise 13.

(i) Suppose that (X,B,m,T ) is a Kakutani skyscraper over the ergodic
NST (Ω,F , µ, S), then T is ergodic.

(ii) Suppose that (X,B,m,T ) is a conservative, NST and that A ∈
B, ⋃∞

n=1 T
−nA

m= X, then T is ergodic ⇐⇒ TA is ergodic.

Exercise 14.
Let (X,B,m,T ) be a conservative, ergodic nonsingular transforma-

tion and let (Z,d), a separable metric space. Show that if f ∶ X → Z
is a measurable map, then for a.e. x ∈X,

{f(T nx) ∶ n ∈ N} = sptm ○ f−1.

some ergodic transformations

Rotations of the circle. Let X be the circle T = R/Z = [0,1), B
be its Borel sets, and m be Lebesgue measure. The rotation (or trans-
lation) of the circle by x ∈ X is the transformation rx ∶ X → X defined
by rx(y) = x + y mod 1.

Evidently m ○ rx = m for every x ∈ X and each rx is an invertible
measure preserving transformation of (X,B,m).
3.2 Proposition

If α is irrational, then rα is ergodic.
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Proof
We use harmonic analysis. Suppose that f ∶ X → R is bounded and

measurable, and that f ○ rα = f , then

f̂(n) = ∫
[0,1)

f(y)e−2πinydy

= ∫
[0,1)

f(α + y)e−2πinydy = λnf̂(n) where λ ∶= e2πiα.

It follows that
λn = 1 whenever f̂(n) ≠ 0,

whence, since λn ≠ 1 ∀ n ≠ 0, f̂(n) = 0 whenever n ≠ 0 and f is constant.
2�

Ergodicity of rank one constructions.

3.3 Proposition
Let (X,B,m,T ) be a rank one MPT as above, then T is ergodic.

Proof Let
Rn = ⊍

I∈rn
I ↑X

be the refining sequence of Rokhlin towers defining T ; where each

rn = {T jIn ∶ 0 ≤ j ≤ kn − 1}
is a partition of Rn into intervals with equal lengths m(In)ÐÐ→

n→∞
0.

We claim first that it suffices to show that

For ε > 0 & A ∈ B+, ∃ N = Nε,A so that

∀ n > N ∃ I ∈ rn s.t. m(A∣I) > 1 − ε.K

Proof of sufficiency of K
Suppose that A ∈ B+, TA = A. We’ll show assuming K that ∀ N ≥ 1

large enough,

m(A ∩RN) > (1 − ε)m(RN) ∀ ε > 0

whence A ⊃ RN ↑X mod m.
To see this, choose (by K) n ≥ N & J ∈ rn satisfying m(A∣J) > 1 − ε.

Then for each K = T iKJ ∈ rn, we have using T -invariance of m & A:

m(A∣K) = m(A ∩ T iKJ)
m(T iKJ) =m(A∣J) > 1 − ε

whence

m(A ∩RN) = ∑
K∈rn, K⊂RN

m(A∣K)m(K) > (1 − ε)m(RN). 2�
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Proof of K
Suppose that A ∈ B+ and fix N ≥ 1 so that B ∶= A ∩ RN ∈ B+. For

n ≥ N , let

sn ∶= {I ∈ rn ∶ I ⊂ RN}.
Fix 0 < ε < 1 and for n ≥ N let

Zn ∶= {I ∈ sn ∶ m(B∣I) > 1 − ε} & Yn ∶= sn ∖Zn.

We show that ∀ n large enough, Zn ≠ ∅.
Since σ(⋃n≥N sn) = B(RN), ∃ n ≥ N & Cn, a union of sets in sn so

that m(B∆Cn) < ε2m(B)
9 . It follows that

m(Cn) −
ε2m(B)

9
<m(B ∩Cn)

= ∑
I∈sn, I⊂Cn

m(B∣I)m(I)

= ∑
I∈Zn, I⊂Cn

m(B∣I)m(I) + ∑
I∈Yn, I⊂Cn

m(B∣I)m(I)

≤ ∑
I∈Zn, I⊂Cn

m(I) + (1 − ε) ∑
I∈Yn, I⊂Cn

m(I)

=m(⋃Zn) + (1 − ε)m(Cn)

whence

m(⋃Zn) ≥m(Cn) −
ε2m(B)

9
− (1 − ε)m(Cn)

= εm(Cn) −
ε2m(B)

9

> εm(B) − ε
3m(B)

9
− ε

2m(B)
9

> 7εm(B)
9

> 0. 2�

Ergodicity via stronger properties

Sometimes it’s easier to prove more than ergodicity.

One-sided Bernoulli shifts.

Let X = RN and let B(X) be the σ-algebra generated by cylinder sets
of form [A1, . . . ,An] ∶= {x ∈ X ∶ xj ∈ Aj, 1 ≤ j ≤ n}, where A1, . . . ,An ∈
B(R) (the Borel subsets of R), and let the shift S ∶ X → X be defined
by

(Sx)n = xn+1.
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For p ∶ B(R) → [0,1] a probability, let µp ∶ B(X) → [0,1] be the
probability2 satisfying

µp([A1, ...,An]) =
n

∏
k=1

p(Ak) (A1, . . . ,An ∈ B(R)).

Evidently S−1[A1, ...,An] = [R,A1, ...,An] whence µp ○ S−1 = µp.
The one-sided Bernoulli shift with marginal distribution p is the

probability preserving transformation S of (X,B, µp).

Tail, exactness. Let T be a nonsingular transformation of (X,B,m).
The tail σ-algebra of T is

T(T ) ∶=
∞
⋂
n=1

T −nB.

The transformation T is called exact if T(T ) = {∅,X} mod m.

Evidently I(T ) ⊂ T(T ) mod m and so exact transformations are
ergodic.

3.4 Kolmogorov’s zero-one law
Any one-sided Bernoulli shift is exact.

Proof
Suppose that B ∈ B is a finite union of cylinders. If the length of the

longest cylinder in the union is n, then

µp(B ∩ S−nC) = µp(B)µp(C) ∀ C ∈ B.
Now suppose A ∈ T. Since, for each n ∈ N,

A = S−nAn where An ∈ B, µp(An) = µp(A),
we have that

µp(B ∩A) = µp(B)µp(A)
for B ∈ B a finite union of cylinders, and hence (by approximation)
∀ B ∈ B. This implies that

0 = µp(A ∩Ac) = µp(A)(1 − µp(A))
demonstrating that T is trivial mod µp. 2�

Note that no invertible nonsingular transformation can be exact (ex-
cept the identity no a 1-pt. space). Hence an irrational rotation of T
is ergodic, but not exact.

