COURSE NOTES ON MEASURE THEORY

JON AARONSON

Week # 1
§1 CLASSES OF SETS AND SET FUNCTIONS

Semi-rings. Let X be a set. A non-empty class S ¢ 2X is called a
semi-ring if AABeS = AnBeSand A\ B=,C, where N ¢ N
and C1,Cy,...,Cy €S (disjoint).

Example: boxes in R?. A (d-dimensional)box is a Cartesian product
of finite intervals,

d
R=[[li={x=(21,...,2q) e Rz € I}, ¥ k}
k=1

where for each 1 < k <d, I, is a finite interval. Let § = §; denote the
collection of boxes in R?.

1.1 Proposition
S is a semi-ring.

Proof
Evidently, if R, R’ are boxes then so is Rn R’. We show that if R, R’
are boxes then R\ R’ is a finite, disjoint union of (at most 2d) boxes.
To see this write R = [T%., I and R’ = []%, J,. Note that if I, J are
intervals, then I \ J is the disjoint union of at most two intervals. We
obtain that

d
R NR ={xeR:x,¢J, for some 1<l <d}=]JA
=1

where Ay := Hf;ll Lind;xIyNJpx H?zeﬂ I;. Clearly, each Ay is the union
of at most 2 disjoint boxes, and the A, ¢ A (1 < ¢ < d) are disjoint.
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Thus

d 2d

R\RIZUAg:UCk

=1 j=1
where C,...,Cy € S are disjoint. OJ
Semi-Algebras.

Let X be a set. A class S c 2% is called a semi-algebra (of subsets

of X) if
-ABeS = AnBeS;and
-CeS = X~\C-= U{leC’k where N € N and C,C,,...,.Cy € S
(disjoint).
Remark.
The semi-ring of sub-boxes of a finite box in R? is a semi-algebra, but

the semi-ring of all boxes in R? is not.

Cylinder sets in shift spaces.
Let S be a finite set, and let X := SN, Given N > 1, a,...,ay €5,
define the cylinder

[ai,...,an]={zeX: z;=a; YV 1<i<N}.
The length of the cylinder C = [ay,...,ay] is ¢(C) = N.

Proposition 1.2
S :={cylinders} u{@} is a semi-algebra.

Proof

Suppose that a,beS. WLOG f(a) = M </(b) = N and
a=lay,ag,...,ap], b=[b1,by,...,0n]
If 31< k<N with ag # by, then
anb=@eS, axb=a, bxa=beS.
Otherwise
b=lai,...,an,brre1,---,0n] Ca
whence
anb=beS, byna=0ecS&a~b=gecSincase M =N

and in case M < N,

aNb= U [al,...,aM,cM+1,...,cN]. vl
CM+15+CNES, (enr4150-,CN)E(bAr415--,0N)
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Rings and algebras. A non-empty class R c 2X is called a ring if
A BeR = AuB, AnB, ANBeR,

and an algebra (of subsets of X) if in addition, X € R. Note that any
ring R > @.

1.3 Intersection propositions
Let C c 2X then:
R(C) = N R
2X5RoC @ TiNg
is a ring (known as the ring generated by R);
A(C) = N A

2X>4-C an algebra

is an algebra (known as the algebra generated by C).

Note that the ring generated by a semi-ring is an algebra iff the semi-
ring is a semi-algebra.

e Is it true that if R c 2¥X is a ring , then
AMR)=RU{X~A: AcR)?

1.4 Theorem (ring generated by a semi-ring)
Suppose that S c 2X is a semi-ring, then:

R(S)={JCk: neN, Cy,...,C, €S disjoint }.
k=1

Proof
Write

Ro={JCr: neN, C,...,C, S disjoint }.
k=1

Since R(S) is a ring containing S, we have that R(S) > Rg. To show
equality, we prove that Ry is a ring. It is evident that Ry is closed
under intersection and disjoint union.
ﬂ]_ IfA,BER(), then A\BER().

It follows from the semi-ring property that AN C € Ry V A € Ry
and C' € §. Suppose that A, B € Ry and that B = Uj_, C where
{Cr}7_, ¢ S. We have that

A\Cl ERO — A\Cl\CQERO —_— ... —™> A\Cl\"'\Cn:A\BERo.

Q2 If A, BeRy, then AuB e R,.
Here Au B = (AN B)u B a disjoint union of sets in Ro. O
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Finite subcover property.
Let S be a semi-ring of subsets of X. We’ll say that S has the finite
subcover property (FSCP) if

(ﬂ) A, Al, AQ,"'ES,ACUATL
n=1
N
—> 3 NeNsothat Ac A,
n=1

Clopen set proposition If X is a compact, topological space and
S c clopen sets, then S has the finite subcover property.

Proof This follows from the Heine-Borel theorem.

Example 1. Products of finite spaces.
Let 2 = [Tz, Sk where each Sy, is finite.
As above, a cylinder is a set of form

[a1,a9,...,a,]={z€eR: xp=a, V1<k<n}
where a; € S1, as €.5,...,a, €5,. Also as above, the collection

S :={cylinders}

is a semi-algebra. We’ll show

® S has the finite subcover property.

Proof of ®
Define d: £2 x 2 - [0,00) by
0 z=y,
d(x,y>:={ oY

9t(z,y)

T #y.

where t(z,y) ==min{n >1: z, #y,}.
It is not hard to show that ({2,d) is a metric space, and that the
closed ball

B(z, 2,1%) =[z1,..., 2]
Thus, if C' is a cylinder then C' is closed with

1

d—diamC':W.

Note that cylinders are also open (clopen):

2N [eqy...,en] = U [ai,...,aN]
a1€S1,...,aneSN, (a1,...,an)#(c1,....,cN)

is closed being a finite union of closed balls.
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To complete the proof of @, it suffices to show that ({2,d) is a com-
pact metric space.

To see this, let (2(*));51 be a sequence in 2. We’ll show existence of
a convergent subsequence.

There is a subsequence ni(1) < ng(1l) 1 oo and a; € S; so that
L) gy kg1

There is also a subsequence n1(2) < n2(2) 1 0o of ny(1) < ng(1) 1 oo
and ay € Sy so that :L‘;-nk(z)) =a; Vk<I1, j7=1,2.

Continuing, we obtain a sequence of subsequences (each a subse-
quence of the previous) ni(k) < na(k) t oo (k> 1) and a; € Sy,az €
Spy..y €S, so that 2™ =a; v k<1, 1<j<t.

Now diagonalize and set N, = ny(¢), then

N .
x§ U:ajv 1<y<U.

It follows that t(z(N) a) > £ + 1 where a = (a1,a9,...) € S whence
d(g;(Nz)’a) < 24% Z—> 0. ¥

Example 2. Products of countable spaces.
Here, we exhibit an algebra of subsets of X := NN with the finite
subcover property.
Let
Ay ={F,NNF: FcNx{l}, #(F) < oo},
then Ay is an algebra.
An Ay-cylinder in NN is a set of form

[Al,AQ,...,AN] 32{.’EENN: .’L'Z'EAi 4 1SZSN}
where A, Ay, ..., Ax € Ax.

Denote
A:={Ax- cylinders}.

As above, A is an algebra. We claim that
® 4 has the finite subcover property.

Proof of @ We construct a suitable compact topology on NN,

Define d: N x N — [0, 00) by

0 T =1;
dr,y):=1 1 x2y, 1,y22
i r+y, r=1;
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then (N, d) is a compact, metric space.
Define the product metric p: NY¥ x NN - [0, 00) by

S d(xg,y
p(l’,y) ::Z_( ;k k)a
k=1

then (NN p) is a compact, metric space and the collection A is an
algebra of compect, open subsets of NN, Thus A4 has the finite subcover
property. ¥

§2 ADDITIVE SET FUNCTIONS

Let S be a semi-ring. A set function f:S - R is additive if

N N
C, C1,Co,....,Cn eS8, C=JCr = f(C)=3 F(Cy).
k=1 k=1

Example: Volume in R<.
Let S be the semi-ring of boxes in R¢, and define v : § - R by
v(T14., I) = [1%, |Ix| where |I]| denotes the length of I.

1.5 Proposition
The set function v:S — R is additive.

Proof For AcR?and e >0 let NP(A):=#({neZ: ene A}).
Evidently, N{¥ : 28 5 [0, 00] is additive:

N N
() NEV (L Aw) = 3 NED (A
k=1 k=1
Also, for [1¢_, I, c R? a box,
oo d
() NI ) = [TV ().
k=1 k=1
Proof of(§):

d d
{neZ': ene[[L}=][{necZ: enel}

k=1 k=1
whence (§). @
We claim next that
(%) NI (R) — u(R).

Proof By (§) it suffices to prove (#) for d = 1.
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Ng(l)([%b]) = %] - [4]+1~ %2 as e > 0 whence for I c R, I = [a,b]

£

eN(1) <N ([a,b]) — b-a=|l
e—>0+

and V O<5<|—Q,
ENg(l)(])25]\[5(1)([a+6,b—6]) —Oib—a—25=|l|—25. (=)

Now suppose that R, Ry, Ry,...,Ry €S, R =, R, then by ()
and (s),

N N
U(R) ;_)_0+ 5dN€(R) :kz::lngs(Rk) ﬁ;U(R’“)m

Bernoulli set functions on shift space.
Let S be a finite set, X = SN & § = {cylinders}. Fixp; e P(S) (j >
1) and define p: S - [0,1] by

M([alﬁa%“'va]\f]) = gpj(aj)'

1.6 Proposition p:8 — [0,1] is additive.

Proof
Let S, :={CeS: ¢(C)=n}, then A, = A(S,) 1 A:=A(S).

For n > 1,

N
A, ={1JCj: NeN, C,...,Cy €S8, are disjoint}

=1
and we can define u, : A, - [0,1] by
WA= Y ().

CeSn, AC

Evidently p, : A, = [0, 1] is additive.
Next, for k <n we have that Sy c A,, and we claim that u,|s, = p
To see this:

pn([c1, . ex]) = Z (e, o Cry Qpens -y an])

=Y wen e T pia)

Aot yeny an€S j=k‘+1
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To finish, suppose that I = (Y. C where I € S & C c S is a finite
disjoint collection. We must show that

> (C) = (D).

CeC

Suppose that n > 1 is larger than the lengths of I and all the C € C,
then C c A,, and using p,|s, = p for k <n:

() = pa(I)
= Z Nn(c)

CeC

= > u(©0). @

CeC

1.7 Ring extension proposition
Suppose that S c 2X is a semi-ring and that f : S - R is additive,
then there is an additive set function F : R(S) - R such that F|s = f.

Proof Using additivity of f:
if AeR(S) and
A=) Ry=JR,
k=1 k=1
where {R}7",, {R;}7_, c S are both disjoint collections, then

n

i f(R) =SS F(Ren RY) :§f<Rz>.

=1

Eod
—

Using the representation of R(S) in theorem 1.4, 3 F:R(S) - R
defined by

F(}Q Ry) = éf(Rk)-

Evidently, F' is additive and F|s= f. @

Total variation.
Let X be a set and let A c 2% be an algebra. The total variation of
the additive set function p: A — R is

N N
lpl :=sup{D] [u(Ax)|: NeN, Ay, As,..., Ay € A disjoint, X = 1) Ay} < oo.
k=1 k=1
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Example. Let X =[0,1] and let S be the semi-algebra of subinter-
vals. Given f: X — R continuous and [ € S, define u(I) := f(b) - f(a)
where I = [a,b], then f:8 — R is additive and

1 n-1
[l =V fi=sup {3 1 (trar) = ftR)]: 0=to <ty <ty <<ty =1}
0 k=0
Jordan decomposition theorem If j1: A — R is additive and |pl| <
oo, then 3 positive, additive set functions py, p-: A — [0,00) so that

L= s = e

Proof
Define m =m,, : A — [0, 00] by

N N

m(A) =sup{>_ [u(A,)|: A1, A, ..., A, €B disjoint, A= UlAn},
n=1 n=

then m(A) <m(X) =|p[ <o V Ac A

€ We show that m: A — [0, 00) is additive.

To see this, let A =Y, A, where A, A, As,..., Ay e Aand 4, (1<
n < N) are disjoint.

Suppose t, < m(A,), then, V1 <n < N, A, = Uizl A, ;. where
Ak € B, Ay (1 <k < J,) are disjoint, and Zi’;l W(Ane)| > tn. It
follows that

A= L;J fin%n

1<n<N, 1<k<Jy,
whence

m(A) 2 Z |,U(An,k:)|

1<n<N, 1<k<J)y,

= 2. (20 |u(Awp))

1<n<N 1<k<J,
N

>t
n=1

Therefore m(A) > ¥, m(A,).
To obtain the reverse inequality, suppose A = Ui, E}, where Ej, € A
and Ey (1 <n< N) are disjoint. Then

;W@MS;;W@W&MS;MAJ*M@S;mmwQﬂ

Now define p, := =% : A > R. These are additive, and non-negative
and

p=pe—p-. @
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§3 COUNTABLE SUBADDITIVITY

Let D c 2X. The set function p: D — [0, 00) is:
e finitely subadditive if

N N
A, Ar. o AveD, AcUJAw = u(A) < u(Ap);
k=1 k=1

o countable subadditive (or o-subadditive) if

A, Al,AQ,”'ED, Ac UAk — [L(A)S Z:,Lb(flk)7
k=1 k=1

1.8 Lemma (addivity = finite subadditiivty) IfS c 2¥X is a
semi-algebra, and p: S — [0, 00) is additive, then it is finitely subaddi-
tive.

Proof  Let A:=A(S) and fi: A — [0, 00) be additive so that fi|ls = p
(as in proposition 1.7). Additivity = monotonicity i.e.

A, Bed, AcB = 7i(B)=7i(A) + (B~ A) > fi(A).

Now suppose that

N
A, A, AxyeS & Ac|J Ay
k=1

Let
k-1
B1=A1, Bk::Ak\UAj (2SI€SN),
j=1
then
N N
Bl,..., BNE.A & UAk:UBk:
k=1 k=1
Thus

W(A) = i(A) < fz(g 4) = ’7(,@1 By

= };ﬁ(Bk) < I;ﬁ(Ak) = I;H(Ak)- u

1.9 Proposition finite subcover property & o-subadditivity
Let C be a semi-ring of subsets of X with the finite subcover property.
Any additive p: C — [0, 00) is countable subadditive.
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Proof Suppose that C,Cy,Cy, - € Sand C € U;»; C;. By assumption,
3 N >1sothat C'E U;V:l C; and by finite subadditivity,

TEENWICHENWICHIN=

1.10 Example additivity # countable subadditivity.

Let X :=Qn[0,1]), Q:={RnQ: ReS([0,1])} and define w: Q -
[0,1] by w(RNQ) := |R| (the length of R), then Q is a semi-algebra and
w is additive. But w is not countable subadditive since X is countable.

To see this, write X = {g,: n>1} & I, := {qn}, then I, = [¢n, qn] €
Q, w(l,) =0 and

X=U L, butw(X)=1& ¥, w(l,)=0.

1.11 Proposition: countable subadditivity of volume on R¢?

Let B be a bozx and let S = S(B) be the semi-algebra of sub-boxes
of B, and let u(R) = |R| as before, then p: S — [0,00) is countable
subadditive.

Remark. S(B) does not have the finite subcover property.

Proof

Suppose that R, Ry, Rs,--- €S and that Rc U, R,. Fix € >0. For
each n>1, 3 an open box R}, 2 R, so that u(R},) < p1(R,)+5:, and 3 a
compact box R’ € R so that u(R') > u(R) —e. Evidently, R’ c U2, Rl
so that {R! : n >1} is an open cover of the compact R’. Thus 3 N > 1
so that R’ ¢ UN, R.. By finite subadditivity, u(R') < ¥, u(R!),
whence

(%)
p(R) <p(R')+e< ;M(R;) +e< ;(u(Rn) + 2€—n) +e< zu(Rn) +2¢.
U

ExERCISE N91

1. Product spaces and cylinder sets. Let {X, : X e A} be a
collection of sets. Set

X=[[Xa={z:A->JX\: z(N\) e X\ V e}
e AeA

Given NeN; \;e A, A;c X,, (1<i<N) define the cylinder set
[Al,...,AN])\l 77777 )\N={ZE€XJ]()\Z)EAZV1SZSN}
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Suppose that for each A € A, Sy c 2%x and let
S:= {[Ala"'aAN])\l Ay - NEN, )\iGA, AiES)\i (1SZSN)}C2X

.....

Show that if for each A\ € A, Sy is a semi-algebra, then S is a semi-
algebra and that if in addition, for each A € A, Sy has the finite subcover
property, then so does S.

2. Additive set functions on S4.
Let S be a finite set, A be a set and let X := S4.
A cylinder set is a set of form

{reX: z(i)=a(i) VieF}=la]r
where F' c A finite and a € ST'. Let S = {cylinders}.

(i) Suppose that [a;]r, € S (1 <i < N) are disjoint and that C :=
WY [ai]r € S. Show that 3 G ¢ ST (where F := UY, F}) so that
C= UgeG[g]F'

Now suppose that p: S — [0, 00) satisfies

(+) ZM([CLl?""aN’S]M ,,,,, AN,A)zﬁL([alw'waN])\l ,,,,, >\N)'
seS

(ii) Show that if F'c A is finite, G ¢ ST and C':= Jyeq[g]r € S, then

(C) = Xge 1(Lg]r)-
(iii) Using (i) and (ii) (or otherwise) show that p: S — [0, 00) is additive.

3. Stieltjes set functions.
Let R c R be a closed, bounded interval and let § = S(R) be the
semi-algebra of sub-intervals of R.

(a) Given F': R — R non-decreasing define vp : S > R as follows.
Given I €S, I =[a,b], set

F(b+) - F(a-) I=1a,b],
ve(l) = F(b+) - F(a+) I=(a,b],
F(b-)-F(a-) I=1a,b),
F(b-)-F(a+) I=(a,b)

where

F(x+) = , lim F(y) & F(z-):= , lim F(y).

-z, Y>x -z, y<z

Show that vg:S - [0,1] is additive and countable subadditive.

(b) Does S have the FSCP?
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4. Finitely additive & infinite total variation?
Let X :=R, and let A be the algebra generated by finite intervals.

Let f : X — R be unformly continuous so that 3 limp_, e IOR f(z)dz e R.
Here [ denotes the Riemann integral.

(i) Show that for A € A, 3 limpg_ o fAn[o,R] f(x)dz = p(A) and that
i A - Ris additive.
(i) Show that || = limp_e [;7|f(x)|dz.

5. Countably infinite o-algebras?
Is there a set X and a o-algebra B c 2X which is countably infinite?

Week # 2
MONOTONE CLASSES, 0-ALGEBRAS AND MEASURES

Let X be a set. A class 9T of subsets of X is called a monotone

class if
mon

ApeM(n>1), A, — A = Ae.
Here A, —> A means
either A, t Aie A,cA, & A=U 1 A
or A, L Aie. Ao A & A=N21 Ane

An algebra B c 2X is called a o-algebra if in addition
A,eB(nx1) = |JA,eB.
n=1

Evidently a o-algebra is also a monotone class, and an algebra which
is a monotone class is also a o-algebra.

2.1 Intersection proposition
Let R c 2X then:
M(R) := N m
Mm->% a monotone class
is a monotone class (known as the monotone class generated by

R);
o(fR) := N B
Bon a o-algebra
is a o-algebra (known as the o-algebra generated by R);

2.2 Monotone Class Theorem
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Let A be an algebra of subsets of X, then
M(A) =c(A).

Proof

Evidently 9(A) c 0(A) as o(A) is a monotone class.

It suffices to show that 9t(.A) is an algebra, for then (being a mono-
tone class) it is a o-algebra and M(A) > o (A).

To see this fix any F' c X set

L(F)={EcX:FEUuF,EnF,EnF° E°nFeM(A)}.

It follows that
o FeLl(F)iff FeL(F);
o if L(F) + @, then L(F') is a monotone class;
o L(A)DM(A)V AeA;
o L(A)>M(A) Y AeM(A);
e M(A) is an algebra. O

Let A be an algebra of subsets of X. The function v:0(A) - R is
o-additive if it is additive and

Apeo(A), ALt A = v(A,) - v(A).

From this we obtain (!) that
Ay ea(A), Ay LA = u(A,) > v(A).

2.3 Proposition (Unicity of extension)

Let X be a set, let A be an algebra of subsets of X, and let p; :
o(A) > R (i=1,2) be o-additive such that 1 (A) = u2(A) V A€ A,
then py = ps.

Proof
Set C :={A € o(A): u(A) = u(A)}. Evidently C o A and by
o-additivity, C is a monotone class, whence C 2 MM (A) = o(A). O

2.4 Proposition (Approximation of a non-negative extension)

Let X be a set, let A be an algebra of subsets of X, and let u :
o(A) = [0,00) be o-additive, then ¥ A€ o(A), € >0, 3 Ay € A such
that u(AAAy) <e.

Proof
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Set C:={Aec(A): VI AyeA u(AAAy) < e}, then C > A. We
show directly that C is a o-algebra.

If Aeo(A), Be Athen B¢e A, AAB = A°AB° whence AeC =
Acel(.

Suppose A, B € C and ¢ > 0, then 3 Ay, By € A with u(AAAg) +
u(BABy) <e. Now Agu By e Aand (AuB)A(Ayu By) c (AAAq) U
(BABy) whence pu((Au B)A(Agu By)) < n(AAAg) + u(BABy) < €.
Thus Au B e C. This shows that C is an algebra.

Now let C,, e C (n >1). We show that C := U,s; C,, € C. To see
this, set 4, = Cy, A, = Cpy ~U Cr (0 22), then Ay, Ay,--- € C and
C=Ups1 Ay

Fix € > 0, then 3:

e 1. such that u(WUpsn, Ax) <5,

o D e Asuchthat m(DAU, Ap) < 5, then

CAD c (|JA)ADw |*) A;,
k=1

J>ne
whence .
u(CAD) < u((U Ax)AD) + (1 4;) <e.
k=1 J>ne
Thus C is a o-algebra and C 2 o(A). O

Outer measures. Definition: Outer measure
An outer measure on X is a function [ : 2% — [0, oo] satisfying:

o 7(2)=0;
e 7i(A) <u(B) whenever A< B (monotonicity);
o (U2 Ay <Yr (AL Y Ay Ay, e X (sub-o-additivity).

2.5 Caratheodory’s construction theorem
Let X be a set, and let 7t be an outer measure on X. Then

M:=A{EcX:u(A)=u(AnE)+u(AnE°) V Ac X}
is a o-algebra, and [l is a measure.
Proof of Caratheodory’s construction theorem
Step 1 M is an algebra.
Proof Clearly Fe M < E¢e M. Also @ € M since (@) = 0. We
must show that £, Fe M = FuFeM. Fix Ac X. Since F € M,
Fi(A) =Ti(An B) +Ti(An E°),
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and since F € M,
BANES)=(AnE°nF)+u(AnE‘n F°).

S (A) =(AnE) +u(An E°)
=H(ANE)+a(AnE‘nF)+u(AnE°n F°)
>TU(An(EuF))+u(An(EUF)°)

by subadditivity since An (EUF)=(AnE)u(AnE°nF). O

Step 2 For Ey,...,E, € M disjoint:

k=1 k=1

Proof Suppose E, F' € M are disjoint, and let A c X.

HAN(EuF)=(An(EuF)nE)+m(An(EuF)nE°) - EeM
=u(AnE)+m(AnF) - EnF=ga.

