ERGODIC THEORY NOTES TORUN, OCTOBER 2014.

JON AARONSON'S LECTURE NOTES

Lecture # 1 8/10/2014.

INTRODUCTION

Let (X, \mathcal{B}, m) be a standard σ -finite measure space¹ A null preserving transformation (NPT) of X is only defined modulo nullsets, and is a map $T: X_0 \to X_0$ (where $X_0 \subset X$ has full measure), which is measurable and has the *null preserving property* that for $A \in \mathcal{B}$, $m(T^{-1}A) = 0$ implies that m(A) = 0.

A non-singular transformation (NST) is a NPT (X, \mathcal{B}, m, T) with the stronger property that for $A \in \mathcal{B}$, $m(T^{-1}A) = 0$ iff m(A) = 0.

A measure preserving transformation (MPT) is a NST (X, \mathcal{B}, m, T) with the additional property that $m(T^{-1}A) = m(A) \forall A \in \mathcal{B}$.

We'll call a nonsingular transformation NS-*invertible* if the associated map is invertible with a nonsingular inverse.

Let

 $NST(X, \mathcal{B}, m) \coloneqq \{nonsingular \text{ invertible transformations of } X \}$ $MPT(X, \mathcal{B}, m) \coloneqq \{\text{invertible measure preserving transformations of } X \}$ $PPT(X, \mathcal{B}, m) \coloneqq MPT(X, \mathcal{B}, m) \text{ in case } m(X) = 1.$

The are all groups under composition (see the exercise below).

Equivalent invariant measures. If T is a non-singular transformation of a σ -finite measure space (X, \mathcal{B}, m) , and p is another measure on (X, \mathcal{B}) equivalent to m (denoted $p \sim m$ and meaning that p and m have the same nullsets), then T is a non-singular transformation of (X, \mathcal{B}, p) .

Thus, a non-singular transformation of a σ -finite measure space is actually a non-singular transformation of a probability space.

[©]Jon Aaronson 2007-2014.

 $^{^1 \}text{i.e.}$ an uncountable Polish spec equipped with Borel sets and a non-atomic, $\sigma\text{-finite measure.}$

The first question about a NST (X, \mathcal{B}, p, T) is whether it was obtained from a measure preserving transformation in this way, or, slightly more generally:

∃ ? a σ -finite absolutely continuous invariant measure (a.c.i.m., i.e. $m \ll p$, with $m \circ T^{-1} = m$).

RADON NIKODYM DERIVATIVES

Let (X, \mathcal{B}, m, T) be an invertible NST of the probability space (X, \mathcal{B}, m) . The measures $m \& m \circ T$ are equivalent (i.e. $m \circ T \ll m \& m \ll m \circ T$), written $m \circ T \sim m$. By the Radon Nikodym theorem, $\exists ! T' \in L^1, T' > 0$ a.e., so that

$$m(TA) = \int_A T' dm \ \forall \ A \in \mathcal{B}.$$

The function T' is called the RN derivative of T. The measurable map $f: A \to A'$ is called

- null preserving (NP) if for $C \in \mathcal{B}' \cap A'$, $m'(C) = 0 \implies m(f^{-1}C) = 0$;
- nonsingular (NS) if for $C \in \mathcal{B}' \cap A'$, $m(f^{-1}C) = 0$ iff m'(C) = 0; and
- measure preserving (MP) if $m(f^{-1}C) = m'(C)$ for $C \in \mathcal{B}' \cap A'$.

Exercise 1: Chain rule for RN derivatives.

Let (X, \mathcal{B}, m) be a probability space and let $S, T \in NST(X, \mathcal{B}, m)$. (i) Show that $T \circ S \in NST(X, \mathcal{B}, m)$ and

$$(T \circ S)' = T' \circ S \cdot S'.$$

(ii) Let (X, \mathcal{B}, m) be the unit interval equipped with Borel sets and Lebesgue measure, and suppose that $T: X \to X$ is nondecreasing and C^1 , then

- $T: X \to X$ is a homeomorphism iff $[T' = 0]^o = \emptyset;$
- $T^{-1}: X \to X$ is non-singular iff m([T'=0]) = 0; &
- $\exists a C^1$ homeomorphism $T: X \to X$ with $T^{-1}: X \to X$ singular.

Transfer Operator.

Let (X, \mathcal{B}, m, T) be a null-preserving transformation, then $||f \circ T||_{\infty} \leq ||f||_{\infty} \forall f \in L^{\infty}(m)$ and $T : L^{\infty}(m) \to L^{\infty}(m)$ where $Tf := f \circ T$.

There is an operator known as the transfer operator $\widehat{T} : L^{\infty}(m) \to L^{\infty}(m)$ so that $\widehat{T}^* = T$ i.e.:

$$\int_X \widehat{T} f \cdot g dm = \int_X f \cdot T g dm \ \forall \ f \in L^1(m), \ g \in L^\infty(m).$$

 $\mathbf{2}$

This is given by $\widehat{T}f \coloneqq \frac{d\nu_f \circ T^{-1}}{dm}$ where $\nu_f(A) \coloneqq \int_X f dm$ (!).

Exercise 2.

Let (X, \mathcal{B}, m, T) be a nonsingular transformation.

(i) Show that if T is invertible, then $\widehat{T}f = T^{-1'}f \circ T^{-1}$.

(ii) Show that \exists an absolutely continuous invariant probability for T iff $\exists h \in L^1_+$ satisfying $\widehat{T}h = h$.

EXAMPLES

Rotations of the circle. Let X be the circle $\mathbb{T} = \mathbb{R}/\mathbb{Z} = [0,1)$, \mathcal{B} be its Borel sets, and m be Lebesgue measure. The *rotation* (or translation) of the circle by $x \in X$ is the transformation $r_x : X \to X$ defined by $r_x(y) = x + y \mod 1$.

Evidently $m \circ r_x = m$ for every $x \in X$ and each r_x is an invertible measure preserving transformation of (X, \mathcal{B}, m) .

The adding machine. Let $\Omega = \{0, 1\}^{\mathbb{N}}$, and \mathcal{F} be the σ -algebra generated by cylinders. Define the *adding machine* $\tau : \Omega \to \Omega$ by $\tau(\overline{1}) := (\overline{0})$ where $(\overline{a})_k = a \forall k \ge 1$; and

$$\tau(1,...,1,0,\omega_{\ell+1},\omega_{\ell+2},...) = (0,...,0,1,\omega_{\ell+1},\omega_{\ell+2},...)$$

for $\omega \in \Omega \setminus \{(\overline{1})\}$ where $\ell(\omega) \coloneqq \min\{n \ge 1 : \omega_n = 0\}$.

The reason for the name "adding machine" is that

$$\sum_{k=1}^{\infty} 2^{k-1} (\tau^n \overline{0})_k = n \quad \forall \ n \ge 1.$$

We'll consider the adding machine with respect to various probabilities on Ω .

¶ For $p \in (0, 1)$, define a probability μ_p on Ω by

$$\mu_p([\epsilon_1,...,\epsilon_n]) = \prod_{k=1}^n p(\epsilon_k)$$

where p(0) = 1 - p and p(1) = p.

1.3 Proposition

 τ is an invertible, nonsingular transformation of $(\Omega, \mathcal{F}, \mu_p)$ with

$$\frac{d\mu_p \circ \tau}{d\,\mu_p} = \left(\frac{1-p}{p}\right)^{\ell-2}$$

Proof

We show that $\mu_p \circ \tau \sim \mu_p$ and calculate $\frac{d\mu_p \circ \tau}{d\mu_p}$. We show that for any set $A \in \mathcal{F}$,

$$\mu_p(\tau A) = \int_A \left(\frac{1-p}{p}\right)^{\ell-2} d\mu_p.$$

Consider first a cylinder set $A \subset [\ell = k]$ $(k \ge 1)$

$$A = [\underbrace{1, \dots, 1}_{k-1 \text{ times}}, 0, a_1, \dots, a_n],$$

then

$$\tau A = \begin{bmatrix} 0, \dots, 0\\ k-1 \text{ times} \end{bmatrix}, 1, a_1, \dots, a_n],$$

and

$$(\mathbf{x}) \qquad \mu_p(\tau A) = \mu_p([\underbrace{0,\ldots,0}_{k-1 \text{ times}},1])\mu_p([a_1,\ldots,a_n])$$
$$= \left(\frac{1-p}{p}\right)^{k-2}\mu_p(A)$$
$$= \int_A \left(\frac{1-p}{p}\right)^{\ell-2} d\mu_p.$$

Let

$$\mathcal{C} \coloneqq \{A \in \mathcal{F} : (\mathbf{X}) \text{ holds} \}.$$

As above, $C \supset \{cylinders\}$.

Since a any finite union of cylinders is also a finite union of disjoint cylinders, $C \subset A$, the algebra of finite unions of cylinders.

By σ -additivity of μ_p , \mathcal{C} is a monotone class, and by the monotone class theorem, $\mathcal{C} \supseteq \sigma(\mathcal{A}) = \mathcal{B}$.

Note that $\mu_{\frac{1}{2}} \circ \tau = \mu_{\frac{1}{2}}$.

Rank one constructions.

This method constructs a $T \in MPT(X, \mathcal{B}, m)$ where $X = (0, S_T)$ is an interval, m is Lebesgue measure and where T is an invertible *piecewise* translation that is there are intervals $\{I_n : n \ge 1\}$ and numbers $a_n \in \mathbb{R}$ $(n \ge 1)$ so that mod m:

$$X = \bigcup_{n=1}^{\infty} I_n = \bigcup_{n=1}^{\infty} (a_n + I_n) \quad \& \quad T(x) = x + a_n \text{ for } x \in I_n.$$

The rank one transformation (X, \mathcal{B}, m, T) is an invertible piecewise translation of an interval $J_T = (0, S_T)$ where $S_T \in (0, \infty]$ which is defined as the "limit of a refining sequence of Rokhlin towers".

• A Rokhlin tower is a finite sequence of disjoint intervals $\tau = (I_1, I_2, \ldots, I_n)$ of equal lengths; considered equipped with the translations $I_j \rightarrow I_{j+1}$ $(1 \leq j \leq n-1)$. It is thus a piecewise translation

$$T_{\tau}: \operatorname{Dom} T_{\tau} = \bigcup_{j=1}^{n-1} I_j \to \bigcup_{j=2}^n I_j$$

being defined everyhere on $\bigcup_{j=1}^{n} I_j$ except the last interval I_n .

• We'll say that the Rokhlin tower $\theta = (J_1, \ldots, J_\ell)$ refines the Rokhlin tower $\tau = (I_1, I_2, \ldots, I_n)$ (written $\theta > \tau$) if

$$\bigcup_{j=1}^{n} I_{j} \subset \bigcup_{k=1}^{\ell} J_{k} \& I_{j} = \bigcup_{1 \le k \le \ell, J_{k} \subset I_{j}} J_{k}.$$

This entails (!) $\bigcup_{j=1}^{n-1} I_j \subset \bigcup_{k=1}^{\ell-1} J_k$, whence $T_{\theta}|_{\bigcup_{j=1}^{n-1} I_j} \equiv T_{\tau}$.

Definition.

Let $c_n \in \mathbb{N}$, $c_n \ge 2$ $(n \ge 1)$ and let $S_{n,k} \ge 0$, $(n \ge 1, 1 \le k \le c_n)$. The rank one transformation with construction data

$$\{(c_n; S_{n,1}, \dots, S_{n,c_n}): n \ge 1\}$$

is an invertible piecewise translation of the interval $J_T = (0, S_T)$ where

$$S_T := 1 + \sum_{n \ge 1} \frac{1}{c_1 \cdots c_n} \sum_{k=1}^{c_n} S_{n,k} \le \infty.$$

To obtain T, we define a refining sequence $(\tau_n)_{n\geq 1}$ of Rokhlin towers where $\tau_1 = [0, 1]$ and τ_{n+1} is constructed from τ_n by

- cutting τ_n into c_n columns of equal width,
- putting $S_{n,k}$ spacer intervals (of the same width) above the k^{th} column $(1 \le k \le c_n)$;
- and stacking.

Evidently $\tau_{n+1} > \tau_n$. Let X be the increasing union of the intervals in the towers τ_n .

The sum of the lengths of the last intervals of the towers is $\sum_{n=1}^{\infty} \frac{1}{c_1...c_n} < \infty$ and so for a.e. $x \in X$, $\exists n \leq 1$ so that $x \in \text{Dom } T_{\tau_k} \forall k \geq n$ and $T(x) \coloneqq T_{\tau_k}(x) \forall k \geq n$.

The length of X is 1 plus the total length of all the spacer intervals added in the construction i.e. S_T .

Exercise 3. Show that the adding machine $(\Omega, \mathcal{F}, \mu, \tau)$ where $\mu = \mu_{\frac{1}{2}} \coloneqq \prod(\frac{1}{2}, \frac{1}{2})$ is isomorphic to (X, \mathcal{B}, m, T) , the rank one transformation with construction data $\{(c_n; S_{n,1}, \ldots, S_{n,c_n}) : n \ge 1\}$ with

 $c_n = 2 \& s_{n,1} = s_{n,2} = 0 \forall n \ge 1$; i.e. show that there are measurable sets $X_0 \in \mathcal{B}$, $\Omega_0 \in \mathcal{F}$ of full measure so that $TX_0 = X_0 \& \tau \Omega_0 = \Omega_0$ and $\pi : X_0 \to \Omega_0$ invertible, measure preserving so that $\pi \circ T = \tau \circ \pi$.

Kakutani skyscrapers.

