ERGODIC THEORY NOTES
TORUN, OCTOBER 2014.

JON AARONSON’S LECTURE NOTES

Lecture # 1 8/10/2014.

INTRODUCTION

Let (X, B,m) be a standard o-finite measure space’ Anull preserving
transformation (NPT) of X is only defined modulo nullsets, and is a
map T : Xy - X (where X ¢ X has full measure), which is measur-
able and has the null preserving property that for Ae B, m(T-1A) =0
implies that m(A) = 0.

A non-singular transformation (NST) is a NPT (X, B,m,T) with the
stronger property that for A e B, m(T-1A) =0 iff m(A) =0.

A measure preserving transformation (MPT) is a NST (X, B, m,T") with
the additional property that m(T-1A) =m(A) V AeB.

We'll call a nonsingular transformation NS-invertible if the associated
map is invertible with a nonsingular inverse.

Let

NST(X,B,m) := {nonsingular invertible transformations of X}
MPT(X,BB,m) := {invertible measure preserving transformations of X}
PPT(X,B,m) :=MPT(X,B,m) in case m(X) =1.

The are all groups under composition (see the exercise below).

Equivalent invariant measures. If T" is a non-singular transforma-
tion of a o-finite measure space (X,B,m), and p is another measure
on (X,B) equivalent to m (denoted p ~ m and meaning that p and
m have the same nullsets), then 7" is a non-singular transformation of
(X, B,p).

Thus, a non-singular transformation of a o-finite measure space is
actually a non-singular transformation of a probability space.
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li e. an uncountable Polish spec equipped with Borel sets and a

non-atomic, o-finite measure.
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The first question about a NST (X, B,p,T') is whether it was obtained
from a measure preserving transformation in this way, or, slightly more
generally:

3 7 a o-finite absolutely continuous invariant measure (a.c.i.m., i.e.
m < p, with moT-! =m).

RADON NIKODYM DERIVATIVES

Let (X, B, m,T) be an invertible NST of the probability space (X, B,m).
The measures m & moT are equivalent (i.e. moT «<m & m <« moT),
written moT ~m. By the Radon Nikodym theorem, 3! T"e L, T" >0
a.e., so that

m(TA) = fAT’dm V AeB.

The function 77 is called the RN derivative of T'. The measurable
map f: A— A’is called
o null preserving (NP) if for C e B'n A’, m'(C) =0 = m(f1C) =0;
o nonsingular (NS) if for C e B'n A", m(f~1C") =0 iff m/(C') = 0; and
e measure preserving (MP) if m(f~1C)=m/(C) for C e B'n A’
Exercise 1: Chain rule for RN derivatives.

Let (X,B,m) be a probability space and let S, T € NST (X, B, m).

(i) Show that T'o .S € NST (X, B, m) and

(ToS) =T"0S-5".

(ii) Let (X,B,m) be the unit interval equipped with Borel sets and
Lebesgue measure, and suppose that T : X — X is nondecreasing and
C1, then

e T:X - X is a homeomorphism iff [7” = 0]° = @;
e T-1:X - X is non-singular iff m([T"=0])=0; &
e Ja C' homeomorphism T : X - X with T-!: X - X singular.

Transfer Operator.
Let (X, B, m,T) be a null-preserving transformation, then || fo7'|| <
[fleo ¥V feL®(m)and T:L>°(m)—> L*(m) where Tf:= foT.

There is an operator known as the transfer operator T : L*(m) —
L**(m) so that T* =T i.e.:

fo-gdm:/f-ngmeeLl(m), g e L*(m).
X X
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This is given by Tf := w7 Shere ve(A) = [ fdm (1).

dm

Exercise 2.
Let (X,B,m,T) be a nonsingular transformation.

(i) Show that if T is invertible, then Tf = T-1'f o T-1.
(ii) Show that 3 an absolutely continuous invariant probability for T
iff 3 he L satisfying Th = h.

EXAMPLES

Rotations of the circle. Let X be the circle T = R/Z = [0,1), B
be its Borel sets, and m be Lebesgue measure. The rotation (or trans-
lation) of the circle by x € X is the transformation r, : X - X defined
by r.(y) =x+y mod 1.

Evidently m or, = m for every x € X and each r, is an invertible
measure preserving transformation of (X, B, m).

The adding machine. Let {2 ={0,1}N, and F be the o-algebra gener-
ated by cylinders. Define the adding machine 7 : 2 — 2 by 7(1) := (0)
where (@), =a ¥V k >1; and

T(la SE3) 1707w€+1aw€+27 ) = (07 "'707 1aw€+17w€+27 )
for we 2~ {(1)} where {(w) =min{n>1: w, =0}.

The reason for the name ”adding machine” is that
Y 25 (r"0)y=n V>l
k=1

We'll consider the adding machine with respect to various probabil-
ities on f2.

¢ For pe(0,1), define a probability s, on 2 by
Mp([eh EET) En]) = Hp(ek)
k=1
where p(0) =1-p and p(1) =p.

1.3 Proposition
T is an invertible, nonsingular transformation of (2, F, p,) with

dppoT _ (1_p)€_2
d ip p .

Proof
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We show that p, o 7 ~ 11, and calculate dd“—f::. We show that for any

set AelF,
1_p -2
0= [(=2)
fp(TA) A( p ) iy

Consider first a cylinder set Ac[{=k] (k>1)

A=[1,...,1,0,a4,...,a,],
~———
k —1 times

then
TA=[0,...,0,1,a4,...,a,],

—
k-1 times

and

(&A) MP(TA):MP([OV"7071])/%([&17"'7@71])

k —1 times

(21)

-2
I-p

= — di,.

./A(p) Hp

C:={AeF: (%) holds}.
As above, C > {cylinders}.
Since a any finite union of cylinders is also a finite union of disjoint
cylinders, C c A, the algebra of finite unions of cylinders.
By o-additivity of u,, C is a monotone class, and by the monotone
class theorem, C20(A) =B. @
Note that frLoT = ju.

Let

Rank one constructions.

This method constructs a T € MPT (X, B,m) where X = (0, Sr) is an
interval, m is Lebesgue measure and where 7" is an invertible piecewise
translation that is there are intervals {[,, : n > 1} and numbers a, €
R (n>1) so that mod m:

X:L;JIITL:L:JI(QTL"'[TL) & T(x)=x+a, for xel,.

The rank one transformation (X,B,m,T) is an invertible piece-
wise translation of an interval Jr = (0, S7) where St € (0, 00| which is
defined as the “1imit of a refining sequence of Rokhlin towers”.
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e A Rokhlin toweris a finite sequence of disjoint intervals 7 = (I, I, ..., I,,)
of equal lengths; considered equipped with the translations I; - I;; (1<
j<m—1). It is thus a piecewise translation

n-1 n
T.:DomT, =) I; > |) [
j=1 j=2
being defined everyhere on U;;l I; except the last interval 1,,.

o We'll say that the Rokhlin tower 6 = (Jy, ..., J;) refines the Rokhlin
tower 7 = (I, I5,...,I,) (written 0 > 7) if

n 14
tJl[ijJk&[jZ U Jk
7=

=1 1<k<t, Jpcl;
This entails (1) WU/ I; ¢ U2} Ji, whence T9|U;;11 ;=T
Definition.

Let ¢, €N, ¢, 22 (n>1)andlet S, 20, (n>1, 1<k<c¢,). The
rank one transformation with construction data

{(Cn;S’ILl) . ';Sn7cn) n 2 1}

is an invertible piecewise translation of the interval Jp = (0, S7) where

=1+
Sri=l+ ) 0

To obtain T', we define a refining sequence (7;,),»1 of Rokhlin towers
where 71 = [0, 1] and 7,41 is constructed from 7, by
e cutting 7, into ¢, columns of equal width,
e putting S, spacer intervals (of the same width) above the j;th
column (1<k<¢y,);
e and stacking.

Evidently 7,,1 > 7,. Let X be the increasing union of the intervals
in the towers 7,.

The sum of the lengths of the last intervals of the towers is Y., ﬁ
oo and so for a.e. z € X, 3 n <1 sothat x € DomT,, V k> n and
T(z):=T,(x) Y k>n.