O
Step 3 If Eq, Ey,--- € M are disjoint, then
WANE)= iﬁ(AﬂEn) V Ac X, where E := QEn.
n=1 ne
Note that it is not assumed that U;>; £, € M.
Proof Suppose A c X, then
S H(ANEy) > (AnE) > i(An | E,)
n=1 N oonzl
S ANE) > Y (AN E,) > (AN E)
n=1 n=1
as N — oo. 4

Step 4 M is a o-algebra.
Proof Let Fy, E»,---€ M and let
E:=JE,.
n=1

Set

Fy=FE, Fya=FE; N U Ey (n>1),
k=1
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then Fy, Fy,--- € M, and are disjoint, whence for A c X,

fi(A) = i(An U ) +Ti(An (U F)e) (¥ n>1)

> > (AN Fy) +T(An E°)
k=1

> n(AnE)+u(AnE°) as n > oo.
O

2.6 Caratheodory’s extension theorem Let X be a set, S be an
semi-ring of subsets of X which o-covers X.

Suppose that jp = S - [0,00) is additive and countable subadditive,
then there is a measure i : 0(S) = [0, 00] such that fi|s = p.

Proof Define, for F c X (using the o-covering property),
A(E) =inf{) w(A,): A1, As,--€8, Ec A}
n=1 n=1

Let 77: R(S) — [0, 00) is the additive extension of p obtained using 1.5.

e  We claim first that 1z = @ where
H(E) :=inf {> 7(A4,): A1, Ay, e R(S), Ec A}
n=1 n=1

Since R(S) o S and Ji|s = p, we have i < Tu.
For the reverse inequality, suppose that

ECX7 A17A27'“6R(S)7 Ec UAn
n=1

By 1.4, foreachn>1, 3 N, >1, Cy1,...,Cyn, €8 disjoint, such that
A, = U]kvjl Cy.- It follows that E c Uy, Uivjl Ch.k, whence

FE) < 323 n(Cos) = 374,

n=1 k=1

e Next, we show that 71 is an outer measure.

Evidently (@) < u(@) = 0. Monotonicity is immediate. To see
sub-o-additivity, suppose that £ = U,»; E, and let € > 0. Choose
Api,Ana, - €S (n21) so that B, € Upsy Ang and Ypsq pi(Ang) <
(E,) + 57 (n>1). It follows that E, ¢ U, s1 Apk, whence

AE) < % p(Ans) € R (A(E) + 22) = Y (En) +=.

n,k>1 n>1 n>1
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e  Continuing, we note that @(A) = u(A) ¥V A € S by countable
subadditivity.

e Finally, we show that § ¢ M. This will establish the extension
theorem by Caratheodory’s construction theorem (2.1).
For this, it suffices to show that for B € S:

WF)>u(FnB)+u(FnB°) V FcX.
To this end, fix ¢ >0 and let Ay, As,--- €S be such that

Fc UlAn, A(F) +e> ) u(Ay).
n= n=1

For each n > 1, we have that
1(A,) = p(An 0 B) +1i(An 0 BY)

where 77 : R(S) — [0, 00) is the additive extension of y obtained using
1.5.
It follows that

(F)+e> Zu(An)
_ E(M(An n B) + (A, N BY))

= w(A,nB)+ > [(A,n B°)
n=1 n=1

>u(FnB)+u(FnB°)
=u(FnB)+u(FnB°). d

Lebesgue measure on R,

Let S be the semi-ring of boxes in R? which o-covers R?, and let
v(R) = |R| as before. By 1.4 and 1.11, v : § - [0, 00) is additive and
countable subadditive. By Caratheodory’s extension theorem, there is
a measure (aka Lebesque measure on o(S) ) extending v : S — [0, 00).

Bernoulli measure with finite state space. Let A be a set, S
be a finite set, and let X = X, := S4. As in exercise 1.1, and given
N>1, M,...,Av€A, ay,...,ay €S, define the cylinder

[a1,...,an]xn oy ={zeX: x(N)=a; V 1<i< N},

Recall from your topology course that with respect to the product
discrete topology, X is a compact Hausdorff space and cylinder sets
are both open and compact.

77777
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Note that the topological space X, is metrizable iff A is countable.

Let

S:={[ar,...,an]n.. 2v: NeN, \jeA a; €S (1<i<N)tu{z},
then (ex. 1.1(a)) S is a semi-algebra.

Let p: S - (0,1) be a probability (>,.sp(s) =1). Define P: S -

[0,00) by P(@) :=0and P([ay,...,an]) := [Tney Pay- Fix Ai,. .., An, A€
A. Since

P(la1,....an, 8] ,anvn) = P([ar, - an]a oo )Ps YV ar, ... an, s €S,
we have
(+) ZP([alv"-yaN7S]>\1 ,,,,, /\N)\) ::U’([alv"'uaN])\l ,,,,, )\N)'

seS

and P is additive by exercise 1.2 and therefore finitely subadditive.
Because each member of S is both compact and open, S has the FSCP,
P is countable subadditive and 3 a probability P : o(S) - [0,1] so
that

P([a‘177a’N]>\1 ..... AN):HpCLk

Lebesgue measure and coin tossing.
Let 2 ={0,1}V and let P be as above with p(0) = p(1) = . Define
¢:-[0,1] by

@(wl,wg,...) = Z &

on’
nx1
This is a continuous map, therefore () Borel measurable i.e.

AeB([0,1]) = P 'AeB(N).

We claim
P(¢7'A) =Leb (A).
To see this, let A be a closed dyadic interval, i.e. of form

p p+1

- [2_7“ Q—n] where p, neN, p< 2",
then (!)
1 P > o
97 (A) = [a1,as,...,a,] where ay,a9,...,a,=0, 1 & — = 22_'
Consequently

P67 (A)) = 2% _Leb(A).



20 Measure Theory notes (C) Jon. Aaronson

The collection of measurable sets A with this property is a o-algebra
() and the claim is proved. ¥

Outer measures on metric spaces. Let (X, d) be a metric space.
A metric outer measure on X is an outer measure 71 : 2% — [0, co] with
the property that

A,Bc X, d(A,B):= Lnde(x,y) >0 = u(AuB)=n(A)+u(B).
zeA,ye

Example 1: Metric outer measures from regular Borel measures.

Let (X,d) be a metric space and let p be a regular, finite Borel
measure on X. Define i : 2% — [0,00) by 71(A) = inf{u(U): AcU e
B(X)}.

Proposition 2.7  7:2% - [0,00] is a metric outer measure.

Proof It is easy to see that 1 is an outer measure.
Note also that

(%) VAcX, 3 B=BseB(X), BoA, u(A)=u(B).

In fact if A c U, open with u(U,) <7i(A) + % then one choice is the
G5 set BA = mnzl Un

If B, FcX and d(E,F) >0, then the sets Bg, Bp € B in (%) can
be chosen disjoint since if d(E, F') > 3¢ >0, then £ c B,(E,¢) & F c
B,(F,¢) (where B,(A,€) := Ugea Bo(x,¢)); the sets B,(E,¢) & B,(F,¢)
being open and disjoint.

To see that & is a metric outer measure, fix £, F c X, d(E,F) >0.
Let Bg, Br, Bgur € B satisty (%) with Bgn Br = @ and (WLOG)
Bru Br c Bg,p. It follows that

H(E W F) = p(Bpor)
> (Bg v Br)
= W(Bg + p(Br)
=u(E)+u(r). @

Pre-masses.
Let X be a set and let C ¢ 2% with @ € C. A pre-mass on C is a
function 7 : C — [0, co] satisfying 7(2) = 0.
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Example: Hausdorff-type pre-masses.
For (X,d) be a metric space and a : [0,00) — [0, 00] with a(0) =0,
7o 2 2% = [0, 00] defined by

T,(A) :=a(diam A)
is a pre-mass.

Proposition 2.8 Let 7:C — [0,00] be a pre-mass. The set function
H=T,c:2% - [0,00] defined by

Tre(A):=inf{> 7(C,): C,eCVn& AclJC,}

n>1 n>1

(with inf @ := 00 ) is an outer measure.

Proof (As in the proof of theorem 2.6).

Evidently 71(@) < 7(@) = 0. Monotonicity is immediate. To see
sub-o-additivity, suppose that £ = U,s1 E,. and let € > 0. WLOG,
1(E,) < oo ¥ n and we may choose A, 1,A,2,---€C (n >1) so that
Ey, ¢ U1 Ang and Ypoy 7(Api) <T(ER) + 57 (n>1). It follows that
E, ¢ Upgs1 An i, Wwhence

AE) < Y T(Aue) € X (A(E) + 5) = L A(E) +e. @

n,k>1 n>1 n>1

Pre-masses on a metric space.
Let (X,d) be a metric space and let 7:C — [0, 00] be a pre-mass.
For r > 0, let

Cr:={AeC: diamA < r}
and let p, =i be the outer measure as in proposition 1.
Proposition 2.9 The set function p:2X - [0, 00] defined by
p(A) = lim g1, (A)
15 @ metric outer measure.

Proof By proposition 1, each u, is an outer measure, whence so is
[ = SUp,._,q iy

To check the metric property, fix A, Bc X, d(A,B) >0& u(A), u(B) <
oo (the latter ensuring countable covers of A & B by elements of
C, Y r>0).

It suffices to show that
d(A, B)

pr(AVB) = pr(A) + pr(B) V1< ——
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d(A,B)

which in turn is true since if Au B c U, C,, where diamC,, < =5,

then 3 K c N such that
AclJC, & Bc|JC,. @

nekK neK

Theorem (Caratheodory) If fi is a metric outer measure on X,
then B(X) c M(f).

Lemma Let i1 be a metric outer measure on the metric space X. Then

At A, Ti(A) <oo, d(Ap, ANAp) >0 Y 21 = (A1 T(A).

Proof Without loss of generality, fi(A4,) 1 a < oo as n — oco. We prove
that u(A) < a.
Set By = A1, B,=A,~A,1 (n>2). We show first that

(%) SHEB) < 2

k=1
Proof For/>k+2 BrcA,, & Bjc ANAy1c AN A, and so
d(Bk7 U Bf) >07
l=k+2
Therefore, for e =0, 1,

a>Ti(Asn) = ﬁ(:UNl Bk)

zﬁ((VJ szs)

= ﬁ(BQ—E) + ﬁ (lg BQk:—a)
= > 7i(Bak-)

P
e kz_:lﬁ(B%—a) ad (%)

Using (&),

(A) =ﬁ(An ulJ Bk) <u(A,)+ > 1(By) >aasn—>oo. @
k=n k=n
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Proof of the theorem To prove the theorem, we show that for
B, Ec X, E closed,

m(B)>u(BnE)+u(BnE")
Let €; | 0. Note that
Bo (BﬂE) U (B N\ B(E,Sj)), & d(BﬂE,B N\ B(E,ffj)) > Ej

So
i(B) > i(Bn E) + lim fi(B ~ B(E, ¢;)).
J—>00

Since E is closed, B\ B(E,¢;) 1 B\ E.

We shall apply the lemma with A; = B\ B(E,¢;) and A= B\ E.
Evidently Ay c B(E,¢;)¢ and AN Apyy € B(E, €g41), whence d( Ay, AN
Ap1) 2 e —€py1 > 0. By the lemma, (B~ B(F,e;)) = u(Ar) - n(A) =
(B~ E) whence

W(B)>u(BnE)+u(B\NE).

NOEXERCISE 2

1. Outer measures.
Let i : 28 - [0, 00] be Lebesgue outer measure defined by

B(E) :=if{) |L,|: I, I5,... intervals, EC|JI,}.
n=1

n=1
a) Show that if Ac R, and m(AnJ) < 1|J] for every interval J, then
(A)=0.

Let A, c[0,1] (n>1).
b) Is it true that

Ao Ayo. Ao Apao... = T(A,) —>1([)An) as n —> oo?
n=1

2. An extended measure space. Let (X,B,m) be the unit
interval equipped with Borel sets and Lebesgue measure.

a) Let AcR, 7i(A) > 0. Show that if K c Q, K =R, then

(J NUkex(E+ A mod 1)) =|J| V intervals J.

b) Show that 3 a partition {E, : n > 1} of [0,1] (i.e. E, c [0,1]
disjoint & Ups1 Fy = [0,1]) with @(E,)) =1 V n>1) where 7 denotes
Lebesgue outer measure on [0,1].

Hint Take E, = Uk, (k+A mod 1) for suitable K, c Q and suitable (non-measurable)
AcX.

Let {E,: n >1} be a partition as in b), and let B; be the o-algebra
generated by B, and {E,,: n>1}.
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Show that
(¢) Bi={Uns1 BN E,: By, Bs,... €B}; that
(d) JB.nE,=)B,nE, =

n>1 n>1
m(B,AB)) =0V n>1;
and that

©) §( Bun ) = 3 B

n>1 n>1

defines a probability p: By — [0, 1] satistying p|s = m.

3 Bernoulli probabilities on countable shift spaces.
A (regular) cylinder in X := NN is a set of form

[n1,n9,...,ng]={reX: xj=n; V1<j<k}.

Let C := {cylinders}.
In this exercise you construct, for any p € P(N) with p(s) >0V s e N,
a probability P on (X,0(C)) so that

(&) P([al,@,...,aN]):gp(ak) v
[&1,&2,...,@]\[] eC.

Let Ay & A be as in example 2 on pageb. Define p: Ay = {F, N\ F:

FeNN {1} # F <oo} by u(A) := ¥yeap(a).
For [A}, As, ..., Ay] € A:= {Ax- cylinders}, set

A([Ar, Ag, ..., Ax]) = gu(Ak).

Show that
(i) @: A—[0,1] is additive and countably subadditive;
(ii) there is a measure P:o(A)) - [0,1] so that P| = 11;
(iii) o(A) = o(C) and P satisfies (A).

4. Regular Borel measures.

Let X be a topological space. The Borel o-algebra is B(X) :=
o({open sets} and a Borel probability on X is a probability measure
P :B(X) - [0,1]. In this exercise, you show that if X is a separable
metric space, then Borel probabilities on X are regular in the sense
that P(A) =inf {P(U) : Ac U7 U open}.
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Fix a Borel probability P on X and let
C={AeB(X): Ve>0, 3 F closed,U open, Fc AcU, P(UNF)<e}.
Show that:
(i) C is a o-algebra;
(ii) {open sets} cC;
(

iii) P is regular.

5. Measurable union of a hereditary collection.
Let (X, B, m) be a finite measure space. Let ) c B be a hereditary
collection in the sense that

Ce®H, BcC, BeB = Be#$.

Show that
(i) 3 Ay, Ag,--- € § disjoint such that U := [J;2, A, covers $ in the
sense that Ac U mod m V A€ $);
Hint Take €1 :=sup{m(A): AeN} & A1 €9, m(A41) > %‘ and then take €3 := sup{m(A4):
AEf_L AnA; =®} & Ao €9, AsnA =@, m(Az)Z 672
(i) if V=2, Bn (B, €$) also covers §, then U =V mod m.

The set U € B above is called the measure theoretic union of the
hereditary collection $) and denoted U($)).

6. Non-atomicity.
Let (X,B,m) be a probability space. An atom of (X,B,m) is a set
A e B satisfying m(A) >0 and Be B, BC A = m(B) =0, m(A).
Show that if (X, B, m) is non-atomic (i.e. has no atoms), then V p €
(0,1), 3 AeB with m(A) =p.
Hint: Show first (using the previous exercise or not) that V €>0 3 a finite

partition ac B of X with m(A)<e V Aca.

Week # 3
§4 POLISH SPACES

A measurable space (X, B) is composed of a set X equipped with a
o-algebra B c 2% of subsets of X. A common example of such is when
X is a metric (or topological) space and

B=B(X)={Borel sets in X}:=o({open sets in X}).

Let (X,B) & (Y,C) be measurable spaces. A function f: X - Y is
called measurable if f~1(C)eB Y CeC.

If Y is a metric space and C = B(Y') := o({open sets}), then f :
X - Y is measurable iff f~1(U)eB Y U cY open.
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In particular, if (X, B) & (Y,C) are both metric spaces eqipped with
their Borel sets, then any continuous f: X — Y is measurable.

The measurable spaces (X, B) and (X', B') are isomorphic ((X,B)
(X', B")) if 3 a bimeasurable bijection (isomorphism) m: X - X'.
Standard (aka Polish ) measurable spaces. A standard measur-

able (or Borel) space is a measurable space (X, B) where X is Polish
space and B = B(X) its Borel sets.

Uncountable examples.
X =0:={0,1}" RY C([0,1]), -

It turns out that standard measurable spaces are isomorphic iff their
cardinalities are the same, and that the possible cardinalities are:

(%) Nu{Rg, c}.

Remark
Completeness (of the underlying Polish space) is necessary for (*)
to hold without the continuum hypothesis.

Kuratowski’s isomorphism theorem
If X is an uncountable Polish space, then X = 2 :={0,1}",

Corollary
If X is an uncountable Polish space, then there is a countable, algebra
A c B(X) with FSCP so that o(A) = B(X).

Proof Let m:X — (2 be an isomorphism of measurable spaces, then

m(A({cylinders})

is as required. ¥

Our proof of Kuratowski’s theorem is a “measurable version” of the
proof of the theorem of Cantor—BernsteinE]

Let X be a separable metric space.

Consider the collection of condensation points

Xe={zxeX: |B(z,e)| >Ry VY e>0}.
Here (and throughout)
B(z,e)={ye X: d(z,y) <e} & Bo(,¢) = {y e X: d(z,y) <e}.

By separability, X \ X, is countable and open, whence |X| > 8y iff
X.+@&. A Polish space is called perfect if X = X..

IFormulated by Yuval Peres while a student at TAU.
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Lemma 1 If X is a Polish space with |X| > Rg, then 3 a closed set
K c X, which is homeomorphic to {0,1}N.

Proof

3 2(0),z(1) € X. and 6; > 0 such that the closed balls B(x(7),01) (i =
0,1) are disjoint, uncountable subsets of X. We can continue this to
obtain 0, >0, {z(i):i€{0,1}"} c X, (n>1) such that V n>1, i¢€
{0,1}, B(2(4,7),0n+1) (j = 0,1) are disjoint, uncountable subsets of
B(x(1),0,). By completeness, V (i1,1z,...) € {0, 1},

Fle(a:(z’l, e in)yOn) £ B
The map 7 : 2 - X defined by
{ﬂ%%mnzﬁpw@ww@%)
is continuous and injective. K :=7({2) is the required set. @

Polish subsets. Let (X,d) be a Polish space.
A subset Y c X is called a Polish (subset) if 3 a metric p on YV
equivalent to d|y such that (Y] p) is a Polish space.

4.1 Proposition Suppose that (X,d) is a Polish space, then Y c X
is Polish iff 'Y is a Gy set.
Proof WLOG X =Y.

Polish — G :
Let p be a complete metric on Y generating the topology inherited
from X. For n>1, let

1
Vi={xeX: 3U>z open, d—diam(U), p—diam(UnY) < —}.
n

It suffices to show

Y =V

n=1

Evidently Y c N2, V,,.

Proof that Y o2, V,.
Ifzen2,VonY,then 3 Wy 2W52o ..., open in X such that

Vn>1l: zeW,, p—diam(anY)Sl, &d—diam(Wn)Sl.
n n
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By completeness of (Y,p), N, W, NnY # @. On the other hand,
N2y Wy, = {z}. Thus:

{z}=W,.2W.nY 2@
n=1 n=1
and z €Y. O

G5 = Polish

Now let Y = N2, U, where U, is open (n > 1). For n > 1, define
fn: Uy = Ry by fo(x) := d(x,l—Ug) (a d-continuous function on U,) and
define p: Y xY - [0,00) by

o) = d(w,y) + 3 e (fal) - Fu()| A D).

2

Then p is a metric on Y, and p > d.

To see equivalence of p and d on Y, suppose that z,,z € Y and
TS z, then fu(zn) — fiu(z) V k> 1 whence (1) z, > z.

To see completeness of (Y, p) let (z,).»1 be a p-Cauchy sequence

in Y, then (z,),s1 is a d-Cauchy sequence in Y, and (fx(2,))ns1 18 a

Cauchy sequence in R V k£ > 1. It follows that 3 x € X such that z,, L

and 3 lim,, o fr(x,) € RV k> 1. It follows that z € Y []and z, L
d

Lemma 4.2 If X is a Polish space, then 3 a Gs set G c [0,1)N which
18 homeomorphic to X.

Proof Choose an equivalent metric d < 3/4, and a countable dense
set Ac X. Define f: X - Z :=[0,1)4 by f.(z) = d(z,a). Clearly
f:X > G:= f(X) is bijective. We claim it is a homeomorphism.

Let x,,x € X.

If 2, > x as n - oo, then d(x,,a) > d(z,a) asn - oo V a € A and

f(en) > f(x).
If f(z,)— f(z), then d(z,,a) - d(z,a) as n — oo ¥V a € A whence

d(zp,z) <d(xy,a)+d(z,a) — 2d(z,a) V ac A

Let € > 0. Since A is dense, 3 a. € A such that d(z,a.) < e/2 and

lim d(z,,x) < 2d(z,a.) <e.

2else z ¢ Uy and fi(zn) > o0 as n— oo for some k
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Thus f: X - G is a homeomorphism. The set G is now Polish (a
complete equivalent metric being given by p(f(z), f(y)) = d(x,y)) and
hence a Gj. O

Lemma 4.3 There is a Borel subset Z of £2 = {0,1}N which is Borel
isomorphic to X.

Proof LetY :={we{0,1}N:w, » 1} then 7:Y - [0,1) defined by
m(w) = Yoy 52 is a Borel isomorphism.

The Borel isomorphism ¥ = ¢ot) : [0, 1)N — Z € B({2) is as advertised,
where:

¢ :[0,1)N > YN is defined by ¢(y1,v2,--- )k =7 (yr),
P ON = {0,1}V - 2 is defined by ¥((w, : u € N2)), = w, () where
o : N — N2 is bijective
and
Z =¢o(G) e B(£2) where G is as in lemma 4.2. O

Proof of Kuratowski’s theorem a la Cantor-Bernstein
We have bimeasurable maps f : X - f(X) € B(f2) and g : 2 —
g(£2) e B(X).
Define
Xon= (g0 f)"(X ~g(£2)) e B(X), 20, = (fog)" (2~ f(X)) e B({2),
Xops1 = Q(an) € B(X), opi1 = f(in) € B(Q),
and - .
X=X NUX,eB(X), 2 =02~ 2, € B(X).
n=0 n=0
Define aw c B(X) and g c B({2) by
a = {A07A17X00}7 B= {B()’Bb Qoo}

where

AO = U X2n7 Al = U X2n+17

n=0 n=0

By = U Qo =g (A1), B = U 2941 = f(Ap).
n=0 n=0

e We claim that o and g are partitions of X and {2 (respectively).

Proof For x € g(f2) c X, call the point g~'(z) € 2 a preimage of x,
and for y € f(X) c {2, call the point f~'(y) € X a preimage of y.
Define a map N : X U2 - Z, u{oo} by

N(Z) =HlaX{TLZO: B (Z(),...,Zn), 20 = Z, Zk+1 is a preimage of Zf VOSk’<TL},



30 Measure Theory notes (C) Jon. Aaronson

then X,, = X n[N=n]and 2,=02n[N =n] for 0 <n < oco. O
The required Borel isomorphism is 7 : X — {2 defined by

W(x)—{ f(x) zeAyu X,
| g Yx) zeA. O

Universably nonmeasurable sets in Polish spaces.