Suppose that $(\Omega, \mathcal{F}, \mu, S)$ is a NST of the σ -finite measure space $((\Omega, \mathcal{F}, \mu)$ and that $\varphi : \Omega \to \mathbb{N}$ is measurable. The *Kakutani skyscraper* over S with *height function* φ is the transformation T of the σ -finite measure space (X, \mathcal{B}, m) defined as follows.

$$X = \{(x, n): x \in \Omega, 1 \le n \le \varphi(x)\},$$
$$\mathcal{B} = \sigma\{A \times \{n\}: n \in \mathbb{N}, A \in \mathcal{F} \cap [\varphi \ge n]\}, m(A \times \{n\}) = \mu(A),$$

and

$$T(x,n) = \begin{cases} (Sx,\varphi(x)) \text{ if } n = \varphi(x), \\ (x,n+1) \text{ if } 1 \le n \le \varphi(x) - 1. \end{cases}$$

Evidently T is a NST with

$$m(X) = \int_{\Omega} \varphi d\mu.$$

Moreover, if S is a MPT, then so is T.

- $\bigcup_{n\geq 1} T^{-n}(\Omega \times \{1\}) = X;$
- For $x \in \Omega$, let $\varphi_N(x) \coloneqq \sum_{k=0}^{N-1} \varphi(S^k x)$, then $T^{\varphi_N(x)}(x, 1) = (S^N x, 1)$ and

$$\{n \ge 1: T^n(x,1) \in \Omega \times \{1\}\} = \{\varphi_N(x): N \ge 1\}.$$

Bernoulli shift.

The (two sided) *Bernoulli shift* is defined by $X = \mathbb{R}^{\mathbb{Z}}, \mathcal{B}(X)$ the σ -algebra generated by *cylinder sets* of form

$$[A_1,\ldots,A_n]_k \coloneqq \{\underline{x} \in X : x_{j+k} \in A_j, \ 1 \le j \le n\}$$

where $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$. The shift $S : X \to X$ is defined by $(Sx)_n = x_{n+1}$.

Let $p: \mathcal{B}(\mathbb{R}) \to [0,1]$ be a probability, and define $\widehat{\mu}_p: \{\texttt{cylinders}\} \to [0,1]$ by

$$\widehat{\mu}_p([A_1,\ldots,A_n]_k) = \prod_{k=1}^n p(A_k) \quad (A_1,\ldots,A_n \in \mathcal{B}(\mathbb{R})).$$

By Kolmogorov's existence theorem (see below) \exists a probability measure $\mu_p : \mathcal{B}(X) \to [0,1]$ so that $\mu_p|_{\{\text{cylinders}\}} \equiv \widehat{\mu}_p$.

Evidently (!), the two sided Bernoulli shift is measure preserving.

```
Ergodic theory
```

2.1 Kolmogorov's existence theorem

Let Y be a Polish space, and suppose that for $k, \ell \in \mathbb{Z}, k \leq \ell P_{k,\ell} \in \mathcal{P}(Y^{\ell-k+1})$ are such that

$$P_{k,\ell+1}(A_k \times \cdots \times A_\ell \times Y) = P_{k-1,\ell}(Y \times A_k \times \cdots \times A_\ell) = P_n(A_k \times \cdots \times A_\ell)$$

then there is a probability measure $P \in \mathcal{P}(Y^{\mathbb{Z}})$ satisfying

 $P([A_1, \cdots, A_n]_k) = P_{k+1,n}(A_1 \times \cdots \times A_n).$

Vague sketch of proof

• WLOG Y is uncountable (:: any countable Polish space is measurably embeddable in an uncountable Polish space);

- WLOG $Y = \Omega := \{0, 1\}^{\mathbb{N}}$ (by Kuratowski's isomorphism theorem).
- Now let \mathcal{A} be the collection of cylinder subsets of Ω and set

 $\mathfrak{A} \coloneqq \{ [A_1, \dots, A_n]_k \colon A_1, \dots, A_n \in \mathcal{A} \}.$

All sets in \mathfrak{A} are both open and compact wrt the compact product topology on $\Omega^{\mathbb{Z}}$.

• Define $\mu : \mathfrak{A} \to [0, 1]$ by

$$\mu([A_1,\ldots,A_n]_k) \coloneqq P_{k+1,k+n}(A_1 \times \ldots \times A_n),$$

then $\mu: \mathfrak{A} \to [0,1]$ is additive and hence (!) countably subadditive.

• The reqired probability exists by Caratheodory's theorem. \blacksquare

Lecture $\# 2 \ 9/10/2014$.

Interval maps.

Let $I \subseteq \mathbb{R}$ be an interval, let *m* be Lebesgue measure on *I*, and α be a collection of disjoint open subintervals of *I* such that

$$m(I \setminus U_{\alpha}) = 0$$
 where $U_{\alpha} = \bigcup_{a \in \alpha} a$.

For $r \ge 1$, a C^r interval map with basic partition α is a map $T: I \to I$ such that

for each $a \in \alpha$, $T|_a$ extends to a C^r diffeomorphism $T: \overline{a} \to T(\overline{a})$.

The C^r interval map is called *piecewise onto* if $T(a) = I \forall a \in \alpha$.

Transfer operator of an interval map.

Let $T: I \to I$ be a C^r interval map with basic partition α . For $a \in \alpha$, let $v_a: I \to a$ be the inverse of $T: a \to I$ (a C^r diffeomorphism). It follows from an integration variable-change argument that with respect to m:

$$\widehat{T}f = \sum_{a \in \alpha} \mathbf{1}_{T(a)} v'_a f \circ v_{\underline{a}}$$

Note that here $v'_a \coloneqq \frac{dm \circ v_a}{dm} = \left|\frac{dv_a}{dx}\right|$.

Exercise 4.

(i) Show that for a C^1 interval map (I, T, α) :

$$\widehat{T}f(x) = \sum_{y \in I, \ Ty=x} \frac{f(y)}{|T'(y)|}$$

(ii) Show that if (I, T, α) is a piecewise onto, piecewise linear interval map (i.e. $T: a \to Ta$ is linear $\forall a \in \alpha$) with $\#\alpha \ge 2$, then $m \circ T^{-1} = m$ and that

$$m(\bigcap_{k=0}^{N} T^{-k} a_{k}) = \prod_{k=0}^{N} m(a_{k}) \quad \forall N \ge 1, \ a_{0}, a_{1}, \dots, a_{N} \in \alpha.$$

Boole transformations & inner functions.

A Boole transformation is a map $T : \mathbb{R} \to \mathbb{R}$ of form

$$T(x) = \alpha x + \beta + \sum_{k=1}^{N} \frac{p_k}{t_k - x}$$

where $\alpha \ge 0, \ p_1, \dots, p_N > 0 \& \beta, \ t_1, \dots, t_N \in \mathbb{R}.$

A Boole transformation T is an *inner function* of the upper half plane $\mathbb{R}^{2+} := \{\omega \in \mathbb{C} : \operatorname{Im} \omega > 0\}$ i.e. an analytic endomorphism of \mathbb{R}^{2+} which preserves \mathbb{R} .

The general form of an inner function T of \mathbb{R}^{2+} is given by:

(
$$\clubsuit$$
) $T(\omega) = \alpha \omega + \beta + \int_{\mathbb{R}} \frac{1+t\omega}{t-\omega} d\mu(t)$

where $\alpha \ge 0$, $\beta \in \mathbb{R}$ and μ is a finite, Lebesgue-singular, measure on \mathbb{R} . If $\omega \in \mathbb{R}^{2+}$ the upper half plane, and $\omega = a + ib$, $a, b \in \mathbb{R}$, b > 0 then

$$\operatorname{Im} \frac{1}{x-\omega} = \frac{b}{(x-a)^2 + b^2} = \pi \varphi_{\omega}(x)$$

where φ_{ω} is the well known *Cauchy density*.

These are the densities of the Poisson or harmonic measures on \mathbb{R}^{2+} :

If $\phi : \mathbb{R}^{2+} \to \mathbb{C}$ is bounded, analytic on \mathbb{R}^{2+} and then for a.e. $t \in \mathbb{R}, \exists \lim_{y\to 0^+} \phi(t+iy) =: \phi^*(t)$ and

$$(\mathbf{s}^{\mathsf{t}}\mathbf{s}) \qquad \qquad \phi(\omega) = \int_{\mathbb{R}} \phi^*(t) dP_{\omega}(t) \quad (\omega \in \mathbb{R}^{2+})$$

where $dP_{\omega}(t) = \varphi_{\omega}(t)dt$.

2.2 Boole's Formula Let T be an inner function, then $(\mathbb{R}, \mathcal{B}, m, T)$ is non-singular and

$$(\mathbf{Q}) \qquad \qquad \widehat{T}\varphi_{\omega} = \varphi_{T(\omega)} \ \forall \ \omega \in \mathbb{R}^{2+}.$$

Proof (G.Letac) It suffices to show that $P_{\omega} \circ T^{-1} = P_{T(\omega)}$. The Fourier transform of P_{ω} is given by

$$\widehat{P_{\omega}}(t) \coloneqq \int_{\mathbb{R}} e^{itx} dP_{\omega}(x) = e^{it\omega} \quad (t \ge 0).$$

For t > 0, $\phi_t(\omega) = e^{it\omega}$ is a bounded analytic functions on \mathbb{R}^{2+} with $\phi_t^*(x) = e^{itx}$ on \mathbb{R} . By (**sta**),

$$\widehat{P_{\omega} \circ T^{-1}}(t) = \int_{\mathbb{R}} e^{itT(x)} dP_{\omega}(x) = e^{itT(\omega)} = \widehat{P_{T(\omega)}}(t),$$

whence (\mathbf{Q}) .

Remark.

As a consequence of (\mathbf{Q}) , we see that the inner function T has an absolutely continuous invariant probability (acip) if $\exists \ \omega \in \mathbb{R}^{2+}$ with $T(\omega) = \omega$ (in which case P_{ω} is T-invariant). We'll see later that this is the only way T can have an acip.

2.3 Corollary If T is an inner function with $\alpha > 0$ in (\clubsuit) , then $m \circ T^{-1} = \frac{1}{\alpha} \cdot m$.

Vague sketch of proof that $\widehat{T}\mathbb{1} = \frac{1}{\alpha}\mathbb{1}$

• $\pi b \varphi_{ib} \longrightarrow 1$ unifomly on bounded subsets of \mathbb{R} ;

• if
$$T(ib) = u(b) + iv(b)$$
, then $\frac{v(b)}{b} \xrightarrow[b \to \infty]{} \alpha \& \frac{u(b)}{b} \xrightarrow[b \to \infty]{} 0$

•
$$\widehat{T}\mathbb{1} \underset{b \to \infty}{\longleftarrow} \pi b \widehat{T} \varphi_{ib} = \pi b \varphi_{T(ib)} \underset{b \to \infty}{\longrightarrow} \frac{1}{\alpha} \mathbb{1}. \quad \boxtimes$$

Exercise 5: Boole & Glaisher transformations.

For α , $\beta > 0$ define $T = T_{\alpha,\beta} : \mathbb{R} \to \mathbb{R}$ by $T(x) := \alpha x - \frac{\beta}{x}$.

(a) Show that if $\alpha + \beta = 1$, then $\widehat{T}\varphi_i = \varphi_i$ and T has an absolutely continuous, invariant probability (a.c.i.p.).

Consider the Glaisher transformations $T : \mathbb{R} \to \mathbb{R}$ of form

 $T_{a,b}x \coloneqq ax + b\tan x \quad (a,b \ge 0, \ a+b > 0).$

(b) Give conditions on a, b so that $T_{a,b}$ has an absolutely continuous invariant probability.

(c) Show that $T_{1,b}$ preserves Lebesgue measure.

(d) Show that $T_{0,1}x = \tan x$ preserves the measure $d\mu_0(x) \coloneqq \frac{dx}{x^2}$. Hint: $S \coloneqq \pi \circ T_{0,1} \circ \pi^{-1}$ preserves Lebesgue measure where $\pi(x) \coloneqq \frac{-1}{x}$.

RECURRENCE AND CONSERVATIVITY

A set $W \in \mathcal{B}$, m(W) > 0 is called *wandering* (for the NPT (X, \mathcal{B}, m, T)) if the sets $\{T^{-n}W\}_{n=0}^{\infty}$ are disjoint. and the NPT T is called *conservative* if $\mathcal{W}(T) = \emptyset$ (i.e. there are no wandering sets).

Remarks.

¶1 A conservative NPT (X, \mathcal{B}, m, T) is non-singular. Else $\exists A \in \mathcal{B}, m(A) > 0$ with $m(T^{-1}A) = 0$, whence $m(T^{-n}A) = 0 \forall n \ge 1$. It follows that $W \coloneqq A \setminus \bigcup_{n=1}^{\infty} T^{-n}A$ is a wandering set satisfying m(W) = m(A).

¶2 Similarly, a NPT (X, \mathcal{B}, m, T) is conservative iff (!) it is *incompress-ible* in the sense that $A \in \mathcal{B}$ and $T^{-1}A \subset A$ imply $A = T^{-1}A \mod m$.

¶3 If (X, \mathcal{B}, m, T) is a Kakutani skyscraper over the NST $(\Omega, \mathcal{F}, \mu, S)$, then T is conservative iff S is conservative.

Proof of \leftarrow If T is not conservative, then $\exists A \in \mathcal{F}_+, A \times \{1\} \in \mathcal{W}(T)$ whence $A \in \mathcal{W}(S)$.

Proof of \Rightarrow Let $W \in \mathcal{W}(S)$, then (!) $W \times \{1\} \in \mathcal{W}(T)$.

