COURSE NOTES ON MEASURE THEORY

JON AARONSON

Week \# 1
 §1 CLASSES OF SETS AND SET FUNCTIONS

Semi-rings. Let X be a set. A non-empty class $\mathcal{S} \subset 2^{X}$ is called a semi-ring if $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$ and $A \backslash B=\cup_{k=1}^{N} C_{k}$ where $N \in \mathbb{N}$ and $C_{1}, C_{2}, \ldots, C_{N} \in \mathcal{S}$ (disjoint).

Example: boxes in \mathbb{R}^{d}. A (d-dimensional) box is a Cartesian product of finite intervals,

$$
R=\prod_{k=1}^{d} I_{k}=\left\{x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}: x_{k} \in I_{k} \forall k\right\}
$$

where for each $1 \leq k \leq d, I_{k}$ is a finite interval. Let $\mathcal{S}=\mathcal{S}_{d}$ denote the collection of boxes in \mathbb{R}^{d}.

1.1 Proposition

\mathcal{S} is a semi-ring.

Proof

Evidently, if R, R^{\prime} are boxes then so is $R \cap R^{\prime}$. We show that if R, R^{\prime} are boxes then $R \backslash R^{\prime}$ is a finite, disjoint union of (at most $2 d$) boxes.

To see this write $R=\prod_{k=1}^{d} I_{k}$ and $R^{\prime}=\prod_{k=1}^{d} J_{k}$. Note that if I, J are intervals, then $I \backslash J$ is the disjoint union of at most two intervals. We obtain that

$$
R \backslash R^{\prime}=\left\{x \in R: x_{\ell} \notin J_{\ell} \text { for some } 1 \leq \ell \leq d\right\}=\bigcup_{\ell=1}^{d} A_{\ell}
$$

where $A_{\ell}:=\prod_{i=1}^{\ell-1} I_{i} \cap J_{i} \times I_{\ell} \backslash J_{\ell} \times \prod_{j=\ell+1}^{d} I_{j}$. Clearly, each A_{k} is the union of at most 2 disjoint boxes, and the $A_{\ell} \in \mathcal{A}(1 \leq \ell \leq d)$ are disjoint.

```
    These are notes of a course given in 2017.
1 week ~ 150 minutes.
Exercises are given at the end of each week's notes.
They are used in the notes without proof also to determine grades
for the course.
```

Thus

$$
R \backslash R^{\prime}=\bigcup_{\ell=1}^{d} A_{\ell}=\bigcup_{j=1}^{2 d} C_{k}
$$

where $C_{1}, \ldots, C_{2 d} \in \mathcal{S}$ are disjoint.

Semi-Algebras.

Let X be a set. A class $\mathcal{S} \subset 2^{X}$ is called a semi-algebra (of subsets of X) if

- $A, B \in \mathcal{S} \Rightarrow A \cap B \in \mathcal{S}$; and
$-C \in \mathcal{S} \Rightarrow X \backslash C=\cup_{k=1}^{N} C_{k}$ where $N \in \mathbb{N}$ and $C_{1}, C_{2}, \ldots, C_{N} \in \mathcal{S}$ (disjoint).

Remark.

The semi-ring of sub-boxes of a finite box in \mathbb{R}^{d} is a semi-algebra, but the semi-ring of all boxes in \mathbb{R}^{d} is not.

Cylinder sets in shift spaces.

Let S be a finite set, and let $X:=S^{\mathbb{N}}$. Given $N \geq 1, a_{1}, \ldots, a_{N} \in S$, define the cylinder

$$
\left[a_{1}, \ldots, a_{N}\right]:=\left\{x \in X: x_{i}=a_{i} \forall 1 \leq i \leq N\right\} .
$$

The length of the cylinder $C=\left[a_{1}, \ldots, a_{N}\right]$ is $\ell(C)=N$.

Proposition 1.2

$\mathcal{S}:=\{c y l i n d e r s\} \cup\{\varnothing\}$ is a semi-algebra.

Proof

Suppose that $a, b \in \mathcal{S}$. WLOG $\ell(a)=M \leq \ell(b)=N$ and

$$
a=\left[a_{1}, a_{2}, \ldots, a_{M}\right], \quad b=\left[b_{1}, b_{2}, \ldots, b_{N}\right] .
$$

If $\exists 1 \leq k \leq N$ with $a_{k} \neq b_{k}$, then

$$
a \cap b=\varnothing \in \mathcal{S}, a \backslash b=a, b \backslash a=b \in \mathcal{S} .
$$

Otherwise

$$
b=\left[a_{1}, \ldots, a_{M}, b_{M+1}, \ldots, b_{N}\right] \subset a
$$

whence

$$
a \cap b=b \in \mathcal{S}, b \backslash a=\varnothing \in \mathcal{S} \& a \backslash b=\varnothing \in \mathcal{S} \text { in case } M=N
$$

and in case $M<N$,

$$
a \backslash b=\bigcup_{c_{M+1}, \ldots, c_{N} \epsilon S,\left(c_{M+1}, \ldots, c_{N}\right) \neq\left(b_{M+1}, \ldots, b_{N}\right)}\left[a_{1}, \ldots, a_{M}, c_{M+1}, \ldots, c_{N}\right] . \square
$$

Rings and algebras. A non-empty class $\mathcal{R} \subset 2^{X}$ is called a ring if

$$
A, B \in \mathcal{R} \Rightarrow A \cup B, A \cap B, A \backslash B \in \mathcal{R}
$$

and an algebra (of subsets of X) if in addition, $X \in \mathcal{R}$. Note that any ring \mathcal{R} э \varnothing.

1.3 Intersection propositions

Let $\mathcal{C} \subset 2^{X}$ then:

$$
\mathcal{R}(\mathcal{C}):=\bigcap_{2^{x} \supset \mathcal{R} \supset \mathcal{C}} \text { a ring } \mathcal{R}
$$

is a ring (known as the ring generated by \mathfrak{R});

$$
\mathcal{A}(\mathcal{C}):=\bigcap_{2^{x} \supset \mathcal{A} \mathcal{C}} \text { an algebra }
$$

is an algebra (known as the algebra generated by \mathcal{C}).

Note that the ring generated by a semi-ring is an algebra iff the semiring is a semi-algebra.

- Is it true that if $\mathcal{R} \subset 2^{X}$ is a ring, then

$$
\mathcal{A}(\mathcal{R})=\mathcal{R} \cup\{X \backslash A: A \in \mathcal{R}\} ?
$$

1.4 Theorem (ring generated by a semi-ring)

Suppose that $\mathcal{S} \subset 2^{X}$ is a semi-ring, then:

$$
\mathcal{R}(\mathcal{S})=\left\{\bigcup_{k=1}^{n} C_{k}: n \in \mathbb{N}, C_{1}, \ldots, C_{n} \in \mathcal{S} \text { disjoint }\right\} .
$$

Proof

Write

$$
\mathcal{R}_{0}:=\left\{\bigcup_{k=1}^{n} C_{k}: n \in \mathbb{N}, C_{1}, \ldots, C_{n} \in \mathcal{S} \text { disjoint }\right\} .
$$

Since $\mathcal{R}(\mathcal{S})$ is a ring containing \mathcal{S}, we have that $\mathcal{R}(\mathcal{S}) \supset \mathcal{R}_{0}$. To show equality, we prove that \mathcal{R}_{0} is a ring. It is evident that \mathcal{R}_{0} is closed under intersection and disjoint union.
11 If $A, B \in \mathcal{R}_{0}$, then $A \backslash B \in \mathcal{R}_{0}$.
It follows from the semi-ring property that $A \backslash C \in \mathcal{R}_{0} \forall A \in \mathcal{R}_{0}$ and $C \in \mathcal{S}$. Suppose that $A, B \in \mathcal{R}_{0}$ and that $B=\bigcup_{k=1}^{n} C_{k}$ where $\left\{C_{k}\right\}_{k=1}^{n} \subset \mathcal{S}$. We have that
$A \backslash C_{1} \in \mathcal{R}_{0} \Longrightarrow A \backslash C_{1} \backslash C_{2} \in \mathcal{R}_{0} \Longrightarrow \ldots \Longrightarrow A \backslash C_{1} \backslash \cdots \backslash C_{n}=A \backslash B \in \mathcal{R}_{0}$.
I2 If $A, B \in \mathcal{R}_{0}$, then $A \cup B \in \mathcal{R}_{0}$.
Here $A \cup B=(A \backslash B) \cup B$ a disjoint union of sets in \mathcal{R}_{0}.

Finite subcover property.

Let \mathcal{S} be a semi-ring of subsets of X. We'll say that \mathcal{S} has the finite subcover property (FSCP) if
(ヵ)

$$
\begin{aligned}
A, A_{1}, A_{2} & , \cdots \in \mathcal{S}, A \subset \bigcup_{n=1}^{\infty} A_{n} \\
& \Longrightarrow \exists N \in \mathbb{N} \text { so that } A \subset \bigcup_{n=1}^{N} A_{n}
\end{aligned}
$$

Clopen set proposition If X is a compact, topological space and $\mathcal{S} \subset c l o p e n ~ s e t s, ~ t h e n ~ \mathcal{S}$ has the finite subcover property.

Proof This follows from the Heine-Borel theorem.

Example 1. Products of finite spaces.

Let $\Omega=\prod_{k=1}^{\infty} S_{k}$ where each S_{k} is finite.
As above, a cylinder is a set of form

$$
\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left\{x \in \Omega: x_{k}=a_{k} \forall 1 \leq k \leq n\right\}
$$

where $a_{1} \in S_{1}, a_{2} \in S_{2}, \ldots, a_{n} \in S_{n}$. Also as above, the collection

$$
\mathcal{S}:=\{\text { cylinders }\}
$$

is a semi-algebra. We'll show
() \mathcal{S} has the finite subcover property.

Proof of $;$

Define $d: \Omega \times \Omega \rightarrow[0, \infty)$ by

$$
d(x, y):=\left\{\begin{array}{l}
0 \quad x=y \\
\frac{1}{2^{t(x, y)}} \quad x \neq y .
\end{array}\right.
$$

where $t(x, y):=\min \left\{n \geq 1: x_{n} \neq y_{n}\right\}$.
It is not hard to show that (Ω, d) is a metric space, and that the closed ball

$$
B\left(x, \frac{1}{2^{n+1}}\right)=\left[x_{1}, \ldots, x_{n}\right] .
$$

Thus, if C is a cylinder then C is closed with

$$
d-\operatorname{diam} C=\frac{1}{2^{\ell(C)+1}}
$$

Note that cylinders are also open (clopen):

$$
\Omega \backslash\left[c_{1}, \ldots, c_{N}\right]=\bigcup_{a_{1} \in S_{1}, \ldots, a_{N} \in S_{N}} \bigcup_{\left(a_{1}, \ldots, a_{N}\right) \neq\left(c_{1}, \ldots, c_{N}\right)}\left[a_{1}, \ldots, a_{N}\right]
$$

is closed being a finite union of closed balls.

To complete the proof of \odot, it suffices to show that (Ω, d) is a compact metric space.

To see this, let $\left(x^{(k)}\right)_{k \geq 1}$ be a sequence in Ω. We'll show existence of a convergent subsequence.

There is a subsequence $n_{1}(1)<n_{2}(1) \uparrow \infty$ and $a_{1} \in S_{1}$ so that $x_{1}^{\left(n_{k}(1)\right)}=a_{1} \quad \forall k \leq 1$.

There is also a subsequence $n_{1}(2)<n_{2}(2) \uparrow \infty$ of $n_{1}(1)<n_{2}(1) \uparrow \infty$ and $a_{2} \in S_{2}$ so that $x_{j}^{\left(n_{k}(2)\right)}=a_{j} \forall k \leq 1, j=1,2$.

Continuing, we obtain a sequence of subsequences (each a subsequence of the previous) $n_{1}(k)<n_{2}(k) \uparrow \infty \quad(k \geq 1)$ and $a_{1} \in S_{1}, a_{2} \in$ $S_{2}, \ldots a_{n} \in S_{n}, \ldots$ so that $x_{j}^{\left(n_{k}(\ell)\right)}=a_{j} \forall k \leq 1,1 \leq j \leq \ell$.

Now diagonalize and set $N_{\ell}=n_{\ell}(\ell)$, then

$$
x_{j}^{\left(N_{\ell}\right)}=a_{j} \forall 1 \leq j \leq \ell .
$$

It follows that $t\left(x^{\left(N_{\ell}\right)}, a\right) \geq \ell+1$ where $a:=\left(a_{1}, a_{2}, \ldots\right) \in S$ whence $d\left(x^{\left(N_{\ell}\right)}, a\right) \leq \frac{1}{2^{l+1}} \xrightarrow[\ell \rightarrow \infty]{\longrightarrow} 0 . \nabla$

Example 2. Products of countable spaces.

Here, we exhibit an algebra of subsets of $X:=\mathbb{N}^{\mathbb{N}}$ with the finite subcover property.

Let

$$
\mathcal{A}_{\mathbb{N}}:=\{F, \mathbb{N} \backslash F: F \subset \mathbb{N} \backslash\{1\}, \#(F)<\infty\}
$$

then $\mathcal{A}_{\mathbb{N}}$ is an algebra.
An $\mathcal{A}_{\mathbb{N}^{-}}$cylinder in $\mathbb{N}^{\mathbb{N}}$ is a set of form

$$
\left[A_{1}, A_{2}, \ldots, A_{N}\right]:=\left\{x \in \mathbb{N}^{\mathbb{N}}: x_{i} \in A_{i} \forall 1 \leq i \leq N\right\}
$$

where $A_{1}, A_{2}, \ldots, A_{N} \in \mathcal{A}_{\mathbb{N}}$.
Denote

$$
\mathcal{A}:=\left\{\mathcal{A}_{\mathbb{N}^{-}} \text {cylinders }\right\} .
$$

As above, \mathcal{A} is an algebra. We claim that
(-) \mathcal{A} has the finite subcover property.
Proof of © We construct a suitable compact topology on $\mathbb{N}^{\mathbb{N}}$.
Define $d: \mathbb{N} \times \mathbb{N} \rightarrow[0, \infty)$ by

$$
d(x, y):= \begin{cases}0 & x=y \\ 1 & x \neq y, x, y \geq 2 \\ \frac{1}{y} & x \neq y, x=1\end{cases}
$$

then (\mathbb{N}, d) is a compact, metric space.
Define the product metric $\rho: \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}} \rightarrow[0, \infty)$ by

$$
\rho(x, y):=\sum_{k=1}^{\infty} \frac{d\left(x_{k}, y_{k}\right)}{2^{k}},
$$

then $\left(\mathbb{N}^{\mathbb{N}}, \rho\right)$ is a compact, metric space and the collection \mathcal{A} is an algebra of compect, open subsets of $\mathbb{N}^{\mathbb{N}}$. Thus \mathcal{A} has the finite subcover property.

$\S 2$ Additive set functions

Let \mathcal{S} be a semi-ring. A set function $f: \mathcal{S} \rightarrow \mathbb{R}$ is additive if

$$
C, C_{1}, C_{2}, \ldots, C_{N} \in \mathcal{S}, C=\cup_{k=1}^{N} C_{k} \Rightarrow f(C)=\sum_{k=1}^{N} f\left(C_{k}\right) .
$$

Example: Volume in \mathbb{R}^{d}.

Let \mathcal{S} be the semi-ring of boxes in \mathbb{R}^{d}, and define $v: \mathcal{S} \rightarrow \mathbb{R}$ by $v\left(\prod_{k=1}^{d} I_{k}\right):=\prod_{k=1}^{d}\left|I_{k}\right|$ where $|I|$ denotes the length of I.

1.5 Proposition

The set function $v: \mathcal{S} \rightarrow \mathbb{R}$ is additive.

Proof For $A \subset \mathbb{R}^{d}$ and $\varepsilon>0$ let $N_{\varepsilon}^{(d)}(A):=\#\left(\left\{\underline{n} \in \mathbb{Z}^{d}: \varepsilon \underline{n} \in A\right\}\right)$.
Evidently, $N_{\varepsilon}^{(d)}: 2^{\mathbb{R}^{d}} \rightarrow[0, \infty]$ is additive:

$$
N_{\varepsilon}^{(d)}\left(\bigcup_{k=1}^{N} A_{k}\right)=\sum_{k=1}^{N} N_{\varepsilon}^{(d)}\left(A_{k}\right) .
$$

Also, for $\prod_{k=1}^{d} I_{k} \subset \mathbb{R}^{d}$ a box,

$$
\begin{equation*}
N_{\varepsilon}^{(d)}\left(\prod_{k=1}^{d} I_{k}\right)=\prod_{k=1}^{d} N_{\varepsilon}^{(1)}\left(I_{k}\right) \tag{8}
\end{equation*}
$$

Proof of ((0)):

$$
\left\{\underline{n} \in \mathbb{Z}^{d}: \varepsilon \underline{n} \in \prod_{k=1}^{d} I_{k}\right\}=\prod_{k=1}^{d}\left\{n \in \mathbb{Z}: \varepsilon n \in I_{k}\right\}
$$

whence (8)). \square
We claim next that
()

$$
\varepsilon^{d} N_{\varepsilon}^{(d)}(R) \underset{\varepsilon \rightarrow 0+}{\longrightarrow} v(R)
$$

Proof By (s)) it suffices to prove (or for $d=1$.

$$
\begin{aligned}
N_{\varepsilon}^{(1)}([a, b])= & \left\lfloor\frac{b}{\varepsilon}\right\rfloor-\left\lceil\frac{a}{\varepsilon}\right\rceil+1 \sim \frac{b-a}{\varepsilon} \text { as } \varepsilon \rightarrow 0 \text { whence for } I \subset \mathbb{R}, \bar{I}=[a, b] \\
& \varepsilon N_{\varepsilon}^{(1)}(I) \leq \varepsilon N_{\varepsilon}^{(1)}([a, b]) \underset{\varepsilon \rightarrow 0+}{\longrightarrow} b-a=|I|
\end{aligned}
$$

and $\forall 0<\delta<\frac{|I|}{2}$,

$$
\varepsilon N_{\varepsilon}^{(1)}(I) \geq \varepsilon N_{\varepsilon}^{(1)}([a+\delta, b-\delta]) \underset{\varepsilon \rightarrow 0+}{\longrightarrow} b-a-2 \delta=|I|-2 \delta . \quad \not \subset()
$$

Now suppose that $R, R_{1}, R_{2}, \ldots, R_{N} \in \mathcal{S}, R=\cup_{k=1}^{N} R_{k}$, then by (\boxtimes) and (o),

$$
v(R) \underset{\varepsilon \rightarrow 0+}{\leftrightarrows} \varepsilon^{d} N_{\varepsilon}(R)=\sum_{k=1}^{N} \varepsilon^{d} N_{\varepsilon}\left(R_{k}\right) \underset{\varepsilon \rightarrow 0+}{\longrightarrow} \sum_{k=1}^{N} v\left(R_{k}\right) \cdot \not \square
$$

Bernoulli set functions on shift space.

Let S be a finite set, $X=S^{\mathbb{N}} \& \mathcal{S}=\{$ cylinders $\}$. Fix $p_{j} \in \mathcal{P}(S)(j \geq$ $1)$ and define $\mu: \mathcal{S} \rightarrow[0,1]$ by

$$
\mu\left(\left[a_{1}, a_{2}, \ldots, a_{N}\right]\right):=\prod_{j=1}^{N} p_{j}\left(a_{j}\right) .
$$

1.6 Proposition $\mu: \mathcal{S} \rightarrow[0,1]$ is additive.

Proof

Let $\mathcal{S}_{n}:=\{C \in \mathcal{S}: \ell(C)=n\}$, then $\mathcal{A}_{n}:=\mathcal{A}\left(\mathcal{S}_{n}\right) \uparrow \mathcal{A}:=\mathcal{A}(\mathcal{S})$.
For $n \geq 1$,

$$
\mathcal{A}_{n}=\left\{\bigcup_{j=1}^{N} C_{j}: N \in \mathbb{N}, C_{1}, \ldots, C_{N} \in \mathcal{S}_{n} \text { are disjoint }\right\}
$$

and we can define $\mu_{n}: \mathcal{A}_{n} \rightarrow[0,1]$ by

$$
\mu_{n}(A):=\sum_{C \in \mathcal{S}_{n}, A \supset C} \mu(C) .
$$

Evidently $\mu_{n}: \mathcal{A}_{n} \rightarrow[0,1]$ is additive.
Next, for $k \leq n$ we have that $\mathcal{S}_{k} \subset \mathcal{A}_{n}$ and we claim that $\left.\mu_{n}\right|_{\mathcal{S}_{k}} \equiv \mu$.
To see this:

$$
\begin{aligned}
\mu_{n}\left(\left[c_{1}, \ldots, c_{k}\right]\right) & =\sum_{a_{k+1}, \ldots, a_{n} \in S} \mu\left(\left[c_{1}, \ldots, c_{k}, a_{k+1}, \ldots, a_{n}\right]\right) \\
& =\sum_{a_{k+1}, \ldots, a_{n} \in S} \mu\left(\left[c_{1}, \ldots, c_{k}\right]\right) \prod_{j=k+1}^{n} p_{j}\left(a_{j}\right) \\
& =\mu\left(\left[c_{1}, \ldots, c_{k}\right]\right) .
\end{aligned}
$$

To finish, suppose that $I=\uplus_{C \in \mathcal{C}}^{N} C$ where $I \in \mathcal{S} \& \mathcal{C} \subset \mathcal{S}$ is a finite disjoint collection. We must show that

$$
\sum_{C \in \mathcal{C}} \mu(C)=\mu(I)
$$

Suppose that $n \geq 1$ is larger than the lengths of I and all the $C \in \mathcal{C}$, then $\mathcal{C} \subset \mathcal{A}_{n}$ and using $\mu_{n} \mid \mathcal{S}_{k} \equiv \mu$ for $k \leq n$:

$$
\begin{aligned}
\mu(I) & =\mu_{n}(I) \\
& =\sum_{C \in \mathcal{C}} \mu_{n}(C) \\
& =\sum_{C \in \mathcal{C}} \mu(C) .
\end{aligned}
$$

1.7 Ring extension proposition

Suppose that $\mathcal{S} \subset 2^{X}$ is a semi-ring and that $f: \mathcal{S} \rightarrow \mathbb{R}$ is additive, then there is an additive set function $F: \mathcal{R}(\mathcal{S}) \rightarrow \mathbb{R}$ such that $\left.F\right|_{\mathcal{S}} \equiv f$.

Proof Using additivity of f :
if $A \in \mathcal{R}(\mathcal{S})$ and

$$
A=\biguplus_{k=1}^{m} R_{k}=\biguplus_{k=1}^{n} R_{k}^{\prime}
$$

where $\left\{R_{k}\right\}_{k=1}^{m},\left\{R_{k}^{\prime}\right\}_{k=1}^{n} \subset \mathcal{S}$ are both disjoint collections, then

$$
\sum_{k=1}^{m} f\left(R_{k}\right)=\sum_{k=1}^{m} \sum_{\ell=1}^{n} f\left(R_{k} \cap R_{\ell}^{\prime}\right)=\sum_{\ell=1}^{n} f\left(R_{\ell}^{\prime}\right) .
$$

Using the representation of $\mathcal{R}(\mathcal{S})$ in theorem 1.4, $\exists F: \mathcal{R}(\mathcal{S}) \rightarrow \mathbb{R}$ defined by

$$
F\left(\biguplus_{k=1}^{m} R_{k}\right):=\sum_{k=1}^{m} f\left(R_{k}\right) .
$$

Evidently, F is additive and $\left.F\right|_{\mathcal{S}} \equiv f$. \square

Total variation.

Let X be a set and let $\mathcal{A} \subset 2^{X}$ be an algebra. The total variation of the additive set function $\mu: \mathcal{A} \rightarrow \mathbb{R}$ is
$\|\mu\|:=\sup \left\{\sum_{k=1}^{N}\left|\mu\left(A_{k}\right)\right|: N \in \mathbb{N}, A_{1}, A_{2}, \ldots, A_{N} \in \mathcal{A}\right.$ disjoint, $\left.X=\bigcup_{k=1}^{N} A_{k}\right\} \leq \infty$.

Example. Let $X=[0,1]$ and let \mathcal{S} be the semi-algebra of subintervals. Given $f: X \rightarrow \mathbb{R}$ continuous and $I \in \mathcal{S}$, define $\mu(I):=f(b)-f(a)$ where $\bar{I}=[a, b]$, then $f: \mathcal{S} \rightarrow \mathbb{R}$ is additive and

$$
\|\mu\|=\bigvee_{0}^{1} f:=\sup \left\{\sum_{k=0}^{n-1}\left|f\left(t_{k+1}\right)-f\left(t_{k}\right)\right|: 0=t_{0}<t_{1}<t_{2}<\cdots<t_{n}=1\right\} .
$$

Jordan decomposition theorem If $\mu: \mathcal{A} \rightarrow \mathbb{R}$ is additive and $\|\mu\|<$ ∞, then \exists positive, additive set functions $\mu_{+}, \mu_{-}: \mathcal{A} \rightarrow[0, \infty)$ so that $\mu=\mu_{+}-\mu_{-}$.

Proof

Define $m=m_{\mu}: \mathcal{A} \rightarrow[0, \infty]$ by

$$
m(A)=\sup \left\{\sum_{n=1}^{N}\left|\mu\left(A_{n}\right)\right|: A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{B} \text { disjoint, } A=\bigcup_{n=1}^{N} A_{n}\right\},
$$

then $m(A) \leq m(X)=\|\mu\|<\infty \forall A \in \mathcal{A}$.
I We show that $m: \mathcal{A} \rightarrow[0, \infty)$ is additive.
To see this, let $A=\cup_{n=1}^{N} A_{n}$ where $A, A_{1}, A_{2}, \ldots, A_{N} \in \mathcal{A}$ and $A_{n}(1 \leq$ $n \leq N)$ are disjoint.

Suppose $t_{n}<m\left(A_{n}\right)$, then, $\forall 1 \leq n \leq N, A_{n}=\cup_{k=1}^{J_{n}} A_{n, k}$ where $A_{n, k} \in \mathcal{B}, A_{n, k} \quad\left(1 \leq k \leq J_{n}\right)$ are disjoint, and $\sum_{k=1}^{J_{n}}\left|\mu\left(A_{n, k}\right)\right|>t_{n}$. It follows that

$$
A=\bigcup_{1 \leq n \leq N, 1 \leq k \leq J_{n}} A_{n, k},
$$

whence

$$
\begin{aligned}
m(A) & \geq \sum_{1 \leq n \leq N, 1 \leq k \leq J_{n}}\left|\mu\left(A_{n, k}\right)\right| \\
& =\sum_{1 \leq n \leq N}\left(\sum_{1 \leq k \leq J_{n}}\left|\mu\left(A_{n, k}\right)\right|\right) \\
& >\sum_{n=1}^{N} t_{n} .
\end{aligned}
$$

Therefore $m(A) \geq \sum_{n=1}^{N} m\left(A_{n}\right)$.
To obtain the reverse inequality, suppose $A=\bigcup_{k=1}^{K} E_{k}$ where $E_{k} \in \mathcal{A}$ and $E_{k}(1 \leq n \leq N)$ are disjoint. Then
$\sum_{k=1}^{K}\left|\mu\left(E_{k}\right)\right| \leq \sum_{n=1}^{N} \sum_{k=1}^{K}\left|\mu\left(E_{k} \cap A_{N}\right)\right| \leq \sum_{n=1}^{N} m\left(A_{n}\right), \therefore m(A) \leq \sum_{n=1}^{N} m\left(A_{n}\right) . \nabla \mathbb{I}$
Now define $\mu_{ \pm}:=\frac{m_{ \pm \mu}}{2}: \mathcal{A} \rightarrow \mathbb{R}$. These are additive, and non-negative and

$$
\mu=\mu_{+}-\mu_{-} . \quad \square
$$

$\S 3$ Countable Subadditivity

Let $\mathcal{D} \subset 2^{X}$. The set function $\mu: \mathcal{D} \rightarrow[0, \infty)$ is:

- finitely subadditive if

$$
A, A_{1}, \ldots, A_{N} \in \mathcal{D}, A \subset \bigcup_{k=1}^{N} A_{k} \Longrightarrow \mu(A) \leq \sum_{k=1}^{N} \mu\left(A_{k}\right)
$$

- countable subadditive (or σ-subadditive) if

$$
A, A_{1}, A_{2}, \cdots \in \mathcal{D}, A \subset \bigcup_{k=1}^{\infty} A_{k} \Longrightarrow \mu(A) \leq \sum_{k=1}^{\infty} \mu\left(A_{k}\right) ;
$$

1.8 Lemma (addivity \Rightarrow finite subadditiivty) If $\mathcal{S} \subset 2^{X}$ is a semi-algebra, and $\mu: \mathcal{S} \rightarrow[0, \infty)$ is additive, then it is finitely subadditive.

Proof Let $\mathcal{A}:=\mathcal{A}(\mathcal{S})$ and $\widetilde{\mu}: \mathcal{A} \rightarrow[0, \infty)$ be additive so that $\left.\widetilde{\mu}\right|_{\mathcal{S}} \equiv \mu$ (as in proposition 1.7). Additivity \Rightarrow monotonicity i.e.

$$
A, B \in \mathcal{A}, A \subset B \Longrightarrow \widetilde{\mu}(B)=\widetilde{\mu}(A)+\widetilde{\mu}(B \backslash A) \geq \widetilde{\mu}(A)
$$

Now suppose that

$$
A, A_{1}, \ldots, A_{N} \in \mathcal{S} \quad \& \quad A \subset \bigcup_{k=1}^{N} A_{k}
$$

Let

$$
B_{1}=A_{1}, \quad B_{k}:=A_{k} \backslash \bigcup_{j=1}^{k-1} A_{j}(2 \leq k \leq N),
$$

then

$$
B_{1}, \ldots, B_{N} \in \mathcal{A} \& \bigcup_{k=1}^{N} A_{k}=\bigcup_{k=1}^{N} B_{k}
$$

Thus

$$
\begin{aligned}
\mu(A) & =\widetilde{\mu}(A) \leq \widetilde{\mu}\left(\bigcup_{k=1}^{N} A_{k}\right)=\widetilde{\mu}\left(\biguplus_{k=1}^{N} B_{k}\right) \\
& =\sum_{k=1}^{N} \widetilde{\mu}\left(B_{k}\right) \leq \sum_{k=1}^{N} \widetilde{\mu}\left(A_{k}\right)=\sum_{k=1}^{N} \mu\left(A_{k}\right) . \not \square
\end{aligned}
$$

1.9 Proposition finite subcover property \& σ-subadditivity Let \mathcal{C} be a semi-ring of subsets of X with the finite subcover property. Any additive $\mu: \mathcal{C} \rightarrow[0, \infty)$ is countable subadditive.

Proof Suppose that $C, C_{1}, C_{2}, \cdots \in \mathcal{S}$ and $C \cong \bigcup_{j \geq 1} C_{j}$. By assumption, $\exists N \geq 1$ so that $C \cong \cup_{j=1}^{N} C_{j}$ and by finite subadditivity,

$$
\mu(C) \leq \sum_{j=1}^{N} \mu\left(C_{j}\right) \leq \sum_{j=1}^{\infty} \mu\left(C_{j}\right) .
$$

1.10 Example additivity \Rightarrow countable subadditivity.

Let $X:=\mathbb{Q} \cap[0,1]), \mathcal{Q}:=\{R \cap \mathbb{Q}: R \in \mathcal{S}([0,1])\}$ and define $w: \mathcal{Q} \rightarrow$ $[0,1]$ by $w(R \cap \mathbb{Q}):=|R|$ (the length of $R)$, then \mathcal{Q} is a semi-algebra and w is additive. But w is not countable subadditive since X is countable.

To see this, write $X=\left\{q_{n}: n \geq 1\right\} \& I_{n}:=\left\{q_{n}\right\}$, then $I_{n}=\left[q_{n}, q_{n}\right] \in$ $\mathcal{Q}, w\left(I_{n}\right)=0$ and
$X=\bigcup_{n=1}^{\infty} I_{n}$ but $w(X)=1 \& \sum_{n=1}^{\infty} w\left(I_{n}\right)=0$.
1.11 Proposition: countable subadditivity of volume on \mathbb{R}^{d}

Let B be a box and let $\mathcal{S}=\mathcal{S}(B)$ be the semi-algebra of sub-boxes of B, and let $\mu(R)=|R|$ as before, then $\mu: \mathcal{S} \rightarrow[0, \infty)$ is countable subadditive.

Remark. $\mathcal{S}(B)$ does not have the finite subcover property.

Proof

Suppose that $R, R_{1}, R_{2}, \cdots \in \mathcal{S}$ and that $R \subset \bigcup_{n=1}^{\infty} R_{n}$. Fix $\varepsilon>0$. For each $n \geq 1, \exists$ an open box $R_{n}^{\prime} \supseteq R_{n}$ so that $\mu\left(R_{n}^{\prime}\right)<\mu\left(R_{n}\right)+\frac{\varepsilon}{2^{2}}$, and \exists a compact box $R^{\prime} \subseteq R$ so that $\mu\left(R^{\prime}\right)>\mu(R)-\varepsilon$. Evidently, $R^{\prime} \subset \bigcup_{n=1}^{\infty} R_{n}^{\prime}$ so that $\left\{R_{n}^{\prime}: n \geq 1\right\}$ is an open cover of the compact R^{\prime}. Thus $\exists N \geq 1$ so that $R^{\prime} \subset \bigcup_{n=1}^{N} R_{n}^{\prime}$. By finite subadditivity, $\mu\left(R^{\prime}\right) \leq \sum_{n=1}^{N} \mu\left(R_{n}^{\prime}\right)$, whence
$\mu(R) \leq \mu\left(R^{\prime}\right)+\varepsilon \leq \sum_{n=1}^{N} \mu\left(R_{n}^{\prime}\right)+\varepsilon \leq \sum_{n=1}^{N}\left(\mu\left(R_{n}\right)+\frac{\varepsilon}{2^{n}}\right)+\varepsilon \leq \sum_{n=1}^{\infty} \mu\left(R_{n}\right)+2 \varepsilon$.

ExErcise N으 1

1. Product spaces and cylinder sets. Let $\left\{X_{\lambda}: \lambda \in \Lambda\right\}$ be a collection of sets. Set

$$
X=\prod_{\lambda \in \Lambda} X_{\lambda}:=\left\{x: \Lambda \rightarrow \bigcup_{\lambda \in \Lambda} X_{\lambda}: x(\lambda) \in X_{\lambda} \forall \lambda \in \Lambda\right\} .
$$

Given $N \in \mathbb{N}, \lambda_{i} \in \Lambda, A_{i} \subset X_{\lambda_{i}}(1 \leq i \leq N)$ define the cylinder set

$$
\left[A_{1}, \ldots, A_{N}\right]_{\lambda_{1}, \ldots, \lambda_{N}}:=\left\{x \in X: x\left(\lambda_{i}\right) \in A_{i} \forall 1 \leq i \leq N\right\} .
$$

Suppose that for each $\lambda \in \Lambda, \mathcal{S}_{\lambda} \subset 2^{X_{\lambda}}$ and let

$$
\mathcal{S}:=\left\{\left[A_{1}, \ldots, A_{N}\right]_{\lambda_{1}, \ldots, \lambda_{N}}: N \in \mathbb{N}, \lambda_{i} \in \Lambda, A_{i} \in \mathcal{S}_{\lambda_{i}}(1 \leq i \leq N)\right\} \subset 2^{X} .
$$

Show that if for each $\lambda \in \Lambda, \mathcal{S}_{\lambda}$ is a semi-algebra, then \mathcal{S} is a semialgebra and that if in addition, for each $\lambda \in \Lambda, \mathcal{S}_{\lambda}$ has the finite subcover property, then so does \mathcal{S}.

2. Additive set functions on S^{Λ}.

Let S be a finite set, Λ be a set and let $X:=S^{\Lambda}$.
A cylinder set is a set of form

$$
\{x \in X: x(i)=a(i) \forall i \in F\}=:[a]_{F}
$$

where $F \subset \Lambda$ finite and $a \in S^{F}$. Let $\mathcal{S}=\{$ cylinders $\}$.
(i) Suppose that $\left[a_{i}\right]_{F_{i}} \in \mathcal{S} \quad(1 \leq i \leq N)$ are disjoint and that C := $\cup_{i=1}^{N}\left[a_{i}\right]_{F_{i}} \in \mathcal{S}$. Show that $\exists G \subset S^{F}$ (where $F:=\bigcup_{i=1}^{N} F_{i}$) so that $C=\cup_{g \in G}[g]_{F}$.
Now suppose that $\mu: \mathcal{S} \rightarrow[0, \infty)$ satisfies
$(+) \quad \sum_{s \in S} \mu\left(\left[a_{1}, \ldots, a_{N}, s\right]_{\lambda_{1}, \ldots, \lambda_{N}, \lambda}\right)=\mu\left(\left[a_{1}, \ldots, a_{N}\right]_{\lambda_{1}, \ldots, \lambda_{N}}\right)$.
(ii) Show that if $F \subset \Lambda$ is finite, $G \subset S^{F}$ and $C:=\cup_{g \in G}[g]_{F} \in \mathcal{S}$, then $\mu(C)=\sum_{g \in G} \mu\left([g]_{F}\right)$.
(iii) Using (i) and (ii) (or otherwise) show that $\mu: \mathcal{S} \rightarrow[0, \infty$) is additive.

3. Stieltjes set functions.

Let $R \subset \mathbb{R}$ be a closed, bounded interval and let $\mathcal{S}=\mathcal{S}(R)$ be the semi-algebra of sub-intervals of R.
(a) Given $F: R \rightarrow \mathbb{R}$ non-decreasing define $\nu_{F}: \mathcal{S} \rightarrow \mathbb{R}$ as follows. Given $I \in \mathcal{S}, \bar{I}=[a, b]$, set

$$
\nu_{F}(I)= \begin{cases}F(b+)-F(a-) & I=[a, b], \\ F(b+)-F(a+) & I=(a, b], \\ F(b-)-F(a-) & I=[a, b), \\ F(b-)-F(a+) & I=(a, b)\end{cases}
$$

where

$$
F(x+):=\lim _{y \rightarrow x, y>x} F(y) \& F(x-):=\lim _{y \rightarrow x, y<x} F(y) .
$$

Show that $\nu_{F}: \mathcal{S} \rightarrow[0,1]$ is additive and countable subadditive.
(b) Does \mathcal{S} have the FSCP?

4. Finitely additive \& infinite total variation?

Let $X:=\mathbb{R}_{+}$and let \mathcal{A} be the algebra generated by finite intervals. Let $f: X \rightarrow \mathbb{R}$ be unformly continuous so that $\exists \lim _{R \rightarrow \infty} \int_{0}^{R} f(x) d x \in \mathbb{R}$. Here \int denotes the Riemann integral.
(i) Show that for $A \in \mathcal{A}, \exists \lim _{R \rightarrow \infty} \int_{A \cap[0, R]} f(x) d x=: \mu(A)$ and that $\mu: \mathcal{A} \rightarrow \mathbb{R}$ is additive.
(ii) Show that $\|\mu\|=\lim _{R \rightarrow \infty} \int_{0}^{R}|f(x)| d x$.

5. Countably infinite σ-algebras?

Is there a set X and a σ-algebra $\mathcal{B} \subset 2^{X}$ which is countably infinite?

Week \# 2

Monotone classes, σ-Algebras and measures
Let X be a set. A class \mathfrak{M} of subsets of X is called a monotone class if

$$
A_{n} \in \mathfrak{M}(n \geq 1), A_{n} \xrightarrow{\text { mon }} A \Rightarrow A \in \mathfrak{M} .
$$

Here $A_{n} \xrightarrow{\text { mon }} A$ means
either $A_{n} \uparrow A$ i.e. $A_{n} \subset A_{n+1} \& A=\bigcup_{n=1}^{\infty} A_{n}$;
or $A_{n} \downarrow A$ i.e. $A_{n} \supset A_{n+1} \& A=\bigcap_{n=1}^{\infty} A_{n}$.
An algebra $\mathcal{B} \subset 2^{X}$ is called a σ-algebra if in addition

$$
A_{n} \in \mathcal{B}(n \geq 1) \Rightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathcal{B}
$$

Evidently a σ-algebra is also a monotone class, and an algebra which is a monotone class is also a σ-algebra.

2.1 Intersection proposition

Let $\Re \subset 2^{X}$ then:

$$
\mathfrak{M}(\mathfrak{R}):=\bigcap_{\mathfrak{M} \mathfrak{R}} \text { a monotone class } \mathfrak{M}
$$

is a monotone class (known as the monotone class generated by $\mathfrak{R})$;

$$
\sigma(\mathfrak{R}):=\bigcap_{\mathfrak{B} \supseteq \mathfrak{R}} \quad \bigcap_{\sigma \text {-algebra }} \mathfrak{B}
$$

is a σ-algebra (known as the σ-algebra generated by \mathfrak{R});

2.2 Monotone Class Theorem

Let \mathcal{A} be an algebra of subsets of X, then

$$
\mathfrak{M}(\mathcal{A})=\sigma(\mathcal{A})
$$

Proof

Evidently $\mathfrak{M}(\mathcal{A}) \subset \sigma(\mathcal{A})$ as $\sigma(\mathcal{A})$ is a monotone class.
It suffices to show that $\mathfrak{M}(\mathcal{A})$ is an algebra, for then (being a monotone class) it is a σ-algebra and $\mathfrak{M}(\mathcal{A}) \supset \sigma(\mathcal{A})$.

To see this fix any $F \subset X$ set

$$
\mathcal{L}(F)=\left\{E \subset X: E \cup F, E \cap F, E \cap F^{c}, E^{c} \cap F \in \mathfrak{M}(\mathcal{A})\right\} .
$$

It follows that

- $E \in \mathcal{L}(F)$ iff $F \in \mathcal{L}(E)$;
- if $\mathcal{L}(F) \neq \varnothing$, then $\mathcal{L}(F)$ is a monotone class;
- $\mathcal{L}(A) \supset \mathfrak{M}(\mathcal{A}) \forall A \in \mathcal{A}$;
- $\mathcal{L}(A) \supset \mathfrak{M}(\mathcal{A}) \forall A \in \mathfrak{M}(\mathcal{A})$;
- $\mathfrak{M}(\mathcal{A})$ is an algebra.

Let \mathcal{A} be an algebra of subsets of X. The function $\nu: \sigma(\mathcal{A}) \rightarrow \mathbb{R}$ is σ-additive if it is additive and

$$
A_{n} \in \sigma(A), A_{n} \uparrow A \Longrightarrow \nu\left(A_{n}\right) \rightarrow \nu(A) .
$$

From this we obtain (!) that

$$
A_{n} \in \sigma(A), A_{n} \downarrow A \Longrightarrow \nu\left(A_{n}\right) \rightarrow \nu(A) .
$$

2.3 Proposition (Unicity of extension)

Let X be a set, let \mathcal{A} be an algebra of subsets of X, and let μ_{i} : $\sigma(\mathcal{A}) \rightarrow \mathbb{R} \quad(i=1,2)$ be σ-additive such that $\mu_{1}(A)=\mu_{2}(A) \forall A \in \mathcal{A}$, then $\mu_{1} \equiv \mu_{2}$.

Proof

Set $\mathcal{C}:=\left\{A \in \sigma(\mathcal{A}): \mu_{1}(A)=\mu_{2}(A)\right\}$. Evidently $\mathcal{C} \supset \mathcal{A}$ and by σ-additivity, \mathcal{C} is a monotone class, whence $\mathcal{C} \supset \mathfrak{M}(\mathcal{A})=\sigma(\mathcal{A})$.

2.4 Proposition (Approximation of a non-negative extension)

Let X be a set, let \mathcal{A} be an algebra of subsets of X, and let μ : $\sigma(\mathcal{A}) \rightarrow[0, \infty)$ be σ-additive, then $\forall A \in \sigma(\mathcal{A}), \varepsilon>0, \exists A_{0} \in \mathcal{A}$ such that $\mu\left(A \Delta A_{0}\right)<\varepsilon$.

Proof

Set $\mathcal{C}:=\left\{A \in \sigma(\mathcal{A}): \forall \exists A_{0} \in \mathcal{A}, \mu\left(A \Delta A_{0}\right)<\varepsilon\right\}$, then $\mathcal{C} \supset \mathcal{A}$. We show directly that \mathcal{C} is a σ-algebra.

If $A \in \sigma(\mathcal{A}), B \in \mathcal{A}$ then $B^{c} \in \mathcal{A}, A \Delta B=A^{c} \Delta B^{c}$ whence $A \in \mathcal{C} \Rightarrow$ $A^{c} \in \mathcal{C}$.

Suppose $A, B \in \mathcal{C}$ and $\varepsilon>0$, then $\exists A_{0}, B_{0} \in \mathcal{A}$ with $\mu\left(A \Delta A_{0}\right)+$ $\mu\left(B \Delta B_{0}\right)<\varepsilon$. Now $A_{0} \cup B_{0} \in \mathcal{A}$ and $(A \cup B) \Delta\left(A_{0} \cup B_{0}\right) \subset\left(A \Delta A_{0}\right) \cup$ $\left(B \Delta B_{0}\right)$ whence $\mu\left((A \cup B) \Delta\left(A_{0} \cup B_{0}\right)\right) \leq \mu\left(A \Delta A_{0}\right)+\mu\left(B \Delta B_{0}\right)<\varepsilon$. Thus $A \cup B \in \mathcal{C}$. This shows that \mathcal{C} is an algebra.

Now let $C_{n} \in \mathcal{C} \quad(n \geq 1)$. We show that $C:=\bigcup_{n \geq 1} C_{n} \in \mathcal{C}$. To see this, set $A_{1}=C_{1}, A_{n}:=C_{n} \backslash \bigcup_{k=1}^{n-1} C_{k} \quad(n \geq 2)$, then $A_{1}, A_{2}, \cdots \in \mathcal{C}$ and $C=\cup_{n \geq 1} A_{n}$.

Fix $\varepsilon>0$, then \exists :

- n_{ε} such that $\mu\left(\cup_{k>n_{\varepsilon}} A_{k}\right)<\frac{\varepsilon}{2}$,
- $D \in \mathcal{A}$ such that $m\left(D \Delta \cup_{k=1}^{n_{\varepsilon}} A_{k}\right)<\frac{\varepsilon}{2}$, then

$$
C \Delta D \subset\left(\bigcup_{k=1}^{n_{\varepsilon}} A_{k}\right) \Delta D \cup \bigcup_{j>n_{\varepsilon}} A_{j}
$$

whence

$$
\mu(C \Delta D) \leq \mu\left(\left(\bigcup_{k=1}^{n_{\varepsilon}} A_{k}\right) \Delta D\right)+\mu\left(\bigcup_{j>n_{\varepsilon}} A_{j}\right)<\varepsilon
$$

Thus \mathcal{C} is a σ-algebra and $\mathcal{C} \supset \sigma(\mathcal{A})$.

Outer measures. Definition: Outer measure

An outer measure on X is a function $\bar{\mu}: 2^{X} \rightarrow[0, \infty]$ satisfying:

- $\bar{\mu}(\varnothing)=0$;
- $\bar{\mu}(A) \leq \bar{\mu}(B)$ whenever $A \subseteq B$ (monotonicity);
- $\bar{\mu}\left(\cup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \bar{\mu}\left(A_{n}\right) \forall A_{1}, A_{2}, \cdots \subset X($ sub- σ-additivity $)$.

2.5 Caratheodory's construction theorem

Let X be a set, and let $\bar{\mu}$ be an outer measure on X. Then

$$
\mathcal{M}:=\left\{E \subset X: \bar{\mu}(A)=\bar{\mu}(A \cap E)+\bar{\mu}\left(A \cap E^{c}\right) \quad \forall A \subset X\right\}
$$

is a σ-algebra, and $\left.\bar{\mu}\right|_{\mathcal{M}}$ is a measure.
Proof of Caratheodory's construction theorem
Step $1 \mathcal{M}$ is an algebra.
Proof Clearly $E \in \mathcal{M} \Leftrightarrow E^{c} \in \mathcal{M}$. Also $\varnothing \in \mathcal{M}$ since $\bar{\mu}(\varnothing)=0$. We must show that $E, F \in \mathcal{M} \Rightarrow E \cup F \in \mathcal{M}$. Fix $A \subset X$. Since $E \in \mathcal{M}$,

$$
\bar{\mu}(A)=\bar{\mu}(A \cap E)+\bar{\mu}\left(A \cap E^{c}\right)
$$

and since $F \in \mathcal{M}$,

$$
\begin{aligned}
& \quad \bar{\mu}\left(A \cap E^{c}\right)=\bar{\mu}\left(A \cap E^{c} \cap F\right)+\bar{\mu}\left(A \cap E^{c} \cap F^{c}\right) . \\
& \therefore \bar{\mu}(A)=\bar{\mu}(A \cap E)+\bar{\mu}\left(A \cap E^{c}\right) \\
&=\bar{\mu}(A \cap E)+\bar{\mu}\left(A \cap E^{c} \cap F\right)+\bar{\mu}\left(A \cap E^{c} \cap F^{c}\right) \\
& \geq \bar{\mu}(A \cap(E \cup F))+\bar{\mu}\left(A \cap(E \cup F)^{c}\right)
\end{aligned}
$$

by subadditivity since $A \cap(E \cup F)=(A \cap E) \cup\left(A \cap E^{c} \cap F\right)$.
Step 2 For $E_{1}, \ldots, E_{n} \in \mathcal{M}$ disjoint:

$$
\bar{\mu}\left(A \cap \bigcup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} \bar{\mu}\left(A \cap E_{k}\right) \forall A \subset X .
$$

Proof Suppose $E, F \in \mathcal{M}$ are disjoint, and let $A \subset X$.

$$
\begin{aligned}
\bar{\mu}(A \cap(E \cup F)) & =\bar{\mu}(A \cap(E \cup F) \cap E)+\bar{\mu}\left(A \cap(E \cup F) \cap E^{c}\right) \because E \in \mathcal{M} \\
& =\bar{\mu}(A \cap E)+\bar{\mu}(A \cap F) \because E \cap F=\varnothing
\end{aligned}
$$

Step 3 If $E_{1}, E_{2}, \cdots \in \mathcal{M}$ are disjoint, then

$$
\bar{\mu}(A \cap E)=\sum_{n=1}^{\infty} \bar{\mu}\left(A \cap E_{n}\right) \forall A \subset X \text {, where } E:=\bigcup_{n=1}^{\infty} E_{n} .
$$

Note that it is not assumed that $\bigcup_{n=1}^{\infty} E_{n} \in \mathcal{M}$.
Proof Suppose $A \subset X$, then

$$
\begin{aligned}
\sum_{n=1}^{\infty} \bar{\mu}\left(A \cap E_{n}\right) & \geq \bar{\mu}(A \cap E) \geq \bar{\mu}\left(A \cap \bigcup_{n=1}^{N} E_{n}\right) \\
& =\sum_{n=1}^{N} \bar{\mu}\left(A \cap E_{n}\right) \rightarrow \sum_{n=1}^{\infty} \bar{\mu}\left(A \cap E_{n}\right) \geq \bar{\mu}(A \cap E)
\end{aligned}
$$

as $N \rightarrow \infty$.
Step $4 \mathcal{M}$ is a σ-algebra.
Proof Let $E_{1}, E_{2}, \cdots \in \mathcal{M}$ and let

$$
E:=\bigcup_{n=1}^{\infty} E_{n} .
$$

Set

$$
F_{1}=E_{1}, \quad F_{n+1}:=E_{n+1} \backslash \bigcup_{k=1}^{n} E_{k}(n \geq 1)
$$

then $F_{1}, F_{2}, \cdots \in \mathcal{M}$, and are disjoint, whence for $A \subset X$,

$$
\begin{aligned}
\bar{\mu}(A) & =\bar{\mu}\left(A \cap \bigcup_{k=1}^{n} F_{k}\right)+\bar{\mu}\left(A \cap\left(\bigcup_{k=1}^{n} F_{k}\right)^{c}\right)(\forall n \geq 1) \\
& \geq \sum_{k=1}^{n} \bar{\mu}\left(A \cap F_{k}\right)+\bar{\mu}\left(A \cap E^{c}\right) \\
& \rightarrow \bar{\mu}(A \cap E)+\bar{\mu}\left(A \cap E^{c}\right) \text { as } n \rightarrow \infty .
\end{aligned}
$$

2.6 Caratheodory's extension theorem Let X be a set, \mathcal{S} be an semi-ring of subsets of X which σ-covers X.

Suppose that $\mu: \mathcal{S} \rightarrow[0, \infty)$ is additive and countable subadditive, then there is a measure $\bar{\mu}: \sigma(\mathcal{S}) \rightarrow[0, \infty]$ such that $\left.\bar{\mu}\right|_{\mathcal{S}} \equiv \mu$.