2
Existence guaranteed by Kolmogorov’s existence theorem as on p.5.
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Two sided Bernoulli shift.

Recall that the two sided Bernoulli shift is defined with X = RZ,
B(X) the σ-algebra generated by cylinder sets of form

[A1, . . . ,An]k ∶= {x ∈X ∶ xj+k ∈ Aj, 1 ≤ j ≤ n}
where A1, . . . ,An ∈ B(R). The shift S ∶ X → X is defined as before
by (Sx)n = xn+1, and the S-invariant probability µp ∶ B(X) → [0,1] is
defined (for p ∶ B(R)→ [0,1] a probability) by

µp([A1, ...,An]k) =
n

∏
k=1

p(Ak) (A1, . . . ,An ∈ B(R)).

The two sided Bernoulli shift is an invertible measure preserving
transformation (and hence cannot be exact).

3.5 Proposition.
A two sided Bernoulli shift is mixing in the sense that

µp(A ∩ T −nB)→ µp(A)µp(B) as n→∞ ∀ A,B ∈ B(X),
and hence ergodic.

Proof True in the combinatorial sense for A, B finite unions of
cylinders, and hence (by approximation) ∀ A, B ∈ B. 2�

Exercise 15.
Show that an exact probability preserving transformation (X,T,µ)

is mixing.
Hint Show first that if f ∈ L2, nk →∞ and f ○ T nk → g ∈ L2 weakly in
L2, then g is tail measurable.

Nonsingular Adding Machine.

Let Ω = {0,1}N, and B be the σ-algebra generated by cylinders. We
consider again the adding machine τ ∶ Ω → Ω defined by

τ(1, ...,1,0, εn+1, εn+2, ...) = (0, ...,0,1, εn+1, εn+2, ...).

The adding machine has

the odometer property.

{((τ kx)1, ..., (τ kx)n) ∶ 0 ≤ k ≤ 2n − 1} = {0,1}n ∀ x ∈ Ω, n ≥ 1.U

The next lemma illustrates how the odometer “parametrizes” the tail
of the one-sided shift S ∶ Ω → Ω.
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3.6 Lemma
For x ∈ Z̃ ∶= {τn(0) ∶ n ∈ Z},

{y ∈ Ω ∶ ∃ n ≥ 0, Sn(y) = Sn(x)} = {τn(x) ∶ n ∈ Z}.

Proof Note that Z̃ = {x ∈ Ω ∶ ∃ limn→∞ xn}. Thus for x ∉ Z̃, both
`(x) ∶= min{n ≥ 1 ∶ xn = 0} and (x) ∶= min{n ≥ 1 ∶ xn = q} are finite,
whence

∃ n ≥ 1 s.t. Snx = Snτ(x) = Snτ−1(x).
Since τ Z̃ = Z̃,

{y ∈ Ω ∶ ∃ n ≥ 0, Sn(y) = Sn(x)} ⊃ {τn(x) ∶ n ∈ Z}.
For the other inclusion, suppose Snx = Sny = z, then using the odome-
ter property,

(0, . . . ,0
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n times

, z) = τ−νn(x)(x) = τ−νn(y)(y)

where νn(ω) ∶= ∑n
k=1 2k−1ωn. Thus

y = τ νn(y)−νn(x)(x). 2�

For p ∈ (0,1), set µp =∏(1 − p, p) ∈ P(Ω) and recall that

dµp ○ τ
dµp

= (1 − p
p

)
φ

where φ(x) ∶= min{n ≥ 1 ∶ xn = 0} − 2 =∶ `(x) − 2.

3.7 Proposition
τ is an invertible, conservative, ergodic nonsingular transformation

of (Ω,B, µp).

Proof It is not hard to show, using lemma 3.6, that I(τ) = T(S) mod µp
and the ergodicity of (Ω,B, µp, τ) follows from the exactness of (Ω,B, µp, S).
As above, conservativity is automatic in this case. V

3.8 Rigidity proposition For 0 < p < 1, (Ω,B, µp) is rigid in the
sense that if f ∶ Ω → R is measurable, then ∀ ε > 0,

µp([∣f ○ τ 2
n − f ∣ ≥ ε])→ 0 as n→∞.

Proof Firstly, note that if f ∶ Ω → R and f is defined by f(x) =
g(x1, . . . , xn) for some n ∈ N, then f ○τ 2k ≡ f for every k ≥ n. To enable
approximation, we show that ∃ ∆ > 0 & M > 1 so that

µp(τ−2
n

A) ≤Mµp(A)∆ ∀ A ∈ B.(o)
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Proof of (o)
As before,

dµp○τ−1
dµp

= ( p
1−p)ψ where ψ(x) ∶= min{n ∈ N ∶ xn = 1} − 2;

Using the odometer property:
2n−1
∑
j=0

ψ(τ−kx) = ∑
ε∈{0,1}n∖{1}

ψ(ε) + n + ψ(Snx)(K)

=
n

∑
k=1

(k − 2)2n−k + n + ψ(Snx)

= ψ(Snx).
By (K)

dµp ○ τ−2n

dµp
=

2n−1
∏
k=0

(dµp ○ τ
−1

dµp
) ○ τ−k

=
2n−1
∏
k=0

( p

1 − p)
ψ○τ−k

= ( p

1 − p)
ψ○Sn

.

Fix (!) q > 1 be such that pq

(1−p)q−1 < 1, then

M q ∶= ∥( p
1−p)ψ∥

q
Lq(µp) ∝∑

n≥1
( pq

(1−p)q−1 )n <∞

and for A ∈ B,

µp(τ−2
n

A) = ∫
A
( p
1−p)

ψ○Sn
dµp ≤ ∥( p

1−p)
ψ
∥
q

µp(A)
q−1
q =Mµp(A)

q−1
q

by Hölder’s inequality. V(o)

Now, suppose that F ∶ Ω → R is measurable, and let ε > 0 be given.
There exist n ∈ N, and f ∶ Ω → R and f defined by f(x) = g(x1, . . . , xn)
for some g ∶ {0,1}n → R such that µp([∣F − f ∣ ≥ ε/2]) < ε. For k ≥ n, we

have f ○ τ 2k ≡ f , whence

µp([∣F ○ τ 2k − F ∣ ≥ ε]) ≤ µp([∣F ○ τ 2k − f ○ τ 2k ∣ ≥ ε/2]) + µp([∣F − f ∣ ≥ ε/2])

≤ ε +Mε
1
q′ ,

establishing that indeed

F ○ τ 2n µpÐ→ F. 2�
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Lecture # 4 15/10/2014 18-20.