Halmos recurrence theroem

Let (X, \mathcal{B}, m, T) be a NPT. TFAE:

(i) T is conservative;

(ii) $A \stackrel{m}{\subset} \bigcup_{n=1}^{\infty} T^{-n}A \quad \forall A \in \mathcal{B}_+;$ (iii) $\sum_{n=1}^{\infty} 1_A \circ T^n = \infty \ a.e. \ on A \quad \forall A \in \mathcal{B}_+.$

Proof of (i) \Rightarrow (iii)

Suppose that $A \in \mathcal{B}$, m(A) > 0. The set $W \coloneqq A \setminus \bigcup_{n=1}^{\infty} T^{-n}A$ is wandering if of positive measure, whence $m(W) \equiv 0$ and $A \subseteq \bigcup_{n=1}^{\infty} T^{-n}A \mod m$. By null preservation, $T^{-N}A \subseteq \bigcup_{n=N+1}^{\infty} T^{-n}A \mod m \forall N \ge 1$, whence, mod m:

$$A \subseteq \bigcup_{n=1}^{\infty} T^{-n} A \subseteq \dots \subseteq \bigcup_{n=N+1}^{\infty} T^{-n} A \subseteq \dots \subseteq \bigcap_{j=1}^{\infty} \bigcup_{n=j}^{\infty} T^{-n} A = \left[\sum_{n=1}^{\infty} 1_A \circ T^n = \infty\right].$$

CONDITIONS FOR CONSERVATIVITY.

2.4 Maharam Recurrence theorem

Let (X, \mathcal{B}, m, T) be MPT.

If $\exists A \in \mathcal{B}$, $m(A) < \infty$ such that $X = \bigcup_{n=1}^{\infty} T^{-n}A \mod m$, then T is conservative.

Proof We have that $\sum_{n=1}^{\infty} 1_A \circ T^n = \infty$ a.e. If $W \in \mathcal{W}$, m(W) > 0, then $\forall n \ge 1$,

$$m(A) \ge \int_{T^{-n}A} \left(\sum_{k=1}^{n} 1_{W} \circ T^{k} \right) dm = \sum_{k=1}^{n} m(T^{-k}W \cap T^{-n}A)$$
$$= \sum_{j=0}^{n-1} m(W \cap T^{-j}A) = \int_{W} \left(\sum_{j=0}^{n-1} 1_{A} \circ T^{j} \right) dm \to \infty.$$

Contradiction. \square

For example, any PPT is conservative. This statement is known as Poincaré's recurrence theorem.

A MPT of a σ -finite, infinite measure space need not be conservative. For example $x \mapsto x + 1$ is a measure preserving transformation of \mathbb{R} equipped with Borel sets, and Lebesgue measure, which is totally dissipative.

Example.

The original Boole transformation $T : \mathbb{R} \to \mathbb{R}$ given by

$$T(x) = x - \frac{1}{x}$$

is conservative.

Proof By corollary 2.3, $m \circ T^{-1} = m$. By inspection, $\bigcup_{n=0}^{\infty} T^{-n}[-1, 1] = \mathbb{R}$.

Exercise 6. Let

$$T(x) = x + \sum_{k=1}^{N} \frac{p_k}{t_k - x}$$
 where $p_1, \dots, p_N > 0 \& t_1, \dots, t_N \in \mathbb{R}$.

Show that $\bigcup_{n=1}^{\infty} T^{-n}(u, v) = \mathbb{R} \mod m$ where $u := \min T^{-1}\{0\}$ & $v := \max T^{-1}\{0\}$; and hence that T is conservative. Hint WLOG, $N \ge 2$, u < 0 < v & T(0) = 0.

Exercise 7: Skyscaper conservativity.

Let (X, \mathcal{B}, m, T) be a Kakutani skyscaper over the NST $\Omega, \mathcal{F}, \mu, S$). Show that T is conservative iff S is conservative.

Exercise 8: Stronger recurrence properties.

Let (X, \mathcal{B}, m, T) be a conservative NST.

(i) Show that if (Y, d) is a separable, metric space and $h: X \to Y$ is measurable, then

$$\lim_{n \to \infty} d(h, h \circ T^n) = 0 \quad \text{a.e.}.$$

(ii) What about when (Y, d) is an arbitrary metric space (not necessarily separable) and $h: X \to Y$ is measurable?

Induced transformation.

This is the "reverse" of the skyscraper construction.

Suppose (X, \mathcal{B}, m, T) is a NST and let $A \in \mathcal{B}_+$ be such that m-a.e. point of A returns to A under iterations of T (e.g. if (X, \mathcal{B}, m, T) is conservative). The *return time* function to A, defined for $x \in A$ by $\varphi_A(x) \coloneqq \min\{n \ge 1 : T^n x \in A\}$ is finite m-a.e. on A.

The *induced transformation* on A is defined by $T_A x = T^{\varphi_A(x)} x$.

The first key observation is that $(A, \mathcal{B} \cap A, T_A, m_A)$ is a NST and, if T is a MPT, then so is T_A . These follows from

$$T_A^{-1}B = \bigcup_{n=1}^{\infty} [\varphi = n] \cap T^{-n}B$$

It follows that $\varphi_A \circ T_A$ is defined a.e. on A and an induction now shows that all powers $\{T_A^k\}_{k \in \mathbb{N}}$ are defined a.e. on A, and satisfy

$$T_A^k x = T^{(\varphi_A)_k(x)} x$$
 where $(\varphi_A)_1 = \varphi_A$, $(\varphi_A)_k = \sum_{j=0}^{k-1} \varphi_A \circ T_A^j$.

Exercise 9: Inducing inverse to skyscraping.

Let (X, \mathcal{B}, m, T) be an invertible, conservative NST and suppose that $A \in \mathcal{B}, m(A) > 0$ satisfies $\bigcup_{n=1}^{\infty} T^{-n}A = X \mod m$. Show that

(i) (X, \mathcal{B}, m, T) is isomorphic to the Kakutani skyscraper over

 $(A, \mathcal{B} \cap A, m_A, T_A)$ with height function φ_A .

(ii) T is conservative $\implies T_A$ is conservative.

Both constructions can be generalized to the nonsingular case.

HOPF DECOMPOSITION

Let (X, \mathcal{B}, m, T) be a NPT. The collection $\mathcal{W}(T)$ of wandering sets is a hereditary collection (any measurable subset of a member is also a member), and *T*-sub-invariant (*W* wandering or null $\implies T^{-1}W$ wandering or null).

By exhaustion, \exists a countable union of wandering sets $\mathfrak{D}(T) \in \mathcal{B}$ with the property that any wandering set $W \in \mathcal{B}$ is contained in $\mathfrak{D}(T) \mod m$ (i.e. $m(W \setminus \mathfrak{D}(T)) = 0$). This measurable union $\mathfrak{D}(T)$ of $\mathcal{W}(T)$ is unique mod m and $T^{-1}\mathfrak{D} \subseteq \mathfrak{D} \mod m$. It is called the *dissipative part* of the nonsingular transformation T.

Evidently T is conservative on $\mathfrak{C}(T) \coloneqq X \times \mathfrak{D}(T)$, the conservative part of T.

The partition $\{\mathfrak{C}(T), \mathfrak{D}(T)\}$ is called the *Hopf decomposition* of T.

The nonsingular transformation T is called (totally) *dissipative* if $\mathfrak{D}(T) = X \mod m$.

2.7 Proposition. Any inner function T with $\alpha > 1$ in (\clubsuit) is dissipative.

Proof By corollary 2.3,

$$\sum_{n=1}^{\infty} m(T^{-n}A) < \infty \quad \forall \ A \in \mathcal{B}, \ 0 < m(A) < \infty$$

and is dissipative. \square

Exercise 10:

In this exercise, you show that if (X, \mathcal{B}, m, T) is an invertible NST, then \exists a wandering set $W \in \mathcal{B}$ such that

$$\mathfrak{D} = \bigcup_{n \in \mathbb{Z}} T^n W.$$

©Jon Aaronson 2003-2014

For $A \in \mathcal{B}$ set $A^T := \bigcup_{n \in \mathbb{Z}} T^n A$. Hints WLOG, m(X) = 1.

- Define $\epsilon_1 \coloneqq \sup \{m(W) \colon W \in \mathcal{W}\};$

- choose W ∈ W with m(W₁) ≥ ^{ε₁}/₂;
 define ε₂ := sup {m(W) : W ∈ W, W ∩ W₁^T = Ø};
 choose W₂ ∈ W, W ∩ W₁^T = Ø with m(W₂) ≥ ^{ε₂}/₂. Continue this process to obtain {W_n : n ∈ ℕ} ⊂ W & {ε_n : n ∈ ℕ} ⊂

 \mathbb{R}_+ so that

- $W_k \cap W_\ell^T = \emptyset \ \forall \ k > \ell;$
- $2m(W_n) \ge \epsilon_n := \sup \{m(W) : W \in \mathcal{W}, W \cap W_k^T = \emptyset \ \forall \ 1 \le k \le n-1 \}.$

Show that $W := \bigcup_{n \ge 1} W_n$ is as required.

Exercise 11: Hopf decomposition not T-invariant.

Let $(X, \mathcal{B}, m, T) = ([0, 2], \mathcal{B}([0, 2]), \text{Leb})$ where $T : [0, 2) \to [0, 2)$ is defined by

$$T(x) \coloneqq \begin{cases} 2x & x \in [0,1), \\ 1 + (2(x-1) \mod 1) & x \in [1,2). \end{cases}$$

Show that T is non-singular, $\mathfrak{D}(T) = [0,1), \mathfrak{C}(T) = [1,2)$ and that

 $T^{-1}\mathfrak{D}(T) = [0, \frac{1}{2}) \& m(T^{-1}\mathfrak{D}(T)\Delta\mathfrak{D}(T)) = \frac{1}{2}.$

CONSERVATIVITY AND TRANSFER OPERATORS

2.10 Hopf's recurrence theorem

If $T: X \to X$ is nonsingular then

 $\mathfrak{C}(T) \supset \left[\sum_{m=1}^{\infty} \widehat{T}^k f = \infty\right] \mod m \ \forall \ f \in L^1(m)_+; \quad \&$ (i)

(ii)
$$\mathfrak{C}(T) = \left[\sum_{n=1}^{\infty} \widehat{T}^k f = \infty\right] \mod m \ \forall \ f \in L^1(m), f > 0.$$

Proof (i) Fix $f \in L^1(m)_+$ and $W \in \mathcal{W}_T$, then

$$\infty > \int_X f dm \ge \int_X f\left(\sum_{n\ge 0} 1_W \circ T^n\right) dm = \int_W \left(\sum_{n\ge 0} \widehat{T}^n f\right) dm.$$

This shows that $\mathfrak{D}(T) \subset \left[\sum_{n=1}^{\infty} \widehat{T}^k f < \infty\right]$.

(ii) Assume otherwise and fix $f \in L^1(m), f > 0, A \in \mathcal{B}_+, A \subset \mathfrak{C}(T)$ s.t. $\sum_{n=1}^{\infty} \widehat{T}^k f < \infty$ on A.

WLOG $f(x) \ge c > 0 \quad \forall x \in A$, and the series converges uniformly on A whence $\int_A (\sum_{n=1}^{\infty} \widehat{T}^k f) dm < \infty$.

On the other hand, by Halmos' recurrence theorem $\sum_{n\geq 0} 1_A \circ T^n = \infty$ a.e. on A.

Thus

$$\infty > \int_{A} \left(\sum_{n=0}^{\infty} \widehat{T}^{k} f \right) dm = \int_{X} f \left(\sum_{n \ge 0} 1_{A} \circ T^{n} \right) dm$$
$$\geq \int_{A} f \left(\sum_{n \ge 0} 1_{A} \circ T^{n} \right) dm \ge c \int_{A} \left(\sum_{n \ge 0} 1_{A} \circ T^{n} \right) dm = \infty \quad \boxtimes \quad \swarrow$$

2.11 Corollary.

If $Tx = x + \beta + \int_{\mathbb{R}} \frac{d\nu(t)}{t-x}$ where ν is a finite, Lebesgue-singular, measure on \mathbb{R} with compact support, then T is conservative if $\beta = 0$ and dissipative if $\beta \neq 0$.

Proof By Hopf's recurrence theorem, it suffices to show that $\sum_{n\geq 0}^{\infty} \widehat{T}^n \varphi_{\omega}$ diverges a.e. for some $\omega \in \mathbb{R}^{2+}$ when $\beta = 0$; and converges a.e. for some $\omega \in \mathbb{R}^{2+}$ when $\beta \neq 0$.

By Boole's formula

$$\widehat{T}^n \varphi_{\omega}(x) = \varphi_{T^n \omega}(x) = \frac{1}{\pi} \cdot \frac{v_n}{(x - u_n)^2 + v_n^2} \quad \text{where } T^n \omega = u_n + i v_n.$$

Elementary estimations show that

• when $\beta \neq 0$. $\exists B = B(\omega) \in \mathbb{R}_+ \& C = C(\omega) \in \mathbb{R}$ so that

(I)
$$v_n \uparrow B \& u_n = \beta n - \frac{\nu}{\beta} \log n + C + O(\frac{\log n}{n}) \text{ as } n \to \infty;$$

and

• when
$$\beta = 0$$
,

(II)
$$\sup_{n \ge 1} |u_n| < \infty$$
 & $v_n \sim \sqrt{2\nu n}$ as $n \to \infty$ where $\nu \coloneqq \sum_{k=1}^n p_k$

It follows that T is

• conservative when $\beta = 0$ (:: $\widehat{T}^n \varphi_\omega \propto \frac{1}{\sqrt{n}}$ uniformly on bounded subsets of \mathbb{R});

• and totally dissipative when $\beta \neq 0$ (:: $\widehat{T}^n \varphi_\omega \ll \frac{1}{n^{\frac{3}{2}}}$ on \mathbb{R}).

Exercise 11: Hopf recurrence theorem for MPTs.

Suppose that T is a MPT of the σ -finite measure space (X, \mathcal{B}, m) . Show that

$$\left[\sum_{n=1}^{\infty} f \circ T^n = \infty\right] = \mathfrak{C}(T) \mod m \quad \forall \ f \in L^1(m), f > 0.$$

Lecture # 3 15/10/2014 10-12.