The length of X is 1 plus the total length of all the spacer intervals
added in the construction i.e. St.

Exercise 3. Show that the adding machine (£2,F,pu,7) where p =
p1 = H(%,%) is isomorphic to (X,B,m,T), the rank one transfor-
mation with construction data {(c,;Sn1,...,50.,) @ n > 1} with
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Cn=2& s,1 =58,2=0V n>1; ie show that there are measur-
able sets X € B, {2y € F of full measure so that T Xy = Xy & 782 = {2
and 7 : Xy — (2 invertible, measure preserving so that moT =7 o7.

Kakutani skyscrapers.

Suppose that (2,F,u,S) is a NST of the o-finite measure space
((£2, F,n) and that ¢ : 2 - N is measurable. The Kakutani skyscraper
over S with height function ¢ is the transformation 7' of the o-finite
measure space (X, B,m) defined as follows.

X={(z,n): xe, 1<n<p(x)},
B=c{Ax{n}:neN, Ae Fnlp2n]}, m(Ax{n})=u(A),
and

(Sz,0(x)) if n = p(x),
(z,n+1)if 1<n<p(x)-1.

T(z,n)= {
Evidently 7" is a NST with

m(X) = fggpdu.
Moreover, if S is a MPT, then so is 7.
o Ui T7(£2x{1}) = X;
o For z e let pn(z) = Xho ©(Skz), then Ton@) (1) = (SNz, 1)

and

{n>1: T"(x,1) e 2x{1}} = {en(z): N>1}.

Bernoulli shift.
The (two sided) Bernoulli shift is defined by X = R%, B(X) the
o-algebra generated by cylinder sets of form

[Ala"'aAn]kzz {EEX:xj#kEAjﬁ ]-S]Sn}
where Ay,..., A, € B(R). The shift S: X - X is defined by (Sz), =

Tn+1-
Let p: B(R) - [0,1] be a probability, and define 7, : {cylinders} —
[0,1] by
ﬁp([Ab 7An]k) = Hp(Ak‘) (Ab s 7An € B(R))
k=1

By Kolmogorov’s existence theorem (see below) 3 a probability measure
tp 2 B(X) = [0,1] so that jip|(cyrindgers) = fip-

Evidently (!), the two sided Bernoulli shift is measure preserving.



Ergodic theory 7

2.1 Kolmogorov’s existence theorem
Let Y be a Polish space, and suppose that for k.t € Z, k <l Pyy €
P(Yk+1Y) are such that
Prp1(Ap x - x AgxY') = Py o(Y x Ap x - x Ag) = Py (Ag x - x Ay)
then there is a probability measure P € P(Y?) satisfying
P([Ah "'7An]k) = Pk+1,n(A1 Xoeee X An)-

Vague sketch of proof

e WLOG Y is uncountable (- any countable Polish space is mea-
surably embeddable in an uncountable Polish space);

e WLOG Y =:={0,1}N (by Kuratowski’s isomorphism theorem).
e Now let A be the collection of cylinder subsets of {2 and set
A:={[A1,...., Ap]x: A1, ..., A, e A}
All sets in 2 are both open and compact wrt the compact product
topology on (24,
e Define p: 20— [0,1] by
p([Ars oo Anlk) = Prstrn (A1 x oo x Ay),
then p: A - [0,1] is additive and hence (!) countably subadditive.
e The reqired probability exists by Caratheodory’s theorem.uz
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Interval maps.
Let I SR be an interval, let m be Lebesgue measure on I, and « be
a collection of disjoint open subintervals of I such that
m(I\U,) =0 where U, = | a.
For r > 1, a C™ interval map with basic partition o isamap T : [ — |
such that

for each a € o, T|, extends to a C™ diffeomorphism 7" :a@ - T'(a).

The C™ interval map is called piecewise onto if T(a) =1V a € .

Transfer operator of an interval map.

Let T': I - I be a C" interval map with basic partition «. For a € «,
let v, : I - a be the inverse of T': a - I (a C" diffeomorphism). It
follows from an integration variable-change argument that with respect
to m:

Tf = Z Lr(a)Vef © Va

acx

Note that here v/ := 9% - |dva
a dm dx

Exercise 4.
(i) Show that for a C! interval map (I,7T,a):

yel, Ty=x |Tl(y)| ‘

(il) Show that if (I,T,«) is a piecewise onto, piecewise linear interval
map (i.e. T:a— Ta is linear V a € o) with #a > 2, then moT-1 =m
and that

N N
m(mTikak) = Hm(ak) VN2 17 Qp, a1, .- .,0N € Q.
k=0 k=0

Boole transformations & inner functions.
A Boole transformation is a map T : R - R of form

D
T(x)=az+f+)
=1t =

where a >0, py,...,py>0& 3, t1,...,txy €R.

A Boole transformation T is an inner function of the upper half plane
R?*:={weC: Imw >0} i.e. an analytic endomorphism of R?* which
preserves R.
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The general form of an inner function 7" of R?* is given by:

(%) T(w)=aw+ S+ / du(t)
R
where o >0, $€R and p is a finite, Lebesgue-singular, measure on R.
If w € R?* the upper half plane, and w = a +1ib, a,beR, b >0 then
1 b

T-w (x-a)?+0?

1+tw

t—w

Im = Tpu(z)

where ¢, is the well known Cauchy density.

These are the densities of the Poisson or harmonic measures on
R2+:

If ¢ : R** - C is bounded, analytic on R** and then for a.e. ¢ €
R, 3 lim,_ . ¢(t +iy) = ¢*(¢) and

(%) 6(w) = [ 6" (AP (weR™)

where dP,(t) = ¢, (t)dt.

2.2 Boole’s Formula Let T' be an inner function, then (R,B,m,T)
15 non-singular and

(@) Tgpw =) ¥ we R2*.

Proof (G.Letac) It suffices to show that P, o T = Pp(,,.
The Fourier transform of P, is given by

Pa(t) = fR G AP, (z) = 6% (t20).
For t > 0, ¢y(w) = €™ is a bounded analytic functions on R?* with
4i(x) = ¢ on R. By (5s),
PraT (1) = [ e @dP, (@) = ) = Pry (1),
whence (@). @

Remark.

As a consequence of (@), we see that the inner function 7" has an
absolutely continuous invariant probability (acip) if 3 w € R?* with
T(w) = w (in which case P, is T-invariant). We’ll see later that this is
the only way T can have an acip.

2.3 Corollary If T is an inner function with o > 0 in (&), then

mOT‘1=§-m.
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Vague sketch of proof that T'1= él
o Thpy . 1 unifomly on bounded subsets of R;
o if T'(4b) = u(b) +1iv(b), then @ o & @ — 0.

b—oo

o Tl < WbT(Pib = Wb@T(ib) b—) él. vl

b—oo

Exercise 5: Boole & Glaisher transformations.
For o, >0 define T =T, 3:R—R by T(z) := ax - 2

(a) Show that if a + 3 = 1, then T; = ¢; and T has an absolutely
continuous, invariant probability (a.c.i.p.).

Consider the Glaisher transformations 7' : R — R of form
Topr:=ax+btanz (a,b>0, a+b>0).

(b) Give conditions on a,b so that T, has an absolutely continuous
invariant probability.

(c) Show that T}, preserves Lebesgue measure.

(d) Show that Tp 12 = tan @ preserves the measure dpug(z) := %.
Hint: S:=mo Ty ot preserves Lebesgue measure where m(z) :=

8| L

RECURRENCE AND CONSERVATIVITY

Aset W e B, m(W) > 0is called wandering (for the NPT (X, B,m,T))
if the sets {T-"W}> ; are disjoint. and the NPT T is called conservative
if W(T') =@ (i.e. there are no wandering sets).

Remarks.

€1 A conservative NPT (X, B, m,T") is non-singular. Else 3 A€ B, m(A) >
0 with m(7T-*A) = 0, whence m(7T"A) =0 V n > 1. It follows that
W:=A~NUy, TA is a wandering set satisfying m(W') = m(A).