Ergodic Maharam extension for the non-singular adding ma-
chine.

Define τφ ∶ Ω ×Z→ Ω ×Z by

τφ(x, z) ∶= (τx, z + φ(x)).
For 0 < p < 1 define the measure mp ∶ B(Ω ×Z)→ [0,∞] by

mp(A × {z}) ∶= µp(A)( p
1−p)z.

This kind of transformation is aka a Maharam extension.

3.9 Theorem For each 0 < p < 1, (Ω × Z,B(Ω × Z),mp, τφ) is a
conservative, ergodic measure preserving transformation.

Proof that mp ○ τφ =mp

Any A ∈ B(Ω × Z) has a measurable decomposition A = ⊍z,`∈ZAz,` ×
{z} where φ = ` on Az,`. Thus:

mp(τφA) = ∑
z,`∈Z

mp(τφ(Az,` × {z})) = ∑
z,`∈Z

mp(τAz,` × {z + `})

= ∑
z,`∈Z

µp(τAz,`)( p
1−p)z+` = ∑

z,`∈Z
µp(Az,`)( p

1−p)z

= ∑
z,`∈Z

mp((Az,` × {z})) =mp(A). 2�

Proof of ergodicity of τφ Suppose that F ∶ Ω × Z → R is bounded,
measurable and τφ-invariant. We’ll show first that F (x, z) = F (x, z−1)
mp-a.e..

A similar calculation to (K) shows that

φ2n(x) = φ(Snx).(K)

Iterating τφ, we have that

F (x, z) = F ○ τ 2n(x, z) = F (τ 2nx, z + φ2n(x)) = F (τ 2nx, z + φ(Sn(x)).
By the rigidity proposition, ∃ nk → ∞ and Ω0 ∈ B(Ω), µp(Ω0) = 1

such that

F (τ 2nkx, z) Ð→
k→∞

F (x, z) ∀ x ∈ Ω0, z ∈ Z.

The events

An = [φ ○ Sn = −1] = {x ∈ Ω ∶ xn+1 = 0}
are independent under µp, and µp(An) = 1 − p.
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By the Borel-Cantelli lemma, ∃ Ω1 ∈ B(Ω), Ω1 ⊂ Ω0, µp(Ω1) = 1
such that ∀ x ∈ Ω1, ∃ k` = k`(x)→∞ with

φ(Snk`x) = −1 ∀ ` ≥ 1,

whence

F (x, z) = F (τ 2
nk`x, z + φ(Snk`(x)) = F (τ 2

nk`x, z − 1) Ð→
`→∞

F (x, z − 1).

Thus ∃ f ∶ Ω → R, measurable, such that F (x, z) = f(x) µp-a.e. ∀ z ∈
Z. Since F is τφ-invariant, f is τ -invariant and µp-a.e. constant by
ergodicity of (Ω,B, µp, τ). 2�

3.10 Corollary
The nonsingular adding machine (Ω,B, µp, τ) has no σ-finite, abso-

lutely continuous, invariant measure.

Proof Suppose otherwise, that m ≪ µp is a σ-finite, τ -invariant
measure and let dm = hdµp where h ≥ 0 is measurable, then(!) h > 0
µp-a.e. (∵ m ∼ µp) and

h = τ̂−1h = τ ′h ○ τ Ô⇒ τ ′ = h

h ○ τ .

Since τ ′ = (1−p
p )φ we have that φ = k − k ○ τ where k ∶ Ω → R satisfies

h = (1−p
p )k.

Define F ∶ Ω ×Z→ R by F (x, z) = z + k(x), then

F (τφ(x, z)) = F (τx, z + φ(x)) = z + φ(x) + k(τx) = z + k(x) = F (x, z).
By ergodicity, F is constant, but it isn’t (∵ F (x, z + 1) = F (x, z)+ 1).
2�

Exercise 16: Dissipative exact MPTs.
Let Ω = {0,1}N let S ∶ Ω → Ω be the shift, let τ ∶ Ω → Ω be the

adding machine and let µp = ∏(1 − p, p) ∈ P(Ω), (0 < p < 1). Define
f, φ ∶ Ω → Z by

f(x) ∶= x1 & φ(x) ∶= `(x) − 2), `(x) ∶= min{n ≥ 1 ∶ xn = 0}
and Sf , τφ by

S(x, z) = (σ(x), z + x1), T (x, z) ∶= (τ(x), z + `(x) − 2).
Show that

(i) (Ω ×Z,B(Ω ×Z), µp ×#, Sf) is a totally dissipative MPT;

(ii) T(Sf) = I(τφ).
(iii) (Ω ×Z,B(Ω ×Z), µp ×#, Sf) is exact.
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Ratio ergodic theorem

Suppose that (X,B,m,T ) is a conservative, nonsingular transforma-
tion.

4.6 Hurewicz’s Ergodic Theorem

∑n
k=1 T̂

kf(x)
∑n
k=1 T̂

kp(x)
Ð→
n→∞

Emp (
f

p
∣I) (x) for a.e. x ∈X, ∀f, p ∈ L1(m), p > 0,

where dmp = pdm, and I is the σ-algebra of T -invariant sets in B.

Conditional expectations.
Here, given a probability space (Ω,F , P ), and a sub-σ-algebra C ⊂ F ,

the conditional expectation wrt C is a linear operator f ↦ EP (f ∣C), L1(Ω,F , P )→
L1(Ω,C, P ) satisfying

∫
C
EP (f ∣C)dP = ∫

C
fdP ∀ C ∈ C.

Such operators are unique by their defining equations,. They exist
L2(Ω,F , P )→ L2(Ω,C, P ) as orthogonal projections and extend to L1

by approximation.