Proof Define, for $E \subset X$ (using the σ-covering property),

$$
\bar{\mu}(E):=\inf \left\{\sum_{n=1}^{\infty} \mu\left(A_{n}\right): A_{1}, A_{2}, \cdots \in \mathcal{S}, E \subset \bigcup_{n=1}^{\infty} A_{n}\right\} .
$$

Let $\widehat{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0, \infty)$ is the additive extension of μ obtained using 1.5.

- We claim first that $\bar{\mu} \equiv \widetilde{\mu}$ where

$$
\widetilde{\mu}(E):=\inf \left\{\sum_{n=1}^{\infty} \widehat{\mu}\left(A_{n}\right): A_{1}, A_{2}, \cdots \in \mathcal{R}(\mathcal{S}), E \subset \bigcup_{n=1}^{\infty} A_{n}\right\} .
$$

Since $\mathcal{R}(\mathcal{S}) \supset \mathcal{S}$ and $\left.\widehat{\mu}\right|_{\mathcal{S}} \equiv \mu$, we have $\widetilde{\mu} \leq \bar{\mu}$.
For the reverse inequality, suppose that

$$
E \subset X, \quad A_{1}, A_{2}, \cdots \in \mathcal{R}(\mathcal{S}), E \subset \bigcup_{n=1}^{\infty} A_{n}
$$

By 1.4, for each $n \geq 1, \exists N_{n} \geq 1, C_{n, 1}, \ldots, C_{n, N_{n}} \in \mathcal{S}$ disjoint, such that $A_{n}=\cup_{k=1}^{N_{n}} C_{n, k}$. It follows that $E \subset \bigcup_{n=1}^{\infty} \cup_{k=1}^{N_{n}} C_{n, k}$, whence

$$
\bar{\mu}(E) \leq \sum_{n=1}^{\infty} \sum_{k=1}^{N_{n}} \mu\left(C_{n, k}\right)=\sum_{n=1}^{\infty} \widehat{\mu}\left(A_{n}\right) .
$$

- Next, we show that $\bar{\mu}$ is an outer measure.

Evidently $\bar{\mu}(\varnothing) \leq \mu(\varnothing)=0$. Monotonicity is immediate. To see sub- σ-additivity, suppose that $E=\bigcup_{n \geq 1} E_{n}$ and let $\varepsilon>0$. Choose $A_{n, 1}, A_{n, 2}, \cdots \in \mathcal{S} \quad(n \geq 1)$ so that $E_{n} \subset \bigcup_{k \geq 1} A_{n, k}$ and $\sum_{k \geq 1} \mu\left(A_{n, k}\right) \leq$ $\bar{\mu}\left(E_{n}\right)+\frac{\varepsilon}{2^{n}} \quad(n \geq 1)$. It follows that $E_{n} \subset \bigcup_{n, k \geq 1} A_{n, k}$, whence

$$
\bar{\mu}(E) \leq \sum_{n, k \geq 1} \mu\left(A_{n, k}\right) \leq \sum_{n \geq 1}\left(\bar{\mu}\left(E_{n}\right)+\frac{\varepsilon}{2^{n}}\right)=\sum_{n \geq 1} \bar{\mu}\left(E_{n}\right)+\varepsilon .
$$

- Continuing, we note that $\bar{\mu}(A)=\mu(A) \forall A \in \mathcal{S}$ by countable subadditivity.
- Finally, we show that $\mathcal{S} \subset \mathcal{M}$. This will establish the extension theorem by Caratheodory's construction theorem (2.1).

For this, it suffices to show that for $B \in \mathcal{S}$:

$$
\bar{\mu}(F) \geq \bar{\mu}(F \cap B)+\bar{\mu}\left(F \cap B^{c}\right) \forall F \subset X
$$

To this end, fix $\varepsilon>0$ and let $A_{1}, A_{2}, \cdots \in \mathcal{S}$ be such that

$$
F \subset \bigcup_{n=1}^{\infty} A_{n}, \quad \bar{\mu}(F)+\varepsilon \geq \sum_{n=1}^{\infty} \mu\left(A_{n}\right) .
$$

For each $n \geq 1$, we have that

$$
\mu\left(A_{n}\right)=\mu\left(A_{n} \cap B\right)+\widehat{\mu}\left(A_{n} \cap B^{c}\right)
$$

where $\widehat{\mu}: \mathcal{R}(\mathcal{S}) \rightarrow[0, \infty)$ is the additive extension of μ obtained using 1.5.

It follows that

$$
\begin{aligned}
\bar{\mu}(F)+\varepsilon & \geq \sum_{n=1}^{\infty} \mu\left(A_{n}\right) \\
& =\sum_{n=1}^{\infty}\left(\mu\left(A_{n} \cap B\right)+\widehat{\mu}\left(A_{n} \cap B^{c}\right)\right) \\
& =\sum_{n=1}^{\infty} \mu\left(A_{n} \cap B\right)+\sum_{n=1}^{\infty} \widehat{\mu}\left(A_{n} \cap B^{c}\right) \\
& \geq \bar{\mu}(F \cap B)+\widetilde{\mu}\left(F \cap B^{c}\right) \\
& =\bar{\mu}(F \cap B)+\bar{\mu}\left(F \cap B^{c}\right) . \quad \not \square
\end{aligned}
$$

Lebesgue measure on \mathbb{R}^{d}.
Let \mathcal{S} be the semi-ring of boxes in \mathbb{R}^{d} which σ-covers \mathbb{R}^{d}, and let $v(R)=|R|$ as before. By 1.4 and 1.11, $v: \mathcal{S} \rightarrow[0, \infty)$ is additive and countable subadditive. By Caratheodory's extension theorem, there is a measure (aka Lebesgue measure on $\sigma(\mathcal{S})$) extending $v: \mathcal{S} \rightarrow[0, \infty)$.

Bernoulli measure with finite state space. Let Λ be a set, S be a finite set, and let $X=X_{\Lambda}:=S^{\Lambda}$. As in exercise 1.1, and given $N \geq 1, \lambda_{1}, \ldots, \lambda_{N} \in \Lambda, a_{1}, \ldots, a_{N} \in S$, define the cylinder

$$
\left[a_{1}, \ldots, a_{N}\right]_{\lambda_{1}, \ldots, \lambda_{N}}:=\left\{x \in X: x\left(\lambda_{i}\right)=a_{i} \forall 1 \leq i \leq N\right\} .
$$

Recall from your topology course that with respect to the product discrete topology, X is a compact Hausdorff space and cylinder sets are both open and compact.

Note that the topological space X_{Λ} is metrizable iff Λ is countable.
Let

$$
\mathcal{S}:=\left\{\left[a_{1}, \ldots, a_{N}\right]_{\lambda_{1}, \ldots, \lambda_{N}}: N \in \mathbb{N}, \lambda_{i} \in \Lambda, a_{i} \in S \quad(1 \leq i \leq N)\right\} \cup\{\varnothing\},
$$

then (ex. 1.1(a)) \mathcal{S} is a semi-algebra.
Let $p: S \rightarrow(0,1)$ be a probability $\left(\sum_{s \in S} p(s)=1\right)$. Define $P: \mathcal{S} \rightarrow$ $[0, \infty)$ by $P(\varnothing):=0$ and $P\left(\left[a_{1}, \ldots, a_{N}\right]\right):=\prod_{k=1}^{N} p_{a_{k}}$. Fix $\lambda_{1}, \ldots, \lambda_{N}, \lambda \epsilon$ 1. Since

$$
P\left(\left[a_{1}, \ldots, a_{N}, s\right]_{\lambda_{1}, \ldots, \lambda_{N}, \lambda}\right)=P\left(\left[a_{1}, \ldots, a_{N}\right]_{\lambda_{1}, \ldots, \lambda_{N}}\right) p_{s} \forall a_{1}, \ldots, a_{N}, s \in S,
$$ we have

$$
(+) \quad \sum_{s \in S} P\left(\left[a_{1}, \ldots, a_{N}, s\right]_{\lambda_{1}, \ldots, \lambda_{N}, \lambda}\right)=\mu\left(\left[a_{1}, \ldots, a_{N}\right]_{\lambda_{1}, \ldots, \lambda_{N}}\right) .
$$

and P is additive by exercise 1.2 and therefore finitely subadditive. Because each member of \mathcal{S} is both compact and open, \mathcal{S} has the FSCP, P is countable subadditive and \exists a probability $P: \sigma(\mathcal{S}) \rightarrow[0,1]$ so that

$$
P\left(\left[a_{1}, \ldots, a_{N}\right]_{\lambda_{1}, \ldots, \lambda_{N}}\right)=\prod_{k=1}^{N} p_{a_{k}} .
$$

Lebesgue measure and coin tossing.

Let $\Omega=\{0,1\}^{\mathbb{N}}$ and let P be as above with $p(0)=p(1)=\frac{1}{2}$. Define $\Phi: \Omega \rightarrow[0,1]$ by

$$
\Phi\left(\omega_{1}, \omega_{2}, \ldots\right):=\sum_{n \geq 1} \frac{\omega_{n}}{2^{n}}
$$

This is a continuous map, therefore (!!) Borel measurable i.e.

$$
A \in \mathcal{B}([0,1]) \Longrightarrow \Phi^{-1} A \in \mathcal{B}(\Omega)
$$

We claim

$$
P\left(\Phi^{-1} A\right)=\operatorname{Leb}(A) .
$$

To see this, let A be a closed dyadic interval, i.e. of form

$$
A=\left[\frac{p}{2^{n}}, \frac{p+1}{2^{n}}\right] \text { where } p, n \in \mathbb{N}, p<2^{n}
$$

then (!)

$$
\Phi^{-1}(A)=\left[a_{1}, a_{2}, \ldots, a_{n}\right] \text { where } a_{1}, a_{2}, \ldots, a_{n}=0,1 \& \frac{p}{2^{n}}=\sum_{k=1}^{n} \frac{a_{k}}{2^{k}} .
$$

Consequently

$$
P\left(\Phi^{-1}(A)\right)=\frac{1}{2^{n}}=\operatorname{Leb}(A) .
$$

The collection of measurable sets A with this property is a σ-algebra (!!) and the claim is proved. ∇

Outer measures on metric spaces. Let (X, d) be a metric space. A metric outer measure on X is an outer measure $\bar{\mu}: 2^{X} \rightarrow[0, \infty]$ with the property that

$$
A, B \subset X, d(A, B):=\inf _{x \in A, y \in B} d(x, y)>0 \Rightarrow \bar{\mu}(A \cup B)=\bar{\mu}(A)+\bar{\mu}(B)
$$

Example 1: Metric outer measures from regular Borel measures.
Let (X, d) be a metric space and let μ be a regular, finite Borel measure on X. Define $\bar{\mu}: 2^{X} \rightarrow[0, \infty)$ by $\bar{\mu}(A):=\inf \{\mu(U): A \subset U \epsilon$ $\mathcal{B}(X)\}$.
Proposition $2.7 \bar{\mu}: 2^{X} \rightarrow[0, \infty]$ is a metric outer measure.

Proof It is easy to see that $\bar{\mu}$ is an outer measure.
Note also that
$(\stackrel{\Delta}{\dot{\bullet}}) \quad \forall A \subset X, \exists B=B_{A} \in \mathcal{B}(X), B \supset A, \bar{\mu}(A)=\mu(B)$.
In fact if $A \subset U_{n}$ open with $\mu\left(U_{n}\right)<\bar{\mu}(A)+\frac{1}{n}$ then one choice is the G_{δ} set $B_{A}=\bigcap_{n \geq 1} U_{n}$.

If $E, F \subset X$ and $d(E, F)>0$, then the sets $B_{E}, B_{F} \in \mathcal{B}$ in ($\left.\boldsymbol{\iota}_{\boldsymbol{\bullet}}\right)$ can be chosen disjoint since if $d(E, F)>3 \varepsilon>0$, then $E \subset B_{o}(E, \varepsilon) \& F \subset$ $B_{o}(F, \varepsilon)\left(\right.$ where $B_{o}(A, \varepsilon):=\bigcup_{x \in A} B_{o}(x, \varepsilon)$); the sets $B_{o}(E, \varepsilon) \& B_{o}(F, \varepsilon)$ being open and disjoint.

To see that $\bar{\mu}$ is a metric outer measure, fix $E, F \subset X, d(E, F)>0$.
Let $B_{E}, B_{F}, B_{E \cup F} \in \mathcal{B}$ satisfy ($\left.\dot{\boldsymbol{\wedge}}\right)$ with $B_{E} \cap B_{F}=\varnothing$ and (WLOG) $B_{E} \cup B_{F} \subset B_{E \cup F}$. It follows that

$$
\begin{aligned}
\bar{\mu}(E \cup F) & =\mu\left(B_{E \cup F}\right) \\
& \geq \mu\left(B_{E} \cup B_{F}\right) \\
& =\mu\left(B_{E}+\mu\left(B_{F}\right)\right. \\
& =\bar{\mu}(E)+\bar{\mu}(F) . \not \square
\end{aligned}
$$

Pre-masses.

Let X be a set and let $\mathcal{C} \subset 2^{X}$ with $\varnothing \in \mathcal{C}$. A pre-mass on \mathcal{C} is a function $\tau: \mathcal{C} \rightarrow[0, \infty]$ satisfying $\tau(\varnothing)=0$.

Example: Hausdorff-type pre-masses.

For (X, d) be a metric space and $a:[0, \infty) \rightarrow[0, \infty]$ with $a(0)=0$, $\tau_{a}: 2^{X} \rightarrow[0, \infty]$ defined by

$$
\tau_{a}(A):=a(\operatorname{diam} A)
$$

is a pre-mass.
Proposition 2.8 Let $\tau: \mathcal{C} \rightarrow[0, \infty]$ be a pre-mass. The set function $\bar{\mu}=\bar{\mu}_{\tau, \mathcal{C}}: 2^{X} \rightarrow[0, \infty]$ defined by

$$
\bar{\mu}_{\tau, \mathcal{C}}(A):=\inf \left\{\sum_{n \geq 1} \tau\left(C_{n}\right): C_{n} \in \mathcal{C} \forall n \& A \subset \bigcup_{n \geq 1} C_{n}\right\}
$$

(with $\inf \varnothing:=\infty$) is an outer measure.
Proof (As in the proof of theorem 2.6).
Evidently $\bar{\mu}(\varnothing) \leq \tau(\varnothing)=0$. Monotonicity is immediate. To see sub- σ-additivity, suppose that $E=\bigcup_{n \geq 1} E_{n}$. and let $\varepsilon>0$. WLOG, $\bar{\mu}\left(E_{n}\right)<\infty \forall n$ and we may choose $A_{n, 1}, A_{n, 2}, \cdots \in \mathcal{C} \quad(n \geq 1)$ so that $E_{n} \subset \bigcup_{k \geq 1} A_{n, k}$ and $\sum_{k \geq 1} \tau\left(A_{n, k}\right) \leq \bar{\mu}\left(E_{n}\right)+\frac{\varepsilon}{2^{n}} \quad(n \geq 1)$. It follows that $E_{n} \subset \bigcup_{n, k \geq 1} A_{n, k}$, whence

$$
\bar{\mu}(E) \leq \sum_{n, k \geq 1} \tau\left(A_{n, k}\right) \leq \sum_{n \geq 1}\left(\bar{\mu}\left(E_{n}\right)+\frac{\varepsilon}{2^{n}}\right)=\sum_{n \geq 1} \bar{\mu}\left(E_{n}\right)+\varepsilon . \not \square
$$

Pre-masses on a metric space.

Let (X, d) be a metric space and let $\tau: \mathcal{C} \rightarrow[0, \infty]$ be a pre-mass.
For $r>0$, let

$$
\mathcal{C}_{r}:=\{A \in \mathcal{C}: \operatorname{diam} A<r\}
$$

and let $\mu_{r}=\bar{\mu}_{\tau, \mathcal{C}_{r}}$ be the outer measure as in proposition 1 .
Proposition 2.9 The set function $\mu: 2^{X} \rightarrow[0, \infty]$ defined by

$$
\mu(A):=\lim _{r \rightarrow 0} \mu_{r}(A)
$$

is a metric outer measure.
Proof By proposition 1, each μ_{r} is an outer measure, whence so is $\mu=\sup _{r \rightarrow 0} \mu_{r}$.

To check the metric property, fix $A, B \subset X, d(A, B)>0 \& \mu(A), \mu(B)<$ ∞ (the latter ensuring countable covers of $A \& B$ by elements of $\left.\mathcal{C}_{r} \forall r>0\right)$.

It suffices to show that

$$
\mu_{r}(A \cup B)=\mu_{r}(A)+\mu_{r}(B) \quad \forall r<\frac{d(A, B)}{3}
$$

which in turn is true since if $A \cup B \subset \bigcup_{n \geq 1} C_{n}$ where $\operatorname{diam} C_{n}<\frac{d(A, B)}{3}$, then $\exists K \subset \mathbb{N}$ such that

$$
A \subset \bigcup_{n \in K} C_{n} \quad \& \quad B \subset \bigcup_{n \notin K} C_{n} . \quad \square
$$

Theorem (Caratheodory) If $\bar{\mu}$ is a metric outer measure on X, then $\mathcal{B}(X) \subset \mathcal{M}(\bar{\mu})$.

Lemma Let $\bar{\mu}$ be a metric outer measure on the metric space X. Then

$$
A_{n} \uparrow A, \bar{\mu}(A)<\infty, d\left(A_{n}, A \backslash A_{n+1}\right)>0 \forall n \geq 1 \Rightarrow \bar{\mu}\left(A_{n}\right) \uparrow \bar{\mu}(A)
$$

Proof Without loss of generality, $\bar{\mu}\left(A_{n}\right) \uparrow a<\infty$ as $n \rightarrow \infty$. We prove that $\bar{\mu}(A) \leq a$.

Set $B_{1}=A_{1}, B_{n}=A_{n} \backslash A_{n-1}(n \geq 2)$. We show first that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \bar{\mu}\left(B_{k}\right) \leq 2 a \tag{}
\end{equation*}
$$

Proof For $\ell \geq k+2, B_{k} \subset A_{k}, \& B_{\ell} \subset A \backslash A_{\ell-1} \subset A \backslash A_{k+1}$, and so

$$
d\left(B_{k}, \bigcup_{\ell=k+2}^{\infty} B_{\ell}\right)>0
$$

Therefore, for $\varepsilon=0,1$,

$$
\begin{aligned}
a & \geq \bar{\mu}\left(A_{2 N}\right)=\bar{\mu}\left(\bigcup_{k=1}^{2 N} B_{k}\right) \\
& \geq \bar{\mu}\left(\bigcup_{k=1}^{N} B_{2 k-\varepsilon}\right) \\
& =\bar{\mu}\left(B_{2-\varepsilon}\right)+\bar{\mu}\left(\bigcup_{k=2}^{N} B_{2 k-\varepsilon}\right) \\
& \vdots \\
& =\sum_{k=1}^{N} \bar{\mu}\left(B_{2 k-\varepsilon}\right) \\
& \left.\xrightarrow[N \rightarrow \infty]{\longrightarrow} \sum_{k=1}^{\infty} \bar{\mu}\left(B_{2 k-\varepsilon}\right) . \quad \square \square()^{2}\right)
\end{aligned}
$$

Using (${ }^{2}$),

$$
\bar{\mu}(A)=\bar{\mu}\left(A_{n} \cup \bigcup_{k=n}^{\infty} B_{k}\right) \leq \bar{\mu}\left(A_{n}\right)+\sum_{k=n}^{\infty} \bar{\mu}\left(B_{k}\right) \rightarrow a \text { as } n \rightarrow \infty .
$$

Proof of the theorem To prove the theorem, we show that for $B, E \subset X, E$ closed,

$$
\bar{\mu}(B) \geq \bar{\mu}(B \cap E)+\bar{\mu}\left(B \cap E^{c}\right)
$$

Let $\varepsilon_{j} \downarrow 0$. Note that

$$
B \supset(B \cap E) \cup\left(B \backslash B\left(E, \varepsilon_{j}\right)\right), \& d\left(B \cap E, B \backslash B\left(E, \varepsilon_{j}\right)\right) \geq \varepsilon_{j}
$$

So

$$
\bar{\mu}(B) \geq \bar{\mu}(B \cap E)+\lim _{j \rightarrow \infty} \bar{\mu}\left(B \backslash B\left(E, \varepsilon_{j}\right)\right)
$$

Since E is closed, $B \backslash B\left(E, \varepsilon_{j}\right) \uparrow B \backslash E$.
We shall apply the lemma with $A_{j}=B \backslash B\left(E, \varepsilon_{j}\right)$ and $A=B \backslash E$. Evidently $A_{k} \subset B\left(E, \varepsilon_{j}\right)^{c}$ and $A \backslash A_{k+1} \subset B\left(E, \varepsilon_{k+1}\right)$, whence $d\left(A_{k}, A\right.$ \} $\left.A_{k+1}\right) \geq \varepsilon_{k}-\varepsilon_{k+1}>0$. By the lemma, $\bar{\mu}\left(B \backslash B\left(E, \varepsilon_{k}\right)\right)=\bar{\mu}\left(A_{k}\right) \rightarrow \bar{\mu}(A)=$ $\bar{\mu}(B \backslash E)$ whence

$$
\bar{\mu}(B) \geq \bar{\mu}(B \cap E)+\bar{\mu}(B \backslash E) .
$$

NOEXERCISE 2

1. Outer measures.

Let $\bar{\mu}: 2^{\mathbb{R}} \rightarrow[0, \infty]$ be Lebesgue outer measure defined by

$$
\bar{\mu}(E):=\inf \left\{\sum_{n=1}^{\infty}\left|I_{n}\right|: I_{1}, I_{2}, \ldots \text { intervals, } E \subseteq \bigcup_{n=1}^{\infty} I_{n}\right\}
$$

a) Show that if $A \subset \mathbb{R}$, and $\bar{\mu}(A \cap J) \leq \frac{1}{2}|J|$ for every interval J, then $\bar{\mu}(A)=0$.

Let $A_{n} \subset[0,1] \quad(n \geq 1)$.
b) Is it true that

$$
A_{1} \supset A_{2} \supset \ldots A_{n} \supset A_{n+1} \supset \ldots \Rightarrow \bar{\mu}\left(A_{n}\right) \rightarrow \bar{\mu}\left(\bigcap_{n=1}^{\infty} A_{n}\right) \text { as } n \rightarrow \infty ?
$$

2. An extended measure space. Let (X, \mathcal{B}, m) be the unit interval equipped with Borel sets and Lebesgue measure.
a) Let $A \subset \mathbb{R}, \bar{\mu}(A)>0$. Show that if $K \subset \mathbb{Q}, \bar{K}=\mathbb{R}$, then $\bar{\mu}\left(J \cap \bigcup_{k \in K}(k+A \bmod 1)\right)=|J| \forall$ intervals J.
b) Show that \exists a partition $\left\{E_{n}: n \geq 1\right\}$ of $[0,1]$ (i.e. $E_{n} \subset[0,1]$ disjoint \& $\left.\cup_{n \geq 1} E_{n}=[0,1]\right)$ with $\left.\bar{\mu}\left(E_{n}\right)\right)=1 \quad \forall n \geq 1$) where $\bar{\mu}$ denotes Lebesgue outer measure on $[0,1]$.

Hint Take $E_{n}=\cup_{k \in K_{n}}(k+A \bmod 1)$ for suitable $K_{n} \subset \mathbb{Q}$ and suitable (non-measurable) $A \subset X$.

Let $\left\{E_{n}: n \geq 1\right\}$ be a partition as in b), and let \mathcal{B}_{1} be the σ-algebra generated by \mathcal{B}, and $\left\{E_{n}: n \geq 1\right\}$.

Show that
(c) $\mathcal{B}_{1}=\left\{\cup_{n \geq 1} B_{n} \cap E_{n}: \quad B_{1}, B_{2}, \ldots \in \mathcal{B}\right\}$; that

$$
\begin{align*}
\bigcup_{n \geq 1} B_{n} \cap E_{n}=\bigcup_{n \geq 1} B_{n}^{\prime} \cap E_{n} \Rightarrow & \tag{d}\\
& m\left(B_{n} \Delta B_{n}^{\prime}\right)=0 \forall n \geq 1 ;
\end{align*}
$$

and that

$$
\begin{equation*}
p\left(\left(\biguplus_{n \geq 1} B_{n} \cap E_{n}\right)=\sum_{n \geq 1} \frac{m\left(B_{n}\right)}{2^{n}}\right. \tag{e}
\end{equation*}
$$

defines a probability $p: \mathcal{B}_{1} \rightarrow[0,1]$ satisfying $\left.p\right|_{\mathcal{B}} \equiv m$.

3 Bernoulli probabilities on countable shift spaces.

A (regular) cylinder in $X:=\mathbb{N}^{\mathbb{N}}$ is a set of form

$$
\left[n_{1}, n_{2}, \ldots, n_{k}\right]:=\left\{x \in X: x_{j}=n_{j} \forall 1 \leq j \leq k\right\} .
$$

Let $\mathcal{C}:=\{$ cylinders $\}$.
In this exercise you construct, for any $p \in \mathcal{P}(\mathbb{N})$ with $p(s)>0 \forall s \in \mathbb{N}$, a probability P on $(X, \sigma(\mathcal{C}))$ so that

$$
\begin{array}{r}
P\left(\left[a_{1}, a_{2}, \ldots, a_{N}\right]\right)=\prod_{k=1}^{N} p\left(a_{k}\right) \forall \\
{\left[a_{1}, a_{2}, \ldots, a_{N}\right] \in \mathcal{C} .}
\end{array}
$$

Let $\mathcal{A}_{\mathbb{N}} \& \mathcal{A}$ be as in example 2 on page 5 . Define $\mu: \mathcal{A}_{\mathbb{N}}=\{F, \mathbb{N} \backslash F$: $F \subset \mathbb{N} \backslash\{1\} \# F<\infty\}$ by $\mu(A):=\sum_{k \in A} p(a)$.

For $\left[A_{1}, A_{2}, \ldots, A_{N}\right] \in \mathcal{A}:=\left\{\mathcal{A}_{\mathbb{N}^{-}}\right.$cylinders $\}$, set

$$
\widehat{\mu}\left(\left[A_{1}, A_{2}, \ldots, A_{N}\right]\right):=\prod_{k=1}^{M} \mu\left(A_{k}\right)
$$

Show that
(i) $\widehat{\mu}: \mathcal{A} \rightarrow[0,1]$ is additive and countably subadditive;
(ii) there is a measure $P: \sigma(\mathcal{A})) \rightarrow[0,1]$ so that $\left.P\right|_{\mathcal{A}} \equiv \widehat{\mu}$;
(iii) $\sigma(\mathcal{A})=\sigma(\mathcal{C})$ and P satisfies ($\mathcal{\&})$.

4. Regular Borel measures.

Let X be a topological space. The Borel σ-algebra is $\mathcal{B}(X):=$ $\sigma(\{$ open sets $\}$ and a Borel probability on X is a probability measure $P: \mathcal{B}(X) \rightarrow[0,1]$. In this exercise, you show that if X is a separable metric space, then Borel probabilities on X are regular in the sense that $P(A)=\inf \{P(U): A \subset U, U$ open $\}$.

Fix a Borel probability P on X and let
$\mathcal{C}:=\{A \in \mathcal{B}(X): \forall \varepsilon>0, \exists F$ closed, U open, $F \subset A \subset U, P(U \backslash F)<\varepsilon\}$.
Show that:
(i) \mathcal{C} is a σ-algebra;
(ii) $\{$ open sets $\} \subseteq \mathcal{C}$;
(iii) P is regular.

5. Measurable union of a hereditary collection.

Let (X, \mathcal{B}, m) be a finite measure space. Let $\mathfrak{H} \subset \mathcal{B}$ be a hereditary collection in the sense that

$$
C \in \mathfrak{H}, B \subset C, B \in \mathcal{B} \Longrightarrow B \in \mathfrak{H} .
$$

Show that
(i) $\exists A_{1}, A_{2}, \cdots \in \mathfrak{H}$ disjoint such that $U:=\cup_{n=1}^{\infty} A_{n}$ covers \mathfrak{H} in the sense that $A \subset U \bmod m \forall A \in \mathfrak{H}$;
Hint Take $\varepsilon_{1}:=\sup \{m(A): A \in \mathfrak{H}\} \& A_{1} \in \mathfrak{H}, m\left(A_{1}\right) \geq \frac{\varepsilon_{1}}{2}$ and then take $\varepsilon_{2}:=\sup \{m(A)$: $\left.A \in \mathfrak{H}, A \cap A_{1}=\varnothing\right\} \& A_{2} \in \mathfrak{H}, A_{2} \cap A_{1}=\varnothing, m\left(A_{2}\right) \geq \frac{\varepsilon_{2}}{2} \cdots$
(ii) if $V=\cup_{n=1}^{\infty} B_{n} \quad\left(B_{n} \in \mathfrak{H}\right)$ also covers \mathfrak{H}, then $U=V \bmod m$.

The set $U \in \mathcal{B}$ above is called the measure theoretic union of the hereditary collection \mathfrak{H} and denoted $U(\mathfrak{H})$.

6. Non-atomicity.

Let (X, \mathcal{B}, m) be a probability space. An atom of (X, \mathcal{B}, m) is a set $A \in \mathcal{B}$ satisfying $m(A)>0$ and $B \in \mathcal{B}, B \subseteq A \Rightarrow m(B)=0, m(A)$.

Show that if (X, \mathcal{B}, m) is non-atomic (i.e. has no atoms), then $\forall p \in$ $(0,1), \quad \exists A \in \mathcal{B}$ with $m(A)=p$.
Hint: Show first (using the previous exercise or not) that $\forall \varepsilon>0 \exists$ a finite partition $\alpha \subset \mathcal{B}$ of X with $m(A)<\varepsilon \forall A \in \alpha$.

Week \# 3

§4 Polish spaces
A measurable space (X, \mathcal{B}) is composed of a set X equipped with a σ-algebra $\mathcal{B} \subset 2^{X}$ of subsets of X. A common example of such is when X is a metric (or topological) space and

$$
\mathcal{B}=\mathcal{B}(X)=\{\text { Borel sets in } X\}:=\sigma(\{\text { open sets in } X\}) .
$$

Let $(X, \mathcal{B}) \&(Y, \mathcal{C})$ be measurable spaces. A function $f: X \rightarrow Y$ is called measurable if $f^{-1}(C) \in \mathcal{B} \forall C \in \mathcal{C}$.

If Y is a metric space and $\mathcal{C}=\mathcal{B}(Y):=\sigma(\{$ open sets $\})$, then f : $X \rightarrow Y$ is measurable iff $f^{-1}(U) \in \mathcal{B} \forall U \subset Y$ open.

In particular, if $(X, \mathcal{B}) \&(Y, \mathcal{C})$ are both metric spaces eqipped with their Borel sets, then any continuous $f: X \rightarrow Y$ is measurable.

The measurable spaces (X, \mathcal{B}) and $\left(X^{\prime}, \mathcal{B}^{\prime}\right)$ are isomorphic $((X, \mathcal{B}) \cong$ $\left(X^{\prime}, \mathcal{B}^{\prime}\right)$) if \exists a bimeasurable bijection (isomorphism) $\pi: X \rightarrow X^{\prime}$.

Standard (aka Polish) measurable spaces. A standard measurable (or Borel) space is a measurable space (X, \mathcal{B}) where X is Polish space and $\mathcal{B}=\mathcal{B}(X)$ its Borel sets.

Uncountable examples.

$$
X=\Omega:=\{0,1\}^{\mathbb{N}}, \mathbb{R}^{d}, C([0,1]), \cdots
$$

It turns out that standard measurable spaces are isomorphic iff their cardinalities are the same, and that the possible cardinalities are:

$$
\begin{equation*}
\mathbb{N} \cup\left\{\boldsymbol{\aleph}_{0}, c\right\} \tag{*}
\end{equation*}
$$

Remark

Completeness (of the underlying Polish space) is necessary for ($*$) to hold without the continuum hypothesis.

Kuratowski's isomorphism theorem

If X is an uncountable Polish space, then $X \cong \Omega:=\{0,1\}^{\mathbb{N}}$.

Corollary

If X is an uncountable Polish space, then there is a countable, algebra $\mathcal{A} \subset \mathcal{B}(X)$ with FSCP so that $\sigma(\mathcal{A})=\mathcal{B}(X)$.

Proof Let $\pi: X \rightarrow \Omega$ be an isomorphism of measurable spaces, then

$$
\pi(\mathcal{A}(\{\text { cylinders }\})
$$

is as required.
Our proof of Kuratowski's theorem is a "measurable version" of the proof of the theorem of Cantor-Bernstein ${ }^{11}$

Let X be a separable metric space.
Consider the collection of condensation points

$$
X_{c}:=\left\{x \in X:|B(x, \varepsilon)|>\boldsymbol{\aleph}_{0} \forall \varepsilon>0\right\} .
$$

Here (and throughout)

$$
B(x, \varepsilon):=\{y \in X: d(x, y) \leq \varepsilon\} \& B_{o}(x, \varepsilon):=\{y \in X: d(x, y)<\varepsilon\} .
$$

By separability, $X \backslash X_{c}$ is countable and open, whence $|X|>\boldsymbol{\aleph}_{0}$ iff $X_{c} \neq \varnothing$. A Polish space is called perfect if $X=X_{c}$.

[^0]Lemma 1 If X is a Polish space with $|X|>\boldsymbol{\aleph}_{0}$, then \exists a closed set $K \subset X_{c}$ which is homeomorphic to $\{0,1\}^{\mathbb{N}}$.

Proof

$\exists x(0), x(1) \in X_{c}$ and $\delta_{1}>0$ such that the closed balls $B\left(x(i), \delta_{1}\right)(i=$ 0,1) are disjoint, uncountable subsets of X. We can continue this to obtain $\delta_{n}>0,\left\{x(\underline{i}): i \in\{0,1\}^{n}\right\} \subset X_{c} \quad(n \geq 1)$ such that $\forall n \geq 1, \underline{i} \in$ $\{0,1\}^{n}, B\left(x(\underline{i}, j), \delta_{n+1}\right)(j=0,1)$ are disjoint, uncountable subsets of $B\left(x(\underline{i}), \delta_{n}\right)$. By completeness, $\forall\left(i_{1}, i_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$,

$$
\bigcap_{n=1}^{\infty} B\left(x\left(i_{1}, \ldots, i_{n}\right), \delta_{n}\right) \neq \varnothing .
$$

The map $\pi: \Omega \rightarrow X$ defined by

$$
\left\{\pi\left(i_{1}, i_{2}, \ldots\right)\right\}:=\bigcap_{n=1}^{\infty} B\left(x\left(i_{1}, \ldots, i_{n}\right), \delta_{n}\right)
$$

is continuous and injective. $K:=\pi(\Omega)$ is the required set. \square
Polish subsets. Let (X, d) be a Polish space.
A subset $Y \subset X$ is called a Polish (subset) if \exists a metric ρ on Y equivalent to $\left.d\right|_{Y}$ such that (Y, ρ) is a Polish space.
4.1 Proposition Suppose that (X, d) is a Polish space, then $Y \subset X$ is Polish iff Y is a G_{δ} set.

Proof WLOG $X=\bar{Y}$.
Polish $\Longrightarrow G_{\delta}$:
Let ρ be a complete metric on Y generating the topology inherited from X. For $n \geq 1$, let

$$
V_{n}=\left\{x \in X: \exists U \ni x \text { open, } d-\operatorname{diam}(U), \rho-\operatorname{diam}(U \cap Y) \leq \frac{1}{n}\right\}
$$

It suffices to show

$$
Y=\bigcap_{n=1}^{\infty} V_{n} .
$$

Evidently $Y \subset \bigcap_{n=1}^{\infty} V_{n}$.
Proof that $Y \supset \bigcap_{n=1}^{\infty} V_{n}$.
If $x \in \bigcap_{n=1}^{\infty} V_{n} \cap \bar{Y}$, then $\exists W_{1} \supset W_{2} \supset \ldots$, open in X such that

$$
\forall n \geq 1: \quad x \in W_{n}, \rho-\operatorname{diam}\left(W_{n} \cap Y\right) \leq \frac{1}{n}, \& d-\operatorname{diam}\left(W_{n}\right) \leq \frac{1}{n} .
$$

By completeness of $(Y, \rho), \bigcap_{n=1}^{\infty} \bar{W}_{n} \cap Y \neq \varnothing$. On the other hand, $\bigcap_{n=1}^{\infty} W_{n}=\{x\}$. Thus:

$$
\{x\}=\bigcap_{n=1}^{\infty} \bar{W}_{n} \supseteq \bigcap_{n=1}^{\infty} \bar{W}_{n} \cap Y \neq \varnothing
$$

and $x \in Y$.

$G_{\delta} \Longrightarrow$ Polish

Now let $Y=\bigcap_{n=1}^{\infty} U_{n}$ where U_{n} is open $(n \geq 1)$. For $n \geq 1$, define $f_{n}: U_{n} \rightarrow \mathbb{R}_{+}$by $f_{n}(x):=\frac{1}{d\left(x, U_{n}^{c}\right)}\left(\right.$ a d-continuous function on $\left.U_{n}\right)$ and define $\rho: Y \times Y \rightarrow[0, \infty)$ by

$$
\rho(x, y):=d(x, y)+\sum_{n=1}^{\infty} \frac{1}{2^{n}} \cdot\left(\left|f_{n}(x)-f_{n}(y)\right| \wedge 1\right)
$$

Then ρ is a metric on Y, and $\rho \geq d$.
To see equivalence of ρ and d on Y, suppose that $x_{n}, x \in Y$ and $x_{n} \xrightarrow{d} x$, then $f_{k}\left(x_{n}\right) \rightarrow f_{k}(x) \forall k \geq 1$ whence $(!) x_{n} \xrightarrow{\rho} x$.

To see completeness of (Y, ρ) let $\left(x_{n}\right)_{n \geq 1}$ be a ρ-Cauchy sequence in Y, then $\left(x_{n}\right)_{n \geq 1}$ is a d-Cauchy sequence in Y, and $\left(f_{k}\left(x_{n}\right)\right)_{n \geq 1}$ is a Cauchy sequence in $\mathbb{R} \forall k \geq 1$. It follows that $\exists x \in X$ such that $x_{n} \xrightarrow{d} x$ and $\exists \lim _{n \rightarrow \infty} f_{k}\left(x_{n}\right) \in \mathbb{R} \forall k \geq 1$. It follows that $x \in Y ป^{2}$ and $x_{n} \xrightarrow{\rho} x$.

Lemma 4.2 If X is a Polish space, then $\exists a G_{\delta}$ set $G \subset[0,1)^{\mathbb{N}}$ which is homeomorphic to X.

Proof Choose an equivalent metric $d \leq 3 / 4$, and a countable dense set $\mathcal{A} \subset X$. Define $f: X \rightarrow Z:=[0,1)^{\mathcal{A}}$ by $f_{a}(x):=d(x, a)$. Clearly $f: X \rightarrow G:=f(X)$ is bijective. We claim it is a homeomorphism.

Let $x_{n}, x \in X$.
If $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then $d\left(x_{n}, a\right) \rightarrow d(x, a)$ as $n \rightarrow \infty \forall a \in \mathcal{A}$ and $f\left(x_{n}\right) \rightarrow f(x)$.

If $f\left(x_{n}\right) \rightarrow f(x)$, then $d\left(x_{n}, a\right) \rightarrow d(x, a)$ as $n \rightarrow \infty \forall a \in \mathcal{A}$ whence

$$
d\left(x_{n}, x\right) \leq d\left(x_{n}, a\right)+d(x, a) \underset{n \rightarrow \infty}{\longrightarrow} 2 d(x, a) \forall a \in \mathcal{A} .
$$

Let $\varepsilon>0$. Since \mathcal{A} is dense, $\exists a_{\varepsilon} \in \mathcal{A}$ such that $d\left(x, a_{\varepsilon}\right)<\varepsilon / 2$ and

$$
\varlimsup_{n \rightarrow \infty} d\left(x_{n}, x\right) \leq 2 d\left(x, a_{\varepsilon}\right)<\varepsilon
$$

[^1]Thus $f: X \rightarrow G$ is a homeomorphism. The set G is now Polish (a complete equivalent metric being given by $\rho(f(x), f(y)):=d(x, y))$ and hence a G_{δ}.
Lemma 4.3 There is a Borel subset Z of $\Omega=\{0,1\}^{\mathbb{N}}$ which is Borel isomorphic to X.

Proof Let $Y:=\left\{\omega \in\{0,1\}^{\mathbb{N}}: \omega_{n} \rightarrow 1\right\}$ then $\pi: Y \rightarrow[0,1)$ defined by $\pi(\omega)=\sum_{n=1}^{\infty} \frac{\omega_{n}}{2^{n}}$ is a Borel isomorphism.

The Borel isomorphism $\Psi=\phi \circ \psi:[0,1)^{\mathbb{N}} \rightarrow Z \in \mathcal{B}(\Omega)$ is as advertised, where:
$\phi:[0,1)^{\mathbb{N}} \rightarrow Y^{\mathbb{N}}$ is defined by $\phi\left(y_{1}, y_{2}, \ldots\right)_{k}:=\pi^{-1}\left(y_{k}\right)$,
$\psi: \Omega^{\mathbb{N}}=\{0,1\}^{\mathbb{N}^{2}} \rightarrow \Omega$ is defined by $\psi\left(\left(\omega_{u}: u \in \mathbb{N}^{2}\right)\right)_{\ell}=\omega_{\sigma(\ell)}$ where $\sigma: \mathbb{N} \rightarrow \mathbb{N}^{2}$ is bijective
and
$Z=\phi \circ \psi(G) \in \mathcal{B}(\Omega)$ where G is as in lemma 4.2.

Proof of Kuratowski's theorem à la Cantor-Bernstein

We have bimeasurable maps $f: X \rightarrow f(X) \in \mathcal{B}(\Omega)$ and $g: \Omega \rightarrow$ $g(\Omega) \in \mathcal{B}(X)$.

Define

$$
\begin{gathered}
X_{2 n}=(g \circ f)^{n}(X \backslash g(\Omega)) \in \mathcal{B}(X), \quad \Omega_{2 n}=(f \circ g)^{n}(\Omega \backslash f(X)) \in \mathcal{B}(\Omega), \\
X_{2 n+1}=g\left(\Omega_{2 n}\right) \in \mathcal{B}(X), \quad \Omega_{2 n+1}=f\left(X_{2 n}\right) \in \mathcal{B}(\Omega),
\end{gathered}
$$

and

$$
X_{\infty}=X \backslash \bigcup_{n=0}^{\infty} X_{n} \in \mathcal{B}(X), \Omega_{\infty}=\Omega \backslash \bigcup_{n=0}^{\infty} \Omega_{n} \in \mathcal{B}(X)
$$

Define $\alpha \subset \mathcal{B}(X)$ and $\beta \subset \mathcal{B}(\Omega)$ by

$$
\alpha=\left\{A_{0}, A_{1}, X_{\infty}\right\}, \beta=\left\{B_{0}, B_{1}, \Omega_{\infty}\right\}
$$

where

$$
\begin{gathered}
A_{0}=\bigcup_{n=0}^{\infty} X_{2 n}, A_{1}=\bigcup_{n=0}^{\infty} X_{2 n+1}, \\
B_{0}=\bigcup_{n=0}^{\infty} \Omega_{2 n}=g^{-1}\left(A_{1}\right), B_{1}=\bigcup_{n=0}^{\infty} \Omega_{2 n+1}=f\left(A_{0}\right) .
\end{gathered}
$$

- We claim that α and β are partitions of X and Ω (respectively).

Proof For $x \in g(\Omega) \subset X$, call the point $g^{-1}(x) \in \Omega$ a preimage of x, and for $y \in f(X) \subset \Omega$, call the point $f^{-1}(y) \in X$ a preimage of y.

Define a map $N: X \cup \Omega \rightarrow \mathbb{Z}_{+} \cup\{\infty\}$ by $N(z)=\max \left\{n \geq 0: \exists\left(z_{0}, \ldots, z_{n}\right), z_{0}=z, z_{k+1}\right.$ is a preimage of $\left.z_{k} \forall 0 \leq k<n\right\}$,
then $X_{n}=X \cap[N=n]$ and $\Omega_{n}=\Omega \cap[N=n]$ for $0 \leq n \leq \infty$. The required Borel isomorphism is $\pi: X \rightarrow \Omega$ defined by

$$
\pi(x)=\left\{\begin{array}{l}
f(x) \quad x \in A_{0} \cup X_{\infty}, \\
g^{-1}(x) \quad x \in A_{1} .
\end{array}\right.
$$

Universably nonmeasurable sets in Polish spaces.

We "construct" subsets of Polish spaces which are not completion measurable (in the sense of exercise 4.0 below) with respect to any non-atomic Borel probability on X.

We'll need:

Lemma 4.4

If X is a Polish space with $|X|=c$, then

$$
\mid\{\text { uncountable closed subsets }\} \mid=c .
$$

Proof
Let $\mathfrak{C}:=\{$ uncountable, closed subsets of $X\}$.
I To see that $|\mathfrak{C}| \leq c$ let \mathcal{U} be a countable base for the topology of X, then

$$
|\mathfrak{C}|=\mid\{\text { open subsets of } X\}\left|\leq\left|2^{\mathcal{U}}\right|=c\right. \text {. }
$$

I To show that $|\mathfrak{C}| \geq c$ we exhibit a continuum of disjoint, uncountable closed subsets of X. By lemma 1, it suffices to this in Ω. To this end fix $A \subset \mathbb{N}$ such that $|A|=|\mathbb{N} \backslash A|=\infty$. For $a \in\{0,1\}^{A}$, let $\Omega_{a}:=\{\omega \in \Omega$: $\left.\left.\omega\right|_{A}=a\right\}$, then

- $\Omega_{a} \cap \Omega_{a^{\prime}} \neq \varnothing \Longrightarrow a=a^{\prime}$;
- Ω_{a} is homeomorphic with $\Omega \forall a \in\{0,1\}^{A}$.

Thus $\mathcal{F}:=\left\{\Omega_{a}: a \in\{0,1\}^{A}\right\}$ is a continuum of disjoint, uncountable closed subsets of Ω. \square

Big sets \& Bernstein sets.

Let X be an uncountable, Polish space. A big set in X is a set $B \subset X$ such that $F \cap B \neq \varnothing \forall F \subset X$ closed, uncountable,

$$
F \cap B \neq \varnothing \& \quad F \backslash B \neq \varnothing .
$$

A Bernstein set in X is a big set whose complement is also big.

4.5 Bernstein's Theorem ${ }^{3}$

[^2]Bernstein sets exist in any uncountable Polish space.

Proof Let $\mathfrak{C}:=\{$ uncountable, closed subsets of $X\}$, then (as shown above) $|\mathfrak{C}|=c$.

The initial segment (רישא) of an ordinal β is

$$
\Omega(\beta):=\{\alpha \text { ordinal, } \alpha<\beta\} .
$$

Let ω_{c} be the minimal ordinal with $\left|\omega_{c}\right|:=\operatorname{card} \Omega\left(\omega_{c}\right)=c$. Write $\Omega_{c}:=\Omega\left(\omega_{c}\right)$, then

$$
|\alpha|<c \forall \alpha \in \Omega_{c}
$$

and it follows that

$$
\mathfrak{C}=\left\{F_{\alpha}: \alpha \in \Omega_{c}\right\} .
$$

We'll also need the
Transfinite recursion theorem.
Suppose that Z is a set, $z \in Z$ and for $\alpha \in \Omega_{c}, f_{\alpha}: Z^{\Omega(\alpha)} \rightarrow Z$, then $\exists!f: \Omega_{c} \rightarrow Z$ such that $f(1)=z$ and

$$
f(\alpha)=f_{\alpha}\left(\left.f\right|_{\Omega(\alpha)}\right) \forall \alpha \in \Omega_{c}
$$

To use transfinite recursion, we claim
I $\forall \alpha \in \Omega_{c}, \exists \Psi_{\alpha}:=\left(f_{\alpha}, g_{\alpha}\right):(X \times X)^{\Omega(\alpha)} \rightarrow X \times X$ such that $\forall(u, v) \in(X \times X)^{\Omega(\alpha)}$,
(a) $f_{\alpha}(u, v) \neq g_{\alpha}(u, v)$;
(b) $f_{\alpha}(u, v), g_{\alpha}(u, v) \in F_{\alpha}$;
(c) $f_{\alpha}(u, v), g_{\alpha}(u, v) \notin u(\Omega(\alpha)) \cup v(\Omega(\alpha))$.

Proof of \mathbb{I} :
Fix $(u, v) \in(X \times X)^{\Omega(\alpha)}$, then $|u(\Omega(\alpha)) \cup v(\Omega(\alpha))|<c$ whereas $\left|F_{\alpha}\right|=c$ whence $\#\left(F_{\alpha} \backslash u(\Omega(\alpha)) \backslash v(\Omega(\alpha))\right)>2$ ensuring existence of such $f_{\alpha}(u, v), g_{\alpha}(u, v)$. $\square \mathbb{I}$

By transfinite recursion $\exists \Psi=(p(\alpha), q(\alpha)): \Omega_{c} \rightarrow X \times X$ such that $\Psi(\alpha)=\Psi_{\alpha}\left(\left.\Psi\right|_{\Omega(\alpha)}\right)$.

It follows that
(i) $p(\alpha) \neq q(\alpha)$;
(ii) $p(\alpha), q(\alpha) \in F_{\alpha}$;
(iii) $p(\alpha), q(\alpha) \notin p(\Omega(\alpha)) \cup q(\Omega(\alpha))$
whence $p\left(\Omega_{c}\right) \cap q\left(\Omega_{c}\right)=\varnothing$.

The Bernstein set constructed is $B:=p\left(\Omega_{c}\right)$. Evidently $X \backslash B \supset$ $q\left(\Omega_{c}\right)$. For each $\forall F \in \mathfrak{C}, \exists \alpha \in \Omega_{c}, F=F_{\alpha}$ whence

$$
p(\alpha) \in F \cap B \& q(\alpha) \in B^{c} \cap F . \not \square
$$

4.7 Proposition If $B \subset X$ is a Bernstein set, and $\bar{\mu}: 2^{X} \rightarrow[0, \infty)$ is a metric outer measure on X with $\bar{\mu}(\{x\})=0 \forall x \in X$, then $B \notin \mathcal{M}_{\bar{\mu}}$.

Proof

Since $\bar{\mu}(\{x\})=0 \forall x \in X$, any closed set of positive measure is uncountable. Thus, if $B \in \mathcal{M}$, then by regularity of $\left.\bar{\mu}\right|_{\mathcal{M}}$, either

- $\bar{\mu}(B)>0$ and $\exists C \in \mathfrak{C}, C \subset B \Longrightarrow \varnothing \neq C \cap B^{c} \cong B \cap B^{c}=\varnothing$; or
- $\bar{\mu}\left(B^{c}\right)>0$ and $\exists C \in \mathfrak{C}, C \subset B^{c} \Longrightarrow \varnothing \neq C \cap B \subseteq B^{c} \cap B=\varnothing$. \boxtimes See also exercise 4.3(a).

4.8 Ulam's theorem

Suppose that $|X|=\boldsymbol{\aleph}_{1}$. If $\mu: 2^{X} \rightarrow[0,1]$ is a measure, non-atomic in the sense that $\mu(\{x\})=0 \forall x \in X$, then $\mu \equiv 0$.

Proof By the WOT, \exists an ordering $<$ on X so that

- every subset has a minimal element; and
- $\{x \in X: x<y\}$ is at most countable $\forall y \in X$.

For $y \in X$ let $x \mapsto f_{y}(x)=f(x, y)$ be an injection of $\{x \in X: x<y\}$ into \mathbb{N}.
For $x \in X, n \in \mathbb{N}$ let $F_{x}^{n}:=\{y \in X: x<y, f(x, y)=n\}$.
【1 $F_{x}^{n} \cap F_{x^{\prime}}^{n}=\varnothing \forall n \in \mathbb{N}, x \neq x^{\prime} \in X$.
Proof If $y \in F_{x}^{n} \cap F_{x^{\prime}}^{n}$, then $f(x, y)=f\left(x^{\prime}, y\right)=n$ whence by construction of $f, x=x^{\prime}$. \square
$\mathbb{T} 2 \cup_{n \in \mathbb{N}} F_{x}^{n}=\{y \in X: x<y\}$ since $\forall x<y, y \in F_{x}^{f(x, y)}$.
Now for fixed $n \in \mathbb{N}$,

$$
\left|\left\{x \in X: \mu\left(F_{x}^{n}\right)>0\right\}\right| \leq \boldsymbol{\aleph}_{0} .
$$

Therefore

$$
\left|\left\{x \in X: \exists n \in \mathbb{N}, \mu\left(F_{x}^{n}\right)>0\right\}\right| \leq \boldsymbol{\aleph}_{0}
$$

and $\exists r \in X, \mu\left(F_{r}^{n}\right)=0 \forall n \in \mathbb{N}$.