€2 Similarly, a NPT (X, B,m,T") is conservative iff (1) it is incompress-
ible in the sense that A € B and T-'A c A imply A = T='A mod m.

QB If (X,B,m,T) is a Kakutani skyscraper over the NST ({2, F, u, S),
then 7' is conservative iff S is conservative.

Proof of < If T is not conservative, then 3 Ae F,, Ax {1} e W(T)
whence A e W(S). @z

Proof of = Let W e W(S), then () W x{1} e W(T). ©

Halmos recurrence theroem
Let (X,B,m,T) be a NPT. TFAE:

(i) T is conservative;
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(i) ACUZ, T ™A V AeB,;
(ili) ¥ ylaoTm =00 a.e. on A YV AeB,.

Proof of (i) = (iii)

Suppose that A e B, m(A)>0. The set W:= A\ U;2, T A is wan-
dering if of positive measure, whence m(W) =0and A cU;>, T-"A mod m.
By null preservation, TV A c U v,y T™A mod m V N > 1, whence,
mod m:

[ee]

AcUrrac e |J T‘"AQ--EQU’T‘”A:[ZleT”:oo],
n= j=1n=j

n=N+1 n=1

|

CONDITIONS FOR CONSERVATIVITY.

2.4 Maharam Recurrence theorem

Let (X,B,m,T) be MPT.

If 3 Ae B, m(A) < oo such that X =U;e; T™A mod m, then T is
conservative.

Proof We have that Yoo 1407" =00 a.e. If W eW, m(W) >0, then
Vnx1,

m(A) > [ (Z Ly o Tk)dm => m(T*"WnT™"A)
T A\k=1 k=1

n-1 n-1
- Zm(WﬂT‘jA):f (ZleTj)dmeoo.
=0 WA j=0

Contradiction.
For example, any PPT is conservative. This statement is known as
Poincaré’s recurrence theorem.

A MPT of a o-finite, infinite measure space need not be conserva-
tive. For example x — x + 1 is a measure preserving transformation
of R equipped with Borel sets, and Lebesgue measure, which is totally
dissipative.

Example.
The original Boole transformation 7' : R — R given by
1
T(x)=x-—
(2=

1S conservative.
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Proof By corollary 2.3, moT~! = m. By inspection, U2, T"[-1,1] =
R. ¥

Exercise 6. Let

N
T(x) =x+z Pk here P, PN >0 & ty,...,ty €R.
=1tk T
Show that US>, T(u,v) = R mod m where u := min T71{0} & v :=
max 7-'{0}; and hence that T" is conservative.
Hint WLOG, N >2, u<0<wv & T(0) =0.

Exercise 7: Skyscaper conservativity.
Let (X,B,m,T) be a Kakutani skyscaper over the NST 2, F, u,S).
Show that 7' is conservative iff S is conservative.

Exercise 8: Stronger recurrence properties.
Let (X,B,m,T) be a conservative NST.

(i) Show that if (Y,d) is a separable, metric space and h: X - Y is
measurable, then
lim d(h,hoT™) =0 a.e..

n—oo

(i) What about when (Y,d) is an arbitrary metric space (not neces-
sarily separable) and h: X - Y is measurable?

Induced transformation.

This is the “reverse” of the skyscraper construction.

Suppose (X,B,m,T) is a NST and let A € B, be such that m-a.e.
point of A returns to A under iterations of T' (e.g. if (X,B,m,T) is
conservative). The return time function to A, defined for z € A by
wa(z):=min{n >1:T"z e A} is finite m-a.e. on A.

The induced transformation on A is defined by Tyx = T»a(@)g,

The first key observation is that (A,Bn A,Ta,m4) is a NST and, if
T is a MPT, then so is T'4. These follows from

T:'B=[p=n]nT"B.
n=1

It follows that @4 0T}y is defined a.e. on A and an induction now shows
that all powers {T% } en are defined a.e. on A, and satisfy

k-1 ,
Thy =TI g where (0a)1 = pa, (pa)k= Y. paoTy.
=0
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Exercise 9: Inducing inverse to skyscraping.

Let (X, B,m,T) be an invertible, conservative NST and suppose that
AeB, m(A) >0 satisfies Upe; T"A =X mod m.

Show that

(i) (X,B,m,T) is isomorphic to the the Kakutani skyscraper over
(A, BnA,my,Ty) with height function 4.

(ii) T is conservative == T is conservative.

Both constructions can be generalized to the nonsingular case.

HoPF DECOMPOSITION

Let (X,B,m,T) be a NPT. The collection W(T') of wandering sets
is a hereditary collection (any measurable subset of a member is also
a member), and T-sub-invariant (W wandering or null = T-1W
wandering or null).

By exhaustion, 3 a countable union of wandering sets ©(7T") «
B with the property that any wandering set W e B is contained in
D(T) mod m (ie. m(W ~®D(T)) = 0). This measurable union
D(T) of W(T) is unique mod m and T7'® ¢ D mod m. It is called

the dissipative part of the nonsingular transformation 7'.

Evidently T" is conservative on €(7) := X \ ©(T"), the conservative
part of T

The partition {€(T"), ©(T)} is called the Hopf decomposition of T

The nonsingular transformation 7' is called (totally) dissipative if

D(T) = X mod m.

2.7 Proposition.  Any inner function T with o > 1 in (&) is dissi-
pative.

Proof By corollary 2.3,

Y m(TTA)<oco VYV AeB, 0<m(A)< oo

n=1

and is dissipative. &

Exercise 10:
In this exercise, you show that if (X,B,m,T) is an invertible NST,
then 3 a wandering set W € B such that
D=J1T"W.

neZ
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Hints For AeBset AT := U,z T"A.
WLOG, m(X) =1.
Define € := sup {m(W): W eW};
choose W e W with m(W;) > &
define e :==sup{m(W): WeW, WnW{ =g};
choose Wo e W, W nW{ =g with m(Ws) > 2.
Continue this process to obtain {W,: ne N} c W & {e,: ne N} c
R, so that
e WynWl=0aV k>
o 2m(W,) 2 ¢, :=sup{m(W): WeW, WnWl =gV 1<k<n-1}.

Show that W :=),s1 W, is as required.

Exercise 11: Hopf decomposition not 7-invariant.
Let (X,B,m,T) = ([0,2],B([0,2]),Leb) where T": [0,2) - [0,2) is
defined by

2w ze[0,1),
(@) '_{ 14 (2(z-1) mod 1) re[l,2).

Show that 7' is non-singular, ®(T) = [0,1),&(T) = [1,2) and that
T7D(T) = [0,3) & m(T'D(T)AD(T)) = 3.

CONSERVATIVITY AND TRANSFER OPERATORS

2.10 Hopf’s recurrence theorem
If T: X - X s nonsingular then

Q) eT)> [ilfkf:oo] mod m ¥ fell(m),: &

(i) @(T):[ilfkf:oo] mod m ¥ feL'(m), f>0.

Proof (i) Fix f e L'(m), and W € Wy, then

oo>Lfdmzf){f(élon”)dmz/;V(T;)T”f)dm.

This shows that ®(T) c [X2,TFf < o0]. @

(ii) Assume otherwise and fix f e L'(m),f >0, Ae B, Ac &(T)
st. Y, Thf < 00 on A.

WLOG f(z)>¢>0V x € A, and the series converges uniformly on
A whence [,(X2, T*f)dm < co.
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On the other hand, by Halmos’ recurrence theorem Y ,,.g1407™ = oo
a.e. on A.
Thus

w>—£(;fkf)dm:f)(f(7;)1AoT”)dm
z/Af(z1AoT”)dmchA(Z1AoT”)dm=oo X O

n>0 n>0
2.11 Corollary.
IfTe=x+ 3+ [; dt”_(;) where v is a finite, Lebesque-singular, mea-

sure on R with compact support, then T is conservative if 5 =0 and
dissipative if 5 # 0.

Proof By Hopf’s recurrence theorem, it suffices to show that Y% T"(pw
diverges a.e. for some w € R?* when [ = 0; and converges a.e. for some
w € R?* when 3 # 0.