Proof of Hurewicz’s theorem
Set, for f, p ∈ L1(m), p > 0, Ŝ0f = 0, and n ∈ N,

Ŝnf ∶=
n−1
∑
k=0

T̂ kf, Rn(f, p) ∶=
Ŝnf

Ŝnp
.

Let

Hp ∶= {f = hp + g − T̂ g ∈ L1(m) ∶ h ○ T = h ∈ L∞(m), g ∈ L1(m)}.

We claim that for f = hp + g − T̂ g ∈ Hp,

Rn(f, p) = h +
g − T̂ ng
Ŝnp

.

We show that Rn(hp, p) = h where h ○ T = h ∈ L∞(m). For g ∈
L∞(m), n ∈ N,

∫
X
T̂ n(hp) ⋅gdm = ∫

X
phg○T ndm = ∫

X
ph○T ng○T ndm = ∫

X
hT̂ np ⋅gdm

for every whence T̂ nf = hT̂ np, and Rn(f, p) = h. The convergence

Rn(f, p) Ð→
n→∞

h, a.e. ∀ f = hp + g − T̂ g ∈ Hp
follows immediately from the
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4.7 Chacon-Ornstein Lemma

T̂ ng

Ŝnp
Ð→
n→∞

0, a.e. ∀g ∈ L1(m).

Proof Choose ε > 0, and let ηn = 1[T̂ng>εŜnp]. We must show that

∑∞
n=1 ηn <∞ a.e. ∀ ε > 0.
We have

εp + T̂ n+1g − εŜn+1p = T̂ (T̂ ng − εŜnp),
whence

εp + T̂ n+1g − εŜn+1p ≤ T̂ (T̂ ng − εŜnp)+,
where g+ denotes g ∨ 0, f ∨ g = max{f, g}.

Multiplying both sides of the inequality by ηn+1:

ηn+1εp + ηn+1(T̂ n+1g − εŜn+1p) = ηn+1εp + (T̂ n+1g − εŜn+1p)+
≤ ηn+1T̂ (T̂ ng − εŜnp)+
≤ T̂ (T̂ ng − εŜnp)+.

Equivalently,

ηn+1εp ≤ T̂ Jn − Jn+1
where Jn ∶= (T̂ ng − εŜnp)+.

Integrating, we get

ε∫
X
pηn+1dm ≤ ∫

X
(Jn − Jn+1)dm

and, summing over n, we get

ε∫
X
p
N

∑
n=2

ηndm ≤ ∫
X
J1dm <∞.

This shows that indeed
∞
∑
n=1

ηn <∞ a.e.

and thereby proves the lemma. 2�
We next establish that

Hp = L1(m).,

To see this, we show that

k ∈ L∞(m),∫
X
kfdm = 0 ∀f ∈ Hp ⇒ k = 0 a.e.

To see this, let

k ∈ L∞(m) ∋ ∫
X
kfdm = 0 ∀f ∈ Hp,
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then, in particular

∫
X
gk ○ Tdm = ∫

X
T̂ g ⋅ kdm = ∫

X
gkdm ∀g ∈ L1(m),

whence k ○ T = k a.e., and kp ∈ Hp.
Hence,

∫
X
k2pdm = 0 ⇒ k = 0 a.e.

, now follows from the Hahn-Banach theorem. V

Proof of Hurewicz’s theorem ctd.

Identification of the limit.

We now identify the limit of Rn(f, p) f ∈ Hp. Define Φp ∶ L1(m) →
L1(mp) by

Φp(f) ∶= Emp(fp∥I),
then

∥Φp(f)∥L1(mp) ≤ ∥f∥1 ∀f ∈ L1(m).
We claim that

Rn(f, p)ÐÐ→
n→∞

Φp(f) ∀ f ∈ Hp.(✠)

For this, it suffices that

Φp(hp + g − T̂ g) = h ∀ f = hp + g − T̂ g ∈ Hp.
Indeed, if k ○ T = k ∈ L∞(m), then

∫
X
k fpdmp = ∫

X
kfdm

= ∫
X
k(hp + g − T̂ g)dm

= ∫
X
khpdm + ∫

X
k(g − T̂ g)dm

= ∫
X
khdmp. 2�

We extend (✠) to all f ∈ L1(m), by an approximation argument
which uses the

5.1 Maximal inequality
For f, p ∈ L1, such that p > 0 a.e., and t ∈ R+,

mp([sup
n∈N

Rn(f, p) > t]) ≤
∥f∥1
t
,

where dmp = pdm.

Proof of theorem 4.6 given the maximal inequality
Let f ∈ L1(m). Fix ε > 0.
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By ,, we can write f = g + k, where g ∈ Hp and ∥k∥1 < ε2. I
t follows that

lim
n→∞

∣Rn(f, p) −Φp(f)∣ ≤ sup
n∈N

∣Rn(k, p)∣ + ∣Φp(k)∣,

whence, by the maximal inequality, and by Tchebychev’s inequality,

mp([ lim
n→∞

∣Rn(f, p) −Φp(f)∣ > 2ε]) ≤mp([sup
n≥1

∣Rn(k, p)∣ > ε]) +mp([∣Φp(k)∣ > ε])

≤ 2∥k∥1
ε

≤ 2ε.

This last inequality holds for arbitrary ε > 0, whence

lim
n→∞

∣Rn(f, p) −Φp(f)∣ = 0 a.e.,

and the ergodic theorem is almost established, it remaining only to
prove the maximal inequality.

5.2 Hopf’s Maximal ergodic theorem

∫
[Mnf>0]

fdm ≥ 0, ∀f ∈ L1(m), n ∈ N,

where

Mnf = (
n

⋁
k=1

Ŝkf)
+
= (

n

⋁
k=0

Ŝkf).

Proof Note first that if Mnf(x) > 0, then

Mnf(x) ≤Mn+1f(x) =
n+1
⋁
k=1

Ŝkf(x)

= f(x) +
n

⋁
k=0

ŜkT̂ f(x) = f(x) +MnT̂ f(x).

Also (!) MnT̂ f ≤ T̂Mnf, whence

Mnf > 0 ⇒ f ≥Mnf − T̂Mnf,

and

∫
[Mnf>0]

fdm ≥ ∫
[Mnf>0]

(Mnf − T̂Mnf)dm.