Thus

$$
\begin{align*}
\mu(X)= & \mu(\{x \in X: x \leq r\})+\mu\left(\bigcup_{n \in \mathbb{N}} F_{r}^{n}\right) \tag{©}\\
& =\mu(\{x \in X: x<r\})+\mu(\{r\})+\sum_{n \in \mathbb{N}} \mu\left(F_{r}^{n}\right) \\
& =0 . \not \square
\end{align*}
$$

תרגיל פסח ExERCiSE NO $3, ~ 29 / 3 / 2017$

1. Completions.

The measure space (Z, \mathcal{C}, m) is complete if arbitrary subsets of measureable null sets are measurable.

Let (X, \mathcal{B}, μ) be a finite measure space.
The μ-completion of \mathcal{B} is the σ-algebra

$$
\overline{\mathcal{B}}_{\mu}:=\sigma\left(\mathcal{B} \cup \underset{N \in \mathcal{B}, \mu(N)=0}{\bigcup} 2^{N}\right)
$$

Here, you extend μ to $\overline{\mathcal{B}}_{\mu}$.
Show that
(i) $\bar{\mu}: 2^{X} \rightarrow[0, \infty)$ defined by $\bar{\mu}(A):=\inf \{\mu(U): A \subset U \in \mathcal{B}\}$ is an outer measure;
(ii) $\mathcal{M}_{\bar{\mu}}=\overline{\mathcal{B}}_{\mu}$ and $\left.\bar{\mu}\right|_{\mathcal{B}}=\mu$; and that
(iii) a function $g: X \rightarrow \mathbb{R}$ is $\overline{\mathcal{B}}_{\mu}-$ measurable iff $\exists f: X \rightarrow \mathbb{R} \mathcal{B}$ measurable such that $f(x)=g(x)$ for $\bar{\mu}$-a.e. $x \in X$.

The measure space $\left(X, \overline{\mathcal{B}}_{\mu}, \bar{\mu}\right)$ is called the μ-completion of (X, \mathcal{B}, μ).
2. Measure algebra. Let (X, \mathcal{B}, m) be a finite measure space. Define a relation on \mathcal{B} by $A \sim B$ if $m(A \Delta B)=0$.
a) Show that \sim is an equivalence relation.
b) Let $\mathcal{B}^{\sim}=\left\{[A]:=\left\{A^{\prime} \in \mathcal{B}: A^{\prime} \sim A\right\}: A \in \mathcal{B}\right\}$ be the collection of equivalence classes.

Show that

$$
d(a, b):=m(A \Delta B) \text { for } a, b \in \mathcal{B}^{\sim}, \quad A \in a, B \in b
$$

defines a metric on \mathcal{B}^{\sim}, and that $\left(\mathcal{B}^{\sim}, d\right)$ is a complete metric space (called the measure algebra of (X, \mathcal{B}, m)).
c) Show that the measure algebra of a measure space is isometric with the measure algebra of its completion.
d) Show that the following are equivalent:
(i) \mathcal{B}^{\sim} is separable;
(ii) $\exists A_{n} \in \mathcal{B} \quad(n \geq 1)$ such that $\forall A \in \mathcal{B} \exists A^{\prime} \in \sigma\left(\left\{A_{n}\right\}_{n=1}^{\infty}\right)$ with $m\left(A \Delta A^{\prime}\right)=0$;
e) Is there a probability space (X, \mathcal{B}, μ) equipped with sets $\left\{A_{s}: s \in(0,1)\right\} \subset \mathcal{B}$ such that $\mu\left(A_{s} \Delta A_{t}\right) \geq \frac{1}{4} \forall s \neq t$?

3. Polish probability spaces.

Let X be a Polish space, and let $p \in \mathcal{P}(X, \mathcal{B}(X))$ be non-atomic. Let $(I, \mathcal{B}(I), \lambda)$, the unit interval equipped with its Borel sets and Lebesgue measure. Show that $(X, \mathcal{B}(X), p)$ and $(I, \mathcal{B}(I), \lambda)$ are isomorphic in the sense that there are sets $X^{\prime} \in \mathcal{B}(X), I^{\prime} \in \mathcal{B}(I)$ such that $p\left(X \backslash X^{\prime}\right)=$ $\lambda\left(I \backslash I^{\prime}\right)=0$; and a bimeasurable bijection $\pi: X^{\prime} \rightarrow I^{\prime}$ satisfying $p \circ \pi^{-1}=\lambda$.
Hint: First use Kuratowski's theorem to show that $(X, \mathcal{B}(X), p)$ is isomorphic with $(I, \mathcal{B}(I), q)$ for some nonatomic $q \in \mathcal{P}(I, \mathcal{B}(I))$.

4. Bernstein sets.

Let X be an uncountable polish space.
Show that there is a disjoint collection \mathfrak{B} of Bernstein sets so that $|\mathfrak{B}|=c$ and $\cup_{B \in \mathfrak{B}} B=X$.
5. Generalised Cantor sets. For $I=[a-c, a+c]$ a bounded closed interval, and $0<h<1$, define

$$
\begin{gathered}
I_{0}(h):=[a-c, a-(1-h) c], \quad I_{1}(h):=[a+(1-h) c, a+c] ; \\
I^{\prime}(h):=I_{0}(h) \cup I_{1}(h)=I \backslash(a-(1-h) c, a+(1-h) c) .
\end{gathered}
$$

For $A=\cup_{k} I_{k}$ a disjoint union of closed intervals, define

$$
A^{\prime}(h)=\bigcup_{k} I_{k}^{\prime}(h) .
$$

Clearly $\left|A^{\prime}(h)\right|=h|A|$. For $h_{1}, h_{2}, \cdots \in(0,1)$ define

$$
A_{1}:=[0,1], \quad A_{n+1}:=A_{n}^{\prime}\left(h_{n}\right), \quad A:=\bigcap_{n=1}^{\infty} A_{n} .
$$

a) Prove that A is closed and nowhere dense.
b) Prove that the Lebesgue measure of A is $m(A)=\lim _{n \rightarrow \infty} \prod_{k=1}^{n} h_{n}$.

6. Volterra's function (1881).

Here you construct this differentiable function $V: \mathbb{R} \rightarrow \mathbb{R}$ whose uniformly bounded derivative is not Riemann integrable on $[0,1]$.
a) For the construction, you need a closed, nowhere dense subset E of $[0,1]$, with positive Lebesgue measure. Construct such (e.g. using the previous exercise).

Set $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$ when $x \neq 0$, and $f(0)=0$ and recall that

- $\quad f$ is differentiable on \mathbb{R};
- $f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)$ when $x \neq 0, f^{\prime}(0)=0$; and
- there is a sequence $y_{n} \downarrow 0$ such that $f^{\prime}\left(y_{n}\right)=0$.

For $r>0$, set $z=z_{r}:=\max \left\{z \in(0, r / 2): f^{\prime}(z)=0\right\}$, and define $f_{r}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f_{r}(x)=\left\{\begin{array}{l}
f(x) \quad 0 \leq x \leq z \\
f(z) \quad z \leq x \leq r-z \\
f(r-z) \quad r-z \leq x \leq r \\
0 \text { else. }
\end{array}\right.
$$

b) For $I=(a, b)$, define $f_{I}: \mathbb{R} \rightarrow \mathbb{R}$ by $f_{I}(x)=f_{b-a}(x-a)$.

Show that $\left|f_{I}\right| \leq \frac{|I|^{2}}{4} ; f_{I}$ is differentiable on \mathbb{R} with $\left|f_{I}^{\prime}\right| \leq|I|+1$ and $\omega\left(f_{I}^{\prime}, x\right)=2 \cdot 1_{\partial I}(x)$
where for $g:(x-\eta, x+\eta) \rightarrow \mathbb{R}$,

$$
\omega(g, x):=\lim _{\varepsilon \rightarrow 0} \sup _{y, z \in(x-\varepsilon, x+\varepsilon)}|g(y)-g(z)| .
$$

For $E \subset[0,1]$ a closed, nowhere dense set, write $\mathbb{R} \backslash E=\bigcup_{n} I_{n}$ where the I_{n} are disjoint, open intervals, and set

$$
V(x):=\left\{\begin{array}{l}
f_{I_{n}}(x) \quad x \in I_{n} \\
0 \text { else. }
\end{array}\right.
$$

c) Show that V is differentiable on $\mathbb{R}, \sup _{[0,1]}\left|V^{\prime}\right| \leq 2,\left.V^{\prime}\right|_{E} \equiv 0$ and that $\omega\left(V^{\prime}, x\right)=2 \cdot 1_{E}(x)$.
Hint $|V(y)| \leq|y-x|^{2} \forall x \in E, y \in \mathbb{R}$.
d) Show that if $m(E)>0$, then V^{\prime} is not Riemann integrable on $[0,1]$.

Week \# 4
Measurable sets in Polish spaces: Analytic sets

Definition A subset of a Polish space is analytic if it is the continuous image of $\mathbb{N}^{\mathbb{N}}$ (i.e. the irrationals - see exercise 4.1(a)).
4.9 Proposition Any Polish space is a continuous image of $\mathbb{N}^{\mathbb{N}}$.

The proof is standard and uses the
4.10 Lemma Let X be a separable metric space. Given $\varepsilon_{k}>0 \quad(k \geq$ 1), there is a collection of nonempty closed sets

$$
\left\{F\left(n_{1}, \ldots, n_{k}\right): k, n_{1}, \ldots, n_{k} \in \mathbb{N}\right\}
$$

such that $\overline{F\left(n_{1}, \ldots, n_{k}\right)^{o}}=F\left(n_{1}, \ldots, n_{k}\right) \forall=k, n_{1}, \ldots, n_{k} \in \mathbb{N}$,

$$
\begin{gathered}
\bigcup_{\nu=1}^{\infty} F(\nu)=X, \\
\left.\bigcup_{\nu=1}^{\infty} F\left(n_{1}, \ldots, n_{k}, \nu\right)=F\left(n_{1}, \ldots, n_{k}\right)\right)^{o} \forall k, n_{1}, \ldots, n_{k} \in \mathbb{N},
\end{gathered}
$$

and

$$
\sup \left\{\operatorname{diam} F\left(n_{1}, \ldots, n_{k}\right): n_{1}, \ldots, n_{k} \in \mathbb{N}\right\} \leq \varepsilon_{k} \forall k \geq 1
$$

The lemma is proved using the Lindelöf property of separable metric spaces.

The following shows that Borel sets are analytic:
4.11 Theorem Let X be Polish, then every non-empty $A \in \mathcal{B}(X)$ is an injective, continuous image of a Polish space.

Proof Let

$$
\mathfrak{P}:=\{A \in \mathcal{B}(X): \exists Z \text { Polish \& a continuous bijection } \pi: Z \rightarrow A\} ;
$$

$$
\mathfrak{Q}_{0}:=\left\{A \in \mathfrak{P}: A^{c} \in \mathfrak{P}\right\} \& \mathfrak{Q}=\mathfrak{Q}_{0} \cup\{\varnothing, X\} .
$$

We show that $\mathfrak{Q}=\mathcal{B}(X)$.
If $\varnothing \neq U \varsubsetneqq X$ is open, then $U \in \mathfrak{P}$ (as a non-empty G_{δ} set), and $U^{c} \in \mathfrak{P}$ (as a non-empty closed set), hence $U \in \mathfrak{Q}$. We show that \mathfrak{Q} is a σ-algebra.

First:

$$
A_{n} \in \mathfrak{P}, A:=\bigcap_{n=1}^{\infty} A_{n} \neq \varnothing \Longrightarrow A \in \mathfrak{P} .
$$

To see this, let X_{n} be Polish, and $\pi_{n}: X_{n} \rightarrow X$ be a continuous injection with $\pi_{n}\left(X_{n}\right)=A_{n}$. Consider the product (Polish) space

$$
\hat{X}:=\prod_{n=1}^{\infty} X_{n}
$$

and the continuous injection $\pi: \hat{X} \rightarrow X^{\mathbb{N}}$ defined by $\left(\pi\left(x_{1}, x_{2}, \ldots\right)\right)_{n}:=$ $\pi_{n}\left(x_{n}\right)$.

Now let

$$
\begin{aligned}
\tilde{X} & =\left\{x \in \hat{X}: \pi_{n}\left(x_{n}\right)=\pi_{1}\left(x_{1}\right) \forall n \geq 1\right\} \\
& =\pi^{-1}\left\{\left(x_{1}, x_{2}, \ldots\right) \in A^{\mathbb{N}}: x_{n}=x_{1} \forall n \geq 1\right\},
\end{aligned}
$$

- a non-empty, closed subset of \hat{X} and hence Polish, and consider $\tilde{\pi}: \tilde{X} \rightarrow X$ defined by $\tilde{\pi}\left(x_{1}, x_{2}, \ldots\right)=\pi_{1}\left(x_{1}\right)$. Clearly this is continuous, and $\tilde{\pi}(\tilde{X})=\bigcap_{n=1}^{\infty} A_{n} . \nabla(\infty)$

Next:
(ヵ)

$$
A_{n} \in \mathfrak{P} \text { disjoint, } \Rightarrow \bigcup_{n=1}^{\infty} A_{n} \in \mathfrak{P}
$$

Proof Let X_{n} be Polish, and $\pi_{n}: X_{n} \rightarrow X$ be a continuous injection with $\pi_{n}\left(X_{n}\right)=A_{n}$. Consider the union space $U:=\{(k, y): k \in \mathbb{N}, x \in$ $\left.X_{k}\right\}$ which is Polish equipped with the metric

$$
d\left((k, x),\left(k^{\prime}, y\right)\right)=\left\{\begin{array}{l}
1 \quad k \neq k^{\prime}, \\
d_{k}\left(x, x^{\prime}\right) \quad k=k^{\prime} .
\end{array}\right.
$$

If $\pi((k, x)):=\pi_{k}(x)$, then π is continuous and injective and $\pi(U)=$ $\cup_{n=1}^{\infty} A_{n} . \nabla(\boldsymbol{\infty})$

Now, we show

$$
\begin{equation*}
A, B \in \mathfrak{Q}_{0} \Longrightarrow A \cup B \in \mathfrak{P} . \tag{*}
\end{equation*}
$$

To see this

\[

\]

To see that \mathfrak{Q} is an algebra we must show that

$$
A, B \in \mathfrak{Q} \Longrightarrow A \cup B \in \mathfrak{Q} .
$$

This true for $A, B \in \mathfrak{Q}_{0}$ by $(\&)$ and the extension to $A, B \in \mathfrak{Q}$ is easy.

To see that \mathfrak{Q} is a σ-algebra, it's enough to show that

$$
A_{n} \in \mathfrak{Q} \Rightarrow A:=\bigcup_{n=1}^{\infty} A_{n} \in \mathfrak{Q} .
$$

If $\exists n, A_{n}=X$ then $A=X \in \mathfrak{Q}$.
So WLOG, we assume $A_{n} \in \mathfrak{Q}_{0} \forall n \geq 1$.

Proof that $A \in \mathfrak{P}$
Since \mathfrak{Q} is an algebra, $\exists B_{n} \in \mathfrak{Q}$, disjoint, such that $A:=\cup_{n=1}^{\infty} B_{n}$. For each $n \geq 1$, either $B_{n} \in \mathfrak{P}$ or $B_{n}=\varnothing$. WLOG $B_{n} \in \mathfrak{P} \forall n \geq 1 \& A \in \mathfrak{P}$ by ($\boldsymbol{\Omega}_{\text {) }}$.
Proof that $A^{c} \in \mathfrak{P}$
For each $n \geq 1, A_{n}^{c} \in \mathfrak{P}$ whence

$$
\left(\bigcup_{n=1}^{\infty} A_{n}\right)^{c}=\bigcap_{n=1}^{\infty} A_{n}^{c} \in \mathfrak{P}
$$

Universally Measurable.

A subset of a Polish space $\mathfrak{a} \subset X$ is universally measurable if $\mathfrak{a} \epsilon$ $\overline{\mathcal{B}(X)}{ }_{p} \forall p \in \mathcal{P}(X)$.

4.12 Luzin's Measurability Theorem

An analytic subset of a Polish space $\mathfrak{a} \subset X$ is universally measurable.
Proof We'll show that $\exists U \subset \mathfrak{a} \subset V, U, V \in \mathcal{B}(X)$ such that $p(U)=$ $p(V)$.

Define $\bar{p}: 2^{X} \rightarrow[0,1]$ by

$$
\bar{p}(A):=\inf \{p(B): A \subset B \in \mathcal{B}(X)\}
$$

It follows from the basics that p is an outer measure.
If $A \subset X$ then $\exists U_{A} \supset A, U_{A} \in \mathcal{B}(X)$ with $\bar{p}(A)=p\left(U_{A}\right)$.
We'll show that $\forall \varepsilon>0, \exists K_{\varepsilon} \subset \mathfrak{a}$ compact, such that $p\left(K_{\varepsilon}\right) \geq \bar{p}(\mathfrak{a})-\varepsilon$ whence $\mathfrak{a}=\bigcup_{n=1}^{\infty} K_{\frac{1}{n}} \bmod p$.

Suppose that $f: \mathbb{N}^{\mathbb{N}} \rightarrow X$ is continuous and $\mathfrak{a}=f\left(\mathbb{N}^{\mathbb{N}}\right)$. For $k, n_{1}, \ldots, n_{k} \geq$ 1, let

$$
L\left(n_{1}, \ldots, n_{k}\right)=\left\{x \in \mathbb{N}^{\mathbb{N}}: x_{j} \leq n_{j} \quad 1 \leq j \leq k\right\} .
$$

By ex. 3.1(c), if $A_{n} \subset A_{n+1} \uparrow A=\bigcup_{n=1}^{\infty} A_{n}$, then $\bar{p}\left(A_{n}\right) \uparrow \bar{p}(A)$.
Thus, since $f(L(n)) \uparrow f\left(\mathbb{N}^{\mathbb{N}}\right)=\mathfrak{a}, \exists n_{1}$ such that

$$
\bar{p}\left(f\left(L\left(n_{1}\right)\right)\right)>\bar{p}(\mathfrak{a})-\frac{\varepsilon}{2}
$$

and since $f\left(L\left(n_{1}, n\right)\right) \uparrow f(L(n)), \exists n_{2}$ such that

$$
\bar{p}\left(f\left(L\left(n_{1}, n_{2}\right)\right)\right)>\bar{p}\left(f\left(L\left(n_{1}\right)\right)\right)-\frac{\varepsilon}{2^{2}}=\bar{p}(\mathfrak{a})-\frac{\varepsilon}{2}-\frac{\varepsilon}{2^{2}} .
$$

Continuing inductively, we obtain $n_{k} \geq 1 \quad(k \geq 1)$ such that

$$
\bar{p}\left(f\left(L\left(n_{1}, \ldots, n_{k}\right)\right)\right)>\bar{p}(\mathfrak{a})-\varepsilon \quad \forall k \geq 1 .
$$

Set

$$
C_{\varepsilon}=\bigcap_{k=1}^{\infty} L\left(n_{1}, \ldots, n_{k}\right)
$$

then C_{ε} is compact in $\mathbb{N}^{\mathbb{N}}$, whence $K=K_{\varepsilon}:=f\left(C_{\varepsilon}\right)$ is compact in X. We claim that $p\left(K_{\varepsilon}\right)>\bar{p}(\mathfrak{a})-\varepsilon$.

To establish this, it is sufficient to show that

$$
\text { (w) } K=\bigcap_{k=1}^{\infty} \overline{f\left(L\left(n_{1}, \ldots, n_{k}\right)\right)}
$$

for then,

$$
p(K) \longleftarrow p\left(\overline{f\left(L\left(n_{1}, \ldots, n_{k}\right)\right)}\right) \geq \bar{p}\left(f\left(L\left(n_{1}, \ldots, n_{k}\right)\right)\right)>\bar{p}(\mathfrak{a})-\varepsilon
$$

Proof of (
Clearly $K \subset \bigcap_{k=1}^{\infty} \overline{f\left(L\left(n_{1}, \ldots, n_{k}\right)\right)}$.
Suppose that $x \in \bigcap_{k=1}^{\infty} \overline{f\left(L\left(n_{1}, \ldots, n_{k}\right)\right)}$. We'll show that $x \in K$. For each $k \geq 1, \exists y(k) \in \mathbb{N}^{\mathbb{N}}$ such that $d\left(x, f(y(k))<\frac{1}{k}\right.$ and $y_{j}(k) \leq$ $n_{j}(1 \leq j \leq k)$. There is a subsequence $k_{\ell} \rightarrow \infty$ and $y \in \mathbb{N}^{\mathbb{N}}$ such that $y_{j}\left(k_{\ell}\right)=y_{j} \forall 1 \leq j \leq \ell$, whence $y \in C_{\varepsilon}$ and $y\left(k_{\ell}\right) \rightarrow y$. It follows that

$$
x \leftarrow f\left(y\left(k_{\ell}\right)\right) \rightarrow f(y) \in K
$$

Souslin Universality

Definition Let X be a set, and $\mathcal{F} \subset 2^{X}$. A subset A of $\mathbb{N}^{\mathbb{N}} \times X$ is universal for \mathcal{F} if

$$
\left\{A_{y}: y \in \mathbb{N}^{\mathbb{N}}\right\}=\mathcal{F}
$$

where $A_{y}:=\{x \in X:(y, x) \in A\}$.
Souslin's existence theorem Let X be an uncountable Polish space. There is an analytic subset of X which is not Borel.

Lemma Suppose that X is a separable metric space. There is an open subset of $\mathbb{N}^{\mathbb{N}} \times X$ which is universal for the open subsets of X, and there is a closed subset of $\mathbb{N}^{\mathbb{N}} \times X$ which is universal for the closed subsets of X.

Proposition Let X be Polish. There is an analytic subset of $\mathbb{N}^{\mathbb{N}} \times X$ which is universal for the analytic subsets of X.

Proof Each analytic set in X is the projection of a closed subset of $\mathbb{N}^{\mathbb{N}} \times X$. Choose a closed subset F of $\mathbb{N}^{\mathbb{N}} \times\left(\mathbb{N}^{\mathbb{N}} \times X\right)$ which is universal for the closed subsets of $\mathbb{N}^{\mathbb{N}} \times X$.

Set

$$
G=\left\{(x, z) \in \mathbb{N}^{\mathbb{N}} \times X: \exists y \in \mathbb{N}^{\mathbb{N}},(x, y, z) \in F\right\}
$$

Evidently G is an analytic subset of $\mathbb{N}^{\mathbb{N}} \times X$. To see that G is universal for the analytic subsets of X, let $A \subset X$ be analytic. There is a closed $B \subset \mathbb{N}^{\mathbb{N}} \times X$ so that

$$
A=\left\{y \in X: \exists x \in \mathbb{N}^{\mathbb{N}},(x, y) \in B\right\} .
$$

By universality of $F, \exists u \in \mathbb{N}^{\mathbb{N}}$ such that

$$
B=F_{u} .
$$

Therefore,

$$
\begin{aligned}
A & =\left\{z \in X: \exists y \in \mathbb{N}^{\mathbb{N}},(y, z) \in F_{u}\right\} \\
& =\left\{z \in X: \exists y \in \mathbb{N}^{\mathbb{N}},(u, y, z) \in F\right\} \\
& =\{z \in X:(u, z) \in G\} \\
& =G_{u} .
\end{aligned}
$$

Proof of Souslin's existence theorem We first show that there is an analytic subset of $\mathbb{N}^{\mathbb{N}}$ which is not Borel.

To see this let $A \subset \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ be universal for the collection of analytic subsets of $\mathbb{N}^{\mathbb{N}}$, and let $B=\left\{x \in \mathbb{N}^{\mathbb{N}}:(x, x) \in A\right\}$, which is analytic being a continuous image of A.

We claim that $B \notin \mathcal{B}\left(\mathbb{N}^{\mathbb{N}}\right)$. To see this, we show that B^{c} is not analytic.

If B^{c} is analytic, then $B^{c}=A_{u}$ for some $u \in A$. However,

$$
u \in B^{c} \Leftrightarrow(u, u) \notin A \Leftrightarrow u \notin A_{u}=B^{c} \Leftrightarrow u \in B .
$$

This contradiction blocks the analyticity of B^{c}, and shows that $B \notin$ $\mathcal{B}\left(\mathbb{N}^{\mathbb{N}}\right)$.

The general existence theorem follows from Kuratowski's isomorphism theorem.

Definition 4

Let X be Polish. Subsets $A_{1}, A_{2}, \cdots \subset X$ are (Borel) separated if $\exists B_{1}, B_{2}, \cdots \in \mathcal{B}(X)$ such that $B_{i} \cap B_{j}=\varnothing \forall i \neq j$ and $A_{i} \subset B_{i} \forall i \geq 1$.

[^3]Souslin's separation theorem Disjoint analytic subsets of a Polish space are separated.

Lemma 1 Suppose $A_{1}, A_{2}, \ldots, B_{1}, B_{2}, \cdots \subset X$ and for each $m, n \geq 1$, A_{m} and B_{n} are separated, then $\bigcup_{m=1}^{\infty} A_{m}$ and $\bigcup_{n=1}^{\infty} B_{n}$ are separated.

Proof We first fix $n \geq 1$ and show that $\cup_{m=1}^{\infty} A_{m}$ and B_{n} are separated.
To see this suppose that $A_{m} \subset F_{m} \in \mathcal{B}(X)(m \geq 1)$ and $B_{n} \subset$ $F_{m}^{c} \forall m \geq 1$; then

$$
\bigcup_{m=1}^{\infty} A_{m} \subset F:=\bigcup_{m=1}^{\infty} F_{m} \in \mathcal{B}(X), \& B_{n} \subset \bigcap_{m=1}^{\infty} F_{m}^{c}=F^{c}
$$

We now have that $\cup_{m=1}^{\infty} A_{m}$ and B_{n} are separated $\forall n \geq 1$. Let $B_{n} \subset G_{n} \in \mathcal{B}(X) \quad(n \geq 1)$ and $\cup_{m=1}^{\infty} A_{m} \subset G_{n}^{c} \forall n \geq 1$. It follows that

$$
\bigcup_{n=1}^{\infty} B_{n} \subset G:=\bigcup_{n=1}^{\infty} G_{n} \in \mathcal{B}(X), \& \bigcup_{m=1}^{\infty} A_{m} \subset \bigcap_{n=1}^{\infty} G_{n}^{c}:=G^{c} .
$$

Lemma 2 Suppose $A, B \subset X$ are disjoint and analytic, then A and B are separated.

Proof There is no loss of generality in assuming $A, B \neq \varnothing$. Suppose $A=f\left(\mathbb{N}^{\mathbb{N}}\right)$ and $B=g\left(\mathbb{N}^{\mathbb{N}}\right)$ where $f, g: \mathbb{N}^{\mathbb{N}} \rightarrow X$ are continuous, and that A and B are not separated.

We claim that $\exists m_{1}, n_{1} \geq 1$ such that $f\left(\left[m_{1}\right]\right)$ and $g\left(\left[n_{1}\right]\right)$ are not separated, else A and B are separated by lemma 1 since $A=$ $\bigcup_{m=1}^{\infty} f([m])$ and $B=\bigcup_{n=1}^{\infty} g([n])$.

Continuing in this manner, we obtain $\underline{m}, \underline{n} \in \mathbb{N}^{\mathbb{N}}$ such that $f\left(\left[m_{1}, m_{2}, \ldots, m_{k}\right]\right)$ and $g\left(\left[n_{1}, n_{2}, \ldots, n_{k}\right]\right)$ are not separated $\forall k \geq 1$.

However, since $f(\underline{m}) \neq g(\underline{n})$ (being contained in disjoint sets), we have by continuity of f and g that for some $k \geq 1$
$\exists \varepsilon>0$ such that $B\left(f\left(\left[m_{1}, m_{2}, \ldots, m_{k}\right]\right), \varepsilon\right) \cap B\left(g\left(\left[n_{1}, n_{2}, \ldots, n_{k}\right]\right), \varepsilon\right)=\varnothing$.

Proof of the separation theorem Suppose that $A_{1}, A_{2}, \cdots \subset X$ are disjoint and analytic. For each $n \geq 1 \bigcup_{k \neq n} A_{n}$ is analytic and disjoint from A_{n}; so

$$
\forall n \geq 1 \exists B_{n} \in \mathcal{B}(X), A_{n} \subset B_{n}, \& \bigcup_{k \neq n} A_{n} \subset B_{n}^{c}
$$

Set

$$
C_{n}:=B_{n} \backslash \bigcup_{k \neq n} B_{k} \in \mathcal{B}(X) .
$$

Clearly $\left.C_{i} \cap C\right) j=\varnothing(i \neq j)$. To see that $A_{n} \subset C_{n}$, note that $A_{n} \subset B_{n}$ and

$$
\forall k \neq n, A_{n} \subset \bigcup_{m \neq k} A_{m} \subset B_{k}^{c},
$$

whence $A_{n} \subset \bigcap_{k \neq n} B_{k}^{c}$ and $A_{n} \subset C_{n}$.
Inverse function theorem Suppose that X and Y are Polish spaces, and that $f: X \rightarrow Y$ is 1-1, and measurable, then $\exists g: Y \rightarrow X$ measurable suchj that $g \circ f=I d$.

Proof Let $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$ and let for $n \geq 1 \alpha_{n} \subset \mathcal{B}(X)$ be a countable partition of X such that

$$
\max _{a \in \alpha_{n}} \operatorname{diam}(a) \leq \varepsilon_{n} .
$$

For each $n \geq 1,\left\{f(a): a \in \alpha_{n}\right\}$ is a countable collection of analytic sets, ans by the separation theorem $\exists\left\{B_{n}(a): a \in \alpha_{n}\right\} \subset \mathcal{B}(Y)$, disjoint such that $B_{n}(a) \supset a \quad \forall a \in \alpha_{n}$.

Choose $x_{a} \in a \in \alpha_{n}$, fix $x_{*} \in X$, and define $g_{n}: Y \rightarrow X$ by

$$
g_{n}(y)= \begin{cases}x_{a} & y \in B_{n}(a) \\ x_{*} & y \notin \bigcup_{a \in \alpha_{n}} B_{n}(a) .\end{cases}
$$

Clearly $g_{n}: Y \rightarrow X$ is measurable. Define $g: Y \rightarrow X$ by

$$
g(y)=\left\{\begin{array}{l}
\lim _{n \rightarrow \infty} g_{n}(y) \quad \exists \lim _{n \rightarrow \infty} g_{n}(y), \\
x_{*} \text { else. }
\end{array}\right.
$$

Clearly $g: Y \rightarrow X$ is measurable. Moreover for $x \in X, f(x) \in B_{n}\left(a_{n}(x)\right) \forall n \geq$ 1 where $x \in a_{n}(x) \in \alpha_{n}$; whence $g_{n}(f(x))=x_{a_{n}(x)} \rightarrow x$ as $n \rightarrow \infty$ $\left(\because x, x_{a_{n}(x)} \in a_{n}(x) \in \alpha_{n}\right)$, and $g(f(x))=x$.

Souslin's measurability theorem Suppose that X and Y are Polish spaces, and that $f: X \rightarrow Y$ is 1-1, and measurable, then:
$f(X) \in \mathcal{B}(X)$, and $f^{-1}: f(X) \rightarrow X$ is measurable.
Proof Let $g: Y \rightarrow X$ be as in the inverse function theorem. We have that:
$\{y \in Y: f \circ g(y)=y\} \in \mathcal{B}(Y) \because f \circ g: Y \rightarrow Y$ is measurable; and

$$
f(X)=\{y \in Y: f \circ g(y)=y\} .
$$

The measurability of $f^{-1}: f(X) \rightarrow X$ follows from $f^{-1}=\left.g\right|_{f(X)}$.

Cross sections. Consider the ordering on $\mathbb{N}^{\mathbb{N}}$ defined by $x<y$ if $\exists n \geq 1$ such that $x_{n}<y_{n}$ and $x_{j}=y_{j} \forall 1 \leq j<n$ (if any). Every closed set has a mininum with respect to this ordering. Note that $1 \leq \mathbb{N}^{\mathbb{N}}$ where $(\underline{a})_{n}:=a \forall a, n \geq 1$. For $x<y \in \mathbb{N}^{\mathbb{N}}$, write

$$
[x, y]:=\left\{z \in \mathbb{N}^{\mathbb{N}}: x \leq z \leq y\right\},[x, y)=[x, y] \backslash\{y\} \ldots
$$

Note that for each $x \in \mathbb{N}^{\mathbb{N}},[\underline{1}, x)$ is open.
Exercise Show that cylinder sets are generated by the countable collection

$$
\left\{[\underline{1}, x]: x \in \mathbb{N}^{\mathbb{N}}, x_{n} \rightarrow a\right\} .
$$

Cross section theorem Let X and Y be Polish spaces, $\varnothing \neq \mathfrak{a} \subset X \times Y$ be analytic, and $\mathfrak{p}=\{x \in X: \exists y \in Y(x, y) \in \mathfrak{a}\}$, then $\exists f: \mathfrak{p} \rightarrow Y$ analytically measurable (i.e. $\left.f^{-1} \mathcal{B}(Y) \subset \mathcal{A}(X)\right)$ such that

$$
\{(x, f(x)): x \in \mathfrak{p}\} \subset \mathfrak{a} .
$$

Proof Let $T: \mathbb{N}^{\mathbb{N}} \rightarrow X \times Y$ be continuous with $\mathfrak{a}=T\left(\mathbb{N}^{\mathbb{N}}\right)$.
Writing $\pi(x, y)=x,(\pi: X \times Y \rightarrow X)$ we have that $g:=\pi \circ T: \mathbb{N}^{\mathbb{N}} \rightarrow \mathfrak{p}$ is continuous and onto. For each $x \in \mathfrak{p}, g^{-1}(\{x\})$ is closed in $\mathbb{N}^{\mathbb{N}}$. We define $h: \mathfrak{p} \rightarrow \mathbb{N}^{\mathbb{N}}$ by $h(x):=\min g^{-1}(\{x\})$.

Clearly $g \circ h=$ Id. To check analytic measurability of $h: \mathfrak{p} \rightarrow \mathbb{N}^{\mathbb{N}}$, note that

$$
h^{-1}([\underline{1}, a))=\{y \in \mathfrak{p}: h(y)<a\}=\left\{y \in \mathfrak{p}: \min g^{-1}(\{y\})<a\right\}=g([\underline{1}, a))
$$

is analytic $\forall a \in \mathbb{N}^{\mathbb{N}}$.
Writing $\psi(x, y)=y x,(\psi: X \times Y \rightarrow Y)$ we have that $f=\psi \circ T \circ h$: $\mathfrak{p} \rightarrow Y$ is analytically measurable, and

$$
\{(x, f(x)): x \in \mathfrak{p}\}=\{T \circ h(x): x \in \mathfrak{p}\} \subset \mathfrak{a} .
$$

Remark $\exists \mathfrak{a} \in \mathcal{B}(X \times Y)$ such that $\nexists f: \mathfrak{p} \rightarrow Y$ Borel measurable.
Corollary: Section theorem ${ }^{5}$ Suppose that X and Y are Polish spaces, and that $T: X \rightarrow Y$ is measurable. There is an analytically measurable function $f: T(X) \rightarrow X$ such that

$$
T \circ f=I d_{T(X)} .
$$

[^4]Proof Let $\mathfrak{a} \subset Y \times X$ be defined by

$$
\mathfrak{a}:=\{(T(x), x): x \in X\} \stackrel{(!)}{\in} \mathcal{B}(Y \times X),
$$

and let $\mathfrak{p}, f: \mathfrak{p} \rightarrow X$ be as in the cross section theorem; then $\mathfrak{p}=T(X)$ and

$$
\{(x, f(x)): x \in T(X)\} \subset\{(T(x), x): x \in X\}
$$

whence $T \circ f=\operatorname{Id}_{T(X)}$.
Exercise Let (X, \mathcal{B}, m) be a standard probability space, and let $T: X \rightarrow$ X be measurable and measure preserving (i.e. $m\left(T^{-1} A\right)=m(A) \forall A \in$ $\mathcal{B})$. Suppose that for m-a.e. $x \in X,\left|T^{-1}\{x\}\right|<\infty$. Prove that \exists disjoint sets $A_{1}, A_{2}, \cdots \in \mathcal{B}$ such that $\cup_{n=1}^{\infty}=X \bmod m, T A_{1}, T A_{2}, \cdots \in \mathcal{B}$, and $T: A_{k} \rightarrow T A_{k}$ is 1-1 and bimeasurable.

ExErcise N으 4

1. Generalized Hausdorff-type measures.

Let (X, d) be a metric space, let $a: 2^{X} \rightarrow[0, \infty]$ with $a(\varnothing)=0$ and define, for $\varepsilon>0$, and $A \subset X$,

$$
H^{(\varepsilon)}(A):=\inf \left\{\sum_{k=1}^{\infty} a\left(A_{k}\right): A \subset \bigcup_{k=1}^{\infty} A_{k}, \operatorname{diam} A_{k}<\varepsilon \forall k \geq 1\right\} ;
$$

where $\operatorname{diam} A:=\sup _{x, y \in A} d(x, y)$; and let $H(A):=\lim _{\varepsilon \rightarrow 0} H^{(\varepsilon)}(A) \leq \infty$.
Show that $H: 2^{X} \rightarrow[0, \infty]$ is a metric outer measure.
3. Measure algebra. Let (X, \mathcal{B}, m) be a finite measure space. Define a relation on \mathcal{B} by $A \sim B$ if $m(A \Delta B)=0$.
a) Show that \sim is an equivalence relation.
b) Let $\mathcal{B}^{\sim}=\left\{[A]:=\left\{A^{\prime} \in \mathcal{B}: A^{\prime} \sim A\right\}: A \in \mathcal{B}\right\}$ be the collection of equivalence classes.

Show that

$$
d(a, b):=m(A \Delta B) \text { for } a, b \in \mathcal{B}^{\sim}, \quad A \in a, B \in b
$$

defines a metric on \mathcal{B}^{\sim}, and that $\left(\mathcal{B}^{\sim}, d\right)$ is a complete metric space (called the measure algebra of (X, \mathcal{B}, m)).
c) Show that the following are equivalent:
(i) \mathcal{B}^{\sim} is separable;
(ii) $\exists A_{n} \in \mathcal{B} \quad(n \geq 1)$ such that $\forall A \in \mathcal{B} \exists A^{\prime} \in \sigma\left(\left\{A_{n}\right\}_{n=1}^{\infty}\right)$ with $m\left(A \Delta A^{\prime}\right)=0$;
d) Is there a probability space (X, \mathcal{B}, μ) equipped with sets $\left\{A_{s}: s \in(0,1)\right\} \subset \mathcal{B}$ such that $\mu\left(A_{s} \Delta A_{t}\right) \geq \frac{1}{4} \forall s \neq t$?
§5 Lebesgue integral on a finite measure space

5.1 Integral of a bounded, measurable function.

Countable additivity is not needed for the integration of bounded functions. This observation will be used when computing $L^{\infty *}$ (below).

A finitely additive, finite measure space is a triple (X, \mathcal{B}, μ) with \mathcal{B} an algebra of subsets of X and $\mu: \mathcal{B} \rightarrow[0, \infty)$ finitely additive (e.g. a normal probability space). A function $f: X \rightarrow \mathbb{R}$ is measurable if $f^{-1} U \in \mathcal{B}$ for open sets $U \subset \mathbb{R}$.

Let be a finitely additive, finite measure space. A simple function is a finite linear combination of measurable indicators. The same simple function can be represented by many different finite linear combinations as above.

- A representation of the simple function f is a finite collection $\left\{\left(a_{k}, A_{k}\right)\right\}_{k=1}^{N} \subset \mathbb{R} \times \mathcal{B}$ satisfying (and denoted by) $f=\sum_{k=1}^{N} a_{k} 1_{A_{k}}$.
- The representation $f=\sum_{k=1}^{N} a_{k} 1_{A_{k}}$ is disjoint if the sets $\left\{A_{k}\right\}_{k=1}^{N}$ are disjoint.
- The canonical representation of the simple function $f: X \rightarrow \mathbb{R}$ is $f=\sum_{v \in f(X)} v 1_{[f=v]}$. This is disjoint.

The integral of the simple function $f: X \rightarrow \mathbb{R}$ is

$$
\int_{X} f d \mu=\mu(f):=\sum_{v \in f(X)} v \mu([f=v]) .
$$

5.2 Proposition Let $f: X \rightarrow \mathbb{R}$ be simple with representation $f=$ $\sum_{k=1}^{N} a_{k} 1_{A_{k}}$ where $a_{1}, \ldots, a_{n} \in \mathbb{R}$ and $A_{1}, \ldots, A_{n} \in \mathcal{B}$, then

$$
\mu(f)=\sum_{k=1}^{N} a_{k} \mu\left(A_{k}\right) .
$$

Proof Suppose that $f=\sum_{k=1}^{N} a_{k} 1_{A_{k}}$ is a disjoint representation, then

$$
[f=v]=\bigcup_{1 \leq k \leq N, a_{k}=v} A_{k} \forall v \in f(X)
$$

and by additivity of μ,

$$
\begin{aligned}
\mu(f) & =\sum_{v \in f(X)} v \mu([f=v]) \\
& =\sum_{v \in f(X)} \sum_{1 \leq k \leq N, a_{k}=v} a_{k} \mu\left(A_{k}\right) \\
& =\sum_{k=1}^{N} a_{k} \mu\left(A_{k}\right) . \not \square
\end{aligned}
$$

For a general (non disjoint) representation, we need to consider the partition generated by $A_{1}, \ldots, A_{N} \in \mathcal{B}$.
For $V \subset X$ define $V^{1}:=V$ and $V^{0}:=X \backslash V=V^{c}$.
For $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{N}\right) \in\{0,1\}^{N}$ define $A_{\varepsilon}:=\bigcap_{k=1}^{N} A_{k}^{\varepsilon_{k}}$.
Note that $X=\cup_{\varepsilon \in\{0,1\}^{N}} A_{\varepsilon}$ and $A_{k}=\cup_{\varepsilon \in\{0,1\}^{N}, \varepsilon_{k}=1} A_{\varepsilon}$. We claim that

$$
\begin{equation*}
f=\sum_{\varepsilon \in\{0,1\}^{N}}\left(\sum_{k=1}^{N} a_{k} \varepsilon_{k}\right) 1_{A_{\varepsilon}} . \tag{i}
\end{equation*}
$$

Proof of \mathbf{i}

$$
\begin{aligned}
f & =\sum_{k=1}^{N} a_{k} 1_{A_{k}}=\sum_{k=1}^{N} a_{k} \sum_{\varepsilon \in\{0,1\}^{N}, \varepsilon_{k}=1} 1_{A_{\varepsilon}} \\
& =\sum_{\varepsilon \in\{0,1\}^{N}}\left(\sum_{k=1}^{N} a_{k} \varepsilon_{k}\right) 1_{A_{\varepsilon}} . \not \square(\mathbf{i})
\end{aligned}
$$

This is a disjoint representation and so by the above,

$$
\begin{aligned}
\mu(f) & =\sum_{\varepsilon \in\{0,1\}^{N}}\left(\sum_{k=1}^{N} a_{k} \varepsilon_{k}\right) \mu\left(A_{\varepsilon}\right) \\
& =\sum_{k=1}^{N} a_{k} \sum_{\varepsilon \in\{0,1\}^{N}, \varepsilon_{k}=1} \mu\left(A_{\varepsilon}\right) \\
& =\sum_{k=1}^{N} a_{k} \mu\left(A_{k}\right) . \not \square
\end{aligned}
$$

5.3 Proposition (linearity and positivity)

Let $f, g: X \rightarrow \mathbb{R}$ be simple functions, then

$$
\begin{gathered}
\int_{X}(a f+b g) d \mu=a \int_{X} f d \mu+b \int_{X} g d \mu \quad \forall a, b \in \mathbb{R} ; \\
f \geq 0 \Rightarrow \int_{X} f d \mu \geq 0
\end{gathered}
$$

and

$$
|\mu(f)| \leq \int_{X}|f| d \mu \leq \sup _{X}|f| \int_{X} 1 d \mu=\sup _{X}|f| \mu(X) .
$$

Integral of a bounded, measurable function.

Let (X, \mathcal{B}, μ) be a finite measure space.

5.4 Proposition

For $f: X \rightarrow \mathbb{R}$ bounded, measurable,

$$
\exists \lim _{g \text { simple, } \sup _{X}}|f-g| \rightarrow 0 \int_{X} g d \mu=: \int_{X} f d \mu .
$$

Proof $\quad \exists$ sequences of simple functions converging uniformly to f. By positivity, if g_{n} are simple and $g_{n} \rightarrow f$ uniformly, $\left\{\mu\left(g_{n}\right)\right\}_{n}$ is a Cauchy sequence. If g_{n}, h_{n} are simple and $g_{n}, h_{n} \rightarrow f$ uniformly, then $\exists \lim _{n \rightarrow \infty} \mu\left(g_{n}\right)=: a, \lim _{n \rightarrow \infty} \mu\left(h_{n}\right)=: b$. To see that $a=b$, again by positivity,

$$
|a-b| \leftarrow\left|\mu\left(g_{n}\right)-\mu\left(h_{n}\right)\right| \leq \mu(X) \sup _{X}\left|g_{n}-h_{n}\right| \rightarrow 0 .
$$

This number $\mu(f)=\int_{X} f d \mu$ is the integral (of f with respect to μ). The linearity and positivity are preserved under the limit.

5.5 Proposition

Suppose $f, g: X \rightarrow \mathbb{R}$ are bounded measurable functions, and $\alpha, \beta \in \mathbb{R}$.

$$
\begin{gather*}
\int_{A}(\alpha f+\beta g) d m=\alpha \int_{A} f d m+\beta \int_{A} g d m . \tag{1}\\
f \leq g \Rightarrow \int_{A} f d m \leq \int_{A} g d m .
\end{gather*}
$$

Integral of unbounded, measurable functions.

For this, countable additivity is needed and henceforward, (X, \mathcal{B}, m) is a finite (σ-additive) measure space.

Integral of a non-negative, measurable function.

For $f: X \rightarrow[0, \infty)$ measurable and $A \in \mathcal{B}$, define

$$
\int_{A} f d m:=\sup \left\{\int_{A} g d m: g \leq f, g \text { simple }\right\} \leq \infty .
$$

- Note that if $f, g: X \rightarrow[0, \infty)$ are measurable,
(i) $f \leq g$ on $A \in \mathcal{B} \Longrightarrow \int_{A} f d \mu \leq \int_{A} g d \mu$;
(ii)

$$
\begin{aligned}
\int_{A} f d m & =\sup \left\{\int_{A} g d m: g \leq f, \quad g \text { bounded, measurable }\right\} \\
& =\sup \left\{\int_{A} g d m: g \leq f, \quad g \geq 0 \text { measurable }\right\} .
\end{aligned}
$$

Integrability.

The measurable function $f: X \rightarrow \mathbb{R}$ is called integrable on $A \in \mathcal{B}$ if $\int_{A}|f| d m<\infty$. As above, in this case $\int_{A} f_{ \pm} d m<\infty$ where $f_{ \pm}:=$ $\max \{ \pm f, 0\}$ so that $f=f_{+}-f_{-}$. We define

$$
\int_{A} f d m:=\int_{A} f_{+} d m-\int_{A} f_{-} d m
$$

Before proving positivity and linearity for the integrals of integrable functions, we need some:

Basic convergence theory

Throughout this section, (X, \mathcal{B}, m) is a probability space.
We'll need the

5.6 BC lemma ${ }^{6}$

Let $A_{n} \in \mathcal{B},(n \geq 1)$.
If $\sum_{n \geq 1} m\left(A_{n}\right)<\infty$, then $m\left(\left[\sum_{n=1}^{\infty} 1_{A_{n}}=\infty\right]\right)=0$.

Proof

$$
\begin{aligned}
m\left(\left[\sum_{n=1}^{\infty} 1_{A_{n}}=\infty\right]\right) & \underset{n \rightarrow \infty}{\stackrel{ }{\leftrightarrows}} m\left(\bigcup_{k=n}^{\infty} A_{k}\right) \\
& \leq \sum_{k=n}^{\infty} m\left(A_{k}\right) \\
& \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0 . \quad \square
\end{aligned}
$$

Let $f_{n}, f: X \rightarrow \mathbb{R}$ be measurable.
Convergence in measure. We say that f_{n} converges in measure to f written $f_{n} \xrightarrow[n \rightarrow \infty]{m} f$ if

$$
m\left(\left[\left|f_{n}-f\right|>\varepsilon\right]\right) \xrightarrow[n \rightarrow \infty]{ } 0 \quad \forall \varepsilon>0
$$

[^5]a.e. convergence. We say that f_{n} converges a.e. to f written $f_{n} \xrightarrow[n \rightarrow \infty]{\text { a.e. }} f$ if
$$
m\left(\left[\mid f_{n} \rightarrow f\right]\right)=0
$$

5.7 Proposition

Suppose $f_{n}, f: X \rightarrow \mathbb{R}$ are measurable.
(i) $f_{n} \xrightarrow[n \rightarrow \infty]{\text { a.e. }} f \Rightarrow f_{n} \xrightarrow[n \rightarrow \infty]{m} f$;
(ii) $f_{n} \xrightarrow[n \rightarrow \infty]{m} f \nRightarrow f_{n} \xrightarrow[n \rightarrow \infty]{\text { a.e. }} f$;
(iii) $f_{n} \xrightarrow[n \rightarrow \infty]{m} f \Rightarrow \exists n_{k} \rightarrow \infty$ such that $f_{n_{k}} \xrightarrow[k \rightarrow \infty]{\text { a.e. }} f$.

Proof of (i)
For $\varepsilon>0$,

$$
\begin{aligned}
m\left(\left[\left|f_{n}-f\right| \geq \varepsilon\right]\right) & \leq m\left(\bigcup_{k=n}^{\infty}\left[\left|f_{k}-f\right| \geq \varepsilon\right]\right) \\
& \xrightarrow[n \rightarrow \infty]{\longrightarrow} m\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty}\left[\left|f_{k}-f\right| \geq \varepsilon\right]\right) \\
& =m\left(\left[\sum_{n=1}^{\infty} 1_{\left[\left|f_{n}-f\right| \geq \varepsilon\right]}=\infty\right]\right) \\
& =m\left(\left[\varlimsup_{n \rightarrow \infty}\left|f_{n}-f\right| \geq \varepsilon\right]\right) \\
& =0 \quad \square
\end{aligned}
$$

Proof of (ii) Exercise.
Proof of (iii) Fix $n_{k} \uparrow \infty$ so that

$$
\sum_{k=1}^{\infty} m\left(\left[\left|f_{n_{k}}-f\right|>\frac{1}{k}\right]\right)<\infty .
$$

It is easy to see using the BC lemma that $f_{n_{k}} \xrightarrow[k \rightarrow \infty]{\text { a.e. }} f . \nabla$

5.8 Egorov's Theorem

Suppose $f_{n}, f: X \rightarrow \mathbb{R}$ are measurable and that $f_{n} \rightarrow f$ a.e. as $n \rightarrow \infty$, then $\forall \varepsilon>0 \exists F \in \mathcal{B}$ such that $m(X \backslash F)<\varepsilon$ and $f_{n} \rightarrow f$ uniformly on F.

Proof Since $f_{n} \rightarrow f$ a.e., we have that

$$
\forall \eta>0, A(n, \eta):=\bigcap_{k \geq n}\left[\left|f_{k}-f\right|<\eta\right] \uparrow X \bmod \mu
$$

as $n \rightarrow \infty$. Thus, $\exists n_{m} \quad(m \in \mathbb{N})$ so that $\mu\left(A\left(n_{m}, \frac{1}{m}\right)^{c}\right)<\frac{\varepsilon}{2^{m}}$ and $F:=\bigcap_{m=1}^{\infty} A\left(n_{m}, \frac{1}{m}\right)$ is as advertised.

5.9 Monotone convergence theorem (Beppo Levi)

Let (X, \mathcal{B}, m) be a finite measure space. Suppose $f_{n}, f: X \rightarrow[0, \infty)$ are measurable. If $f_{n} \uparrow f$ a.e., then

$$
\int_{A} f_{n} d m \rightarrow \int_{A} f d m \text { as } n \rightarrow \infty \forall A \in \mathcal{B} .
$$

Proof
It suffices, given $\varepsilon>0, A \in \mathcal{B} .0 \leq g \leq f, g$ simple to show that $\lim _{n \rightarrow \infty} \int_{A} f_{n} d m>\int_{A} g d m-\varepsilon$.

Let $K:=\sup g$. By Egorov's theorem $\exists B \in \mathcal{B}, B \subset A$ such that $f_{n} \rightarrow f$ uniformly on B and $m(A \backslash B)<\frac{\varepsilon}{2 K}$.