By Boole’s formula
— 1 n ,
Tn30w($) = SOan(.CE) = ; . m where T"w = Uy, + 20,
Elementary estimations show that
e when f$#0.3 B=B(w)eR, & C =C(w) €R so that

() v,1tB & un=ﬂn—%logn+0+0(loﬁ) as n — oo;
n

and

e when =0,

n

(H) sup |un| <oo & w,~V2vn as n—> oo where v:= Zpk
n>1 prc]

It follows that 7" is
e conservative when 3 = 0 (.- Tnyp, o % uniformly on bounded
subsets of R);
e and totally dissipative when 5+ 0 (- Tro, < - on R). &

3
n2
Exercise 11: Hopf recurrence theorem for MPTs.

Suppose that T is a MPT of the o-finite measure space (X,B,m).
Show that

[ifOT”ZOO]ZQ:(T) mod m VfELl(m),f>0_
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Lecture # 3 15/10/2014 10-12.

ERrRGoODICITY

A transformation T of the measure space (X, B,m) is called ergodic
if
AeB, T' A=A mod m = m(A4)=0, or m(A°) =0.
In general, let
I(T):={AeB, T-'A=A}.
Remarks.
It is not hard to see that:
e J(T) is a o-algebra (and that T is ergodic iff J = {@, X });
e an invertible ergodic nonsingular transformation of a non-atomic
measure space is necessarily conservative;
e a nonsingular transformation (X,B,m,T") is conservative and er-
godic iff
S la0T = o0 ae. VAeB,.
n=1
Exercise 13.
(i) Suppose that (X, B,m,T') is a Kakutani skyscraper over the ergodic
NST (§2,F,p,S), then T is ergodic.
(ii) Suppose that (X,B,m,T) is a conservative, NST and that A €
B, U2, T"AZ X, then T is ergodic <= T} is ergodic.

Exercise 14.

Let (X,B,m,T) be a conservative, ergodic nonsingular transforma-
tion and let (Z,d), a separable metric space. Show that if f: X — Z
is a measurable map, then for a.e. x € X,

{f(Trz):mneN}=sptmo f'.

SOME ERGODIC TRANSFORMATIONS

Rotations of the circle. Let X be the circle T = R/Z = [0,1), B
be its Borel sets, and m be Lebesgue measure. The rotation (or trans-
lation) of the circle by x € X is the transformation r, : X - X defined
by r.(y) =x+y mod 1.

Evidently m or, = m for every x € X and each r, is an invertible
measure preserving transformation of (X, B, m).

3.2 Proposition
If « s irrational, then r, is ergodic.
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Proof
We use harmonic analysis. Suppose that f: X — R is bounded and
measurable, and that for, = f, then

—_

f(n) = fly)e*mmvdy

(0,1)
= [[ )f(a+y)e’2’”'"ydy = \"F(n) where \:=e2mic,
0,1

It follows that

—

A" =1 whenever f(n) 0,

whence, since A" # 1V n # 0, f(n) = 0 whenever n # 0 and f is constant.

v
Ergodicity of rank one constructions.

3.3 Proposition
Let (X,B,m,T) be a rank one MPT as above, then T is ergodic.

Proof Let
R, = U It X

ITery,

be the refining sequence of Rokhlin towers defining T'; where each
t,={T9I,: 0<j<k,-1}
is a partition of R, into intervals with equal lengths m(I,,) — 0.
We claim first that it suffices to show that

For e>0 & AeB,, 3 N=N,4 so that
® Vn>N3ler,s.t. m(AI)>1-e

Proof of sufficiency of =
Suppose that Ae B,, TA=A. We'll show assuming s that ¥ N > 1
large enough,

m(AnRy)>(1-e)m(Ry) V €>0
whence A> Ry 1 X mod m.
To see this, choose (by #) n> N & J € v, satisfying m(A|J) > 1 -e.
Then for each K =T'%J € t,, we have using T-invariance of m & A:
m(AnTixJ)

m(AK) ==

= m(AlT) > 1 ¢

whence

m(AnRy)= > m(AIK)m(K)>(1-€e)m(Ry). @

Kery,, KcRy
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Proof of =
Suppose that A € B, and fix N > 1 so that B:= An Ry € B,. For
n>N, let

s,:={l€ev,: I cRy}.
Fix 0<e<1 and for n > N let
Z,={les,: m(BlI)>1-¢€} & V=5, Z,.

We show that V n large enough, Z, # @.
Since 0(Upsny 8n) = B(Ry), 3n >N & C,, a union of sets in s,, so

that m(BAC,) < Z™B) Tt follows that
e2m(B)

m(On) — < m(B n On)

- z; 3y m(B|I)m(T)

= > mBIHmI)+ Y m(BI)m(I)
IeZ,, IcCy, I1€Yy, IcCyp

< Y m(D)+(1-¢) > m(])
IeZ,, IcCy, 1€V, 1cCy,

=m(JZ,) +(1-e)m(Cy)

whence
m(U Z,) > m(Cy) - Ezmg(B) —(1-)m(C,)
~ e2m(B)
=em(C,) - 5
esm(B)  e*m(B)
> em(DB) 9 5
767719(3) 0. o

ERGODICITY VIA STRONGER PROPERTIES

Sometimes it’s easier to prove more than ergodicity.

One-sided Bernoulli shifts.

Let X = RN and let B(X) be the o-algebra generated by cylinder sets
of form [Ay,...,A,]={ze X :x;€A;, 1<j<n}, where A;,... A, €
B(R) (the Borel subsets of R), and let the shift S: X - X be defined
by

(Sx)n =Tn+l-
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For p : B(R) — [0,1] a probability, let u, : B(X) — [0,1] be the
probability? satisfying

up<[A1,...,An]>=§p(Ak> (As,..., A, € B(R)).

Evidently S7![A,...,A,] = [R, A4, ..., A, ] whence p, 0 S™ = p,,.
The one-sided Bernoulli shift with marginal distribution p is the
probability preserving transformation S of (X, B, ;).

Tail, exactness. Let T be anonsingular transformation of (X, B, m).
The tail o-algebra of T is

T(T) == ﬁ T"B.

The transformation 7' is called ezact if T(T') = {@, X} mod m.

Evidently 3(7") ¢ €(T') mod m and so exact transformations are
ergodic.

3.4 Kolmogorov’s zero-one law

Any one-sided Bernoulli shift is exact.

Proof
Suppose that B € B is a finite union of cylinders. If the length of the
longest cylinder in the union is n, then

(B0 S™C) = pp(B)pp(C) ¥V CeB.
Now suppose A € T. Since, for each n € N,
A=5"A, where A, € B, 1,(A,) = pp(A),
we have that
pp(B 0 A) = pip(B)pp(A)

for B € B a finite union of cylinders, and hence (by approximation)
V B e B. This implies that

0= pp(AnA%) = pp(A)(1 - py(A))
demonstrating that % is trivial mod p,. @

Note that no invertible nonsingular transformation can be exact (ex-
cept the identity no a 1-pt. space). Hence an irrational rotation of T
is ergodic, but not exact.

2Exis‘cence guaranteed by Kolmogorov’s existence theorem as on p.5.
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Two sided Bernoulli shift.
Recall that the two sided Bernoulli shift is defined with X = RZ,
B(X) the o-algebra generated by cylinder sets of form
[Ala---’An]k = {£6X5$j+k€Aj, ].S]STL}
where Ay,..., A, € B(R). The shift S : X - X is defined as before
by (Sx), = Tps1, and the S-invariant probability u, : B(X) — [0,1] is
defined (for p: B(R) — [0,1] a probability) by

up([Al,...,An]k):If[lp(Ak) (A1, A, € B(R)).

The two sided Bernoulli shift is an invertible measure preserving
transformation (and hence cannot be exact).

3.5 Proposition.
A two sided Bernoulli shift is mixing in the sense that

pp(ANT"B) = p,(A)p,(B) asn - oo ¥V A BeB(X),
and hence ergodic.

Proof  True in the combinatorial sense for A, B finite unions of
cylinders, and hence (by approximation) V A, BeB. &

Exercise 15.