Since T̂Mnf ≥ 0 a.e., and Mnf = 0 on [Mnf > 0]c, we get

∫
[Mnf>0]

fdm ≥ ∫
[Mnf>0]

Mnfdm − ∫
[Mnf>0]

T̂Mnfdm

≥ ∫
X
Mnfdm − ∫

X
T̂Mnfdm

= 0,

whence the theorem. 2�
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Proof of the maximal inequality Suppose f, p, t are as in the
maximal inequality, then

Mn(f − tp) > 0 ⇔ max
1≤k≤n

Rk(f, p) > t.

Thus, using Hopf’s maximal ergodic theorem, we obtain

∫
[Mn(f−tp)>0]

(f − tp)dm ≥ 0,

whence

tmp([max
1≤k≤n

Rk(f, p) > t]) ≤ ∫
[max1≤k≤nRk(f,p)>t]

fdm

≤ ∥f∥1.
The maximal inequality follows from this as n→∞. 2�

Hurewicz’s ergodic theorem is now established.

Hurewicz’s theorem for a conservative, ergodic nonsingular transfor-
mation T , states that

∑n−1
k=0 T̂

kf(x)
∑n−1
k=0 T̂

kg(x)
→ ∫X fdm
∫X gdm

for a.e. x ∈X

whenever f, g ∈ L1(m), ∫X gdm ≠ 0.

Exercise 17: von Neuann’s ergodic theorem.

Let H be a Hilbert space and let U ∶ H → H be a unitary operator.
Show that

(i) H0 ∶= {f ∈ H ∶ Uf = f} is a closed, invariant subspace of H and that

∥ 1

n

n−1
∑
k=0

Ukf − Pf∥ÐÐ→
n→∞

0 ∀ f ∈ H(ii)

where P ∶ H → H0 is orthogonal projection.

Exercise 18: Hopf’s ergodic theorem.
Suppose that (X,B,m,T ) is a conservative measure preserving trans-

formation.

(i) Prove that

∑n
k=1 f(T kx)

∑n
k=1 p(T kx)

Ð→
n→∞

Emp(f ∣I)(x)for a.e. x ∈X, ∀f, p ∈ L1(m), p > 0.
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Hint Hopf’s ergodic theorem is a special case of Hurewicz’s theorem in
case T is invertible. It can be proved analogously for T non-invertible.

(ii) Now suppose that T is a conservative, ergodic, measure preserving
transformation of the σ-finite, infinite measure space (X,B,m). Prove
that

1

n

n

∑
k=1
f(T kx) Ð→

n→∞
0 for a.e. x ∈X, ∀f ∈ L1(m).
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Ergodicity via the ratio ergodic theorem

Boole transformations.
Let (X,B,m) be R equipped with Borel sets and Lebesgue measure,

and consider Boole’s transformations:

Tx = x + β +
N

∑
k=1

pk
tk − x

(m)

where N ≥ 1, p1, . . . , pN > 0 and β, t1, ..., tN ∈ R.
By corollary 2.3, for T as in (m), (X,B,m,T ) is a

measure preserving transformation. By proposition 2.11, T is conser-
vative iff β = 0.

5.3 Proposition

(i) If β = 0, then T is conservative, ergodic.

(ii) If β ≠ 0, then ∃ F ∶ R2+ → R2+ analytic, so that F ○ T = F + β. In
particular, T is not ergodic.

Proof sketch
For ω ∈ R2+, write T n(ω) ∶= un + ivn, then

vn+1 = vn + vn
N

∑
k=1

pk
(tk − un)2 + v2n

un+1 = un + β +
N

∑
k=1

pk(tk − un)
(tk − un)2 + v2n

.

As before, elementary calculations show that

● when β ≠ 0. ∃ B = B(ω) ∈ R+ & C = C(ω) ∈ R so that

vn ↑ B & un = βn −
ν

β
logn +C +O( logn

n
) as n→∞;(I)

and

● when β = 0,

sup
n≥1

∣un∣ <∞ & vn ∼
√

2νn) as n→∞ where ν ∶=
n

∑
k=1
pk(II)

Proof of (i)

Set p ∶= ϕi, then ∀ x ∈ R, ω ∈ R2+,

Ŝnϕω(x) ∶=
n−1
∑
k=0

T̂ kϕω(x) ∼
n−1
∑
k=0

1

πvk
∼ a(n) ∶= 1

π

√
2n

ν
.
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By Hurewicz’s theorem, for f ∈ L1(m) and a.e. x ∈X,

Ŝnf(x)
a(n) ∼ Ŝnf(x)

Ŝnp(x)
Ð→
n→∞

Emp(f ∣I).

On the other hand, for f = g ∗ ϕib (g ∈ L1(m)),

f(x) ∶= ∫
R
g(t)ϕib(x − t)dt = ∫

R
g(t)ϕt+ib(x)dt

whence

T̂ nf = ∫
R
g(t)ϕTn(t+ib)(x)dt

and by (I)

Ŝnf(x)
a(n) = ∫

R
g(t) Ŝnϕt+ib

a(n) dt Ð→
n→∞ ∫R

gdm = ∫
R
fdm

whence Emp(f ∣I) is constant. Since such f are dense in L1(m), T is
ergodic. 2�(i)

Proof of (ii) By (II),

T n(ω) − nβ + ν
β

lognÐÐ→
n→∞

C(ω) + iB(ω) =∶ F (ω) ∈ R2+.

It follows that F ∶ R2+ → R2+ is analytic. Moreover

F (Tω)←ÐÐ
n→∞

T n+1(ω) − nβ + ν
β

logn

= (T n+1(ω) − (n + 1)β + ν
β

log(n + 1)) + β +O( 1

n
)

ÐÐ→
n→∞

F (ω) + β. 2�(ii)

Aperiodicity and Rokhlin towers

Periodicity. Let (X,B,m) be a standard probability space and let
T ∈ NST(X,B,m).

For each p ≥ 1 consider the set of p-periodic points

Perp(T ) ∶= {x ∈X ∶ T px = x, T jx ≠ x ∀ 1 ≤ j < p}.

Exercise 19. Show that for p ∈ N:

(i) Perp(T ) ∈ B;

(ii) there is a set A ∈ B so that {T jA ∶ 0 ≤ j ≤ p − 1} are disjoint and

Perp(T ) m=
p−1
⊍
j=0
T jA.
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Hints for (ii) Using the polish structure of X, show that ∀ A ∈
B+, ∃ B ∈ B+, B ⊂ A so that {T jB ∶ 0 ≤ j ≤ p − 1} are disjoint. Then
perform an exhaustion argument.