Choose n_{0} such that

$$
f_{n}(x)>g(x)-\frac{\varepsilon}{2 m(B)} \forall n \geq n_{0}, x \in B,
$$

then for $n \geq n_{0}$:

$$
\begin{aligned}
\int_{A} f_{n} d m & \geq \int_{B} f_{n} d m \\
& >\int_{B} g d m-\frac{\varepsilon}{2} \\
& =\int_{A} g d m-\int_{A \backslash B} g d m-\frac{\varepsilon}{2} \\
& >\int_{A} g d m-\varepsilon .
\end{aligned}
$$

5.10 Fatou's lemma

For $f_{n} \geq 0$ measurable,

$$
\liminf _{n \rightarrow \infty} \int_{A} f_{n} d m \geq \int_{A} \liminf _{n \rightarrow \infty} f_{n} d m .
$$

Proof Let $g_{N}(x):=\inf _{k \geq N} f_{k}(x)$, then $g_{N} \uparrow \liminf _{n \rightarrow \infty} f_{n}$, whence by the monotone convergence theorem, $\forall N \geq 1$

$$
\int_{A} f_{N} d m \geq \int_{A} g_{N} d m \underset{N \rightarrow \infty}{\longrightarrow} \int_{A} \liminf _{n \rightarrow \infty} f_{n} d m .
$$

5.11 Proposition

Suppose $f, g: X \rightarrow[0, \infty)$ are measurable functions, and $\alpha, \beta \in \mathbb{R}_{+}$. Then

$$
\begin{gather*}
\int_{A}(\alpha f+\beta g) d m=\alpha \int_{A} f d m+\beta \int_{A} g d m \tag{1}\\
f \leq g \Rightarrow \int_{A} f d m \leq \int_{A} g d m \tag{2}
\end{gather*}
$$

Proof Take limits of simple functions using the monotone convergence theorem.

5.12 Lemma

If $f, g, h: X \rightarrow \mathbb{R}$ are integrable functions, $g, h \geq 0$ and $f=g-h$, then

$$
\int_{A} f d m=\int_{A} g d m-\int_{A} h d m
$$

Proof Since $\int_{A} f d m:=\int_{A} f_{+} d m-\int_{A} f_{-} d m$, it suffices to show that if $g_{i}, h_{i}: X \rightarrow[0, \infty) \quad(i=1,2)$ are integrable functions, satisfying $g_{1}-h_{1}=g_{2}-h_{2}$, then

$$
\int_{A} g_{1} d m-\int_{A} h_{1} d m=\int_{A} g_{2} d m-\int_{A} h_{2} d m
$$

To see this, note that $g_{1}+h_{2}=g_{2}+h_{1}$ whence

$$
\int_{A} g_{1} d m+\int_{A} h_{2} d m=\int_{A} g_{2} d m+\int_{A} h_{1} d m
$$

5.13 Linearity and positivity theorem

Suppose $f, g: X \rightarrow \mathbb{R}$ are integrable functions, and $\alpha, \beta \in \mathbb{R}$. Then: $(\alpha f+\beta g)$ is integrable, and

$$
\begin{gather*}
\int_{A}(\alpha f+\beta g) d m=\alpha \int_{A} f d m+\beta \int_{A} g d m \tag{1}\\
f \leq g \Rightarrow \int_{A} f d m \leq \int_{A} g d m \tag{2}
\end{gather*}
$$

Proof Recall $\int f:=\int f_{+}-\int f_{-}$.

- For $\alpha>0, \alpha f_{ \pm}=(\alpha f)_{ \pm}$and $(-f)_{ \pm}=-f_{\mp}$ so (!) $\int(\alpha f)=\alpha \int f$.
- To see $\int(f+g)=\int f+\int g$ note that $f+g=\left(f_{+}+g_{+}\right)-\left(f_{-}+g_{-}\right)$and use the lemma.
- To see (2), let $f \leq g$, then $g-f \geq 0$ whence

$$
0 \leq \int(g-f)=\int g-\int f . \not \square
$$

UNIFORM INTEGRABILITY

Let (X, \mathcal{B}, m) be a finite measure space, and let

$$
L(X, \mathcal{B}, m):=\{f: X \rightarrow \mathbb{R}: \text { measurable }\} .
$$

The family $\mathcal{F} \subset L(X, \mathcal{B}, m)$ is called uniformly integrable (UI) if

$$
\forall \varepsilon>0 \exists M>0 \ni \int_{[|f| \geq M]}|f| d m<\varepsilon \quad \forall f \in \mathcal{F} .
$$

- If $\mathcal{F} \subset L(X, \mathcal{B}, m)$ is uniformly integrable, then $\sup _{f \in \mathcal{F}}\|f\|_{1}<\infty$.

Proof Fix $M>0$ such that $\int_{[|f| \geq M]}|f| d m<1 \quad \forall f \in \mathcal{F}$, then $\sup _{f \in \mathcal{F}}\|f\|_{1} \leq M m(X)+1$.

- If $\mathcal{F} \subset L(X, \mathcal{B}, m), p=1+\eta>1$ and $\sup _{f \in \mathcal{F}} \int|f|^{p}=: C<\infty$, then \mathcal{F} is UI.
Proof For $f \in \mathcal{F}$,

$$
\int_{[|f| \geq k]}|f| d m \leq \frac{1}{k^{\eta}} \int|f|^{p} \leq \frac{C}{k^{\eta}}
$$

- $\sup _{f \in \mathcal{F}}\|f\|_{1}<\infty \nRightarrow \mathcal{F}$ UI.

Proof Let $X=[0,1], m=$ Lebesgue, $f_{n}:=n 1_{\left[0, \frac{1}{n}\right]}$, then $\left\|f_{n}\right\|_{1}=1$ but $\sup _{n} \int_{\left[f_{n} \geq k\right]} f_{n}=1 \forall k>0$.
5.14 Proposition (dominated \Rightarrow UI) If $\mathcal{F} \subset L(X, \mathcal{B}, m)$ and $|f| \leq$ $g \forall f \in \mathcal{F}$ where g is integrable, then \mathcal{F} is uniformly integrable.

Proof We have $G_{k}:=g\left(1-1_{[g \geq k]}\right) \uparrow g$ as $k \uparrow \infty$. By Beppo-Levi's theorem $\int G_{k} \uparrow \int g$. It follows that $\int_{[g \geq k]} g d m \underset{k \rightarrow \infty}{\longrightarrow} 0$. Thus

$$
\sup _{f \in \mathcal{F}} \int_{[|f| \geq k]}|f| d m \leq \int_{[g \geq k]} g d m \underset{k \rightarrow \infty}{\longrightarrow} 0 . \quad \square
$$

The converse implication is wrong. See exercise 5.2.

The idea of uniform integrability is to obtain the best possible convergence theorems.
5.15 Convergence theorem Suppose that $f_{n}: X \rightarrow \mathbb{R}$ are measurable, $f_{n} \rightarrow 0$ a.e., and $\left\{f_{n}: n \geq 1\right\}$ is uniformly integrable, then

$$
\int_{X} f_{n} d m \rightarrow 0 \text { as } n \rightarrow \infty
$$

Proof WLOG, $f_{n} \geq 0$.

$$
\begin{aligned}
\int_{X} f_{n} d m & \leq \int_{X} 1_{\left[f_{n}<M\right]} f_{n} d m+\int_{\left[f_{n} \geq M\right]} f_{n} d m \\
& \leq \int_{X} 1_{\left[f_{n}<M\right]} f_{n} d m+\sup _{n \geq 1} \int_{\left[f_{n} \geq M\right]} f_{n} d m .
\end{aligned}
$$

Given $\varepsilon>0$ choose using UI $M=M_{\varepsilon}$ such that

$$
\sup _{n} \int_{\left[f_{n} \geq M\right]} f_{n} d m<\frac{\varepsilon}{2}
$$

By Egorov's theorem, $\exists F \in \mathcal{B}$ with $m(X \backslash F)<\frac{\varepsilon}{2 M}$ so that $f_{n} \rightarrow 0$ uniformly on F. Fix N_{ε} so that

$$
f_{n}(x)<\frac{\varepsilon}{4} \forall x \in F, n>N_{\varepsilon} .
$$

It follows that for $n>N_{\varepsilon}$,

$$
\begin{aligned}
\int_{X} 1_{\left[f_{n}<M\right]} f_{n} d m & =\int_{F} 1_{\left[f_{n}<M\right]} f_{n} d m+\int_{X \backslash F} 1_{\left[f_{n}<M\right]} f_{n} d m \\
& \leq \frac{\varepsilon}{4}+M m(X \backslash F) \\
& <\frac{\varepsilon}{2} . \square
\end{aligned}
$$

5.16 Corollary: Dominated convergence theorem

Suppose $f_{n}, f, g: X \rightarrow \mathbb{R}$ are measurable functions, and suppose that $f_{n} \rightarrow f$ a.e., $\left|f_{n}\right| \leq g \forall n \geq 1$, and $\int_{X} g d m<\infty$, then f is integrable, and

$$
\int_{X} f_{n} d m \rightarrow \int_{X} f d m \text { as } n \rightarrow \infty .
$$

Proof Exercise.

$$
\text { ExERCISE NO } 5
$$

1. Tightness of probability on a polish space.

Let X be polish and let $p \in \mathcal{P}(X)$. Show that $\forall \varepsilon>0, \exists K$ compact, such that $p(K)>1-\varepsilon$.

2. Uniformly integrable example.

Let $(X, \mathcal{B}, m)=((0,1], \mathcal{B}((0,1])$, Lebesgue $)$. For $x, y \in X$, define $r_{y}(x):=x \oplus y:=x+y \bmod 1$.
(i) Show that for each $a \in X, r_{a}: X \rightarrow X$ is a measure preserving transformation in the sense that $m\left(r_{a} A\right)=m(A) \forall A \in \mathcal{B}(X)$.
(ii) Show that if $g:[0,1) \rightarrow \mathbb{R}$ is integrable and $a \in X$, then so is $g \circ r_{a}$ with $\int_{X} g \circ r_{a} d m=\int_{X} g d m$.
(iii) Set $f(x):=\frac{1}{\sqrt{x}}, \mathcal{F}:=\left\{f \circ r_{a}: a \in X\right\}$. Show that \mathcal{F} is uniformly integrable and $\sup _{q \in X \cap \mathbb{Q}} f \circ r_{q} \equiv \infty$.

3. Convergence in measure.

Let (X, \mathcal{B}, m) be a probability space, and suppose that $f_{k}: X \rightarrow$ $\mathbb{R}(k \geq 1)$ are measurable functions.

Is it true that
(i) $f_{n} \xrightarrow[n \rightarrow \infty]{m} 0 \Rightarrow f_{n} \xrightarrow[n \rightarrow \infty]{\text { a.e. }} 0$?
(ii) $f_{n} \xrightarrow[n \rightarrow \infty]{m} 0 \Rightarrow \frac{1}{n} \sum_{k=1}^{n} f_{k} \xrightarrow[n \rightarrow \infty]{m} 0$?
4. Baire space and the irrationals.
(a) Show (using continued fractions or otherwise) that $\mathbb{N}^{\mathbb{N}}$ is homeomorphic with $(0,1) \backslash \mathbb{Q}$.
(b) $\overbrace{0}$ Show that in every perfect Polish space there is a dense G_{δ} set which is homeomorphic with $\mathbb{N}^{\mathbb{N}}$.
5. Analytic sets.

Show that countable unions and intersections of analytic sets are analytic if nonempty.

6 Non Borel analytic sets.

Let X, Y be Polish. A projection is a map of form $f: X \times Y \rightarrow$ $X, f(x, y)=x$. The projection of a set is its image under a projection.

This problem is about Lebesgue's claim (1905) that the projection of a Borel set is Borel, and its refutation by Suslin (1917).
6. a Projections of closed sets.

Show that a subset of a Polish space X is analytic \Longleftrightarrow it is the projection of a closed subset of $\mathbb{N}^{\mathbb{N}} \times X$.

Hint for \Rightarrow) Consider the graph of T where $T: \mathbb{N}^{\mathbb{N}} \rightarrow X$ continuous with $T\left(\mathbb{N}^{\mathbb{N}}\right)=A$.

Definition of Universality Let X be a set, and $\mathcal{F} \subset 2^{X}$. A subset A of $\mathbb{N}^{\mathbb{N}} \times X$ is universal for \mathcal{F} if

$$
\left\{A_{y}: y \in \mathbb{N}^{\mathbb{N}}\right\}=\mathcal{F}
$$

where $A_{y}:=\{x \in X:(y, x) \in A\}$.
6.b Universal open and closed sets.

Suppose that X is a separable metric space. Let $\mathfrak{u}:=\bigcup_{k, n \in \mathbb{N}}[n]_{k} \times U_{n}$ where $[n]_{k}:=\left\{x \in \mathbb{N}^{\mathbb{N}}: x_{k}=n\right\}$ and $\left\{U_{n}: n \geq 1\right\}$ is a base for the open sets in X. Show that \mathfrak{u} is an open subset of $\mathbb{N}^{\mathbb{N}} \times X$ which is universal for the open subsets of X, and that there is a closed subset of $\mathbb{N}^{\mathbb{N}} \times X$ which is universal for the closed subsets of X.
6.c Universal analytic sets.

Let X be Polish. Fix a closed subset F is of $\mathbb{N}^{\mathbb{N}} \times\left(\mathbb{N}^{\mathbb{N}} \times X\right)$ which is universal for the closed subsets of $\mathbb{N}^{\mathbb{N}} \times X$. Let $G:=\left\{(x, z) \in \mathbb{N}^{\mathbb{N}} \times X\right.$: $\left.\exists y \in \mathbb{N}^{\mathbb{N}},(x, y, z) \in F\right\}$. Show that G is an analytic subset of $\mathbb{N}^{\mathbb{N}} \times X$ which is universal for the analytic subsets of X.

Hint Use ex. 6.a repeatedly.
6.d Non-Borel, analytic subset of $\mathbb{N}^{\mathbb{N}}$.

Let

$$
B:=\left\{x \in \mathbb{N}^{\mathbb{N}}:(x, x) \in A\right\}
$$

where $A \subset \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ is universal for the collection of analytic subsets of $\mathbb{N}^{\mathbb{N}}$. Show that
(i) B is analytic;
(ii) $\exists u \in \mathbb{N}^{\mathbb{N}}$ with $B^{c}=A_{u}$;
(iii) B^{c} is not analytic;
(iv) B is not Borel.
6.e General non-Borel, analytic subsets. Show that in any uncountable polish space, there is a non-Borel, analytic subset.
6.f Lebesgue's claim (1905). Refute it.

Week \# 5

§6 Approximation by continuous functions
6.1 Frechet's theorem Let X be a polish space and let $p \in \mathcal{P}(X)$ and let $f: X \rightarrow \mathbb{R}$ be measurable, then
(£) $\quad \forall \Delta>0 \exists h \in C_{B}(X)$ with $\quad p([|f-h| \geq \Delta])<\Delta$.
Proof of (for $f=1_{F}$ where F is closed:

Let $\Delta>0$ and let d be a Polish metric on X and for $n \geq 1$, define $h_{n}: X \rightarrow \mathbb{R}$ by $h_{n}(x):=(1-n d(x, F)) \vee 0$. Evidently

$$
h_{n}(x)=\left\{\begin{array}{l}
\in[0,1] \quad \forall x \in X \\
1 \\
0 \\
0 \\
d(x, F) \geq \frac{1}{n}
\end{array}\right.
$$

Thus $\left[h_{n} \neq 1_{F}\right]=B\left(x, \frac{1}{n}\right) \backslash F \downarrow \varnothing$ whence $p\left(\left[h_{n} \neq 1_{F}\right]\right)<\Delta$ for n large. \square

Proof of (w) for $f=1_{A}$ where $A \in \mathcal{B}(X)$:
Let $\Delta>0$, then $\exists F \subset A$ closed so that $p(A \backslash F)<\frac{\Delta}{2}$ and by (w) for $f=1_{F}, \exists h \in C_{B}(X)$ such that $p\left(\left[\left|1_{F}-h\right| \geq \Delta\right]\right)<\frac{\Delta}{2}$. Thus

$$
\begin{aligned}
p\left(\left[\left|1_{A}-h\right| \geq \Delta\right]\right) & \leq p\left(\left[1_{F} \neq 1_{A}\right]\right)+p\left(\left[\left|1_{F}-h\right| \geq \Delta\right]\right) \\
& =p(A \backslash F)+p\left(\left[\left|1_{F}-h\right| \geq \Delta\right]\right) \\
& <\Delta . \not \square
\end{aligned}
$$

Proof of (w) for s simple:
Suppose that $|s| \leq M$, and let $\Delta>0$.
For each $y \in s(X), \exists h_{y} \in C_{B}(X)$ such that

$$
p\left(\left[\left|1_{[s=y]}-h_{y}\right| \geq \frac{\Delta}{M|s(X)|}\right]\right)<\frac{\Delta}{|s(X)|}
$$

Define $h:=\sum_{y \in s(X)} y h_{y} \in C_{B}(X)$, then

$$
\begin{aligned}
p([|s-h| \geq \Delta]) & =p\left(\left[\left|\sum_{y \in s(X)} y\left(1_{[s=y]}-h_{y}\right)\right| \geq \Delta\right]\right) \\
& \leq \sum_{y \in s(X)} p\left(\left[\left|1_{[s=y]}-h_{y}\right| \geq \frac{\Delta}{M|s(X)|}\right]\right) \\
& <\Delta . \not \square
\end{aligned}
$$

Proof of ($\mathbf{(}$) in general:

Let $f: X \rightarrow \mathbb{R}$ be measurable and let $\Delta>0$.

- $b: X \rightarrow \mathbb{R}$ bounded, measurable with $p([f \neq b])<\frac{\Delta}{4}(\because p([|f| \geq$ $n]) \underset{n \rightarrow \infty}{\longrightarrow} 0)$;
- $\exists s: X \rightarrow \mathbb{R}$ simple with sup $|b-s|<\frac{\Delta}{2}$;
- $\exists h \in C_{B}(X)$ such that $p\left(\left[|s=h| \geq \frac{\Delta}{2}\right]\right)<\frac{\Delta}{4}$. It follows that

$$
\begin{aligned}
p([|h-f| \geq \Delta]) & \leq p([f \neq b])+p\left(\left[|b-s| \geq \frac{\Delta}{2}\right]\right)+p\left(\left[|s=h| \geq \frac{\Delta}{2}\right]\right) \\
& <\frac{\Delta}{4}+0+\frac{\Delta}{4} \\
& <\Delta . \not \square(\mathbf{4})
\end{aligned}
$$

6.2 Corollary: Luzin's theorem

Let X be a polish space and let $p \in \mathcal{P}(X)$ and let $f: X \rightarrow \mathbb{R}$ be measurable, then $\forall \varepsilon>0 \exists F \subset X$ compact with $p(F)>1-\varepsilon$ and $g \in C_{B}(X)$ so that $\left.\left.f\right|_{F} \equiv g\right|_{F}$.

Proof

By Frechet's theorem and proposition 5.7(iii), $\exists h_{n} \in C_{B}(X)$ such that $h_{n} \rightarrow$ f a.e. and by Egorov's theorem $\exists F \in \mathcal{B}$ such that $m(X \backslash F)<\varepsilon$ and such that this convergence is uniform on X. By tightness, F may be chosen to be compact. It follows that f is continuous on f. By Tietze's extension theorem $\exists g \in C_{B}(X)$ such that $\left.\left.g\right|_{F} \equiv f\right|_{F}$. \square
$\S 7$ Product spaces and integration of measures
Let (X, \mathcal{B}) and (Y, \mathcal{C}) be measurable spaces. The product measurable space is $(X \times Y, \sigma(\mathcal{B} \times \mathcal{C}))$ where $\mathcal{B} \times \mathcal{C}:=\{B \times C: B \in \mathcal{B}, C \in \mathcal{C}\}$.

The sections of $A \subset X \times Y$ are defined by $A_{x}:=\{y \in Y:(x, y) \in A\}$, and $A^{y}:=\{x \in X:(x, y) \in A\}$. Evidently,

$$
\left(A^{c}\right)_{x}=\left(A_{x}\right)^{c}, \quad\left(\bigcup_{t \in \Lambda} A(t)\right)_{x}=\bigcup_{t \in \Lambda}(A(t))_{x}, \quad(A \times B)_{x}=\left\{\begin{array}{cc}
B & x \in A, \\
\varnothing & x \notin A .
\end{array}\right.
$$

The collection of σ-finite measures on the measurable space (X, \mathcal{B}) is denoted $\mathfrak{M}(X, \mathcal{B})$ and the collection of probabilities is

$$
\mathcal{P}(X, \mathcal{B}):=\{\mu \in \mathfrak{M}(X, \mathcal{B}): \mu(X)=1\} .
$$

7.3 Theorem (integration of probabilities) Let (X, \mathcal{B}) and (Y, \mathcal{C}) be measurable spaces and let $\mu \in \mathcal{P}(X, \mathcal{B})$.

Suppose that $\nu: X \rightarrow \mathcal{P}(Y, \mathcal{C})$ is measurable in the sense that $x \mapsto$ $\nu_{x}(A)$ is measurable $\forall A \in \mathcal{C}$, then there is a unique

$$
m \in \mathcal{P}(X \times Y, \sigma(\mathcal{B} \times \mathcal{C}))
$$

such that

$$
m(A \times B)=\int_{A} \nu_{x}(B) d \mu(x) \forall A \times B \in \mathcal{B} \times \mathcal{C} .
$$

Proof

Since $\mathcal{B} \times \mathcal{C}$ is a semi-algebra, it suffices to show that $m_{0}: \mathcal{B} \times \mathcal{C} \rightarrow$ $[0, \infty)$ defined by

$$
m_{0}(B \times C)=\int_{B} \nu_{x}(C) d \mu(x) \forall B \times C \in \mathcal{B} \times \mathcal{C}
$$

is additive and countable subadditive.
To see additivity, suppose that
$B \times C=\bigcup_{k=1}^{N} B_{k} \times C_{k}$ where $B, B_{1}, B_{2}, \ldots B_{N} \in \mathcal{B}, C, C_{1}, C_{2}, \ldots C_{N} \in \mathcal{C}$,
then for $x \in X$,

$$
(B \times C)_{x}=\bigcup_{k=1}^{N}\left(B_{k} \times C_{k}\right)_{x},
$$

whence

$$
1_{B}(x) \nu_{x}(C)=\nu_{x}\left((B \times C)_{x}\right)=\sum_{k=1}^{N} \nu_{x}\left(\left(B_{k} \times C_{k}\right)_{x}\right)=\sum_{k=1}^{N} 1_{B_{k}}(x) \nu_{x}\left(C_{k}\right),
$$

and, integrating

$$
m_{0}(B \times C)=\sum_{k=1}^{N} m_{0}\left(B_{k} \times C_{k}\right) .
$$

To prove that m_{0} is countable subadditive, let

$$
B, B_{1}, B_{2}, \cdots \in \mathcal{B}, C, C_{1}, C_{2}, \cdots \in \mathcal{B}
$$

and

$$
B \times C \subset \bigcup_{j=1}^{\infty} B_{j} \times C_{j}
$$

then

$$
\begin{gathered}
\forall x \in X, \quad(B \times C)_{x} \subset \bigcup_{j=1}^{\infty}\left(B_{j} \times C_{j}\right)_{x} ; \\
\therefore 1_{B}(x) \nu_{x}(C)=\nu_{x}\left((B \times C)_{x}\right) \leq \sum_{j=1}^{\infty} \nu_{x}\left(\left(B_{j} \times C_{j}\right)_{x}\right)=\sum_{j=1}^{\infty} 1_{B_{j}}(x) \nu_{x}\left(C_{j}\right),
\end{gathered}
$$

and

$$
\begin{aligned}
m_{0}(B \times C) & =\int_{B} \nu_{x}(C) \mu(x) \\
& =\int_{X}\left(1_{B}(x) \nu_{x}(C)\right) d \mu(x) \\
& \leq \int_{X}\left(\sum_{j=1}^{\infty} 1_{B_{j}}(x) \nu_{x}\left(C_{j}\right)\right) d \mu(x) \\
& =\sum_{j=1}^{\infty} m_{0}\left(B_{j} \times C_{j}\right) .
\end{aligned}
$$

The measure m exists by proposition 3.2 and is unique by proposition 2.3.
7.4 Corollary (integration of measures) Let (X, \mathcal{B}) and (Y, \mathcal{C}) be measurable spaces.

Suppose that $\mu \in \mathfrak{M}(X, \mathcal{B})$ and that $\nu: X \rightarrow \mathfrak{M}(Y, \mathcal{C})$ is measurable and define $m_{0}: \mathcal{B} \times \mathcal{C} \rightarrow[0, \infty]$ by $m_{0}(A \times B)=\int_{A} \nu_{x}(A) d \mu(x)$.

If $\exists A_{n} \in \mathcal{B}, A_{n} \uparrow X$ and $B_{n} \in \mathcal{C}, C_{n} \uparrow Y$ such that $m\left(A_{n} \times B_{n}\right)<$ $\infty \forall n \geq 1$, then there is a unique $m \in \mathfrak{M}(X \times Y, \sigma(\mathcal{B} \times \mathcal{C}))$ such that $\left.m\right|_{\mathcal{B} \times \mathcal{C}} \equiv m_{0}$.
In case $\nu_{x} \equiv \nu$ is constant, m is called product measure and denoted $m=\mu \times \nu$.

Remark. Suppose that (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) are $\mathbb{R}^{d}, \mathbb{R}^{d^{\prime}}$ equipped with Lebesgue measure, then $\mu \times \nu$ is Lebesgue measure on $\mathbb{R}^{d+d^{\prime}}$

Disintegration of sets, the Fubini-Tonelli theorems and GENERALIZATIONS
Let (X, \mathcal{B}) and (Y, \mathcal{C}) be measurable spaces.
The sections of $A \subset X \times Y$ are

$$
A_{u}:=\{y \in Y:(u, y) \in A\} \& A^{v}:=\{x \in X:(x, v) \in A\} \quad(u \in X, v \in Y)
$$

Theorem 7.5 Let $\mu \in \mathfrak{M}(X, \mathcal{B})$ and let $\nu: X \rightarrow \mathfrak{M}(Y, \mathcal{C})$ be measurable, so that $\exists A_{n} \in \mathcal{B}, A_{n} \uparrow X$ and $B_{n} \in \mathcal{C}, C_{n} \uparrow Y$ with

$$
\int_{A_{n}} \nu_{x}\left(B_{n}\right) d \mu(x)<\infty \forall n .
$$

Let $m \in \mathfrak{M}(X \times Y, \sigma(\mathcal{B} \times \mathcal{C}))$ such that

$$
m(A \times B)=\int_{A} \nu_{x}(B) d \mu(x) \forall A \times B \in \mathcal{B} \times \mathcal{C} .
$$

If $A \in \sigma(\mathcal{B} \times \mathcal{C})$, then (i) $A_{x} \in \mathcal{C} \forall x \in X$, (ii) the function $x \mapsto \nu_{x}\left(A_{x}\right)$ is \mathcal{B}-measurable, and (iii) $m(A)=\int_{X} \nu_{x}\left(A_{x}\right) d \mu(x)$.

Proof in case $m(X \times Y)<\infty$
The collection $\mathcal{D} \subset \sigma(\mathcal{B} \times \mathcal{C})$ of sets satisfying (i), (ii), and (iii) contains the algebra \mathcal{A} generated by $\mathcal{B} \times \mathcal{C}$, and is a monotone class. By the monotone class theorem, $\mathcal{D} \supset \sigma(\mathcal{B} \times \mathcal{C})$.

Theorem 7.6

If $h: X \times Y \rightarrow \mathbb{R}$ is $\sigma(\mathcal{B} \times \mathcal{C})$-measurable, then $y \mapsto h_{x}(y):=h(x, y)$ is \mathcal{C}-measurable $\forall x \in X$, and

$$
\begin{align*}
h \geq 0 \Rightarrow & x \mapsto \int_{Y} h_{x} d \nu_{x} \text { is measurable on } X, \tag{i}\\
& \& \int_{X \times Y} h d m=\int_{X}\left(\int_{Y} h_{x} d \nu_{x}\right) d \mu(x)
\end{align*}
$$

$$
\begin{align*}
h \in \mathcal{L}^{1}(m) \Rightarrow & h_{x}
\end{aligned} \in \mathcal{L}^{1}\left(\nu_{x}\right) \text { for a.e. } x \in X, \text {, } \quad \begin{aligned}
& \mapsto \int_{Y} h_{x} d \nu_{x} \text { is integrable on } X, \tag{ii}\\
& \& \int_{X \times Y} h d m=\int_{X}\left(\int_{Y} h_{x} d \nu_{x}\right) d \mu(x) .
\end{align*}
$$

$$
\begin{equation*}
\int_{X}\left(\int_{Y}\left|h_{x}\right| d \nu_{x}\right) d \mu(x)<\infty \Rightarrow h \in \mathcal{L}^{1}(m) \tag{iii}
\end{equation*}
$$

Here, $\mathcal{L}^{1}(m)$ denotes the collection of m-integrable functions.
Proof In case h is an indicator function: $h=1_{A}, \quad A \in \sigma(\mathcal{B} \times \mathcal{C})$, this theorem follows from the previous theorem. Assume that $h: X \times Y \rightarrow \mathbb{R}$ is a simple function, $h=\sum_{k=1}^{N} a_{k} 1_{A_{k}} \quad A_{k} \in \sigma(\mathcal{B} \times \mathcal{C})$, then for $x \in X$, $h_{x}=\sum_{k=1}^{N} a_{k} 1_{\left(A_{k}\right)_{x}},\left(A_{k}\right)_{x} \in \mathcal{C}$, whence h_{x} is \mathcal{C}-measurable. Moreover
$x \mapsto \int_{Y} h_{x} d \nu_{x}=\sum_{k=1}^{N} a_{k} \nu_{x}\left(\left(A_{k}\right)_{x}\right)$ is \mathcal{B}-measurable, and

$$
\begin{aligned}
& \int_{X}\left(\int_{Y} h_{x} d \nu_{x}\right) d \mu(x)=\int_{X}\left(\sum_{k=1}^{N} a_{k} \nu_{x}\left(\left(A_{k}\right)_{x}\right)\right) d \mu(x) \\
& =\sum_{k=1}^{N} a_{k} \int_{X} \nu_{x}\left(\left(A_{k}\right)_{x}\right) d \mu(x)=\sum_{k=1}^{N} a_{k} m\left(A_{k}\right)=\int_{X \times Y} h d m .
\end{aligned}
$$

If $h: X \times Y \rightarrow \mathbb{R}$ is $\sigma(\mathcal{B} \times \mathcal{C})$-measurable, then h is a pointwise limit of $\sigma(\mathcal{B} \times \mathcal{C})$-measurable simple functions, whence, $\forall x \in X, h_{x}$ is a pointwise limit of \mathcal{C}-measurable simple functions, and hence is itself \mathcal{C}-measurable.

If $h \geq 0$ then h is a pointwise limit of an increasing sequence h_{n} of non-negative, $\sigma(\mathcal{B} \times \mathcal{C})$-measurable simple functions. By Lebesgue's monotone convergence theorem

$$
\int_{Y}\left(h_{n}\right)_{x} d \nu_{x} \rightarrow \int_{Y} h_{x} d \nu_{x} \text { as } n \rightarrow \infty \forall x \in X
$$

whence $x \mapsto \int_{Y} h_{x} d \nu_{x}$ is \mathcal{B}-measurable on X. To complete the proof of (i), use monotone convergence again to show

$$
\begin{aligned}
& \int_{X}\left(\int_{Y} h_{x} d \nu_{x}\right) d \mu(x) \leftarrow \int_{X}\left(\int_{Y}\left(h_{n}\right)_{x} d \nu_{x}\right) d \mu(x) \\
& =\int_{X \times Y} h_{n} d m \rightarrow \int_{X \times Y} h d m \text { as } n \rightarrow \infty .
\end{aligned}
$$

Statement (iii) follows immediately from (i). To deduce (ii), note that by (i),

$$
\int_{X}\left(\int_{Y}\left(h_{x}\right)_{ \pm} d \nu_{x}\right) d \mu(x)=\int_{X \times Y} h_{ \pm} d m
$$

where $f_{ \pm}:=\max \{ \pm f, 0\}$.

7.7 Corollary (Fubini-Tonelli theorem)

If $h \in L^{1}(\mu \times \nu)$, then

$$
\int_{X}\left(\int_{Y} h_{x} d \nu\right) d \mu(x)=\int_{Y}\left(\int_{X} h^{y} d \mu\right) d \nu(y)<\infty
$$

where $h^{y}(x)=h(x, y)$.
Proof Apply 7.6 in case $\nu_{x} \equiv \nu$.

Convolutions. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be measurable. For every $x \in \mathbb{R}$, the function $y \mapsto f(x-y) g(y)$ is measurable. In case this function is integrable, or non-negative, we can define the convolution of f and g at x by

$$
f * g(x)=\int_{\mathbb{R}} f(x-y) g(y) d y
$$

Let $m_{\mathbb{R}^{d}}$ denote Lebesgue measure on \mathbb{R}^{d}.
Note that $m_{\mathbb{R}^{d}}=\underbrace{m_{\mathbb{R}} \otimes \cdots \otimes m_{\mathbb{R}}}_{d \text {-times }}$.
Proposition 7.8 If $f, g \in \mathcal{L}^{1}\left(m_{\mathbb{R}^{d}}\right)$, then the function $h: \mathbb{R}^{2 d} \rightarrow \mathbb{R}$ defined by $h(x, y):=f(x-y) g(y)$ is integrable on $\mathbb{R}^{2 d}$, and $f * g \epsilon$ $\mathcal{L}^{1}\left(m_{\mathbb{R}^{d}}\right)$.

Proof You establish the measurability of h in exercise 6.2.
For $y \in \mathbb{R},\left\|h^{y}\right\|_{1}=|g(y)|\|f\|_{1}$, whence, by Fubini's theorem, $h \in$ $\mathcal{L}^{1}\left(m_{\mathbb{R}^{2 d}}\right)$.

Also by Fubini's theorem, we obtain that the convolution

$$
f * g(x):=\int_{\mathbb{R}^{d}} h_{x}(y) d y
$$

is defined at a.e. $x \in \mathbb{R}^{d}$, and is integrable:

$$
\|f * g\|_{1} \leq\|h\|_{1}=\int_{\mathbb{R}^{d}}\left\|h^{y}\right\|_{1} d y=\|f\|_{1}\|g\|_{1} .
$$

Sierpinski's counterexample sets

These show that for $A \subset \mathbb{R}^{2}$, the Borel measurability of the sections $A_{x}, A^{x} \subset \mathbb{R}(x \in \mathbb{R})$ does not imply Lebesgue measurability of A.

7.9 Sierpinski 1919

Iterated integrals exist and differ.
Let m be Lebesgue measure on $I:=[0,1]$. Assuming the continuum hypothesis, $\exists M \subset I \times I$ such that for every $x, y \in I$,

$$
M_{x}=\{t:(x, t) \in M\}, M^{y}=\{t:(t, y) \in M\} \in \mathcal{B}(I):=\{\text { Borel sets }\}
$$

but such that $m\left(M^{y}\right)=0, m\left(M_{x}\right)=1$.

It follows that $M \notin \mathcal{M}(I \times I):=\{$ Lebesgue sets $\}$.
Proof

Assuming the continuum hypothesis, there is an order $<$ on $I=[0,1]$ such that $\{x \in I: x<y\}$ is countable for every $y \in I$. Set $M:=\{(x, y) \in$ $\left.I^{2}: x<y\right\}$. Evidently $M^{y}=\{t:(t, y) \in M\} \in \mathcal{B}(I)$ has zero measure being countable and $M_{x}=\{t:(x, t) \in M\} \in \mathcal{B}(I)$ has full measure being co-countable. \square

7.10 Sierpinski 1920

Section measures zero but set not measurable.
$\exists E \subset \mathbb{R}^{2}$ such that
(a) $\# E \cap L \leq 2 \forall L$ line;
(b) $E \cap F \neq \varnothing \forall F \subset \mathbb{R}^{2}$ closed, with positive measure.

Note that (b) entails $\underline{m}(E] \cap A)=m(A) \forall A \in \mathcal{B}\left(\mathbb{R}^{2}\right)$ where m is Lebesgue measure on \mathbb{R}^{2} and $\underline{m}(F):=\inf \{m(U): F \subset U$ open $\}$.
Proof We first establish the
Lemma 7.11 Suppose that $A \in \mathcal{B}\left(\mathbb{R}^{2}\right), m(A)>0$ and let L_{0} be a line in \mathbb{R}^{2}, then \exists a line $L \| L_{0}$ with $|L \cap A|=c$.

Proof of the Lemma :

Let $T_{\theta}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a rotation in \mathbb{R}^{2} about 0 so that $T_{\theta} L_{0}$ is a vertical line. By exercise 6.1, $m\left(T_{\theta} A\right)>0$. By the FubiniTonelli theorem, \exists a vertical line V with $m_{V}\left(V \cap T_{\theta} A\right)>0$ (where m_{V} is linear measure on V), whence $\left|V \cap T_{\theta} A\right|=c$. It follows that $L:=T_{-\theta} V \| L_{0}$ with $|L \cap A|=c$. \square

Proof of 7.10 :

Let $\mathfrak{E}=\left\{\right.$ closed subsets of positive measure in $\left.\mathbb{R}^{2}\right\}$, then $\mathfrak{E} \cong \mathbb{R}^{2} \cong c$.

As in Bernstein's theorem, we construct the set by transfinite recursion. Write $\mathfrak{E}=\left\{F_{\alpha}: \alpha \in \Omega_{c}\right\}$.

We claim that
I $\forall \alpha \in \Omega_{c} \exists f_{\alpha}:\left(\mathbb{R}^{2}\right)^{\Omega(\alpha)} \rightarrow \mathbb{R}^{2}$ such that $\forall u \in\left(\mathbb{R}^{2}\right)^{\Omega(\alpha)}$
(i) $f_{\alpha}(u) \in F_{\alpha}$;
(ii) $f_{\alpha}(u) \notin L(u(\beta), u(\gamma)):=\{t u(\beta)+(1-t) u(\gamma): t \in \mathbb{R}\} \quad \forall \beta, \gamma \in \Omega(\alpha)$.

Proof of \mathbb{I} :

- The cardinality of the collection of directions of the lines

$$
\{L(u(\beta), u(\gamma)): \beta, \gamma \in \Omega(\alpha)\}<c
$$

whence, using the lemma, \exists a line L such that

- $L \not H L(u(\beta), u(\gamma)) \forall \beta, \gamma \in \Omega(\alpha)$;
- $\left|L \cap F_{\alpha}\right|=c$.

It follows that

$$
\left|\bigcup_{\beta, \gamma \in \Omega(\alpha)} L \cap F_{\alpha} \cap L(u(\beta), u(\gamma))\right|<c,
$$

whence

$$
\exists f_{\alpha}(u) \in L \cap F_{\theta} \backslash \bigcup_{\beta, \gamma \in \Omega(\alpha)} L \cap F_{\alpha} \cap L(u(\beta), u(\gamma)) . \not \square \mathbb{I}
$$

By transfinite recursion $\exists q: \Omega_{c} \rightarrow \mathbb{R}^{2}$ such that $q(\alpha)=f_{\alpha}\left(\left.q\right|_{\Omega(\alpha)}\right)$.
We claim that $E:=q\left(\Omega_{c}\right)$ is as required. Evidently $q(\alpha) \in F_{\alpha} \forall \alpha \in \Omega_{c}$ and so E satisfies (b).

- To check (b) suppose otherwise that $\alpha, \beta, \gamma \in \Omega_{c}$ are distinct, and that L is a line with $q(\alpha), q(\beta), q(\gamma) \in L$. WLOG, $\alpha<\beta<\gamma$ and we have $q(\gamma) \in L(q(\alpha), q(\beta))$. However, by construction,

$$
q(\gamma)=f_{\gamma}\left(\left.q\right|_{\Omega(\gamma)}\right) \notin L(q(\alpha), q(\beta)) . \quad \not \square \mathbb{I}
$$

Such a set $E \subset \mathbb{R}^{2}$ is called a Sierpinski set. By regularity, a Sierpinski set intersects with every measurable set of positive measure.
I To see that a Sierpinski set E is not Lebesgue measurable, suppose otherwise, then by Fubini $m_{\mathbb{R}^{2}}(E)=0$ whence $m_{\mathbb{R}^{2}}\left(E^{c}\right)>0$ and $E \cap E^{c} \neq$ \varnothing. \boxtimes

Exercise (NO-5), 26/4/2017

1. Baire's theorem. 7^{7} Suppose that (X, d) is a complete metric space.
(i) Prove that if $U_{n} \subset X$ is open and dense in $X \forall n \geq 1$, then $G:=$ $\bigcap_{n \geq 1} U_{n}$ is dense in X.
(ii) Now suppose that $X=\bigcup_{n=1}^{\infty} F_{n}$ where each F_{n} is closed. Show that $\exists n \geq 1$ so that $F_{n}^{o} \neq \varnothing$.
(iii) Let $f_{n} \in C_{B}(X)$ and suppose that $f_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x) \quad \forall x \in \mathbb{R}$. Show $\exists x \in X$ so that f is continuous at x.
Hint $\left[\omega_{f}<\varepsilon\right]$ is open and dense $\forall \varepsilon>0$ where $\omega_{f}(x):=\lim _{r \rightarrow 0+} \operatorname{diam} f([x-r, x+r])$.
[^6]
2. Baire classes.

Let X be a polish space. The collection of Baire class 0 functions is $B_{0}:=C_{B}(X)$.

For $\alpha \in \Omega:=\{$ countable ordinals $\}$, define the collection of Baire class α functions
$B_{\alpha}:=\left\{f: X \rightarrow \mathbb{R}: \exists f_{n} \in B_{\beta_{n}}, \beta_{n} \in \Omega, \beta_{n}<\alpha, f_{n}(x) \underset{n \rightarrow \infty}{\longrightarrow} f(x) \forall x \in X\right\}$
i.e.
$B_{1}=\{$ limits of bounded continuous functions $\}$,
$B_{2}:=\{$ limits of limits of bounded continuous functions $\}$, !

Show that

$$
\begin{equation*}
B_{\Omega}:=\bigcup_{\alpha \in \Omega} B_{\alpha}=\{\text { Borel measurable functions }\} ; \tag{i}
\end{equation*}
$$

Hint: $\left\{A \in \mathcal{B}(X): 1_{A} \in B_{\Omega}\right\}$ is a monotone class.
(ii) if $m \in \mathcal{P}(X)$ and $f: X \rightarrow \mathbb{R}$ is measurable then $\exists g \in B_{2}$ such that $f=g m$ - a.e..

Let $(X, \mathcal{B}, m)=([0,1]$, Borel, Leb $)$. The rest of this exercise shows \exists a measurable function $f: X \rightarrow \mathbb{R}$ for which $\exists g \in B_{1}, f=g m$ - a.e..

Let $\left(\mathcal{B}^{\sim}, d\right)$ be the measure algebra of (X, \mathcal{B}, m) as in exercise 3.2. (iv) Show that
$\mathfrak{d}:=\left\{a \in \mathcal{B}^{\sim}: m(A \cap(s, t))>0 \& m\left(A^{c} \cap(s, t)\right)>0 \forall A \in a, s, t \in \mathbb{Q}, s<t\right\}$ is dense in \mathcal{B}^{\sim}.
Hint Use Baire's theorem.
(v) Show that if $f=1_{A}, A \in a \in \mathfrak{d}$, then $\nexists g \in B_{1}, f=g m$ - a.e..

3. Uniform integrability theorem.

Let (X, \mathcal{B}, m) be a finite measure space. Show that the family $\mathcal{F} \subset$ $L(X, \mathcal{B}, m)$ is $\mathrm{UI} \Leftrightarrow$

$$
\exists a: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+} \ni \frac{a(x)}{x} \uparrow \infty \text { as } x \uparrow \infty, \sup _{f \in \mathcal{F}} \int_{X} a(|f|) d m<\infty .
$$

4. Linear change of variable.

Let

$$
G:=\left\{\text { nonsingular linear transformations of } \mathbb{R}^{d}\right\}
$$

and let $m: \mathcal{B}\left(\mathbb{R}^{d}\right) \rightarrow[0, \infty]$ be Lebesgue measure.
(i) Show that if $T \in G$ then $m \circ T: \mathcal{B}\left(\mathbb{R}^{d}\right) \rightarrow[0, \infty]$ is a translation invariant, locally finite measure which is homogeneous in the sense that $m \circ T(a B)=a^{d} m \circ T(B) \forall a>0, B \in \mathcal{B}\left(\mathbb{R}^{d}\right)$.
(ii) Show that \exists a multiplicative homomorphism $\Delta: G \rightarrow(0, \infty)$ so that $m \circ T=\Delta(T) m$.
(iii) Show that $\Delta(T)=|\operatorname{det} T|$ for $T \in G$ orthogonal or diagonal. Hint Choose suitable $A \in \mathcal{B}$.

Fix $T \in G$.
(iv) Show that for $T^{t} T=M^{t} M$ where $M=\mathrm{£} U$ with U orthogonal \& £ diagonal; and that $|\operatorname{det} T|=\Delta(M)$.
(iii) Show that $\Delta(T)=\Delta(M)$.

Hint Choose suitable $A \in \mathcal{B}$.

5. Convolutions.

Let m denote Lebesgue measure on \mathbb{R}^{d}.
(i) Show that if $f, g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are Lebesgue measurable, then so is the function $h: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined by $h(x, y):=f(x-y) g(y)$.
(ii) Prove that if $f, g: \mathbb{R}^{d} \rightarrow[0, \infty]$ are measurable, then $f * g=g * f$.
(iii) Show, using Hölder's inequality (or otherwise), that if $f \in L^{1}\left(\mathbb{R}^{d}\right)$, and $g \in L^{p}\left(\mathbb{R}^{d}\right)$ where $1<p<\infty$, then $\|f * g\|_{p} \leq\|f\|_{1}\|g\|_{p}$. When is there equality?
(iv) Suppose that $h: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$is measurable, and suppose that $\int_{\mathbb{R}^{d}} h(x) d x=$ 1. Define, for $t>0, h_{t}: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$by $h_{t}(x)=\frac{1}{t} h\left(\frac{x}{t}\right)$. Prove that for $1 \leq p<\infty$,

$$
\left\|f * h_{t}-f\right\|_{p} \underset{t \rightarrow 0}{\longrightarrow} \quad \forall f \in L^{p}\left(\mathbb{R}^{d}\right)
$$

6. Fourier transform on $L^{1}\left(\mathbb{R}^{d}\right)$. For $f \in L^{1}\left(\mathbb{R}^{d}\right)$, define the Fourier transform of f by

$$
\widehat{f}(t):=\int_{\mathbb{R}^{d}} f(x) e^{-i\langle x, t\rangle} d x \quad\left(t \in \mathbb{R}^{d}\right)
$$

where $\langle x, t\rangle=\left\langle\left(x_{1}, \ldots, x_{d}\right),\left(t_{1}, \ldots, t_{d}\right)\right\rangle:=\sum_{k=1}^{d} x_{k} t_{k}$.
a) Prove that $\widehat{f}: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is bounded, and uniformly continuous $\forall f \in L^{1}\left(\mathbb{R}^{d}\right)$,
b) Show that $\overline{f * g} \equiv \widehat{f} \widehat{g} \forall f, g \in L^{1}\left(\mathbb{R}^{d}\right)$.
c) Show that if $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is C^{1} and $\overline{[f \neq 0]}$ is compact, then $\overline{(\nabla f)_{k}}(t)=i t_{k} \widehat{f}(t)$ where $(\nabla f)_{k}(x):=\frac{\partial f}{\partial x_{k}}(x)$.
d) Prove the Riemann-Lebesgue Lemma, that if $f \in L^{1}\left(\mathbb{R}^{d}\right)$, then $\widehat{f}(t) \rightarrow 0$ as $t \rightarrow \infty$.

7. Measurability and Fubini.

(i) Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be finite, non-atomic, Polish, probability spaces and let $m=\mu \times \nu: \mathcal{F}:=\sigma(\mathcal{B} \times \mathcal{C}) \rightarrow[0,1]$ be product measure.

Show that $\exists E \subset X \times Y$ so that $\nu\left(E_{x}\right)=0=\mu\left(E^{y}\right) \forall x \in X, y \in Y$ and so that $E \notin \overline{\mathcal{F}}_{m}$.
Hint: Isomorphism.
(ii) Show that there is a continuum of disjoint Sierpinski sets in \mathbb{R}^{2}.

Week \# 6
 $\S 8$ Signed measures

A signed measure on the measurable space (X, \mathcal{B}) is a σ-additive set function $\mu: \mathcal{B} \rightarrow \mathbb{R}$. For example, if $\mu_{ \pm}: \mathcal{B} \rightarrow[0, \infty)$ are measures, then $\mu=\mu_{+}-\mu_{-}$is a signed measure.

The total variation of a signed measure is a set function $m=m_{\mu}=$ $|\mu|: \mathcal{B} \rightarrow[0, \infty]$ defined by

$$
m(A)=\sup \left\{\sum_{n=1}^{\infty}\left|\mu\left(A_{n}\right)\right|: A_{n} \in \mathcal{B} \text { disjoint, } A=\bigcup_{n=1}^{\infty} A_{n}\right\}
$$

8.1 Theorem (finite total variation) If $\mu: \mathcal{B} \rightarrow \mathbb{R}$ is a signed measure, then $m: \mathcal{B} \rightarrow[0, \infty)$ is a finite measure.

Proof We must show that: (i) m is σ-additive, and that (ii) $m(X)<$ ∞.

To prove (i), let $A=\cup_{n=1}^{\infty} A_{n}$ where $A, A_{n} \in \mathcal{B}$ and $A_{n}(n \geq 1)$ are disjoint. Suppose $t_{n}<m\left(A_{n}\right)(\leq \infty)$, then, $\forall n \geq 1$, $A_{n}=\cup_{k=1}^{\infty} A_{n, k}$ where $A_{n, k} \in \mathcal{B}, A_{n, k} \quad(k \geq 1)$ are disjoint, and $\sum_{k=1}^{\infty}\left|\mu\left(A_{n, k}\right)\right|>t_{n}$. It follows that

$$
m(A) \geq \sum_{n, k=1}^{\infty}\left|\mu\left(A_{n, k}\right)\right|>\sum_{n=1}^{\infty} t_{n}, \quad \therefore m(A) \geq \sum_{n=1}^{\infty} m\left(A_{n}\right)
$$

To obtain the reverse inequality, suppose $A=\cup_{n=1}^{\infty} E_{n}$ where $E_{n} \in \mathcal{B}$ and $E_{n} \quad(n \geq 1)$ are disjoint. Then

$$
\sum_{n=1}^{\infty}\left|\mu\left(E_{n}\right)\right| \leq \sum_{n, k=1}^{\infty}\left|\mu\left(E_{n} \cap A_{k}\right)\right| \leq \sum_{n=1}^{\infty} m\left(A_{n}\right), \therefore m(A) \leq \sum_{n=1}^{\infty} m\left(A_{n}\right) .
$$

To establish (ii), we use the

Lemma 8.2 If $E \in \mathcal{B}, m(E)=\infty$, then $E=A \cup B$ where $A, B \in \mathcal{B}$ are disjoint, $m(B)=\infty$ and $|\mu(A)|,|\mu(B)|>1$.

Using the lemma, if $m(X)=\infty$, then there are disjoint sets $A_{n} \in$ $\mathcal{B}(n \geq 1)$ such that $\left|\mu\left(A_{n}\right)\right|>1 \forall n \geq 1$, contradicting the countable additivity of μ.

Proof of lemma 8.2 Let $t=2(1+|\mu(E)|)$, then $\exists E_{n} \in \mathcal{B}(n \geq 1)$ disjoint sets, such that $E=\bigcup_{n=1}^{\infty} E_{n}$ and $\sum_{n=1}^{\infty}\left|\mu\left(E_{n}\right)\right|>t$. It follows that $\exists S \subset I N \ni\left|\sum_{n \in S}^{\infty} \mu\left(E_{n}\right)\right|>\frac{t}{2}$. Set $A=\bigcup_{n \in S} E_{n}$ and $B=E \backslash A$, then

$$
|\mu(A)|>1+|\mu(E)|, \&|\mu(B)| \geq|\mu(A)|-|\mu(E)|>1
$$

By additivity of m, one of $m(A), m(B)$ is infinite.
8.3 Corollary (σ-additive Jordan decomposition) If $\mu: \mathcal{B} \rightarrow \mathbb{R}$ is a signed measure, then $\mu=\mu_{+}-\mu_{-}$where $\mu_{ \pm}: \mathcal{B} \rightarrow[0, \infty)$ are finite measures.

Proof $\quad \mu_{ \pm}:=\frac{m \pm \mu}{2}$.