We “construct” subsets of Polish spaces which are not completion
measurable (in the sense of exercise 4.0 below) with respect to any
non-atomic Borel probability on X.

We’ll need:

Lemma 4.4
If X is a Polish space with |X| = ¢, then

|{uncountable closed subsets}|=c.

Proof
Let € := {uncountable, closed subsets of X}.

9 To see that |€| < ¢ let U be a countable base for the topology of X,
then
|¢| = |[{open subsets of X}|<[|2Y|=c.

€ To show that |€| > ¢ we exhibit a continuum of disjoint, uncountable
closed subsets of X. By lemma 1, it suffices to this in 2. To this end
fix A c N such that |A| = [N\ A] = co. For a € {0,1}4, let 2, :={we 02:
w|a =a}, then
e Ny +8 — a=a
e (2, is homeomorphic with 2 V a €{0,1}4.

Thus F = {2, : a€{0,1}"} is a continuum of disjoint, uncountable
closed subsets of 2. &

Big sets & Bernstein sets.
Let X be an uncountable, Polish space. A big set in X is a set
Bc X suchthat Fn B+ @V F c X closed, uncountable,

FnBxog & FNB=#g.
A Bernstein set in X is a big set whose complement is also big.

4.5 Bernstein’s Theoreml’

3Felix Bernstein, ”Zur Theorie der trigonometrischen Reihen”, Sitzungsber. Sachs. Akad.
Wiss. Leipzig. Math.-Natur. KIl. 60 (1908), 325-338.
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Bernstein sets exist in any uncountable Polish space.

Proof  Let € := {uncountable, closed subsets of X}, then (as
shown above) |€] = c.

The initial segment (X@*7) of an ordinal /3 is
2(B) :={« ordinal, «a < (}.
Let w, be the minimal ordinal with |w.| := card2(w.) = ¢. Write
2. := 2(w,.), then
laj <cV aefl
and it follows that
C={F,: ael2}.
We'll also need the

Transfinite recursion theorem.

Suppose that Z is a set, z € Z and for o € 2., f,: Z(®) — Z then
3V f:90. - Z such that f(1) =2z and

f(a) = foc(f|(2(a)) Vae Q(r

To use transfinite recursion, we claim
q Vae, 3 VU,:=(fa,0a): (X xX)) 5 X x X such that
¥ (u,v) € (X x X)),
() falu,v) # ga(u,v);
(b) falu,v), galu,v) € Fy;
(©) fult,0), galu,v) ¢ u(2(a)) Uo(2(a)).
Proof of (:

Fix (u,v) € (X x X)) then |[u(2(a)) uv(2(a))| < ¢ whereas
|Fo| = ¢ whence #(Fy N u(2(«)) N v(£2(«))) > 2 ensuring existence of
such fo(u,v), go(u,v). @9

By transfinite recursion 3 ¥ = (p(«),q(«)) : 2. > X x X such that
W(a) = Wa(kpb(a)).

It follows that
(i) p(e) # g();
(ii) p(a), q() € Fy;
(iii) p(), q(e) ¢ p(2(a)) U q(2(a))

whence p(£2.) nq(£2.) = @.



32 Measure Theory notes (C) Jon. Aaronson

The Bernstein set constructed is B := p(f2.). Evidently X \ B >
q(£2.). For each VF €€, I a€ (2., F =F, whence

pla)e FnB & q(a) e BEnF. @

4.7 Proposition If B ¢ X is a Bernstein set, and fi : 2% — [0, 00) 1is
a metric outer measure on X with fi({x}) =0V z € X, then B ¢ Mz.

Proof
Since u({x}) = 0 V x € X, any closed set of positive measure is
uncountable. Thus, if B € M, then by regularity of fi|r, either

e i(B)>0and3Ce€, CcB = @+CnB°SBnB¢=g;or

e (B°)>0andICe€, CcB® — @+CnNnBSEB°NB=9@. K
See also exercise 4.3(a).

4.8 Ulam’s theorem
Suppose that | X|=8y. If u: 2% - [0,1] is a measure, non-atomic in
the sense that p({x}) =0V z e X, then u=0.

Proof By the WOT, 3 an ordering < on X so that
e cvery subset has a minimal element; and
e {xeX: x<y}isat most countable V y € X.

For y € X let z ~ f,(x) = f(x,y) be an injection of {r € X : = <y}
into N.

Forxe X, neNlet Fr:={ye X: z<vy, f(x,y)=n}.
ME)nE,=VneN, x+1'e¢X.

Proof Ifye FPnF" then f(z,y)=f(«',y) =n whence by construc-
tionof f,x=2". @

QUpen Fr={yeX: z<y}since Va<y, yeF,™,
Now for fixed n € N,
{zeX: p(Fr) >0} <R

Therefore
HreX: IneN, u(Fr)>0} <R
and 3re X, u(Fr)=0V neN.
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Thus
(©) (X)) =p({zeX: 9357’})+/~L(L%Ff)
—u({we X+ w<r))+ p({rh) + 3 p(Er)

neN

=0. @
EXERCISE NO3, 29/3/2017 1o 57N

1. Completions.
The measure space (Z,C,m) is complete if arbitrary subsets of mea-
sureable null sets are measurable.
Let (X, B, 1) be a finite measure space.
The p-completion of B is the o-algebra
B,=c(Bu |J 2Y).

NeB, u(N)=0

Here, you extend p to E”.

Show that
(i) @ : 2X - [0,00) defined by 71(A) :== inf{u(U) : AcU € B} is an
outer measure;
(11) Mﬁ = B“ and ﬁ|3 = U

and that
(iii) a function g : X — R is B,-measurable iff 3 f : X - R B-
measurable such that f(z) = g(z) for f-a.e. € X.

The measure space (X, B,,, i) is called the p-completion of (X, B, ).

2. Measure algebra. Let (X, B, m) be a finite measure space. Define
a relation on B by A~ B if m(AAB) =0.
a) Show that ~ is an equivalence relation.
b) Let B~ = {[A] :={A" e B: A" ~ A} : A € B} be the collection of
equivalence classes.

Show that

d(a,b) :==m(AAB) for a,beB~, Aeca,Beb

defines a metric on B~, and that (B~,d) is a complete metric space
(called the measure algebra of (X, B,m)).

c¢) Show that the measure algebra of a measure space is isometric with
the measure algebra of its completion.

d) Show that the following are equivalent:

(7) B~ is separable;
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(9) 3 A, e B (n>1)such that V A e B3 A € o({A,}2,) with

m(AAA") =0;

e) Is there a probability space (X, B, 1) equipped with sets
{As:5€(0,1)} c B such that p(A,AA) >V s#t7?

3. Polish probability spaces.

Let X be a Polish space, and let p € P(X,B(X)) be non-atomic. Let
(I,B(I),\), the unit interval equipped with its Borel sets and Lebesgue
measure. Show that (X, B(X),p) and (I,B(1), \) are isomorphic in the
sense that there are sets X' e B(X), I’ € B(I) such that p(X \ X’) =
A(I ~I") = 0; and a bimeasurable bijection 7 : X’ — I’ satisfying
porm~l=\

Hint: First use Kuratowski’s theorem to show that (X,,B(X),p) is isomorphic with
(I,B(1),q) for some nonatomic q € P(I,B(I)).

4. Bernstein sets.

Let X be an uncountable polish space.

Show that there is a disjoint collection ‘B of Bernstein sets so that
|%| =c and UBE%B:X-

5. Generalised Cantor sets. For I = [a—c,a+c] a bounded closed
interval, and 0 < h < 1, define

Iy(h) :=la-c,a—(1-h)c], i(h):=[a+(1-h)c,a+c];

I'(h) :=1y(h)uv 1(h)=I~(a—(1-h)c,a+ (1-h)c).

For A =, I a disjoint union of closed intervals, define
A'(h) = L};Jfé(h)-
Clearly |A’(h)| = h|A|. For hy, hg,---€(0,1) define

Ar=[0,1], Aper = AL(hy), A=) Ap
n=1

a) Prove that A is closed and nowhere dense.

b) Prove that the Lebesgue measure of A is m(A) =lim,, e [T5-; fn-
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6. Volterra’s function (1881).

Here you construct this differentiable function V : R - R whose
uniformly bounded derivative is not Riemann integrable on [0, 1].

a) For the construction, you need a closed, nowhere dense subset F
of [0,1], with positive Lebesgue measure. Construct such (e.g. using
the previous exercise).

Set f(z)=2?sin(2) when z #0, and f(0) =0 and recall that
e f is differentiable on R;

o f'(x)=2xsin(2) - cos(2) when z # 0, f'(0) = 0; and
e there is a sequence y, | 0 such that f’(y,) =0.

For r > 0, set z = 2z, := max{z € (0,7/2) : f’(z) = 0}, and define

fr:R—>R by

f(x) 0<z<z,
] flz) z<x<r-z
Jr(x) = fr=2) r—-z<z<r,

0 else.

b) For I = (a,b), define f; : R - R by fi(z) = fy_o(z —a).

Show that |f;| < Z; f; is differentiable on R with || < [I| + 1 and
w(f, @) =2-1o1(x)

where for g:(z-n,z+n)—->R,

w(g,x)=lim  sup  |g(y) - g(2)|

y,2€(z—€,2+€)

For E c [0,1] a closed, nowhere dense set, write R\ E = U,, I, where
the I,, are disjoint, open intervals, and set

fr.(x) zel,
0 else.

V(x) ::{

c¢) Show that V' is differentiable on R, supg, ;1 [V’| <2, V'|g =0 and
that w(V',x) =2-1g(x).
Hint |V(y)|<|ly-2? Y x e E, yeR.

d) Show that if m(E) > 0, then V' is not Riemann integrable on
[0,1].

Week # 4
MEASURABLE SETS IN POLISH SPACES: ANALYTIC SETS
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Definition A subset of a Polish space is analytic if it is the continuous
image of NN (i.e. the irrationals — see exercise 4.1(a)).

4.9 Proposition Any Polish space is a continuous image of NN,

The proof is standard and uses the

4.10 Lemma Let X be a separable metric space. Given g, >0 (k>
1), there is a collection of nonempty closed sets

{F(ni,...,n%) : k,nq,...,np € N}
such that F(nq,...,ng)°=F(ny,...,ng) Y=k ny,..,ng e N,

[_]1 F(v) = X,

U F(ny,...,ng,v) = F(ny,...,ng))°V kyng,..ony €N,
v=1

and
sup{diam F'(ny,...,n) :ny,...,ng eN} < g, V k> 1.

The lemma is proved using the Lindelof property of separable metric
spaces.
The following shows that Borel sets are analytic:

4.11 Theorem Let X be Polish, then every non-empty A € B(X) is

an injective, continuous image of a Polish space.

Proof Let
P:={AeB(X): I Z Polish & a continuous bijection 7: Z - A};
Qo:={AeP: AP} & Q=Qu{z, X}.
We show that Q = B(X).

If o+ U & X is open, then U € B (as a non-empty Gj set), and
Uc eB (as a non-empty closed set), hence U € Q. We show that Q is

a o-algebra.
First:
() A eP, A=A, 20 =— AcP.
n=1

To see this, let X,, be Polish, and =, : X,, - X be a continuous
injection with 7,(X,) = A,. Consider the product (Polish) space

X = ﬁ X,
n=1
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and the continuous injection 7 : X — XN defined by (7(z1,z,...))n =

T (Tn)-
Now let

X={zeX :m(x,)=m(x) Vn>1}
=7 Y(xy,29,...) € ANt mp =2 ¥V 0> 1},

- a non-empty, closed subset of X and hence Polish, and consider
7 : X — X defined by 7(x1,29,...) =m(x1). Clearly this is continuous,
and T(X) =Ny, A, (D)

Next:

(@) A, B disjoint, = () A, €.

n=1

Proof  Let X, be Polish, and 7, : X,, > X be a continuous injection
with 7,(X,) = A,. Consider the union space U := {(k,y) : ke N, x ¢
X} which is Polish equipped with the metric

d((k,x),(K',y)) = { Cllk(f;)k,7 L=k

If 7((k,z)) = mi(x), then 7 is continuous and injective and 7(U) =
U:zozl An w(a)

Now, we show
(v=) A Bey — AuBep.
To see this
A BefQy = A /B ,B°e}
(ﬁ) An B¢ Bep
@ AuB=(AnB°)uBe'B. W(s=)
To see that Q is an algebra we must show that
A BeQ) =— AuBeQ.
This true for A, B € Qg by (&) & (&) and the extension to A, B € Q

is easy.
To see that Q is a o-algebra, it’s enough to show that

A, e = A=A, Q.
n=1

If 3n, A, =X then A=X €.
So WLOG, we assume A, € Qy V n>1.
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Proof that AeP

Since 9 is an algebra, 3 B,, € 9, disjoint, such that A :=(J;2, B,. For
each n > 1, either B, e P or B, =@. WLOG B,eBVn>1& AeP
by (&).
Proof that A¢e‘P

For each n > 1, A¢ € B whence

(GAn) S () A e,
n=1 n=1
O

Universally Measurable.
A subset of a Polish space a ¢ X is universally measurable if a €

B(X), ¥ peP(X).

4.12 Luzin’s Measurability Theorem
An analytic subset of a Polish space a c X is universally measurable.

Proof We’ll show that 3 U cacV, U,V € B(X) such that p(U) =

p(V).
Define p: 2X - [0,1] by

p(A) :=inf{p(B): Ac BeB(X)}.

It follows from the basics that p is an outer measure.

If Ac X then 3 U420 A, Uy € B(X) with p(A) = p(Uy).
We'll show that V e >0, 3 K. c a compact, such that p(K.) >p(a)-¢
whence a=U;2; K1+ mod p.
Suppose that f NN - X is continuous and a = F(NN), For k,ny,...,ng >
1, let
L(ny,...,ng)={xeNV: z;<n; 1<j<k}.

By ex. 3.1(c), if A, € Ap, 1 A=U2, Ay, then p(A,) 1 5(A).
Thus, since f(L(n)) 1 f(NV) =a, 3 ny such that
P/ (L(n1))) > () - -
and since f(L(n1,n)) 1 f(L(n)), 3 ny such that
P (L(m,m2))) > BF(L(m))) = 5 =P(a) = 5 - 5.

Continuing inductively, we obtain ny >1 (k> 1) such that
P (L, ne))) > Ba) —2 ¥ k2 1.
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Set
[ee]
C. = L(ni,...,ng)
k=1
then C. is compact in NN, whence K = K, := f(C.) is compact in X.

We claim that p(K.) >p(a) —¢.
To establish this, it is sufficient to show that

™ K = Ifjf(L(nl,...,nk))
for then,

p(K) «— p(f(L(ny,...,ng))) 2p(f(L(n,...,nt))) >p(a) —«.

Proof of (=)

Clearly K c Ny f(L(ng,...,nk)).

Suppose that = € N2y f(L(n,...,nx)). We'll show that z ¢ K.
For each k > 1, 3 y(k) e NN such that d(z, f(y(k)) < ¢ and y;(k) <
n;j (1 < j < k). There is a subsequence k; - oo and y € N¥ such
thaty; (k) = y; V 1 < j < ¥, whence y € C. and y(k¢) - y. It follows
that

z < f(y(ke)) = f(y) e K.

SOUSLIN UNIVERSALITY

Definition Let X be a set, and F c 2X. A subset A of NN x X is
universal for F if

{A,: yeNY} = F
where A, = {r e X : (y,x) € A}.

Souslin’s existence theorem Let X be an uncountable Polish space.
There is an analytic subset of X which is not Borel.

Lemma Suppose that X is a separable metric space. There is an open
subset of NN x X which is universal for the open subsets of X, and there

is a closed subset of NN x X which is universal for the closed subsets of
X.

Proposition Let X be Polish. There is an analytic subset of NN x X
which 1s universal for the analytic subsets of X.
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Proof Each analytic set in X is the projection of a closed subset of
NNx X. Choose a closed subset F' of NN x (NN x X') which is universal
for the closed subsets of NN x X.

Set

G={(z,2) eN"xX: 3yeN", (z,9,2) e F}.

Evidently G is an analytic subset of NN x X. To see that G is universal
for the analytic subsets of X, let A c X be analytic. There is a closed
B c NN x X so that

A={yeX: 3xeNV (z,y)eB)}.
By universality of ', 3 u € NN such that
B=F,.
Therefore,
A={zeX: 3yeNV (y,2)eF,}
={zeX: JyeNY (u,y,2)eF}
={zeX: (u,z) G}
=Gy
U

Proof of Souslin’s existence theorem We first show that there is
an analytic subset of NN which is not Borel.

To see this let A ¢ NN x NN be universal for the collection of analytic
subsets of NN and let B = {x € N¥: (z,2) € A}, which is analytic
being a continuous image of A.

We claim that B ¢ B(NY). To see this, we show that B¢ is not
analytic.

If B¢ is analytic, then B¢ = A, for some u € A. However,

ueB® < (u,u)¢A < u¢A,=B° < ueB.
This contradiction blocks the analyticity of B¢, and shows that B ¢

B(NY).
The general existence theorem follows from Kuratowski’s isomor-
phism theorem. U

Definition [
Let X be Polish. Subsets A;, Ay,--- ¢ X are (Borel) separated if
3 Bl,BQ,"' GB(X) such that BZHBJ =gV Z:/:] and Az CB,L' Vix>1.

423/11/95
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Souslin’s separation theorem Disjoint analytic subsets of a Polish
space are separated.

Lemma 1Suppose Ay, As,..., By, Bsy,--- ¢ X and for each m,n > 1,
A, and B,, are separated, then U,._ Ay and U,>, B, are separated.

Proof We first fix n > 1 and show that U;,_; A,, and B, are separated.
To see this suppose that A,, ¢ F,, € B(X) (m > 1) and B, c
Ef ¥V m>1; then
UAncF:=J F,eB(X), & B,c () F5=F°
m=1 m=1 m=1
We now have that U;._; A,, and B, are separated V n > 1. Let
B,cG,eB(X) (n>1)and Uy A, c GS YV n> 1. Tt follows that

UB.cG:=JG,eB(X), & |J Anc ()G =G
n=1 n=1 m=1 n=1
U

Lemma 2 Suppose A, B c X are disjoint and analytic, then A and B
are separated.

Proof There is no loss of generality in assuming A, B # @. Suppose
A= f(NN) and B = g(NV) where f,g : NN > X are continuous, and
that A and B are not separated.

We claim that 3 my,n; > 1 such that f([m;]) and g([ni]) are
not separated, else A and B are separated by lemma 1 since A =
U= f([m]) and B =U;Z, g([n]).

Continuing in this manner, we obtain m,n € NN such that
f([my,ma,...,my]) and g([n1,n9,...,nt]) are not separated V k > 1.

However, since f(m) # g(n) (being contained in disjoint sets), we
have by continuity of f and ¢ that for some k£ > 1

Je >0 such that B(f([m1,ma,...,mg]),e)nB(g([n1,n2,...,1%]),€) = @.
U

Proof of the separation theorem Suppose that Ay, As,---c X are
disjoint and analytic. For each n > 1 Ug., A, is analytic and disjoint
from A,; so
Vn>13B,eB(X), A,cB,, & |JA,cBg.
k+n
Set
Cpn = By~ | By € B(X).

k+n
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Clearly C;nC)j =@ (i # 7). To see that A,, c C,, note that A, c B,
and
Vk+n, A,c|J A, c By,

m=k

whence A,, ¢ Ny, Bf and A, c C,,. O

Inverse function theorem Suppose that X and Y are Polish spaces,
and that f: X -Y s 1-1, and measurable, then 3 g:Y — X measur-
able suchj that go f =Id.

Proof Let e, - 0asn — oo and let for n > 1 o, ¢ B(X) be a countable
partition of X such that

max diam (a) < &,.

acay,

For each n > 1, {f(a) : a € a,} is a countable collection of analytic
sets, ans by the separation theorem 3 {B,(a) : a € a,,} ¢ B(Y'), disjoint
such that B,(a)2a V a€a,.

Choose z, € a € ay, fix x, € X, and define g, : Y - X by

T, Y€ By(a)

9n(y) = { 2 ¢ Unea, Bula).

Clearly g, : Y - X is measurable. Define g: Y - X by

limn%w n EI limn»oo n\Y),
o) :{ gn(y) gn(y)
r. else.

Clearly g : Y - X is measurable. Moreover for z € X, f(z) € B,(a,(x)) Yn>
1 where z € a,(x) € a,; whence g,(f(x)) = %4, (x) > T as n = o0
(" T, Tq, (2) € an () € 0y, and g(f(2)) = . O

Souslin’s measurability theorem Suppose that X andY are Polish

spaces, and that f: X =Y is 1-1, and measurable, then:
f(X)eB(X), and f~': f(X) = X is measurable.

Proof Let g:Y — X be as in the inverse function theorem. We have
that :
{yeY: fog(y)=y}eB(Y) -+ fog:Y - Y is measurable; and

F(X)={yeY: fog(y) =y}
The measurability of f~': f(X) — X follows from f~! = g|;x). O
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Cross sections. Consider the ordering on NN defined by = < y if
3 n>1 such that z,, <y, and z; =y; ¥ 1 <j <n (if any). Every closed
set has a mininum with respect to this ordering. Note that 1 < NN
where (a),:=a V a,n>1. For x <y e NV write

[2,y] = {z e NV w <2<y}, [2,y) = [2,y]  {y} ...
Note that for each z € NN, [1, z) is open.

Exercise Show that cylinder sets are generated by the countable col-
lection

{[1,2]: xe NN, 2, > a}.

Cross section theorem Let X and Y be Polish spaces, @+ ac X xY
be analytic, and p={r e X : FyeY (x,y)ea}, then I f:p>Y
analytically measurable (i.e. f'B(Y) c A(X)) such that

{(z,f(x)): zep}ca.

Proof Let T:NN — X xY be continuous with a =T (NY),

Writing 7(z,y) =z, (7: X xY - X) we have that g:=7oT : NN > p
is continuous and onto. For each x € p, g~'({z}) is closed in N¥. We
define h:p - NN by h(x) := ming='({z}).

Clearly goh =Id. To check analytic measurability of h: p — NN, note
that

h'([La))={yep: h(y) <a}={yep: ming " ({y}) <a} = g([1,a))

is analytic V a € NN,
Writing ¥(z,y) =yx, (¥ : X xY - Y) we have that f =9 oT oh:
p —» Y is analytically measurable, and

{(2, f(x)) :wepy ={Toh(x): vep}ca.

Remark 3 aeB(X xY) such that 4 f:p — Y Borel measurable.

Corollary: Section theoremﬂ Suppose that X and Y are Polish
spaces, and that T : X - Y is measurable. There is an analytically
measurable function f:T(X) - X such that

Tof = [dT(X)~

530/11/95
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Proof Let acY x X be defined by

a:= {(T(x),2): veX}€BY xX),

and let p, f:p — X be as in the cross section theorem; then p = T'(X)
and

{(z,f(2)):2eT(X)} c{(T(x),2): xeX}
whence T o f = Idp(x). O

Exercise Let (X, B,m) be a standard probability space, and let T : X —
X be measurable and measure preserving (i.e. m(T1A)=m(A) V Ae
B). Suppose that for m-a.e. x € X, |T-*{x}| < co. Prove that 3 disjoint
sets Ay, Ag,--- € B such that u22, = X mod m, TA,,TAy,--- € B, and
T:A;,—>TA, is 1-1 and bimeasurable.