Aperiodicity.
The non-singular transformation (X,B,m,T ) is called aperiodic if

m(Pern(T )) = 0 ∀ n ≥ 1.

Sweepout sets. Let (X,B,m,T ) be a NST. A set A ∈ B is called a
sweepout set if ⋃∞

n=1 T
−nA

m= X.
The next exercise shows that an aperiodic, conservative NST has

sweepout sets of arbitrarily small measure.

Note that this is immediate for a conservative, ergodic NST (X,B,m,T ),
for then for any A ∈ B+, ⋃∞

n=1 T
−nA has positive measure and is T -

invariant mod m...

Exercise 20. Let (X,B,m,T ) be an aperiodic, conservative NST. Show

that ∀ ε > 0 ∃ E ∈ B, m(E) < ε s.t. Ẽ ∶= ⋃n≥1 T −kE =X mod m.

Directions: 3

Fix N > 1
ε and let

ZN ∶= {A ∈ B+ ∶ {T −jA ∶ 0 ≤ j < N} disjoint}.
¶1 Show that ∀ J ∈B+, ∃ A ∈ ZN so that m(A ∩ J) > 0.

Hints (i) Assume WLOG that Tnx ≠ x ∀ x ∈X, n ≥ 0. Fix a polish metric d on X and
find (!) C ⊂ J compact so that m(C) > 0 and T j ∶ C →X is continuous for 0 ≤ j ≤ N .

(ii) Find x ∈ C so that m(C ∩B(x, ε)) > 0 ∀ ε > 0 where B(x, ε) is the d-ball of radius ε

around x and then find (!) η > 0 so that {T j(C ∩B(x, η)) ∶ 0 ≤ j ≤ p − 1} are disjoint.

¶2 Obtain using exhaustion: sets A1,A2, ⋅ ⋅ ⋅ ∈ ZN and numbers εn ≥ 0
so that

Ãn+1 ∩ Ãk = ∅ ∀ 1 ≤ k ≤ n;

2m(Ãn+1) ≥ εn+1 ∶= sup{m(A) ∶ A ∈ ZN , Ãn+1 ∩ Ãk = ∅ ∀ 1 ≤ k ≤ n}
and show that for some 0 ≤ J < N , T −J ⋃∞

k=1Ak is as required.

6.2 Rokhlin’s tower theorem Let T be a conservative, aperiodic
nonsingular transformation of the Polish, probability space (X,B,m).
For N ≥ 1, and η > 0, ∃ E ∈ B such that {T −jE}N−1j=0 are disjoint, and

m(X ∖⋃N−1j=0 T −jE) < η.

3Here, I’m breaking up the proof into “easy stages”.
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Proof
By non-singularity ∃ δ > 0 so that

m(A) < δ Ô⇒ m(
N−1
⋃
k=0

T −kA) < η.

Using this and exercise 20, we can choose choose A ∈ B such that Ã =X
and m(⋃N−1k=0 T

−kA) < η.
Set A0 ∶= A, An ∶= T −nA∖⋃n−1j=0 T

−jA, (n ≥ 1), then {An ∶ n ≥ 0} are
disjoint and ⊍∞

n=0An = ⋃∞
n=0 T

−nA =X.
Set E ∶= ⊍∞

p=1ApN , then for 0 ≤ k ≤ N − 1:

T kE ⊂
∞
⊍
p=1
ApN−k

whence {T jE}N−1j=0 are disjoint.

We claim that {T −jE}N−1j=0 are disjoint. To see this, fix 1 ≤ k ≤ N − 1,

then E ⊂ T −kT kE whence

T −kE ∩E ⊂ T −kE ∩ T −kT kE = T −k(E ∩ T kE) = ∅.
On the other hand, for 0 ≤ k ≤ N − 1,

T −kE ⊃
∞
⊍
p=1
ApN+k,

whence ⋃N−1k=0 T
−kE ⊃ ⊍∞

n=N An, and

m(X ∖
N−1
⋃
j=0

T −jE) ≤m(
N−1
⊍
n=0

An) =m(
N−1
⋃
k=0

T −kA) < ε.

Skew Products

Let (X,B,m,T ) be a NST and let G be a locally compact, polish,
abelian topological group.

Given a measurable function φ ∶ X → G , define the skew product
transformation Tφ ∶X ×G→X ×G by Tφ(x, g) ∶= (Tx,φ(x) + g).

1.1 Proposition (Hopf decomposition of skew products)
Suppose that T is ergodic and either a MPT, or an invertible NST. Let

ϕ ∶ X → G be measurable, then Tϕ is either conservative, or totally
dissipative.

Proof By the assumption, Tφ is also either a MPT, or an invertible NST.
In either case, D(Tϕ) is Tφ-invariant. We’ll show that it’s invariant
under an ergodic action of a larger semigroup.
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Let Γ ⊂ G be a countable dense subgroup of G. The action of Γ
on G by translation is ergodic with respect to Haar measure on G. It
follows that the N × Γ action S on
(X ×G,B(X ×G),m×mG) given by S(n,a)(x, y) ∶= (T nx, y + a+φn(x))
is ergodic.

Let a ∈ G, then since S0,a is invertible and S0,a ○ Tϕ = Tϕ ○ S0,a we
have that W ∈W(Tϕ) iff S0,aW ∈W(Tϕ), whence S0,aD(Tϕ) = D(Tϕ).
Since T −1

ϕ D(Tϕ) =D(Tϕ), it follows that D(Tϕ) is S-invariant, whence
the proposition by ergodicity of S. 2�

1.2 Proposition Let (X,B,m,T ) be a PPT, then Tφ is conservative
iff

lim inf
n→∞

∥φn(x)∥ = 0 for a.e. x ∈X.

Proof
Assume first that Tφ is conservative and let ε > 0. By Halmos’

recurrence theorem
∞
∑
n=1

1X×BG(0,ε/2) ○ T nφ =∞ a.e. on X ×BG(0, ε/2).