Hahn decomposition of signed measures.

Let X be a set, let $\mathcal{A} \subset 2^{X}$ be an algebra and let $\mu: \mathcal{A} \rightarrow \mathbb{R}$ be additive. Define $m=m_{\mu}=|\mu|: \mathcal{A} \rightarrow[0, \infty]$ by

$$
m(A)=\sup \left\{\sum_{n=1}^{N}\left|\mu\left(A_{n}\right)\right|: A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{B} \text { disjoint, } A \supset \bigcup_{n=1}^{N} A_{n}\right\}
$$

As on page $9, m$ is additive, and, in case $\|\mu\|:=|\mu|(X)<\infty$, we have the Jordan decomposition:

$$
\mu=\mu_{+}-\mu_{-} \quad \text { where } \mu_{ \pm}=\frac{m \pm \mu}{2}: \mathcal{A} \rightarrow[0, \infty) .
$$

In case \mathcal{A} is a σ-algebra and μ is a signed measure, then $|\mu|(X)<\infty$ and $|\mu|$ is σ-additive.

8.4 Theorem (Hahn decomposition)

There are disjoint sets $A_{ \pm} \in \mathcal{B}$ such that $X=A_{+} \cup A_{-}$, and

$$
\mu_{ \pm}(B)=|\mu|\left(B \cap A_{ \pm}\right)= \pm \mu\left(B \cap A_{ \pm}\right) \forall B \in \mathcal{B} .
$$

Positive sets.

Let $\mu: \mathcal{B} \rightarrow \mathbb{R}$ be a signed measure on the measurable space (X, \mathcal{B}).
Call $A \in \mathcal{B}$ a positive set for μ if $\mu(B) \geq 0 \quad \forall B \in \mathcal{B}, B \subset A$. Let

$$
\mathcal{P}_{\mu}:=\{\text { positive sets for } \mu\} .
$$

8.5 Proposition

(1) \mathcal{P}_{μ} is a heriditary σ-ring.
(2) $\mu(A)=|\mu|(A) \forall A \in \mathcal{P}_{\mu}$.
(3) If $A \in \mathcal{B}, \mu(A)>0$, then $\exists P \subset A, \mu(P)>0, P \in \mathcal{P}_{\mu}$.

Proof of (3) by exhaustion

Let $\varepsilon_{1}:=\sup \{(-\mu(B)) \vee 0: B \in \mathcal{B}, B \subset A\}$ and choose $B_{1} \in \mathcal{B}, B_{1} \subset$ $A,-\mu\left(B_{1}\right) \geq \frac{\varepsilon_{1}}{2}$. Note that $A \in \mathcal{P}_{\mu}$ iff $\varepsilon_{1}=0$ in which case $B_{1}=\varnothing$ is a possible choice.

Let $\varepsilon_{2}:=\sup \left\{(-\mu(B)) \vee 0: B \in \mathcal{B}, B \subset A \backslash B_{1}\right\}$ and choose $B_{2} \epsilon$ $\mathcal{B}, B_{2} \subset A \backslash B_{1},-\mu\left(B_{2}\right) \geq \frac{\varepsilon_{2}}{2}$.

Continue to obtain:

- $\varepsilon_{1} \geq \varepsilon_{2} \geq \ldots \geq 0$,
- disjoint sets $B_{n} \in \mathcal{B}(n \geq 1)$ so that

$$
\begin{aligned}
& -\mu\left(B_{n}\right) \vee 0 \geq \frac{\varepsilon_{n}}{2} \forall n \geq 1 \quad \& \\
& \varepsilon_{n+1}=\sup \left\{(-\mu(B)) \vee 0: B \in \mathcal{B}, B \subset A \backslash \bigcup_{j=1}^{n} B_{j}\right\} .
\end{aligned}
$$

Let $B:=\cup_{n \geq 1} B_{n}$, then

$$
\mu(B)=\sum_{n \geq 1} \mu\left(B_{n}\right) \leq 0, \text { whence } \sum_{n \geq 1} \varepsilon_{n}<\infty .
$$

Set $P:=A \backslash B$, then

$$
\mu(P)=\mu(A)-\mu(B)>0 .
$$

To see that $P \in \mathcal{P}_{\mu}$, suppose not; then

$$
\exists \varepsilon>0, B \in \mathcal{B}, B \subset P,-\mu(B)>\varepsilon
$$

However, $B \subset A \backslash \cup_{j=1}^{n} B_{j} \forall n \geq 1$ whence $-\mu(B) \leq \varepsilon_{n} \rightarrow 0 . \boxtimes$

Proof of Hahn decomposition

We show that there are disjoint sets $A_{ \pm}(\mu) \in \mathcal{B}$ such that $X=A_{+} \cup A_{-}$, and

$$
|\mu|\left(B \cap A_{ \pm}(\mu)\right)= \pm \mu\left(B \cap A_{ \pm}(\mu)\right) \forall B \in \mathcal{B} .
$$

Let $A_{ \pm}=A_{ \pm}(\mu) \in \mathcal{B}$ be the measure theoretic union of $\mathcal{P}_{ \pm \mu}$, then by (1) in the lemma, $A_{ \pm}(\mu) \in \mathcal{P}_{ \pm \mu}$.

It remains to show that $|\mu|\left(X \backslash\left(A_{+} \cup A_{-}\right)\right)=0$.

If not $\exists G \in \mathcal{B}, G \subset X \backslash A_{+} \cup A_{-}, \varepsilon= \pm 1$ with $\varepsilon \mu(G)>0$.
By (3) in the proposition $\exists P \subset G,|\mu|(P)>0, P \in \mathcal{P}_{\varepsilon \mu}$. But then $P \stackrel{|\mu|}{\subset} A_{\varepsilon}$ and
$0<|\mu|(P)=|\mu|\left(P \cap\left(A_{+} \cup A_{-}\right)\right)+|\mu|\left(P \backslash A_{+} \cup A_{-}\right)=|\mu|\left(P \cap\left(A_{+} \cup A_{-}\right)\right)=0 . \boxtimes$

Absolute continuity and singularity

Let (X, \mathcal{B}) be a measurable space, and let $\mu, \nu: \mathcal{B} \rightarrow[0, \infty)$ be measures. The measure ν is absolutely continuous with respect to μ $(\nu \ll \mu)$ if $A \in \mathcal{B}, \mu(A)=0 \Rightarrow \nu(A)=0$. The measures μ and ν are singular $(\mu \perp \nu)$ if $\exists A \in \mathcal{B} \ni \mu(A)=0, \& \nu\left(A^{c}\right)=0$.
8.6 Theorem (Radon-Nikodym for finite measures) Let μ, m be finite measures on the measurable space (X, \mathcal{B}).

If $\mu \ll m$ then $\exists f \in L^{1}(m), f \geq 0$ such that

$$
\begin{equation*}
\mu(A)=\int_{A} f d m \quad \forall A \in \mathcal{B} . \tag{*}
\end{equation*}
$$

The function f (determined up to equality a.e.) is known as the Radon-Nikodym derivative and denoted $f=\frac{d \mu}{d m}$.

Proof

For $q \in \mathbb{Q}_{0}:=\mathbb{Q} \cap[0, \infty)$, set $B_{q}:=A_{-}(\mu-q m)$ where $\left\{A_{\varepsilon}(\mu-q m)\right.$: $\varepsilon= \pm\}$ is the Hahn decomposition of $\mu-q m$. Note that $B_{0}=\varnothing$.

We have

$$
B_{a} \backslash B_{b}=A_{-}(\mu-a m) \cap A_{+}(\mu-b m) \in \mathcal{P}_{a m-\mu} \cap \mathcal{P}_{\mu-b m} \quad \forall a, b \in \mathbb{Q}_{0}
$$

For $b>a$,

$$
0 \leq(\mu-b m)\left(B_{a} \backslash B_{b}\right) \leq(\mu-a m)\left(B_{a} \backslash B_{b}\right) \leq 0
$$

whence

$$
m\left(B_{a} \backslash B_{b}\right)=0 .
$$

Define the sets $\left\{C_{q}: a \in \mathbb{Q}_{0}\right\} \subset \mathcal{B}$ by

$$
C_{q}:=B_{q} \backslash \bigcup_{t \in \mathbb{Q}_{0}, t>q} B_{t} ;
$$

then

$$
m\left(B_{q} \Delta C_{q}\right)=0 \forall q \in \mathbb{Q}_{0} \& C_{a} \subseteq C_{b} \forall a, b \in \mathbb{Q}_{0}, a<b
$$

Define $f: X \rightarrow \mathbb{R}$ by

$$
f(x):=\inf \left\{q \in \mathbb{Q}_{0}: x \in C_{q}\right\} .
$$

It follows that $[f \leq q]=C_{q}$ whence f is measurable.

Moreover, by the above if $a<b \in \mathbb{Q}_{0}$, then

$$
[a<f \leq b]=C_{b} \backslash C_{a} \in \mathcal{P}_{a m-\mu} \cap \mathcal{P}_{\mu-b m},
$$

whence for $Z \in \mathcal{B}$,

$$
\operatorname{am}(Z \cap[a<f \leq b]) \leq \mu(Z \cap[a<f \leq b]) \leq b m(Z \cap[a<f \leq b])
$$

with the consequence that (!)

$$
\mu(Z)=\int_{Z} f d m \quad \forall Z \in \mathcal{B} . \nabla
$$

8.7 Lebesgue Decomposition Theorem

Let $\lambda, \mu: \mathcal{B} \rightarrow[0, \infty)$ be finite measures, then \exists and finite measures $\lambda_{a c}, \lambda_{s}: \mathcal{B} \rightarrow[0, \infty), \lambda_{a c} \ll \mu \& \lambda_{s} \perp \mu$ such that

$$
\lambda(A)=\int_{A} g d \mu+\lambda_{s}(A) \forall A \in \mathcal{B} .
$$

Proof

Let $\rho=\lambda+\mu$. By the Radon-Nikodym theorem $\exists h \in L^{1}(\rho)$ so that

$$
\lambda(A)=\int_{A} h d \rho \forall A \in \mathcal{B},
$$

whence

$$
\begin{equation*}
\int_{A} h d \mu=\int_{A}(1-h) d \lambda \forall A \in \mathcal{B} . \tag{*}
\end{equation*}
$$

It follows that:

- $h \geq 0 \rho$-a.e. $\left(\right.$ else $\left.0 \leq \lambda([h<0])=\int_{[h<0]} h d \rho<0\right)$;
- $h \leq 1 \rho$-a.e. $\left(\right.$ else $\left.\rho([h>1]) \geq \lambda([h>1])=\int_{[h>1]} h d \rho>\rho([h>1])\right)$.

Now define $\lambda_{a c}, \lambda_{s}: \mathcal{B} \rightarrow[0, \infty)$ by
$\lambda_{a c}(A):=\int_{A} g d \mu$ where $g:=\frac{h}{1-h} 1_{[h<1]} ; \& \quad \lambda_{s}(A)=\lambda(A \cap[h=1])$.
Evidently $\lambda_{a c} \ll \mu$ and $\lambda_{a c}+\lambda_{s}=\lambda$.
Moreover, $\lambda_{s} \perp \mu$ because $\lambda_{s}([h \neq 1])=0$ and

$$
\mu([h=1])=\int_{X} h 1_{[h=1]} d \mu=\int_{X} 1_{[h=1]}(1-h) d \lambda=0 . \not \square
$$

8.8 Corollary (R-N for signed measures)

Let μ be a signed measure, and m be a measure on the measurable space (X, \mathcal{B}).

If $\mu \ll m$ then $\exists f \in L^{1}(m)$ such that

$$
\mu(A)=\int_{A} f d m \quad \forall A \in \mathcal{B} .
$$

8.9 Corollary (R-N for infinite measures)

Let μ, m be σ-finite measures on the measurable space (X, \mathcal{B}). If $\mu \ll m$ then $\exists f: X \rightarrow[0, \infty)$, \mathcal{B}-measurable, such that

$$
\mu(A)=\int_{A} f d m \quad \forall A \in \mathcal{B} .
$$

$\S 9$ Conditional Expectations, Conditional Probabilities AND DISINTEGRATIONS

The following is the converse to the theorem 7.3 on "integration of probabilities" for Polish spaces.

9.1 Theorem (disintegration of probabilities)

Suppose that X, Y are Polish spaces and that $m \in \mathcal{P}(X \times Y)$.
Let $\mu \in \mathcal{P}(X)$ be the marginal of m defined by $\mu(A)=m(A \times Y)$, then there is a set $X_{0} \in \mathcal{B}(X), X_{0}=X \bmod \mu$, and a measurable map $x \mapsto \nu_{y} \quad\left(X_{0} \rightarrow \mathcal{P}(Y)\right)$ such that

$$
m(A \times B)=\int_{A} \nu_{x}(B) d \mu(x) \quad \forall A \in \mathcal{B}(X), B \in \mathcal{B}(Y)
$$

Proof Let $\mathcal{A} \subset \mathcal{B}(Y)$ be a countable, generating algebra with the FSCP.

For $B \in \mathcal{B}(Y)$, define the measure $\nu_{B}: \mathcal{B}(X) \rightarrow[0, \infty)$ by $\nu_{B}(A):=$ $m(A \times B)$, then $\nu_{B} \ll \mu \equiv \nu_{\Omega}$ and so by the RN theorem, \exists a $\mathcal{B}(X)$ measurable function $x \mapsto v_{x}(B)=\frac{d \nu_{B}}{d \mu}(x)$ so that

$$
\int_{A} v_{x}(B) d \mu(x)=m(A \times B) \quad \forall A \in \mathcal{B}(X)
$$

whence $v_{x}(Y)=1$ for μ-a.e. $x \in X$.
Also, if $A_{1}, \ldots \in \mathcal{B}(Y)$ are disjoint, then

$$
u_{x}\left(\biguplus_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} u_{x}\left(A_{k}\right),
$$

for μ-a.e. $x \in X$.

Since \mathcal{A} is countable, there is a set $X_{0} \in \mathcal{B}(X), X_{0}=X \bmod \mu$ such that

$$
u_{x}\left(\bigcup_{k=1}^{n} A_{k}\right)=\sum_{k=1}^{n} u_{x}\left(A_{k}\right) \quad \forall x \in X_{0}
$$

whenever $A_{1}, \ldots, A_{n} \in \mathcal{A}$ are disjoint.
Since \mathcal{A} has the FSCP,

$$
\exists\left\{\nu_{x}: x \in X_{0}\right\} \subset \mathcal{P}(Y)
$$

such that

$$
\nu_{x}(A)=u_{x}(A) \quad \forall A \in \mathcal{A}, x \in X_{0}
$$

In order to complete the proof of the theorem, we note that the collections

$$
\mathcal{D}:=\left\{A \in \mathcal{B}(Y): x \mapsto \nu_{x}(A) \text { measurable }\right\},
$$

and

$$
\mathcal{E}:=\left\{B \in \mathcal{B}(Y): \int_{A} \nu_{x}(B) d \mu(x)=m(A \times B) \forall A \in \mathcal{B}(X)\right\}
$$

are both monotone classes containing \mathcal{A}. \square

9.2 Theorem (Existence of conditional expectations) Suppose

 that (X, \mathcal{B}, m) is a probability space and that $\mathcal{C} \subset \mathcal{B}$ is a sub- σ-algebra, then for every $f \in L^{1}(\mathcal{B}), \exists!g \in L^{1}(\mathcal{C})$ such that$$
\int_{C} f d m=\int_{C} g d m \forall C \in \mathcal{C}
$$

This is proved using the Radon-Nikodym theorem. The function $g \in$ $L^{1}(\mathcal{C})$ is clearly unique $\bmod m$. It is called the conditional expectation of f with respect to \mathcal{C}, and denoted

$$
g=E(f \mid \mathcal{C})
$$

9.3 Proposition (Properties of conditional expectations)

a) If $A_{n} \in \mathcal{B}(n \geq 1)$ are disjoint, and $A=\bigcup_{n=1}^{\infty} A_{n}$, then

$$
E\left(1_{A} \mid \mathcal{C}\right)=\sum_{n=1}^{\infty} E\left(1_{A_{n}} \mid \mathcal{C}\right) \text { a.e. }
$$

b) If $\mathcal{C}=\sigma(\alpha)$ where $\alpha \subset \mathcal{B}$ is a countable partition of X, then

$$
E(f \mid \mathcal{C})=\sum_{A \in \alpha} 1_{A} E(f \mid A) \text { a.e. } \forall f: X \rightarrow[0, \infty)
$$

measurable, where $E(f \mid A):=\frac{1}{m(A)} \int_{A} f d f m$.
c) If $f: X \rightarrow \mathbb{R}$ is bounded, \mathcal{B}-measurable, and $g: X \rightarrow \mathbb{R}$ is bounded, \mathcal{C}-measurable, then $E(f g \mid \mathcal{C})=g E(f \mid \mathcal{C})$.
d) If $\mathcal{C}_{1} \subset \mathcal{C}_{2}$ then $E\left(E\left(f \mid \mathcal{C}_{1}\right) \mid \mathcal{C}_{2}\right)=E\left(E\left(f \mid \mathcal{C}_{2}\right) \mid \mathcal{C}_{1}\right)=E\left(f \mid \mathcal{C}_{1}\right)$.
e) $\|E(f \mid \mathcal{C})\|_{p} \leq\|f\|_{p} \forall 1 \leq p \leq \infty$.
f) $\int_{X}(f-E(f \mid \mathcal{C})) g d m=0 \forall f \in L^{2}(X), g \in L^{2}(\mathcal{C})$.

Remark

$E(\cdot \mid \mathcal{C})$ is the orthogonal projection $P: L^{2}(\mathcal{B}) \rightarrow L^{2}(\mathcal{C})$, whence

$$
\|f-E(f \mid \mathcal{C})\|_{2} \leq\|f-g\|_{2} \forall f \in L^{2}(\mathcal{B}), g \in L^{2}(\mathcal{C})
$$

with equality iff $g=E(f \mid \mathcal{C})$.

Regular conditional probabilities.

Suppose that (X, \mathcal{B}, m) is a probability space and that $\mathcal{C} \subset \mathcal{B}$ is a sub- σ-algebra.

A regular conditional probability on (X, \mathcal{B}, m) given \mathcal{C} is a function $p: X_{0} \times \mathcal{B} \rightarrow[0,1]$ where $X_{0} \in \mathcal{C}, X_{0}=X \bmod m$, such that
(a) for every $x \in X_{0}, m_{x} \in \mathcal{P}(X, \mathcal{B})$ where $m_{x}(A):=p(x, A)$;
(b) for every $A \in \mathcal{B}$, the \mathbb{R}-valued function $x \mapsto m_{x}(A)=p(x, A)$ is \mathcal{C}-measurable, and
(c) $\int_{C} m_{x}(A) d m(x)=m(A \cap C) \quad \forall A \in \mathcal{B}, C \in \mathcal{C}$ (i.e. $p(\cdot, A)=E\left(1_{A} \mid \mathcal{C}\right)$ a.e.).

9.4 Theorem (Existence of regular, conditional probabilities)

Suppose that (X, \mathcal{B}, m) is a Polish probability space and that $\mathcal{C} \subset \mathcal{B}$ is a sub- σ-algebra, then there is a regular conditional probability on (X, \mathcal{B}, m) given \mathcal{C}.

Proof

By Kuratowski's isomorphism theorem, we may assume (!) that $X=\Omega$.

Let \mathcal{A} denote the algebra of finite unions of cylinder sets in X, then each set in \mathcal{A} is both open, and compact.

Consequently any non-negative, finitely additive set function $\mu: \mathcal{A} \rightarrow$ \mathbb{R}_{+}satisfies Caratheodory's condition (*) (as on p.11) and extends to a measure ν on $(X, \sigma(\mathcal{A}))$ defined by

$$
\nu(E)=\inf \left\{\sum_{n=1}^{\infty} \mu\left(A_{n}\right): \bigcup_{n=1}^{\infty} A_{n} \supseteq E, A_{n} \in \mathcal{A}\right\} .
$$

Choose \mathcal{C}-measurable functions

$$
u_{x}(A)=E\left(1_{A} \mid \mathcal{C}\right)(x) \text { a.e. }(A \in \mathcal{B})
$$

then

$$
\int_{C} u_{x}(A) d m(x)=m(A \cap C) \quad \forall A \in \mathcal{B}, C \in \mathcal{C} .
$$

Also, if $A_{1}, \ldots \in \mathcal{B}$ are disjoint, then

$$
u_{x}\left(\biguplus_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} u_{x}\left(A_{k}\right),
$$

for m-a.e. $x \in X$. Since \mathcal{A} is countable, there is a set $X_{0} \in \mathcal{C}, X_{0}=X$ mod m such that

$$
u_{x}\left(\bigcup_{k=1}^{n} A_{k}\right)=\sum_{k=1}^{n} u_{x}\left(A_{k}\right) \quad \forall x \in X_{0}
$$

whenever $A_{1}, \ldots, A_{n} \in \mathcal{A}$ are disjoint.
It follows from the remarks above that there are measures

$$
\left\{m_{x}: x \in X_{0}\right\}
$$

on (X, \mathcal{B}) such that

$$
m_{x}(A)=u_{x}(A) \quad \forall A \in \mathcal{A}, x \in X_{0} .
$$

In order to complete the proof of the theorem, we note that the collections

$$
\mathcal{D}:=\left\{A \in \mathcal{B}: x \mapsto m_{x}(A) \mathcal{C}-\text { measurable }\right\}
$$

and

$$
\mathcal{E}:=\left\{A \in \mathcal{B}: \int_{C} m_{x}(A) d m(x)=m(A \cap C) \forall C \in \mathcal{C}\right\}
$$

are both monotone classes containing \mathcal{A}.

$$
\text { ExERCISE N으 } 6
$$

1. Measure space isomorphism.

Measure spaces (X, \mathcal{B}, p) and (Y, \mathcal{C}, q) are isomorphic if there are sets $X^{\prime} \in \mathcal{B}, Y^{\prime} \in \mathcal{C}$ such that $p\left(X \backslash X^{\prime}\right)=q\left(Y \backslash Y^{\prime}\right)=0$; and a bijection $\pi: X^{\prime} \rightarrow Y^{\prime}$ satisfying $\pi^{-1}\left(\mathcal{C} \cap Y^{\prime}\right)=\mathcal{B} \cap X^{\prime}$ and $p \circ \pi^{-1}=q$. The map π is called a measure space isomorphism and denoted $\pi:(X, \mathcal{B}, p) \rightarrow$ (Y, \mathcal{C}, q).

A Polish measure space is a σ-finite measure space (X, \mathcal{B}, m) where X is a Polish space, $\mathcal{B}=\mathcal{B}(X)$ and $m \in \mathfrak{M}(X, \mathcal{B})$. In this exercise, you prove that
a non-atomic, Polish probability space is isomorphic to the unit interval equipped with Borel sets and Lebesgue measure
(i) Let X be a metric space, and suppose that $p: \mathcal{B}(X) \rightarrow[0,1]$ is a probability. The support of p is defined by

$$
S_{p}:=\{x \in X: p(B(x, \varepsilon))>0 \forall \varepsilon>0\} .
$$

Show that S_{p} is a closed subset of X, and that if X is separable, then $p\left(S_{p}^{c}\right)=0$.
(ii) Let $I=[0,1] \& p \in \mathcal{P}(I)$ be a non-atomic probability. Define $\pi: I \rightarrow I$ by $\pi(x):=p([0, x])$. Show that $\pi:(I, \mathcal{B}(I), p) \rightarrow(I, \mathcal{B}$, Leb $)$ is a measure space isomorphism.
(iii) Prove that a non-atomic, Polish probability space is isomorphic to the unit interval equipped with Borel sets and Lebesgue measure.

2. Lebesgue measure spaces and conditional probabilities.

A (nonatomic) Lebesgue measure space is a measure space which is isomorphic to a subinterval of \mathbb{R} equipped with Lebesgue subsets, and Lebesgue measure.
(a) Show that the completion of a non-atomic, Polish probability space is Lebesgue.
(b) Let $\left(X, \mathcal{B}_{1}, p\right)$ be an extended measure space where
$X=[0,1], \mathcal{B}_{1}:=\left\{E\left(B_{1}, B_{2}\right):=\left(B_{1} \cap E\right) \cup\left(B_{2} \cap E^{c}\right): \quad B_{1}, B_{2} \in \mathcal{B}(X)\right\}$
where $E \subset[0,1]$ satisfies $\bar{\mu}(E)=\bar{\mu}([0,1] \backslash E)=1, \bar{\mu}$ denoting Lebesgue outer measure on $[0,1]$ (e.g. E a Bernstein set) and

$$
p\left(E\left(B_{1}, B_{2}\right)\right)=\frac{1}{2}\left(\operatorname{Leb}\left(B_{1}\right)+\operatorname{Leb}\left(B_{2}\right)\right) \quad\left(B_{1}, B_{2} \in \mathcal{B}(X)\right)
$$

Construction as in exercise 2.2.

Show that
(i) $E\left(1_{E\left(B_{1}, B_{2}\right)} \| \mathcal{B}(X)\right)=\frac{1}{2}\left(1_{B_{1}}+1_{B_{2}}\right)$ a.e.;
(ii) \nexists "regular conditional probabilities given $\mathcal{B}(X)$ " at any point satisfying (i).
(iii) $\left(X, \overline{\left(\mathcal{B}_{1}\right)}, p\right)$ is not a Lebesgue measure space where $\overline{\left(\mathcal{B}_{1}\right)_{p}}$ is the p-completion of \mathcal{B}_{1}.

3. A measure on product space.

Let $I=[0,1]$ and $\Omega=\{0,1\}^{\mathbb{N}}$ be equipped with their natural topologies.
a) Show that there is a probability $m: \mathcal{B}(I \times \Omega) \rightarrow[0,1]$ such that $\forall n \geq 1, a_{1}, \ldots, a_{n} \in\{0,1\} \& J \in \mathcal{B}(I)$,

$$
m\left(J \times\left[a_{1}, \ldots, a_{n}\right]\right)=\int_{J} t^{s_{n}}(1-t)^{n-s_{n}} d t
$$

where

$$
\left[a_{1}, \ldots, a_{n}\right]=\left\{\left(x_{1}, x_{2}, \ldots\right) \in \Omega: x_{k}=a_{k} 1 \leq k \leq n\right\}
$$

and $s_{n}=a_{1}+\cdots+a_{n}$.
b) Show that

$$
\int_{I \times \Omega}\left(A_{n}-T\right)^{2} d m=\frac{1}{6 n}
$$

where $T(t, x):=t$ and $A_{n}(t, x):=\frac{1}{n} \sum_{k=1}^{n} x_{k}$.
c) Define $\pi: \Omega \rightarrow\{0,1\}^{\mathbb{N}}$ by $\pi(\omega, t):=\omega$.

By identifying a regular, conditional probability on $(\Omega, \mathcal{B}(\Omega), m)$ given $\mathcal{A}=I \times \mathcal{B}(\Omega)$ (or otherwise), show that

$$
\pi:(\Omega, \mathcal{B}(\Omega), m) \rightarrow\left(\{0,1\}^{\mathbb{N}}, \mathcal{B}\left(\{0,1\}^{\mathbb{N}}, \mu\right)\right.
$$

is a measure space isomorphism where $\mu(A):=m(I \times A)$.

4. Non-singular bijections.

Let (X, \mathcal{B}, μ) be a σ-finite measure space, and let $A, B \in \mathcal{B}$. A nonsingular bijection of A and B is a $T: A \rightarrow B$, such that both T and T^{-1} are measurable, and such that $m \circ T, m \circ T^{-1} \ll m$. Show that
(i) if $T: A \rightarrow B$ is a non-singular bijection, then $\exists T^{\prime}: A \rightarrow \mathbb{R}$, positive on A, such that $m(T C)=\int_{C} T^{\prime} d m \forall C \in \mathcal{B} \cap A$;
(ii) (Chain rule for $\mathrm{R}-\mathrm{N}$ derivatives) if $S: A \rightarrow B$, and $T: B \rightarrow C$ are non-singular bijections, then so is $T \circ S: A \rightarrow C$, and $(T \circ S)^{\prime}=T^{\prime} \circ S \cdot S^{\prime}$ a.e..
(iii) Let $T: X \rightarrow X$ be a non-singular bijection of X. For $1 \leq p<\infty$ and $f: X \rightarrow \mathbb{R}$ measurable, define $V_{p}(f):=\left(T^{\prime}\right)^{\frac{1}{p}} f \circ T$. Show that $V_{p}: L^{p}(\mu) \rightarrow L^{p}(\mu)$ is an invertible isometry.
(iv) Let $(X, \mathcal{B}, \mu)=([0,1]$, Borel, Leb. $)$ and let $T: X \rightarrow X$ be C^{1} and strictly increasing. Is $T: X \rightarrow X$ necessarily a non-singular bijection?

5. Invariant measures on groups.

Let $G=\left\{\left(\begin{array}{ll}x & y \\ 0 & 1\end{array}\right):(x, y) \in \mathbb{R}^{2}, x>0\right\}$ equipped with the topology inherited from \mathbb{R}^{2}, and matrix multiplication.

Find measures $m_{L}, m_{R}: \mathcal{B}(G) \rightarrow[0, \infty]$ such that $\forall f: G \rightarrow \mathbb{R}_{+}$ measurable,

$$
\int_{G} f(g h) d m_{L}(h)=\int_{G} f(h) d m_{L}(h), \int_{G} f(g h) d m_{R}(g)=\int_{G} f(h) d m_{R}(h)
$$

Hint: $\operatorname{Try} d m_{J}\left(\left(\begin{array}{ll}x & y \\ 0 & 1\end{array}\right)\right)=p_{J}(x, y) d x d y \quad(J=L, R)$.
6. Fourier transform on $L^{2}(\mathbb{R})$.

Let $\varphi(t):=e^{-\frac{t^{2}}{2}} \quad(t \in \mathbb{R})$.
a) Show that $\widehat{\varphi}=\sqrt{2 \pi} \varphi$.

Hint $\frac{d}{d x} \widehat{\varphi}(x)=-x \widehat{\varphi}(x)$??
Let $f \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$.
b) Show that

$$
\int_{\mathbb{R}} \varphi\left(\frac{x}{\sqrt{n}}\right)|\widehat{f}(x)|^{2} d x=\sqrt{2 n \pi} \int_{\mathbb{R}} \varphi(x \sqrt{n}) g(x) d x
$$

where $g(x)=\int_{\mathbb{R}} f(x+y) \bar{f}(y) d y$.
c) Deduce that

$$
\begin{gathered}
\|\widehat{f}\|_{2}^{2} \leftarrow \sqrt{2 n \pi} \int_{\mathbb{R}} \varphi(x \sqrt{n}) g(x) d x \rightarrow 2 \pi g(0)=2 \pi\|f\|_{2}^{2} \\
\text { Week \# 7 }
\end{gathered}
$$

§10 Banach spaces and linear functionals
Let (X, \mathcal{B}, m) be a σ-finite measure space. Denote the collection of $f: X \rightarrow \mathbb{R}$ measurable by

$$
\mathcal{L}(X, \mathcal{B}, m)=\left\{f: X \rightarrow \mathbb{R}: f^{-1} \mathcal{B}(\mathbb{R}) \subset \mathcal{B}\right\}
$$

For $p>0$ and $f \in \mathcal{L}$, let

$$
\begin{gathered}
\|f\|_{p}=\left(\int_{X}|f|^{p} d m\right)^{\frac{1}{p}} \\
\|f\|_{\infty}:=\inf \{K>0: m([|f|>K])=0\} \leq \infty
\end{gathered}
$$

and

$$
\mathcal{L}^{p}=\mathcal{L}^{p}(X, \mathcal{B}, m)=\left\{f \in \mathcal{L}:\|f\|_{p}<\infty .\right\}
$$

It is not hard to show that if $m(X)<\infty$, then

$$
\|f\|_{p} \underset{p \rightarrow \infty}{ }\|f\|_{\infty}
$$

Also, for $f \in L^{1}, g \in L^{\infty}$ non-we have $f g \in L^{1}$ and

$$
\left|\int_{X} f g d m\right| \leq\|f\|_{1}\|g\|_{\infty}
$$

More generally,
10.1 Hölder's inequality For $1<p<\infty, q=\frac{p}{p-1}$,

$$
\left|\int_{X} f g d m\right| \leq\|f\|_{p}\|g\|_{q}
$$

with equality iff $f g \geq 0$ a.e. and there is a constant $c>0$ so that $|f|^{p}=c|g|^{q}$.

Proof See exercises.

10.2 Minkowski's inequality For

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p} \quad \forall f, g \in \mathcal{L}^{p}, 1 \leq p \leq \infty
$$

with equality when $p \in(1, \infty)$ iff $f \& g$ are linearly dependent.
Proof See exercises.
From Minkowski's inequality, it follows that if $L^{p}=\mathcal{L}^{p} / \sim$ where \sim means "a.e. equality", then for $1 \leq p<\infty,\left(L^{p},\|\cdot\|_{p}\right)$ is a normed linear space.
10.3 Theorem $\left(L^{p},\|\cdot\|_{p}\right)$ is a Banach space.

Proof We show that if $f_{n} \in \mathcal{L}^{p}$ is a Cauchy sequence, i.e. $\left\|f_{m}-f_{n}\right\|_{p} \rightarrow 0$ as $m, n \rightarrow \infty$, then $\exists f \in \mathcal{L}^{p}$ such that

$$
\left\|f-f_{n}\right\|_{p} \longrightarrow 0 \text { as } n \rightarrow \infty .
$$

To see this, $\exists n_{k} \uparrow$ such that

$$
\left\|f_{m}-f_{n}\right\|_{p}<\frac{1}{4^{k}} \forall m, n>n_{k} .
$$

It follows that

$$
m\left(\left[\left|f_{n_{k}}-f_{n_{k+1}}\right|>\frac{1}{2^{k}}\right]\right) \leq 2^{p k}\left\|f_{n_{k}}-f_{n_{k+1}}\right\|_{p}^{p}<\frac{1}{2^{p k}}
$$

whence, a.e.,

$$
\exists \lim _{K \rightarrow \infty} f_{n_{1}}+\sum_{k=1}^{K}\left(f_{n_{k+1}}-f_{n_{k}}\right):=f,
$$

and $f \in \mathcal{L}^{p}$ as

$$
\left\|\sum_{k=1}^{\infty}\left(f_{n_{k}}-f_{n_{k+1}}\right)\right\|_{p} \leq \sum_{k=1}^{\infty}\left\|f_{n_{k}}-f_{n_{k+1}}\right\|_{p} \leq 1 .
$$

It also follows from this that

$$
\left\|f-f_{n_{\ell}}\right\|_{p} \leq \sum_{k=\ell+1}^{\infty}\left\|f_{n_{k}}-f_{n_{k+1}}\right\|_{p} \rightarrow 0
$$

as $\ell \rightarrow \infty$, whence, choosing $\ell(N)$ such that $n_{\ell(N)} \leq N<n_{\ell(N)+1}$, we have

$$
\left\|f-f_{N}\right\|_{p} \leq\left\|f-f_{n_{\ell}(N)}\right\|_{p}+\left\|f_{N}-f_{n_{\ell}(N)}\right\|_{p} \rightarrow 0
$$

as $N \rightarrow \infty$.

Dual spaces.

For $(B,\|\cdot\|)$ a normed linear space over \mathbb{R}, the dual space is the space of bounded linear functionals

$$
B^{*}=\{L: B \rightarrow \mathbb{R}: \text { linear, } \exists M \ni|L(f)| \leq M\|f\| \forall f \in B\} .
$$

It can be shown that $\|L\|_{*}:=\sup _{f \in B,\|f\|=1}|L(f)|$ defines a norm on B^{*}. Here, we identify B^{*} for some examples.

10.4 Theorem (Riesz)

Suppose that (X, \mathcal{B}, m) is a σ-finite measure space, and suppose that $1 \leq p<\infty$, then

$$
\left(L^{p}(m)\right)^{*} \cong L^{q}(m)
$$

where $q:=\frac{p}{p-1}$ and \cong means isomorphism by Banach space isometry.
Proof For $g \in L^{q}$, by Hölder's inequality, $f g \in L^{1} \forall f \in L^{p}$, and if $A_{g}(f)=\int_{X} f g d m\left(f \in L^{p}\right)$ then $A_{g} \in\left(L^{p}\right)^{*}$, and $\left\|A_{g}\right\|_{\left(L^{p}\right)^{*}}:=$ $\sup \left\{\mid A_{g}(f):\|f\|_{p}=1\right\}=\|g\|_{q}$.

It remains to prove $(\ddagger): \forall A \in\left(L^{p}\right)^{*}, \exists g \in L^{q} \ni A \equiv A_{g}$.
We prove (\ddagger) first under the assumption $m(X)<\infty$.
Let $A \in\left(L^{p}\right)^{*}$, and define $\mu: \mathcal{B} \rightarrow \mathbb{R}$ by $\mu(E)=A\left(1_{E}\right)$ for $E \in \mathcal{B}$. By linearity of $A . \mu$ is additive, and if $E_{n} \in \mathcal{B}, E_{n} \uparrow E$, then $1_{E_{n}} \xrightarrow{L^{p}} 1_{E}$, whence $\mu\left(E_{n}\right) \rightarrow \mu(E)$ as $n \rightarrow \infty$, and μ is a signed measure. Clearly $\mu \ll m$, and so by the R-N theorem, $\exists g \in L^{1} \ni d \mu=g d m$. We claim that (i) $g \in L^{q}$, and (ii) $A \equiv A_{g}$.

We treat only the (more difficult) case of $p>1$. By linearity of A and A_{g} we have that $A(f)=A_{g}(f)$ for every simple function f. If $f \in L^{\infty}$, then $\exists f_{n}$, simple functions, such that $f_{n} \xrightarrow{L^{\infty}} f$, whence

$$
A(f) \leftarrow A\left(f_{n}\right)=A_{g}\left(f_{n}\right) \rightarrow A_{g}(f)
$$

and $A(f)=A_{g}(f) \forall f \in L^{\infty}$. We use this next to show that $g \in L^{q}$. Let $h=\operatorname{sgn}(g)$, and for $\kappa>0$ set $f_{\kappa}=1_{[|g| \leqslant \kappa]} h|g|^{q-1} \in L^{\infty}$, then

$$
\begin{aligned}
& \int_{[|g| \leq \kappa]}|g|^{q} d m=A_{g}\left(f_{\kappa}\right)=A\left(f_{\kappa}\right) \leq \\
& \|A\|_{\left(L^{p}\right)^{*}}\left\|f_{\kappa}\right\|_{p}=\|A\|_{\left(L^{p}\right)^{*}}\left(\int_{[|g| \leq \kappa]}|g|^{\mid q} d m\right)^{\frac{1}{p}},
\end{aligned}
$$

whence $\|g\|_{q} \leftarrow\left\|1_{[|g| \leq \kappa]} g\right\|_{q} \leq\|A\|_{\left(L^{p}\right)^{*}}$.

To prove (\ddagger) in general, let $h: X \rightarrow \mathbb{R}_{+}$, be such that $\int_{X} h d m=$ 1 , and let $d \mu=h d m$. Then $f \in L^{p}(\mu)$ iff $f h^{\frac{1}{p}} \in L^{p}(m)$. Let $A \in$ $\left(L^{p}(m)\right)^{*}$, and set $B(f)=A\left(f h^{\frac{1}{p}}\right)$ for $f \in L^{p}(\mu)$. By the above, $\exists g \in$ $L^{q}(\mu) \ni B(f)=\int_{X} f g d \mu=\int_{X} f g h d m$, whence, for $f \in L^{p}(m), A(f)=$ $B\left(f h^{-\frac{1}{p}}\right)=\int_{X} f g h^{\frac{1}{q}} d m$.

Dual space of L^{∞}. Let (X, \mathcal{B}, m) be a σ-finite, measure space. A finitely additive set function $F: \mathcal{B} \rightarrow \mathbb{R}$ is called m-absolutely continuous if

$$
A \in \mathcal{B}, m(A)=0 \Rightarrow F(A)=0
$$

Denote by $\mathcal{C}(X, \mathcal{B}, m)$ the collection of m-absolutely continuous, finitely additive set functions $F: \mathcal{B} \rightarrow \mathbb{R}$ with finite total variation:

$$
\|F\|:=\sup \left\{\sum_{n=1}^{N}\left|F\left(A_{n}\right)\right|: A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{B} \text { disjoint }\right\}<\infty
$$

It follows from the Jordan decomposition theorem that

$$
\mathcal{C}(X, \mathcal{B}, m)=\left\{\mu-\nu: \mu, \nu \in \mathcal{C}(X, \mathcal{B}, m)_{+}\right\}
$$

where $\mathcal{C}(X, \mathcal{B}, m)_{+}:=\{F \in \mathcal{C}(X, \mathcal{B}, m): F(A) \geq 0 \forall A \in \mathcal{B}\}$.
This implies that for $\mu \in \mathcal{C}(X, \mathcal{B}, m)$, the integral functional $f \mapsto$ $\int_{X} f d \mu$:

- can be defined as in proposition 5.4,
- is bounded on L^{∞} as in proposition 5.5; and
- $f=g m$-a.e. $\Longrightarrow \int_{X} f d \mu=\int_{X} g d \mu$.

10.5 Theorem

$$
L^{\infty *}(X, \mathcal{B}, m)=\mathcal{C}(X, \mathcal{B}, m)
$$

Proof As above, if $\mu \in \mathcal{C}(X, \mathcal{B}, m)$, then $f \mapsto L_{\mu}(f)=\int_{X} f d \mu$ defines am element of $L^{\infty *}$. Conversely, let $L \in L^{\infty *}$ and define $\mu: \mathcal{B} \rightarrow \mathbb{R}$ by $\mu(A)=L\left(1_{A}\right)$. We need to show that $\|\mu\|<\infty$ and that $L \equiv L_{\mu}$.

To see that $\|\mu\| \leq\|L\|_{L^{\infty *}}$, let $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{B}$ be disjoint and set $f:=\sum_{k=1}^{n} \operatorname{sign}\left(\mu\left(A_{k}\right)\right) 1_{A_{k}}$, then $\|f\|_{\infty}=1$ and

$$
\sum_{k=1}^{n}\left|\mu\left(A_{k}\right)\right|=L(f) \leq\|L\|_{L^{\infty *}}
$$

whence $\|\mu\| \leq\|L\|_{L^{\infty *}}, \mu \in \mathcal{C}(X, \mathcal{B}, m)$ and $L_{\mu} \in L^{\infty *}$.
We have $L(f)=L_{\mu}(f)$ for simple functions $f \in L^{\infty}$ and hence $\forall f \in$ L^{∞} as the collection of simple functions is uniformly dense. \square

Remark.

Let (X, \mathcal{B}, m) be $X:=[0,1]$ equipped with Borel sets and Lebesgue measure, then $L^{1}(m) \varsubsetneqq L^{\infty}(m)^{*}$. To see this, by the Hahn-Banach theorem $\exists L \in L^{\infty}(m)^{*}$ so that $L(f):=f(0) \forall f \in C([0,1])$.

It is not hard to show (!) that $\exists g \in L^{1}(m)$ so that $\int_{0}^{1} f(t) g(t) d t=$ $f(0) \forall f \in C([0,1])$.

§11 Linear functionals of continuous functions on a compact Hausdorff space

Topological Background.
We'll need the following results about a compact Hausdorff space (X, \mathcal{T}) :

- Normality or \mathbf{T}_{4} :

If $F, G \subset X$ are disjoint closed sets, then $\exists U, V \in \mathcal{T}$ so that $U \cap V=$ $\varnothing, U \supset F, \& V \supset G$.

- Urysohn's lemma:

The space (X, \mathcal{T}) is normal iff whenever $F \subset U \subset X, F$ closed and U open, $\exists f \in C(X,[0,1])$ so that $F<f<U$.

Here, $F<f$ means $1_{F} \leq f \leq 1$ and $f<U$ means $\operatorname{supp} f:=\overline{[f \neq 0]} \subset U$ (and hence $0 \leq f \leq 1_{U}$).

Linear functionals.

Let X be a compact Hausdorff space and let $C(X)$ be the Banach space of continuous \mathbb{R}-valued functions with respect to the norm $\|f\|_{C}:=$ $\sup _{x \in X}|f(x)|$.

A linear functional $L: C(X) \rightarrow \mathbb{R}$ is called bounded if $\exists M>0$ such that $|L(f)| \leq M\|f\|_{C} \forall f \in C(X)$ and positive if $f \geq 0 \Longrightarrow L(f) \geq 0$.

Note that positive \Longrightarrow bounded and (!) that a linear functional L is positive $\Longleftrightarrow|L(f)| \leq L(1)\|f\|_{C} \forall f \in C(X)$

Set

$$
\begin{gathered}
C(X)^{*}:=\{L: C(X) \rightarrow \mathbb{R}: L \text { linear, bounded }\}, \\
C(X)_{+}^{*}=\left\{L \in C(X)^{*}: L \text { positive }\right\} .
\end{gathered}
$$

The question arises:

$$
L(f) \stackrel{?}{=} \int_{X} f d \mu_{L}
$$

for some measure defined on some sufficiently large σ-algebra.

Baire sets and Borel sets. Given a topological space X, call a σ-algebra $\mathcal{A} \subset 2^{X}$ admissible if each $f \in C(X)$ is \mathcal{A}-measurable (i.e. $\left.f^{-1}(\mathcal{B}(\mathbb{R})) \subset \mathcal{A}\right)$

$$
\mathfrak{b}(X):=\bigcap_{\mathcal{A} \subset 2^{x} \text {,admissible } \sigma \text {-algebra }} \mathcal{A}=\sigma\left(\bigcup_{f \in C(X)} f^{-1}(\mathcal{B}(\mathbb{R}))\right) .
$$

The standard proof shows that $\mathfrak{b}(X)$ is itself an admissible σ-algebra. Sets in $\mathfrak{b}(X)$ are called Baire sets.
11.1 Proposition If X is a separable metric space, then $\mathfrak{b}(X)=\mathcal{B}(X)$.

Proof For any open ball $U \subset X, \exists f_{n} \in C(X)$ so that $f_{n}(x) \rightarrow$ $1_{U}(x) \forall x \in X$ and 1_{U} is $\mathfrak{b}(X)$-measurable as the pointwise limit of a sequence of $\mathfrak{b}(X)$-measurable (continuous) functions. By separability each open set is the union of countably many balls and $\mathcal{B}(X)=$ $\sigma(\{$ balls $\}) . \not \square$

11.2 Example: A compact Hausdorff space with $\mathfrak{b} \neq \mathcal{B}$.

Let $\Omega:=S^{\Lambda}$ (where S is a finite set and Λ is an arbitrary, uncountable set) equipped with the product discrete topology, then Ω is a compact Hausdorff space.

Let \mathcal{S} be the semiring of cylinder sets in Ω (see exercise 1.3 p .9) and let

$$
\mathfrak{A}:=\left\{\sum_{k=1}^{N} a_{k} 1_{C_{k}}: a_{k} \in \mathbb{R}, C_{k} \in \mathcal{S} \forall 1 \leq k \leq N\right\},
$$

then \mathfrak{A} is a subalgebra of $C(\Omega)$ which separated points. By the StoneWeierstrass theorem, \mathfrak{A} is dense in $C(\Omega)$, whence $\mathfrak{b}(\Omega)=\sigma(\mathcal{S})$.

A standard monotone class argument shows that if $A \in \sigma(\mathcal{S})$ then $\exists \Gamma \subset[0,1]$ countable, $A^{\prime} \subset\{0,1\}^{\Gamma}$ so that $A=\{x:[0,1] \rightarrow\{0,1\}:$ $\left.\left.x\right|_{\Gamma} \in A^{\prime}\right\}$.

Thus any singleton $\{x\} \in \mathcal{B}(X) \backslash \mathfrak{b}(X)$.

11.3 Frechet Lemma

Let X be a compact Hausdorff space, let $p \in \mathcal{P}(X, \mathfrak{b}(X))$ and let $f: X \rightarrow \mathbb{R}$ be bounded, Baire measurable, then $\forall \varepsilon>0, \exists h \in C(X)$ with $p([|f-h|>\varepsilon])<\varepsilon$.

Proof for $f=1_{A} \quad$ Let \mathcal{A} denote the algebra of finite unions of subintervals of \mathbb{R}. Let $\eta>0$.

Since $A \in \mathfrak{b}(X), \exists f_{1}, \ldots, f_{N} \in C(X)$ and $I_{1}, \ldots, I_{N} \in \mathcal{A}$ so that

$$
\frac{\varepsilon}{2}>p\left(A \Delta \bigcap_{k=1}^{N} f_{k}^{-1}\left(I_{k}\right)\right)=p\left(\left[1_{A} \neq F\right]\right)
$$

where $F:=\prod_{k=1}^{N} 1_{I_{k}} \circ f_{k}$.

For each $k, \exists G_{n, k} \in C_{B}(\mathbb{R}), G_{n, k}(z) \underset{n \rightarrow \infty}{\longrightarrow} 1_{I_{k}}(z) \quad \forall z \in \mathbb{R}$ and it follows that $H_{n}:=\prod_{k=1}^{N} G_{n, k} \circ f_{k} \in C(X) \quad(n \geq 1)$ and $H_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} F(x) \quad \forall x \in X$.
Thus, for $n \geq 1$ large

$$
p\left(\left[\left|H_{n}-1_{A}\right|>\varepsilon\right]\right)<p\left(\left[\left|H_{n}-F\right|>\varepsilon\right]+P\left(\left(F \neq 1_{A}\right]\right)<\varepsilon . \quad \square\right.
$$

Open Baire sets and uniqueness of weak representation.

Let (X, \mathcal{T}) be a compact Hausdorff space. A F_{σ} set in X is a set of form $A=\cup_{n=1}^{\infty} K_{n}$ where K_{1}, K_{2}, \ldots are closed.

Let \mathcal{T}_{σ} be the collection of open F_{σ} sets.

11.4 Proposition

(i) $\mathfrak{b}(X)=\sigma\left(\mathcal{T}_{\sigma}\right)$,
(ii) $\quad \mu, \nu \in \mathfrak{M}(X, \mathfrak{b}(X)), \quad \int_{X} f d \mu=\int_{X} f d \nu \forall f \in C(X) \Rightarrow \mu=\nu$.

Proof of (i)

We prove first that $\mathcal{T}_{\sigma} \subset \mathfrak{b}(X) .^{8}$ Let $U \in \mathcal{T}, U=\bigcup_{n=1}^{\infty} K_{n}$ where $K_{1} \subset K_{2} \subset \ldots$ are closed.

By Urysohn's lemma, $\exists f_{n} \in C(X,[0,1])(n \geq 1)$ so that $K_{n}<f_{n}<U$. In particular,

$$
1_{K_{n}} \leq f_{n} \leq 1_{U} .
$$

By assumption, $1_{K_{n}} \uparrow 1_{U}$, whence $f_{n} \xrightarrow[n \rightarrow \infty]{\longrightarrow} 1_{U}$ on X and $U \in \mathfrak{b}(X)$. Consequently, $\sigma\left(\mathcal{T}_{\sigma}\right) \subset \mathfrak{b}(X)$.

To see $\sigma\left(\mathcal{T}_{\sigma}\right) \supset \mathfrak{b}(X)$, let

$$
\mathcal{U}:=\left\{\bigcap_{k=1}^{N} f_{k}^{-1}\left(I_{k}\right): f_{1}, \ldots, f_{N} \in C(X) \& I_{1}, \ldots, I_{N} \in \mathcal{T}(\mathbb{R})\right\}
$$

then $\mathcal{U} \subset \mathcal{T}_{\sigma}$ because $\mathcal{T}(\mathbb{R})=\mathcal{T}_{\sigma}(\mathbb{R})$. Thus

$$
\mathfrak{b}(X)=\sigma(\mathcal{U}) \subset \sigma\left(\mathcal{T}_{\sigma}\right) . \quad \not \square(\mathrm{i})
$$

Proof of (ii)

For $U \in \mathcal{T}_{\sigma}, \exists h_{n} \in C(X,[0,1]), h_{n} \rightarrow 1_{U}$ on X, whence $\mu(U)=\nu(U)$. It follows from (i) that $\mu=\nu, \quad \nabla$ (ii)

11.5 Theorem: Structure of compact Hausdorff spaces

Let X be a compact Hausdorff space, then \exists a set Λ and a closed subset $\Omega_{X} \subset\{0,1\}^{\Lambda}$ so that X is a continuous image of Ω_{X}.