Show that an exact probability preserving transformation (X, 7T, i)
is mixing.
Hint Show first that if f e L2, ny - oo and foT™ — g€ L? weakly in
L?, then g is tail measurable.

Nonsingular Adding Machine.
Let £2={0,1}N and B be the o-algebra generated by cylinders. We
consider again the adding machine 7 : {2 - (2 defined by

7(1,...,1,0, €041, €ns2y ) = (05,0, 1, €441, €nyay --0)-

The adding machine has
the odometer property.
© {((v*2)1,...,(7F2),) :0<k<2" -1} ={0,1}" V2 e 2, n> 1.

The next lemma illustrates how the odometer “parametrizes” the tail
of the one-sided shift S': 2 — (2.
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3.6 Lemma
ForxeZ:={r"(0): neZ},
{ye2: In>0, S"(y)=S5"(x)} ={r"(x): neZ}.

Proof Note that Z = {z € 2: 3 lim,.e#,}. Thus for z ¢ Z, both
((x) :==min{n >1: z, =0} and (x) :==min{n > 1: z, = ¢} are finite,
whence
In>1st. S"r=S5"r(x)=S"1""x).
Since 72 = Z,
{ye2: 3In>0, S"(y)=5"(z)} > {T"(x): neZ}.
For the other inclusion, suppose S™x = 5™y = z, then using the odome-

ter property,

(0,...,0,2) = 7@ () = 77 W) ()
—
n times

where v, (w) = 3}, 25" w,. Thus
y — TV"(y)_V’n—(m) (:L-) m
For p e (0,1), set p, = [1(1 - p,p) € P(£2) and recall that

WMT_C—ﬂ¢

d pp p
where ¢(z) :=min{n>1: x, =0} -2 =4(z) - 2.

3.7 Proposition
T 18 an invertible, conservative, ergodic nonsingular transformation

of (12,8, ).

Proof It is not hard to show, using lemma 3.6, that 3(7) = T(S) mod pu,
and the ergodicity of ({2, B, u,, 7) follows from the exactness of (£2, B, ,, S).
As above, conservativity is automatic in this case. &

3.8 Rigidity proposition For0<p<1, (£2,B,p,) is rigid in the
sense that if f: (2 - R is measurable, then ¥ € >0,

([l o7 = f12 €]) > 0 as n > oo.

Proof Firstly, note that if f: 2 - R and f is defined by f(z) =
g(z1,...,2,) for some n e N, then for2" = f for every k > n. To enable
approximation, we show that 3 A >0 & M > 1 so that

() pp(772A) < My, (A)? ¥ AeB.
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Proof of (%)

As before,
% = (%)? where ¢(z) :==min{n e N: z, = 1} - 2;
Using the odometer property:
on_1
(%) ()= Y (e +n+y(Sa)
3=0 ce{0,17" {1}
= > (k-2)2"%+ n+ (S z)
k=1
=(S"x).
By (#)
dp, o 72" _ Qﬁl (dup o771 ) ok
d py ko \ dip
21”_—11( » )wof_k
ko \1-p
_ (L)“"’Sn
1-p '
Fix (1) ¢ >1 be such that 5 p)q =2 < 1, then

and for A € B,
_on PoS™
(72" A) = A(%) dpip <

by Holder’s inequality. v (%)

Mp(A) ! —MNP(A)QT

()"

Now, suppose that F': {2 - R is measurable, and let € > 0 be given.
There exist n € N, and f: 2 — R and f defined by f(x) = g(x1,...,x,)
for some g: {0,1}" - R such that p,([|F' - f| > €/2]) <e. For k >n, we

have f o 7'2k = f, whence
pp([|F o7 = Fl2 €]) < p([[F o7 = for™| 2 ¢/2]) + 1 ([|F = f] 2 ¢/2])
S6+M€7,
establishing that indeed
For X p @
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Lecture # 4 15/10/2014 18-20.

Ergodic Maharam extension for the non-singular adding ma-
chine.
Define 7, : {2 xZ - {2 x Z by

To(x,2) = (T2, 2 + p(T)).
For 0 < p <1 define the measure m, : B(£2x Z) - [0,00] by
mp(Ax{z}) = pp(A)(75)".
This kind of transformation is aka a Maharam extension.
3.9 Theorem  For each 0 < p <1, (2 xZ,B(£2xZ),m,,7s) is a

conservative, ergodic measure preserving transformation.

Proof that m, o7, =m,
Any A e B({2 x Z) has a measurable decomposition A =), sz A, ¢ %
{z} where ¢ =¢ on A,,. Thus:

mp(16A) = 3 mp(1(Asex{2})) = D my(TA. o x{z+1(})

zleZ zleZ

= 2 m(TAL) ()7 = Y mp(Ane) (155)°
zleZ zleZ

= 2 mp((Ase x {2})) =m,(A). @
zleZ

Proof of ergodicity of 7, Suppose that F': {2 xZ - R is bounded,
measurable and 7,-invariant. We’ll show first that F'(z,2) = F'(x,2-1)

my-a.e..
A similar calculation to (#) shows that
(%) Pon (2) = H(S"x).

Iterating 74, we have that
F(x,z)=Fo T2n(l’, z) = F(r%¥z,z+ Gon(x)) = F(r¥z,z+ o(S™(x)).

By the rigidity proposition, 3 n, - oo and 2y € B(§2), u,(2) =1
such that
F(r%" 2, 2) = F(x,z) Yxzeldy, z€Z.

The events
A,=[¢poS"=-1]={zeR:2,,,=0}
are independent under p,, and p,(A4,) =1-p.
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By the Borel-Cantelli lemma, 3 (2, € B(£2), (21 c {2, p,(21) =1
such that V z € (21, 3 k; = ki(z) - oo with

o(S™ex)=-1V £>1,
whence

F(z,z)=F(r?

R d(S™e(x)) = F(Tanlx,z -1) . F(x,z-1).
Thus 3 f: {2 > R, measurable, such that F(z,2) = f(z) p,-ae. V z¢€

Z. Since F is 7y-invariant, f is 7-invariant and p,-a.e. constant by
ergodicity of (£2,B,u,,7). @
3.10 Corollary

The nonsingular adding machine (§2,B, ji,,7) has no o-finite, abso-
lutely continuous, invariant measure.

Proof  Suppose otherwise, that m <« p, is a o-finite, T-invariant
measure and let dm = hdp, where h > 0 is measurable, then(!) A >0
pp-a.e. (o m~p,) and

— h
h=1th=7"hor = 71'= .
hort
Since 7/ = (%)Q5 we have that ¢ = k — k o7 where k : {2 > R satisfies

h=(2)

Define F': 2xZ - R by F(x,z) = z+ k(x), then
F(rs(z,2)) = F(rz,z+ ¢(x)) = 2+ ¢(z) + k(1) = 2+ k(z) = F(x, 2).
By ergodicity, F is constant, but it isn’t (.= F(x,z+1) = F(x,z) +1).
vl

Exercise 16: Dissipative exact MPTs.

Let 2 ={0,1}N let S : 2 - 2 be the shift, let 7: 2 - 2 be the
adding machine and let p, = [1(1 - p,p) € P(£2), (0<p<1). Define
f, 0:92—>2Zby

fx)=21 & o(x):=0(x)-2), {(x):=min{n>1: z,=0}
and Sy, 74 by
S(x,z) =(o(x),z+x1), T(x,2):=(1(x),2+{(x) - 2).

Show that
(1) (2xZ,B(2x2Z),u, x#,S¢) is a totally dissipative MPT;

(i) T(Sy) =T(79)-
(iii) (2xZ,B(2x2Z),u, x #,Sy) is exact.
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RATIO ERGODIC THEOREM

Suppose that (X, B,m,T") is a conservative, nonsingular transforma-
tion.

4.6 Hurewicz’s Ergodic Theorem
Yot ka(x) N
Y1 Thp(a) "
where dmy, = pdm, and J is the o-algebra of T-invariant sets in B.

Bu, (25) @) for ae. v X, viperiom), >0,
b

Conditional expectations.