EXERCISE NQ4

1. Generalized Hausdorff-type measures.
Let (X,d) be a metric space, let a: 2X — [0, c0] with a(@) = 0 and
define, for e >0, and Ac X,

HE(A) =inf{> a(Ay): Ac|J Ay, diamAy<e ¥ k> 1}

k=1 k=1

where diam A := sup, .4 d(z,y); and let H(A) :=lim._o H®) (A) < co.
Show that H :2X — [0, c0] is a metric outer measure.

3. Measure algebra. Let (X, B,m) be a finite measure space. Define
a relation on B by A~ B if m(AAB) =0.
a) Show that ~ is an equivalence relation.
b) Let B~ = {[A] :={A" e B: A" ~ A} : A € B} be the collection of
equivalence classes.

Show that

d(a,b) :==m(AAB) for a,beB”, Aeca,Beb

defines a metric on B~, and that (B~,d) is a complete metric space

(called the measure algebra of (X, B,m)).

c) Show that the following are equivalent:

(7) B~ is separable;

(1) 3 A, € B (n>1) such that V A e B 3 A" € 0({A,}2,) with

m(AAA") =0;

d) Is there a probability space (X, B, 1) equipped with sets
{As:5€(0,1)} c B such that p(A,AA) >3V s#t7?
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§5 LEBESGUE INTEGRAL ON A FINITE MEASURE SPACE

5.1 Integral of a bounded, measurable function.

Countable additivity is not needed for the integration of bounded
functions. This observation will be used when computing L** (below).

A finitely additive, finite measure space is a triple (X, B, 1) with B
an algebra of subsets of X and p: B — [0,00) finitely additive (e.g.
a normal probability space). A function f : X — R is measurable if
f~U € B for open sets U c R.

Let be a finitely additive, finite measure space. A simple function is
a finite linear combination of measurable indicators. The same simple
function can be represented by many different finite linear combina-
tions as above.
e A representation of the simple function f is a finite collection
{(a, Ar)}Y, c R x B satisfying (and denoted by) f = Y iy axla,.
o The representation f = Y, ayla, is disjoint if the sets {4}, are
disjoint.
e The canonical representation of the simple function f: X — R is
J = Yvep(x) Vly=y). This is disjoint.

The integral of the simple function f: X — R is

[ fdu=pu(r)="3 ou((f=v]).

vef(X)

5.2 Proposition Let f: X — R be simple with representation f =
fo:laklAk where ay,...,a, € R and Aq,..., A, € B, then

u(f) = I;aku(Ak)-

Proof Suppose that f = YN, axly, is a disjoint representation, then
[f=v]= |J AVovef(X)
1<k<N, ap=v
and by additivity of p,

p(f)= 2 wp(lf=v])

vef(X)

= Z Z arpt(Ax)

vef(X) 1<k<N, ap=v

N
= > arp(Ay). @
k=1
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For a general (non disjoint) representation, we need to consider the
partition generated by Aq, ..., An € B.

For V c X define V1:=V and V0:= X \V =Ve¢,

For € = (e1,...,en) € {0, 1}V define A, := M), A%

Note that X = U.eq013v Ae and Ag = Ueego, 13y, 221 Ae. We claim that

(@) f: Z (]zvjakak)lAs.

ee{0,1}N k=1

Proof of i

N N
f=> apla, =), ax > Ta.
k=1

k=1 £e{0,1}V, gx=1

= Z (]ZV: akek)lAE. 421 (@)

ee{0,1}N k=1
This is a disjoint representation and so by the above,

w(f)= > O arer)pu(AL)

ee{0,1}N k=1

ag Z ,U(Aa)

EE{O,I}N, Ek:l

1
= TM=

= ak,u(Ak) {ZT
1

e
I

5.3 Proposition (linearity and positivity)
Let f, g: X - R be simple functions, then

f(af+bg)du=ajfdu+bjgdp YV oa,beR,
X X X

>0 = jfd,uzo,
X

and

(DI < [ |fldp < sup [£] [ 1dp = sup | ().
X X
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Integral of a bounded, measurable function.
Let (X, B, 1) be a finite measure space.

5.4 Proposition
For f: X - R bounded, measurable ,

3 lim j gdp = j fdy.
g simple, supx \f—gl—>0X e

Proof 3 sequences of simple functions converging uniformly to f.
By positivity, if g, are simple and g, — f uniformly, {u(g,)}, is a
Cauchy sequence. If g,, h,, are simple and g,, h, — f uniformly, then
3 limy, e p(gn) =t a, lim,_e p(hy,) =2 b. To see that a = b, again by
positivity,

la = b < [1(gn) — p(hn)| < p(X) sup lgn = hn| = 0. O

This number pu(f) = [ fdu is the integral (of f with respect to p).
The linearity and positivity are preserved under the limit.

5.5 Proposition
Suppose f,g: X - R are bounded measurable functions, and «, 5 € R.

(1) f(af+5g)dm:affdm+ﬁfgdm.
A A

A

(2) f<g = ffdméfgdm.
A A

Integral of unbounded, measurable functions.
For this, countable additivity is needed and henceforward, (X, B, m)
is a finite (o-additive) measure space.

Integral of a non-negative, measurable function.
For f: X — [0,00) measurable and A € B, define

ffdm = sup {jgdm :g< f, g simple } < o0.
A A

e Note that if f, g: X - [0, 00) are measurable,
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(i) f<gon AeB = [, fdu< [, gdu;

(11) ffdm = sup {fgdm g < f, g bounded, measurable }
A A

=sup {jgdm g < f, g > 0 measurable }
A

Integrability.

The measurable function f : X — R is called integrable on A € B
if [,[fldm < oo. As above, in this case [, fudm < oo where f. :=
max{+f,0} so that f = f, - f_. We define

ffdm = ff+dm - ff_dm.
A A A

Before proving positivity and linearity for the integrals of integrable
functions, we need some:

BASIC CONVERGENCE THEORY

Throughout this section, (X, 8,m) is a probability space.
We’ll need the

5.6 BC lemma
Let A, e B, (n>1).

If 51 m(A,) < oo, then m([X,2q 14, = 00]) =0.

Proof
m([3 14, = o)) o m(J 4)

k=n
— 0. ¢

n—oo

Let f,, f: X — R be measurable.

Convergence in measure. We say that f,, converges in measure to
. m .
f written f, — fif
n—oo

m([[fa~f1>€]) —=0 V¥ e>0.

6BCc=Borel Cantelli
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a.e. convergence. We say that f, converges a.e. to f written
fn a.e. f 1f

n—oo

m([[fn» f]) =

5.7 Proposition
Suppose fn, f: X - R are measurable.

() fo 22 f = fo f:

n—oo n—
.. m a.e.
(H> fn —) f ad fn —) f;
(iii) fn SN f = 3 np— oo such that fr, k—> f-
n—oo

Proof of (i)
For ¢ > 0,

m({[|f. - |2 €]) Sm(G[Ifk—fI > ¢])
(O Ul f22)

=m([

= (i
=0

Mx

11, flze] = 0])
0 [f, - f|>¢])

I
—_

n

5 \

Proof of (ii) Exercise.

Proof of (ili)  Fix ny 1 oo so that
Zm( | foi = f1> ])<°°

It is easy to see using the BC lemma that f,, :—e> f. @

5.8 Egorov’s Theorem

Suppose fn, f: X = R are measurable and that f, - f a.e. asn — oo,
then ¥V ¢ >0 3 F € B such that m(X \ F') <e and f,, - f uniformly on
F.

Proof Since f,, — f a.e., we have that
V>0, A(n,n):=[Ifs = fl<n]t X mod p

k>n

as n - oo. Thus, 3 n, (m € N) so that p(A(nm,, =)°) < 5= and
F =5y A(ny, ) is as advertised. O
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5.9 Monotone convergence theorem (Beppo Levi)
Let (X,B,m) be a finite measure space. Suppose fn, f: X — [0, 00)
are measurable. If f, 1 f a.e., then

ffndmeffdm asn —oo V AeB.
A A

Proof

It suffices, given € > 0, A e B. 0 < g < f, g simple to show that
lim,, 0 fA fndm > fA gdm —¢.

Let K :=sup g. By Egorov’s theorem 3 B € B, B c A such that
fn = f uniformly on B and m(A~\ B) < 5%

Choose ng such that

n vV n >ny, B,
fu(x) > g(x) - v (B) n>ng, T€
then for n > ng:
jfndmszndm
A B
€
>fgdm—§
Igdm fgdm——
A\B
>fgdm—5.
A

5.10 Fatou’s lemma
For f, >0 measurable,

liminf | f,dm > flim inf f,dm.

n—oo

Proof Let gy(z) :=infgsy fr(x), then gy 1 liminf, .. f,, whence by
the monotone convergence theorem, V N > 1

J‘demZJ‘gNdm]\:ojhg_l)glffndm. O
A A
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5.11 Proposition
Suppose f,g: X - [0,00) are measurable functions, and o, € R,.
Then

(1) I(af+ﬁg)dm:affdm+ﬁfgdm.
A A A
(2) f<g = ffdmsjgdm.
A A
Proof Take limits of simple functions using the monotone convergence
theorem. 0
5.12 Lemma

If f, g, h: X - R are integrable functions, g, h >0 and
f=g-nh, then

ffdm = fgdm— fhdm.
A A A

Proof  Since [, fdm := [, frdm - [, f-dm, it suffices to show that
if g;, h; : X - [0,00) (i = 1,2) are integrable functions, satisfying
g1 — h1 = g2 — hy, then

Igldm - j hydm = jggdm - j hodm.
A A A A

To see this, note that g; + hy = g2 + h; whence

Igldm + f hodm = fgzdm + f hidm. @
A A A A

5.13 Linearity and positivity theorem
Suppose f,g: X - R are integrable functions, and o, € R. Then:
(af + Bg) is integrable, and

(1) J(af+ﬁg)dm:affdm+ﬁfgdm.
A A

A

(2) f<g = jfdmsjgdm.
A A

Proof Recall [f:=[f.—-[f.
e Fora>0, af,=(af). and (-f)s=fs so () f(af) =aff.
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e Tosee [(f+g)=[[f+[gnotethat f+g=(f++g:)-(f-+g-) and
use the lemma.

o Tosee (2),let f<g, then g— f >0 whence

03f(9—f)=fg—ff. a

UNIFORM INTEGRABILITY
Let (X,B,m) be a finite measure space, and let
L(X,B,m):={f:X - R: measurable}.
The family F c L(X,B,m) is called uniformly integrable (UI) if

¥e>03M>0 3 j Ifldm<e ¥V feF.
sy

o If Fc L(X,B,m) is uniformly integrable, then sup . | f|: < co.
Proof  Fix M >0 such that [;,,,q[fldm <1 V feF, then
supser [ fli < Mm(X) + 1. O

o If FcL(X,B,m), p=1+n>1andsups[|f|P = C <oo, then F
is UL
Proof For feF,
1 C
flam<— [1P<. D
[If>K]

o supsr|fli<oo » F UL
Proof Let X =[0,1], m =Lebesgue, f,, :=nly 1), then |f,[: =1 but
supnf[fnzk]fnzl V k>0. O

5.14 Proposition (dominated = UI) If F c L(X,B,m) and |f] <
g vV feF where g is integrable, then F is uniformly integrable.

Proof  We have G} := g(1 - 144)) T g as k 1 co. By Beppo-Levi’s
theorem [ Gy 1 [ g. It follows that f[gzk] gdm — 0 . Thus

sup j |fldm < f gdm — 0.
feF k—co
[If[=F] [92FK]

The converse implication is wrong. See exercise 5.2.
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The idea of uniform integrability is to obtain the best possible con-
vergence theorems.

5.15 Convergence theorem Suppose that f, : X - R are measur-
able, f, = 0 a.e., and {f, :n> 1} is uniformly integrable, then

jfndm—>0 as n — oo.
X

Proof = WLOG, f, >0.

[ fadm < [1gcanfudm+ [ fudm
X X

[fn2M]

< f 1[f<rr)fndm + sup fndm.
X " ez
Given € > 0 choose using Ul M = M. such that
su ndm < =
"p[fn!M] ! 2
By Egorov’s theorem, 3 F € B with m(X ~ F') < 55 so that f, - 0

2M
uniformly on F. Fix N, so that
fn(x)<z VzeF, n>N..
It follows that for n > N.,

I 1[fn<M]fndm = f 1[fn<M]fndm + j 1[fn<M]fndm
X F

X\F

IA
DO ™M | ™

+Mm(X\F)

vl

N

5.16 Corollary: Dominated convergence theorem
Suppose fn, f,g: X = R are measurable functions, and suppose that
fo—=>fae,|fal<gVn>1, and fX gdm < oo, then f is integrable, and

jfndmeffdm as n — oo.
X X

Proof Exercise.
EXERCISE N9O5
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1. Tightness of probability on a polish space.
Let X be polish and let p € P(X). Show that V >0, 3 K compact,
such that p(K) > 1-e.

2. Uniformly integrable example.

Let (X,B,m) = ((0,1],B((0,1]),Lebesgue). For z,y € X, define
ry(z)=x@y:=r+y mod l.
(i) Show that for each a € X, r, : X - X is a measure preserving
transformation in the sense that m(r,A) =m(A) V Ae B(X).
(i) Show that if g:[0,1) - R is integrable and a € X, then so is gor,
with fX gor.dm = fX gdm.

iii) Set f(z) = —=, Fi={for,: ac . ow that F is uniformly
Set f jz F f X}. Sh hat F forml
integrable and sup,cyqq f o7 = oo.

3. Convergence in measure.

Let (X,B,m) be a probability space, and suppose that f; : X —
R (k> 1) are measurable functions.

Is it true that

i) fa—= 0= fu—>07

n—00 n—

.. m m
(H) fn >0 = %ZZzlfk >07
n—oo n—>oo

4. Baire space and the irrationals.

(a) Show (using continued fractions or otherwise) that NN is home-
omorphic with (0,1) \ Q.

(b)Y Show that in every perfect Polish space there is a dense Gy
set which is homeomorphic with NN,

5. Analytic sets.
Show that countable unions and intersections of analytic sets are
analytic if nonempty.

6 Non Borel analytic sets.
Let X, Y be Polish. A projection is a map of form f: X xY —
X, f(x,y) = z. The projection of a set is its image under a projection.
This problem is about Lebesgue’s claim (1905) that the projection
of a Borel set is Borel, and its refutation by Suslin (1917).

6.a Projections of closed sets.

Show that a subset of a Polish space X is analytic <= it is the
projection of a closed subset of NN x X

Hint for =) Consider the graph of 7" where T : NN - X continuous
with T(NV) = A.
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Definition of Universality Let X be a set, and F c 2X. A
subset A of NN x X is universal for F if

{A,: yeNV} = F
where A, = {z e X : (y,x) € A}.

6.b Universal open and closed sets.

Suppose that X is a separable metric space. Let u:= Uy pen[n]r x Uy,
where [n]g == {z e NN: 2, =n} and {U, : n>1} is a base for the open
sets in X. Show that u is an open subset of NN x X which is universal
for the open subsets of X, and that there is a closed subset of NN x X
which is universal for the closed subsets of X.

6.c Universal analytic sets.

Let X be Polish. Fix a closed subset F' is of NN x (NN x X') which is
universal for the closed subsets of N¥ x X. Let G := {(x,2) e N¥ x X :
FyeNN (x,y,2) € F}. Show that G is an analytic subset of NN x X
which is universal for the analytic subsets of X.

Hint Use ex. 6.a repeatedly.

6.d Non-Borel, analytic subset of NN.
Let

B:={zeNV: (z,2)e A}
where A ¢ NN x NN is universal for the collection of analytic subsets of
NN, Show that

(i) B is analytic;

(i) 3 uwe NN with B¢ = A,;
(iii) B¢ is not analytic;
(iv) B is not Borel.

6.e General non-Borel, analytic subsets. Show that in any uncount-
able polish space, there is a non-Borel, analytic subset.

6.f Lebesgue’s claim (1905).  Refute it.

Week # 5
§6 APPROXIMATION BY CONTINUOUS FUNCTIONS

6.1 Frechet’s theorem Let X be a polish space and let p € P(X) and
let f: X — R be measurable, then

(&) VA>03heCp(X)with p([|f-hl>A]) <A

Proof of OW) for f=1p where F' is closed:
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Let A >0 and let d be a Polish metric on X and for n > 1, define
hyp: X >R by h,(x):=(1-nd(z,F)) v0. Evidently

€[0,1] VareX;
hn(l’): 1 IL‘EF,
0 d(z,F)>1i

Thus [h, # 1r] = B(z,~) \ F' | @ whence p([h, # 1p]) < A for n large.
v

Proof of O) for f=14 where AeB(X):
Let A >0, then 3 F c A closed so that p(A~ F) < 4 and by (%) for
f=1F, 3 hECB(X) such that p([|1F—h|2A])<§. Thus

p([[ta—h[> A]) <p([1p # 14]) + p([[1r - h| > A])
=p(ANF) +p([|1r - h| > A])
<A. U

Proof of (X)) for s simple:
Suppose that |s| < M, and let A > 0.
For each y € s(X), 3 hy € Cp(X) such that

A A
Mls(X)I7  [s(X)

P([[1s=y) = Pyl 2

Define h =} . x)yhy € Cp(X), then

p([ls=hl2AD =p([l 3 y(lfsy —hy)l 2 A])

yes(X)
A
< S W[l ol > —2 )
2 P = Il 2 ey
<A. @

Proof of (X) in general:
Let f: X — R be measurable and let A > 0.

e b:X - R bounded, measurable with p([f # b]) <4 (- p([|f| >
n]) — 0);

n—00

e 15:X — R simple with sup |b—s|<§;
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o 3 heCp(X) suchthat p([|s = h| > £]) < 4. It follows that

p(llh =112 A1) < ([ #8) +p([— sl 2 1)+ p([ls = bl 2 5)
A
< Z +0+ Z
<A @ (n)

6.2 Corollary: Luzin’s theorem

Let X be a polish space and let p € P(X) and let f: X — R be
measurable, then ¥ ¢ >0 3 F ¢ X compact with p(F) > 1-¢ and
g € Cp(X) so that f|r = g|F.

Proof

By Frechet’s theorem and proposition 5.7(iii), 3 h,, € Cg(X) such that h,, -
f a.e. and by Egorov’s theorem 3 F € B such that m(X \ F) < ¢ and
such that this convergence is uniform on X. By tightness, F' may be
chosen to be compact. It follows that f is continuous on f. By Tietze’s
extension theorem 3 g € Cp(X) such that g|p = f|p. @

§7 PRODUCT SPACES AND INTEGRATION OF MEASURES

Let (X, B) and (Y, C) be measurable spaces. The product measurable
space is (X xY,0(BxC)) where BxC:={BxC: BeB, C'eC}.

The sections of A c X xY are defined by A, :={yeY : (z,y) € A},
and AY:={x e X : (x,y) € A}. Evidently,

(A%)z = (Az)", (HA(t))z =UA(®)z, (AxB), =

te/

B xzeA
g x¢ A

The collection of o-finite measures on the measurable space (X, B) is
denoted (X, B) and the collection of probabilities is

P(X,B) = {peM(X,B): u(X)=1}.
7.3 Theorem (integration of probabilities) Let (X,B) and
(Y,C) be measurable spaces and let p e P(X,B).

Suppose that v : X — P(Y,C) is measurable in the sense that x —
v, (A) is measurable ¥V A €C, then there is a unique

meP(X xY,0(BxC))
such that

m(Ax B) = fux(B)du(a;) ¥ Ax BeBxC.
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Proof
Since B x C is a semi-algebra, it suffices to show that my
[0, 00) defined by

mo(BxC)zjyx(C)d,u(:c) V BxCeBxC

is additive and countable subadditive.
To see additivity, suppose that

N
BxC =) By xCy where B, By, Bs,...By€B, C, Cy,Cy,

k=1

then for z € X,
N
(BxC), = U(Bk x Ok )y
k=1

whence

:Bx(C —

...CNEC,

1(2)v2(C) = va((B x C)s) = kzl Ve ((Bi x Ck)z) = ]; 1, (2)v2(Cy),

and, integrating

N
mo(B X C) = Zmo(Bk X Ck)
k=1

To prove that mg is countable subadditive, let
Bv BI7B27”' GB, Ca 017027"' eB
and

BxCcl|JB;xCj,

j=1
then

VreX, (BxO),c|J(BjxC));
j=1

() (C) = va((B x O).) < iux«Bj <)) = 213].(90)%(@),
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and

mo(BxC) = | va(C)p(x)

Hm%

(Lp(x)ve(C))dpu(x)

IN

(S 15 @) anto

7=1

mOBXC)

.
1}
—_

The measure m exists by proposition 3.2 and is unique by proposition
2.3. [

7.4 Corollary (integration of measures) Let (X,B) and (Y,C)
be measurable spaces.

Suppose that p € M(X,B) and that v: X - M(Y,C) is measurable
and define mo: B xC — [0,00] by mo(Ax B) = [, v(A)dp(z).

If3 A,eB, A, 1 X and B, €C, C, 1Y such that m(A, x B,) <
oo V n > 1, then there is a unique m € M(X xY,0(B xC)) such that
m|BXc =my.

In case v, = v is constant, m is called product measure and denoted

m= [ xU.

Remark. Suppose that (X,B,p) and (Y,C,v) are RY R equipped
with Lebesgue measure, then u x v is Lebesgue measure on R4+’

DISINTEGRATION OF SETS, THE FUBINI-TONELLI THEOREMS AND
GENERALIZATIONS

Let (X, B) and (Y,C) be measurable spaces.
The sections of Ac X xY are

Ay ={yeY: (u,y)eA} & A" :={zxeX: (r,v)e A} (ueX,veY).

Theorem 7.5 Let pe M(X,B) and let v: X - M(Y,C) be measur-
able, so that 3 A, eB, A, 1 X and B, ¢C, C, 1Y with

fl/z(Bn)dy(x) <oo YV n.
An
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Let m e M(X xY,0(BxC)) such that

m(Ax B) = fux(B)du(x) V AxBeBxC.
A

If A e o(BxC), then (i) A, € C ¥V x € X, (ii) the function
x = vy(Ay) is B-measurable, and (ii) m(A) = [, vo(Ag)du(z).

Proof in case m(X xY) < o0

The collection D c o(BxC) of sets satisfying (i), (ii), and (iii) contains
the algebra A generated by B x C, and is a monotone class. By the
monotone class theorem, D 2 o(B x C). O

Theorem 7.6
If h: X xY - R is 0(B xC)-measurable, then y — h,(y) := h(x,y)
is C-measurable ¥ x € X, and

(i) h>0 =2+~ fhxdyz is measurable on X,
Y
& [ hdm= | (f hxdyw) dy(z).
Xxy X \y
(ii) hell(m) = hyeLY(v,) for a.e. z€X,

T Jhmdyx 1s integrable on X,
Y

& j hdm = f (j hxdyx) dp(z).

XxY

(iii) j (I |hx|dyx) du(z) < oo = hel'(m).

X

Here, £'(m) denotes the collection of m-integrable functions.