Ergodicity

A transformation T of the measure space (X, \mathcal{B}, m) is called *ergodic* if

 $A \in \mathcal{B}, T^{-1}A = A \mod m \Rightarrow m(A) = 0, \text{ or } m(A^c) = 0.$

In general, let

$$\mathfrak{I}(T) \coloneqq \{A \in \mathcal{B}, \ T^{-1}A = A\}.$$

Remarks.

It is not hard to see that:

• $\mathfrak{I}(T)$ is a σ -algebra (and that T is ergodic iff $\mathfrak{I} \stackrel{m}{=} \{ \emptyset, X \}$);

• an invertible ergodic nonsingular transformation of a non-atomic measure space is necessarily conservative;

• a nonsingular transformation (X, \mathcal{B}, m, T) is conservative and ergodic iff

$$\sum_{n=1}^{\infty} 1_A \circ T^n = \infty \text{ a.e. } \forall A \in \mathcal{B}_+.$$

Exercise 13.

(i) Suppose that (X, \mathcal{B}, m, T) is a Kakutani skyscraper over the ergodic NST $(\Omega, \mathcal{F}, \mu, S)$, then T is ergodic.

(ii) Suppose that (X, \mathcal{B}, m, T) is a conservative, NST and that $A \in \mathcal{B}, \bigcup_{n=1}^{\infty} T^{-n} A \stackrel{m}{=} X$, then T is ergodic $\iff T_A$ is ergodic.

Exercise 14.

Let (X, \mathcal{B}, m, T) be a conservative, ergodic nonsingular transformation and let (Z, d), a separable metric space. Show that if $f: X \to Z$ is a measurable map, then for a.e. $x \in X$,

$$\overline{\{f(T^nx):n\in\mathbb{N}\}} = \operatorname{spt} m \circ f^{-1}.$$

SOME ERGODIC TRANSFORMATIONS

Rotations of the circle. Let X be the circle $\mathbb{T} = \mathbb{R}/\mathbb{Z} = [0,1)$, \mathcal{B} be its Borel sets, and m be Lebesgue measure. The *rotation* (or translation) of the circle by $x \in X$ is the transformation $r_x : X \to X$ defined by $r_x(y) = x + y \mod 1$.

Evidently $m \circ r_x = m$ for every $x \in X$ and each r_x is an invertible measure preserving transformation of (X, \mathcal{B}, m) .

3.2 Proposition

If α is irrational, then r_{α} is ergodic.

Proof

We use harmonic analysis. Suppose that $f: X \to \mathbb{R}$ is bounded and measurable, and that $f \circ r_{\alpha} = f$, then

$$\begin{split} \widehat{f}(n) &= \int_{[0,1)} f(y) e^{-2\pi i n y} dy \\ &= \int_{[0,1)} f(\alpha + y) e^{-2\pi i n y} dy = \lambda^n \widehat{f}(n) \text{ where } \lambda \coloneqq e^{2\pi i \alpha} \end{split}$$

It follows that

$$\lambda^n = 1$$
 whenever $\widehat{f}(n) \neq 0$,

whence, since $\lambda^n \neq 1 \forall n \neq 0$, $\widehat{f}(n) = 0$ whenever $n \neq 0$ and f is constant.

Ergodicity of rank one constructions.

3.3 Proposition

Let (X, \mathcal{B}, m, T) be a rank one MPT as above, then T is ergodic.

Proof Let

$$R_n = \bigcup_{I \in \mathfrak{r}_n} I \uparrow X$$

be the refining sequence of Rokhlin towers defining T; where each

$$\mathbf{r}_n = \{T^j I_n : 0 \le j \le k_n - 1\}$$

is a partition of R_n into intervals with equal lengths $m(I_n) \xrightarrow[n \to \infty]{} 0$.

We claim first that it suffices to show that

For $\epsilon > 0 \& A \in \mathcal{B}_+, \exists N = N_{\epsilon,A}$ so that

ш

Proof of sufficiency of 🛎

Suppose that $A \in \mathcal{B}_+$, TA = A. We'll show assuming \clubsuit that $\forall N \ge 1$ large enough,

 $\forall n > N \exists I \in \mathfrak{r}_n \text{ s.t. } m(A|I) > 1 - \epsilon.$

$$m(A \cap R_N) > (1 - \epsilon)m(R_N) \quad \forall \quad \epsilon > 0$$

whence $A \supset R_N \uparrow X \mod m$.

To see this, choose (by \clubsuit) $n \ge N \& J \in \mathfrak{r}_n$ satisfying $m(A|J) > 1 - \epsilon$. Then for each $K = T^{i_K}J \in \mathfrak{r}_n$, we have using *T*-invariance of m & A:

$$m(A|K) = \frac{m(A \cap T^{i_K}J)}{m(T^{i_K}J)} = m(A|J) > 1 - \epsilon$$

whence

$$m(A \cap R_N) = \sum_{K \in \mathfrak{r}_n, K \subset R_N} m(A|K)m(K) > (1 - \epsilon)m(R_N). \quad \boxtimes$$

Proof of 🛎

Suppose that $A \in \mathcal{B}_+$ and fix $N \ge 1$ so that $B := A \cap R_N \in \mathcal{B}_+$. For $n \ge N$, let

$$\mathfrak{s}_n \coloneqq \{I \in \mathfrak{r}_n : I \subset R_N\}.$$

Fix $0 < \epsilon < 1$ and for $n \ge N$ let

$$\mathcal{Z}_n \coloneqq \{I \in \mathfrak{s}_n \colon m(B|I) > 1 - \epsilon\} \& \mathcal{Y}_n \coloneqq \mathfrak{s}_n \setminus \mathcal{Z}_n.$$

We show that $\forall n \text{ large enough}, \mathcal{Z}_n \neq \emptyset$.

Since $\sigma(\bigcup_{n\geq N}\mathfrak{s}_n) = \mathcal{B}(R_N)$, $\exists n \geq N \& C_n$, a union of sets in \mathfrak{s}_n so that $m(B\Delta C_n) < \frac{\epsilon^2 m(B)}{9}$. It follows that

$$m(C_n) - \frac{\epsilon^2 m(B)}{9} < m(B \cap C_n)$$

$$= \sum_{I \in \mathfrak{S}_n, \ I \subset C_n} m(B|I)m(I)$$

$$= \sum_{I \in \mathcal{Z}_n, \ I \subset C_n} m(B|I)m(I) + \sum_{I \in \mathcal{Y}_n, \ I \subset C_n} m(B|I)m(I)$$

$$\leq \sum_{I \in \mathcal{Z}_n, \ I \subset C_n} m(I) + (1 - \epsilon) \sum_{I \in \mathcal{Y}_n, \ I \subset C_n} m(I)$$

$$= m(\bigcup \mathcal{Z}_n) + (1 - \epsilon)m(C_n)$$

whence

$$m(\bigcup \mathcal{Z}_n) \ge m(C_n) - \frac{\epsilon^2 m(B)}{9} - (1 - \epsilon)m(C_n)$$
$$= \epsilon m(C_n) - \frac{\epsilon^2 m(B)}{9}$$
$$> \epsilon m(B) - \frac{\epsilon^3 m(B)}{9} - \frac{\epsilon^2 m(B)}{9}$$
$$> \frac{7\epsilon m(B)}{9} > 0. \quad \boxtimes$$

ERGODICITY VIA STRONGER PROPERTIES

Sometimes it's easier to prove more than ergodicity.

One-sided Bernoulli shifts.

Let $X = \mathbb{R}^{\mathbb{N}}$ and let $\mathcal{B}(X)$ be the σ -algebra generated by *cylinder* sets of form $[A_1, \ldots, A_n] := \{ \underline{x} \in X : x_j \in A_j, 1 \le j \le n \}$, where $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$ (the Borel subsets of \mathbb{R}), and let the *shift* $S : X \to X$ be defined by

$$(Sx)_n = x_{n+1}$$

For $p: \mathcal{B}(\mathbb{R}) \to [0,1]$ a probability, let $\mu_p: \mathcal{B}(X) \to [0,1]$ be the probability² satisfying

$$\mu_p([A_1,...,A_n]) = \prod_{k=1}^n p(A_k) \ (A_1,...,A_n \in \mathcal{B}(\mathbb{R})).$$

Evidently $S^{-1}[A_1, ..., A_n] = [\mathbb{R}, A_1, ..., A_n]$ whence $\mu_p \circ S^{-1} = \mu_p$.

The one-sided Bernoulli shift with marginal distribution p is the probability preserving transformation S of (X, \mathcal{B}, μ_p) .

Tail, exactness. Let T be a nonsingular transformation of (X, \mathcal{B}, m) . The *tail* σ -algebra of T is

$$\mathfrak{T}(T) \coloneqq \bigcap_{n=1}^{\infty} T^{-n} \mathcal{B}.$$

The transformation T is called *exact* if $\mathfrak{T}(T) = \{\emptyset, X\} \mod m$.

Evidently $\mathfrak{I}(T) \subset \mathfrak{T}(T) \mod m$ and so exact transformations are ergodic.

3.4 Kolmogorov's zero-one law

Any one-sided Bernoulli shift is exact.

Proof

Suppose that $B \in \mathcal{B}$ is a finite union of cylinders. If the length of the longest cylinder in the union is n, then

$$\mu_p(B \cap S^{-n}C) = \mu_p(B)\mu_p(C) \quad \forall \ C \in \mathcal{B}.$$

Now suppose $A \in \mathfrak{T}$. Since, for each $n \in \mathbb{N}$,

$$A = S^{-n}A_n$$
 where $A_n \in \mathcal{B}, \ \mu_p(A_n) = \mu_p(A),$

we have that

$$\mu_p(B \cap A) = \mu_p(B)\mu_p(A)$$

for $B \in \mathcal{B}$ a finite union of cylinders, and hence (by approximation) $\forall B \in \mathcal{B}$. This implies that

$$0 = \mu_p(A \cap A^c) = \mu_p(A)(1 - \mu_p(A))$$

demonstrating that \mathfrak{T} is trivial mod μ_p .

Note that no invertible nonsingular transformation can be exact (except the identity no a 1-pt. space). Hence an irrational rotation of \mathbb{T} is ergodic, but not exact.

 $^{^{2}\}ensuremath{\mathsf{Existence}}$ guaranteed by Kolmogorov's existence theorem as on p.5.

Two sided Bernoulli shift.

Recall that the *two sided* Bernoulli shift is defined with $X = \mathbb{R}^{\mathbb{Z}}$, $\mathcal{B}(X)$ the σ -algebra generated by cylinder sets of form

$$[A_1, \dots, A_n]_k \coloneqq \{\underline{x} \in X : x_{j+k} \in A_j, \ 1 \le j \le n\}$$

where $A_1, \ldots, A_n \in \mathcal{B}(\mathbb{R})$. The shift $S : X \to X$ is defined as before by $(Sx)_n = x_{n+1}$, and the S-invariant probability $\mu_p : \mathcal{B}(X) \to [0,1]$ is defined (for $p : \mathcal{B}(\mathbb{R}) \to [0,1]$ a probability) by

$$\mu_p([A_1,...,A_n]_k) = \prod_{k=1}^n p(A_k) \ (A_1,...,A_n \in \mathcal{B}(\mathbb{R})).$$

The two sided Bernoulli shift is an invertible measure preserving transformation (and hence cannot be exact).

3.5 Proposition.

A two sided Bernoulli shift is mixing in the sense that

$$\mu_p(A \cap T^{-n}B) \to \mu_p(A)\mu_p(B) \text{ as } n \to \infty \quad \forall A, B \in \mathcal{B}(X),$$

and hence ergodic.

Proof True in the combinatorial sense for A, B finite unions of cylinders, and hence (by approximation) $\forall A, B \in \mathcal{B}$.

Exercise 15.

Show that an exact probability preserving transformation (X, T, μ) is mixing.

Hint Show first that if $f \in L^2$, $n_k \to \infty$ and $f \circ T^{n_k} \to g \in L^2$ weakly in L^2 , then g is tail measurable.

Nonsingular Adding Machine.

Let $\Omega = \{0, 1\}^{\mathbb{N}}$, and \mathcal{B} be the σ -algebra generated by cylinders. We consider again the *adding machine* $\tau : \Omega \to \Omega$ defined by

 $\tau(1,...,1,0,\epsilon_{n+1},\epsilon_{n+2},...) = (0,...,0,1,\epsilon_{n+1},\epsilon_{n+2},...).$

The adding machine has

the odometer property.

$$\Theta \quad \{((\tau^k x)_1, ..., (\tau^k x)_n) : 0 \le k \le 2^n - 1\} = \{0, 1\}^n \ \forall \ x \in \Omega, \ n \ge 1.$$

The next lemma illustrates how the odometer "parametrizes" the tail of the one-sided shift $S: \Omega \to \Omega$.