So for a.e. x ∈X, y ∈ BG(0, ε/2),
∞
∑
n=1

1BG(0,ε/2)(y + φn(x)) =∞,

whence for a.e. x ∈X, lim infn→∞ ∥φn(x)∥ ≤ ε.
Now assume that

lim inf
n→∞

∥φn(x)∥ = 0 for a.e. x ∈X.

Fix f ∶ G→ R+ be continuous, positive and integrable and let 0 < ε < κG.
For y ∈ G, let δ(y, ε) ∶= inf

BG(y,ε)
f . By compactness ofBG(y, ε), δ(y, ε) > 0.

We have that ∀ y ∈ G, for a.e. (x, z) ∈X ×BG(y, ε2),
∞
∑
n=1

(1⊗ f) ○ T nφ (x, z) =
∞
∑
n=1

f(z + φn(x)) ≥ δ(y, ε)
∞
∑
n=1

1BG(0, ε
2
)(φn(x)) =∞

and Tφ is conservative. �

1.3 Proposition If φ = Ψ −Ψ ○T with Ψ ∶X → G measurable, then Tφ
is conservative.

Proof Evidently T0 is conservative, and if φ is a coboundary, then Tφ
is isomorphic to T0. �
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Persistencies and Essential values

Let (X,B,m) be a standard probability space, and let T ∶X →X be
an ergodic, NST. Suppose that φ ∶X → G is measurable. The collection
of persistenciesof φ is

Π(φ) = {a ∈ G ∶ ∀A ∈ B+, ε > 0, ∃ n ≥ 1, m(A∩T −nA∩[∥φn−a∥ < ε]) > 0}.

For T invertible, the collection of essential values of φ is

E(φ) = {a ∈ G ∶ ∀A ∈ B+, ε > 0, ∃ n ∈ Z, m(A∩T −nA∩[∥φn−a∥ < ε]) > 0}.

2.1 Proposition [?Schm1]
Either Π(φ) = ∅, or Π(φ) is a closed subgroup of G.

Proof
To see that Π(φ) is closed let a ∈Π(φ) and let ε > 0, A ∈ B+.
∃ a′ ∈Π(φ) such that ∥a − a′∥ < ε/2, and ∃ n ≥ 1 such that

m(A ∩ T −nA ∩ [∥ϕn − a′∥ < ε/2]) > 0.
It follows that

m(A ∩ T −nA ∩ [∥ϕn − a∥ < ε]) ≥ m(A ∩ T −nA ∩ [∥ϕn − a′∥ < ε/2]) > 0.
Thus, a ∈Π(φ) and Π(φ) is closed.

To show that Π(φ) is a group, we show that a, b ∈Π(φ) Ô⇒ a− b ∈
Π(φ).

Let a, b ∈ Π(φ), ε > 0, A ∈ B+ and let n ≥ 1 be such that m(A ∩
T −nA ∩ [∥φn − a∥ < ε/2]) > 0.

By Rokhlin’s lemma, ∃ B ∈ B+, B ⊂ A∩T −nA∩ [∥φn − a∥ < ε/2] such
that B ∩ T −kB = ∅ for 1 ≤ k ≤ n.

Since b ∈Π(φ), ∃ N ≥ 1 such that m(B∩T −NB∩[∥φN−b∥ < ε/2]) > 0.
The construction of B implies that N > n whence

B ∩ T −NB ∩ [∥φN − b∥ < ε/2]
= B ∩ T −NB ∩ [∥φn − a∥ < ε/2] ∩ [∥φN − b∥ < ε/2]
⊂ B ∩ T −NB ∩ [∥φN−n ○ T n − (b − a)∥ < ε],

0 <m(B ∩ T −NB ∩ [∥φN−n ○ T n − (b − a)∥ < ε])
≤m(A ∩ T −nA ∩ T −NA ∩ [∥φN−n ○ T n − (b − a)∥ < ε])
≤m(T −n(A ∩ T −(N−n)A ∩ [∥φN−n − (b − a)∥ < ε]))

whence m(A ∩ T −(N−n)A ∩ [∥φN−n − (b − a)∥ < ε]) > 0 and b − a ∈Π(φ).
�
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2.2 Theorem [K.Schmidt]
Let (X,B,m,T ) be a conservative NST, and let φ ∶X → G, then
Tφ is conservative ⇐⇒ 0 ∈Π(φ).

Proof of ⇒
Suppose first that Tφ is conservative and let A ∈ B+, ε > 0. ∃ n ≥

1 such that m ×mG(A × BG(0, ε/2) ∩ T −n
φ A × BG(0, ε/2)) > 0. Since

A×BG(0, ε/2)∩T −n
φ A×BG(0, ε/2) ⊂ (A∩T −nA∩[∥φn∥ < ε])×BG(0, ε/2),

we have m(A ∩ T −nA ∩ [∥φn∥ < ε]) > 0 and 0 ∈Π(φ). V

Proof of ⇐
In caseG is countable, every B ∈ B(X×G)+ contains a set Conversely,

suppose that Tφ is not conservative. Let A ∈ B. Consider the sections

Ax ∶= {y ∈ G ∶ (x, y) ∈ A} (x ∈X).
A calculation shows that

(T −n
φ A)x = ATnx − φn(x).

By Fubini’s theorem, Ax ∈ B(G) ∀ x & x ↦ mG(Ax) is measurable.
Let

XA ∶= {x ∈X ∶ m(Ax) > 0},
then m(XA) > 0. Now let W ∈W(Tφ). We claim that

¶ there is a measurable subset V ⊂W with

0 <m(Vx) <∞ for a.e. x ∈XW .

Proof of ¶
Define R ∶X → [0,∞) by

R(x) ∶= inf {r > 0 ∶ m(Wx ∩B(0, r)) > min{m(Wx)
2 ,1},

then
V0 ∶= {(x, y) ∶ y ∈Wx ∩B(0,R(x))}

is Lebesgue measurable and m ×mG(V0) > 0. It follows that ∃ V ∈
B(X ×G), V ⊂ V0 with m ×mG(V0 ∖ V ) = 0.

It follows that for a.e. x ∈XW , Vx = (V0)x whence

0 <m(Vx) <∞ for a.e. x ∈XW . 2�¶

Let
F ∶= {f ∈ L1(mG) ∶ ∃ A ∈ B, f = 1A a.e.},

then F is a polish space with the metric

ρ([A], [B]) ∶= ∥1A − 1B∥1 =mG(A∆B)
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forA,B ∈ B, 0 <m(A),m(B) <∞ where [C] ∶= {B ∈ B(G) ∶ µ(B∆C) =
0}.