Proof In case h is an indicator function: h =14, Ae€o(BxC), this
theorem follows from the previous theorem. Assume that A: X xY - R
is a simple function, h = ¥p, apla, Ap e o(BxC), then for x € X,
h, = Zszl arlia,).; (Ar). € C, whence h, is C-measurable. Moreover
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x> [, hedy, = Yy arve((Ag),) is B-measurable, and
( [{fn duw)dmx) (S owetcann)auto)

]Zj: f”ﬂ:((Ak 2)dp(r) = Zakm(z‘lk)—f hdm.

XxY

If h: X xY - R is o(B x C)-measurable, then h is a pointwise limit
of o(B x C)-measurable simple functions, whence, V = € X, h, is a
pointwise limit of C-measurable simple functions, and hence is itself
C-measurable.

If h > 0 then h is a pointwise limit of an increasing sequence h,,
of non-negative, o(B x C)-measurable simple functions. By Lebesgue’s
monotone convergence theorem

j(hn)xdyw > fhwdyx asn ooV reX
Y Y

whence x — fy h.dv, is B-measurable on X. To complete the proof of
(i), use monotone convergence again to show

f (f hmdug;) dp(z) < j (f(hn)gcdyz) dp(z)

X X
= f hp,dm — f hdm as n — oo.

XxY XxY
Statement (iii) follows immediately from (i). To deduce (ii), note that
by (i),
f(j(h )idyx)du(x) - f hodm
XxY
where f, := max{zf,0}. O

7.7 Corollary (Fubini-Tonelli theorem)
If he LY (uxv), then

j (J hxdu) dp(z) = J (}l hydu) du(y) < oo

X
where h¥(x) = h(x,y).

Proof Apply 7.6 in case v, = v. 0
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Convolutions. Let f,g : R - R be measurable. For every x € R,
the function y — f(x —y)g(y) is measurable. In case this function is
integrable, or non-negative, we can define the convolution of f and g
at x by

frg(@) = | flx=y)gly)dy.

Let mga denote Lebesgue measure on R,

Note that mps = mr ® --- ® mg.
[ —
d-times

Proposition 7.8 If f,g € L' (mpa), then the function h : R - R
defined by h(x,y) = f(x —y)g(y) is integrable on R?*? and f * g €
£1(de).

Proof You establish the measurability of A in exercise 6.2.

For y € R, |hY||y = |g(v)||fll1, whence, by Fubini’s theorem, h €
El(mRQd).

Also by Fubini’s theorem, we obtain that the convolution

frg(e)= [ hay)dy

is defined at a.e. z € R?, and is integrable:

| £+ gl <[]y = f |7 ]xdy = [ fl1lg]s-
R4

SIERPINSKI’S COUNTEREXAMPLE SETS

These show that for A c R?, the Borel measurability of the sections
Az, A cR (2 €R) does not imply Lebesgue measurability of A.

7.9 Sierpinski 1919
Iterated integrals exist and differ.

Let m be Lebesgue measure on I :=[0,1]. Assuming the continuum
hypothesis, 3 M c I x I such that for every x,yel,

M, ={t:(x,t)e M}, MY={t:(t,y)e M} eB(I):={Borel sets}
but such that m(Mv) =0, m(M,) = 1.

It follows that M ¢ M(I x I) := {Lebesgue sets}.
Proof
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Assuming the continuum hypothesis, there is an order < on I = [0,1]
such that {z € I : z <y} is countable for every y € I. Set M = {(z,y) €
I?: x<y}. Evidently MY = {t: (t,y) € M} € B(I) has zero measure
being countable and M, = {t: (z,t) € M} € B(I) has full measure being
co-countable. &

7.10 Sierpinski 1920
Section measures zero but set not measurable.
3 F c R? such that

(a) #ENL <2V L line;

(b) EnF @ V F cR? closed, with positive measure.

Note that (b) entails m(E]n A) = m(A) V A € B(R?) where m is
Lebesgue measure on R? and m(F') :=inf {m(U): F c U open}.
Proof  We first establish the

Lemma 7.11 Suppose that A € B(R?), m(A) >0 and let Ly be a line
in R2, then 3 a line L || Ly with |[Ln A| = c.

Proof of the Lemma :

cosf sinf

Let Ty = ( _ ) :R?2 - R? be a rotation in R? about 0 so that
—sinf cosf

TyLg is a vertical line. By exercise 6.1, m(TyA) > 0. By the Fubini-
Tonelli theorem, 3 a vertical line V' with my (V nTpA) > 0 (where my is
linear measure on V), whence |V N T9A| = c. It follows that L := T oV || Ly
with |[LnAl=c. @

Proof of 7.10 :
Let € = {closed subsets of positive measure in R2?}, then
CxRZzc.
As in Bernstein’s theorem, we construct the set by transfinite recur-
sion. Write € = {F,: a € {2.}.
We claim that

ﬂ Vae Qc E fa : (RQ)Q(Q) — R? such that V u € (R2)Q(O‘)
(i) fa(u) € Fu;
(i) fa(u) ¢ L(u(B),u(7)) = {tu(B)+(1-t)u(y) : teR} V5, ve2(a).

Proof of (:

e The cardinality of the collection of directions of the lines

{L(u(B),u(7)): B, ve2(a)}<c

whence, using the lemma, 3 a line L such that
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o Lt L(u(B),u(v)) V B, ve2(a);
e |[LNnF,|=c
It follows that

| U LoFanLu(B),u(v)l<c,
B, vef2(a)

whence

3 fa(u)eLnFy~ | LnFE,nL(u(B),u(y)). d g
B, vef2(a)

By transfinite recursion 3 ¢ : £2. = R? such that ¢(a) = fa(qlo(a))-
We claim that E := q(§2,) is as required. Evidently q(«) € F, V av € 2,
and so E satisfies (b).

e To check (b) suppose otherwise that «, (3, v € {2, are distinct, and
that L is a line with ¢(«), ¢(53), q(v) € L. WLOG, a < <~ and we
have q(v) € L(q(«),q(3)). However, by construction,

9(7) = fy(dlaw) ¢ L(a(@),q(B)). @ 1

Such a set E c R? is called a Sierpinski set. By regularity, a Sierpinski
set intersects with every measurable set of positive measure.

€ To see that a Sierpinski set E' is not Lebesgue measurable, suppose
otherwise, then by Fubini mg2(E) = 0 whence mg2(E¢) > 0 and EnE° +
g. X

EXERCISE (N25), 26/4/2017

1. Baire’s theorem. IZ] Suppose that (X, d) is a complete metric
space.

(i) Prove that if U, c X is open and dense in X V n > 1, then G :=
Mpns1 Uy is dense in X,

(i) Now suppose that X = ;2 F,, where each F, is closed. Show
that 3 n >1 so that F? + @.

(i)  Let f, € Cp(X) and suppose that f,(z) — f(z) V zeR.

Show 3 x € X so that f is continuous at x.

Hint [wy < €] is open and dense V € >0 where wy () := lim,,o+ diam f([z — r,z +]).

7 ..
Revision
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2. Baire classes.

Let X be a polish space. The collection of Baire class 0 functions is
BO = CB(X)

For a € {2 := {countable ordinals}, define the collection of Baire
class a functions

Boy:={f: X ~>R: 3 fyeBs,, Bue fu<a, fulz) — f(z)VzeX)

i.e.
By = {limits of bounded continuous functions},

By :={limits of limits of bounded continuous functions},

Show that

(i) Bg = | B, = {Borel measurable functions};
el

Hint: {AeB(X): 14 € Bg} is a monotone class.

(i) if m e P(X) and f: X — R is measurable then 3 g € By such that
f=gm-a.e.

Let (X,B,m) = ([0,1],Borel,Leb). The rest of this exercise shows
3 a measurable function f: X — R for which A ge By, f=g m - a.e..

Let (B~,d) be the measure algebra of (X, B, m) as in exercise 3.2.
(iv) Show that

0:={aeB : m(An(s,t)) >0 & m(A°n(s,t)) >0V Aea, s,t€Q, s<t}

is dense in B~.

Hint Use Baire’s theorem.

(v) Show that if f=14, A€caed, then 3 ge By, f=g m - a.e..

3. Uniform integrability theorem.
Let (X,B,m) be a finite measure space. Show that the family F c
L(X,B,m) is Ul <
a(z)

Ja:R, >R, 5 —* 100 asz? oo, supja(|f|)dm<oo.
x fe]-'X
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4. Linear change of variable.
Let

G = {nonsingular linear transformations of R%}

and let m : B(RY) - [0, co] be Lebesgue measure.

(i) Show that if 7€ G then mo T : B(RY) - [0, 0] is a translation
invariant, locally finite measure which is homogeneous in the sense that
moT(aB)=a%moT(B) VY a>0, BeB(R?).

(ii) Show that 3 a multiplicative homomorphism A : G - (0, 00) so
that mo T = A(T)m.

(iii) Show that A(T) =|detT| for T € G orthogonal or diagonal.
Hint Choose suitable A € B.

Fix T e G.

(iv) Show that for T*T = M*M where M = LU with U orthogonal
& L diagonal; and that |detT'| = A(M).

(iii) Show that A(T") = A(M).

Hint Choose suitable A € B.

5. Convolutions.
Let m denote Lebesgue measure on R<.

(i) Show that if f, g:R% - R are Lebesgue measurable, then so is the
function h: R? x R4 - R defined by h(x,y) = f(x-y)g(y).

(ii) Prove that if f,g:R? - [0, 00] are measurable, then f % g=g* f.
(iii) Show, using Hélder’s inequality (or otherwise), that if f e L1(R?),
and g € /(Re) whete 1 < p < oo, then |f *gl, < |/]1gl,- When is
there equality?

(iv) Suppose that h : R - R, is measurable, and suppose that [, h(z)dz =
1. Define, for ¢ > 0, h; : R* > R, by hy(z) = th(%). Prove that for
1<p<oo,

I£ % hi= Fly—0 ¥ f e DP(RY).

6. Fourier transform on L'(R?). For f e L'(R?), define the Fourier
transform of f by

Fit) = [ f@)e e (teR)

where (z,t) = ((z1,... ’,fd)’ (t1,...,ta)) = X8, Thty.

a) Prove that f : R? - C is bounded, and uniformly continuous
V fe LY (RY),

b) Show that fxg=fgV f,ge LY(R9).

¢) Show that if f : R? - R is C' and [f #0] is compact, then
(V)e(t) = Z'tk]?(t) where (Vf)r(x):= %(l’).
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d) Prove the Riemann-Lebesgue Lemma, that if f € L'(R?), then
f(t)—>0ast— oo.

7. Measurability and Fubini.

(i) Let (X, B, u) and (Y,C,v) be finite, non-atomic, Polish, probability

spaces and let m = puxv:F :=c(BxC) - [0,1] be product measure.
Show that 3 F'c X xY so that v(E,) =0=pu(EY) Vo eX, yeY

and so that E ¢ F,,.

Hint: Isomorphism.

(ii) Show that there is a continuum of disjoint Sierpinski sets in R2.

Week # 6
§8 SIGNED MEASURES

A signed measure on the measurable space (X, B) is a o-additive set
function p : B —» R. For example, if p, : B — [0, 00) are measures, then
W= by — p4— 18 a signed measure.

The total variation of a signed measure is a set function m =m,, =
|| : B = [0, 00] defined by

m(A) =sup{)_ [u(An)|: A, € B disjoint, A= UlAn}
n=1 n=

8.1 Theorem (finite total variation) If u:B — R is a signed
measure, then m: B — [0,00) is a finite measure.

Proof We must show that: (i) m is o-additive, and that (ii) m(X) <
Q.

To prove (i), let A = ;2 A,, where A, A, e Band A, (n>1) are
disjoint. Suppose t, < m(A,)(< ), then, V n > 1, A, = U Ak
where A, € B, A, (k> 1) are disjoint, and Y32 [u(An )| > tn. It
follows that

m(A) > i;lm(An,kﬂ > iltn, m(A) > ilm(An).

To obtain the reverse inequality, suppose A = U, £, where E, € B
and E, (n>1) are disjoint. Then

§|M<En>| < i (B, 0 A < i m(Ay), - m(A) < men»

To establish (ii), we use the
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Lemma 8.2 [f EeB, m(FE) =00, then E=AuB where A,B € B are
disjoint, m(B) = oo and |u(A)|,|u(B)| > 1.

Using the lemma, if m(X) = oo, then there are disjoint sets A, €
B (n > 1) such that |u(A,)| > 1V n > 1, contradicting the countable
additivity of p. O

Proof of lemma 8.2 Let t = 2(1 + |u(E)|), then 3 E,, € B (n > 1)
disjoint sets, such that F = Uy, E, and ¥,°, |u(E,)| > t. It follows
that 3 S cIN 3 |Ymgu(E,)| > L Set A=U,es E, and B = EN A,
then

(A > 1+ |u(E)l, & [p(B)] 2 [u(A) = [u(E)]> 1.
By additivity of m, one of m(A), m(B) is infinite. O
8.3 Corollary (c-additive Jordan decomposition) If u:B — R

is a signed measure, then p = p, — pu_ where py : B - [0,00) are finite
Measures.

Proof . :=

Hahn decomposition of signed measures.
Let X be a set, let A c 2% be an algebra and let p : A - R be
additive. Define m =m,, = |u|: A — [0, 0] by

N N
m(A) =sup{>_ [u(A4,)|: A1, As,..., A, € B disjoint, A> ) Ay}
n=1 n=1

As on page 9, m is additive, and, in case |u| = |u|(X) < oo, we have
the Jordan decomposition:

+
(= — i where uizyzfl%[o,oo).

In case A is a o-algebra and p is a signed measure, then |u|(X) < oo

and |p| is o-additive.

8.4 Theorem (Hahn decomposition)
There are disjoint sets A, € B such that X = A, UA_, and

pe(B) =|p/[(BnAy)=xu(BnA,) VY Beb.
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Positive sets.
Let p: B - R be a signed measure on the measurable space (X, B).
Call A € B a positive set for p if u(B)>0 V BeB, Bc A. Let

P, :={positive sets for p }.

8.5 Proposition
(1) P, is a heriditary o-ring.
(2) 1(A) = |u(A) ¥ A€P,
(3) If AeB, u(A)>0, then 3 Pc A, i(P)>0, PeP,.

Proof of (3) by exhaustion

Let ey :=sup{(-u(B))v0: BeB, Bc A} and choose By € B, B, c
A, —p(B1) > 5. Note that A e P, iff £; = 0 in which case B; = @ is a
possible choice.

Let g9 := sup{(-u(B))v0: BeB, Bc A~ By} and choose B, €
B, Bg c A~ Bl, —,u(Bg) > %2

Continue to obtain:
& &1 > &9 2 ... ZO,
o disjoint sets B,, € B (n >1) so that

—M(Bn)v02%"Vn21 &

Ens1 =sup{(-u(B))vO0: BeB, Bc A\ B;}.

=1

Let B :=J,s1 By, then
p(B) = > u(B,) <0, whence ) &, < oo.

n>1 n>1

Set P:= A\ B, then
p(P) = p(A) - p(B) > 0.
To see that P € P,, suppose not; then
3e>0, BeB, Bc P, —u(B) >e¢.
However, B c AN, B; Yn>1 whence —u(B) <&, - 0.8
Proof of Hahn decomposition

We show that there are disjoint sets A, (u) € B such that X = A,uA_,
and

ul(BnA(p)) =+p(BnA(n)) ¥V BeB.
Let A, = A.(u) € B be the measure theoretic union of P,,, then by
(1) in the lemma, A, (p) € Py
It remains to show that |u[(X ~ (4, wA_))=0.
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Ifnot 3IGeB, Gc XNA,uA | e==1 with eu(G) > 0.
By (3) in the proposition 3 P c G, |u|(P) >0, P € P.,. But then

P 4 and
0 <|u|(P) = |p|(Pn(AywAL))+p|(PNALWAL) = |p|(Pn(AWAL)) =0.

ABSOLUTE CONTINUITY AND SINGULARITY

Let (X,B) be a measurable space, and let u,v : B - [0,00) be
measures. The measure v is absolutely continuous with respect to
(v<up)if AeB, u(A)=0 = v(A)=0. The measures p and v are
singular (un Lv)if 3 AeB 3> u(A)=0, & v(A°) =0.

8.6 Theorem (Radon-Nikodym for finite measures) Let p1, m
be finite measures on the measurable space (X,B).
If u<<m then 3 f e L'(m), f >0 such that

(%) u(A) = ffdm V AeB.

The function f (determined up to equality a.e.) is known as the
Radon-Nikodym derivative and denoted f = 2%'

Proof

For ¢ € Qp:=Qn[0,00), set B, := A_(u—gm) where {A.(u—qm) :
e = +} is the Hahn decomposition of j — gm. Note that By = @.

We have

BoNBy=A_(p—am)n A (pp—=bm) € Pap—py 0 Prucom ¥ a,b € Q.
For b > a,
0<(u=bm)(By~ By) < (pu—am)(By\ By) <0
whence
m(B, ~ Byp) = 0.
Define the sets {C,,: a€Qp} c B by

Cq = Bq N U Bt;

tEQo, t>q
then

m(B,AC,) =0V qgeQy & C,cCyV a, beQp, a<b.
Define f: X - R by
f(z):=inf{geQy: zeC,}.
It follows that [ f < ¢] = C, whence f is measurable.
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Moreover, by the above if a < b € Qq, then
[a< f<b]=Cy~CyePamp O Pruim,
whence for Z € B,
am(Znla< f<b))<u(Znla< f<b])<bm(Znla< f<b])

with the consequence that (1)

M(Z)zfzfdm VZeB. @

8.7 Lebesgue Decomposition Theorem
Let M\, : B - [0,00) be finite measures, then 3 and finite measures
Aac, As 1B —>[0,00), Age < pt & Ag L pu such that

A(A) = Igdu +0(A) YV AeB.
A

Proof
Let p = A+ p. By the Radon-Nikodym theorem 3 h € L'(p) so that

MA) = [ hdp v AeB,
A
whence
(+) jhcm:ju—h)cu V AcB.
A A

It follows that:
o h>0p-ae (else 0<A([h<0])= [y o hdp<0);

e h<1p-ae. (else p([h>1])2A([h>1])= j[h>1] hdp > p([h > 1])).
Now define A4e, As: B — [0,00) by

h
Aac(A) = fgdu where gi= ——-Ipays & Au(4) =A\(An[h=1]).
A
Evidently A\,. < g and A\, + Ag = A
Moreover, A\s L p because \;([h #1]) =0 and

p([h=11) = [ Wpendp = [ 1py(1-h)dr=0. @
X X

8.8 Corollary (R-N for signed measures)



72 Measure Theory notes (C) Jon. Aaronson

Let 11 be a signed measure, and m be a measure on the measurable
space (X, B).
If w<<m then 3 f € LY(m) such that

M(A):jfdm V AeB.
A

8.9 Corollary (R-N for infinite measures)
Let i, m be o-finite measures on the measurable space (X, B).
If u<m then 3 f: X - [0,00), B-measurable, such that

,u(A)szdm V AeB.
A

§9 CONDITIONAL EXPECTATIONS, CONDITIONAL PROBABILITIES
AND DISINTEGRATIONS

The following is the converse to the theorem 7.3 on “integration
of probabilities” for Polish spaces.

9.1 Theorem (disintegration of probabilities)

Suppose that X, Y are Polish spaces and that m e P(X xY').

Let € P(X) be the marginal of m defined by pu(A) = m(AxY),
then there is a set X € B(X), Xo=X mod p, and a measurable map
zv, (Xo—->PY)) such that

m(AxB):fyI(B)du(x) ¥ AeB(X), BeB(Y).

Proof Let A c B(Y) be a countable, generating algebra with the
FSCP.

For B € B(Y), define the measure vg : B(X) — [0,00) by vg(A) :=
m(A x B), then vp < p = vg and so by the RN theorem, 3 a B(X)-
measurable function x ~ v,(B) = ‘Z’—f(w) so that

[(0.(B)du(z) =m(Ax B) v AeB(X)
A
whence v, (Y") =1 for y-a.e. x € X.
Also, if Ay, ... € B(Y') are disjoint, then

u([] Ay) = gux(m,

for p-a.e. re X.
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Since A is countable, there is a set Xy € B(X), Xy =X mod p such
that

u, (1) Ag) = Z%(Ak) Vz e X,
k=1 k=1
whenever A, ..., A, € A are disjoint.
Since A has the FSCP,
F{v,:xeXo}cP(Y)
such that
Ve(A) =u,(A) V Ae A, zeX.
In order to complete the proof of the theorem, we note that the collec-
tions
D:={AeB(Y):x~ v,(A) measurable},
and
E={BeB(Y): jyx(B)du(x) =m(Ax B) ¥V AeB(X)}
A
are both monotone classes containing A. @

9.2 Theorem (Existence of conditional expectations) Suppose
that (X, B,m) is a probability space and that C c B is a sub-c-algebra,
then for every f e LY(B), 3! ge LY(C) such that

ffdmzfgdmv CeC.
C C

This is proved using the Radon-Nikodym theorem. The function g €
LY(C) is clearly unique mod m. It is called the conditional expectation
of f with respect to C, and denoted

9=E(fIC).

9.3 Proposition (Properties of conditional expectations)
a) If A, € B (n>1) are disjoint, and A =, A, then

B(L4l0) = 3 E(14[C) a.c.

n=1
b) If C = o(«) where acc B is a countable partition of X, then

E(f|C):AZ 14E(f|A) ae. ¥V f: X - [0,00)

measurable, where E(f|A) := m [, fdfm.

c) If f: X - R is bounded, B-measurable, and g: X - R is bounded,
C-measurable, then E(fg|C) =gE(f|C).

d) If Cy c Cy then E(E(f|C1)IC2) = E(E(f|C2)IC1) = E(fIC1)-
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e) [ECfIC)]p < [flp ¥V 1<p<oo.
f) Jx(f = E(fIC))gdm =0V feL*(X), ge L*(C).

Remark
E(+|C) is the orthogonal projection P : L?(B) - L?(C), whence

If = EfIO2<1f —gl= ¥ feL*(B), geL*(C)
with equality iff g = E(f|C).

Regular conditional probabilities.

Suppose that (X,B,m) is a probability space and that C c B is a
sub-o-algebra.

A regular conditional probability on (X,B,m) given C is a function
p:Xox B —[0,1] where Xy eC, X=X mod m, such that
(a) for every = € Xy, m, € P(X,B) where m,(A) :=p(x, A);
(b) for every A € B, the R-valued function z ~ m,(A) = p(z, A) is
C-measurable, and
(¢) [pmu(A)dm(z) =m(AnC) V AeB, CeC (ie. p(-,A) = E(14]C)
a.e.).

9.4 Theorem (Existence of regular, conditional probabilities)

Suppose that (X,B,m) is a Polish probability space and that C c B
15 a sub-o-algebra, then there is a reqular conditional probability on
(X,B,m) given C.

Proof
By Kuratowski’s isomorphism theorem, we may assume (!) that
X =1

Let A denote the algebra of finite unions of cylinder sets in X, then
each set in A is both open, and compact.

Consequently any non-negative, finitely additive set function p: A4 —
R, satisfies Caratheodory’s condition (*) (as on p.11) and extends to
a measure v on (X,0(A)) defined by

v(E) = inf{i,u(An) : QAn 2K, A, e A}

Choose C-measurable functions
uz(A) = E(14C)(z) a.e. (AeB),

then
fux(A)dm(as) =m(AnC) V AeB, CeC.
C
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Also, if Ay, ... € B are disjoint, then
um(U Ap) = Z uz (Ay),
k=1 k=1

for m-a.e. x € X. Since A is countable, there is a set Xy €C, Xy=X
mod m such that

u (| Ax) = Z%(Ak) Ve X
k=1 k=1
whenever A, ..., A, € A are disjoint.
It follows from the remarks above that there are measures
{m, 1z e Xy}
on (X, B) such that
mz(A) =u,(A) V Ae A, xeX,.