3.6 Lemma For $x \in \widetilde{\mathbb{Z}} := \{\tau^n(\overline{0}) : n \in \mathbb{Z}\},$ $\{y \in \Omega : \exists n \ge 0, S^n(y) = S^n(x)\} = \{\tau^n(x) : n \in \mathbb{Z}\}.$

Proof Note that $\widetilde{\mathbb{Z}} = \{x \in \Omega : \exists \lim_{n \to \infty} x_n\}$. Thus for $x \notin \widetilde{\mathbb{Z}}$, both $\ell(x) := \min\{n \ge 1 : x_n = 0\}$ and $(x) := \min\{n \ge 1 : x_n = q\}$ are finite, whence

$$\exists n \ge 1 \text{ s.t. } S^n x = S^n \tau(x) = S^n \tau^{-1}(x).$$

Since $\tau \widetilde{\mathbb{Z}} = \widetilde{\mathbb{Z}}$,

$$\{y \in \Omega: \exists n \ge 0, S^n(y) = S^n(x)\} \supset \{\tau^n(x): n \in \mathbb{Z}\}.$$

For the other inclusion, suppose $S^n x = S^n y = z$, then using the odometer property,

$$\underbrace{(0, \dots, 0, z)}_{n \text{ times}} = \tau^{-\nu_n(x)}(x) = \tau^{-\nu_n(y)}(y)$$

where $\nu_n(\omega) \coloneqq \sum_{k=1}^n 2^{k-1} \omega_n$. Thus

 $y = \tau^{\nu_n(y) - \nu_n(x)}(x). \quad \emptyset$

For $p \in (0, 1)$, set $\mu_p = \prod (1 - p, p) \in \mathcal{P}(\Omega)$ and recall that

$$\frac{d\mu_p \circ \tau}{d\,\mu_p} = \left(\frac{1-p}{p}\right)^{\phi}$$

where $\phi(x) := \min\{n \ge 1 : x_n = 0\} - 2 =: \ell(x) - 2.$

3.7 Proposition

 τ is an invertible, conservative, ergodic nonsingular transformation of $(\Omega, \mathcal{B}, \mu_p)$.

Proof It is not hard to show, using lemma 3.6, that $\mathfrak{I}(\tau) = \mathfrak{T}(S) \mod \mu_p$ and the ergodicity of $(\Omega, \mathcal{B}, \mu_p, \tau)$ follows from the exactness of $(\Omega, \mathcal{B}, \mu_p, S)$. As above, conservativity is automatic in this case. \mathbb{Z}

3.8 Rigidity proposition For $0 , <math>(\Omega, \mathcal{B}, \mu_p)$ is rigid in the sense that if $f : \Omega \to \mathbb{R}$ is measurable, then $\forall \epsilon > 0$,

$$\mu_p([|f \circ \tau^{2^n} - f| \ge \epsilon]) \to 0 \text{ as } n \to \infty.$$

Proof Firstly, note that if $f : \Omega \to \mathbb{R}$ and f is defined by $f(x) = g(x_1, \ldots, x_n)$ for some $n \in \mathbb{N}$, then $f \circ \tau^{2^k} \equiv f$ for every $k \ge n$. To enable approximation, we show that $\exists \Delta > 0 \& M > 1$ so that

$$(\mathfrak{O}) \qquad \qquad \mu_p(\tau^{-2^n}A) \le M\mu_p(A)^{\Delta} \quad \forall \ A \in \mathcal{B}.$$

Proof of (\mathfrak{D})

As before,

 $\frac{d\mu_p \circ \tau^{-1}}{d\mu_p} = \left(\frac{p}{1-p}\right)^{\psi} \text{ where } \psi(x) \coloneqq \min\{n \in \mathbb{N} : x_n = 1\} - 2;$ Using the odometer property:

$$\underbrace{(\textcircled{})} \sum_{j=0}^{2^{n}-1} \psi(\tau^{-k}x) = \sum_{\epsilon \in \{0,1\}^{n} \setminus \{\underline{1}\}} \psi(\epsilon) + n + \psi(S^{n}x)$$
$$= \sum_{k=1}^{n} (k-2)2^{n-k} + n + \psi(S^{n}x)$$
$$= \psi(S^{n}x).$$

By (🖤)

$$\frac{d\mu_p \circ \tau^{-2^n}}{d\mu_p} = \prod_{k=0}^{2^n-1} \left(\frac{d\mu_p \circ \tau^{-1}}{d\mu_p}\right) \circ \tau^{-k}$$
$$= \prod_{k=0}^{2^n-1} \left(\frac{p}{1-p}\right)^{\psi \circ \tau^{-k}}$$
$$= \left(\frac{p}{1-p}\right)^{\psi \circ S^n}.$$

Fix (!) q > 1 be such that $\frac{p^q}{(1-p)^{q-1}} < 1$, then

$$M^{q} := \left\| \left(\frac{p}{1-p}\right)^{\psi} \right\|_{L^{q}(\mu_{p})}^{q} \propto \sum_{n \ge 1}^{\infty} \left(\frac{p^{q}}{(1-p)^{q-1}}\right)^{n} < \infty$$

and for $A \in \mathcal{B}$,

$$\mu_p(\tau^{-2^n}A) = \int_A \left(\frac{p}{1-p}\right)^{\psi \circ S^n} d\mu_p \le \left\| \left(\frac{p}{1-p}\right)^{\psi} \right\|_q \mu_p(A)^{\frac{q-1}{q}} = M\mu_p(A)^{\frac{q-1}{q}}$$

by Hölder's inequality. $\mathbf{Z}(\mathfrak{G})$

Now, suppose that $F: \Omega \to \mathbb{R}$ is measurable, and let $\epsilon > 0$ be given. There exist $n \in \mathbb{N}$, and $f: \Omega \to \mathbb{R}$ and f defined by $f(x) = g(x_1, \ldots, x_n)$ for some $g: \{0, 1\}^n \to \mathbb{R}$ such that $\mu_p([|F - f| \ge \epsilon/2]) < \epsilon$. For $k \ge n$, we have $f \circ \tau^{2^k} \equiv f$, whence

$$\mu_p([|F \circ \tau^{2^k} - F| \ge \epsilon]) \le \mu_p([|F \circ \tau^{2^k} - f \circ \tau^{2^k}| \ge \epsilon/2]) + \mu_p([|F - f| \ge \epsilon/2])$$
$$\le \epsilon + M\epsilon^{\frac{1}{q'}},$$

establishing that indeed

$$F \circ \tau^{2^n} \xrightarrow{\mu_p} F. \quad \not \square$$

Lecture $\# 4 \ 15/10/2014 \ 18-20.$

Ergodic Maharam extension for the non-singular adding machine.

Define $\tau_{\phi}: \Omega \times \mathbb{Z} \to \Omega \times \mathbb{Z}$ by

$$\tau_{\phi}(x,z) \coloneqq (\tau x, z + \phi(x)).$$

For $0 define the measure <math>m_p : \mathcal{B}(\Omega \times \mathbb{Z}) \to [0, \infty]$ by

$$m_p(A \times \{z\}) \coloneqq \mu_p(A)(\frac{p}{1-p})^z$$

This kind of transformation is aka a Maharam extension.

3.9 Theorem For each $0 , <math>(\Omega \times \mathbb{Z}, \mathcal{B}(\Omega \times \mathbb{Z}), m_p, \tau_{\phi})$ is a conservative, ergodic measure preserving transformation.

Proof that $m_p \circ \tau_{\phi} = m_p$

Any $A \in \mathcal{B}(\Omega \times \mathbb{Z})$ has a measurable decomposition $A = \bigcup_{z,\ell \in \mathbb{Z}} A_{z,\ell} \times \{z\}$ where $\phi = \ell$ on $A_{z,\ell}$. Thus:

$$m_p(\tau_{\phi}A) = \sum_{z,\ell\in\mathbb{Z}} m_p(\tau_{\phi}(A_{z,\ell}\times\{z\})) = \sum_{z,\ell\in\mathbb{Z}} m_p(\tau A_{z,\ell}\times\{z+\ell\})$$
$$= \sum_{z,\ell\in\mathbb{Z}} \mu_p(\tau A_{z,\ell})(\frac{p}{1-p})^{z+\ell} = \sum_{z,\ell\in\mathbb{Z}} \mu_p(A_{z,\ell})(\frac{p}{1-p})^z$$
$$= \sum_{z,\ell\in\mathbb{Z}} m_p((A_{z,\ell}\times\{z\})) = m_p(A). \quad \boxtimes$$

Proof of ergodicity of τ_{ϕ} Suppose that $F : \Omega \times \mathbb{Z} \to \mathbb{R}$ is bounded, measurable and τ_{ϕ} -invariant. We'll show first that F(x, z) = F(x, z-1) m_p -a.e..

A similar calculation to (\clubsuit) shows that

$$(\underline{\underline{w}}) \qquad \qquad \phi_{2^n}(x) = \phi(S^n x).$$

Iterating τ_{ϕ} , we have that

$$F(x,z) = F \circ \tau^{2^{n}}(x,z) = F(\tau^{2^{n}}x,z+\phi_{2^{n}}(x)) = F(\tau^{2^{n}}x,z+\phi(S^{n}(x))).$$

By the rigidity proposition, $\exists n_k \to \infty$ and $\Omega_0 \in \mathcal{B}(\Omega)$, $\mu_p(\Omega_0) = 1$ such that

$$F(\tau^{2^{n_k}}x,z) \xrightarrow[k \to \infty]{} F(x,z) \quad \forall \ x \in \Omega_0, \ z \in \mathbb{Z}.$$

The events

$$A_n = [\phi \circ S^n = -1] = \{x \in \Omega : x_{n+1} = 0\}$$

are independent under μ_p , and $\mu_p(A_n) = 1 - p$.

By the Borel-Cantelli lemma, $\exists \Omega_1 \in \mathcal{B}(\Omega), \Omega_1 \subset \Omega_0, \mu_p(\Omega_1) = 1$ such that $\forall x \in \Omega_1, \exists k_\ell = k_\ell(x) \to \infty$ with

$$\phi(S^{n_{k_{\ell}}}x) = -1 \ \forall \ \ell \ge 1,$$

whence

$$F(x,z) = F(\tau^{2^{n_{k_{\ell}}}}x, z + \phi(S^{n_{k_{\ell}}}(x))) = F(\tau^{2^{n_{k_{\ell}}}}x, z - 1) \xrightarrow[\ell \to \infty]{} F(x, z - 1).$$

Thus $\exists f : \Omega \to \mathbb{R}$, measurable, such that $F(x, z) = f(x) \mu_p$ -a.e. $\forall z \in \mathbb{Z}$. Since F is τ_{ϕ} -invariant, f is τ -invariant and μ_p -a.e. constant by ergodicity of $(\Omega, \mathcal{B}, \mu_p, \tau)$.

3.10 Corollary

The nonsingular adding machine $(\Omega, \mathcal{B}, \mu_p, \tau)$ has no σ -finite, absolutely continuous, invariant measure.

Proof Suppose otherwise, that $m \ll \mu_p$ is a σ -finite, τ -invariant measure and let $dm = hd\mu_p$ where $h \ge 0$ is measurable, then(!) h > 0 μ_p -a.e. ($\because m \sim \mu_p$) and

$$h = \widehat{\tau^{-1}}h = \tau'h \circ \tau \implies \tau' = \frac{h}{h \circ \tau}$$

Since $\tau' = (\frac{1-p}{p})^{\phi}$ we have that $\phi = k - k \circ \tau$ where $k : \Omega \to \mathbb{R}$ satisfies $h = (\frac{1-p}{p})^k$.

Define $F: \Omega \times \mathbb{Z} \to \mathbb{R}$ by F(x, z) = z + k(x), then

$$F(\tau_{\phi}(x,z)) = F(\tau x, z + \phi(x)) = z + \phi(x) + k(\tau x) = z + k(x) = F(x,z)$$

By ergodicity, F is constant, but it isn't (:: F(x, z+1) = F(x, z) + 1).

Exercise 16: Dissipative exact MPTs.

Let $\Omega = \{0,1\}^{\mathbb{N}}$ let $S : \Omega \to \Omega$ be the shift, let $\tau : \Omega \to \Omega$ be the adding machine and let $\mu_p = \prod(1-p,p) \in \mathcal{P}(\Omega)$, $(0 . Define <math>f, \phi : \Omega \to \mathbb{Z}$ by

$$f(x) \coloneqq x_1 \& \phi(x) \coloneqq \ell(x) - 2), \ \ell(x) \coloneqq \min\{n \ge 1 \colon x_n = 0\}$$

and S_f , τ_{ϕ} by

$$S(x,z) = (\sigma(x), z + x_1), \ T(x,z) \coloneqq (\tau(x), z + \ell(x) - 2).$$

Show that

- (i) $(\Omega \times \mathbb{Z}, \mathcal{B}(\Omega \times \mathbb{Z}), \mu_p \times \#, S_f)$ is a totally dissipative MPT;
- (ii) $\mathfrak{T}(S_f) = \mathfrak{I}(\tau_{\phi}).$
- (iii) $(\Omega \times \mathbb{Z}, \mathcal{B}(\Omega \times \mathbb{Z}), \mu_p \times \#, S_f)$ is exact.

RATIO ERGODIC THEOREM

Suppose that (X, \mathcal{B}, m, T) is a conservative, nonsingular transformation.

4.6 Hurewicz's Ergodic Theorem

$$\frac{\sum_{k=1}^{n} \widehat{T}^{k} f(x)}{\sum_{k=1}^{n} \widehat{T}^{k} p(x)} \xrightarrow[n \to \infty]{} E_{m_{p}}\left(\frac{f}{p} | \Im\right)(x) \text{ for a.e. } x \in X, \ \forall f, p \in L^{1}(m), \ p > 0,$$

where $dm_p = pdm$, and \Im is the σ -algebra of T-invariant sets in \mathcal{B} .

Conditional expectations.

Here, given a probability space (Ω, \mathcal{F}, P) , and a sub- σ -algebra $\mathcal{C} \subset \mathcal{F}$, the conditional expectation wrt \mathcal{C} is a linear operator $f \mapsto E_P(f|\mathcal{C}), \quad L^1(\Omega, \mathcal{F}, P) \to L^1(\Omega, \mathcal{C}, P)$ satisfying

$$\int_{C} E_{P}(f|\mathcal{C})dP = \int_{C} fdP \quad \forall \ C \in \mathcal{C}.$$

Such operators are unique by their defining equations,. They exist $L^2(\Omega, \mathcal{F}, P) \rightarrow L^2(\Omega, \mathcal{C}, P)$ as orthogonal projections and extend to L^1 by approximation.