Proof

Let $\mathcal{C} \subset C(X,[0,1])$ be uniformly dense and define $\beta: X \rightarrow[0,1]^{\mathcal{C}}$ by

$$
\beta(x)(g):=g(x) .
$$

We claim that β is continuous and injective.
Proof of continuity A cylinder in $[0,1]^{\mathcal{C}}$ is a set of form

$$
\left[U_{1}, \ldots, U_{N}\right]_{g_{1}, \ldots, g_{n}}:=\left\{\omega \in[0,1]^{c}: \omega\left(g_{k}\right) \in U_{k} \forall 1 \leq k \leq N\right\}
$$

[^7]where $g_{1}, \ldots, g_{N} \in \mathcal{C} \& U_{1}, \ldots, U_{N} \in \mathcal{T}([0,1])$.
The collection of cylinders forms a base for the compact, Hausdorff, product topology on $[0,1]^{c}$. Thus, continuity of β is established by
$$
\beta^{-1}\left[U_{1}, \ldots, U_{N}\right]_{g_{1}, \ldots, g_{n}}=\bigcap_{k=1}^{N} g_{k}^{-1} U_{k} \in \mathcal{T} . \not \square
$$

Proof of injectivity Suppose that $x, y \in X, x \neq y$. By Urysohn's lemma $\exists f \in C(X,[0,1])$ so that $f(x) \neq f(y)$, whence by density of $\mathcal{C}, \exists g \in \mathcal{C}$ so that $g(x) \neq g(y)$. Consequently, $\beta(x) \neq \beta(y)$.

Next $\beta(X)$ is compact in $[0,1]^{\mathcal{C}}$ and $\beta: X \rightarrow \beta(X)$ is a homeomorphism.

Now define $\Phi:\{0,1\}^{\mathbb{N} \times \mathcal{C}} \rightarrow[0,1]^{\mathcal{C}}$ by

$$
\Phi(\omega)(g):=\sum_{n=1}^{\infty} \frac{\omega(n, g)}{2^{n}} .
$$

It follows that Φ is a continuous surjection.
Let $\Omega_{X}:=\Phi^{-1}(\beta(X))$, then Ω_{X} is closed in $\{0,1\}^{\mathbb{N} \times \mathcal{C}}$ and

$$
\pi:=\Phi \circ \beta^{-1}: \Omega_{X} \rightarrow X
$$

is a continuous surjection. ∇,

11.6 Riesz representation theorem (RRT) (Riesz, Saks, Markov)

Suppose (X, \mathcal{T}) is a compact Hausdorff space, and suppose that $\mathcal{L} \in$ $C(X)^{*}$, then \exists a unique, signed, Baire measure $\mu: \mathfrak{b}(X) \rightarrow \mathbb{R}$ such that

$$
\mathcal{L}(f)=\int_{X} f d \mu \forall f \in C(X) .
$$

Proof For $\nu \in \mathfrak{M}(X, \mathfrak{b}(X)), f \mapsto L_{\mu}(f):=\int_{X} d \mu$ defines an element $L_{\mu} \in C(X)^{*}$. By proposition 11.4(iii), $\nu \mapsto L_{\mu}$ is injective. We must show that it is surjective.

By theorem 11.5 (structure theorem for compact Hausdorff spaces) \exists a set \mathcal{C} and a closed subset $\Omega \subset\{0,1\}^{\mathcal{C}}$ and $\pi: \Omega \rightarrow X$ continuous and onto. Define $\pi_{*}: C(X) \rightarrow C(\Omega)$ by $\pi_{*}(f):=f \circ \pi$, then $D_{X}:=\pi_{*}(C(X))$ is a closed linear subspace of $C(\Omega)$.

Now let $L \in C(X)^{*}$ and define $L_{1} \in\left(D_{X}\right)^{*}$ by $L_{1}(f \circ \pi):=L(f)$.
By the Hahn-Banach theorem $\exists L_{2} \in C(\Omega)^{*}$ such that $\left.L_{2}\right|_{D_{X}}=L_{1}$ whence $L_{2}(f \circ \pi)=L(f) \forall f \in C(X)$.

We claim that
© $-\exists$ a signed measure $\mu: \mathfrak{b}(\Omega) \rightarrow[0, \infty)$ such that $L_{2}(g)=\int_{\Omega} g d \mu$.

Proof of \odot

Let \mathcal{A} be the algebra of subsets of Ω generated by cylinders.
Since cylinders are clopen in Ω, this algebra has the finite subcover property.

Define $\nu: \mathcal{A} \rightarrow \mathbb{R}$ by $\nu(A):=L\left(1_{A}\right)$, then ν is additive by the linearity of L.

We claim that $\|\mu\|<\infty$. To see that in fact $\|\mu\| \leq\|L\|_{C(\Omega)^{*}}$, let $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{A}$ be disjoint and set $f:=\sum_{k=1}^{n} \operatorname{sign}\left(\mu\left(A_{k}\right)\right) 1_{A_{k}}$, then $f \in C(\Omega) \quad \&\|f\|_{C(\Omega)}=1$. Moreover

$$
\sum_{k=1}^{n}\left|\mu\left(A_{k}\right)\right|=L(f) \leq\|L\|_{C(\Omega)^{*}}
$$

whence our claim.
By the Jordan decomposition, $\mu=\mu_{+}-\mu_{-}$where $\mu_{ \pm}: \mathcal{A} \rightarrow[0, \infty)$ are additive, whence countable subadditive and extend to measures $\bar{\mu}_{ \pm}$on $\sigma(\mathcal{A})=\mathfrak{b}(\Omega)$. Thus $\bar{\mu}:=\bar{\mu}_{+}-\bar{\mu}_{-}$is a signed, Baire measure satisfying

$$
\begin{aligned}
L_{2}(F)= & L_{\mu}(F):=\int_{\Omega} F d \bar{\mu} \quad \forall F=\sum_{k=1}^{N} a_{k} 1_{A_{k}} \\
& \text { with } a_{1}, \ldots, a_{N} \in \mathbb{R}, A_{1}, \ldots, A_{N} \in \mathcal{A} .
\end{aligned}
$$

By the Stone-Weierstrass theorem, such functions are uniformly dense in $C(\Omega)$ whence $L_{2} \equiv L_{\mu}$. $\quad \varnothing \cdot$

It follows from $)^{\text {© }}$ that $\nu:=\mu \circ \pi^{-1}: \mathfrak{b}(X) \rightarrow[0, \infty)$ is also a signed measure, and for $f \in C(X)$,

$$
\int_{X} f d \nu=\int_{\Omega} f \circ \pi d \mu=L_{2}(f \circ \pi)=L(f)
$$

Uniqueness follows because the indicator of a Baire set is the a.s. pointwise limit of a uniformly bounded sequence of continuous functions. \square
Regular Borel measures. Let (X, \mathcal{T}) be a topological space. A Borel measure $\mu \in(X, \mathcal{B}(X))$ is regular if

$$
\mu(A)=\inf \{\mu(U): A \subset U \in \mathcal{T}\}
$$

11.7 Kakutani's extension theorem

Suppose (X, \mathcal{T}) is a compact Hausdorff space, and suppose that $\mu \in$ $\mathcal{P}(X, \mathfrak{b}(X))$, then there is a unique, regular $m \in \mathcal{P}(X, \mathcal{B}(X))$ such that $\left.m\right|_{\mathfrak{b}(X)} \equiv \mu$.

Proof See exercises.

1. Hölder's, and Minkowski's inequalities.

Let $1<p<\infty$, and $q=\frac{p}{p-1}$.
a) Prove that for $a, b \geq 0, a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}$ with equality iff $a^{p}=b^{q}$.
(Hint: One way to do this is to prove that $\alpha^{\lambda} \beta^{1-\lambda} \leq \lambda \alpha+(1-\lambda) \beta \forall \alpha, \beta \geq 0,0<\lambda<1$, and substitute $\alpha=a^{p}, \beta=b^{q}$ with appropriate $\lambda \ldots$..)

Now suppose that (X, \mathcal{B}, m) is a σ-finite measure space and that $f, g: X \rightarrow \mathbb{R}$ are measurable functions satisfying $\int_{X}|f|^{p} d m, \int_{X}|g|^{q} d m<$ ∞.
b) Prove that $f g$ is integrable, and

$$
\left|\int_{X} f g d m\right| \leq \frac{1}{p} \int_{X}|f|^{p} d m+\frac{1}{q} \int_{X}|g|^{q} d m .
$$

c) Using b), or otherwise, prove Hölder's inequality: $\left|\int_{X} f g d m\right| \leq$ $\|f\|_{p}\|g\|_{q}$ where

$$
\|f\|_{p}:=\left(\int_{X}|f|^{p} d m\right)^{\frac{1}{p}}
$$

with equality iff $f g \geq 0$ a.e. and \exists a constant $c>0$ so that $|g|^{q}=c|f|^{p}$ a.e..
d) Prove that $\|f\|_{p}=\max \left\{\int_{X} f g d m:\|g\|_{q} \leq 1\right\}$.
e) Prove Minkowski's inequality: $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$ with equality iff $f \& g$ are linearly dependent

2. Regular Borel measures.

Suppose (X, \mathcal{T}) is a compact Hausdorff space, and suppose that $\mu \in \mathcal{P}(X, \mathfrak{b}(X))$. Here, in a series of exercises, you prove Kakutani's theorem that:
\exists a unique, regular $m \in \mathcal{P}(X, \mathcal{B}(X))$ such that $\left.m\right|_{\mathfrak{b}(X)} \equiv \mu$.
Write $L(f):=\int_{X} f d \mu(f \in C(X))$.
(i) Show that for $U \in \mathcal{T}$,

$$
m(U):=\sup \{\mathcal{L}(f): f \in C(X), f<U\}=\sup \{\mu(A): U \supseteq A \in \mathfrak{b}(X)\}
$$

(ii) Show that $m: \mathcal{T} \rightarrow[0, \infty)$ satisfies
(a) $U, V \in \mathcal{T}, U \subset V \Rightarrow m(U) \leq m(V)$,
(b) $U, V \in \mathcal{T}, U \cap V=\varnothing \quad \Rightarrow m(U \cup V)=m(U)+m(V)$,
(c) $m\left(\bigcup_{n=1}^{\infty} U_{n}\right) \leq \sum_{k=1}^{\infty} m\left(U_{n}\right) \forall U_{1}, U_{2}, \cdots \in \mathcal{T}$.

For $E \subset X$, let

$$
\bar{\mu}(E):=\inf \{m(U): E \subset U \in \mathcal{T}\} .
$$

(iii) Show that $\bar{\mu}$ is an outer measure and that (a) $\bar{\mu}(U)=m(U) \forall U \in \mathcal{T}$, (b) $\bar{\mu}(A)=\mu(A) \forall A \in \mathfrak{b}(X)$.
(iv) Show that if $U \in \mathcal{T}$, then

$$
\forall a<m(U), \exists F \subset U, F \text { closed, such that } \bar{\mu}(F)>a \text {. }
$$

(v) Show that $\bar{\mu}\left(F_{1} \cup F_{2}\right) \geq \bar{\mu}\left(F_{1}\right)+\bar{\mu}\left(F_{2}\right) \forall F_{1}, F_{2}$ closed, disjoint. Hint: Use normality $\left(T_{4}\right)$ to get $U_{i} \in \mathcal{T}(i=1,2)$ disjoint, so that $F_{i} \subset U_{i}(i=1,2)$.

Let

$$
\mathcal{C}:=\{A \subset X: \forall a<\bar{\mu}(A), \exists F \subset A, F \text { closed } \ni \bar{\mu}(F)>a\} .
$$

(vi) Show that if $A, B \in \mathcal{C}$ are disjoint, then $\bar{\mu}(A \cup B)=\bar{\mu}(A)+\bar{\mu}(B)$.
(vii) Show that $A, B \in \mathcal{C} \Rightarrow A \backslash B \in \mathcal{C}$.

Hint: Let $\varepsilon>0$, and $F \subset A \subset U, G \subset B \subset V, F, G$ closed, U, V open be such that $\bar{\mu}(U)-\bar{\mu}(F), \bar{\mu}(V)-\bar{\mu}(G)<\varepsilon$.
(viii) Show that

$$
\bar{\mu}(A) \geq \bar{\mu}(A \cap U)+\bar{\mu}\left(A \cap U^{c}\right) \quad \forall U \in \mathcal{T}, A \subset X
$$

Hint Fix $A \subset W \in \mathcal{T}$, then $W \cap U, W \cap U^{c} \in \mathcal{C}$.
(ix) Using the above exercises, prove Kakutani's theorem.

3. Non-regular Borel measures.

Here, you show that X compact, Hausdorff, $p: \mathcal{B}(X) \rightarrow[0,1]$ a probability $\Rightarrow p$ regular.

Let X be the collection of ordinals up to and including Ω, the least uncountable ordinal, and let < be the usual well ordering of X. Let \mathcal{T} be the topology generated by open intervals, i.e. sets of form $(a, b)=\{x \in$ $X: a<x<b\},[0, a)=\{x \in X: x<a\}$, and $(b, \Omega]=\{x \in X: x>b\}$.

Show that:
(a) (X, \mathcal{T}) is a compact Hausdorff space;
(b) $[0, \Omega)$ is open and not σ-compact;
(c) $\forall f \in C(X) \exists a \in[0, \Omega)$ so that f is constant on ($a, \Omega]$;
(d) if $A \subset[0, \Omega)$ is countable, then $\exists a<\Omega$ such that $A \subset[0, a)$;
(e) if K is compact, and $a_{n} \in K(n \geq 1)$, then $\sup _{n} a_{n} \in K$;
(f) if K_{n} is compact, and uncountable ($n \geq 1$), then so is $\bigcap_{n=1}^{\infty} K_{n}$;
(g) if $E \in \mathcal{B}(X)$, then either E, or E^{c} contains an uncountable compact set (but not both).

Define $p: \mathcal{B}(X) \rightarrow[0,1]$ by $p(E)=1$ if E contains an uncountable compact set, and $p(E)=0$ otherwise. Show that
f) p is a probability, and is not regular.
g) Exhibit a regular probability $q: \mathcal{B}(X) \rightarrow[0,1]$ such that

$$
\int_{X} f d p=\int_{X} f d q \forall f \in C(X) .
$$

Week \# 8
$\S 12$ HaAr measure.
A topological group is a group G, which is a topological space such that $(g, h) \mapsto g h^{-1}$ is continuous $(G \times G \rightarrow G)$.

A measure $m: \mathcal{B}(G) \rightarrow[0, \infty]$ is called a left Haar measure on G if (i) $m(U)>0 \forall U$ open,
(ii) $m(K)<\infty \forall K$ compact,
and
(iii) $m(x A)=m(A) \forall x \in G, A \in \mathcal{B}(G)$.

An analogous definition can be given for right Haar measure on G. For Abelian groups, the definitions coincide.

Examples

1) For $G=\mathbb{R}^{d}$ under addition, Lebesgue measure is Haar measure.
2) For $G=\mathbb{C} \backslash\{0\}$ under multiplication, a Haar measure is given by $d m(x+i y)=\frac{d x d y}{\sqrt{x^{2}+y^{2}}}$.
3) In exercise 6.5, you identified both left and right Haar measures on $G=\left\{\left(\begin{array}{ll}x & y \\ 0 & 1\end{array}\right):(x, y) \in \mathbb{R}^{2}, x>0\right\}$ equipped with the topology inherited from \mathbb{R}^{2}, and matrix multiplication.

It follows from exercise 9.3 (!) that left Haar measure is unique up to constant multiplication. Our next result is existence of Haar measure on any locally compact topological group.
Theorem (A. Haar) If G is a locally compact, Hausdorff, topological group, then \exists a left Haar measure on G. This measure is regular.

If, in addition, G is σ-compact, then the left Haar measure is σ-finite.

Example

Let $G=\mathbb{R}$ equipped with the discrete topology, then G is a locally compact topological group, and Haar measure is counting measure. This shows that Haar measure on a locally compact topological group need not be σ-finite.

Proof of Haar's theorem (A.Weil).

Let \mathcal{C} be the collection of compact subsets of G.
Step $1 \exists \lambda: \mathcal{C} \rightarrow[0, \infty)$ which is non-zero, left invariant, monotone, subadditive, and additive.
Define $(\varnothing: B):=0 \quad(\varnothing \neq B \subseteq G)$ and
$(A: B)=\min \left\{n \in \mathbb{N}: \exists x_{1}, x_{2}, \ldots, x_{n} \in G, A \subset \bigcup_{k=1}^{n} x_{k} B\right\} \quad(\varnothing \neq A, B \subseteq G)$
where it is understood that $\inf \varnothing=\infty$. Evidently $(A: B)<\infty$ in case $A \in \mathcal{C}$ and $B^{o} \neq \varnothing$.

Also, for $A, A^{\prime}, B, B^{\prime}, C \subset G$,

$$
\begin{gather*}
A \subseteq A^{\prime}, B \supseteq B^{\prime} \Rightarrow(A: B) \leq\left(A^{\prime}: B^{\prime}\right) \tag{0}\\
(A: B)=(x A: y B) \forall x, y \in G, \tag{1}\\
(A: C) \leq(A: B)(B: C), \tag{2}\\
(A \cup B: C) \leq(A: C)+(B: C), \tag{3}
\end{gather*}
$$

with equality if $A(C)^{-1} \cap B(C)^{-1}=\varnothing$.
Let $\mathcal{C}_{e}=\left\{K \in \mathcal{C}: K^{o} \ni e\right\}$. Fix $\Omega \in \mathcal{C}_{e}$, and define, for $U \in \mathcal{C}_{e}$, $\lambda_{U}: \mathcal{C} \rightarrow[0, \infty)$ by

$$
\lambda_{U}(K):=\frac{(K: U)}{(\Omega: U)}
$$

Evidently $\lambda_{U}(\Omega)=1 \forall U \in \mathcal{C}_{e}$. By (1), λ_{U} is left invariant $\forall U \in \mathcal{C}_{e}$, and by $(2), \lambda_{U}(K) \leq(K: \Omega)$. By (3), λ_{U} is subadditive, and sometimes additive:

$$
\begin{equation*}
C(U)^{-1} \cap D(U)^{-1}=\varnothing \Rightarrow \lambda_{U}(C \cup D)=\lambda_{U}(C)+\lambda_{U}(D) \tag{4}
\end{equation*}
$$

Let

$$
\Phi:=\{\phi: \mathcal{C} \rightarrow[0, \infty): \phi(\Omega)=1, \phi(C) \leq(C: \Omega) \forall C \in \mathcal{C}\}
$$

then by Tychonov's theorem, Φ is a compact subset of $\mathbb{R}^{\mathcal{C}}$ (equipped with the product topology). For $K \in \mathcal{C}_{e}$, let

$$
\Lambda(K)=\left\{\lambda_{L}: K \supset L \in \mathcal{C}_{e}\right\} \subset \Phi .
$$

The family $\left\{\Lambda(K): K \in \mathcal{C}_{e}\right\}$ has the finite intersection property:

$$
\bigcap_{k=1}^{n} \Lambda\left(K_{k}\right) \supset \Lambda\left(\bigcap_{k=1}^{n} K_{k}\right) \neq \varnothing \forall K_{1}, \ldots, K_{n} \in \mathcal{C}_{e}
$$

and by compactness of Φ,

$$
\exists \lambda \in \bigcap_{K \in \mathcal{C}_{e}} \overline{\Lambda(K)} .
$$

We claim that λ is as required for step 1 .

- To prove that λ is monotone and subadditive, let $X=\{\nu \in \Phi: \nu$ is left invariant, monotone and subadditive. $\}$, then $\forall U \in \mathcal{C}_{e}, \Lambda(U) \subset X$ which is closed, whence $X \supset \overline{\Lambda(U)} \ni \lambda$.
- To prove additivity of λ, suppose that $B, C \in \mathcal{C}$ and $B \cap C=\varnothing$. We show that $\exists K \in \mathcal{C}_{e}$ such that $B K^{-1} \cap C K^{-1}=\varnothing$, obtaining by (4) that $\mu(B \cap C)=\mu(B)+\mu(C) \forall \mu \in \Lambda(K)$, whence (!) also for $\mu=\lambda$.

Now for every $b \in B, \exists U_{b} \in \mathcal{C}_{e}$ such that $b U_{b} \subset C^{c}$. By continuity of $(g, h) \mapsto g h, \exists V_{g} \in \mathcal{C}_{e}$ such that $V_{q}^{2} \subset U_{g}$. By compactness of $B, \exists b_{1}, \ldots, b_{n} \in B \quad \ni B \subset \bigcup_{k=1}^{n} b_{k} V_{b_{k}}$. Set $W=\bigcap_{k=1}^{n} V_{b_{k}}$, then $B W \subset \bigcup_{k=1}^{n} b_{k} V_{b_{k}} W \subset \bigcup_{k=1}^{n} b_{k} V_{b_{k}}^{2} \subset C^{c}$. Lastly, by continuity of $(g, h) \mapsto g h^{-1}, \quad \exists K \in \mathcal{C}_{e} \quad \ni K^{-1} K \subset W$, and it follows that $B K^{-1} \cap C K^{-1}=\varnothing$.

Define

$$
\begin{gathered}
\underline{\lambda}(U):=\sup _{U \supset K \in \mathcal{C}} \lambda(K) \text { for } U \text { open, and } \\
\bar{\mu}(B):=\inf \{\underline{\lambda}(U): B \subset U \text { open }\} \forall B \subset G .
\end{gathered}
$$

Step 2

$$
\begin{equation*}
\bar{\mu}\left(K^{o}\right) \leq \lambda(K) \leq \bar{\mu}(K)<\infty \forall K \in \mathcal{C} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\bar{\mu} \text { is a left invariant outer measure, } \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{M}_{\bar{\mu}} \supset \mathcal{B}(G) \tag{3}
\end{equation*}
$$

Proof

- 1) If $K \in \mathcal{C}$, then for every open set $U \supset K, \lambda(K) \leq \underline{\lambda}(U)=\bar{\mu}(U)$, whence $\lambda(K) \leq \bar{\mu}(K)$; and if $K^{o} \supset K_{1} \in \mathcal{C}$, then $\lambda\left(K_{1}\right) \leq \lambda(K)$, whence $\bar{\mu}\left(K^{o}\right)=\underline{\lambda}\left(K^{o}\right) \leq \lambda(K)$.

To see that $\bar{\mu}(K)<\infty$, note that (!) $\exists L \in \mathcal{C}, K \subseteq L^{o}$ whence $\bar{\mu}(K) \leq \underline{\lambda}\left(L^{o}\right) \leq \lambda(L)<\infty$ and (1) is established.

Clearly, both $\underline{\lambda}$ and $\bar{\mu}$ are left invariant.

- We show that $\underline{\lambda}$ is additive, and subadditive.

Suppose that U, V are open sets.
Let $U \cup V \supset B \in \mathcal{C}$, then $\exists C, D \in \mathcal{C}$ э $C \subset U, D \subset V$ and $B=C \cup D$; whence $\lambda(B) \leq \lambda(C)+\lambda(D) \leq \underline{\lambda}(U)+\underline{\lambda}(V) \&$

$$
\underline{\lambda}(U \cup V) \leq \underline{\lambda}(U)+\underline{\lambda}(V) .
$$

Now suppose that U, V are disjoint open sets. Let $C, D \in \mathcal{C}, C \subset$ $U, D \subset V$, then $\lambda(C)+\lambda(D)=\lambda(C \cup D) \leq \underline{\lambda}(U \cup V)$, whence $\underline{\lambda}(U)+$ $\underline{\lambda}(V) \leq \underline{\lambda}(U \cup V)$, and $\underline{\lambda}$ is additive.

- Next, we show that $\bar{\mu}$ is countably subadditive. Suppose that $A=$ $\cup_{n=1}^{\infty} A_{n}$, and let $\varepsilon>0$. There are open sets $U_{n} \supset A_{n}$ such that $\underline{\lambda}\left(U_{n}\right) \leq$ $\bar{\mu}\left(A_{n}\right)+\frac{\varepsilon}{2^{n}}$. Let $\mathcal{C} \ni K \subset \bigcup_{n=1}^{\infty} U_{n}$. By compactness $\exists N<\infty$ such that $K \subset \bigcup_{n=1}^{N} U_{n}$, and by subadditivity, $\lambda(K) \leq \sum_{n=1}^{N} \underline{\lambda}\left(U_{n}\right)$.

Thus,

$$
\bar{\mu}(A) \leq \underline{\lambda}\left(\bigcup_{n=1}^{\infty} U_{n}\right) \leq \sum_{n=1}^{\infty} \underline{\lambda}\left(U_{n}\right) \leq \sum_{n=1}^{\infty} \underline{\lambda}\left(A_{n}\right)+\varepsilon
$$

Finally $\bar{\mu}(\varnothing)=\underline{\lambda}(\varnothing)=\lambda(\varnothing)=0$ and $\bar{\mu}$ is an outer measure. $\nabla(2)$
We now show that

- (3) $\mathcal{M}_{\bar{\mu}} \supset \mathcal{B}(G)$, equivalently,

$$
\bar{\mu}(F) \geq \bar{\mu}(F \cap V)+\bar{\mu}\left(F \cap V^{c}\right) \forall F \subset G, V \text { open. }
$$

Suppose first, that U, V are open.
We claim that $\underline{\lambda}(U) \geq \underline{\lambda}(V \cap U)+\bar{\mu}\left(V^{c} \cap U\right)$.
To see this, fix $V \cap U \supset D \in \mathcal{C}$, and $D^{c} \cap U \supset E \in \mathcal{C}$, then

$$
\underline{\lambda}(U) \geq \lambda(D \cup E)=\lambda(D)+\lambda(E) .
$$

Leaving D fixed, we have $\underline{\lambda}(U) \geq \lambda(D)+\underline{\lambda}\left(D^{c} \cap U\right)$, and noting that $V^{c} \cap U \subset D^{c} \cap U$, an open set, we have

$$
\underline{\lambda}(U) \geq \lambda(D)+\bar{\mu}\left(V^{c} \cap U\right) .
$$

Now let $F \subset G$, and V be open. For any $F \subset U$ open, we have that $\underline{\lambda}(U) \geq \underline{\lambda}(V \cap U)+\bar{\mu}\left(V^{c} \cap U\right) \geq \bar{\mu}(F \cap V)+\bar{\mu}\left(F \cap V^{c}\right)$,

$$
\therefore \bar{\mu}(F) \geq \bar{\mu}(F \cap V)+\bar{\mu}\left(F \cap V^{c}\right) . \not \square
$$

To complete the proof of the theorem:
Step $3 \mu:=\left.\bar{\mu}\right|_{\mathcal{B}(G)}$ is a left Haar measure.
Proof By step 2, $\mu(x A)=\mu(A) \forall A \in \mathcal{B}(G)$ and $\mu(K)<\infty \forall K \in \mathcal{C}$. It suffices to show that $\mu(U)>0 \forall U \in \mathcal{C}_{e}$. By step $1, \exists \Omega \in \mathcal{C}_{e}$ with $\mu(\Omega) \geq \lambda(\Omega)>0$. Let $U \in \mathcal{C}_{e}$, then $(\Omega: U)=N \in \mathbb{N}$ and $\exists x_{1}, \ldots, x_{N} \in G$ so that $\Omega \subseteq \cup_{n=1}^{N} x_{n} U$. Thus

$$
0<\mu(\Omega) \leq \sum_{n=1}^{N} \mu\left(x_{n} U\right)=N \mu(U)
$$

and $\mu(U) \geq \frac{\mu(\Omega)}{N}>0$.

§13 Applications to probability theory

12.1 Kolmogorov's existence theorem Let \mathfrak{A} be an index set, and for $a \in \mathfrak{A}$ let X_{a} be a polish space. For $F \subset \mathfrak{A}$ let $X_{F}=\prod_{a \in F} X_{a}$, and for $F \subset G \subset \mathfrak{A}$ let $\pi_{G, F}: X_{G} \rightarrow X_{F}$ be the canonical projection.

Suppose that for $F \subset \mathfrak{A}$ finite, there is a probability $p_{F}: \mathcal{B}\left(X_{F}\right) \rightarrow$ $[0,1]$, and that these probabilities are consistent in the sense

$$
p_{G} \circ \pi_{G, F}^{-1}=p_{F} \text { whenever } F \subset G,
$$

then there is a unique probability

$$
p: \mathcal{B}_{\mathfrak{A}}:=\sigma\left(\underset{F \subset \mathfrak{A}, \text { finite }}{ } \pi_{\mathfrak{A}, F}^{-1} \mathcal{B}\left(X_{F}\right)\right) \rightarrow[0,1] \ni p \circ \pi_{\mathfrak{A}, F}^{-1}=p_{F} \forall F \subset \mathfrak{A} \text { finite. }
$$

Proof

Up to measurable isomorphism, X_{a} is discrete whenever X_{a} is finite, $X_{a}=X_{\mathbb{N}}$ (as on p.5) whenever X_{a} is countable and using Kuratowski's theorem, $X_{a}=\Omega=\{0,1\}^{\mathbb{N}}$ for X_{a} uncountable. Accordingly, consider
the algebras

$$
\mathcal{A}\left(X_{a}\right):=\left\{\begin{array}{l}
2^{X_{a}} \quad A \text { finite }, \\
\mathcal{A}_{\mathbb{N}} \quad A \text { countable }, \\
\mathcal{A}(\{\text { cylinders }\}) \quad X_{a}=\Omega .
\end{array}\right.
$$

For $F \cong \mathfrak{A}$ let

$$
X_{F}:=\prod_{a \in F} X_{a} \quad(F \subseteq \mathfrak{A}) .
$$

A cylinder in X_{F} be a set of form

$$
\left\{x \in X_{F}: x(a) \in B(a) \forall a \in T\right\}
$$

where $T \subset F$ is finite and $B(a) \in \mathcal{A}\left(X_{a}\right) \forall a \in T$.
For $F \subseteq \mathfrak{A}$, let $\mathcal{A}_{F} \subset \mathcal{B}\left(X_{F}\right)$ be the collection of finite, disjoint unions of cylinders in X_{F}, then \mathcal{A}_{F} is an algebra.

For $F \subset G \subseteq \mathfrak{A}, \pi_{G, F}^{-1} \mathcal{A}_{F} \subset \mathcal{A}_{G}$ and

$$
\widetilde{\mathcal{A}}:=\mathcal{A}_{\mathfrak{A}}=\bigcup_{F \subset \mathfrak{A}, \text { finite }} \pi_{\mathfrak{A}, F}^{-1} \mathcal{A}_{F} .
$$

We claim first that
【1 $p\left(\pi_{\mathfrak{A}, F}^{-1} B\right):=p_{F}(B)$ defines an additive set function $p: \widetilde{\mathcal{A}} \rightarrow[0,1]$.
Proof To show that this is a definition, we must show that

$$
\pi_{\mathfrak{2}, F}^{-1} A=\pi_{\mathfrak{A}, G}^{-1} B \Rightarrow p_{F}(A)=p_{G}(B)
$$

To see this, again let $H=F \cup G$, and note that

$$
\begin{aligned}
& \pi_{\mathfrak{R}, F}^{-1} A=\pi_{\mathfrak{2}, G}^{-1} B \Rightarrow \pi_{H, F}^{-1} A=\pi_{H, G}^{-1} B \Rightarrow \\
& p_{F}(A)=p_{H}\left(\pi_{H, F}^{-1} A\right)=p_{H}\left(\pi_{H, G}^{-1} B\right)=p_{G}(B)
\end{aligned}
$$

To see that $p: \widetilde{\mathcal{A}} \rightarrow[0,1]$ is additive, let $A, B \in \widetilde{\mathcal{A}}$ be disjoint, $A=$ $\pi_{\mathfrak{A}, F}^{-1} A^{\prime}, B=\pi_{\mathfrak{A}, G}^{-1} B^{\prime}$ where $A^{\prime} \in \mathcal{A}_{F}, B^{\prime} \in \mathcal{A}_{G}$. As before, let $H=F \cup G$, and note that $\pi_{H, F}^{-1} A^{\prime} \cap \pi_{H, G}^{-1} B^{\prime}=\varnothing$, whence $p(A \cup B)=p_{H}\left(\pi_{H, F}^{-1} A^{\prime} \cup \pi_{H, G}^{-1} B^{\prime}\right)=p_{H}\left(\pi_{H, F}^{-1} A^{\prime}\right)+p_{H}\left(\pi_{H, G}^{-1} B^{\prime}\right)=p(A)+p(B) . \not \square \mathbb{} 1$

Next, we claim that
【2 $\widetilde{\mathcal{A}}$ has the finite subcover property.
Proof By Tychonov's theorem $X_{\mathfrak{A}}$ is a compact Haussdorf space and sets of form $A=\pi_{\mathfrak{a}, F}^{-1} B$ are both open and compact. $\quad \mathbb{\mathbb { C }} 2$

Thus $p: \widetilde{\mathcal{A}} \rightarrow[0,1]$ is countable subadditive and by Caratheodory's theorem, \exists a probability $\bar{p}: \sigma(\widetilde{\mathcal{A}}) \rightarrow[0,1]$ such that $\left.\bar{p}\right|_{\widetilde{\mathcal{A}}}=p$.

To conclude the proof, it suffices to note that $\sigma(\widetilde{\mathcal{A}})=\mathcal{B}\left(X_{\mathfrak{A}}\right)$ and that since each $p_{F}(F \subset \mathfrak{A}$ finite $)$ is a measure, we have $\bar{p} \circ \pi_{\mathfrak{A}, F}^{-1}=p_{F}$.

Weak convergence of probability measures on Polish SPACES

Let X be a topological space and let $\mu_{n}, \mu \in \mathcal{P}(X, \mathcal{B}(X))$. We say that μ_{n} tends to μ weakly (written $\mu_{n} \underset{n \rightarrow \infty}{\longrightarrow} \mu$), if

$$
\begin{gathered}
\int_{X} f d \mu_{n} \underset{n \rightarrow \infty}{\longrightarrow} \int_{X} f d \mu \\
\forall f \in C_{B}(X):=\{\text { bounded continuous functions }: X \rightarrow \mathbb{R}\} .
\end{gathered}
$$

If X is compact then

- $\mu_{n} \underset{n \rightarrow \infty}{\Longrightarrow} \mu$ iff $\mu_{n} \rightarrow \mu$ weak $*$ in $C(X)^{*}$.

12.3 Examples.

T1 Let $X:=[0,1]$ and define $\mu_{n} \in \mathcal{P}(X)$ by $\mu_{n}(A)=\frac{1}{n} \sum_{k=1}^{n} \delta_{\frac{k}{n}}(A)=$ $\frac{1}{n} \sum_{k=1}^{n} 1_{A}\left(\frac{k}{n}\right)$, then

$$
\mu_{n} \underset{n \rightarrow \infty}{\Longrightarrow} \text { Leb. }
$$

Proof Any $f \in C([0,1])$ is Riemann integrable, so by Darboux's theorem

$$
\int_{[0,1]} f d \mu_{n}=\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \int_{0}^{1} f(x) d x .
$$

$\mathbb{T} 2$ Let $X=\mathbb{R},(\Omega, \mathcal{A}, P)$ be a probability space and let $Z_{1}, Z_{2}, \cdots: \Omega \rightarrow$ \mathbb{R} be independent, identically distributed, \mathbb{R}-valued, random variables random variables with $E\left(Z_{i}\right)=0$ and $E\left(Z_{i}^{2}\right)=1$. Let $S_{n}:=\sum_{k=1}^{n} Z_{k}$ and define $\mu_{n} \in \mathcal{P}(\mathbb{R})$ by $\mu_{n}(A):=\operatorname{Prob}\left(\left[\frac{S_{n}}{\sqrt{n}} \in A\right]\right)$, then

$$
\mu_{n} \underset{n \rightarrow \infty}{\Longrightarrow} \mathcal{N}, \quad \mathcal{N}(A)=\frac{1}{\sqrt{2 \pi}} \int_{A} e^{-\frac{t^{2}}{2}} d t
$$

This result is aka the central limit theorem (CLT) and will be proved in the sequel.
【3 Let $(\Omega, \mathcal{A}, P) \& Z_{1}, Z_{2}, \ldots, S_{n}$ be as above, and let $X=C([0,1])$. Define $B_{n}: \Omega \rightarrow C([0,1])$ by

$$
B_{n}\left(s \frac{k}{n}+(1-s) \frac{k+1}{n}\right):=s \frac{S_{k}}{\sqrt{n}}+(1-s) \frac{S_{k+1}}{\sqrt{n}} . \quad(1 \leq k \leq n, 0 \leq s \leq 1)
$$

then (!) B_{n} is measurable. Define $\mu_{n} \in \mathcal{P}(C([0,1]))$ by $\mu_{n}(A):=$ $\operatorname{Prob}\left(\left[B_{n} \in A\right]\right) \quad(A \in \mathcal{B}(C([0,1])))$, then

$$
\exists \mathcal{W} \in \mathcal{P}(C([0,1])) \text { such that } \mu_{n} \underset{n \rightarrow \infty}{\Longrightarrow} \mathcal{W}
$$

The measure is called Wiener measure and is the distribution of Brownian motion. The result is aka the functional central limit theorem (FCLT) and is proved in advanced courses on probability theory.

12.4 Helly's theorem for compact spaces

If X is a compact metric space, then $\forall\left\{\nu_{n}: n \geq 1\right\} \subset \mathcal{P}(X)$, $\exists n_{k} \rightarrow \infty, \mu \in \mathcal{P}(X)$ such that $\mu_{n_{k}} \underset{k \rightarrow \infty}{\longrightarrow} \mu$.

In view of the Riesz representation theorem, this follows from the Banach-Alaoglu theorem which says that the bounded sets in the dual of a separable Banach space are weak * sequentially compact.

Remark.

If (X, d) is a metric space which is not pre-compact, Helly's theorem fails.

Sketch proof of remark
Since (X, d) is not pre-compact, $\exists \varepsilon>0$ and an infinite set $\Gamma \subset X$ which is ε-separated in the sense that $d\left(x, x^{\prime}\right) \geq \varepsilon \forall x, x^{\prime} \in \Gamma, x \neq x^{\prime}$. If $x_{n} \in \Gamma, x_{n} \neq x_{n^{\prime}} \quad\left(n \neq n^{\prime}\right)$ then

$$
\forall\left(\omega_{1}, \omega_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}, \quad \exists f \in C_{B}(X) \text { such that } f\left(x_{n}\right)=\omega_{n} .
$$

It follows that the sequence of point masses $\mu_{n}=\delta_{x_{n}}$ has no weakly convergent subsequence.
12.5 Weak convergence proposition Let (X, d) be a Polish space and let $\mu, \mu_{1}, \mu_{2}, \ldots \in \mathcal{P}(X)$. TFAE:
(i) $\mu_{n} \underset{n \rightarrow \infty}{\longrightarrow} \mu$;
(ii) $\varlimsup_{n \rightarrow \infty} \mu_{n}(F) \leq \mu(F) \forall F \subset X$ closed;
(iii) $\underline{\lim }_{n \rightarrow \infty} \mu_{n}(G) \geq \mu(G) \forall G \subset X$ open;
(iv) $\mu_{n}(A) \underset{n \rightarrow \infty}{\longrightarrow} \mu(A) \forall A \subset X$ such that $\mu(\partial A)=0$.

Proof

Evidently (ii) \Longleftrightarrow (iii).
To see (i) \Rightarrow (ii), fix $F \subset X$ closed and define $f_{k}: X \rightarrow[0,1]$ by $f_{k}(x):=(1-k d(x, F)) \vee 0$, then $f_{k} \in C_{B}(X), 1_{F} \leq f_{k} \downarrow 1_{F}$, whence

$$
\mu_{n}(F) \leq \mu_{n}\left(f_{k}\right) \underset{n \rightarrow \infty}{(i)} \mu\left(f_{k}\right) \underset{k \rightarrow \infty}{\longrightarrow} \mu(F) .
$$

To see (iii) \Rightarrow (iv), fix $A \subset X$ such that $\mu(\partial A)=0$, then

$$
\varliminf_{n \rightarrow \infty} \mu_{n}(A) \geq \underline{\lim }_{n \rightarrow \infty} \mu_{n}\left(A^{o}\right) \stackrel{(i i i)}{\geq} \mu\left(A^{o}\right)=\mu(A)
$$

and

$$
\varlimsup_{n \rightarrow \infty} \mu_{n}(A) \leq \varlimsup_{n \rightarrow \infty} \mu_{n}(\bar{A}) \stackrel{(i i)}{\leq} \mu(\bar{A})=\mu(A) .
$$

To see (iv) \Rightarrow (i), fix $f: X \rightarrow[0,1]$ continuous, then

$$
\nu(f)=\int_{0}^{1} \nu([f>t]) d t \forall \nu \in \mathcal{P}(X)
$$

By continuity, for $t \in(0,1) \partial[f>t] \subseteq[f=t]$, thus $\Gamma:=\{t \in[0,1]$: $\mu(\partial[f>t])>0\}$ is at most countable. Moreover, by (iv)

$$
\mu_{n}([f>t]) \underset{n \rightarrow \infty}{\longrightarrow} \mu([f>t]) \forall t \in[0,1] \backslash \Gamma .
$$

Since the Lebesgue measure of Γ is zero, by bounded convergence,

$$
\mu_{n}(f)=\int_{0}^{1} \mu_{n}([f>t]) d t \underset{n \rightarrow \infty}{\longrightarrow} \int_{0}^{1} \mu([f>t]) d t=\mu(f)
$$

Exercise NO 8

0. Riesz representation on a locally compact space.

Let (X, \mathcal{T}) be a locally compact, Hausdorff space and let

$$
C_{C}(X):=\left\{f \in C_{B}(X): \overline{[f \neq 0]} \text { compact }\right\} .
$$

Suppose that $L: C_{C}(X) \rightarrow \mathbb{R}$ is linear and positive in the sense that

$$
f \in C_{C}(X), f \geq 0 \Longrightarrow L(f) \geq 0
$$

then there is a Borel measure $\mu: \mathcal{B}(X) \rightarrow[0, \infty]$ so that

$$
\begin{align*}
& \mu(C)<\infty \forall C \subset X \text { compact, } \tag{i}\\
& L(f)=\int_{X} f d \mu \forall f \in C_{C}(X) \tag{ii}
\end{align*}
$$

1. Cartan's proof of uniqueness of Haar measure. Suppose that μ, ν are both left Haar measures on the locally compact, topological group G, and let $m=\mu \times \nu$.
【1 Show that $m \circ S \equiv m \equiv m \circ T$ where $S, T: G \times G \rightarrow G \times G$ are defined by $S(x, y)=(x, x y), \quad T(x, y)=(y x, y)$.
$\mathbb{\$ 2}$ Let $g: G \rightarrow \mathbb{R}$ be non-negative, and measurable. Show that

$$
\mu(E) \int_{G} g d \nu=\int_{G} g\left(x^{-1}\right) \nu\left(E x^{-1}\right) d \mu(x) \forall E \in \mathcal{B}(G) .
$$

Hint: Show first that $m \circ R \equiv m$ where $R(x, y):=S^{-1} \circ T(x, y)=$ ($y x, x^{-1}$).
【3 Let $E \subset G$ be compact with $E^{o} \neq \varnothing$.
Show that for $f: G \rightarrow \mathbb{R}$ non-negative, and measurable:

$$
\mu(E) \int_{G} \frac{f\left(y^{-1}\right)}{\nu(E y)} d \nu(y)=\int_{G} f d \mu .
$$

Hint: Set $g(y)=\frac{f\left(y^{-1}\right)}{\nu(E y)}$ and use $\mathbb{2}$.
$\llbracket 4$ Show (using $\llbracket 3$ or otherwise) that $\int_{G} f d \nu=c \int_{G} f d \mu$ where $c=\frac{\nu(E)}{\mu(E)}$.

2. The modular function and right Haar measure.

Let m be a left Haar measure on the locally compact, topological group G.
a) Show that $m_{R}(A):=m\left(A^{-1}\right)$ defines a right Haar measure on $(G, \mathcal{B}(G))$, where $A^{-1}:=\left\{x^{-1}: x \in A\right\}$.
b) Show that \exists a continuous, multiplicative homomorphism $\Delta: G \rightarrow$ \mathbb{R}_{+}so that $m(A x)=\Delta(x) m(A) \forall x \in G, A \in \mathcal{B}(X)$.
Hint: Uniqueness and regularity of Haar measure.
c) Show that $\Delta(x)=1$ for $x \in Z(G):=\{x \in G: x z=z x \forall z \in G\}$ or $x \in[G, G]$, the group generated by $\left\{g h g^{-1} h^{-1}: g, h \in G\right\}$.
d) Show that
$\int_{G} m\left(x^{-1} A \cap B\right) d m(x)=m(A) \int_{B} \frac{d m}{\Delta}=m(A) m\left(B^{-1}\right) \forall A, B \in \mathcal{B}(G)$.
e) Let m_{R} be as in a). Show that $m_{R} \ll m$, that $\frac{d m_{R}}{d m}=\frac{1}{\Delta}$ and that $m_{R}(x A)=\frac{m_{R}(A)}{\Delta(x)} \forall x \in G, A \in \mathcal{B}(X)$.
f) Show that G is compact iff $m(G)<\infty$ and that in this case m is also a right Haar measure.
Hint: If G is not compact, then $\exists K \in \mathcal{C}_{e}$ and $x_{n} \in G$ so that $\left\{x_{n} K\right.$: $n \in \mathbb{N}\}$ are pairwise disjoint.
3. Ulam's converse to Haar's theorem. Let m be a σ-finite, left-invariant measure on the Polish topological group G. Using the hints below (or otherwise) prove the Ulam-Weil theorem: that G is locally compact.
Hints:
(i) For $K \subset G$ compact with $0<m(K)<\infty$, let $C_{1}:=K K^{-1}, C+n+1$:= $C_{n} C_{n}$, then C_{n} is compact and $H:=\bigcup_{n=1}^{\infty} C_{n}$ is a subgroup of G.
(ii) If $\Gamma \subset G$ satisfies $G=\cup_{g \epsilon \Gamma} g H$, then Γ is at most countable;
(iii) $\exists n \geq 1$ such that $C_{n}^{o} \neq \varnothing$.

4. Finite dimensional distributions but no stochastic process.

Let (X, \mathcal{B}, m) be the unit interval equipped with Borel sets and Lebesgue measure and let $\bar{\mu}$ denote Lebesgue outer measure on $[0,1]$.
(a) Show that $\exists E_{n} \subset[0,1] \quad(n \geq 1)$ such that

- $E_{n} \supset E_{n+1}, \bar{\mu}\left(E_{n}\right)=1 \forall n \geq 1$; and
- $\cap_{n=1}^{\infty} E_{n}=\varnothing$.
(b) For $n \geq 1$, show that $\exists p_{n} \in \mathcal{P}\left(E_{n}, \mathcal{B}_{n}\right)$ with $p_{n}(A)=\bar{\mu}(A)$ where $\mathcal{B}_{n}:=\mathcal{B} \cap E_{n}:=\left\{A \cap E_{n}: A \in \mathcal{B}\right\}$.

For $n \geq 1$ define $\bar{p}_{n}: \prod_{k=1}^{n} \mathcal{B}_{k} \rightarrow[0,1]$ by $\bar{p}_{n}\left(\prod_{k=1}^{n} A_{k}\right):=p_{n}\left(\bigcap_{k=1}^{n} A_{k}\right)$. Show that
(d) $\exists P_{n} \in \mathcal{P}\left(\prod_{k=1}^{n} E_{k}, \bigotimes_{k=1}^{n} \mathcal{B}_{k}:=\sigma\left(\prod_{k=1}^{n} \mathcal{B}_{k}\right)\right)$ such that $P_{n}\left(\prod_{k=1}^{n} A_{k}\right)=$ $\bar{p}_{n}\left(\prod_{k=1}^{n} A_{k}\right) \forall A_{1} \in \mathcal{B}_{1}, \ldots, A_{n} \in \mathcal{B}_{n}$;
(e) $P_{n+1} \circ \pi_{n}^{-1}=P_{n}$ where $\pi_{n}: \prod_{k=1}^{n+1} E_{k} \rightarrow \prod_{k=1}^{n} E_{k}$ is defined by $\pi_{n}\left(x_{1}, \ldots, x_{n+1}\right):=\left(x_{1}, \ldots, x_{n}\right)$;
(f) $P_{n}\left(D_{n}\right)=1$ where

$$
D_{n}:=\left\{x \in \prod_{k=1}^{n} E_{k}: x_{1} \in E_{n} \& x_{1}=x_{2}=\cdots=x_{n} \in E_{n}\right\} .
$$

(g) $\nexists P \in \mathcal{P}\left(\prod_{k=1}^{\infty} E_{k}, \otimes_{k=1}^{\infty} \mathcal{B}_{k}\right)$ with $P \circ \phi_{n}^{-1}=P_{n}$ where
$\phi_{n}: \prod_{k=1}^{\infty} E_{k} \rightarrow \prod_{k=1}^{n} E_{k}$ is defined by $\phi_{n}\left(x_{1}, \ldots\right):=\left(x_{1}, \ldots, x_{n}\right)$.
Hint for (g): Consider $\phi_{n}^{-1} D_{n}$.
5. Riemann integrability \& weak convergence. Let (X, d) be a Polish space and let $\mu, \mu_{1}, \mu_{2}, \ldots \in \mathcal{P}(X), \mu_{n} \underset{n \rightarrow \infty}{\Longrightarrow} \mu$.

Let $f: X \rightarrow \mathbb{R}$ be bounded, measurable and μ-Riemann integrable in the sense that $\mu\left(C_{f}\right)=1$ where $C_{f}:=\{x \in X: \mathrm{f}$ continuous at $x\}$.

Show that

$$
\mu_{n}(f) \underset{n \rightarrow \infty}{\longrightarrow} \mu(f)
$$

Hints Show that (i) WLOG, $f: X \rightarrow[0,1]$; (ii) For $t \in[0,1], \mu(\partial[f>$ $t])=\mu([f=t]) ; \ldots$.

6. Riemann integrability on a metric space.

Let X be a metric space.
A. Semicontinuity revision from topology.

The function $f: X \rightarrow \mathbb{R}$ is said to be

- lower semicontinuous (1sc) at $x \in X$ if $\lim _{y \rightarrow x} f(y) \geq f(x)$ and upper semicontinuous (usc) at $x \in X$ if $-f$ is lsc at x.
- Call f lsc on $A \subseteq X$ if it is lsc at every $x \in A$.

Show that
(a) The function $f: X \rightarrow \mathbb{R}$ is continuous at x iff it is both lsc and usc at x.
(b) The function $f: X \rightarrow \mathbb{R}$ is lsc at $x \in X$ if $x \in\{z \in X: f(z)>$ $a\}^{o} \forall a<f(x)$, whence lsc on X if $\{z \in X: f(z)>a\}$ is open $\forall a \in \mathbb{R}$;
(c) If A is open, then 1_{A} is lsc on X.
(d) The supremum of functions which are lsc at $x \in X$ is also lsc at x.

Suppose that $f: X \rightarrow \mathbb{R}$ is lsc on X and $f \geq 0$. Define $U_{q} \quad(q \in \mathbb{Q})$ by $U_{q}:=\{x \in X: 0<q<f(x)\}$. Show that
(e) U_{q} is open and \exists closed sets $F_{q, n}$ such that $U_{q}=\bigcup_{n \geq 1} F_{q, n}$;
(f) $\exists f_{q, n}: X \rightarrow[0, q]$ continuous such that $\left.f_{q, n}\right|_{F_{q, n} \cup U_{q}^{c}} \equiv q 1_{F_{q, n}}$.
(g) $\sup _{q, n} f_{q, n}(x)=f(x)$.
(h) $\exists f_{n}: X \rightarrow \mathbb{R}$ continuous such that $f_{n}(x) \uparrow f(x) \forall x \in X$.
(i) For $f: X \rightarrow \mathbb{R}$ bounded below, show that $\underline{f}: X \rightarrow \mathbb{R}$ is lsc on X where $\underline{f}(x):=\underline{\lim }_{y \rightarrow x} f(y)$.

The function f is known as the lsc envelope of f. The usc envelope of the bounded function f is the function $x \mapsto \bar{f}(x):=-\underline{(-f)}(x)$.
(j) Show that if $f: X \rightarrow \mathbb{R}$ is bounded, then \exists continuous functions $f_{n, \pm}(n \geq 1)$ such that

$$
f_{n,-}(x) \uparrow \underline{f}(x) \& f_{n,+}(x) \downarrow \bar{f}(x) \forall x \in X
$$

B. Riemann integrability. Let $p \in \mathcal{P}(X)$. Call a bounded function $f: X \rightarrow \mathbb{R} p$-Riemann integrable if $p\left(X \backslash C_{f}\right)=0$ where $C_{f}:=\{x \in X:$ $\left.x_{n} \rightarrow x \Rightarrow f\left(x_{n}\right) \rightarrow f(x)\right\}$ (the continuity points of f).

Show that $f: X \rightarrow \mathbb{R}$ is p - Riemann integrable iff $\forall \varepsilon>0, \exists f_{+}, f_{-} \in$ $C(X)$ with $f_{-} \leq f \leq f_{+}$and $\int_{X} f_{+} d p-\int_{X} f_{-} d p<\varepsilon$. Hint: $p\left(X \backslash C_{f}\right)=0$ iff $\underline{f}=\bar{f} p$-a.e..