In order to complete the proof of the theorem, we note that the collec-
tions

D:={AeB:x~ m,(A) C-measurable},
and

£:={Aec B:jmm(A)dm(x) =m(AnC) ¥ CeC)

are both monotone classes containing A. O

EXERCISE NO6

1. Measure space isomorphism.

Measure spaces (X, B,p) and (Y,C, q) are isomorphic if there are sets
X" e B, Y'eC such that p(X ~ X’) = ¢q(Y N Y') = 0; and a bijection
7w X' > Y’ satisfying 71 (CnY’) =Bn X’ and porn~! =¢q. The map
7 is called a measure space isomorphism and denoted 7 : (X, B,p) —

(Y,C.q).

A Polish measure space is a o-finite measure space (X, B, m) where
X is a Polish space, B =B(X) and m € M(X, B). In this exercise, you
prove that

a non-atomic, Polish probability space is isomorphic to the unit in-
terval equipped with Borel sets and Lebesgue measure
(i) Let X be a metric space, and suppose that p : B(X) — [0,1] is a
probability. The support of p is defined by

Sp={reX:p(B(x,e))>0V e>0}.
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Show that S, is a closed subset of X, and that if X is separable,
then p(S5) = 0.
(ii) Let I = [0,1] & p € P(I) be a non-atomic probability. Define
w:1 — I by w(z) :=p([0,z]). Show that = : (I,B(I),p) - (I,B,Leb)
is a measure space isomorphism.
(iii) Prove that a non-atomic, Polish probability space is isomorphic to
the unit interval equipped with Borel sets and Lebesgue measure.

2. Lebesgue measure spaces and conditional probabilities.

A (nonatomic) Lebesgue measure space is a measure space which is
isomorphic to a subinterval of R equipped with Lebesgue subsets, and
Lebesgue measure.

(a) Show that the completion of a non-atomic, Polish probability space
is Lebesgue.

(b) Let (X, Bi,p) be an extended measure space where
X = [O, 1], Bl = {E(Bl,B2) = (Bl N E) @] (BQ N EC) : B17BQ € B(X)}

where E c [0, 1] satisfies i(E) = u([0,1] N E) = 1, iz denoting Lebesgue
outer measure on [0,1] (e.g. E a Bernstein set) and

p(E(By, By)) = %(Leb(Bl) 1 Leb(By)) (Bi,BseB(X)).

Construction as in exercise 2.2.

Show that
(1) E(Lp(s,p)1B(X)) = 5(1p, +15,) ae.;
(ii) 3 “regular conditional probabilities given B(X)” at any
point satisfying (i).
(iii) (X, (B1),,p) is not a Lebesgue measure space where (B;), is the
p-completion of Bj.

3. A measure on product space.

Let I =[0,1] and £2={0,1}" be equipped with their natural topolo-
gies.
a) Show that there is a probability m : B(I x £2) — [0,1] such that
Vnx1, ay,...,a,€{0,1} & J e B(I),

m(J x [ay,...,a,]) = fjts"(l —t) o dt

where
[a1,...,a,] ={(21,29,...) € Rz =ar, 1 <k <n}
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and s, =aj + -+ a,.
b) Show that

1

f (A, - T)dm = —
Ix$2 6n

where T'(t,z) :=t and A, (t,x) ==+ Y7 2.
¢) Define 7: 2 - {0, 1} by 7(w,t) := w.

By identifying a regular, conditional probability on ({2, B({2),m)
given A =1 x B({2) (or otherwise), show that

™2 (02,B(£2),m) ~ ({0,1}", B({0,1}", 1)

is a measure space isomorphism where u(A) :=m(I x A).

4. Non-singular bijections.

Let (X, B, 1) be a o-finite measure space, and let A, B € B. A non-
singular bijection of A and Bisa T : A — B, such that both T and 7!
are measurable, and such that mo T, moT-! < m. Show that

(i) if T: A - B is a non-singular bijection, then 3 7": A - R, positive
on A, such that m(TC) = [, T'dm ¥ C e Bn A;

(ii) (Chain rule for R-N derivatives)ifS: A — B,andT:B - C are
non-singular bijections, then sois T0S: A — C, and (T'0S)’=T"0S5-5’
a.e..

(iii) Let T': X - X be a non-singular bijection of X. For 1 < p < oo
and f : X — R measurable, define V,(f) := (T")»f o T. Show that
V, s LP(p) — LP(p) is an invertible isometry.

(iv) Let (X,B,u) = ([0,1],Borel,Leb.) and let T: X - X be C! and
strictly increasing. Is T': X — X necessarily a non-singular bijection?

5. Invariant measures on groups.
Let G={(pY): (z,y) e R?, x> 0} equipped with the topology
inherited from R2?, and matrix multiplication.
Find measures mp, mpg : B(G) - [0,00] such that V f: G - R,
measurable,

| Fghydmu(h) = [ F(Rydmu(h), | F(gh)dma(g) = | F(h)dmn(h).
G G G G

Hint: Try dm;(( 1)) =ps(x,y)dzdy (J=L,R).
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6. Fourier transform on L%(R).
Let p(t):=e2 (teR).
a) Show that @ =+/2me.
Hint L5(x) = —2p(2)??
Let fe LY(R)n L?(R).
b) Show that
T —
[ | == )T @)z = Vanr [ o(av/n)g(a)da
Vn
R R

where g(x) = [, f(z+y) f(y)dy.
¢) Deduce that

1713 < Vonr [ p(avn)g(z)de —» 27g(0) = 27| f]3.

Week # 7
§10 BANACH SPACES AND LINEAR FUNCTIONALS

Let (X,B,m) be a o-finite measure space. Denote the collection of
f X - R measurable by

L(X,Bm) = {f: X >R: [B(R)cB}.
For p>0 and fe L, let

1£1,= (j|f|pdm) ,

I/l = inf (K >0 m([If]> K]) = 0} < oo,
and
L0 = (X, Bm) = {f € L+ || fl < oo.)
It is not hard to show that if m(X) < co, then

Vi

Also, for fe L', ge L* non-we have fge L' and
| [ fodml <1119l
X

More generally,

10.1 Holder’s inequality For1<p<oo, q= z%’
|| fodm| <115l
X
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with equality iff fg > 0 a.e. and there is a constant ¢ > 0 so that
|f1P = clg|e.

Proof See exercises.

10.2 Minkowski’s inequality For

[f+glp <1 flp+lgl, ¥V figelPl, 1<p<oo
with equality when p € (1,00) iff f & g are linearly dependent.

Proof See exercises.

From Minkowski’s inequality, it follows that if LP = £P/ ~ where ~
means "a.e. equality”, then for 1 <p < oo, (LP,|-|,) is a normed linear
space.

10.3 Theorem (L7, |-|,) s a Banach space.

Proof We show that if f,, € £P is a Cauchy sequence, i.e. | fi—fulp, = 0
as m,n — oo, then 3 f € LP such that

|f=Falp — Oasn—oco.

To see this, 3 ng 1 such that

1
Hj;n _.j;LHp < ZP; \ m,n > ng.

It follows that
1 1
(i = Frnal > 52 1) <28 o = Frna I < 5

whence, a.e.,
K
3 I%lm fnl + Z(fnkJrl _fnk) = f7
- k=1
and f e LP as

I D o = Fr ) o € 20 Wi = Frn lp < 1.
k=1 k=1
It also follows from this that
1f = Frclo < D5 1o = frarlp = 0

k=0+1

as { — oo, whence, choosing ¢(N) such that nyn)y < N < ngny1, we
have

If = Inlp U = faeylp + 1 fn = Fronylp = 0
as N — oo. O
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Dual spaces.
For (B, | -||) a normed linear space over IR, the dual space is the
space of bounded linear functionals

B*={L:B - R:tinear, 3 M> |L(f)|<M|f| ¥ fe B}

It can be shown that |L|. =supp, -1 |L(f)| defines a norm on B*.
Here, we identify B* for some examples.

10.4 Theorem (Riesz)
Suppose that (X,B,m) is a o-finite measure space, and suppose that
1<p<oo, then

() (LP(m))" = L'(m)

where q := ;55 and = means isomorphism by Banach space isometry.
Proof For ¢ € L4, by Holder’s inequality, fg € L' V [ € L»,
and if Ay(f) = [y fgdm (f € LP) then Ay € (LP)*, and [Ay| ey =
sup{|Ag(f) : [ fllp =1} = [g]q-

It remains to prove (f): V Ae (LP)*, 3ge L1 5 A= A,

We prove (1) first under the assumption m(X) < oo.

Let A€ (LP)*, and define pu: B - R by u(F) = A(1g) for E € B. By
linearity of A. u is additive, and if E, € B, E, 1 E, then 1p, —> 1,
whence u(E,) - u(E) as n - oo, and p is a signed measure. Clearly
i << m, and so by the R-N theorem, 3 g€ L' 3 du = gdm. We claim
that (i) g € L9, and (ii) A = A,.

We treat only the (more difficult) case of p > 1. By linearity of A and
A, we have that A(f) = A,(f) for every snnple function f. If f e L,

then 3 f,, simple functions, such that f, L f, whence

A(f) < A(fn) = Ag(fn) = Ag(f),

and A(f)=A,(f) V feL>. We use this next to show that g € L4. Let
h =sgn(g), and for k>0 set fi. = 1[g<s1h|g|?™" € L, then

[ lgltdm = A,(£,) = A(f) <
[lgl=~]
o =A@y | [ lgltdm |

[lgl<x]

whence g < [1fg1<x19lq < [ Al Ly
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To prove (1) in general, let h : X — R,, be such that [, hdm =
1, and let du = hdm. Then f e Lr(u) iff fhv € LP(m). Let A ¢
(LP(m))*, and set B(f) = A(fh%) for f e LP(u). By the above, 3 g €
Li(p) 3 B(f) = [y fgdp = [ fghdm, whence, for f e LP(m), A(f) =
B(fh'%) = [, fghudm. 0

Dual space of L*. Let (X,B,m) be a o-finite, measure space. A
finitely additive set function F': B — R is called m-absolutely continu-
ous if

AeB, m(A)=0 = F(A)=0.

Denote by C(X, B, m) the collection of m-absolutely continuous, finitely
additive set functions F': B - R with finite total variation:

N
|F| :=sup{>_ |[F(A,)|: A1, As,..., A, €B disjoint} < 0.
n=1

It follows from the Jordan decomposition theorem that
C(X,Bm)={pu-v: p, veC(X,B,m),}

where C(X,B,m), :={F eC(X,B,m): F(A)>0V AeB}.
This implies that for p € C(X,B,m), the integral functional f ~
Jx fdp:
e can be defined as in proposition 5.4,
e is bounded on L* as in proposition 5.5; and
o f=gmae = [, fdu= [y gdp.
10.5 Theorem
L= (X,B,m) =C(X,B,m).

Proof Asabove, if € C(X,B,m), then f — L,(f) = [y fdp defines
am element of L>*. Conversely, let L € L>* and define p: B - R by
p(A) =L(14). We need to show that ||i| < oo and that L = L,,.

To see that |p|| < | L] s, let Ay, Asg,..., A, € B be disjoint and set

=Y sign (u(Ag))la,, then || f|le =1 and
Do 1u(AR)| = L(f) < | L] po
k=1

whence |p| < L] g, p € C(X, B,m) and L, € L=*,

We have L(f) = L,(f) for simple functions f € L*> and hence V f ¢
L° as the collection of simple functions is uniformly dense.
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Remark.

Let (X,B,m) be X :=[0,1] equipped with Borel sets and Lebesgue
measure, then L'(m) & L*(m)*. To see this, by the Hahn-Banach
theorem 3 L € L*°(m)* so that L(f):= f(0) V feC([0,1]).

It is not hard to show (!) that 4 g € L'(m) so that fol f@)g(t)dt =
f(0) ¥ feC([0,1]).

§11 LINEAR FUNCTIONALS OF CONTINUOUS FUNCTIONS ON A
COMPACT HAUSDORFF SPACE

Topological Background.

We'll need the following results about a compact Hausdorff space
(X,7T):
e Normality or Ty:

If F,G c X are disjoint closed sets, then 3 U,V €T so that UnV =
g, UoF, & VodQ.

e Urysohn’s lemma:

The space (X,7) is normal iff whenever F' c U c X, F closed and
U open, 3 feC(X,[0,1]) so that FF < f<U.

Here, F' < f means 1p < f <1 and f <U means suppf :=[f#0]cU
(and hence 0 < f < 1p).

Linear functionals.
Let X be a compact Hausdorff space and let C'(X) be the Banach
space of continuous R-valued functions with respect to the norm | f| ¢ :=

supex [ /()]
A linear functional L : C(X) — R is called bounded if 3 M > 0 such

that [L(f)| < M| f|c V feC(X) and positiveif f >0 = L(f)>0.
Note that positive = bounded and (!) that a linear functional L
is positive <= |L(f)|<L(1)|flc V feC(X)
Set

C(X)*:={L:C(X)~R: L linear, bounded},
C(X):={LeC(X)*: L positive }.
The question arises:

L(f)iffd,uL

for some measure defined on some sufficiently large o-algebra.
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Baire sets and Borel sets. Given a topological space X, call a
o-algebra A c 2% admissible if each f € C'(X) is A-measurable (i.e.
JH(B(R)) c A)

b(X) = M A=o( J fH(BR))).

Ac2X admissible o-algebra feC(X)

The standard proof shows that b(X) is itself an admissible o-algebra.
Sets in b(X) are called Baire sets.

11.1 Proposition If X is a separable metric space, then b(X) = B(X).

Proof For any open ball U ¢ X, 3 f, € C(X) so that f,(z) —
ly(x) ¥V x € X and 1y is b(X)-measurable as the pointwise limit of
a sequence of b(X)-measurable (continuous) functions. By separabil-
ity each open set is the union of countably many balls and B(X) =

o({valls}).dd

11.2 Example: A compact Hausdorff space with b # B.

Let §2 := S4 (where S is a finite set and A is an arbitrary, uncountable
set) equipped with the product discrete topology, then (2 is a compact
Hausdorff space.

Let S be the semiring of cylinder sets in {2 (see exercise 1.3 p.9) and
let

N
Ql::{Zaklck: ake]R, CkES \Y 1SkSN},
k=1

then 2 is a subalgebra of C'({2) which separated points. By the Stone-
Weierstrass theorem, 2 is dense in C'(§2), whence b(§2) = o(S).

A standard monotone class argument shows that if A € o(S) then
3 I' c [0,1] countable, A’ c {0,1}!" so that A = {z :[0,1] - {0,1} :
Z'|[* € A,}

Thus any singleton {z} € B(X) \ b(X).
11.3 Frechet Lemma

Let X be a compact Hausdorff space, let p € P(X,b(X)) and let

f X = R be bounded, Baire measurable, then ¥ ¢ >0, 3 h € C(X)
with p([|f - h|>€]) <e.

Proof for f=1, Let A denote the algebra of finite unions of subin-

tervals of R. Let n > 0.
Since Aeb(X), 3 f1,...,fveC(X) and I1,...,Iy € A so that

g >p(AAIfjf;;1(Ik)) =p([1a# F])

where F := H,]f:l 17, o fx.
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For each k, 3 G € Cp(R), Gpi(z) — 1;,(2) V z € R and it
follows that H, := [Tr; G o fx € C(X) ELT_L)O; 1) and
Hnn_)—o:F(:c) VaoelX.
Thus, for n > 1 large
p([|[Hp— 14| >€]) <p([|Hn - F|>e]+ P((F #14])<e. @

Open Baire sets and uniqueness of weak representation.
Let (X,7) be a compact Hausdorff space. A F, setin X is a set of
form A =U;>, K, where K;, Ko, ... are closed.

Let 7, be the collection of open F sets.
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11.4 Proposition

(i) b(X)=0(Ts),
(i) g veM(X,6(X)), fodu=fodyv FeC(X) = pn=wv.

Proof of (i)
We prove first that 7, ¢ b(X)f] Let U e T, U = U2, K,, where
Kic Ksc... are closed.
By Urysohn’s lemma, 3 f,, € C'(X,[0,1]) (n>1)sothat K, < f, <U.
In particular,
1k, < fn <1y,

By assumption, lg, 1 1y, whence f, —— 1y on X and U € b(X).
Consequently, o(7,) c b(X).

To see o(7T;) 2 b(X), let
U = {ﬁl FMI) s froe fneC(X) & I, Iy e T(R)},
then U c T, because T(R) = T,(R). Thus
b(X) =o(U) co(T,). )
Proof of (ii)

ForUe7,,3 h,eC(X,[0,1]), h, = 1y on X, whence u(U) =v(U).
It follows from (i) that p=v. @(ii)

11.5 Theorem: Structure of compact Hausdorff spaces
Let X be a compact Hausdorff space, then 3 a set A and a closed
subset 2x c{0,1}4 so that X is a continuous image of 2x.

Proof
Let C c C(X,[0,1]) be uniformly dense and define 5: X — [0,1]¢ by
p(x)(g) = g(x).
We claim that § is continuous and injective.

Proof of continuity A cylinderin [0,1]¢ is a set of form

-----

8The other inclusion also holds. See Halmos’ book.
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where g1,...,gy €C & Uy,..., Uy € T([0,1]).
The collection of cylinders forms a base for the compact, Hausdorff,
product topology on [0,1]¢. Thus, continuity of 5 is established by

-----

Proof of injectivity Suppose that z,y € X, x #y. By Urysohn’s
lemma 3 f € C(X,[0,1]) so that f(z) # f(y), whence by density of
C, 3 g€C so that g(x) # g(y). Consequently, S(x) # 5(y). @

Next (X)) is compact in [0,1]¢ and §: X - 5(X) is a homeomor-
phism.

Now define @ : {0,1}*¢ - [0,1]¢ by

(o]

2(0)(g) = 3 A9,

n=1 2n

It follows that @ is a continuous surjection.
Let 2y :=d71((X)), then 2 is closed in {0, 1}¥<€ and

W::@Oﬁ_liﬂx—)X
is a continuous surjection. ¥,

11.6 Riesz representation theorem (RRT) (Riesz, Saks, Markov)

Suppose (X, T) is a compact Hausdorff space, and suppose that L €
C(X)*, then 3 a unique, signed, Baire measure p: b(X) - R such that

L(f) = | fdu ¥ feC(X),

Proof For v e M(X,b(X)), f~ L,.(f):= [ dp defines an element
L, e C(X)*. By proposition 11.4(iii), v » L, is injective. We must
show that it is surjective.

By theorem 11.5 (structure theorem for compact Hausdorff spaces)
J a set C and a closed subset 2 ¢ {0,1}€ and 7 : {2 > X continuous and
onto. Define m, : C(X) - C(£2) by 7. (f) := form, then Dy = m,.(C(X))
is a closed linear subspace of C'({2).

Now let L e C(X)* and define Ly € (Dx)* by Li(fom):= L(f).

By the Hahn-Banach theorem 3 Lo € C'(£2)* such that Ls|p, = Ly
whence Lo(fom)=L(f)V feC(X).

We claim that
© 3 asigned measure p: b(§2) - [0,00) such that Ly(g) = [,, gdp.

Proof of ®
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Let A be the algebra of subsets of {2 generated by cylinders.
Since cylinders are clopen in (2, this algebra has the finite subcover

property.

Define v: A - R by v(A) := L(14), then v is additive by the linearity
of L.

We claim that |p| < co. To see that in fact || < [L|co), let
Ay, Ay, .o Ay € A be disjoint and set f = Y sign (p(Ag))1a,, then
feC(2) & |flew) =1. Moreover

g:llu(Ak)l = L(f) < | Lleqay:

whence our claim.

By the Jordan decomposition, p =y, — - where puy : A — [0, 00) are
additive, whence countable subadditive and extend to measures i, on
o(A) =06(). Thus =1, — z_ is a signed, Baire measure satisfying

N
Ly(F) =L, (F) ::fQde VE =Y apla,
k=1

with a,...,ay eR, Aq,..., Ay € A.
By the Stone-Weierstrass theorem, such functions are uniformly dense
in C(§2) whence Lo =L,. ©®
It follows from © that v:=pon~!:b(X) — [0,00) is also a signed
measure, and for f e C(X),

[ gdv= [ fordu=La(fom) = L(S).

Uniqueness follows because the indicator of a Baire set is the a.s. point-
wise limit of a uniformly bounded sequence of continuous functions. @

Regular Borel measures. Let (X,7) be a topological space. A
Borel measure p € (X, B(X)) is regular if

p(A) =inf{u(U): AcUeT}.
11.7 Kakutani’s extension theorem

Suppose (X, T) is a compact Hausdorff space, and suppose that j €
P(X,6(X)), then there is a unique, reqular m € P(X,B(X)) such that

mlp(x) = -

Proof See exercises.
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EXERCISE NO7

1. Holder’s, and Minkowski’s inequalities.

Let 1 <p<oo, and ¢ = 5.

a) Prove that for a,b >0, ab< % + % with equality iff a? = b9.
(Hmt: One way to do this is to prove that o8> < Aa+(1-X)B V a,820, 0< A< 1,
and substitute « = a”, 8 = b? with appropriate /\)

Now suppose that (X,B,m) is a o-finite measure space and that
f,9: X — IR are measurable functions satisfying [ |f|Pdm, [ |g|2dm <
Q.

b) Prove that fg is integrable, and
1 » 1 ‘
| rgdm]| <= [ |fPdm + = [ |gltdm.
X Py 1%

c) Using b), or otherwise, prove Holder’s inequality: | [, fgdm]| <
Hf“p”,g”q where

1l = (7).

with equality iff fg >0 a.e. and 3 a constant ¢ > 0 so that |g|? = ¢|f[P
a.e..

d) Prove that | f[, = max{ [, fgdm:|g], <1}.

¢) Prove Minkowski’s inequality: ||f +g|, < [|fl, + g, with
equality iff f & g are linearly dependent

2. Regular Borel measures.

Suppose (X,7T) is a compact Hausdorff space, and suppose that
e P(X,b(X)). Here, in a series of exercises, you prove Kakutani’s
theorem that:

3 a unique, regular m € P(X, B(X)) such that m|sx) = p.

Wiite L(f) = [y fdp (f € C(X)).
(i) Show that for U € T,

m(U) :=sup{L(f): feC(X), f<U}=sup{u(A): U2Acb(X)}.
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(ii) Show that m : T — [0, o) satisfies

(a) UVeT, UcV = m(U)<m(V),
(b) UVeT, UnV=g = mUuV)=m(U)+m(V),

() m(gUn)Slim(Un) VUL, Us,- e T

For F c X, let

(E):=mf{m(U): EcUceT}.

(iii) Show that 7z is an outer measure and that

(a) a(U) =m(U) vV U eT, (b) m(A) = un(A) V Aeb(X).
(iv) Show that if U € T, then

V a<m(U), 3 FcU, F closed, such that 7(F) > a.
(v) Show that @(Fyu Fy) > u(Fy) + u(Fy) ¥V Fy, Fy closed, disjoint.
Hint: Use normality (T4) to get U; € T (¢ = 1,2) disjoint, so that F; c U; (i =1,2).
Let
C={AcX:V a<u(A), I FcA, Fclosed 5> u(F) >a}.
(vi) Show that if A, B € C are disjoint, then n(Au B) = i(A) + i( B).