Proof of Hurewicz's theorem

Set, for $f, p \in L^1(m)$, p > 0, $\widehat{S}_0 f = 0$, and $n \in \mathbb{N}$,

$$\widehat{S}_n f \coloneqq \sum_{k=0}^{n-1} \widehat{T}^k f, \quad R_n(f,p) \coloneqq \frac{\widehat{S}_n f}{\widehat{S}_n p}.$$

Let

$$\mathcal{H}_p \coloneqq \{f = hp + g - \widehat{T}g \in L^1(m) : h \circ T = h \in L^\infty(m), g \in L^1(m)\}.$$

We claim that for $f = hp + g - \widehat{T}g \in \mathcal{H}_p$,

$$R_n(f,p) = h + \frac{g - \overline{T}^n g}{\widehat{S}_n p}.$$

We show that $R_n(hp,p) = h$ where $h \circ T = h \in L^{\infty}(m)$. For $g \in L^{\infty}(m)$, $n \in \mathbb{N}$,

$$\int_X \widehat{T}^n(hp) \cdot gdm = \int_X phg \circ T^n dm = \int_X ph \circ T^n g \circ T^n dm = \int_X h \widehat{T}^n p \cdot gdm$$

for every whence $\widehat{T}^n f = h \widehat{T}^n p$, and $R_n(f, p) = h$. The convergence

$$R_n(f,p) \xrightarrow[n \to \infty]{} h$$
, a.e. $\forall f = hp + g - \widehat{T}g \in \mathcal{H}_p$

follows immediately from the

4.7 Chacon-Ornstein Lemma

$$\frac{\widehat{T}^n g}{\widehat{S}_n p} \xrightarrow[n \to \infty]{} 0, \ a.e. \ \forall g \in L^1(m).$$

Proof Choose $\epsilon > 0$, and let $\eta_n = 1_{[\widehat{T}^n g > \epsilon \widehat{S}_n p]}$. We must show that $\sum_{n=1}^{\infty} \eta_n < \infty$ a.e. $\forall \epsilon > 0$.

We have

$$\epsilon p + \widehat{T}^{n+1}g - \epsilon \widehat{S}_{n+1}p = \widehat{T}(\widehat{T}^n g - \epsilon \widehat{S}_n p),$$

whence

$$\epsilon p + \widehat{T}^{n+1}g - \epsilon \widehat{S}_{n+1}p \le \widehat{T}(\widehat{T}^n g - \epsilon \widehat{S}_n p)_+,$$

where g_+ denotes $g \lor 0$, $f \lor g = \max\{f, g\}$.

Multiplying both sides of the inequality by η_{n+1} :

$$\eta_{n+1}\epsilon p + \eta_{n+1}(\widehat{T}^{n+1}g - \epsilon\widehat{S}_{n+1}p) = \eta_{n+1}\epsilon p + (\widehat{T}^{n+1}g - \epsilon\widehat{S}_{n+1}p)_+$$
$$\leq \eta_{n+1}\widehat{T}(\widehat{T}^ng - \epsilon\widehat{S}_np)_+$$
$$\leq \widehat{T}(\widehat{T}^ng - \epsilon\widehat{S}_np)_+.$$

Equivalently,

$$\eta_{n+1} \epsilon p \le \widehat{T} J_n - J_{n+1}$$

where $J_n \coloneqq (\widehat{T}^n g - \epsilon \widehat{S}_n p)_+$.

Integrating, we get

$$\epsilon \int_X p\eta_{n+1} dm \le \int_X (J_n - J_{n+1}) dm$$

and, summing over n, we get

$$\epsilon \int_X p \sum_{n=2}^N \eta_n dm \le \int_X J_1 dm < \infty.$$

This shows that indeed

$$\sum_{n=1}^{\infty} \eta_n < \infty \text{ a.e.}$$
ma. \square

and thereby proves the lemma.

We next establish that

To see this, we show that

$$k \in L^{\infty}(m), \int_X kfdm = 0 \ \forall f \in \mathcal{H}_p \implies k = 0 \text{ a.e.}$$

To see this, let

$$k \in L^{\infty}(m) \ni \int_X kfdm = 0 \ \forall f \in \mathcal{H}_p,$$

then, in particular

$$\int_X gk \circ T dm = \int_X \widehat{T}g \cdot k dm = \int_X gk dm \ \forall g \in L^1(m),$$

whence $k \circ T = k$ a.e., and $kp \in \mathcal{H}_p$.

Hence,

$$\int_X k^2 p dm = 0 \implies k = 0 \text{ a.e.}$$

 $\hfill \odot$ now follows from the Hahn-Banach theorem. $\hfill \varPi$

Proof of Hurewicz's theorem ctd.

Identification of the limit.

We now identify the limit of $R_n(f,p)$ $f \in \mathcal{H}_p$. Define $\Phi_p : L^1(m) \to L^1(m_p)$ by

$$\Phi_p(f) \coloneqq E_{m_p}(\frac{f}{p} \| \mathfrak{I}),$$

then

$$\|\Phi_p(f)\|_{L^1(m_p)} \le \|f\|_1 \ \forall f \in L^1(m).$$

We claim that

$$(\clubsuit) \qquad \qquad R_n(f,p) \xrightarrow[n \to \infty]{} \Phi_p(f) \quad \forall \ f \in \mathcal{H}_p.$$

For this, it suffices that

$$\Phi_p(hp+g-\widehat{T}g) = h \quad \forall \ f = hp+g-\widehat{T}g \in \mathcal{H}_p.$$

Indeed, if $k \circ T = k \in L^{\infty}(m)$, then

$$\int_X k \frac{f}{p} dm_p = \int_X k f dm$$

= $\int_X k (hp + g - \widehat{T}g) dm$
= $\int_X k hp dm + \int_X k (g - \widehat{T}g) dm$
= $\int_X k h dm_p.$

We extend (\mathbf{A}) to all $f \in L^1(m)$, by an approximation argument which uses the

5.1 Maximal inequality

For $f, p \in L^1$, such that p > 0 a.e., and $t \in \mathbb{R}_+$, $m_p([\sup_{n \in \mathbb{N}} R_n(f, p) > t]) \leq \frac{\|f\|_1}{t},$

where $dm_p = pdm$.

Proof of theorem 4.6 given the maximal inequality Let $f \in L^1(m)$. Fix $\epsilon > 0$. By \bigcirc , we can write f = g + k, where $g \in \mathcal{H}_p$ and $||k||_1 < \epsilon^2$. It follows that

$$\overline{\lim_{n \to \infty}} |R_n(f,p) - \Phi_p(f)| \le \sup_{n \in \mathbb{N}} |R_n(k,p)| + |\Phi_p(k)|,$$

whence, by the maximal inequality, and by Tchebychev's inequality,

$$m_p([\lim_{n \to \infty} |R_n(f, p) - \Phi_p(f)| > 2\epsilon]) \le m_p([\sup_{n \ge 1} |R_n(k, p)| > \epsilon]) + m_p([|\Phi_p(k)| > \epsilon])$$
$$\le \frac{2||k||_1}{\epsilon} \le 2\epsilon.$$

This last inequality holds for arbitrary $\epsilon > 0$, whence

$$\lim_{n \to \infty} |R_n(f, p) - \Phi_p(f)| = 0 \quad \text{a.e.},$$

and the ergodic theorem is almost established, it remaining only to prove the maximal inequality.

5.2 Hopf's Maximal ergodic theorem

$$\int_{[M_n f>0]} f dm \ge 0, \ \forall f \in L^1(m), n \in \mathbb{N},$$

where

$$M_n f = \left(\bigvee_{k=1}^n \widehat{S}_k f\right)_+ = \left(\bigvee_{k=0}^n \widehat{S}_k f\right).$$

Proof Note first that if $M_n f(x) > 0$, then

$$M_n f(x) \le M_{n+1} f(x) = \bigvee_{k=1}^{n+1} \widehat{S}_k f(x)$$
$$= f(x) + \bigvee_{k=0}^n \widehat{S}_k \widehat{T} f(x) = f(x) + M_n \widehat{T} f(x).$$

Also (!) $M_n \widehat{T} f \leq \widehat{T} M_n f$, whence

$$M_n f > 0 \Rightarrow f \ge M_n f - \widehat{T} M_n f$$

and

$$\int_{[M_n f>0]} f dm \ge \int_{[M_n f>0]} (M_n f - \widehat{T} M_n f) dm.$$

Since
$$TM_n f \ge 0$$
 a.e., and $M_n f = 0$ on $[M_n f > 0]^c$, we get

$$\int_{[M_n f>0]} fdm \ge \int_{[M_n f>0]} M_n fdm - \int_{[M_n f>0]} \widehat{T}M_n fdm$$
$$\ge \int_X M_n fdm - \int_X \widehat{T}M_n fdm$$
$$= 0,$$

whence the theorem. \square

Proof of the maximal inequality Suppose f, p, t are as in the maximal inequality, then

$$M_n(f-tp) > 0 \iff \max_{1 \le k \le n} R_k(f,p) > t.$$

Thus, using Hopf's maximal ergodic theorem, we obtain

$$\int_{[M_n(f-tp)>0]} (f-tp) dm \ge 0,$$

whence

$$tm_p([\max_{1\le k\le n} R_k(f,p)>t]) \le \int_{[\max_{1\le k\le n} R_k(f,p)>t]} fdm$$
$$\le \|f\|_1.$$

The maximal inequality follows from this as $n \to \infty$.

Hurewicz's ergodic theorem is now established.

Hurewicz's theorem for a conservative, ergodic nonsingular transformation T, states that

$$\frac{\sum_{k=0}^{n-1} \widehat{T}^k f(x)}{\sum_{k=0}^{n-1} \widehat{T}^k g(x)} \to \frac{\int_X f dm}{\int_X g dm} \text{ for a.e. } x \in X$$

whenever $f, g \in L^1(m), \int_X g dm \neq 0.$

Exercise 17: von Neuann's ergodic theorem.

Let \mathcal{H} be a Hilbert space and let $U: \mathcal{H} \to \mathcal{H}$ be a unitary operator. Show that

(i) $\mathcal{H}_0 \coloneqq \{f \in \mathcal{H} : Uf = f\}$ is a closed, invariant subspace of \mathcal{H} and that

(ii)
$$\left\|\frac{1}{n}\sum_{k=0}^{n-1}U^kf - Pf\right\| \xrightarrow[n \to \infty]{} 0 \quad \forall \ f \in \mathcal{H}$$

where $P: \mathcal{H} \to \mathcal{H}_0$ is orthogonal projection.

Exercise 18: Hopf's ergodic theorem.

Suppose that (X, \mathcal{B}, m, T) is a conservative measure preserving transformation.

(i) Prove that

$$\frac{\sum_{k=1}^{n} f(T^{k}x)}{\sum_{k=1}^{n} p(T^{k}x)} \xrightarrow[n \to \infty]{} E_{m_{p}}(f|\mathfrak{I})(x) \text{ for a.e. } x \in X, \ \forall f, p \in L^{1}(m), \ p > 0.$$

Hint Hopf's ergodic theorem is a special case of Hurewicz's theorem in case T is invertible. It can be proved analogously for T non-invertible.

(ii) Now suppose that T is a conservative, ergodic, measure preserving transformation of the σ -finite, infinite measure space (X, \mathcal{B}, m) . Prove that

$$\frac{1}{n}\sum_{k=1}^{n}f(T^{k}x) \underset{n \to \infty}{\longrightarrow} \quad 0 \text{ for a.e. } x \in X, \ \forall f \in L^{1}(m).$$

Lecture $\# 5 \ 16/10/2014 \ 12-14$.

ERGODICITY VIA THE RATIO ERGODIC THEOREM

Boole transformations.

Let (X, \mathcal{B}, m) be \mathbb{R} equipped with Borel sets and Lebesgue measure, and consider Boole's transformations:

$$(\mathbf{x}) Tx = x + \beta + \sum_{k=1}^{N} \frac{p_k}{t_k - x}$$

where $N \ge 1$, $p_1, \ldots, p_N > 0$ and β , $t_1, \ldots, t_N \in \mathbb{R}$.

By corollary 2.3, for T as in (\mathcal{S}) , (X, \mathcal{B}, m, T) is a measure preserving transformation. By proposition 2.11, T is conservative iff $\beta = 0$.

5.3 Proposition

(i) If $\beta = 0$, then T is conservative, ergodic.

(ii) If $\beta \neq 0$, then $\exists F : \mathbb{R}^{2+} \rightarrow \mathbb{R}^{2+}$ analytic, so that $F \circ T = F + \beta$. In particular, T is not ergodic.