Here, given a probability space ({2, F, P), and a sub-o-algebra C c F,
the conditional expectation wrtC is a linear operator f — Ep(f|C), L'Y(2,F,P) -
L(2,C, P) satisfying

fCEp(f|C)dP:/CfdP VCeC

Such operators are unique by their defining equations,. They exist
L2($2, F,P) - L*(£2,C, P) as orthogonal projections and extend to L!
by approximation.

Proof of Hurewicz’s theore/r\n
Set, for f,pe L'(m), p>0, Sof =0, and n € N,

)
~~

Snf :=kZT'“f, R, (f,p) ==
=0

.
S

Let
H,={f=hp+g-TgeL'(m):hoT =heL*(m),geL'(m)}.
We claim that for f = hp+g—Tger,
_ 7
Ra(fp) = St

n

We show that R,(hp,p) = h where hoT = h € L*(m). For g €
L>=(m), neN,

f T”(hp)gdm = f pthTndm = f phoT”goT”dm = [ hT”p.gdm

X X X ¥

for every whence T f = hTmp, and R, (f,p) = h. The convergence
R.(f,p) — h, ae. ¥V f = hp+g—Tger

follows immediately from the
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4.7 Chacon-Ornstein Lemma
Tn
~ 9,0, ae Vge L*(m).

Snp n—o00

Proof Choose € > 0, and let 1, = 1;7n,.5,,)- We must show that
Yoo Nn < oo ae. Y e>0.
We have
ep+ T g —eS,ap=T(T"g - eS,p),
whence
ep+ T g —eS,ap<T(T"g - €eS,p)s,
where g, denotes gVv 0, fvg=max{f, g}.
Multiplying both sides of the inequality by 7,.1:

1€ + Mnat (T g = €50410) = Nsrep + (T g - €S,1p)+
< T(T"g - Spp)-
<T(T"g-€S,p),.
Equivalently, R
Nni1€p < Ty — Jnsa

where J,, = (Tng —eS,p)..
Integrating, we get

e/ pnn+1dméf(Jn—Jn+1)dm
X X

and, summing over n, we get

N
e[pZnndmstldm<oo.
X X

n=2

This shows that indeed
> 1 < 00 ae.

n=1
and thereby proves the lemma. @
We next establish that

© H, = L'(m).
To see this, we show that
keL‘”(m),kafdm:Oer’Hp = k=0 aec
To see this, let
ke L°(m) > /kadmzo VfeH,,
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then, in particular

[gkOTdm:ng-kdm:fgk‘dm Vge L'(m),
X X X

whence kol =k a.e., and kp € H,,.
Hence,

/kzpdmzo =k=0a.e.
X
® now follows from the Hahn-Banach theorem. ¢

Proof of Hurewicz’s theorem ctd.

Identification of the limit.

We now identify the limit of R,,(f,p) f € H,. Define &,: L*(m) -
L'(my) by

Dy (f) = B, (£]7),
then
126(F) I L1(myy < [l ¥ f € L (m).

We claim that
(%) Ru(f,p) —= Dp(f) V feH,

For this, it suffices that

O,(hp+g-Tg)=h ¥ f=hp+g-TgeH,.

Indeed, if ko T =k e L>(m), then

kagdmpzkafdm

:fk;(hp+g-Tg)dm
X

=fkhpdm+f k(g-Tg)dm
X X

- f khdm,. @
X

We extend (k) to all f € L'(m), by an approximation argument
which uses the

5.1 Maximal inequality
For f,pe L', such that p>0 a.e., and t € R,,

my([sup Bu(f.p) > 1]) < 111

)
neN t

where dm,, = pdm.

Proof of theorem 4.6 given the maximal inequality
Let f e L'(m). Fix e > 0.
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By ©, we can write f = g+ k, where g € H, and ||k]; <€2. 1
t follows that

Bt [Ra(£.9) = 2,(£)] < 5up | )| + 10, ),
whence, by the maximal inequality, and by Tchebychev’s inequality,
mp([m [Ru(f,p) = Pp(f)] > 2€]) < my([Sup | Ba(k,p)] > €]) + my ([|25(F)] > €])
2|k

€
This last inequality holds for arbitrary € > 0, whence

7101_>_I£10|Rn(f7p) _@p(f)| =0 a.c.,

and the ergodic theorem is almost established, it remaining only to
prove the maximal inequality.

< < 2e.

5.2 Hopf’s Maximal ergodic theorem
[ fdm >0, VfeL'(m),neN,
[M, f>0]

where

R

+

Proof Note first that if M, f(x) >0, then

n+1

M,f(z) < My f(z) = k\:/l Sif ()

- f(a)+ \/ ST () = f(z) + M, Tf(x).

Also (!) M,Tf <TM,f, whence
M, f>0 = f>M,f-TM,f,

f Fdm > f (M, f - TM, f)dm.
[My, f>0] [My f>0]
Since TM, f >0 a.e., and M, f =0 on [M,f > 0]¢, we get

f Fdm > f M, fdm - FM, fdm
[My, f>0] [M, f>0] [My, f>0]

sznfdm—fTMnfdm
X X
-0,

whence the theorem. &

and
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Proof of the maximal inequality Suppose f,p,t are as in the
maximal inequality, then

My(f =tp) >0 < max By(f,p) > 1.

Thus, using Hopf’s maximal ergodic theorem, we obtain

—tp)dm >0,
[Mn(ftp)>0](f P)

whence
tm,(|max R(f,p) >t Sf dm
p([lngn k(f p) ]) [maxlskSan(fvp)>t]f
<[ £l

The maximal inequality follows from this as n - co. @
Hurewicz’s ergodic theorem is now established.

Hurewicz’s theorem for a conservative, ergodic nonsingular transfor-
mation 7', states that

Tio Thf(z)  [x fdm
o Trg(x)  [x gdm
whenever f,ge L'(m), [, gdm #0.

for a.e. ze X

Exercise 17: von Neuann’s ergodic theorem.

Let H be a Hilbert space and let U : H — H be a unitary operator.
Show that

(i) Ho:={feH: Uf=f}isaclosed, invariant subspace of % and that

oI

—ZU’“f—PfH —— 0 V feH
n k=0 n—00
where P :H — Hg is orthogonal projection.

Exercise 18: Hopf’s ergodic theorem.
Suppose that (X, B,m,T) is a conservative measure preserving trans-
formation.

(i) Prove that

é%:lg—g:z))a E,., (f13)(z)for ae. z € X, Vf,peL'(m), p>0.
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Hint Hopf’s ergodic theorem is a special case of Hurewicz’s theorem in
case T is invertible. It can be proved analogously for T non-invertible.

(ii) Now suppose that 7" is a conservative, ergodic, measure preserving
transformation of the o-finite, infinite measure space (X, B, m). Prove
that
1 n
- f(T'“x)T;>o 0 for a.e. z€ X, VfeLY(m).
1

k=
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ERGODICITY VIA THE RATIO ERGODIC THEOREM

Boole transformations.
Let (X, B,m) be R equipped with Borel sets and Lebesgue measure,
and consider Boole’s transformations:

P
(&) Tr=z+f+)
itk =T

where N >1, pi,....,pny>0and 3, t1,...,tx €R.
By corollary 2.3, for T as in (&), (X,B,m,T) is a
measure preserving transformation. By proposition 2.11, T is conser-
vative iff g = 0.
5.3 Proposition
(i) If B =0, then T is conservative, ergodic.
(i) If 8 # 0, then 3 F : R?** - R?* analytic, so that FoT = F + . In

particular, T is not ergodic.