(vii) Show that A,BeC = A~ BeC(.
Hint: Let ¢ > 0, and F c Ac U, Gc B cV, F,G closed, U,V open be such that

aU) -@(F), (V) -@(G) <e.

(viii) Show that
(A 2a(AnU)+(AnU®) YUEeT, AcX.

Hint Fix AcW e T, then WnU, WnU“e€C.

(ix) Using the above exercises, prove Kakutani’s theorem.
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3. Non-regular Borel measures.

Here, you show that X compact, Hausdorff, p : B(X) - [0,1] a
probability # p regular.

Let X be the collection of ordinals up to and including (2, the least
uncountable ordinal, and let < be the usual well ordering of X. Let T be
the topology generated by open intervals, i.e. sets of form (a,b) = {z €
X:a<z<b}, [0,a)={xeX:x<a}, and (b,2]={ve X x>0}

Show that:

(a) (X,T) is a compact Hausdorff space;

(b) [0, £2) is open and not o-compact;

(c)V feC(X) I ace[0,£2) so that f is constant on (a, 2];

(d) if Ac[0,2) is countable, then 3 a < {2 such that A c [0,a);

(e) if K is compact, and a,, € K (n > 1), then sup,, a, € K;

(f) if K, is compact, and uncountable (n > 1), then so is N2, Kp;

(g) if F € B(X), then either E, or E¢ contains an uncountable compact
set (but not both).

Define p : B(X) - [0,1] by p(E) = 1 if E contains an uncountable
compact set, and p(FE) =0 otherwise. Show that

f) p is a probability, and is not regular.

g) Exhibit a regular probability ¢ : B(X) — [0, 1] such that
[ sdp= [ fdq v fecex).
X X

Week # 8
§12 HAAR MEASURE.

A topological group is a group G, which is a topological space such
that (g,h) » gh~! is continuous (G x G - G).

A measure m: B(G) - [0, 00] is called a left Haar measure on G if
(1) m(U) >0V U open,
(i) m(K) < oo ¥V K compact,

and
(i) m(xzA) =m(A) ¥V x e G, AeB(G).

An analogous definition can be given for right Haar measure on G.
For Abelian groups, the definitions coincide.

Examples
1) For G = R4 under addition, Lebesgue measure is Haar measure.
2) For G = C~ {0} under multiplication, a Haar measure is given by
dm(z +1iy) = —Z_
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3) In exercise 6.5, you identified both left and right Haar measures on
G={(57): (z,y) e R% x>0} equipped with the topology inherited
from R?, and matrix multiplication.

It follows from exercise 9.3 (!) that left Haar measure is unique up to
constant multiplication. Our next result is existence of Haar measure
on any locally compact topological group.

Theorem (A.Haar) IfG is alocally compact, Hausdorff, topological
group, then 3 a left Haar measure on G. This measure is regular.
If, in addition, G is o-compact, then the left Haar measure is o-finite.

Example

Let G = R equipped with the discrete topology, then G is a locally
compact topological group, and Haar measure is counting measure.
This shows that Haar measure on a locally compact topological group
need not be o-finite.

Proof of Haar’s theorem (A.Weil).
Let C be the collection of compact subsets of G.

Step 1 3 \:C — [0,00) which is non-zero, left invariant, monotone,
subadditive, and additive.

Define (¢: B):=0 (g + B<c (@) and
(A:B)=min{neN:3z,29,...,2,€G, Ac|JzxB} (2+ A, BcQG)
k=1

where it is understood that inf @ = co. Evidently (A : B) < oo in case
AeC and B+ 2.
Also, for A,,A",B,,B',C c G,

(0) AcA', B2B = (A:B)<(A":B).
(1) (A:B)=(zA:yB) V z,y G,
(2) (A:C0) < (A:B)(B:0),

(3) (AuB:C)<(A:C)+(B:0),

with equality if A(C)"'nB(C)!=ga.
Let C. = {K € C: K° 3 e}. Fix 2 € (., and define, for U € C,,
/\UIC—> [0,00) by
(K:U)
(2:U)

)\U(K) =
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Evidently Ay(£2) =1V U €C.. By (1), \y is left invariant V U €C,,
and by (2), Ay (K) < (K : £2). By (3), Ay is subadditive, and sometimes
additive:

4)  CcW)*nDU) =2 = \(CuD)=X\y(C)+\y(D).
Let
D= {6:C > [0,00):0(R2) = 1, 6(C) < (C:2) ¥ CeC),

then by Tychonov’s theorem, @ is a compact subset of R¢ (equipped
with the product topology). For K €C,, let

ANK)={\:K>LeC)cd.
The family {A(K) : K €C.} has the finite intersection property:

mA(Kk)DA(ka) +aV Kl,...,KnGCe,
k=1 k=1

and by compactness of @,

IXe () AK).
KeCe

We claim that \ is as required for step 1.
e To prove that A is monotone and subadditive, let X ={v e ®: v is
left invariant, monotone and subadditive.}, then V U € C., A(U) ¢ X
which is closed, whence X o A(U) > \.
e To prove additivity of A\, suppose that B,C € C and BnC = @. We
show that 3 K € C, such that BK~-'nCK~! = @, obtaining by (4) that
w(BnC)=pu(B)+u(C) VY pwe A(K), whence (!) also for u= A\

Now for every b € B, 3 U, € C. such that bU, c C°. By conti-
nuity of (g,h) = gh, 3 V; € C, such that V> c U,. By compact-
ness of B, 3 by,...,b, € B 3 B c Up_1bVp,. Set W = N Vi,
then BW c Ui, bpVy, W c nglbk%i c C¢. Lastly, by continuity
of (g,h) » gh™', I K el > K'K c W, and it follows that
BK'nCK'=g. O Step 1

Define

AU) = USL}l{pc A(K) for U open, and

w(B):=inf{\(U): BcU open} ¥V BcG.
Step 2
(1) WK) < ME)<pu(K)<oo V KeC
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(2) 1 is a left invariant outer measure,
and
Proof

e 1) If K €C, then for every open set U o2 K, A(K) < A(U) =u(U),
whence \(K) < i(K); and if K°> K; € C, then \(K7) < A(K), whence
A(K°) = AM(K?) < A(K).

To see that i(K) < oo, note that (!) 3 L € C, K ¢ L° whence
(K) < A(L°) < AM(L) < o0 and (1) is established.

Clearly, both A and 7z are left invariant.
e We show that )\ is additive, and subadditive.

Suppose that U,V are open sets.

Let UuV >BeC,then 3C,DeC > CcU, DcV and B=CuD,;
whence A(B) < AMC) +A(D) < AU) +A(V) &

AU UV) <AU) + A(V).

Now suppose that U,V are disjoint open sets. Let C,D e(C, C c
U, DcV,then A\(C)+A(D) =AX(CuD)<AUuV), whence A(U) +
A(V) < AU uUV), and A is additive.

e Next, we show that i is countably subadditive. Suppose that A =

U, A, and let € > 0. There are open sets U, o A,, such that A(U,,) <
1(Ay) + 57. Let C> K cU;2, Uy,. By compactness 3 N < co such that

K c UN., U, and by subadditivity, A(K) < YN, M\(U,,).
Thus,
a2 (U] < Saws Saca) e
n=1

n=1 n=1
Finally (@) = A(@) = AM(@) =0 and f is an outer measure. ©#(2)
We now show that
o (3) Mgz > B(G), equivalently,

HE)>2p(FnV)+a(FnVe VY FcG, V open.
Suppose first, that U,V are open.

We claim that A(U) > A(V nU) +p(VenU).

To see this, fix VnU>DeC, and D°nU > E €(C, then
MU)>AMDUE)=XD)+\FE).
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Leaving D fixed, we have AM(U) > A(D) + A(D¢n U), and noting that
VenU c DenU, an open set, we have

MU) 2 A(D) +7(VenU).

Now let F' c G, and V be open. For any F' c U open, we have that
AU) 2 AV aU) +u(VenU) 2 a(FaV)+a(FnVe),

Sa(F)2a(FaV)+a(FnVe). d
To complete the proof of the theorem:
Step 3 p:= il s a left Haar measure.
Proof By step 2, u(zA) = u(A) Vv Ae B(G) and pu(K) < oo V K €C.
It suffices to show that u(U) >0V U € C.. By step 1, 3 {2 € C. with

w(2)2X(2)>0. Let UeC,,then (2:U)=NeNandIxy,..., 2y G
so that 2 ¢ U, z,U. Thus

0<pu(2) <) wa,U) = Nu(U)

n=1

andu(U)ZL]\!,Q)>O. O

§13 APPLICATIONS TO PROBABILITY THEORY

12.1 Kolmogorov’s existence theorem Let 2 be an index set, and
for a e A let X, be a polish space. For F c 2 let Xp = [[,cp Xa, and
for FcGclet mgp: Xa— Xrp be the canonical projection.

Suppose that for F' c A finite, there is a probability pr : B(Xr) —
[0,1], and that these probabilities are consistent in the sense

pc ooy = pr whenever F c G,

then there is a unique probability

p: By = 0( U WQ_[}FB(XF)) —[0,1] 3 pomy'y =pp V F c A finite.
Fc, finite

Proof

Up to measurable isomorphism, X, is discrete whenever X, is finite,
X, = Xy (as on p.5) whenever X, is countable and using Kuratowski’s
theorem, X, = 2 = {0,1}" for X, uncountable. Accordingly, consider
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the algebras
2%a A finite,
A(X,):=4 Ay A countable,
A({cylinders}) X, = .
For F S let
Xp=]]X, (Fc2).
A cylinder in Xy be a set ogefl(w)rm
{reXp: z(a)eB(a) VaeT}

where T'c F' is finite and B(a) e A(X,) YV a€T.

For F c U, let Ar c B(XF) be the collection of finite, disjoint unions
of cylinders in X5, then Ap is an algebra.

For FcGe®A, nglpAr c Ag and

A= Ay = U WQ_(}FAF.
Fc, finite
We claim first that
q1 p(ﬂg‘[}FB) := pp(B) defines an additive set function p: A4 — [0, 1].

Proof To show that this is a definition, we must show that
Wil,lFA = Wi(,lGB = pr(A) =pa(B).
To see this, again let H = F'u G, and note that
ng}FA = ng}GB = 7T;_I17FA = 7TI_{1,GB =
pr(A) = pH(WE{I,FA) = pH(7TI_{1,GB) = pa(B).
To see that p: A - [0,1] is additive, let A, B € A be disjoint, A =

T A, B =1yl B’ where A’ € Ap, B’ e Ag. As before, let H = F UG,
and note that 7' A’ N7, B’ = @, whence

p(AuB) = pr (i pA'onri o B') = pu (i p A)+pr (1o B') = p(A)+p(B). @11
Next, we claim that
€2 A has the finite subcover property.

Proof By Tychonov’s theorem Xy is a compact Haussdorf space and
sets of form A = Wg‘l}FB are both open and compact. ©z92

Thus p: A - [0,1] is countable subadditive and by Caratheodory’s
theorem, 3 a probability p: o(A) - [0,1] such that Pli=p

To conclude the proof, it suffices to note that o(A) = B(Xy) and

that since each pr (F' c A finite) is a measure, we have p o ' = pp.
O
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WEAK CONVERGENCE OF PROBABILITY MEASURES ON POLISH
SPACES

Let X be a topological space and let pu,, pe P(X,B(X)). We say
that p, tends to p weakly (written u, = p), if

| = | fdp
X X
V feCp(X):={bounded continuous functions : X — R}.

If X is compact then
o i, = piff p, - p weak * in C'(X)*.

12.3 Examples.
q1 Let X :=[0,1] and define p, € P(X) by p.(A) = 237, 0:(4) =

%ZZﬂ 1,4(%), then
U, == Leb.

n—oo

Proof  Any f e C([0,1]) is Riemann integrable, so by Darboux’s
theorem

1 &,k 1
d n=— —-) — f dx.
[mf o= DTG ) S
92 Let X =R, (£2, A, P) be a probability space and let Z, Zy,---: 2 >
R be independent, identically distributed, R-valued, random variables
random variables with E(Z;) =0 and E(Z?) = 1. Let S, := ;i1 Zx and
define p,, € P(R) by p,(A) := Prob ([% € A]), then

1 2
,Unn_):oz N, N(A):EAG_th

This result is aka the central limit theorem (CLT) and will be
proved in the sequel.

B Let (2,A,P) & Z1,Z5,..., S, be as above, and let X = C([0,1]).
Define B, : 2 - C([0,1]) by

Frly sy

n Vn

Sk+1
vn

BMSE+(1—@ (1<k<n, 0<s<1),
n
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then (!) B, is measurable. Define pu, € P(C([0,1])) by u,(A) =
Prob([B, € A]) (AeB(C([0,1]))), then

IWeP(C([0,1])) such that pr, = W.

The measure is called Wiener measure and is the distribution of Brownian
motion. The result is aka the functional central limit theorem
(FCLT) and is proved in advanced courses on probability theory.

12.4 Helly’s theorem for compact spaces
If X is a compact metric space, then ¥ {v, : n > 1} c P(X),
1 ng - oo, M€ P(X) such that [, k:> L.

In view of the Riesz representation theorem, this follows from
the Banach-Alaoglu theorem which says that the bounded sets in the
dual of a separable Banach space are weak * sequentially compact.

Remark.
If (X, d) is a metric space which is not pre-compact, Helly’s theorem
fails.

Sketch proof of remark

Since (X, d) is not pre-compact, 3 € > 0 and an infinite set "' ¢ X
which is e-separated in the sense that d(x,2') >e V x, 2’ eI, x #a'. If
xn el x, #x, (n#n') then

\ (wl,wg,...) € {0,1}N, dfe CB(X) such that f(:L‘n) = Wp,.

It follows that the sequence of point masses p, = J,, has no weakly
convergent subsequence. O

12.5 Weak convergence proposition Let (X,d) be a Polish space
and let pu, 1, po,... € P(X). TFAE:

(1) pn ==

(ii) 1My, o0 ptn (F) < u(F) ¥ F c X closed;

(iii) im, pn(G) 2 w(G) ¥ G c X open;

(iv) pun(A) — w(A) ¥V Ac X such that n(0A) = 0.

Proof

Evidently (ii) <= (iii).

To see (i) = (ii), fix F' ¢ X closed and define f; : X — [0,1] by
fi(z) =1 -kd(z,F))VvO0, then fr e Cp(X), 1r < fr | 1, whence

pin(F7) < pin (i) ni—); p(fr) = n(F).
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To see (iii) = (iv), fix A ¢ X such that u(0A) =0, then

lim 1,,(A) > Tim 1,(A4%) 3 4(A°) = p(A)

n—oo n—oo

and "
Tim p1,,(A) < T g, (A) < p(A) = p(A).
To see (iv) = (i), fix f: X — [0, 1] continuous, then

v(f) = [w([f > ])dt ¥ veP(X).

By continuity, for ¢t € (0,1) 9[f > t] < [f =t], thus I":= {t € [0,1] :
w(0[f >t]) >0} is at most countable. Moreover, by (iv)

pn([f > t]) — p([f >t]) V 1[0, 1]\ T

Since the Lebesgue measure of I is zero, by bounded convergence,

ma(f) = [ a([F >t — [ u((f > )t = p(f). @
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EXERCISE NO8

0. Riesz representation on a locally compact space.
Let (X,7) be a locally compact, Hausdorff space and let

Co(X):={feCp(X): [f+#0] compact}.
Suppose that L:Cc(X) — R is linear and positive in the sense that
feCe(X), f20 = L(f) 20,
then there is a Borel measure 1 : B(X) — [0, c0] so that
(i) uw(C)<oo VCcX compact,

(i) LN = [ fdu ¥ feCo(X).

1. Cartan’s proof of uniqueness of Haar measure. Suppose that
i, v are both left Haar measures on the locally compact, topological
group G, and let m = u x v.

€1 Show that moS=m=moT where S,T: GxG - G x G are defined
by S(z,y) = (z,2y), T(x,y) = (yz,y).

€2 Let g : G - R be non-negative, and measurable. Show that

M(E)/gdy = fg(x_l)l/(Ex_l)du(x) V E € B(G).
G G
Hint: Show first that m o R = m where R(xz,y) := S7'oT(x,y) =
(yz,z7").
€3 Let E c GG be compact with E° # @.
Show that for f:G — R non-negative, and measurable:

n(E) G‘Zggide):fg]‘"du-

Hint: Set g(y) = {/((zg;)) and use 2.

€4 Show (using 3 or otherwise) that [, fdv = ¢ [, fdp where ¢ = %

2. The modular function and right Haar measure.

Let m be a left Haar measure on the locally compact, topological
group G.

a) Show that mg(A) = m(A~!) defines a right Haar measure on
(G,B(G)), where AL :={z71: xeA}.

b) Show that 3 a continuous, multiplicative homomorphism A : G —
R, so that m(Ax) = A(x)m(A) V x e G, AeB(X).
Hint: Uniqueness and regularity of Haar measure.

¢) Show that A(z)=1for x e Z(G):={x e G: xz=zx ¥V 2 G} or
x € [G, ], the group generated by {ghg='h™': g,h e G}.
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d) Show that
1 B dm 1
me(x An B)dm(z) = m(A) [g T = m(Aym(B) ¥ A, B ¢ B(G).

e) Let mp be as in a). Show that mp < m, that 2°2 = L and that
mp(zA) ="V xe G, AeB(X).

f) Show that G is compact iff m(G) < oo and that in this case m is
also a right Haar measure.
Hint: If G is not compact, then 3 K € C, and z, € G so that {z,K :
n € N} are pairwise disjoint.

3. Ulam’s converse to Haar’s theorem. Let m be a o-finite,
left-invariant measure on the Polish topological group . Using the
hints below (or otherwise) prove the Ulam-Weil theorem: that G is
locally compact.

Hints:

(i) For K ¢ G compact with 0 < m(K) < oo, let Cy := KK, C+n+1:=
C,C,, then C, is compact and H := >, C, is a subgroup of G.

(ii) If I' c G satisfies G = Jyep gH, then I' is at most countable;

(111) 3 n > 1 such that Cg * J.

4. Finite dimensional distributions but no stochastic process.
Let (X,B,m) be the unit interval equipped with Borel sets and
Lebesgue measure and let 7 denote Lebesgue outer measure on [0, 1].

(a) Show that 3 E,, c[0,1] (n>1) such that

e FE,oE,1, u(E,) =1V n>1;and

e N, Lk, =0.

(b) For n > 1, show that 3 p, € P(E,,B,) with p,(A) = u(A) where
B,=BnE,={AnE,: AecB}.

For n > 1 define p,, : [Tx- B, = [0,1] by Dy, (ITx=y Ak) = PNy Ak)-
Show that
(d) 1P, ¢ P(HZ:I Ek,®2:1 Bk = O-(HZ=1 Bk)) such that Pn(nzzl Ak) =
Do(ITpy Ag) YV A1 € By, ..., A, € By;
(¢) P,y om;! = P, where 7, : [T} Ej — [1., Ex is defined by
Tn(T1, oo Tng1) = (X1, 00, T);
(f) P.(D,,) =1 where

Dn::{erEk! IleEn&$1=£U2="'=$n€En}-
k=1

(g) 3 PeP(Il;2y Ex, ®p2 Br) with Po ¢! = P, where
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Ot I B > Ty B s defined by 6o (ar,...) = (21, -, 2).
Hint for (g): Consider ¢,'D,.

5. Riemann integrability & weak convergence. Let (X,d) be
a Polish space and let p, pq,p2,... € P(X), pp = p.

Let f: X - R be bounded, measurable and u-Riemann integrable in
the sense that p(Cy) =1 where C; = {x € X : f continuous at z}.
Show that

pin(f) —= n(f).

Hints Show that (i) WLOG, f: X - [0,1]; (ii) For ¢t € [0, 1], u(O[f >
t]) = p(lf =tD); oo

6. Riemann integrability on a metric space.
Let X be a metric space.

A. Semicontinuity revision from topology .
The function f: X — R is said to be

o lower semicontinuous (1sc) at x € X if limf(y) > f(z) and upper
y—a
semicontinuous (usc) at x € X if —f is 1sc at .

e Call f1sc on AS X if it is 1sc at every z € A.
Show that

(a) The function f: X — R is continuous at z iff it is both 1sc and
usc at .

(b) The function f: X - Rislscatze X ifxe{ze X: f(2)>
a}°V a< f(r), whence 1scon X if {z€ X : f(2)>a}isopenV a€R;

(c) If A is open, then 1,4 is 1sc on X.

(d) The supremum of functions which are 1sc at = € X is also 1sc at
x.

Suppose that f: X - Ris 1sc on X and f > 0. Define U, (¢ € Q)
by Uy:={zeX: 0<g< f(z)}. Show that
(e) U, is open and 3 closed sets F),, such that Uy = Ups1 Fyn;
(f) 3 fon: X = [0,¢] continuous such that fq7n|qunUU§ =qlp,,.
(2) SUuPgy n fq,n(x) = f(x).
(h) 3 f,: X - R continuous such that f,(x) 1 f(x) V x e X.

(i) For f: X — R bounded below, show that f: X - R is 1sc on X
where £(r) = L f(y).

Y-z
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The function f is known as the 1sc envelope of f. The usc envelope
of the bounded function f is the function z — f(z) := —(-f)(z).

(j) Show that if f: X — R is bounded, then 3 continuous functions
fn,:t (TL 2 1) such that

fo (@)t f(2) & fo.(2) Lfx)VoeX

B. Riemann integrability. Let p e P(X). Call a bounded function
f: X = R p-Riemann integrable if p(X \ C¢) = 0 where C := {z € X :
xy, = x = f(x,) > f(x)} (the continuity points of f).

Show that f: X — R is p- Riemann integrable iff V ¢ >0, 3 f,, f_ ¢
C(X) with f- < f< fy and [y fodp— [ f-dp<e.
Hint: p(X \Cy) =0 iff f = f p-a.e.

Week # 9
TIGHTNESS

Let X be a Polish space. A collection K c P(X) is called tight if
Ve>0 3 CcX compact such that

u(C)y>1-eV pek.

e By exercise 5.1, a singleton (whence any finite collection) in P(X)
is tight.

A collection IT ¢ P(X) is called weakly precompact (WPC) if V p,, €
II 3 ny > oo, QeP(X) so that pu,, — Q.

12.7 Prohorov’s tightness theorem
Let X be a Polish space and let IT ¢ P(X), then Il is weakly pre-
compact if and only if II is tight.

Illustration:
Prohorov’s tightness theorem on locally compact metric spaces

The metric space (X, d) is called locally compactif V x € X F&,>0
so that B(x,e,) is compact.
e.g.: any compact metric space, any set equipped with the discrete
metric, R?, ...
e If the metric space (X, d) is separable and locally compact, then (by
the Lindeldf property) there is a countable cover of compact balls and
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X is o-compact in the sense that 3 K,, compact so that K,, c K2, 1t X.
Set N(x) :==min{n > 1: z € K,}. Note that X is compact iff N is
bounded.

e In case X is not compact, the one point compactification of (X,d)
is the compact metric space (X = X U {oo},p) with

1 ) 1 1
p(x7oo) T N(.’E) & p(l’,y) T mln{d(x,y), N(]I) + N(y)}

Let X be a locally compact, separable metric space which is not
compact (e.g. X =R9).