Proof sketch

For $\omega \in \mathbb{R}^{2+}$, write $T^n(\omega) \coloneqq u_n + iv_n$, then

$$v_{n+1} = v_n + v_n \sum_{k=1}^{N} \frac{p_k}{(t_k - u_n)^2 + v_n^2}$$
$$u_{n+1} = u_n + \beta + \sum_{k=1}^{N} \frac{p_k(t_k - u_n)}{(t_k - u_n)^2 + v_n^2}$$

As before, elementary calculations show that

• when $\beta \neq 0$. $\exists B = B(\omega) \in \mathbb{R}_+ \& C = C(\omega) \in \mathbb{R}$ so that

(I)
$$v_n \uparrow B \& u_n = \beta n - \frac{\nu}{\beta} \log n + C + O(\frac{\log n}{n}) \text{ as } n \to \infty;$$

and

• when $\beta = 0$,

 $(\mathrm{II}) \qquad \sup_{n\geq 1} |u_n| < \infty \quad \& \quad v_n \sim \sqrt{2\nu n}) \text{ as } n \to \infty \text{ where } \nu \coloneqq \sum_{k=1}^n p_k$

Proof of (i)

Set $p := \varphi_i$, then $\forall x \in \mathbb{R}, \omega \in \mathbb{R}^{2+}$,

$$\widehat{S}_n\varphi_{\omega}(x) \coloneqq \sum_{k=0}^{n-1} \widehat{T}^k \varphi_{\omega}(x) \sim \sum_{k=0}^{n-1} \frac{1}{\pi v_k} \sim a(n) \coloneqq \frac{1}{\pi} \sqrt{\frac{2n}{\nu}}.$$

By Hurewicz's theorem, for $f \in L^1(m)$ and a.e. $x \in X$,

$$\frac{\widehat{S}_n f(x)}{a(n)} \sim \frac{\widehat{S}_n f(x)}{\widehat{S}_n p(x)} \xrightarrow[n \to \infty]{} E_{m_p}(f|\mathfrak{I}).$$

On the other hand, for $f = g * \varphi_{ib}$ $(g \in L^1(m))$,

$$f(x) \coloneqq \int_{\mathbb{R}} g(t)\varphi_{ib}(x-t)dt = \int_{\mathbb{R}} g(t)\varphi_{t+ib}(x)dt$$

whence

$$\widehat{T}^n f = \int_{\mathbb{R}} g(t) \varphi_{T^n(t+ib)}(x) dt$$

and by (I)

$$\frac{\widehat{S}_n f(x)}{a(n)} = \int_{\mathbb{R}} g(t) \frac{\widehat{S}_n \varphi_{t+ib}}{a(n)} dt \xrightarrow[n \to \infty]{} \int_{\mathbb{R}} g dm = \int_{\mathbb{R}} f dm$$

whence $E_{m_p}(f|\mathfrak{I})$ is constant. Since such f are dense in $L^1(m)$, T is ergodic. $\mathbf{Z}(\mathbf{i})$

Proof of (ii) By (II),

$$T^{n}(\omega) - n\beta + \frac{\nu}{\beta} \log n \xrightarrow[n \to \infty]{} C(\omega) + iB(\omega) =: F(\omega) \in \mathbb{R}^{2+}.$$

It follows that $F : \mathbb{R}^{2+} \to \mathbb{R}^{2+}$ is analytic. Moreover

$$F(T\omega) \xleftarrow[n \to \infty]{} T^{n+1}(\omega) - n\beta + \frac{\nu}{\beta} \log n$$
$$= (T^{n+1}(\omega) - (n+1)\beta + \frac{\nu}{\beta} \log(n+1)) + \beta + O(\frac{1}{n})$$
$$\xrightarrow[n \to \infty]{} F(\omega) + \beta. \quad \not \Box(ii)$$

Aperiodicity and Rokhlin towers

Periodicity. Let (X, \mathcal{B}, m) be a standard probability space and let $T \in NST(X, \mathcal{B}, m)$.

For each $p \ge 1$ consider the set of *p*-periodic points

$$\operatorname{Per}_p(T) \coloneqq \{ x \in X : T^p x = x, T^j x \neq x \forall 1 \le j$$

Exercise 19. Show that for $p \in \mathbb{N}$:

(i) $\operatorname{Per}_p(T) \in \mathcal{B};$

(ii) there is a set $A \in \mathcal{B}$ so that $\{T^jA: 0 \le j \le p-1\}$ are disjoint and

$$\operatorname{Per}_p(T) \stackrel{m}{=} \bigcup_{j=0}^{p-1} T^j A.$$

Hints for (ii) Using the polish structure of X, show that $\forall A \in \mathcal{B}_+, \exists B \in \mathcal{B}_+, B \subset A$ so that $\{T^jB : 0 \leq j \leq p-1\}$ are disjoint. Then perform an exhaustion argument.

Aperiodicity.

The non-singular transformation (X, \mathcal{B}, m, T) is called *aperiodic* if $m(\operatorname{Per}_n(T)) = 0 \forall n \ge 1$.

Sweepout sets. Let (X, \mathcal{B}, m, T) be a NST. A set $A \in \mathcal{B}$ is called a *sweepout set* if $\bigcup_{n=1}^{\infty} T^{-n}A \stackrel{m}{=} X$.

The next exercise shows that an aperiodic, conservative NST has sweepout sets of arbitrarily small measure.

Note that this is immediate for a conservative, ergodic NST (X, \mathcal{B}, m, T) , for then for any $A \in \mathcal{B}_+$, $\bigcup_{n=1}^{\infty} T^{-n}A$ has positive measure and is Tinvariant mod m...

Exercise 20. Let (X, \mathcal{B}, m, T) be an aperiodic, conservative NST. Show that $\forall \epsilon > 0 \exists E \in \mathcal{B}, m(E) < \epsilon$ s.t. $\widetilde{E} \coloneqq \bigcup_{n \geq 1} T^{-k}E \equiv X \mod m$.

Directions: ³

Fix $N > \frac{1}{\epsilon}$ and let

$$\mathcal{Z}_N := \{ A \in \mathcal{B}_+ : \{ T^{-j}A : 0 \le j < N \} \text{ disjoint} \}.$$

¶1 Show that $\forall J \in \mathfrak{B}_+, \exists A \in \mathbb{Z}_N$ so that $m(A \cap J) > 0$.

Hints (i) Assume WLOG that $T^n x \neq x \forall x \in X, n \ge 0$. Fix a polish metric d on X and find (!) $C \subset J$ compact so that m(C) > 0 and $T^j : C \to X$ is continuous for $0 \le j \le N$.

(ii) Find $x \in C$ so that $m(C \cap B(x, \epsilon)) > 0 \quad \forall \epsilon > 0$ where $B(x, \epsilon)$ is the *d*-ball of radius ϵ around x and then find (!) $\eta > 0$ so that $\{T^j(C \cap B(x, \eta)): 0 \leq j \leq p-1\}$ are disjoint.

¶2 Obtain using exhaustion: sets $A_1, A_2, \dots \in \mathbb{Z}_N$ and numbers $\epsilon_n \ge 0$ so that

 $\widetilde{A_{n+1}} \cap \widetilde{A_k} = \varnothing \ \forall \ 1 \le k \le n;$

 $2m(\widetilde{A_{n+1}}) \ge \epsilon_{n+1} \coloneqq \sup \{m(A) \colon A \in \mathcal{Z}_N, \ \widetilde{A_{n+1}} \cap \widetilde{A_k} = \emptyset \ \forall \ 1 \le k \le n\}$ and show that for some $0 \le J < N, \ T^{-J} \bigcup_{k=1}^{\infty} A_k$ is as required.

6.2 Rokhlin's tower theorem Let T be a conservative, aperiodic nonsingular transformation of the Polish, probability space (X, \mathcal{B}, m) . For $N \ge 1$, and $\eta > 0$, $\exists E \in \mathcal{B}$ such that $\{T^{-j}E\}_{j=0}^{N-1}$ are disjoint, and $m(X \smallsetminus \bigcup_{i=0}^{N-1} T^{-j}E) < \eta$.

³Here, I'm breaking up the proof into "easy stages".

Proof

By non-singularity $\exists \delta > 0$ so that

$$m(A) < \delta \implies m(\bigcup_{k=0}^{N-1} T^{-k}A) < \eta.$$

Using this and exercise 20, we can choose choose $A \in \mathcal{B}$ such that $\widetilde{A} = X$ and $m(\bigcup_{k=0}^{N-1} T^{-k}A) < \eta$.

Set $A_0 \coloneqq A$, $A_n \coloneqq T^{-n}A \setminus \bigcup_{j=0}^{n-1} T^{-j}A$, $(n \ge 1)$, then $\{A_n \colon n \ge 0\}$ are disjoint and $\bigcup_{n=0}^{\infty} A_n = \bigcup_{n=0}^{\infty} T^{-n}A = X$.

Set $E := \bigcup_{p=1}^{\infty} A_{pN}$, then for $0 \le k \le N - 1$:

$$T^kE\subset \bigcup_{p=1}^\infty A_{pN-k}$$

whence $\{T^{j}E\}_{j=0}^{N-1}$ are disjoint.

We claim that $\{T^{-j}E\}_{j=0}^{N-1}$ are disjoint. To see this, fix $1 \le k \le N-1$, then $E \subset T^{-k}T^kE$ whence

$$T^{-k}E \cap E \subset T^{-k}E \cap T^{-k}T^{k}E = T^{-k}(E \cap T^{k}E) = \emptyset.$$

On the other hand, for $0 \le k \le N - 1$,

$$T^{-k}E \supset \bigcup_{p=1}^{\infty} A_{pN+k},$$

whence $\bigcup_{k=0}^{N-1} T^{-k} E \supset \bigcup_{n=N}^{\infty} A_n$, and

$$m(X \setminus \bigcup_{j=0}^{N-1} T^{-j}E) \le m(\bigcup_{n=0}^{N-1} A_n) = m(\bigcup_{k=0}^{N-1} T^{-k}A) < \epsilon.$$

Skew Products

Let (X, \mathcal{B}, m, T) be a NST and let G be a locally compact, polish, abelian topological group.

Given a measurable function $\phi : X \to G$, define the *skew product* transformation $T_{\phi} : X \times G \to X \times G$ by $T_{\phi}(x,g) \coloneqq (Tx, \phi(x) + g)$.

1.1 Proposition (Hopf decomposition of skew products)

Suppose that T is ergodic and either a MPT, or an invertible NST. Let $\varphi : X \to G$ be measurable, then T_{φ} is either conservative, or totally dissipative.

Proof By the assumption, T_{ϕ} is also either a MPT, or an invertible NST. In either case, $\mathfrak{D}(T_{\varphi})$ is T_{ϕ} -invariant. We'll show that it's invariant under an ergodic action of a larger semigroup.

Let $\Gamma \subset G$ be a countable dense subgroup of G. The action of Γ on G by translation is ergodic with respect to Haar measure on G. It follows that the $\mathbb{N} \times \Gamma$ action S on

 $(X \times G, \mathcal{B}(X \times G), m \times m_G)$ given by $S_{(n,a)}(x, y) \coloneqq (T^n x, y + a + \phi_n(x))$ is ergodic.

Let $a \in G$, then since $S_{0,a}$ is invertible and $S_{0,a} \circ T_{\varphi} = T_{\varphi} \circ S_{0,a}$ we have that $W \in \mathcal{W}(T_{\varphi})$ iff $S_{0,a}W \in \mathcal{W}(T_{\varphi})$, whence $S_{0,a}\mathfrak{D}(T_{\varphi}) = \mathfrak{D}(T_{\varphi})$. Since $T_{\varphi}^{-1}\mathfrak{D}(T_{\varphi}) = \mathfrak{D}(T_{\varphi})$, it follows that $\mathfrak{D}(T_{\varphi})$ is S-invariant, whence the proposition by ergodicity of S. \square

1.2 Proposition Let (X, \mathcal{B}, m, T) be a PPT, then T_{ϕ} is conservative iff

$$\liminf_{n \to \infty} \|\phi_n(x)\| = 0 \text{ for a.e. } x \in X.$$

Proof

Assume first that T_{ϕ} is conservative and let $\epsilon > 0$. By Halmos' recurrence theorem

$$\sum_{n=1}^{\infty} 1_{X \times B_G(0, \epsilon/2)} \circ T_{\phi}^n = \infty \text{ a.e. on } X \times B_G(0, \epsilon/2).$$

So for a.e. $x \in X$, $y \in B_G(0, \epsilon/2)$,

$$\sum_{n=1}^{\infty} \mathbb{1}_{B_G(0,\epsilon/2)}(y+\phi_n(x)) = \infty,$$

whence for a.e. $x \in X$, $\liminf_{n \to \infty} \|\phi_n(x)\| \le \epsilon$.

Now assume that

$$\liminf_{n \to \infty} \|\phi_n(x)\| = 0 \text{ for a.e. } x \in X.$$

Fix $f: G \to \mathbb{R}_+$ be continuous, positive and integrable and let $0 < \epsilon < \kappa_G$. For $y \in G$, let $\delta(y, \epsilon) \coloneqq \inf_{B_G(y, \epsilon)} f$. By compactness of $B_G(y, \epsilon), \delta(y, \epsilon) > 0$.

We have that $\forall y \in G$, for a.e. $(x, z) \in X \times B_G(y, \frac{\epsilon}{2})$,

$$\sum_{n=1}^{\infty} (1 \otimes f) \circ T_{\phi}^{n}(x, z) = \sum_{n=1}^{\infty} f(z + \phi_{n}(x)) \ge \delta(y, \epsilon) \sum_{n=1}^{\infty} \mathbb{1}_{B_{G}(0, \frac{\epsilon}{2})}(\phi_{n}(x)) = \infty$$

and T_{ϕ} is conservative.

and T_{ϕ} is conservative.

1.3 Proposition If $\phi = \Psi - \Psi \circ T$ with $\Psi : X \to G$ measurable, then T_{ϕ} is conservative.

Proof Evidently T_0 is conservative, and if ϕ is a coboundary, then T_{ϕ} is isomorphic to T_0 . PERSISTENCIES AND ESSENTIAL VALUES

Let (X, \mathcal{B}, m) be a standard probability space, and let $T : X \to X$ be an ergodic, NST. Suppose that $\phi : X \to G$ is measurable. The collection of *persistencies* of ϕ is

 $\Pi(\phi) = \{a \in G : \forall A \in \mathcal{B}_+, \epsilon > 0, \exists n \ge 1, m(A \cap T^{-n}A \cap [\|\phi_n - a\| < \epsilon]) > 0\}.$

For T invertible, the collection of essential values of ϕ is

 $E(\phi) = \{a \in G : \forall A \in \mathcal{B}_+, \epsilon > 0, \exists n \in \mathbb{Z}, m(A \cap T^{-n}A \cap [\|\phi_n - a\| < \epsilon]) > 0\}.$

2.1 Proposition [?Schm1]

Either $\Pi(\phi) = \emptyset$, or $\Pi(\phi)$ is a closed subgroup of G.