By Fubini’s theorem, x↦ [Vx] is a Borel map X → F .
By Lusin’s theorem, ∃ a compact set C ∈ B+, C ⊂XW so that x↦ Vx

is continuous on C.
Also, for A ∈ F+, t↦mG(A ∩ (t +A)) is continuous G→ [0,∞).
By compactness, mG(Vx) ≤∆ > 0 ∀ x ∈ C.
By continuity, ∃ ε > 0 & a compact set D ∈ B+, D ⊂ C so that

mG(Vx ∩ (Vy + t)) ≥ ε ∀ x, y ∈D, ∥t∥ < ε.(j)

Set U = V ∩ (D ×G) then

Ux = { Vx x ∈D,
∅ × ∉D.

It follows from Fubini that m ×mG(U) > 0 whence U ∈W(T ).

Thus, we have, for n ≥ 1

U ∩ T −n
φ U

m⊂ (D ∩ T −nD) ×G
and for a.e. x ∈D ∩ T −nD, we have

∅ = (U ∩ T −n
φ U)x = Ux ∩ (UTnx − φn(x))

= Ux ∩ (UTnx − φn(x)) = Vx ∩ (VTnx − φn(x)).
By (j),

U ∩ T −nU ⊂ [∥φn∥ ≥ ε] ∀ n ≥ 1

and 0 ∉Π(φ). V

2.3 Proposition
Suppose that φ,ϕ ∶X → G are cohomologous, then Π(φ) =Π(ϕ).

Proof
By symmetry, it is sufficient to show that Π(φ) ⊆Π(ϕ).

Suppose that ϕ = φ + h ○ T − h where h ∶X → G is measurable.
Let a ∈Π(φ) and let A ∈ B+, ε > 0.
Since X is a standard space, by Lusin’s theorem ∃ B ⊂ A, B ∈ B+

such that ∥h(x) − h(y)∥ < ε
2 ∀ x, y ∈ B.

Since a ∈Π(φ), ∃ n ≥ 1 such that m(B ∩T −nB ∩ [∥φn −a∥ < ε
2]) > 0.

By construction of B, if x ∈ B ∩ T −nB, then ∥ϕn(x) − φn(x)∥ =
∥h(T nx) − h(x)∥ < ε

2 whence

m(B ∩ T −nB ∩ [∥ϕn − a∥ < ε]) ≥m(B ∩ T −nB ∩ [∥φn − a∥ <
ε

2
]) > 0,
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and a ∈Π(ϕ). �

Periods. Define the collection of periods for Tφ-invariant functions:

Per (φ) = {a ∈ G ∶ QaA = A mod m ∀ A ∈ I(Tφ)}
where Qa(x, y) = (x, y + a).

2.4 Theorem [K.Schmidt]

(i) Suppose that Tφ is conservative, then

Π(φ) = Per (φ).

(ii) Suppose that T is invertible, then

E(φ) = Per (φ).

Remark. (i) fails for some non-invertible T with Tφ dissipative

Proof of (i)

¶1 Per (φ) ⊂Π(φ)
Suppose 0 ≠ a ∉ Π(φ), then ∃ 0 < ε < d(0, a), and A ∈ B+ such that

m(A ∩ T −nA ∩ [∥φn − a∥ < 2ε]) = 0 ∀ n ≥ 1.

For z ∈ G & ε > 0, set

Bz = ⋃
n∈N

T −n
φ (A ×BG(z, ε)).

We have that T −1
φ Bz ⊂ Bz, whence by conservativity T −1

φ Bz
m= Bz. More-

over 1B0 ○Qa = 1Ba .
To see that a ∉ Per (φ), it suffices to prove that

m(B0 ∩Ba) = 0.

This holds because ∀ n ∈ N,

(A ×BG(0, ε) ∩ T
−n
φ (A ×BG(a, ε))) ∪ (A ×BG(a, ε) ∩ T

−n
φ (A ×BG(0, ε)))

⊂ A ∩ T−nA ∩ [∥φn − a∥ < 2ε] ×G. 2�¶1

¶2 Π(φ) ⊂ Per (φ)
Now assume that a ∉ Per (φ), then ∃ A,B ∈ I(Tφ)+ disjoint such that

B = QaA. Set for x ∈X,

Ax = {y ∈ G ∶ (x, y) ∈ A}
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Note that

ATx = {y ∈ G ∶ (Tx, y) = Tφ(x, y − φ(x)) ∈ A} = Ax + φ(x),
whence mG(Ax) =mG(ATx), and by ergodicity, mG(Ax) =m×mG(A) >
0 for m-a.e. x ∈X.

Next, as in the proof of ⇐ in theorem 2.2:

● ∃ θ ∈ B(A) such that 0 <mG(θx) <∞ a.e.;

● ∃ ε > 0 and D ∈ B(X)+ such that

mG(θx ∩ (θy + t)) ≥ ε ∀ x, y ∈D, ∥t∥ < ε.
Lastly, we show that a ∉Π(φ). This will follow from

D ∩ T −nD ∩ [∥φn(x) − a∥ < ε] = ∅ ∀ n ≥ 1.

Indeed, supposing that x,T nx ∈D, we note that

(a + θTnx) ∩ (θx + φn(x)) ⊂ BTnx ∩ATnx = ∅,

whence,

mG(θx∩(θTnx+a−φn(x))) =mG((a+θTnx)∩(θx+φn(x))) ≤mG(BTnx∩ATnx) = 0

and
∥φn(x) − a∥ ≥ ε.

�

Exercise 21: Essential values.
Let (X,B,m,T ) be an invertible NST and let φ ∶X → G be measurable

(G a LCAP group). Show that

(i) E(φ) =Π (φ) ∪ {0}; (ii) E(φ) = Per (φ).
Exercise 22: Dissipative exact example.

This is a counterexample to theorem 2.4 for dissipative, non-invertible
skew products..

Let (X,B,m,S) be an EPPT and let f ∶X → Z be such that Sf is an
ergodic, totally dissipative MPT (as in e.g. exercise 16).

Show that

(i) Π(f,S) = ∅;

(ii) Per (f,S) = Z.

End of minicourse