Week \# 9

Tightness

Let X be a Polish space. A collection $\mathcal{K} \subset \mathcal{P}(X)$ is called tight if $\forall \varepsilon>0 \exists C \subset X$ compact such that

$$
\mu(C)>1-\varepsilon \forall \mu \in \mathcal{K}
$$

- By exercise 5.1, a singleton (whence any finite collection) in $\mathcal{P}(X)$ is tight.

A collection $\Pi \subset \mathcal{P}(X)$ is called weakly precompact (WPC) if $\forall \mu_{n} \in$ $\Pi \exists n_{k} \rightarrow \infty, Q \in \mathcal{P}(X)$ so that $\mu_{n_{k}} \Longrightarrow Q$.

12.7 Prohorov's tightness theorem

Let X be a Polish space and let $\Pi \subset \mathcal{P}(X)$, then Π is weakly precompact if and only if Π is tight.

Illustration:

Prohorov's tightness theorem on locally compact metric spaces
The metric space (X, d) is called locally compact if $\forall x \in X \exists \varepsilon_{x}>0$ so that $B\left(x, \varepsilon_{x}\right)$ is compact.
e.g.: any compact metric space, any set equipped with the discrete metric, \mathbb{R}^{d}, \ldots

- If the metric space (X, d) is separable and locally compact, then (by the Lindelöf property) there is a countable cover of compact balls and
X is σ-compact in the sense that $\exists K_{n}$ compact so that $K_{n} \subset K_{n+1}^{o} \uparrow X$. Set $N(x):=\min \left\{n \geq 1: x \in K_{n}\right\}$. Note that X is compact iff N is bounded.
- In case X is not compact, the one point compactification of (X, d) is the compact metric space ($\widehat{X}=X \cup\{\infty\}, \rho$) with

$$
\rho(x, \infty):=\frac{1}{N(x)} \& \rho(x, y):=\min \left\{d(x, y), \frac{1}{N(x)}+\frac{1}{N(y)}\right\}
$$

Let X be a locally compact, separable metric space which is not compact (e.g. $X=\mathbb{R}^{d}$).

If $\Pi \subset \mathcal{P}(X)$, then Π is weakly precompact in $\mathcal{P}(\widehat{X})$ by Helly's theorem.

It is not hard to show that Π is weakly precompact in $\mathcal{P}(X)$ iff $\mu(\{\infty\})=0$ for every limit point μ of Π in $\mathcal{P}(\widehat{X})$, and that this latter property holds iff Π is tight in $\mathcal{P}(X)$.

Proof of Prohorov's theorem

Proof of WPC \Longrightarrow tightness

For each $k \geq 1, \exists$ countable set of balls $\Gamma_{k}=\left\{B_{n, k}: n \geq 1\right\}$ so that

$$
\bigcup_{n \geq 1} B_{n, k}=X, \operatorname{diam} B_{n, k}<\frac{1}{k} \forall n, k \geq 1 .
$$

Let $G_{N, k}:=\bigcup_{n=1}^{N} B_{n, k}$. Evidently $Q\left(G_{N, k}\right) \underset{N \rightarrow \infty}{\longrightarrow} 1 \forall Q \in \mathcal{P}(X)$. We claim first that
I For $k \geq 1$ fixed, $\mu\left(G_{N, k}\right) \underset{N \rightarrow \infty}{\longrightarrow} 1$ uniformly in $\mu \in \Pi$.
Proof Fix k and set $G_{N}:=G_{N, k}$. If $\mathbb{1}$ fails, then $\exists \varepsilon>0$ and $\mu_{n} \in \Pi$ such that $\mu_{n}\left(G_{n}\right) \leq 1-\varepsilon \forall n \geq 1$. By weak precompactness, $\exists n_{k} \rightarrow \infty$ and $\mu \in \mathcal{P}(X)$ such that $\mu_{n_{k}} \Rightarrow \mu$. It follows that $\forall N \geq 1$:

$$
\varliminf_{k \rightarrow \infty} \mu_{n_{k}}\left(G_{N}\right) \leq \varliminf_{k \rightarrow \infty} \mu_{n_{k}}\left(G_{n_{k}}\right) \leq 1-\varepsilon
$$

whence

$$
1-\varepsilon \geq{\underset{k i m}{k \rightarrow \infty}}^{\lim _{n_{k}}}\left(G_{N}\right) \geq \mu\left(G_{N}\right) \underset{N \rightarrow \infty}{\longrightarrow} 1 . \boxtimes \mathbb{I}
$$

By \mathbb{I},

- $\forall \varepsilon>0, k \geq 1, \exists N_{k, \varepsilon}$ such that $\mu\left(G_{N_{k, \varepsilon}, k}\right)>1-\frac{\varepsilon}{2^{k}} \forall \mu \in \Pi$.

It follows that (!)

$$
K_{\varepsilon}:=\bigcap_{k=1}^{\infty} \overline{G_{N_{k, \varepsilon}, k}}
$$

is compact and $\mu\left(K_{\varepsilon}\right)>1-\varepsilon \forall \mu \in \Pi$. \square

Proof of tightness \Longrightarrow WPC

Let $\Pi \subset \mathcal{P}(X)$ be tight．
Choose $K_{n} \subset X$ compact，such that $K_{n} \subset K_{n+1}$ and $\mu\left(K_{n}\right)>1-\frac{1}{n} \forall \mu \in \Pi, n \geq 1$ ．

Let \mathcal{A} be a countable base for the topology on X and let

$$
\mathcal{H}:=\left\{K_{N} \cap \bigcup_{A \in F} \bar{A}: N \in \mathbb{N} \& F \subset \mathcal{A} \text { finite }\right\} \subset\{\text { compact sets }\} .
$$

Now let $\left\{\mu_{n}\right\}_{n \geq 1} \subset \Pi$ ．By diagonalization，$\exists n_{k} \rightarrow \infty, \alpha: \mathcal{H} \rightarrow$ $[0,1]$ such that

$$
\mu_{n_{k}}(H) \underset{k \rightarrow \infty}{\longrightarrow} \alpha(H) \quad \forall H \in \mathcal{H} .
$$

【1 It suffices to show $\exists P \in \mathcal{P}(X)$ such that

$$
\begin{equation*}
P(G)=\sup \{\alpha(H): G \supseteq H \in \mathcal{H}\} \quad \forall G \subset X \text { open. } \tag{ㅇ}
\end{equation*}
$$

Proof In this case，for G open，$G \supseteq H \in \mathcal{H}$ ，

$$
\mu_{n_{k}}(G) \geq \mu_{n_{k}}(H) \underset{k \rightarrow \infty}{\longrightarrow} \alpha(H)
$$

whence $\underline{\lim }_{k \rightarrow \infty} \mu_{n_{k}}(G) \geq P(G)$ and $\mu_{n_{k}} \Longrightarrow P$ ．$\square \mathbb{\square} 1$
The rest of the proof is to show $\exists P \in \mathcal{P}(X)$ satisfying（q）．Evidently
（a）$\alpha(H) \leq \alpha\left(H^{\prime}\right)$ for $H, H^{\prime} \in \mathcal{H}, H \subset H^{\prime}$ ；
（b）$\alpha\left(H \cup H^{\prime}\right) \leq \alpha(H)+\alpha\left(H^{\prime}\right)$ for $H, H^{\prime} \in \mathcal{H}$ with equality when $H \cap H^{\prime}=\varnothing$ ．

Define $\beta:\{$ open sets $\} \rightarrow[0,1]$ by

$$
\beta(G):=\sup \{\alpha(H): G \supseteq H \in \mathcal{H}\} .
$$

【2 If F is closed and $F \subset G$ open，$F \subset H \in \mathcal{H}$ ，then $\exists H_{0} \in \mathcal{H}$ such that $F \subset H_{0} \subset G$ ．
Proof
Since $F \subset H \in \mathcal{H}, F$ is compact and $\exists u \geq 1, H \subset K_{u}$ ．
$\forall x \in F \exists A_{x} \in \mathcal{A}$ such that $x \in A_{x} \subset \bar{A}_{x} \subset G$ ．
By compactness $\exists\left\{x_{k}\right\}_{k=1}^{N} \subset F$ such that $F \subset \cup_{k=1}^{N} A_{x_{k}}$ ．
Set $H_{0}:=\bigcap_{k=1}^{N} \bar{A}_{x_{k}} \cap K_{u}$ ．$\nabla \mathbb{} 12$
【3 $\beta\left(\bigcup_{k=1}^{n} G_{k}\right) \leq \sum_{k=1}^{n} \beta\left(G_{k}\right) \forall G_{1}, \ldots, G_{n}$ open．

Proof for $n=2$: Let G_{1}, G_{2} be open and suppose $G_{1} \cup G_{2} \supset H \in \mathcal{H}$. Set
$F_{1}:=\left\{x \in H: d\left(x, G_{1}^{c}\right) \geq d\left(x, G_{2}^{c}\right)\right\}, F_{2}:=\left\{x \in H: d\left(x, G_{2}^{c}\right) \geq d\left(x, G_{1}^{c}\right)\right\}$.
We claim that $F_{1} \subset G_{1}$:
Else $\exists x \in F_{1} \backslash G_{1} \Rightarrow d\left(x, G_{1}^{c}\right)=0 \& x \in G_{2}$.
But then $d\left(x, G_{2}^{c}\right)>0$ contradicting $x \in F_{1}$.
Similarly $F_{2} \subset G_{2}$.
By $\mathbb{2} \exists H_{i} \in \mathcal{H} \quad(i=1,2)$ such that $F_{i} \subset H_{i} \subset G_{i} \quad(i=1,2)$. Thus

$$
\alpha(H) \leq \alpha\left(H_{1} \cup H_{2}\right) \leq \alpha\left(H_{1}\right)+\alpha\left(H_{2}\right) \leq \beta\left(G_{1}\right)+\beta\left(G_{2}\right) . \boxtimes \llbracket 3
$$

$\mathbb{T} \beta\left(\cup_{k=1}^{\infty} G_{k}\right) \leq \sum_{k=1}^{\infty} \beta\left(G_{k}\right) \forall G_{1}, \ldots$ open.
Proof
Suppose $\bigcup_{k=1}^{\infty} G_{k} \supset H \in \mathcal{H}$, then by compactness of $H, \exists n$ such that $H \subset \bigcup_{k=1}^{n} G_{k}$, whence using $\llbracket 3$,

$$
\alpha(H) \leq \beta\left(\bigcup_{k=1}^{n} G_{k}\right) \leq \sum_{k=1}^{n} \beta\left(G_{k}\right) \leq \sum_{k=1}^{\infty} \beta\left(G_{k}\right) . \nabla \mathbb{\square} 4
$$

Now define $\bar{\mu}: 2^{X} \rightarrow[0,1]$ by

$$
\bar{\mu}(E):=\inf \{\beta(G): E \subset G \text { open }\}
$$

Evidently $\bar{\mu}(G)=\beta(G)$ for G open.
I5 $\bar{\mu}$ is an outer measure.
Proof of sub- σ-additivity:
Let $E_{n} \subset X$ and let $\varepsilon>0$. Fix $E_{n} \subset G_{n}$ open such that $\bar{\mu}\left(E_{n}\right)>$ $\beta\left(G_{n}\right)-\frac{\varepsilon}{2^{n}}$. It follows that $\bigcup_{n \geq 1} E_{n} \subset \bigcup_{n \geq 1} G_{n}$ and

$$
\bar{\mu}\left(\bigcup_{n \geq 1} E_{n} \leq \beta\left(\bigcup_{n \geq 1} G_{n}\right) \stackrel{\mathbb{4} 4}{\leq} \sum_{n \geq 1} \beta\left(G_{n}\right) \leq \sum_{n \geq 1} \bar{\mu}\left(E_{n}\right)+\varepsilon . \not \square \mathbb{T}\right.
$$

We complete the proof of (q) by showing that $\mathcal{M}_{\bar{\mu}} \supset \mathcal{B}(X)$.
【6 For G open and F closed,

$$
\beta(G) \geq \bar{\mu}(G \cap F)+\bar{\mu}\left(G \cap F^{c}\right) .
$$

Proof Fix $\varepsilon>0$. ヨ $H_{1} \in \mathcal{H}$ such that $H_{1} \subset G \cap F^{c} \& \alpha\left(H_{1}\right)>\beta\left(G \cap F^{c}\right)-\varepsilon$. $\exists H_{2} \in \mathcal{H}$ such that $H_{2} \subset G \cap H_{1}^{c} \& \alpha\left(H_{2}\right)>\beta\left(G \cap H_{1}^{c}\right)-\varepsilon$.

Evidently $H_{1} \cap H_{2}=\varnothing$ so

$$
\begin{aligned}
\beta(G) & \geq \alpha\left(H_{1} \cup H_{2}\right) \\
& =\alpha\left(H_{1}\right)+\alpha\left(H_{2}\right) \\
& >\beta\left(G \cap F^{c}\right)+\beta\left(G \cap H_{1}^{c}\right)-2 \varepsilon \\
& \geq \bar{\mu}(G \cap F)+\bar{\mu}\left(G \cap F^{c}\right)-2 \varepsilon .
\end{aligned} \square \square 6
$$

$\mathbb{T}\{$ closed sets $\} \subset \mathcal{M}_{\bar{\mu}}$.
Proof Fix F closed and $L \in 2^{X}$. For $L \subset G$ open,

$$
\beta(G) \geq \bar{\mu}(L \cap F)+\bar{\mu}\left(L \cap F^{c}\right),
$$

whence

$$
\bar{\mu}(L) \geq \bar{\mu}(L \cap F)+\bar{\mu}\left(L \cap F^{c}\right)
$$

Thus, $\left.\bar{\mu}\right|_{\mathcal{B}(X)}$ is a measure with $\bar{\mu}(G)=\beta(G) \forall G$ open. This is (q).
Corollary: (Central limit theorem)
Suppose that (Ω, \mathcal{F}, P) is a probability space and that X_{1}, X_{2}, \cdots : $\Omega \rightarrow \mathbb{R}$ are independent, identically distributed, \mathbb{R}-valued, random variables random variables with $E\left(X_{i}\right)=0$ and $E\left(X_{i}^{2}\right)=1$. Let $S_{n}:=$ $\sum_{k=1}^{n} X_{k}$ and define $\mu_{n} \in \mathcal{P}(\mathbb{R})$ by $\mu_{n}(A):=P\left(\left[\frac{S_{n}}{\sqrt{n}} \in A\right]\right)$, then

$$
\begin{equation*}
\mu_{n} \underset{n \rightarrow \infty}{\Longrightarrow} \mathcal{N}, \quad \mathcal{N}(A)=\frac{1}{\sqrt{2 \pi}} \int_{A} e^{-\frac{t^{2}}{2}} d t . \tag{CLT}
\end{equation*}
$$

Proof sketch We use the exercises $9.2 \& 9.3$ (below).
By ex. $9.2(\mathrm{v}), \varphi_{\frac{S_{n}}{\sqrt{n}}}^{\longrightarrow} \varphi_{\mathfrak{g}}(t)=\widehat{\mathcal{N}}(t) \forall t \in \mathbb{R}$ where \mathfrak{g} is the standard Gaussian random variable on \mathbb{R} defined by $\operatorname{Prob}([\mathfrak{g} \in A])=\mathcal{N}(A)$.

If $n_{k} \rightarrow \infty$ and $\mu_{n_{k}} \underset{k \rightarrow \infty}{\longrightarrow} \nu \in \mathcal{P}(\mathbb{R})$ then $\widehat{\nu} \equiv \widehat{\mathcal{N}}$ whence by ex. 9.3(v), $\nu=\mathcal{N}$.

To complete the proof of (CLT) we show that $\left\{\mu_{n}: n \geq 1\right\}$ is a tight family in $\mathcal{P}(\mathbb{R})$. To see this, for $\varepsilon>0$ let $K=K_{\varepsilon}:=\left[-\frac{1}{\sqrt{\varepsilon}}, \frac{1}{\sqrt{\varepsilon}}\right]$, then for
$n \geq 1$

$$
\begin{aligned}
\mu_{n}\left(K^{c}\right) & =P\left(\left[\left.\left|\sum_{k=1}^{n} X_{k}\right| \geq \sqrt{\frac{n}{\varepsilon}} \right\rvert\,\right]\right) \\
& \leq \frac{\varepsilon}{n} \mathbb{E}\left(\left(\sum_{k=1}^{n} X_{k}\right)^{2}\right) \\
& =\frac{\varepsilon}{n} \sum_{1 \leq k \leq \ell \leq n} \mathbb{E}\left(X_{k} X_{\ell}\right) \\
& =\frac{\varepsilon}{n} \sum_{1 \leq k \leq n} \mathbb{E}\left(X_{k}^{2}\right) \quad \because \mathbb{E}\left(X_{k} X_{\ell}\right)=0 \forall k \neq \ell ; \\
& =\varepsilon
\end{aligned}
$$

By Prohorov's theorem, $\left\{\mu_{n}: n \geq 1\right\}$ is a tight family in $\mathcal{P}(\mathbb{R})$ and by the above $\mu_{n} \underset{n \rightarrow \infty}{\longrightarrow} \mathcal{N} . \nabla$

§14 Geometric measure theory

Covering and differentiation theorems.

Recall that

$$
L_{1 \mathrm{oc}}^{1}\left(\mathbb{R}^{d}\right)=\left\{f: \mathbb{R}^{d} \rightarrow \mathbb{R} \text { measurable, }\left.f\right|_{A} \in L^{1}\left(\mathbb{R}^{d}\right) \forall \text { bounded } A \in \mathcal{B}\left(\mathbb{R}^{d}\right)\right\}
$$

Differentiation theorem Fix a norm $\|\cdot\|$ on \mathbb{R}^{d}. Suppose that $f \in$ $L_{1 o c}^{1}\left(\mathbb{R}^{d}\right)$, then for a.e. $x \in \mathbb{R}$,

$$
\limsup _{\operatorname{diam}(B) \rightarrow 0, x \in B, B \text { a ball }} \frac{1}{m(B)} \int_{R}|f-f(x)| d m=0
$$

where m is Lebesgue measure on \mathbb{R}^{d}.
To prove this, we need the Hardy Littlewood maximal inequality:
Fix a bounded, open set $U \subset \mathbb{R}^{d}$. For $f: U \rightarrow \mathbb{R}$ integrable, define the Hardy-Littlewood maximal function on U by

$$
M f(x)=M_{U} f(x):=\sup _{x \in B \text { a ball, } B \subset U} \frac{1}{m(B)} \int_{B}|f| d m .
$$

The Hardy-Littlewood maximal function is measurable since the set $U \cap[M f>\lambda]$ is open $\forall \lambda>0(!)$.

Note also (!) that the definition gives the same function if we restrict to the family of rational balls (rational centers and rational radii).

Hardy-Littlewood maximal inequality

$$
m\left(U \cap\left[M_{U} f>\lambda\right]\right) \leq \frac{3^{d}}{\lambda}\|f\|_{L^{1}(U)}
$$

Proof of the differentiation theorem given the maximal inequality The theorem is evident for $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ continuous. Suppose that $f \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ and fix a bounded, open set $U \subset \mathbb{R}^{d}$. We'll prove the theorem for m-a.e. $x \in U$.

Given $\varepsilon>0$ choose $g: U \rightarrow \mathbb{R}$ continuous such that $\int_{U}|f-g| d m<\varepsilon^{2}$.
We have that for $x \in B \subset U, B$ a ball:

$$
\begin{aligned}
& \frac{1}{m(B)} \int_{B}|f-f(x)| d m \leq \frac{1}{m(B)} \int_{B}|f-g| d m+\frac{1}{m(B)} \int_{B}|g-g(x)| d m \\
&+|f(x)-g(x)|
\end{aligned}
$$

and $\frac{1}{m(B)} \int_{B}|f-g| d m \leq M_{U}(|f-g|)(x)$, whence

$$
\begin{aligned}
L(x) & :=\limsup _{\operatorname{diam}(B) \rightarrow 0, x \in B, B} \frac{1}{m(B)} \int_{B}|f-f(x)| d m \\
& =\limsup _{B} \frac{1}{m(B)} \int_{B}|f-f(x)| d m \\
& \leq M_{U}(|f-g|)(x)+|f(x)-g(x)| .
\end{aligned}
$$

Thus

$$
\begin{aligned}
m(U \cap[L>2 \varepsilon]) & \leq m(U \cap[M(|f-g|)>\varepsilon])+m(U \cap[|f-g|>\varepsilon]) \\
& \leq \frac{3^{d}+1}{\varepsilon} \int_{U}|f-g| d m<\left(3^{d}+1\right) \varepsilon
\end{aligned}
$$

and $L=0$ a.e. on U.
To prove the maximal inequality, we need
Vitali's covering lemma Let X be a metric space, and let \mathcal{C} be a finite collection of balls (with positive radius) in X. There are disjoint balls $B_{1}, \ldots, B_{n} \in \mathcal{C}$ such that

$$
\bigcup_{B \in \mathcal{C}} B \subset \bigcup_{k=1}^{n} \tilde{B}_{k}
$$

where

$$
\tilde{B}(x, r):=B(x, 3 r) .
$$

Proof

Choose $B_{1} \in \mathcal{C}$ with maximum diameter. Let $d_{2}=\max \{\operatorname{diam}(B)$: $\left.B \in \mathcal{C}, B \cap B_{1}=\varnothing\right\} \geq 0$ where $\max \varnothing:=0$. Note that if $d_{2}=0$ then $\forall B \in \mathcal{C}$ we have $\operatorname{diam}(B) \leq \operatorname{diam}\left(B_{1}\right)$ and either $B \cap B_{1} \neq \varnothing$, whence $B \subset \tilde{B}_{1}$ or $B \cap B_{1}=\varnothing$ whence $\operatorname{diam}(B) \leq \operatorname{diam}\left(B_{2}\right), B \cap B_{2} \neq \varnothing$ and $B \subset \tilde{B}_{2}$. Continuing, we obtain $n \geq 1$, disjoint balls $B_{1}, \ldots, B_{n} \in \mathcal{C}$, such that

$$
d_{k}=\max \left\{\operatorname{diam}(B): B \in \mathcal{C}, B \cap B_{i}=\varnothing, i=1, \ldots, k-1\right\}>0
$$

for $2 \leq k \leq n$ with $\operatorname{diam}\left(B_{k}\right)=d_{k}$ and

$$
d_{n+1}=\max \left\{\operatorname{diam}(B): B \in \mathcal{C}, B \cap B_{i}=\varnothing, i=1, \ldots, n\right\}=0 .
$$

To show that $\bigcup_{B \in \mathcal{C}} B \subset \bigcup_{k=1}^{n} \tilde{B}_{k}$, suppose that $B \in \mathcal{C}$. Since $d_{n+1}=$ $0, \exists 1 \leq j \leq n$ so that $B \cap B_{j} \neq \varnothing$. Let j be minimal, i.e. $B \cap B_{i}=$ $\varnothing \forall i=1, \ldots, j-1$ and $B \cap B_{j} \neq \varnothing$. Thus $\operatorname{diam}(B) \leq d_{j}$ and $B \subset \tilde{B}_{j}$. \square

Proof of the Hardy-Littlewood maximal inequality

Let $K \subset U \cap\left[M_{U} f>\lambda\right]$ be compact. For each $x \in K, \exists$ an open ball $B_{x} \subset U, x \in B_{x}$ with $\int_{B_{x}}|f| d m>\lambda m\left(B_{x}\right)$. By compactness, $\exists F \subset K$ finite so that $K \subset \bigcup_{x \in F} B_{x}$. By Vitali's covering lemma with $\mathcal{C}=\left\{B_{x}\right.$: $x \in F\}$, there are disjoint open balls $B_{1}, \ldots, B_{N} \in \mathcal{C}$ such that

$$
K \subset \bigcup_{n=1}^{N} \tilde{B}_{n}, \quad \text { and } \int_{B_{n}}|f| d m>\lambda m\left(B_{n}\right) \forall 1 \leq n \leq N .
$$

Here $\tilde{B}_{n}:=B\left(x_{n}, 3 r_{n}\right)$ where $B_{n}:=B\left(x_{n}, r_{n}\right)$.
By exercise $5.5(\mathrm{iii})$ (or otherwise), $m\left(\tilde{B}_{n}\right)=3^{d} m\left(B_{n}\right)$, whence

$$
\left.m(K) \leq \sum_{n=1}^{N} m\left(\tilde{B}_{n}\right)\left|=3^{d} \sum_{n=1}^{N} m\left(B_{n}\right) \leq \frac{3^{d}}{\lambda} \sum_{n \geq 1} \int_{B_{n}}\right| f\left|d m \leq \frac{3^{d}}{\lambda} \int_{U}\right| f \right\rvert\, d m .
$$

Vitali's Covering theorem

Fix a norm $\|\cdot\|$ on \mathbb{R}^{d}. Let $U \subset \mathbb{R}^{d}$ be open and bounded. Let $A \subset U$, and let \mathcal{B} be a collection of balls, each contained in U and with positive radius, such that

$$
\begin{equation*}
\forall x \in A, \varepsilon>0, \exists x \in B(u, r) \in \mathcal{B}, r<\varepsilon, \tag{1}
\end{equation*}
$$

then there are disjoint $B_{n} \in \mathcal{B}$ such that

$$
\bar{\mu}\left(A \backslash \bigcup_{n=1}^{\infty} B_{n}\right)=0 .
$$

Proof

For $B=B(u, r)$ we write $u(B):=u$ and $r(B):=r$.
Let $r_{1}=\sup \{r(B): B \in \mathcal{B}\}$, choose $B_{1} \in \mathcal{B}$ with $r\left(B_{1}\right) \geq \frac{r_{1}}{2}$, and define $r_{2}=\sup \left\{r(B): B \in \mathcal{B}, B \cap B_{1}=\varnothing\right\}$.

In case $r_{2}>0$, choose $B_{2} \in \mathcal{B}, B_{2} \cap B_{1}=\varnothing$ with $r\left(B_{2}\right) \geq \frac{r_{2}}{2}$, and continue to get:

- $\omega \in \mathbb{N} \cup\{\infty\}$;
- a sequence $r_{n}>0,(1 \leq n<\omega)$ and disjoint balls $B_{n} \in \mathcal{B},(1 \leq n<\omega)$ such that for $1 \leq n<\omega$,

$$
r_{n}=\sup \left\{r(B): B \in \mathcal{B}, B \cap B_{k}=\varnothing, 1 \leq k \leq n-1\right\}, \text { and } r\left(B_{n}\right) \geq \frac{r_{n}}{2}
$$

- for $\omega<\infty, r_{\omega}=0$.

In case $\omega<\infty$, we claim that $A \subset \bigcup_{k=1}^{\omega-1} \overline{B_{k}}$.

To see this, suppose otherwise, and let

$$
x \in A \backslash \bigcup_{k=1}^{\omega-1} \overline{B_{k}} \subset U \backslash \bigcup_{k=1}^{\omega-1} \overline{B_{k}}
$$

which latter is an open set, whence $\exists \delta>0$ such that $B(x, \delta) \subset U$, $\bigcup_{k=1}^{\omega-1} \overline{B_{k}}$. By assumption $x \in B \in \mathcal{B}$ with $r(B)<\frac{\delta}{3}$, whence $r_{\omega} \geq r(B)>$ $0 . \boxtimes$

Now suppose that $\omega=\infty$. Since U is bounded, $\sum_{n \geq 1} r_{n}^{d}<\infty$ and $r_{n} \rightarrow 0$.

We claim that

$$
A \backslash \bigcup_{k=1}^{N} B_{k} \subset \bigcup_{k=N+1}^{\infty} \widehat{B}_{k} \forall N \geq 1
$$

where $u(\widehat{B})=u(B)$ and $r(\widehat{B})=5 r(B)$. To see this, let $x \in A \backslash \bigcup_{k=1}^{N} B_{k}$, then $\exists x \in B \in \mathcal{B}$ so that $B \subset U \backslash \cup_{k=1}^{N} B_{k}$, whence $0<r(B) \leq r_{N+1}$. Since $r_{n} \rightarrow 0, \exists K \geq N+1$ so that $r_{K} \geq r(B)>r_{K+1}$, whence $\exists j \in[N+1, K]$ so that $B \cap B_{j} \neq \varnothing$. Since $r\left(B_{j}\right) \geq \frac{r_{j-1}}{2} \geq \frac{r(B)}{2}$, we have $B \subset \widehat{B}_{j}$. Thus

$$
m\left(A \backslash \bigcup_{k=1}^{N} B_{k}\right) \leq \sum_{k=N+1}^{\infty} m\left(\widehat{B}_{k}\right) \underset{N \rightarrow \infty}{\longrightarrow} 0 .
$$

Exercise NO9

1. Well distributed sequences.

Let X be a metric space and let $p \in \mathcal{P}(X)$. A sequence $\left(w_{1}, w_{2}, \ldots\right) \in$ $X^{\mathbb{N}}$ is called p-well-distributed if $\frac{1}{n} \sum_{k=1}^{n} \delta_{w_{k}} \Longrightarrow \overrightarrow{n \rightarrow \infty} p$.

Let $X:=\mathbb{T}^{N}($ some $N \in \mathbb{N}$) where $\mathbb{T}:=\mathbb{R} / \mathbb{Z} \cong[0,1)$ equipped with the metric $d(x, y):=\min \{|x-y|, 1-|x-y|\}$ and let m be Lebesgue measure on \mathbb{T}^{N}.
(i) Prove Weyl's theorem that

- $\left(w_{1}, w_{2}, \ldots\right) \in X^{\mathbb{N}}$ is m-well-distributed iff

$$
\frac{1}{n} \sum_{k=1}^{N} e^{2 \pi i\left\langle\nu, w_{k}\right\rangle} \underset{n \rightarrow \infty}{\longrightarrow} 0 \forall \nu \in \mathbb{Z}^{N} \backslash\{0\}
$$

and, in this case $\overline{\left\{w_{k}: k \geq 1\right\}}=X$.
(ii) Define $w_{k}=\left(w_{k}^{(1)}, \ldots, w_{k}^{(N)}\right) \in X:=\mathbb{T}^{N}$ by $w_{k}^{(j)}:=k x_{j} \bmod 1$.

Show that $\left(w_{1}, w_{2}, \ldots\right) \in X^{\mathbb{N}}$ is m-well-distributed iff $\left\{1, x_{1}, \ldots, x_{N}\right\}$ are linearly independent over \mathbb{Q}.

2. Characteristic function of a random variable on \mathbb{R}.

The characteristic function of a random variable X on \mathbb{R} is $\varphi=\varphi_{X}$: $\mathbb{R} \rightarrow \mathbb{C}$ is defined by

$$
\varphi_{X}(t):=E\left(e^{i t X}\right)=\widehat{\mu}(t)
$$

where $\mu=\mu_{X} \in \mathcal{P}(\mathbb{R})$ is defined by $\mu(A)=\operatorname{Prob}([X \in A])$ and

$$
\widehat{\nu}(t):=\int_{\mathbb{R}} e^{i t x} d \nu(x) \quad(t \in \mathbb{R}, \nu \text { a signed measure on } \mathbb{R})
$$

(i) Show that $\varphi_{X} \in C_{B}(\mathbb{R})$ and that $\mu_{X_{n}} \Longrightarrow \mu_{X}$ implies that $\varphi_{X_{n}} \longrightarrow$ ν_{X} uniformly on compact subsets of \mathbb{R}.
(ii) Show that if X is a random variable on \mathbb{R} with $E\left(X^{2}\right)<\infty$, then

$$
\varphi_{X}(t)=1+i t E(X)-\frac{1}{2} E\left(X^{2}\right) t^{2}+o\left(t^{2}\right) \quad \text { as } t \rightarrow 0 .
$$

(iii) Show that if \mathfrak{g} is a standard Gaussian random variable on \mathbb{R} (ie $\left.\operatorname{Prob}([\mathfrak{g} \in A])=\frac{1}{\sqrt{2 \pi}} \int_{A} e^{-\frac{t^{2}}{2}} d t\right)$, then $\varphi_{\mathfrak{g}}(t)=e^{-\frac{t^{2}}{2}}$.
(iv) Show that if $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables on \mathbb{R}, that is:

$$
\operatorname{Prob}\left(\bigcap_{k=1}^{n}\left[X_{k} \in A_{k}\right]\right)=\prod_{k=1}^{n} \operatorname{Prob}\left(\left[X_{k} \in A_{k}\right]\right) \forall A_{1}, A_{2} \ldots, A_{n} B \in \mathcal{B}(\mathbb{R}) ;
$$

then $\varphi_{S_{n}}(t)=\prod_{k=1}^{n} \varphi_{X_{k}}(t)$ where $S_{n}:=\sum_{k=1}^{n} X_{k}$.
(v) Now suppose that X_{1}, X_{2}, \ldots are independent, identically distributed random variables on \mathbb{R} with $E\left(X_{i}\right)=0, E\left(X_{i}^{2}\right)=1$. Let $S_{n}:=\sum_{k=1}^{n} X_{k}$. Show that

$$
\varphi_{\frac{S_{n}}{\sqrt{n}}}^{\longrightarrow} \varphi_{n \rightarrow \infty}(t) \quad \forall t \in \mathbb{R}
$$

3. The inversion and uniqueness for characteristic functions.

In this exercise, you show that if X is a random variable on \mathbb{R}, and $(a, b) \subset \mathbb{R}$ satisfies $\mu_{X}(\{a, b\})=0$, then

$$
\frac{1}{2 \pi} \int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \varphi_{X}(t) d t \underset{T \rightarrow \infty}{\longrightarrow} \mu_{X}((a, b))
$$

(i) Show that $S(T):=\int_{0}^{T} \frac{\sin x}{x} d x \underset{T \rightarrow \infty}{\longrightarrow} \frac{\pi}{2}$.

Write $I(T):=\int_{-T}^{T} \frac{e^{-i t a}-e^{-i t b}}{i t} \varphi_{X}(t) d t$. Show that:
(ii) $\quad I(T)=E\left(\int_{-T}^{T} \frac{e^{i t(X-a)}-e^{-i t(X-b)}}{i t} d t\right)$

$$
=2 E(\operatorname{sgn}(X-a) S(T|X-a|)-\operatorname{sgn}(X-b) S(T|X-b|))
$$

(iii) Prove ($\boldsymbol{\Omega}$).
(iv) Show that if $\varphi_{X} \in L^{1}(m)$ ($m=$ Lebesgue measure), then $\mu_{X} \ll m$ and

$$
\frac{d \mu_{X}}{d m}(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \varphi_{X}(t) e^{-i t x} d t
$$

(v) Show that if X, Y are random variables on \mathbb{R} with $\varphi_{X}=\varphi_{Y}$, then $\mu_{X}=\mu_{Y}$.

4. Differentiation revision.

(A) Suppose that $F: I:=[0,1] \rightarrow \mathbb{R}$ is non decreasing. Here you show that $\exists F^{\prime} \in L^{1}([0,1]$ so that
© for m-a.e. $x \in[0,1], \frac{1}{h}(F(x+h)-F(x)) \underset{h \rightarrow 0}{\longrightarrow} F^{\prime}(x)$
(where m := Lebesgue measure).
Let
$\bar{D} F(x):=\varlimsup_{h \rightarrow 0} \frac{1}{h}(F(x+h)-F(x)), \quad \underline{D} F(x):=\lim _{h \rightarrow 0} \frac{1}{h}(F(x+h)-F(x))$.
Show that
(0) WLOG $F:[0,1] \rightarrow[0,1]$ is a homeomorphism;

Hint: $F(x) \rightsquigarrow \frac{x+F(x)}{2} \ldots$
(i) $\bar{D} F, \underline{D} F:[0,1] \rightarrow \mathbb{R}$ are measurable;

Hint: $\bar{D} F(x) \stackrel{?}{\underline{?}} \overline{\lim }_{h \rightarrow 0, h \in Q^{\frac{1}{h}}}^{\frac{1}{2}}(F(x+h)-F(x))$.

$$
\begin{array}{lll}
\underline{D} F<r & \text { on } & A \in \mathcal{B}(I) \Rightarrow m(F A) \leq r m(A) . \tag{ii}\\
\bar{D} F>s & \text { on } & A \in \mathcal{B}(I) \Rightarrow m(F A) \geq s \bar{\mu}(A) .
\end{array}
$$

Hint: Vitali's covering theorem.
(iv) Show that $\bar{D} F=\underline{D} F \quad m$-a.e. on $[0,1]$.

Hint: Let $A(r, s):=\{x \in I: \underline{D} F(x)<r<s<\bar{D} F(x)\} \cdots$
(v) Show that $F(1)-F(0) \geq \int_{0}^{1} D F d m$ where $D F:=\bar{D} F=\underline{D} F$. When is there equality?
(B) Show that if $F:[0,1] \rightarrow \mathbb{R}$ has bounded variation
ie $\exists M$ such that $\sum_{k=0}^{n-1}\left|F\left(t_{k+1}\right)-F\left(t_{k}\right)\right| \leq M$ whenever $0=t_{0}<t_{1}<\cdots<t_{n}=1$, then F is differentiable at a.e. $x \in[0,1]$.

Hint: $F=G-H$ where $G, H: I:=[0,1] \rightarrow \mathbb{R}$ are non decreasing.
(C) The function $f:[0,1] \rightarrow \mathbb{R}$ is said to be absolutely continuous if given $\varepsilon>0, \exists \delta>0$ such that for any collection $\left\{\left[a_{j}, b_{j}\right]\right\}_{j \geq 1}$ of disjoint subintervals of $[0,1]$,

$$
\sum_{j \geq 1}\left|b_{j}-a_{j}\right|<\delta \Longrightarrow \sum_{j \geq 1}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|<\varepsilon .
$$

Show that if $f:[0,1] \rightarrow \mathbb{R}$ is absolutely continuous, then \exists a signed measure $\mu_{f}: \mathcal{B}([0,1]) \rightarrow \mathbb{R}, \mu_{f} \ll m$ such that $\mu_{f}([a, b])=f(b)-f(a)$ for any interval $[a, b] \subset[0,1]$.

5. Fundamental theorem of calculus?

Let $(X, \mathcal{B}, m)=([0,1]$, Borel, Leb $)$.
A measurable function $f: X \rightarrow \mathbb{R}$ is called locally integrable at $x \in$ $(0,1)$ if $\exists \varepsilon>0$ such that $\int_{(x-\varepsilon, x+\varepsilon)}|f| d m<\infty$. Show that
(i) for $f: X \rightarrow \mathbb{R}$ measurable,

$$
\text { loc-int }(f):=\{x \in[0,1]: f \text { locally integrable at } x\}
$$

is open in $[0,1]$;
(ii) if $f:[0,1] \rightarrow \mathbb{R}$ is differentiable on $[0,1]$, then loc-int $\left(f^{\prime}\right)$ is dense in $[0,1]$;
Hint $f^{\prime} \in B_{1}$.
(iii) By suitably modifying Volterra's construction (ex. 3.6 on p. 36), or otherwise, show that $\forall 0<\lambda<1, \exists f:[0,1] \rightarrow \mathbb{R}$ differentiable on $[0,1]$ so that $m\left([0,1] \backslash \operatorname{loc}-i n t\left(f^{\prime}\right)\right)>\lambda$.

6. Fractal differentiation theorem.

Suppose that (X, ρ) is a metric space and $\mu \in \mathcal{P}(X)$ satisfies the condition

$$
\varlimsup_{r \rightarrow 0} \frac{\mu\left(B_{\rho}(x, 3 r)\right)}{\mu\left(B_{\rho}(x, r)\right)} \leq M \text { for } \mu \text {-a.e. } x \in X .
$$

a) Prove the differentiation theorem: If $f \in L^{1}(\mu)$, then for μ-a.e. $x \in X$,

$$
\limsup _{\rho-\operatorname{diam} B \rightarrow 0, x \in B, B} \text { a } \rho \text {-ball } \frac{1}{\mu(B)} \int_{B}|f-f(x)| d \mu=0 .
$$

Hint: Generalize the Hardy-Littlewood maximal inequality.
b) Let $\Omega=\{0,1\}^{\mathbb{N}}$ and let $p \in \mathcal{P}(\Omega)$ be defined by $p\left(\left[a_{1}, \ldots, a_{n}\right]\right)=\frac{1}{2^{n}}$ and define Cantor-Lebesgue measure μ on \mathbb{R} by

$$
\mu(A):=p\left(\left\{\omega=\left(\omega_{1}, \omega_{2}, \ldots\right) \in \Omega: \sum_{n=1}^{\infty} \frac{2 \omega_{n}}{3^{n}} \in A\right\}\right) .
$$

Show that μ satisfies $(*)$ with respect to the regular metric on \mathbb{R}.

Week \# 10

Lipschitz maps. Let $\|\cdot\|=\|\cdot\|_{2}$ and let m be Lebesgue measure on \mathbb{R}^{d}.

- A function $f: U \rightarrow \mathbb{R}\left(U \subset \mathbb{R}^{d}\right)$ is called Lipschitz continuous on U if $\exists M>0$ st

$$
\frac{|f(y)-f(x)|}{\|x-y\|} \leq M \forall x, y \in U .
$$

- The Lipschitz constant of f on U is $M_{f, U}:=\sup _{x, y \in U,} x \neq y \frac{|f(y)-f(x)|}{\|x-y\|}$.
- The function $f: U \rightarrow \mathbb{R}\left(U \subset \mathbb{R}^{d}\right.$ open $)$ is called differentiable at $z \in U$ if $\exists L \in \mathbb{R}^{d}$ so that

$$
f(z+h)-f(z)-\langle L, h\rangle=o(\|h\|) \text { as } \quad h \rightarrow 0
$$

- In this case $\exists \lim _{t \rightarrow 0} \frac{f\left(z+t e_{k}\right)-f(x)}{t}=: f_{x_{k}}(z) \quad(1 \leq k \leq d)$, and L (above) is given by $L=\left(f_{x_{1}}(z), \ldots, f_{x_{d}}(z)\right)$. It is called the derivative (aka gradient) of f at z and denoted $\nabla f(z):=\left(f_{x_{1}}(x), \ldots, f_{x_{d}}(x)\right)$.

13.1 Rademacher's theorem

Suppose that $f: U \rightarrow \mathbb{R}\left(U \subset \mathbb{R}^{d}\right.$ open) is Lipschitz continuous on U, then f is differentiable at m-a.e. point in U and $\|\nabla f\| \leq M_{f, U}$ a.e..
We first prove theorem 1 and then use this to prove theorem $d \forall d \geq 2$.
【1 Rademacher's theorem when $d=1$
Proof The function $f: U \rightarrow \mathbb{R}$ is absolutely continuous and $\mathbb{\Psi} 1$ follows from exercise 11.7(C).

Now fix $d \geq 2$.
$\mathbb{T} \forall \forall \in \mathbb{S}^{d-1}$, for $m_{d^{-}}$-a.e. $x \in \mathbb{R}^{d}$,
$\left(\star_{v}\right) \quad \exists \lim _{t \rightarrow 0} \frac{f(x+t v)-f(x)}{t}=: D_{v} f(x) \in\left[-M_{f, U}, M_{f, U}\right]$.
Here m_{k} is Lebesgue measure on \mathbb{R}^{k}.
Proof
Set $L_{v}=\{t v: t \in \mathbb{R}\} \cong \mathbb{R}$ and $L_{v}^{\perp}:=\left\{x \in \mathbb{R}^{d}:\langle x, v\rangle=0\right\} \cong \mathbb{R}^{d-1}$, then

$$
\mathbb{R}^{d}=L_{v} \oplus L_{v}^{\perp} \cong L_{v} \times L_{v}^{\perp}
$$

Define the measures μ_{v} on L_{v}, ν_{v} on L_{v}^{\perp} by $\mu_{v}(A):=m_{1}(\{t \in \mathbb{R}: t v \in$ $A\})$ and $\nu_{v}:=m_{d-1} \circ T^{-1}$ where m_{d-1} is Lebesgue measure on \mathbb{R}^{d-1} and $T: \mathbb{R}^{d-1} \rightarrow L_{v}^{\perp}$ is a linear isometry. Note (!) that ν_{v} does not depend on the isometry T.

By $\mathbb{1}, \forall y \in L_{v}^{\perp},\left(*_{v}\right)$ holds at $y+x$ for μ_{v}-a.e. $x \in L_{v} \cap U$.
By Fubini's theorem, $\left(\star_{v}\right)$ holds q-a.e. on U where

$$
q(A):=\int_{L_{v}^{\perp}} \mu_{v}\left((A-y) \cap L_{v}\right) d \nu_{v}(y) .
$$

To see that $q=m_{d}$, note that by definition $q=m_{d} \circ S$ where $S \in$ $\operatorname{hom}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is defined by $S\left(x_{1}, \ldots, x_{d}\right):=x_{1} v+T\left(x_{2}, \ldots, x_{d}\right)$. Since S is a linear isometry, $|\operatorname{det} S|=1$ and by exercise 6.1 (p. 66), $q=m \circ S=$ $|\operatorname{det} S| m=m$. Thus $\left(\star_{v}\right)$ holds m-a.e. on U.

【3 $D_{v} f=\langle v, \nabla f\rangle m$-a.e. $\forall v \in \mathbb{S}^{d-1}$.
Proof

- Let $g: U \rightarrow \mathbb{R}$ be C^{1} and suppose $\overline{[g \neq 0]} \subset U$ is compact. Since f is Lipschitz and g is C^{1} with compact support,
$\left|\frac{f(x+t v)-f(x)}{t}\right| \leq M_{f, U},\left|\frac{g(x+t v)-g(x)}{t}\right| \leq \sup _{z \in \mathbb{R}^{d}}\|\nabla g(z)\|_{2} \forall x \in U, t \in \mathbb{R}$ with $x+t v \in U$.

By the bounded convergence theorem,

$$
\begin{aligned}
\int_{U} D_{v} f g d m & =\int_{\mathbb{R}^{d}} D_{v} f g d m \underset{t \rightarrow 0+}{\leftrightarrows} \int_{\mathbb{R}^{d}} \frac{f(x+t v)-f(x)}{t} g(x) d x \\
& =\int_{\mathbb{R}^{d}} f(x) \frac{g(x-t v)-g(x)}{t} d x \underset{t \rightarrow 0+}{\longrightarrow}-\int_{\mathbb{R}^{d}} f D_{v} g d m \\
& =-\int_{U} f D_{v} g d m .
\end{aligned}
$$

Since g is $C^{1}, D_{v} g \equiv\langle v, \nabla g\rangle$ and so using the above for e_{1}, \ldots, e_{d},

$$
\int_{U} D_{v} f g d m=-\sum_{k=1}^{d} v_{k} \int_{U} f D_{e_{k}} g d m=\sum_{k=1}^{d} v_{k} \int_{U} D_{e_{k}} f g d m=\int_{U}\langle v, \nabla f\rangle g d m .
$$

Approximating, we get $\int_{U} D_{v} f g d m=\int_{U}\langle v, \nabla f\rangle g d m \forall g \in L^{1}(U)$ whence【3.

Fix $\Gamma \subset \mathbb{S}^{d-1}$ countable and dense, $\Gamma \supset\left\{e_{1}, \ldots, e_{d}\right\}$ and let

$$
U_{\Gamma}:=\left\{x \in U:(\star) \text { holds at } x \& D_{v} f(x)=\langle v, \nabla f(x)\rangle \forall v \in \Gamma\right\} .
$$

By $\mathbb{2}$ and $\llbracket 3, U_{\Gamma}$ is the intersection of countable many sets of full measure in U and so $m\left(U \backslash U_{\Gamma}\right)=0$.
I4 f is differentiable at each $x \in U_{\Gamma}$.

Proof To prove differentiability at $x \in U_{\Gamma}$, (!) it suffices to show that

$$
\begin{equation*}
\sup _{v \in \mathbb{S}^{d-1}}\left|\frac{f(x+t v)-f(x)}{t}-\langle v, \nabla f(x)\rangle\right| \underset{t \rightarrow 0}{\longrightarrow} 0 \tag{化}
\end{equation*}
$$

To see this, fix $x \in U_{\Gamma}, \varepsilon>0$ and choose $\Gamma_{\varepsilon} \subset \Gamma$ finite so that $\mathbb{S}^{d-1}=$ $\cup_{v \in \Gamma_{\varepsilon}} B(v, \varepsilon)$;

- find $\delta>0$ so that $\left|\frac{f(x+t v)-f(x)}{t}-\langle v, \nabla f(x)\rangle\right|<\varepsilon \forall 0<|t|<\delta, v \in \Gamma_{\varepsilon}$.

We claim that

$$
\left|\frac{f(x+t v)-f(x)}{t}-\langle v, \nabla f(x)\rangle\right|<(1+M(1+\sqrt{d})) \varepsilon \forall 0<|t|<\delta, v \in \mathbb{S}^{d-1}
$$

Indeed, fix $v \in \mathbb{S}^{d-1}$, then $\exists w \in \Gamma_{\varepsilon},\|v-w\|<\varepsilon$. For $0<|t|<\delta \mid$

$$
\begin{aligned}
& \left|\frac{f(x+t v)-f(x)}{t}-\langle v, \nabla f(x)\rangle\right| \leq \\
& \frac{|f(x+t v)-f(x+t w)|}{|t|}+|\langle v-w, \nabla f(x)\rangle|+\left|\frac{f(x+t w)-f(x)}{t}-\langle w, \nabla f(x)\rangle\right| \\
& \leq(M+\|\nabla f(x)\|)\|v-w\|+\varepsilon \\
& \leq(1+2 M) \varepsilon . \quad \square
\end{aligned}
$$

In the sequel, we'll need the:

13.2 Uniform differentiation lemma:

Suppose that $f: U \rightarrow \mathbb{R}\left(U \subset \mathbb{R}^{d}\right.$ open) is Lipschitz continuous on U and let $A \in \mathcal{B}(U), 0<m(A)<\infty$, then $\forall \eta>0, \exists F \subset A$ closed st $m(A \backslash F)<\eta$ and

$$
\begin{equation*}
\sup _{x \in F, v \in \mathbb{S}^{d-1}}\left|\frac{f(x+t v)-f(x)}{t}-\langle v, \nabla f(x)\rangle\right| \underset{t \rightarrow 0+}{\longrightarrow} 0 \tag{ذ}
\end{equation*}
$$

Proof Let $\delta_{n}:=\frac{1}{n}$. We claim first that
© $\cdot \forall \eta>0, \exists F \subset A$ closed st $m(A \backslash F)<\eta$ and

$$
\begin{equation*}
\sup _{x \in F, v \in \mathbb{S}^{d-1}} \left\lvert\, \frac{f\left(x+\delta_{n} v\right)-f(x)}{\delta_{n}}-f_{v}(x)\right. \| \underset{n \rightarrow \infty}{\longrightarrow} 0 \tag{ㅇ}
\end{equation*}
$$

where $f_{v}(x):=\langle v, \nabla f(x)\rangle$.
Proof of ${ }^{(\cdot)}$
Fix $\Gamma \subset \mathbb{S}^{d-1}$ countable and dense.

- By (髙) (see $\Phi 4$ in the proof of Rademacher's theorem),

$$
\Phi_{t}(x):=\sup _{v \in \mathbb{S}^{d-1}}\left|\frac{f(x+t v)-f(x)}{t}-\langle v, \nabla f(x)\rangle\right| \underset{t \rightarrow 0+}{\longrightarrow} 0
$$

for a.e. $x \in U$.

- By Egorov's theorem, $\exists F \subset A$ closed so that $m(A \backslash F)<\eta$ and

$$
\sup _{x \in F} \Phi_{\delta_{n}}(x) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

This is ($(q) . \not \square \odot$
To complete the proof of ($\left(\right.$) let, for $0<t<1, n_{t}:=\left\lfloor\frac{1}{t}\right\rfloor$, then

$$
\delta_{n_{t}} \geq t>\delta_{n_{t}+1}, \quad \delta_{n_{t}} \sim t \& 0 \leq \delta_{n_{t}}-t \leq \frac{1}{n_{t}^{2}} \sim t^{2} \quad \text { as } \quad t \rightarrow 0+.
$$

Thus

$$
\begin{aligned}
& \left|f(x+t v)-f(x)-t f_{v}(x)\right| \leq \\
& \left|f(x+t v)-f\left(x+\delta_{n_{t}} v\right)\right|+\left|f\left(x+\delta_{n_{t}} v\right)-f(x)-\delta_{n_{t}} f_{v}(x)\right|+\left(\delta_{n_{t}}-t\right)\left|f_{v}(x)\right| \\
& \leq 2 M_{f, U}\left(\delta_{n_{t}}-t\right)+\delta_{n_{t}} S_{n_{t}} \\
& \ll t^{2}+t \sup _{x \in F} \Phi_{\delta_{n_{t}}}(x) \\
& =o(t) \quad \text { as } t \rightarrow 0 . \quad \square
\end{aligned}
$$

Change of variables.