Proof

To see that $\Pi(\phi)$ is closed let $a \in \overline{\Pi(\phi)}$ and let $\epsilon > 0$, $A \in \mathcal{B}_+$. $\exists a' \in \Pi(\phi)$ such that $||a - a'|| < \epsilon/2$, and $\exists n \ge 1$ such that $m(A \cap T^{-n}A \cap [||\varphi_n - a'|| < \epsilon/2]) > 0$.

It follows that

 $m(A \cap T^{-n}A \cap [\|\varphi_n - a\| < \epsilon]) \ge m(A \cap T^{-n}A \cap [\|\varphi_n - a'\| < \epsilon/2]) > 0.$ Thus, $a \in \Pi(\phi)$ and $\Pi(\phi)$ is closed.

To show that $\Pi(\phi)$ is a group, we show that $a, b \in \Pi(\phi) \implies a - b \in \Pi(\phi)$.

Let $a, b \in \Pi(\phi)$, $\epsilon > 0$, $A \in \mathcal{B}_+$ and let $n \ge 1$ be such that $m(A \cap T^{-n}A \cap [\|\phi_n - a\| < \epsilon/2]) > 0$.

By Rokhlin's lemma, $\exists B \in \mathcal{B}_+, B \subset A \cap T^{-n}A \cap [\|\phi_n - a\| < \epsilon/2]$ such that $B \cap T^{-k}B = \emptyset$ for $1 \le k \le n$.

Since $b \in \Pi(\phi)$, $\exists N \ge 1$ such that $m(B \cap T^{-N}B \cap [\|\phi_N - b\| < \epsilon/2]) > 0$. The construction of B implies that N > n whence

$$B \cap T^{-N}B \cap [\|\phi_N - b\| < \epsilon/2]$$

= $B \cap T^{-N}B \cap [\|\phi_n - a\| < \epsilon/2] \cap [\|\phi_N - b\| < \epsilon/2]$
 $\subset B \cap T^{-N}B \cap [\|\phi_{N-n} \circ T^n - (b - a)\| < \epsilon],$
 $0 < m(B \cap T^{-N}B \cap [\|\phi_{N-n} \circ T^n - (b - a)\| < \epsilon])$

$$\leq m(A \cap T^{-n}A \cap T^{-N}A \cap [\|\phi_{N-n} \circ T^n - (b-a)\| < \epsilon]) \\\leq m(T^{-n}(A \cap T^{-(N-n)}A \cap [\|\phi_{N-n} - (b-a)\| < \epsilon]))$$

whence $m(A \cap T^{-(N-n)}A \cap [\|\phi_{N-n} - (b-a)\| < \epsilon]) > 0$ and $b - a \in \Pi(\phi)$.

Lecture # 6 17/10/2014 12-13.

2.2 Theorem [K.Schmidt]

Let (X, \mathcal{B}, m, T) be a conservative NST, and let $\phi : X \to G$, then T_{ϕ} is conservative $\iff 0 \in \Pi(\phi)$.

Proof of \Rightarrow

Suppose first that T_{ϕ} is conservative and let $A \in \mathcal{B}_+$, $\epsilon > 0$. $\exists n \geq 1$ such that $m \times m_G(A \times B_G(0, \epsilon/2) \cap T_{\phi}^{-n}A \times B_G(0, \epsilon/2)) > 0$. Since $A \times B_G(0, \epsilon/2) \cap T_{\phi}^{-n}A \times B_G(0, \epsilon/2) \subset (A \cap T^{-n}A \cap [\|\phi_n\| < \epsilon]) \times B_G(0, \epsilon/2)$, we have $m(A \cap T^{-n}A \cap [\|\phi_n\| < \epsilon]) > 0$ and $0 \in \Pi(\phi)$.

Proof of \Leftarrow

In case G is countable, every $B \in \mathcal{B}(X \times G)_+$ contains a set Conversely, suppose that T_{ϕ} is not conservative. Let $A \in \mathcal{B}$. Consider the sections

$$A_x \coloneqq \{ y \in G \colon (x, y) \in A \} \quad (x \in X).$$

A calculation shows that

$$(T_{\phi}^{-n}A)_x = A_{T^nx} - \phi_n(x).$$

By Fubini's theorem, $A_x \in \mathcal{B}(G) \forall x \& x \mapsto m_G(A_x)$ is measurable. Let

$$X_A \coloneqq \{x \in X \colon m(A_x) > 0\},\$$

then $m(X_A) > 0$. Now let $W \in \mathcal{W}(T_{\phi})$. We claim that

¶ there is a measurable subset $V \subset W$ with

$$0 < m(V_x) < \infty$$
 for a.e. $x \in X_W$.

Proof of ¶

Define $R: X \to [0, \infty)$ by

$$R(x) \coloneqq \inf \{r > 0 \colon m(W_x \cap B(0, r)) > \min \{\frac{m(W_x)}{2}, 1\},\$$

then

$$V_0 \coloneqq \{(x,y): y \in W_x \cap B(0,R(x))\}$$

is Lebesgue measurable and $m \times m_G(V_0) > 0$. It follows that $\exists V \in \mathcal{B}(X \times G), V \subset V_0$ with $m \times m_G(V_0 \setminus V) = 0$.

It follows that for a.e. $x \in X_W$, $V_x = (V_0)_x$ whence

$$0 < m(V_x) < \infty$$
 for a.e. $x \in X_W$.

Let

$$\overline{\mathcal{F}} := \{ f \in L^1(m_G) : \exists A \in \mathcal{B}, f = 1_A \text{ a.e.} \},\$$

then $\overline{\mathcal{F}}$ is a polish space with the metric

$$\rho([A], [B]) \coloneqq \|\mathbf{1}_A - \mathbf{1}_B\|_1 = m_G(A \Delta B)$$

for $A, B \in \mathcal{B}, 0 < m(A), m(B) < \infty$ where $[C] \coloneqq \{B \in \mathcal{B}(G) \colon \mu(B\Delta C) = 0\}$.

By Fubini's theorem, $x \mapsto [V_x]$ is a Borel map $X \to \overline{\mathcal{F}}$.

By Lusin's theorem, \exists a compact set $C \in \mathcal{B}_+$, $C \subset X_W$ so that $x \mapsto V_x$ is continuous on C.

Also, for $A \in \mathcal{F}_+$, $t \mapsto m_G(A \cap (t+A))$ is continuous $G \to [0, \infty)$. By compactness, $m_G(V_x) \leq \Delta > 0 \ \forall \ x \in C$.

By continuity, $\exists \epsilon > 0 \&$ a compact set $D \in \mathcal{B}_+$, $D \subset C$ so that

$$(\clubsuit) \qquad \qquad m_G(V_x \cap (V_y + t)) \ge \epsilon \quad \forall \ x, y \in D, \ \|t\| < \epsilon.$$

Set $U = V \cap (D \times G)$ then

$$U_x = \begin{cases} V_x & x \in D, \\ \emptyset & \times \notin D. \end{cases}$$

It follows from Fubini that $m \times m_G(U) > 0$ whence $U \in \mathcal{W}(T)$.

Thus, we have, for $n \ge 1$

$$U \cap T_{\phi}^{-n}U \stackrel{m}{\subset} (D \cap T^{-n}D) \times G$$

and for a.e. $x \in D \cap T^{-n}D$, we have

By (♣),

$$U \cap T^{-n}U \subset \left[\left\| \phi_n \right\| \ge \epsilon \right] \quad \forall \ n \ge 1$$

and $0 \notin \Pi(\phi)$.

2.3 Proposition

Suppose that $\phi, \varphi : X \to G$ are cohomologous, then $\Pi(\phi) = \Pi(\varphi)$.

Proof

By symmetry, it is sufficient to show that $\Pi(\phi) \subseteq \Pi(\varphi)$. Suppose that $\varphi = \phi + h \circ T - h$ where $h : X \to G$ is measurable. Let $a \in \Pi(\phi)$ and let $A \in \mathcal{B}_+, \epsilon > 0$.

Since X is a standard space, by Lusin's theorem $\exists B \subset A, B \in \mathcal{B}_+$ such that $||h(x) - h(y)|| < \frac{\epsilon}{2} \forall x, y \in B$.

Since $a \in \Pi(\phi)$, $\exists n \ge 1$ such that $m(B \cap T^{-n}B \cap [\|\phi_n - a\| < \frac{\epsilon}{2}]) > 0$. By construction of B, if $x \in B \cap T^{-n}B$, then $\|\varphi_n(x) - \phi_n(x)\| = \|h(T^nx) - h(x)\| < \frac{\epsilon}{2}$ whence

$$m(B \cap T^{-n}B \cap [\|\varphi_n - a\| < \epsilon]) \ge m(B \cap T^{-n}B \cap [\|\phi_n - a\| < \frac{\epsilon}{2}]) > 0,$$

and $a \in \Pi(\varphi)$.

Periods. Define the collection of *periods* for T_{ϕ} -invariant functions:

$$\operatorname{Per}(\phi) = \{a \in G : Q_a A = A \mod m \ \forall \ A \in \mathfrak{I}(T_{\phi})\}$$

where $Q_a(x, y) = (x, y + a)$.

2.4 Theorem [K.Schmidt]

(i) Suppose that T_{ϕ} is conservative, then

$$\Pi(\phi) = \operatorname{Per}(\phi).$$

(ii) Suppose that T is invertible, then

$$E(\phi) = \operatorname{Per}(\phi).$$

Remark. (i) fails for some non-invertible T with T_{ϕ} dissipative

Proof of (i)

¶1 $\operatorname{Per}(\phi) \subset \Pi(\phi)$

Suppose $0 \neq a \notin \Pi(\phi)$, then $\exists 0 < \epsilon < d(0, a)$, and $A \in \mathcal{B}_+$ such that $m(A \cap T^{-n}A \cap [\|\phi_n - a\| < 2\epsilon]) = 0 \forall n \ge 1$.

For $z \in G \& \epsilon > 0$, set

$$B_z = \bigcup_{n \in \mathbb{N}} T_{\phi}^{-n} \bigg(A \times B_G(z, \epsilon) \bigg).$$

We have that $T_{\phi}^{-1}B_z \subset B_z$, whence by conservativity $T_{\phi}^{-1}B_z \stackrel{m}{=} B_z$. Moreover $1_{B_0} \circ Q_a = 1_{B_a}$.

To see that $a \notin Per(\phi)$, it suffices to prove that

$$m(B_0 \cap B_a) = 0.$$

This holds because $\forall n \in \mathbb{N}$,

$$(A \times B_G(0,\epsilon) \cap T_{\phi}^{-n}(A \times B_G(a,\epsilon))) \cup (A \times B_G(a,\epsilon) \cap T_{\phi}^{-n}(A \times B_G(0,\epsilon)))$$

$$\subset A \cap T^{-n}A \cap [\|\phi_n - a\| < 2\epsilon] \times G. \quad \not {\square} \P 1$$

¶2 $\Pi(\phi) \subset \operatorname{Per}(\phi)$

Now assume that $a \notin Per(\phi)$, then $\exists A, B \in \mathfrak{I}(T_{\phi})_{+}$ disjoint such that $B = Q_a A$. Set for $x \in X$,

$$A_x = \{ y \in G : (x, y) \in A \}$$

©Jon Aaronson 2003-2014

Note that

$$A_{Tx} = \{y \in G : (Tx, y) = T_{\phi}(x, y - \phi(x)) \in A\} = A_x + \phi(x),$$

whence $m_G(A_x) = m_G(A_{Tx})$, and by ergodicity, $m_G(A_x) = m \times m_G(A) > 0$ for *m*-a.e. $x \in X$.

Next, as in the proof of \Leftarrow in theorem 2.2:

- $\exists \theta \in \mathcal{B}(A)$ such that $0 < m_G(\theta_x) < \infty$ a.e.;
- $\exists \epsilon > 0 \text{ and } D \in \mathcal{B}(X)_+ \text{ such that}$

$$m_G(\theta_x \cap (\theta_y + t)) \ge \epsilon \ \forall \ x, y \in D, \ \|t\| < \epsilon.$$

Lastly, we show that $a \notin \Pi(\phi)$. This will follow from

$$D \cap T^{-n}D \cap \left[\left\| \phi_n(x) - a \right\| < \epsilon \right] = \emptyset \ \forall \ n \ge 1.$$

Indeed, supposing that $x, T^n x \in D$, we note that

$$\left(a+\theta_{T^nx}\right)\cap\left(\theta_x+\phi_n(x)\right)\subset B_{T^nx}\cap A_{T^nx}=\varnothing,$$

whence,

 $m_G(\theta_x \cap (\theta_{T^n x} + a - \phi_n(x))) = m_G((a + \theta_{T^n x}) \cap (\theta_x + \phi_n(x))) \le m_G(B_{T^n x} \cap A_{T^n x}) = 0$ and

$$\|\phi_n(x)-a\|\geq\epsilon.$$

Exercise 21: Essential values.

Let (X, \mathcal{B}, m, T) be an invertible NST and let $\phi : X \to \mathbb{G}$ be measurable (\mathbb{G} a LCAP group). Show that

(i) $E(\phi) = \Pi(\phi) \cup \{0\}$; (ii) $E(\phi) = Per(\phi)$.

Exercise 22: Dissipative exact example.

This is a counterexample to theorem 2.4 for dissipative, non-invertible skew products.

Let (X, \mathcal{B}, m, S) be an EPPT and let $f : X \to \mathbb{Z}$ be such that S_f is an ergodic, totally dissipative MPT (as in e.g. exercise 16).

Show that (i) $\Pi(f,S) = \emptyset$;

(ii) $\operatorname{Per}(f, S) = \mathbb{Z}$.

End of minicourse