Proof sketch
For w € R?*, write T"(w) := u,, + iv,, then
N
Dk
Upsl = Up + 0y Y —e—
" k=1 (tk - un)2 + Uvzz
N pk(te —up)

un+1=un+ﬁ+z

it (e —un)? + 07
As before, elementary calculations show that
e when 8#0.3 B=B(w)eR, & C =C(w) €R so that

1
(I) v, 1 B & un:Bn—%logn+C’+O( ogn) as n — oo;
n
and
e when =0,

(I1)  suplu,|<oo & v, ~V2vn) as n—oo where v:i=) pg
n>1 frc]

Proof of (i)
Set p:=;, then V z € R, w e R?*,

1 2n

. n—lA n—ll
Snou(x) =Y Trp () ~ Y — ~a(n) ==/ —.
pul@) = 2 Trpufa) = 3 - =a(m) = [~
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By Hurewicz’s theorem, for f e L1(m) and a.e. z € X,

Suf(x)  Suf(x)
&(n) S ( ) n— 00 mp(f|J)

On the other hand, for f=gx* @y (g€ L'(m)),
@)= [9®eala-tdt= [ g(trenn(a)dt

whence
Tnfszg(t)@T"(t+ib)($)dt
and by (I)

f (t) "‘pt”bdt—> [ gdm - f Fdm
R

n—oo

a(n)
whence E,, (f|J) is constant. Smce such f are dense in L'(m), T is
ergodic. (i)

Proof of (ii) By (II),

T (w) —np+ %logn —2 C(w) +iB(w) = F(w) e R*.

It follows that F': R?* - R?* is analytic Moreover

F(Tw) «— T”“(w) nf+ 3 “ logn

(T (W) = (n+1)B + %log(n+ 1))+ 3+ 0(%)
s Fw)+ 8. @i

APERIODICITY AND ROKHLIN TOWERS

Periodicity. Let (X,B,m) be a standard probability space and let
T e NST(X, B,m).
For each p > 1 consider the set of p-periodic points

Per,(T):={zeX: TPx=x, Tiz+xV 1<j<p}.

Exercise 19. Show that for p € N:
(i) Per,(T) e B;
(ii) there is a set A € B so that {T7A: 0<j<p-1} are disjoint and

p-1
Per,(T) = [ TV A.

7=0
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Hints for (ii) Using the polish structure of X, show that V A €
B,, 3 BeB,, BcAsothat {T’B: 0<j<p-1} are disjoint. Then
perform an exhaustion argument.

Aperiodicity.

The non-singular transformation (X,B,m,T) is called aperiodic if
m(Per,(T))=0V n>1.

Sweepout sets. Let (X,B,m,T) be a NST. A set A € B is called a
sweepout set if U, T"AZ X.

The next exercise shows that an aperiodic, conservative NST has
sweepout sets of arbitrarily small measure.

Note that this is immediate for a conservative, ergodic NST (X, B, m,T),
for then for any A € B,, U;2; T "A has positive measure and is T-
invariant mod m...

Exercise 20. Let (X, B, m,T) be an aperiodic, conservative NST. Show
that Ve>03 FeB, m(E)<est. E:=Uys1 T*E=X mod m.

Directions: °

Fix N > 1 and let
Zy={AeB,: {T7A: 0<j< N} disjoint}.

€1 Show that V Je®B,, 3 Ae Zy so that m(AnJ)>0.

Hints (i) Assume WLOG that T"z # z V x € X, n > 0. Fix a polish metric d on X and
find (!) C ¢ J compact so that m(C) >0 and 77 : C - X is continuous for 0 < j < N.

(ii) Find z € C so that m(C n B(z,€)) >0 V € > 0 where B(z,¢) is the d-ball of radius €
around z and then find (!) 1 >0 so that {T9(C'n B(x,n)): 0<j <p- 1} are disjoint.

92 Obtain using exhaustion: sets Aq, As,--- € Zy and numbers €, > 0
so that L
An_,.lﬂAk:@ W 1Skén,
2m(:47:1) >eny1i=sup{m(A): AeZy, A nAr=a V1 <k<n}
and show that for some 0 < J < N, T=7 U2, Ay is as required.

6.2 Rokhlin’s tower theorem Let T be a conservative, aperiodic

nonsingular transformation of the Polish, probability space (X, B, m).
For N >1, andn >0, 3 E € B such that {T7E}§! are disjoint, and
m(X UG TE) <.

3Here, I’'m breaking up the proof into “easy stages”.
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Proof
By non-singularity 3 6 > 0 so that

N-1
m(A)<§ — m(kU TFA) <n.
-0

Using this and exercise 20, we can choose choose A € B such that A = X
and m(Uno' T-+A) <.

Set Ag:=A, A, =T AUy T7A, (n>1), then {4, : n>0} are
disjoint and Uy g Ap =Upe g TA = X.

Set E :=J;2; Apn, then for 0 <k < N -1:

TkE Cc U ApN—k‘
p=1

whence {TVE} " are disjoint.
We claim that {7~ E} 5" are disjoint. To see this, fix 1 <k < N -1,
then E c T-*T*E whence

TH*ENEcT*EnT*T*E =T EnT"FE) = 2.
On the other hand, for 0<k< N -1,
T_kE o U ApN+k7
p=1

whence Up o' T7FE o U2 v Ay, and

N-1 N-1 N-1
m(X~ |JTPE)<m(l) 4,) =m(|J T™"A4) <«
j=0 n=0 k=0

SKEwW PRrRoDUCTS

Let (X,B,m,T) be a NST and let G be a locally compact, polish,
abelian topological group.

Given a measurable function ¢ : X — G , define the skew product
transformation Ty, : X x G - X x G by Ty(z,g) = (Tx,p(x) +g).

1.1 Proposition (Hopf decomposition of skew products)

Suppose that T is ergodic and either a MPT, or an invertible NST. Let
¢+ X = G be measurable, then T, is either conservative, or totally
dissipative.

Proof By the assumption, T}, is also either a MPT, or an invertible NST.
In either case, ©(T,) is Ty-invariant. We'll show that it’s invariant
under an ergodic action of a larger semigroup.
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Let I' ¢ G be a countable dense subgroup of G. The action of I’
on (G by translation is ergodic with respect to Haar measure on G. It
follows that the N x I" action S on
(X xG,B(X xG),mxmg) given by S¢, q)(2,y) := (T"z,y+a+ dp(x))
is ergodic.

Let a € G, then since Sy, is invertible and Sy, 0T, = T,, 0 Sy, we
have that W e W(T,) iff Sp,W € W(T,), whence Sy ,O(T,) = D(T,).
Since T;'®(T,) = D(1,), it follows that D(T},) is S-invariant, whence
the proposition by ergodicity of S. @

1.2 Proposition Let (X,B,m,T) be a PPT, then T} is conservative

iff
liminf |¢,(z)| =0 for a.e. x € X.

Proof
Assume first that Ty is conservative and let € > 0. By Halmos’
recurrence theorem

Y Ixxna(o.2) 0 Ty =0 ae. on X x Bg(0,€/2).
n=1
So for a.e. x € X, ye Bg(0,¢/2),
Z 1BG(076/2)(y + ¢n(x)) =0,
n=1

whence for a.e. x € X, liminf, . |¢,(z)] <e.
Now assume that

liminf ||, (x)] =0 for a.e. z € X.

Fix f : G - R, be continuous, positive and integrable and let 0 < € < k¢.
Fory e G,let 0(y,€) := Bir(lf )f. By compactness of B (y,€), d(y,€) > 0.
G y7€

We have that ¥V y € G, for a.e. (,2) € X x Ba(y, 5),

2 (1 f)oTi(x,2) = i (4 6u(2)) 2 8(5.6) ilBG@,;)wx)) = 00

and Ty is conservative. O

1.3 Proposition If¢p=¥-V¥oT with¥: X - G measurable, then T,
18 conservative.

Proof Evidently 7j is conservative, and if ¢ is a coboundary, then T}
is isomorphic to Tj. ]
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PERSISTENCIES AND KESSENTIAL VALUES

Let (X, B, m) be a standard probability space, and let T': X - X be
an ergodic, NST. Suppose that ¢ : X - G is measurable. The collection
of persistenciesof ¢ is

IH(¢p)={aeG:YAeB,, >0, In>1, m(ANT"An[|¢p,—a| <€]) > 0}.

For T invertible, the collection of essential values of ¢ is
E(¢p)={aeG:YAeB,, ¢>0,AneZ m(AnNT"An[|¢,-a| < €]) > 0}.

2.1 Proposition [?Schmi]
Fither 11(¢) = @, or II(¢) is a closed subgroup of G.

Proof

To see that IT(¢) is closed let a € I1(¢) and let € >0, A€ B,.