13.3 Lemma (non-singularity of Lipschitz equivalences)

Suppose that $U \subset \mathbb{R}^{d}$ is a domain, and that $T: U \rightarrow T U \subset \mathbb{R}^{d}$ is a Lipschitz equivalence (i.e. both T and T^{-1} are Lipschitz), then $T: U \rightarrow$ $T U$ is non-singular and

$$
M_{T^{-1}, T U}^{-d} \leq T^{\prime}:=\frac{d m \circ T}{d m} \leq M_{T, U}^{d} .
$$

Proof We'll prove that $T^{\prime} \leq M_{T, U}^{d}$, the other inequality following from $T^{-1 \prime} \leq M_{T^{-1}, T U}^{d}$.

It suffices to show that $m(T A) \leq M_{T, U}^{d} m(A) \quad(A \in \mathcal{B}(U))$. Fix $A \in \mathcal{B}(U), 0<m(A)<\infty$.

If $A \subset \cup_{k=1}^{\infty} B\left(x_{k}, r_{k}\right)$, then $T A \subset \cup_{k=1}^{\infty} B\left(T x_{k}, M r_{k}\right)$, whence

$$
m(T A) \leq \sum_{k=1}^{\infty} m\left(B\left(T x_{k}, M r_{k}\right)\right)=M^{d} \sum_{k=1}^{\infty} m\left(B\left(x_{k}, r_{k}\right)\right)
$$

By Vitali's covering theorem,

$$
m(A)=\inf \left\{\sum_{k=1}^{\infty} m\left(B\left(x_{k}, r_{k}\right)\right): A \subset \bigcup_{k=1}^{\infty} B\left(x_{k}, r_{k}\right)\right\} .
$$

Thus $m(T A) \leq M^{d} m(A)$.

By the lemma, $\exists T^{\prime}: U \rightarrow\left[M^{-d}, M^{d}\right]$ (the Radon-Nikodym derivative of $T)$ so that $m(T A)=\int_{A} T^{\prime} d m \quad(A \in \mathcal{B}(U))$. It follows from the chain rule for RN derivatives (ex. 7.2.(ii)) that

- If $U, V \subset \mathbb{R}^{d}$ are open, and $A: U \rightarrow V, B: V \rightarrow \mathbb{R}^{d}$ are Lipschitz equivalences, then so is $B \circ A$ and $(B \circ A)^{\prime}=B^{\prime} \circ A \cdot A^{\prime}$.

Write $T=\left(T_{1}, \ldots, T_{d}\right)$. By Rademacher's theorem, each T_{k} is differentiable a.e. on $U_{T} \in \mathcal{B}(U), m\left(U \backslash U_{T}\right)=0$.

Define $D T: U_{T} \rightarrow \operatorname{hom}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ by $D T(x)_{i, j}:=\left(T_{i}\right)_{x_{j}}(x)$, then T is differentiable at each $x \in U_{T}$ in the sense that

$$
\|T(x+h)-T(x)-D T(x) h\|=o(\|h\|) \text { as } h \rightarrow 0
$$

13.4 Lemma (chain rule for Lipschitz equivalences)

Suppose that $U, V \subset \mathbb{R}^{d}$ are open, and $A: U \rightarrow V, B: V \rightarrow \mathbb{R}^{d}$ are Lipschitz equivalences, then
(a) so is $B \circ A$;
(b) $\quad U_{0}:=\{x \in U: A$ is diffble at $x \& B$ is diffble at $A(x)\}$
has full measure in U;
(c) $D(B \circ A)(x)=D B(A(x)) D A(x) \forall x \in U_{0}$.

Proof By non-singularity the set
$U_{0}:=\{x \in U: A$ is diffble at $x\} \cap A^{-1}\{y \in V: B$ is diffble at $y\}$
has full measure in U.
Fix $x \in U_{0}$ and $\varepsilon>0$. Since B is differentiable at $A(x), \exists \delta_{1}>0$ such that

$$
\|B(A(x)+h)-B(A(x))-D B(A(x)) h\| \leq \varepsilon\|h\| \forall\|h\|<\delta_{1} .
$$

Since A is differentiable (whence continuous) at $x, \exists \delta_{2}>0$ such that $\forall\|h\|<\delta_{2}$,

$$
\|A(x+h)-A(x)-D A(x) h\| \leq \varepsilon\|h\|, \text { and }\|A(x+h)-A(x)\|<\delta_{1} .
$$

It follows that for $\|h\|<\delta_{2}$, setting $k:=A(x+h)-A(x)$, we have

$$
\begin{aligned}
& \|B(A(x+h))-B(A(x))-D B(A(x)) D A(x) h\| \\
& \leq\|B(A(x+h))-B(A(x))-D B(A(x)) k\|+\|D B(A(x))(k-D A(x) h)\| \\
& \leq\|B(A(x)+k)-B(A(x))-D B(A(x)) k\|+ \\
& \quad \quad+\|D B(A(x))\|\|A(x+h)-A(x)-D A(x) h\| \\
& \leq \varepsilon(\|k\|+\|D B(A(x))\|\|h\|) \\
& \leq \varepsilon(\|A(x+h)-A(x)-D A(x) h\|+\|D A(x) h\|+\|D B(A(x))\|\|h\|) \\
& \leq \varepsilon\|h\|(\varepsilon+\|D A(x)\|+\|D B(A(x))\|) . \quad \square
\end{aligned}
$$

13.5 Change of variables formula for Lipschitz equivalences

Let $U \subset \mathbb{R}^{d}$ be open and let $T: U \rightarrow T U$ be a Lipschitz equivalence, then

$$
\begin{equation*}
T^{\prime}=|\operatorname{det} D T| . \tag{世}
\end{equation*}
$$

Proof It suffices to prove
($\frac{m(T B(x, r))}{m(B(x, r))} \underset{r \rightarrow 0+}{\longrightarrow}|\operatorname{det} D T(x)|$ for m-a.e. $x \in U$
because, assuming (), we also have by the Lebesgue differentiation theorem that for m-a.e. $x \in U$,
$T^{\prime}(x) \underset{r \rightarrow 0+}{\leftrightarrows} \frac{1}{m(B(x, r))} \int_{B(x, r)} T^{\prime} d m=\frac{m(T B(x, r))}{m(B(x, r))} \underset{r \rightarrow 0+}{\longrightarrow}|\operatorname{det} D T(x)|$.

Proof of ()

Let U_{0} denote the set of points $x \in U$ so that

$$
\begin{aligned}
& T \text { is diffble at } x, \quad T^{-1} \text { is diffble at } T x \\
& \left(T^{-1}\right)^{\prime}(T x)=T^{\prime}(x)^{-1} \& D T^{-1}(T x)=D T(x)^{-1}
\end{aligned}
$$

By non singularity and the chain rules for T^{\prime} (exercise 7.6(ii)) and $D T$ (13.4 above), $m\left(U \backslash U_{0}\right)=0$.

By exercise 5.4(iii)

$$
T^{\prime}=|\operatorname{det} T| \forall T \in G L(d, \mathbb{R})
$$

where $G L(d, \mathbb{R}):=\left\{\right.$ invertible, linear maps $\left.: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}\right\}$.
We claim

【 $3 \forall x \in U_{0}, \varepsilon>0, \exists \delta>0$ such that $\forall 0<r<\delta$,

$$
\begin{aligned}
T(x)+D T(x) B(0, r(1-\varepsilon)) & \stackrel{(\mathrm{i})}{\subseteq} T B(x, r) \\
& \stackrel{(\mathrm{ii})}{\subseteq} T(x)+D T(x) B(0, r(1+\varepsilon)) .
\end{aligned}
$$

Proof of \mathbb{T} :
Let $M:=\|D T(x)\|, \vee\left\|D T(x)^{-1}\right\|$.

- $\exists \delta>0$ such that

$$
\|T(x+h)-T(x)-D T(x) h\|<\frac{\varepsilon}{M}\|h\| \forall\|h\|<\delta .
$$

To see inclusion (ii), let $a \in T B(x, r)$, then $a=T(x+h)$ where $\|h\| \leq r<\delta$. We show that $\left\|D T(x)^{-1}(a-T x)\right\| \leq r(1+\varepsilon)$. Indeed,

$$
\begin{aligned}
\left\|D T(x)^{-1}(a-T x)\right\| & =\left\|D T(x)^{-1}(T(x+h)-T x)\right\| \\
& \leq\left\|D T(x)^{-1}(T(x+h)-T x-D T(x) h)\right\|+\|h\| \\
& \leq M\|T(x+h)-T x-D T(x) h\|+\|h\| \\
& <(1+\varepsilon)\|h\| \leq r(1+\varepsilon) . \quad \square(\mathrm{ii})
\end{aligned}
$$

- $\exists 0<\delta_{1}<\delta$ st
$\left\|T^{-1}(T x+k)-x-D T(x)^{-1} k\right\| \leq \varepsilon \frac{\|k\|}{M} \forall\|k\|<M \delta_{1}$, whence

$$
\left\|T^{-1}(T x+D T(x) h)-x-h\right\| \leq \varepsilon\|h\| \forall\|h\|<\delta_{1}
$$

To see inclusion (i), choose $r<\delta_{1}$, and $b \in T(x)+D T(x) B(0, r(1-\varepsilon))$, then $b=T x+D T(x) h$ for some $\|h\|<(1-\varepsilon) r$ and

$$
\begin{aligned}
\left\|T^{-1} b-x\right\| & =\left\|T^{-1}(T x+D T(x) h)-x\right\| \\
& \leq\left\|T^{-1}(T x+D T(x) h)-x-h\right\|+\|h\| \leq(1+\varepsilon)\|h\| \\
& \leq\left(1-\varepsilon^{2}\right) r . \quad \square(\mathrm{i})
\end{aligned}
$$

This proves $\mathbb{\$}$, whence follows () using $\mathbb{\$}$. \square

Steiner symmetrization.

The isodiametric inequality says that the measurable set with maximum volume among those with given Euclidean diameter is a ball. A Steiner symmetrization is a transformation of measurable sets preserving volume and decreasing diameter which is used to prove the isodiametric inequality.

14.1 Isodiametric inequality ${ }^{9}$

[^8]For $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$,

$$
m(A) \leq m(B(1))\left(\frac{\operatorname{diam} A}{2}\right)^{d}
$$

where $B(1)$ is the unit ball and diam is diameter, both with respect to $\|\cdot\|_{2}$.

Steiner symmetrization.

For $u \in \mathbb{S}^{d-1}, v \in \mathbb{R}^{d}$ let $L_{u, v}: \mathbb{R} \rightarrow \mathbb{R}^{d}$ be defined by $L_{u, v}(t):=v+t u$ and let $L(u, v):=L_{u, v}(\mathbb{R})$. Define the corresponding linear measure $\lambda_{u, v}: \mathbb{R} \rightarrow[0, \infty]$ by $\lambda_{u, v}(A):=m\left(L_{u, v}^{-1} A\right)$.

The Steiner symmetrization of $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ in the direction $u \in \mathbb{S}^{d-1}$ is

$$
\mathfrak{s}_{u}(A):=\left\{v+t u: v \perp u, \lambda_{u, v}(A)>0,|t|<\frac{1}{2} \lambda_{u, v}(A)\right\} .
$$

For example if $u=e_{1}$ then $u^{\perp}=\{0\} \times \mathbb{R}^{d-1}$ and

$$
\mathfrak{s}_{e_{1}}(A):=\left\{(t, v): v \in \mathbb{R}^{d-1}, \lambda_{e_{1}, v}(A)=m_{1}\left(A^{v}\right)>|t|\right\} .
$$

Given $u \in \mathbb{S}^{d-1}$, define reflection through u^{\perp} by $R_{u}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ by $R_{u}(x):=$ $x-2\langle x, u\rangle u$.

For example, $R_{e_{j}}(x)=x-2 x_{j} e_{j}$ i.e. $R_{e_{i}}(x)_{j}=x_{j}$ for $j \neq i$ and $R_{e_{i}}(x)_{i}=-x_{i}$.

Note also that $R_{u} \mathfrak{s}_{u}(A)=\mathfrak{s}_{u}(A)$.

14.2 Steiner symmetrization proposition

Suppose that $A \in \mathcal{B}\left(\mathbb{R}^{d}\right)_{+}$, then
(o) $U \mathfrak{s}_{u}(A)=\mathfrak{s}_{U u}(U A)$ for $U \in \operatorname{hom}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ an isometry;
(i) $\mathfrak{s}_{u}(A)$ is Lebesgue measurable and $m\left(\mathfrak{s}_{u}(A)\right)=m(A)$;
(ii) $\operatorname{diam} \mathfrak{s}_{u}(A) \leq \operatorname{diam} A$;
(iii) if $u \perp u^{\prime}$ then $\mathfrak{s}_{u}\left(R_{u^{\prime}} A\right)=R_{u^{\prime}} \mathfrak{s}_{u}(A)$.

Proof of (o):
$U \circ L_{u, v}(t)=U v+t U u=L_{U u, U v}(t)$ whence

$$
\lambda_{u, v} \circ U^{-1}=m \circ\left(U \circ L_{u, v}\right)^{-1}=m \circ L_{U u, U v}^{-1}=\lambda_{U u, U v}
$$

and, setting $a=U u$,

$$
\begin{aligned}
U \mathfrak{s}_{u}(A) & =\left\{U v+t U u: v \perp u, \lambda_{u, v}(A)>0,|t|<\frac{1}{2} \lambda_{u, v}(A)\right\} \\
& =\left\{b+t a: b \perp a, \lambda_{U^{-1} a, U^{-1} b}(A)>0,|t|<\frac{1}{2} \lambda_{U^{-1} a, U^{-1} b}(A)\right\} \\
& =\left\{b+t a: b \perp a, \lambda_{a, b}(U A)>0,|t|<\frac{1}{2} \lambda_{a, b}(U A)\right\} \\
& =\mathfrak{s}_{a}(U A)=\mathfrak{s}_{U u}(U A) . \not \square
\end{aligned}
$$

Proof of (i): By (o), WLOG $u=e_{1}:=(1,0, \ldots, 0) \cdot e_{1}^{\perp}=\{0\} \times \mathbb{R}^{d-1}$ and for $v \in e_{1}^{\perp}$,

$$
L_{e_{1}, v}(t)=(t, v), \lambda_{e_{1}, v}(A)=m_{1}\left(A_{v}\right)
$$

where $A_{v}:=\{t \in \mathbb{R}:(t, v) \in A\}$.
By Fubini's theorem, $F: \mathbb{R}^{d-1}=e_{1}^{\perp} \rightarrow[0, \infty), F(x):=m\left(A_{x}\right)$ is measurable, whence

$$
\mathfrak{s}_{e_{1}}(A)=\left\{(t, x): x \in e_{1}^{\perp},|t|<F(x)\right\}
$$

is measurable.

By Fubini's theorem,

$$
m\left(\mathfrak{s}_{e_{1}}(A)\right)=\int_{e_{1}^{\perp}} m\left(\mathfrak{s}_{e_{1}}(A)_{v}\right) d v=\int_{e_{1}^{\perp}} m\left(A_{v}\right) d v=m(A) .
$$

Exercise No 10

1. Convexity \& Jensen's Inequality. A function $f:(a, b) \rightarrow \mathbb{R}$ is called convex if

$$
f(\alpha x+(1-\alpha) y) \leq \alpha f(x)+(1-\alpha) f(y) \quad \forall x, y \in(a, b), 0 \leq \alpha \leq 1 .
$$

(a) Show that if $f:(a, b) \rightarrow \mathbb{R}$ is convex, then $\forall a<x<y<z<b$,

$$
\frac{f(y)-f(x)}{y-x} \leq \frac{f(z)-f(x)}{z-x} \leq \frac{f(z)-f(y)}{z-y}
$$

whence f has non-decreasing, one-sided derivatives

$$
f_{ \pm}^{\prime}(x):=\lim _{h \rightarrow 0+} \frac{f(x \pm h)-f(x)}{h} \forall x \in(a, b) .
$$

Show by example that maybe $f_{+}^{\prime}(x) \neq f_{-}^{\prime}(x)$.
(b) Show that the function $f:(a, b) \rightarrow \mathbb{R}$ is convex iff

$$
\begin{aligned}
& \forall x \in(a, b), \exists g(y)=\alpha y+\beta \text { such that } \\
& \qquad g(x)=f(x), \& g(y) \leq f(y) \forall y \in(a, b) .
\end{aligned}
$$

(c) Prove Jensen's Inequality:

Let $f:(a, b) \rightarrow \mathbb{R}$ be convex, (X, \mathcal{B}, m) be a probability space, and $F: X \rightarrow(a, b)$ be integrable on X, then

$$
f\left(\int_{X} F d m\right) \leq \int_{X} f \circ F d m
$$

2. Which inequality?

Let (X, \mathcal{B}, μ) and (Y, \mathcal{C}, ν) be probability spaces, and let $m: \mathcal{B} \otimes \mathcal{C} \rightarrow$ $[0,1]$ be the product measure.

Suppose that $f: X \times Y \rightarrow[0, \infty)$ is $\mathcal{B} \otimes \mathcal{C}$-measurable, $1<p<\infty$ and for $x \in X$ define $f_{x}: Y \rightarrow[0, \infty)$ by $f_{x}:=f(x, y)$.

Which of the following (if any) is true:

$$
\|f\|_{L^{p}(m)} \leq \int_{X}\left\|f_{x}\right\|_{L^{p}(\nu)} d \mu(x), \quad \text { or }\|f\|_{L^{p}(m)} \geq \int_{X}\left\|f_{x}\right\|_{L^{p}(\nu)} d \mu(x) ?
$$

When is there equality?

3. σ-finiteness and separability.

Let (X, \mathcal{B}, m) be a measure space.
(i) Show that m is σ-finite iff $\exists f \in L^{1}(m), f>0$ a.e..
(ii) Suppose that m is finite. Show that $L^{1}(m)$ is separable (as a Banach space) iff the measure algebra of (X, \mathcal{B}, m) is separable (as in exercise 3.3).

4. Clarkson's parrallelogram inequalities.

Let (X, \mathcal{B}, m) be a σ-finite measure space, and let $f, g \in L^{p}(m)$. Prove that

$$
\|f+g\|_{p}^{p}+\|f-g\|_{p}^{p}\left\{\begin{array}{l}
\leq 2\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right) \text { for } p \in[1,2] \\
\geq 2\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right) \text { for } p \in[2, \infty)
\end{array}\right.
$$

and that for $p \neq 2, f, g \in L^{p}$, there is equality in the relevant inequality iff $f g=0$ a.e..
Hints (i) By convexity, for $a>0, t>1$,

$$
2 t^{a} \quad \begin{cases}<(t-1)^{a}+(t+1)^{a} & a>1 \\ >(t-1)^{a}+(t+1)^{a} & a<1\end{cases}
$$

Set $f_{p}(t):=(t-1)^{p}+(t+1)^{p}-2 t^{p}-2$, then $f_{p}(1)=2^{p}-4>0(p>2)$ and $<0(p<2)$. Also $f_{p}^{\prime}(t)>0 \forall t>1(p>2)$ and $f_{p}^{\prime}(t)<0 \forall t>1(p<2)$. Thus $f_{p}(t)>0 \forall t>1 \quad(p>2)$ and $f_{p}(t)<0 \forall t>1 \quad(p<2)$.
Week \# 11.
Proof of (ii): Assume WLOG that A is closed and bounded and (by (o)) that $u+e_{1}$.

Fix $\varepsilon>0, x, y \in \mathfrak{s}_{e_{1}}(A)$ with $\operatorname{diam} \mathfrak{s}_{e_{1}}(A)<\|x-y\|_{2}+\varepsilon$.
Set $x^{\prime}:=\left(x_{2}, \ldots, x_{d}\right), y^{\prime}:=\left(y_{2}, \ldots, y_{d}\right)$, then $\left(0, x^{\prime}\right),\left(0, y^{\prime}\right) \perp e_{1}$. Set

$$
\begin{aligned}
& \underline{x}:=\inf \left\{t:\left(t, x^{\prime}\right) \in A\right\}, \bar{x}:=\sup \left\{t:\left(t, x^{\prime}\right) \in A\right\} \\
& \underline{y}:=\inf \left\{t:\left(t, y^{\prime}\right) \in A\right\}, \bar{y}:=\sup \left\{t:\left(t, y^{\prime}\right) \in A\right\}
\end{aligned}
$$

Suppose (WLOG) that $\bar{y}-\underline{x} \geq \bar{x}-\underline{y}$, then

$$
\begin{aligned}
\bar{y}-\underline{x} & \geq \frac{1}{2}(\bar{y}-\underline{x})+\frac{1}{2}(\bar{x}-\underline{y}) \\
& =\frac{1}{2}(\bar{y}-\underline{y})+\frac{1}{2}(\bar{x}-\underline{x}) \\
& \geq \frac{1}{2} m_{1}\left(A_{y^{\prime}}\right)+\frac{1}{2} m_{1}\left(A_{x^{\prime}}\right) \\
& \geq\left|y_{1}\right|+\left|x_{1}\right| \geq\left|x_{1}-y_{1}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{diam} \mathfrak{s}_{e_{1}}(A)-\varepsilon & <\|x-y\|_{2} \\
& =\sqrt{\left\|x^{\prime}-y^{\prime}\right\|_{2}^{2}+\left|x_{1}-y_{1}\right|^{2}} \\
& \leq \sqrt{\left\|x^{\prime}-y^{\prime}\right\|_{2}^{2}+(\bar{y}-\underline{x})^{2}} \\
& =\left\|\left(\underline{x}, x_{2}, \ldots, x_{d}\right)-\left(\bar{y}, y_{2}, \ldots, y_{d}\right)\right\|_{2} \\
& \leq \operatorname{diam} A . \not \square(\mathrm{ii})
\end{aligned}
$$

Proof of (iii): Note that $R_{u^{\prime}}$ is an isometry, $R_{u^{\prime}}^{-1}=R_{u^{\prime}}$ and if $u^{\prime} \perp u$, then $\left.R_{u^{\prime}}\right|_{u^{\prime}} \equiv$ Id. Thus by (o), for $u \perp u^{\prime}$,

$$
R_{u^{\prime} \mathfrak{s}_{u}}(A)=\mathfrak{s}_{R_{u^{\prime}} u}\left(R_{u^{\prime}} A\right)=\mathfrak{s}_{u}\left(R_{u^{\prime}} A\right) . \quad \nexists(\mathrm{iii})
$$

Proof of the isodiametric inequality
Set $A_{0}:=A, A_{i}:=\mathfrak{s}_{e_{i}}\left(A_{i-1}\right) \quad(1 \leq i \leq d)$, then $\operatorname{diam} A_{d} \leq \operatorname{diam} A$ and $m\left(A_{d}\right)=m(A)$.

Next $R_{e_{i}} \circ R_{e_{j}}=R_{e_{j}} \circ R_{e_{i}} \forall i, j$ whence

$$
R_{e_{k}} A_{k+1}=R_{e_{k}} \mathfrak{s}_{e k+1}\left(A_{k}\right)=\mathfrak{s}_{e k+1}\left(R_{e_{k}} A_{k}\right)=A_{k+1} \&
$$

by induction, using

$$
R_{e_{k}} A_{k+r+1}=R_{e_{k}} \mathfrak{s}_{e k+r+1}\left(A_{k+1}\right)=\mathfrak{s}_{e k+r+1}\left(R_{e_{k}} A_{k+r}\right)=A_{k+r},
$$

we see that $\left.R_{e_{k}} A_{d}=A_{d} \forall 1 \leq k \leq d\right)$ whence

$$
\begin{gathered}
-A_{d}=A_{d} ; \Longrightarrow \quad A_{d} \subseteq B\left(0, \frac{\operatorname{diam} A_{d}}{2}\right) \& \\
m(A)=m\left(A_{d}\right) \leq m(B(1))\left(\frac{\operatorname{diam} A_{d}}{2}\right)^{d} \leq m(B(1))\left(\frac{\operatorname{diam} A}{2}\right)^{d} .
\end{gathered}
$$

Hausdorff measures.

Let (X, d) be a metric space. For $A \subset X$, let $|A|=\operatorname{diam} A:=\sup _{x, y \in A} d(x, y)$.
A gauge function is a function $a:[0, \infty) \rightarrow[0, \infty)$ continuous and strictly increasing, and satisfying $a(0)=0$.

Given a gauge function a, define, for $\varepsilon>0$, and $A \subset X$,

$$
\begin{gathered}
H_{a}^{(\varepsilon)}(A):=\inf \left\{\sum_{k=1}^{\infty} a\left(\left|A_{k}\right|\right): A \subset \bigcup_{k=1}^{\infty} A_{k},\left|A_{k}\right|<\varepsilon \forall k \geq 1\right\} ; \\
H_{\mathbb{S}, a}^{(\varepsilon)}(A):=\inf \left\{\sum_{k=1}^{\infty} a\left(\left|B\left(x_{k}, r_{k}\right)\right|\right): A \subset \bigcup_{k=1}^{\infty} B\left(x_{k}, r_{k}\right), \quad r_{k}<\varepsilon \forall k \geq 1\right\}
\end{gathered}
$$

It follows that

$$
H_{a}^{(\varepsilon)}(A) \uparrow H_{a}(A), H_{\mathbb{S}, a}^{(\varepsilon)}(A) \uparrow H_{\mathbb{S}, a}(A) \quad \text { as } \varepsilon \downarrow 0
$$

The set functions $H_{a}, H_{\mathbb{S}, a}$ are known as Hausdorff measure and spherical measure (respectively) on (X, d) with gauge function a.

- $H_{a} \leq H_{\mathbb{S}, a} \leq \sup _{t>0} \frac{a(2 t)}{a(t)} H_{a}$.

Proof $\quad H_{a} \leq H_{\mathbb{S}, a} \because$ the inf is on a supset.
$H_{\mathbb{S}, a} \leq \sup _{t>0} \frac{a(2 t)}{a(t)} H_{a} \because x \in A \subset X \Longrightarrow A \subset B(x,|A|)$.
Note that in \bullet, one can replace $\sup _{t>0} \frac{a(2 t)}{a(t)}$ with $\lim _{\varepsilon \rightarrow 0+} \sup _{0<t<\varepsilon} \frac{a(2 t)}{a(t)}$.

Hausdorff measures as measures.

As shown in week 2 , for any gauge function a, the Hausdorff measures $H_{a}, H_{a, \mathbb{S}}: 2^{X} \rightarrow[0, \infty]$ are metric outer measures
i.e. $A, B \subset X, d(A, B):=\inf _{x \in A, y \in B} d(x, y)>0 \Rightarrow \bar{\mu}(A \cup B)=\bar{\mu}(A)+\bar{\mu}(B)$,
whence by Caratheodory's theorem

$$
\mathcal{B}(X) \subset \mathcal{M}\left(H_{a}\right) \cap \mathcal{M}\left(H_{a, \mathbb{S}}\right) .
$$

Hausdorff dimension.

Let (X, d) be a metric space. For $\alpha>0$, let $a_{\alpha}(t):=t^{\alpha}$, and let $H_{\alpha}:=H_{a_{\alpha}}$ on (X, d). Note that if $0<\beta<\alpha$, then

$$
H_{a_{\alpha}}^{(\varepsilon)}(A) \leq \varepsilon^{\alpha-\beta} H_{a_{\beta}}^{(\varepsilon)}(A) \forall \varepsilon>0, A \subset X
$$

therefore, for $A \subset X, 0<\beta<\alpha$,

$$
H_{\alpha}(A)>0 \Rightarrow H_{\beta}(A)=\infty, \& H_{\beta}(A)<\infty \Rightarrow H_{\alpha}(A)=0
$$

It follows that

$$
\exists \mathrm{H}-\operatorname{dim}(A) \in[0, \infty] \ni H_{\alpha}(A)=\left\{\begin{array}{cc}
\infty & \forall \alpha<\mathrm{H}-\operatorname{dim}(A), \\
0 & \forall \alpha>\mathrm{H}-\operatorname{dim}(A) .
\end{array}\right.
$$

The number $\mathrm{H}-\mathrm{dim}(A)$ is called the Hausdorff dimension of the set A.

Quasi-isometry of metric spaces and Hausdorff measures.

Let $M \geq 1$. A M-quasi-isometry of the metric spaces (X, d) and (Y, ρ) is a bijection $T: X \rightarrow Y$ satisfying

$$
\frac{d\left(x, x^{\prime}\right)}{M} \leq \rho\left(T x, T x^{\prime}\right) \leq M d\left(x, x^{\prime}\right) \quad \forall x, x^{\prime} \in X
$$

A surjective map is a Lipschitz equivalence iff it is a M-quasi-isometry for some $M \geq 1$.

Quasi-isometry lemma

Suppose that (X, d) and (Y, ρ) are metric spaces, that $M \geq 1$ and that $a:[0, \infty) \rightarrow[0, \infty)$ is a gauge function with $\frac{a(M t)}{a(t)} \leq K \forall t>0$.

If $A \subset X$ and $T: A \rightarrow T A \subset Y$ is an M-quasi-isometry, then

$$
H_{a, \rho}(T A)=K^{ \pm 1} H_{a, d}(A), \quad H_{\mathbb{S}, a, \rho}(T A)=K^{ \pm 1} H_{\mathbb{S}, a, d}(A)
$$

The proof is straightfoward and standard.
The quasi-isometry lemma will be useful when $\sup _{t>0} \frac{a(M t)}{a(t)} \rightarrow 1$ as $M \rightarrow 1$.

Hausdorff measures on \mathbb{R}^{d}.
Let $a_{s}(t):=t^{s} \quad(s, t>0)$.
Theorem (Norm-spherical measure on \mathbb{R}^{d})
Let $\|\cdot\|$ be a norm on \mathbb{R}^{d}, then $H_{\mathbb{S}, a_{d},\|\cdot\|}=\frac{2^{d}}{m_{\mathbb{R}^{d}}(B(1))} m_{\mathbb{R}^{d}}$ where $B(r)=$ $B(0, r)$ where $B(z, r):=\left\{x \in \mathbb{R}^{d}:\|x-z\| \leq r\right\}$.

Proof Both measures are translation invariant and σ-finite so $H_{\mathbb{S}, a, d}=$ $c m_{\mathbb{R}^{d}}$ for some $c>0$.

Suppose that $A \subset \cup_{k=1}^{\infty} B\left(z_{k}, r_{k}\right)$, then

$$
\sum_{k=1}^{\infty}\left(2 r_{k}\right)^{d}=\frac{2^{d}}{m(B(1))} \sum_{k=1}^{\infty} m\left(B\left(z_{k}, r_{k}\right)\right) \geq \frac{2^{d} m(A)}{m(B(1))}
$$

whence $c \geq \frac{2^{d}}{m(B(1))}$.
Let $\varepsilon, \delta>0$. By the Vitali covering theorem, \exists disjoint balls $B\left(x_{k}, r_{k}\right)(k \geq$ 1) such that $r_{k}<\delta$ and $A \subset \bigcup_{k=1}^{\infty} B\left(x_{k}, r_{k}\right) \bmod m$ and $m\left(\cup_{k=1}^{\infty} B\left(x_{k}, r_{k}\right) \backslash\right.$ $A)<\varepsilon$. It follows that

$$
\begin{aligned}
m(A)+\varepsilon & >\sum_{k=1}^{\infty} m\left(B\left(x_{k}, r_{k}\right)\right) \\
& =m(B(1)) \sum_{k=1}^{\infty} r_{k}^{d} \\
& \geq \frac{m(B(1))}{2^{d}} H_{\mathbb{S}, a_{d},\|\cdot\|}^{(\delta)}(A) .
\end{aligned}
$$

Round Hausdorff measure Theorem

Let $a_{d}(t):=t^{d}$, then on $\mathbb{R}^{d}, H_{\mathbb{S}, a_{d},\|\cdot\|_{2}}=H_{a_{d},\|\cdot\|_{2}}$.

- In general, if $\|\cdot\|$ is a norm on \mathbb{R}^{d} we have that on $\mathbb{R}^{d}, H_{\mathbb{S}, a_{d},\|\cdot\|}=$ $c H_{a_{d}\|\cdot\|}$ for some $1 \leq c \leq 2^{d}$.
- Besicovitch showed ${ }^{10}$ that $\exists A \in \mathcal{B}\left(\mathbb{R}^{2}\right)$ so that $H_{\mathbb{S}, a_{1},\|\cdot\| \|_{2}}(A)>$ $H_{a_{1},\|\cdot\|_{2}}(A)$.
Proof of the round Hausdorff measure theorem
Since $H_{a_{d}} \leq H_{\mathbb{S}, a_{d}}=\frac{2^{d}}{m(B(1))} m$, it suffices to show that

$$
\frac{m(B(1))}{2^{d}} H_{a_{d}} \geq m
$$

[^9]Suppose that $A \subset \cup_{n=1}^{\infty} A_{n}$, then by the isodiametric inequality,

$$
m(B(1)) \sum_{n=1}^{\infty}\left(\frac{\operatorname{diam} A_{n}}{2}\right)^{d} \geq \sum_{n=1}^{\infty} m\left(A_{n}\right) \geq m(A)
$$

Thus,

$$
\frac{m(B(1))}{2^{d}} H_{a_{d}}(A) \geq m(A)
$$

Hausdorff measures on submanifolds and the Area Formula.

The "surface area formula" says that if $U \subset \mathbb{R}^{2}$ and $T: U \rightarrow \mathbb{R}^{3}$ is $1-1, C^{1}$ and regular in the sense that $r(D T(x))=2 \forall x \in U$, then the surface area of a subset of $T U \subset \mathbb{R}^{3}$ is defined in some calculus courses by

$$
\begin{equation*}
\operatorname{Area}(T A):=\int_{A}\left\|\frac{\partial T}{\partial x} \times \frac{\partial T}{\partial y}\right\|_{2} d m \quad(A \in \mathcal{B}(U)) \tag{II}
\end{equation*}
$$

- Let $k \leq d$. We define k-dimensional "area" in \mathbb{R}^{d} to be

$$
\sigma_{k}=\sigma_{d, k}=\frac{m_{\mathbb{R}^{k}}(B(1))}{2^{k}} H_{a_{k},\|\cdot\|_{2}}
$$

where $a_{k}(t)=t^{k}$ and $B(1):=B_{\|\cdot\|_{2}}(0,1)$. This has the property that

$$
\sigma_{k}(A \times\{c\})=m_{\mathbb{R}^{k}}(A) \quad\left(A \in \mathcal{B}\left(\mathbb{R}^{k}\right), c \in \mathbb{R}^{d-k}\right.
$$

In this section we prove a generalization of the "surface area formula".

Lipschitz regularity.

Suppose that $k<d, U \subset \mathbb{R}^{k}$ is a domain and $T: U \rightarrow T U \subset \mathbb{R}^{d}$ is a Lipschitz equivalence (i.e. M-quasi-isometry), then

- by the quasi-isometry lemma, $\sigma_{k}(T A)=M^{ \pm k} m_{\mathbb{R}^{k}}(A) \forall U \in \mathcal{B}(U)$;
- by Rademacher's theorem $m\left(U \backslash U_{\nabla}\right)=0$ where

$$
U_{\nabla}:=\{x \in U: T \text { diffble. at } x\}
$$

- for $x \in U_{\nabla}, h \in \mathbb{R}^{k}$,

$$
\|D T(x) h\|_{2} \underset{t \rightarrow 0+}{\leftrightarrows} \frac{\|T(x+t h)-T(x)\|_{2}}{t}=M^{ \pm 1}\|h\|_{2}
$$

whence $r(D T(x))=k$.

Linear Algebra.

Suppose that $k \leq d$ and that $T \in \operatorname{hom}\left(\mathbb{R}^{k}, \mathbb{R}^{d}\right)$ is regular (i.e. injective), then $T^{*} \circ T \in \operatorname{hom}\left(\mathbb{R}^{k}, \mathbb{R}^{k}\right)$ is regular and we define the Jacobian $\Delta(T):=\sqrt{\operatorname{det} T^{*} \circ T} \in \mathbb{R}_{+}$. In case $k=d$, we have $\Delta(T):=|\operatorname{det} T|$.
The area formula
Suppose that $k<d, U \subset \mathbb{R}^{k}$ is a domain and $T: U \rightarrow T U \subset \mathbb{R}^{d}$ is a Lipschitz equivalence, then

$$
\sigma_{k}(T A)=\int_{A} \Delta(D T) d m_{\mathbb{R}^{k}} \forall A \in \mathcal{B}(U)
$$

- The area formula generalizes (II): if $T \in \operatorname{hom}\left(\mathbb{R}^{2}, \mathbb{R}^{3}\right)$ is of form $T(x, y):=x a+y b$ where $a, b \in \mathbb{R}^{3}$, then (!)

$$
\Delta(T):=\sqrt{\left|\operatorname{det}\left(T^{*} T\right)\right|}=\|a \times b\|_{2} .
$$

We first prove the area formula in case $T \in \operatorname{hom}\left(\mathbb{R}^{k}, \mathbb{R}^{d}\right)$. We'll need the

Polar decomposition lemma

Suppose that $k \leq d$ and that $T \in \operatorname{hom}\left(\mathbb{R}^{k}, \mathbb{R}^{d}\right)$ has rank k, then $\exists U \in \operatorname{Hom}\left(\mathbb{R}^{k}, \mathbb{R}^{d}\right)$ orthogonal and $S \in \operatorname{Hom}\left(\mathbb{R}^{k}, \mathbb{R}^{k}\right)$ symmetric, nonsingular such that $T=U \circ S$ and $\Delta(S)=\Delta(T)$.

Proof Let $C:=T^{*} \circ T \in \operatorname{Hom}\left(\mathbb{R}^{k}, \mathbb{R}^{k}\right)$, then C is symmetric and positive definite and \exists an orthonormal basis $\left\{z_{i}\right\}_{i=1}^{k} \subset \mathbb{R}^{k}$ with $C\left(z_{i}\right)=$ $\lambda_{i}^{2} z_{i}$ where $\lambda_{i} \neq 0 \quad(1 \leq i \leq k)$.

Now set $x_{j}:=\frac{1}{\lambda_{j}} T z_{j} \in \mathbb{R}^{d} \quad(1 \leq j \leq k)$.
We claim that $\left\{x_{i}\right\}_{i=1}^{k} \subset \mathbb{R}^{d}$ is orthonormal. To see this,

$$
\begin{aligned}
\left\langle x_{i}, x_{j}\right\rangle & =\frac{1}{\lambda_{i} \lambda_{j}}\left\langle T z_{i}, T z_{j}\right\rangle=\frac{1}{\lambda_{i} \lambda_{j}}\left\langle C z_{i}, z_{j}\right\rangle \\
& =\frac{\lambda_{i}}{\lambda_{j}}\left\langle z_{i}, z_{j}\right\rangle=\delta_{i, j}:=\left\{\begin{array}{cc}
0 & i \neq j, \\
1 & i=j .
\end{array}\right.
\end{aligned}
$$

We claim that the required decomposition is $T=U \circ S$ where $S z_{j}:=$ $\lambda_{j} z_{j}, U z_{j}:=x_{j}$.

To see that U is orthogonal, $\left\langle U z_{i}, U z_{j}\right\rangle=\left\langle x_{i}, x_{j}\right\rangle=\delta_{i, j}$.
To see that $T=U \circ S$,

$$
U S z_{i}=\lambda_{i} U z_{i}=\lambda_{i} x_{i}=: T z_{i} .
$$

To see $\operatorname{det} S^{2}=\operatorname{det} T^{*} \circ T$,

$$
T^{*} \circ T=(U \circ S)^{*} \circ U \circ S=S^{*} \circ U^{*} \circ U \circ S=S^{2} . \not \square
$$

Proof of the area formula in case $T \in \operatorname{hom}\left(\mathbb{R}^{k}, \mathbb{R}^{d}\right)$
By the polar decomposition, $T=U \circ S$ where $U \in \operatorname{hom}\left(\mathbb{R}^{k}, \mathbb{R}^{d}\right)$ is orthogonal; and $S \in \operatorname{hom}\left(\mathbb{R}^{k}, \mathbb{R}^{k}\right)$ is symmetric with $\Delta(S)=\Delta(T)$. It follows that

$$
\begin{aligned}
\sigma_{k}(T A) & =\frac{m_{\mathbb{R}^{k}}(B(1))}{2^{k}} H_{a_{k},\|\cdot\|_{2}}(T A) \\
& =\frac{m_{\mathbb{R}^{k}}(B(1))}{2^{k}} H_{a_{k},\|\cdot\| \|_{2}}(U S A) \\
& =\frac{m_{\mathbb{R}^{k}}(B(1))}{2^{k}} H_{a_{k},\|\cdot\| \|_{2}}(S A) \because U \text { is an isometry; } \\
& =m_{\mathbb{R}^{k}}(S A) \text { by the norm-spherical and round Hausdorff measure theorems } \\
& =\Delta(S) m_{\mathbb{R}^{k}}(A) \text { by the change of variables formula } \\
& =\Delta(T) m_{\mathbb{R}^{k}}(A) . \quad \square
\end{aligned}
$$

Proof of the area formula in general:
As before, let

$$
U_{\nabla}:=\{x \in U: T \text { diffble. at } x\}
$$

then $m\left(U \backslash U_{\nabla}\right)=0$.
Suppose that $T: U \rightarrow T U$ is a M-quasi-isometry, then

- $\|D T(x) h\|_{2}=M^{ \pm 1}\|h\|_{2} \forall x \in U_{\nabla}, h \in \mathbb{R}^{k}$.

Let $A \in \mathcal{B}(U), 0<m(A)<\infty, A \subset U_{\nabla}$ and fix $\varepsilon \in(0,1)$.

- By Luzin's theorem and the uniform differentiation lemma, $\exists F \subset A$ closed and $\eta>0$ such that
(i) $\sigma_{k}(T(A \backslash F)), \int_{A \backslash F} \Delta(D T) d m<\varepsilon$;
(ii) for $y, z \in F,\|y-z\|_{2} \leq \eta$,

$$
\begin{aligned}
& \|D T(y) v-D T(z) v\|_{2} \leq \frac{\varepsilon}{2}\|v\|_{2} \forall v \in \mathbb{R}^{d}, \& \\
& |\log \Delta(D T(y))-\log \Delta(D T(z))|<\varepsilon
\end{aligned}
$$

and such that for $x \in F,\|h\|<\eta$:
(iii) $\|T(x+h)-T(x)-D T(x) h\|_{2}<\frac{\varepsilon}{2 M}\|h\|_{2} \leq \frac{\varepsilon}{2}\|D T(x) h\|_{2}$,
whence (!)
(iv) $\|T(x+h)-T(x)\|_{2}=\left(1 \pm \frac{\varepsilon}{2}\right)\|D T(x) h\|_{2}$.

- For $x \in F, y, z \in B(x, \eta) \cap F$,

$$
\begin{aligned}
\|T(y)-T(z)\|_{2} & \stackrel{(i v)}{=}\left(1 \pm \frac{\varepsilon}{2}\right)\|D T(z)(y-z)\|_{2} \\
& \stackrel{(i i)}{=}\left(1 \pm \frac{\varepsilon}{2}\right)^{2}\|D T(x)(y-z)\|_{2} \\
& =e^{ \pm 2 \varepsilon}\|D T(x)(y-z)\|_{2} .
\end{aligned}
$$

- Now fix $x \in F, 0<\delta<\eta$. We claim that

$$
R:=T \circ D T(x)^{-1}: D T(x)(B(x, \delta) \cap F) \rightarrow T(B(x, \delta) \cap F)
$$

is a $e^{2 \varepsilon}$-quasi-isometry.
Proof

$$
\begin{aligned}
\|R(D T(x) y)-R(D T(x) z)\|_{2} & =\|T(y)-T(z)\|_{2} \\
& =e^{ \pm 2 \varepsilon}\|D T(x) y-D T(x) z\|_{2} . \not \square
\end{aligned}
$$

By the quasi-isometry lemma, (ii) and the area formula for linear transformations, $\forall C \in \mathcal{B}(B(x, \delta) \cap F)$,

$$
\begin{aligned}
\sigma_{k}(T C) & =\sigma_{k}(R D T(x) C)=e^{ \pm 2 k \varepsilon} \sigma_{k}(D T(x) C) \\
& =e^{ \pm 2 k \varepsilon} \Delta(D T(x)) m(C) \\
& =e^{ \pm 4 k \varepsilon} \int_{C} \Delta(D T) d m .
\end{aligned}
$$

- Now fix G open, $A \subset G \subset U, m(G \backslash F)<\frac{\varepsilon}{M}$.

$$
\mathcal{C}:=\{B(x, \delta): x \in F, 0<\delta<\eta, B(x, \delta) \subset G\} .
$$

- By Vitali's covering theorem, $\exists B_{k}=B\left(x_{k}, r_{k}\right) \in \mathcal{C}(k \geq 1)$ disjoint st $F \subset H:=\cup_{k=1}^{\infty} B_{k} \bmod m_{k}$ and

$$
\begin{aligned}
\sigma_{k}(T(G \backslash F)), \quad \int_{G \backslash F} \Delta(D T) d m<\varepsilon \\
\begin{aligned}
\sigma_{k}(T F) & =\sum_{n=1}^{\infty} \sigma_{k}\left(T\left(B_{n} \cap F\right)\right) \\
& =e^{ \pm 4 k \varepsilon} \sum_{n=1}^{\infty} \int_{B_{n} \cap F} \Delta(D T) d m \\
& =e^{ \pm 4 k \varepsilon} \int_{F} \Delta(D T) d m
\end{aligned}
\end{aligned}
$$

We obtain $\sigma_{k}(T A) \pm \varepsilon=e^{ \pm 4 k \varepsilon}\left(\int_{A} \Delta(D T) d m \pm \varepsilon\right)$. The area formula follows as $\varepsilon \rightarrow 0$. \square

Exercise №-11

1. Hausdorff dimension of the Cantor set.

Let $\Omega=\{0,1\}^{\mathbb{N}}$ and let $\pi: \Omega \rightarrow[0,1]$ be defined by $\pi(\omega):=\sum_{n=1}^{\infty} \frac{2 \omega_{n}}{3^{n}}$. The set $C:=\pi(\Omega)$ is called the Cantor set.

In this exercise, you show that

$$
\mathrm{H}-\operatorname{dim}(C)=\frac{\log 2}{\log 3}
$$

For $s>0$, let $H_{s}=H_{a_{s}}$ on \mathbb{R} equipped with the metric $d(x, y)=|x-y|$ where $a_{s}(t)=t^{s}$ and let $h=\frac{\log 2}{\log 3}$.
(i) Show that $H_{h}(C) \leq 1$.

Hint: $\forall n \geq 1, C \subset \cup_{\underline{\varepsilon} \in\{0,2\}^{n}} I(\underline{\varepsilon})$ where for $\underline{\varepsilon}=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{0,1,2\}^{n}, I(\underline{\varepsilon})=[x(\underline{\varepsilon}), x(\underline{\varepsilon})+$ $\left.\frac{1}{3^{n}}\right], x(\underline{\varepsilon})=\sum_{k=1}^{n} \frac{\varepsilon_{k}}{3^{k}}$.

Let $P=\Pi\left(\frac{1}{2}, \frac{1}{2}\right) \in \mathcal{P}(\Omega)$ be symmetric product measure and define Cantor-Lebesgue measure $\mu:=P \circ \pi^{-1} \in \mathcal{P}(C)$.
(ii) Show that $\mu(I) \leq 4|I|^{h}$ for any subinterval $I \subset[0,1]$.
(iii) Show that $H_{h}(C) \geq \frac{1}{4}$.
(iv) Show that $\mathrm{H}-\operatorname{dim}(C)=h$.

2. Cantor-Lebesgue theorem.

In this exercise, you continue the previous exercise and show that $\left.H_{h}\right|_{C} \equiv \mu$.

The first step is to show that
-1 $H_{h}(C)=1$
The order of an interval $I(\underline{\varepsilon})$ is n where $\underline{\varepsilon} \in\{0,1,2\}^{n}$, and the interval $I(\underline{\varepsilon})$ is basic if $\underline{\varepsilon} \in\{0,2\}^{n}$ and complementary otherwise.

Call an interval $[a, b]$ compound-basic if $\exists n, n^{\prime} \geq 1, \underline{\varepsilon} \in\{0,2\}^{n}, \underline{\varepsilon}^{\prime} \in$ $\{0,2\}^{n^{\prime}}$ so that $a=x(\underline{\varepsilon})$ and $b=x\left(\underline{\varepsilon}^{\prime}\right)+\frac{1}{3^{n^{\prime}}}$.
a) Show that if $I \subset[0,1]$ is a compound-basic interval, then $I \cap C=\cup_{n=1}^{N} I\left(\varepsilon^{(n)}\right) \cap C$ where $I\left(\varepsilon^{(1)}\right), \ldots, I\left(\varepsilon^{(N)}\right)$ are basic intervals (not necessarily of the same order).

We'll need such a decomposition together with $|I|^{h} \geq \sum_{n=1}^{N}\left|I_{n}\right|^{h}$.
b) For $I \subset[0,1]$ a compound-basic interval, let $\#(I)$ be the minimal $N \geq 1$ so that $I \cap C=\cup_{n=1}^{N} I_{n}$ where I_{1}, \ldots, I_{N} are basic intervals. Show that a compound-basic interval I is basic iff $\#(I)=1$.
c) Show that if $I=[a, d] \subset[0,1]$ is a compound-basic interval with $\#(I)>1, I \cap C=(J \cup K) \cap C$ where $J=[a, b]$ and $K=[c, d]$ are compound-basic intervals with $\#(J), \#(K)<\#(I)$ and $[b, c]$ is a complementary interval with $c-b \geq(b-a),(d-c)$. Show that in this case $|I|^{h} \geq|J|^{h}+|K|^{h}$.

Hint: Choose a complementary interval of maximal length contained in I....
d) Show that if $I \subset[0,1]$ is a compound-basic interval, then $\exists I_{1}, \ldots, I_{N}$ basic intervals so that $I \cap C=\biguplus_{n=1}^{N} I_{n} \cap C$ and $|I|^{h} \geq \sum_{n=1}^{N}\left|I_{n}\right|^{h}$.
Hint: Use c) successively to reduce \#(\cdot).
e) Show that if $I \subset[0,1]$ is a compound-basic interval, then $\forall k \geq 1$ large enough, $I \cap C=\cup_{n=1}^{N_{k}} I_{n}(k) \cap C$ where $I_{1}(k), \ldots, I_{N_{k}}(k)$ are basic intervals of order k and $|I|^{h} \geq \sum_{n=1}^{N_{k}}\left|I_{n}(k)\right|^{h}$.
Hint: If $I=[a, d]$ is basic of order ν then $I \cap C=(J \cup K) \cap C$ where $J=[a, b]$ and $K=[c, d]$ are basic of order $\nu+1, b-a=c-b=d-c$ and $|I|^{h}=|J|^{h}+|K|^{h}$.
f) Show that if I_{1}, I_{2}, \ldots are intervals, $C \subset \bigcup_{k=1}^{\infty} I_{k}$, then $\sum_{k=1}^{\infty}\left|I_{k}\right|^{h} \geq 1$. Conclude that $H_{h}(C)=1$.
Hint: Show first that WLOG, there are only finitely many I_{k} 's and that (WLOG) these are compound-basic. Then "split" using e).

【2 $\left.H_{h}\right|_{C}=\mu$.
a) Show that $H_{h}(C \cap I(\underline{\varepsilon}))=\frac{1}{2^{n}} \forall n \geq 1, \underline{\varepsilon} \in\{0,2\}^{n}$.

Hint: $\varphi_{\underline{\varepsilon}}(C)=I(\underline{\varepsilon}) \cap C \quad \forall \underline{\varepsilon} \in\{0,2\}^{n}$ where $\varphi_{\underline{\varepsilon}}(y):=x(\underline{\varepsilon})+\frac{y}{3^{n}}$.
b) Show that $H_{h}(A)=\mu(A) \forall A \in \mathcal{B}(C)$.

End of coursenotes

[^0]: ${ }^{1}$ Formulated by Yuval Peres while a student at TAU.

[^1]: 2 else $x \notin U_{k}$ and $f_{k}\left(x_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$ for some k

[^2]: ${ }^{3}$ Felix Bernstein, "Zur Theorie der trigonometrischen Reihen", Sitzungsber. Sachs. Akad. Wiss. Leipzig. Math.-Natur. Kl. 60 (1908), 325-338.

[^3]: ${ }^{4} 23 / 11 / 95$

[^4]: ${ }^{5} 30 / 11 / 95$

[^5]: ${ }^{6}$ BC=Borel Cantelli

[^6]: ${ }^{7}$ Revision

[^7]: ${ }^{8}$ The other inclusion also holds. See Halmos' book.

[^8]: 9 Bieberbach, L. Über eine Extremaleigenschaft des Kreises, Jber. DMV, 24 (1915), pp. 247-250

[^9]: ${ }^{10}$ On the fundamental geometrical properties of linearly measurable plane sets of points; Math. Ann. 98 422-464. (1927)