3 a’ € II(¢) such that |a —a'| < €/2, and I n > 1 such that
m(AnT"An[|e,-d| <e/2]) > 0.

It follows that
m(ANT"An[|lpn—al <€]) >m(AnT"An ||, -d| <€/2]) > 0.
Thus, a € II(¢) and II(¢) is closed.

To show that I1(¢) is a group, we show that a,be I[I(¢) = a-be
1(6).

Let a,b € II(¢), e >0, A€ B, and let n > 1 be such that m(An
T"An[|én—al <€/2]) > 0.

By Rokhlin’s lemma, 3 BeB,, Bc AnT"An[|¢, - al <¢€/2] such
that BNnT*B=g for 1 <k<n.

Since be I1($), 3 N > 1 such that m(BnT-N¥Bn[|on-b| < €/2]) > 0.
The construction of B implies that N >n whence

BnTVBn[|on-b| <e/2]
=BnTBn[|é,-al <e/2]nllon -b] <e/2]
cBNnTVBn[|onrpnoT" - (b-a)| <¢],

0<m(BNnTNBn[|onyrnoT"~(b-a)| <e])
<m(ANT"ANTNAN[|¢pn-poT" = (b-a)| <€])
<m(T"(An TN An [0 = (b-a)| <€]))

whence m(AnT-WN-"An[|¢n_n—(b—a)| <€])>0 and b-a € I1(p).
U
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Lecture # 6 17/10/2014 12-13.

2.2 Theorem [K.Schmidt]
Let (X,B,m,T) be a conservative NST, and let ¢ : X — G, then
Ty is conservative <= 0¢€ II(¢).

Proof of =

Suppose first that T} is conservative and let A e B,, €e>0. I n >
1 such that m x mg(A x Bg(0,¢/2) nT;"A x Bg(0,€/2)) > 0. Since
AXBg(O,6/2)ﬂTq;nA><Bg(0,€/2) c (AnT"An([||¢n| < €])x Ba(0,€/2),
we have m(AnT"An[|d.] <€])>0and 0€ II(¢). &
Proof of <

In case G is countable, every B € B(X x(G), contains a set Conversely,
suppose that Ty is not conservative. Let A € B. Consider the sections

Ay ={yeG: (z,y) e A} (zeX).
A calculation shows that
(T5"A)z = Arng = du().
By Fubini’s theorem, A, € B(G) VY = & x » mg(A,) is measurable.
Let
Xa={reX: m(A;) >0},
then m(X4)>0. Now let W e W(T},). We claim that
q there is a measurable subset V ¢ W with

0<m(V,) <oo fora.e. xeXy.

Proof of
Define R: X — [0,00) by

R(x):=inf {r>0: m(W,n B(0,r)) > min {Z0=) 1}

then
Vo:={(z,y): y e Won B(0, R(x))}
is Lebesgue measurable and m x mg(Vy) > 0. It follows that 3 V e
B(X x@G), VcVy with mxmg(Vo~\V) =0.
It follows that for a.e. = € Xy, V, = (Vp), whence

0<m(V,) <oo fora.e xeXy. @AY

Let -
Fw={fel'(mg): 3AeB, f=14ae},

then F is a polish space with the metric
p([AL[B]) = [1a = 15[1 = mc(AAB)
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for A,BeB, 0<m(A),m(B) < oo where [C]:={BeB(G): u(BAC) =
0}.

By Fubini’s theorem, 2 [V, ] is a Borel map X — F.

By Lusin’s theorem, 3 a compact set C'e€ B,, C' c Xy so that x » V,
is continuous on C.

Also, for Ae Fy, t » mg(An(t+ A)) is continuous G — [0, 00).

By compactness, mg(V,) <A>0V zeC.

By continuity, 3 € >0 & a compact set D € B,, D c C so that

() ma(Van (V, +)) 2 € ¥ z,yeD, || <e.
Set U=V n (D x @) then

Ux:{ Ve reD,
g xé¢D.

It follows from Fubini that m x mg(U) > 0 whence U € W(T).

Thus, we have, for n > 1
UnT,"U<(DnT™"D)xG
and for a.e. x € DnT"D, we have
@ =(UnT;"0); = Uy 0 (Upng = ¢n(2))
= Uy 0 (Urng = ¢n()) = Vo 0 (Vng = 90 ().

UnT"Uc[|¢n]>€] Vn>1
and 0 ¢ I1(¢). v

2.3 Proposition
Suppose that ¢, : X — G are cohomologous, then II(p) = I1(p).

Proof
By symmetry, it is sufficient to show that I7(¢) c I1(p).

Suppose that ¢ = ¢+ hoT —h where h: X — G is measurable.

Let a e II(¢) and let Ae B, €>0.

Since X is a standard space, by Lusin’s theorem 3 B c A, B e B,
such that ||h(z) -h(y)| <§ V 2,y € B.

Since a € I1(¢), 3 n>1 such that m(BnT"Bn[|¢,-al <5]) >0.

By construction of B, if x € BnT™"B, then |p,(z) - ¢.(2)| =
|h(T"x) — h(z)| < § whence

m(BnT"B[|e,-al <e]) >m(BaT"Bn[|¢n-a| < %D >0,
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and a € I1(y). O

Periods. Define the collection of periods for Ty-invariant functions:
Per(¢)={aeG:Q,A=A mod mVY AeJ(Ty)}

where Q. (z,y) = (z,y +a).

2.4 Theorem [K.Schmidt]

(i) Suppose that Ty is conservative, then

11(¢) = Per (¢).

(ii) Suppose that T is invertible, then
E(¢) = Per (¢).

Remark. (i) fails for some non-invertible T" with T dissipative
Proof of (i)

1 Per(¢) c 11(¢)
Suppose 0 # a ¢ II(¢), then 3 0 < e < d(0,a), and A € B, such that

m(ANT"An([|¢,—a| <2€])=0VY n>1.

For ze G & € >0, set

B.=UJ T¢”(A x Bg(z,e)).

neN

We have that T ngZ c B., whence by conservativity TQZIBZ Z B,. More-
over 1p,0Q,=1p,.
To see that a ¢ Per (¢), it suffices to prove that

m(Byn B,) = 0.
This holds because V n € N,
(Ax Bg(0,6)nT;"(Ax Bg(a,e))) u (AxBg(a,e) nTy"(Ax Ba(0,¢)))
c AnT"An[|¢n-a| <2]xG. @1

12 11(¢) c Per ()
Now assume that a ¢ Per (¢), then 3 A, B € 3(7}). disjoint such that

B=Q,A. Set for x e X,
Aacz{yeG:(xvy)EA}
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Note that

Ay ={y e G: (Ta,y) =Ty(z,y - ¢(x)) € A} = A, + ¢(z),
whence mqg(A;) = mg(Ar,), and by ergodicity, mg(As;) = mxmg(A) >
0 for m-a.e. x e X.

Next, as in the proof of < in theorem 2.2:

e 360¢eB(A) such that 0 <mg(,) <o a.e;
e Je>0and DeB(X), such that

ma(0.n (0, +t))>eV z,yeD, |t|<e
Lastly, we show that a ¢ IT(¢). This will follow from

DnT7"Dnl[|¢n(z)-a|<e]=a V n>1.
Indeed, supposing that z,T7™x € D, we note that

(a + eTnx) N (Qx + gbn(x)) C Brny N Apng = @,

whence,

ma(0:n(Ornz+a—¢,(2))) = ma((a+07n, ) N(0:+0,(x))) < ma(BrngnNApng) =0
and

[n(x) —al > e
U

Exercise 21: Essential values.
Let (X, B, m,T) be an invertible NST and let ¢ : X — G be measurable
(G a LCAP group). Show that

(i) E(¢) = IT(¢) u{0}; (i) E(¢) = Per (¢).

Exercise 22: Dissipative exact example.

This is a counterexample to theorem 2.4 for dissipative, non-invertible
skew products..

Let (X,B,m,S) be an EPPT and let f: X — Z be such that Sy is an
ergodic, totally dissipative MPT (as in e.g. exercise 16).

Show that
(i) 1I(f,5) = @
(i) Per (f,S) = Z.

End of minicourse