If II ¢ P(X), then II is weakly precompact in P(X) by Helly’s
theorem.

It is not hard to show that I7 is weakly precompact in P(X) iff
1({o0}) = 0 for every limit point z of IT in P(X), and that this latter
property holds iff I7 is tight in P(X).

PROOF OF PROHOROV’S THEOREM

Proof of WPC — tightness
For each k > 1, 3 countable set of balls I, = {B,: n>1} so that

1
U Bux =X, diam B, < z Von, k>1.
n>1

Let GN,k = Uﬁle Bn,k- EVideIltly Q(GN,]C) N—) 1V Q € P(X) We
claim first that

q For k>1 fixed, u(Gnpg) e 1 uniformly in p € IT.

Proof Fix k and set Gy = Gyyg. If q1 fails, then 3 ¢ > 0 and
fn, € IT such that p,(G,) < 1-e V n > 1. By weak precompactness,
3 ng — oo and p € P(X) such that fi,,, = p. It follows that V N > 1:
h_m/jlnk(GN) < h_mlunk(Gnk) <l-e¢
k—oco k—o0
whence
1-e2 lim pun, (Gn) 2 p(Gr) = 1. &Y

k—o0

By ¢,

e Ve>0, k21, 3 Nk,a such that M(GNk,g,k) >1—2% vV opell.
It follows that (!)

oo
K&- = m GNk,Evk
k=1

is compact and u(K.)>1-eV pell. @
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Proof of tightness = WPC

Let IT c P(X) be tight.

Choose K, c X compact, such that K, ¢ K,,; and
p(Ky)>1-1V pell, n>1.

Let A be a countable base for the topology on X and let

H={Kyn|JA: NeN& FcAfinite}c {compact sets}.
AeF

Now let {jun}n>1 € II. By diagonalization, 3 ny — oo, a : H —
[0, 1] such that
fin, (H) — a(H) V HeH.
91 Tt suffices to show 3 P € P(X) such that
(?) P(G)=sup{a(H): G2 HeH} VGcX open.

Proof In this case, for G open, G2 H e H,
() 2 g1, (H) — a(H)
whence lim, ___ u,, (G) > P(G) and p,, = P. @91

The rest of the proof is to show 3 P € P(X) satisfying (?). Evidently

(a) a(H) <a(H') for H, H' e, Hc H';
(b) a(Hu H") < a(H) + a(H") for H, H' € H with equality when
HnH =g@.

Define (3 : {open sets} — [0,1] by

B(G) :=sup{a(H): G2 HeH}.

€2 If F is closed and F c G open, F'c H € H, then 3 Hy € H such that
FcHycG.
Proof

Since F'c H e H, F is compact and 3 u>1, H c K,,.

YV xeF 3 AmEAsuchthatl‘EAmCZxCG.

By compactness 3 {x3}2, ¢ F such that F' c Up; A, .

Set Hy =iy Ay, N K,. 492

B B(U Gr) £ X0 B(Gr) Y Gy, ..., G, open.



Measure Theory notes (C) Jon. Aaronson 105

Proof forn=2: Let Gy, G5 be open and suppose G1uGy > H € H.
Set,

Fi={zeH: dz,G¢)>d(x,GS)}, Fyi={veH: d(z,GS)>d(z,G)).

We claim that F} c Gy:
Else 3ze Fi1NGy = d(z,G{)=0& z¢€Gs.
But then d(z,GS) > 0 contradicting x € F.
Similarly F5 c Gs.
By 92 3 H;eH (i=1,2) such that F; c H; c G; (i=1,2). Thus

a(H) < a(Hy U Hy) < a(Hy) +a(Hs) < B(GY) + B(Cs). @93

€4 B(UZ, Gr) < X321 B(Gr) Y Gy, ... open.

Proof
Suppose Upey Gk 2 H € H, then by compactness of H, 3 n such that
H c U}, G, whence using €3,

a(H) < B(Q Gr) < ;/ka) < gﬂ(ak). 74

Now define 1 : 2% — [0,1] by
a(E):=inf{f(G): EcG open}.
Evidently n(G) = (G) for G open.

€5 1 is an outer measure.

Proof of sub-co-additivity:
Let E, ¢ X and let ¢ > 0. Fix E, c G, open such that f(FE,) >
B(Gr) = 5. It follows that U1 By € Uys1 Gy and

AU E, <A G) £ X 0(C) < N A(E) + = 05

n>1 n>1 n>1 n>1

We complete the proof of () by showing that Mg > B(X).
€6 For GG open and F' closed,

B(G)2u(GnF)+u(GnF°).

Proof Fixe>0. 3 Hy € H such that H; ¢ GNnF* & a(Hy) > B(GNF*¢)-e.
3 Hy € H such that Hy C GHHIC & Oé(HQ) > 5(GOHIC) —£&.
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Evidently Hy n Hy = & so

B(G) > a(Hy v Hy)
=a(Hy) +a(Hy)
>B(GNnF°)+3(GnHY)-2¢
>(GnF)+u(GnF°) -2 d96

47 {closed sets} c My.

Proof Fix F closed and L € 2X. For L c G open,
H(G) 2 (LA F) + (L0 FY),

whence
(L) >u(LnF)+u(LnF°). o

Thus, 71|p(x) is a measure with 7i(G) = B(G) V G open. Thisis (¢). O

Corollary: (Central limit theorem)

Suppose that (£2,F,P) is a probability space and that Xy, X, - :
2 - R are independent, identically distributed, R-valued, random vari-
ables random variables with E(X;) = 0 and E(X?) = 1. Let S, :=

Tha X and define p € PR) by po(4) 1= P[5 € A]), then
1 2

LT A)=— “zatl.

(cL1) o=z N, N(A) == [ 5

Proof sketch We use the exercises 9.2 & 9.3 (below).

By ex. 9.2(v), Py @q(t) = N(t) V t € R where g is the standard
Gaussian random variable on R defined by Prob([ge A]) = N (A).

If ny = oo and i, = V¢ P(R) then 7= N whence by ex. 9.3(v),

v=N.
To complete the proof of (CLT) we show that {u, :n > 1} is a tight
family in P(R). To see this, for € >0 let K = K. := [—ﬁ, ﬁ], then for
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oK) = PSR 60 2 /1)
< SE((3 X))
k=1
== Y, E(XpXy)

Ny ck<tcn

S E(X2) - E(XkX) =0V k£
U
=E£.

| ™

By Prohorov’s theorem, {j, : n > 1} is a tight family in P(R) and by
the above p, = N. &

n—>00
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§14 GEOMETRIC MEASURE THEORY

Covering and differentiation theorems.
Recall that

L}_OC(Rd) = {f : ]Rd — R measurable 7f|A € Ll (Rd) V bounded A € B(Rd)}

Differentiation theorem Fiz a norm | -| on RY. Suppose that f €
Li  (R?), then for a.e. x € R,

lim sup ﬁf|f—f(x)|dm=0
R

diam(B) -0, z€ B, B a ball

where m is Lebesque measure on R?,

To prove this, we need the Hardy Littlewood maximal inequality:
Fix a bounded, open set U ¢ R¢. For f : U — R integrable, define
the Hardy-Littlewood mazimal function on U by

Mf(z) = Muf(z)=  sup %) [ 1f1dm.

r € B a ball, BCUm(

The Hardy-Littlewood maximal function is measurable since the set
Un[Mf>\]isopenV A>0 (!).

Note also (!) that the definition gives the same function if we restrict
to the family of rational balls (rational centers and rational radii).

Hardy-Littlewood maximal inequality

d
m(U A [My f > A]) < %||f|L1(U).

Proof of the differentiation theorem given the maximal in-

equality The theorem is evident for f: R? — R continuous. Suppose
that f e L1, .(R?) and fix a bounded, open set U c R?. We'll prove the
theorem for m-a.e. x € U.

Given e > 0 choose g : U - R continuous such that [, |f - gldm < 2.

We have that for x € Bc U, B a ball:

iy V= @ < s 17 =gl s s [ ool

+|f () - g(2)]
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and m(lB) Jg|f = gldm < My(|f - g|)(x), whence

1
L(x):= lim sup —— | |f = f(2)|dm
diam(B)-0, zeB, B a ball m(B) i

= lim sup Lf|f—f(x)|dm

diam(B)-0, z¢BcU, B a ball m(B) B

<My(|f - gD (@) +|f(2) - g(2)]-
Thus
m(Un[L>2e]) <m(Un[M(|f-gl)>e]) +m(Un[|f-gl>e])

a1
Ak {[1£ - gldm < (37 + 1)e
U

3

and L =0 a.e. on U. 0
To prove the maximal inequality, we need

Vitali’s covering lemma Let X be a metric space, and let C be a

finite collection of balls (with positive radius) in X. There are disjoint
balls By, ..., B, €C such that

U B C U Bk‘
BeC k=1

where

B(z,r) := B(x,3r).

Proof

Choose B € C with maximum diameter. Let dy = max{diam (B) :
BeC, BnB; =@} >0 where max@ := 0. Note that if dy = 0 then
V B e C we have diam (B) < diam(B;) and either B n B; # @, whence
B c By or Bn B, = @ whence diam (B) < diam(B,), Bn B, # @ and
B c B, . Continuing, we obtain n > 1, disjoint balls By, ..., B, € C,
such that

dr =max{diam(B):BeC, BnB;=@, i=1,...,k-1}>0
for 2 <k <n with diam(By) = d), and
dp+1 =max{diam(B):BeC, BnB;=@, i=1,...,n}=0.

To show that Ugee B ¢ Up, Bk, suppose that B € C. Since d,.1 =
0, 31<j<nsothat BnB; #@. Let j be minimal, i.e. BnB; =
gVi=1,...,j-1and BnB;j#@. Thus diam(B)<d; and Bc B;. @
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Proof of the Hardy-Littlewood maximal inequality

Let K cUn[Myf > A] be compact. For each x € K, 3 an open ball
B, c U, x € B, with [, |fldm > Am(B,). By compactness, 3 F' c K
finite so that K c Uyer B,. By Vitali’s covering lemma with C = {B, :
x € F'}, there are disjoint open balls By, ..., By €C such that

N ~
Kc|JB,, and f|f|dm>Am(Bn) ¥1<n<N.
n=1 B,
Here B, := B(x,,3r,) where B, := B(xn,z“n).
By exercise 5.5(iii) (or otherwise), m(B,) = 3%m(B,), whence

N N d d
m(K) < Y m(B)] =3 S m(B,) < % > [ Ifldm < %j|f|dm.
n= n= B, U

n>1

O

Vitali’s Covering theorem

Fiz a norm || on R2. Let U c RY be open and bounded. Let Ac U,
and let B be a collection of balls, each contained in U and with positive
radius, such that

(1) VeeA >0, 3zeB(u,r)eB, r<e,
then there are disjoint B, € B such that

(A~ U B,) =0.
n=1

Proof

For B = B(u,r) we write u(B) :=u and r(B) :=r.

Let r; = sup{r(B) : B € B}, choose B, € B with 7(B;) > 5, and
define ry = sup{r(B): Be B, Bn B; = @}.

In case r > 0, choose By € B, Byn By = @ with r(B;) > 2, and
continue to get:

o weNu{oo};

e asequence 1, >0, (1 <n<w) and disjoint balls B, € B, (1 <n<w)
such that for 1 <n <w,

rn=sup{r(B): BeB, BnBy=@,1<k<n-1}, and r(Bn)z%".

e forw<oo, r,=0.

In case w < 0o, we claim that A c (JsZ! By.
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To see this, suppose otherwise, and let
w-1__ w-1__
reAN UBkCU\ UBk
k=1 k=1

which latter is an open set, whence 3 0 > 0 such that B(x,0) c U~
UiZ{ Bi. By assumption z € B € B with r(B) < 2, whence r,, > 7(B) >
0.x

Now suppose that w = co. Since U is bounded, ¥,.;7¢ < oo and
rn = 0.
We claim that

N o
ANUBre U B,VN>1
k=1 k=N+1
where u(B) = u(B) and 7(B) = 5r(B). To see this, let z € ANUY, By,
then 32 € B € Bso that B c UsUy., By, whence 0 < 7(B) < ry.. Since
rn— 0, 3 K >N +1so that rg >r(B) > rg.1, whence 3 je [N +1, K]
so that Bn B; + @. Since r(B;) > =t > ™2 we have B c B;. Thus

2 = 2
N 0 -
k=1 k=N+1 -

EXERCISE NQ9

1. Well distributed sequences.

Let X be a metric space and let p € P(X). A sequence (wy, ws,...) €
XN is called p-well-distributed if £ Y7_, 6., = p.

Let X := TV (some N € N) where T := R/Z = [0, 1) equipped with the
metric d(x,y) := min{|z - y|,1 - |z -y|} and let m be Lebesgue measure
on TV,

(i) Prove Weyl’s theorem that

o (wy,ws,...)e XN is m-well-distributed iff

13X,
= Z e27rl<l/,wk) —>0Vuve ZN N {O}
n Pt n— oo

and, in this case {wy: k>1} = X.

(ii) Define wy, = (w,gl), . ,w,EN)) € X :=TN by w,ij) = kx; mod 1.
Show that (wy, ws,...) € XN is m-well-distributed iff {1,z1,...,2x}
are linearly independent over Q.
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2. Characteristic function of a random variable on R.

The characteristic function of a random variable X on R is ¢ = px :
R — C is defined by

px(t) = E(e"™) = 7i(t)
where p = pux € P(R) is defined by pu(A) = Prob([X € A]) and

(t) = jeimdy(a?) (teR, v a signed measure on R).
R

(i) Show that px € Cg(R) and that uy, = uy implies that px, —>
vx uniformly on compact subsets of R.

(ii) Show that if X is a random variable on R with F(X?) < oo, then

1
ox(t)=1+itE(X) - §E(X2)t2 +0o(t?) ast—0.

(iii) Show that if g is a standard Gaussian random variable on R (ie
Prob([ge A]) = V% N e~z dt), then @g(t) = e .

(iv) Show that if X;, X, ..., X,, are independent random variables on
R, that is:

Prob ([ Xk € Ax]) = [[Prob ([ Xy € Ay]) V A1, As...., A, B € B(R);
k=1 k=1

then g, (t) = [Ti_1 ¢x, (t) where S, == Y}, Xj.

(v) Now suppose that X7, Xs,... are independent, identically distributed
random variables on R with F(X;) =0, E(X?)=1. Let S,, := >}, X;.

Show that

s Sog(t) VieR.

7@

3. The inversion and uniqueness for characteristic functions.
In this exercise, you show that if X is a random variable on R, and
(a,b) c R satisfies ux({a,b}) =0, then

(&) % | #fﬁbw(t)dt 2, x((a,0)).

(i) Show that S(T):= J, #&dy — 5

Write I(T) : fT _mlt < 5y (t)dt. Show that:
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T . .
N eit(X-a) _ o-it(X-b)
() 1(m)=£(| -

-T

= 2E(sgn (X -a)S(T|X -a|) -sgn (X -0)S(T|X - b|))

(iii) Prove (&).
(iv) Show that if ¢ x € L*(m) (m = Lebesgue measure), then pux < m

and
dpx

1 —itx
= x) —%H!gpx(t)e dt.

(v) Show that if X, Y are random variables on R with ¢x = ¢y, then
Hx = My
4. Differentiation revision.

(A) Suppose that F': [ :=[0,1] - R is non decreasing. Here you show
that 3 F’ e L1([0,1] so that

© for mrae. z€[0,1], +(F(z+h) - F(z)) — F'(x)
(where m := Lebesgue measure).

Let
DF(x):= E% L(F(z+h)-F(x)), DF(x):= ETHS%(F(% +h) - F(x)).

Show that

(0) WLOG F': [0,1] - [0,1] is a homeomorphism;
Hint: F'(z) ~ %(T)

(i) DF, DF:[0,1] - R are measurable;

Hint: DF(z)< ’H@m@%(ﬂx +h) - F(z)).

(ii) DF<r on AeB(I)= m(FA)<rm(A).

(iii) DF>s on AeB(I)= m(FA)>su(A).

Hint: Vitali’s covering theorem.

(iv) Show that DF' = DF m-a.e. on [0,1].

Hint: Let A(r,s):={zel:DF(z)<r<s<DF(z)} -

(v) Show that F'(1)-F(0) > fol DFdm where DF := DF = DF. When
is there equality?

(B) Show that if F':[0,1] - R has bounded variation

ie 3 M such that Y720 |F(tgs1) — F(tg)] < M whenever 0 = to <t <---<t, =1, then F
is differentiable at a.e. z €[0,1].
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Hint: F = G- H where G, H:1:=[0,1] - R are non decreasing.

(C) The function f : [0,1] - R is said to be absolutely continuous if
given € >0, 3 0 > 0 such that for any collection {[a;,b;]};51 of disjoint
subintervals of [0,1],

Z |b] - aj| <) — Z |f(b]) - f(CL])| <E.

j=1 21

Show that if f : [0,1] -» R is absolutely continuous, then 3 a signed
measure i : B([0,1]) = R, gy < m such that pp([a,b]) = f(b) - f(a)
for any interval [a,b] c [0, 1].
5. Fundamental theorem of calculus?

Let (X,B,m) = ([0,1],Borel,Leb).

A measurable function f: X — R is called locally integrable at x €
(O, 1) if 3 £ > 0 such that I(:c—e o+e) |f|dm < 0o. Show that
(i) for f: X — R measurable,

loc-int (f):={x€[0,1]: f locally integrable at z}

is open in [0, 1];
(i) if f:[0,1] - Ris differentiable on [0, 1], then loc-int (f”) is dense
in [0,1];
Hint f' € B;.

(iii) By suitably modifying Volterra’s construction (ex. 3.6 on p. 36),
or otherwise, show that V 0 < A <1, 3 f:[0,1] - R differentiable on
[0,1] so that m([0,1] \ loc-int (f)) > A.

6. Fractal differentiation theorem.
Suppose that (X, p) is a metric space and p € P(X) satisfies the
condition

(%) @%SM for p-a.e. zeX.

a) Prove the differentiation theorem: If f e L!'(u), then for u-a.e.
relX,

1
lim sup —f|f—f(m)|d;z=0.
p-diam B-0, zeB, B a p-ball n(B) Jb
Hint: Generalize the Hardy-Littlewood maximal inequality.
b) Let 2= {0,1}N and let p € P(£2) be defined by p([a1,...,a,]) = 5=

and define Cantor-Lebesgue measure p on R by
1(A) =p({w = (wi,wa,...) € 2: ) 2 e A}).
n=1

Show that u satisfies (%) with respect to the regular metric on R.
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Week # 10

Lipschitz maps. Let |- | = |- |2 and let m be Lebesgue measure on
R4,

e A function f:U - R (U c RY) is called Lipschitz continuous on U
it 3 M >0 st

HORNIC]Pr——
|z =yl
e The Lipschitz constant of f on U is My :=Sup, ey zay %

e The function f: U - R (U c R? open) is called differentiable at
zeU if 3 L eR? so that

f(z+h) = f(z) = (L, h) = o([h]) as h 0.

e In this case 3 limtéow = fo(2) (1 <k<d), and L
(above) is given by L = (fs,(2), ..., fa,(2)). It is called the derivative
(aka gradient) Of f at z and denoted Vf(2) = (fz, (2),..., fu,(2)).
13.1 Rademacher’s theorem

Suppose that f:U - R (U c R open) is Lipschitz continuous on U,
then f is differentiable at m-a.e. point in U and |V f|| < My a.e..

We first prove theorem 1 and then use this to prove theorem d V d > 2.

€1 Rademacher’s theorem when d=1

Proof The function f: U — R is absolutely continuous and 91 follows
from exercise 11.7(C).

Now fix d > 2.
92 V v e S for mg-a.e. x € R

r+tv) - f(x) _
t

(%y) 3 lim f(

lim Dy f(z) € [-Myp, Myu].
Here my, is Lebesgue measure on R,
Proof

Set L, ={tv: te R} 2R and L} :={x e R?: (z,v) =0} 2 R4 then

Ré=L,®L:=L,xL:

Define the measures p, on Ly, v, on L by pu,(A) :==mi({t eR: tve
A}) and v, := mg_1 o T~' where my_; is Lebesgue measure on R4! and
T : R —» Ll is a linear isometry. Note (!) that 1, does not depend
on the isometry 7T
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By q1, V y e LL, (»,) holds at y + x for p,-a.e. ze€ L,nU.
By Fubini’s theorem, (x,) holds g-a.e. on U where

a(A) = [ m((A-y) 0 L,)dv,(y).
Ly,

To see that ¢ = mgy, note that by definition ¢ = my o S where S ¢
hom(R? R?) is defined by S(z1,...,24) = x10+ T (xa,...,24). Since S
is a linear isometry, |det S| = 1 and by exercise 6.1 (p. 66), g=mo S =
|det S|m =m. Thus (*,) holds m-a.e. on U. O

B D,f=(v,Vf) m-a.e. ¥V veSil
Proof

e Let g:U — R be C! and suppose [¢g # 0] c U is compact. Since f is
Lipschitz and ¢ is C' with compact support,
(O < My, |2 < sup, a [V (2) |2 ¥ @ € U, ¢ € R with
r+tvel.

By the bounded convergence theorem,

[ Dutain - [ Dfgam — [ LI g,
U Rd R4

t—0+

t—0+

_ jf(x)g(x_tvt)_g(x)dx — — [ [ D.gdm

= —ijvgdm.
U
Since g is C', D,g = (v, Vg) and so using the above for ey, ..., eq,
d d
[ Durgdm == v [ fDe,gdm =3 vy [ Do, fgdm = [ (v, v f)gdm.
7 [ =1 0

Approximating, we get [, D, fgdm = [,,(v,V f)gdm ¥ g € L'(U) whence
3. ]

Fix I' c S*! countable and dense, I' > {ey,...,e4} and let
Ur:=={xeU:(x) holds at z & D, f(z) = (v,Vf(z)) Vwvel}.

By €2 and €3, Ur is the intersection of countable many sets of full
measure in U and so m(U \ Ur) = 0.

€4 f is differentiable at each x € Up.
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Proof To prove differentiability at = € U, (!) it suffices to show that
@ sup [FEIZHD o) o

To see this, fix x € Up, € > 0 and choose I, c I finite so that S =
UUEFg B(U>5);

o find §>0 so that [{EITE ) G f(z))<e ¥ 0<[t|<d, vell

We claim that

f( ”“t) S v (@)) < (1+ M1 +VA))e ¥ 0 <[t <6, v e S,

Indeed, fix v e S, then 3we L, |v-w|<e. For0< [t <]
flx+tv) - f(x
HE 2@ g <

a2 o) T 0Ly, v ) <]
0 |

< (M + [VFE) o] +e

<(1+2M)e. O

In the sequel, we’ll need the:

13.2 Uniform differentiation lemma:

Suppose that f: U — R (U c R? open) is Lipschitz continuous on
U and let Ae B(U), 0 <m(A) < oo, then ¥ >0, 3 F c A closed st
m(ANF)<n and

(6) sup |f(x+tvt)_f(x) _

zeF, veSd-1

(0.9 (2)] = 0.

Proof Let 9, := % We claim first that
©® Vn>0,3 FcAclosed st m(A~ F) <n and

f(a+0n0) - f(x)

©) up (A2 ~ fu@)l = 0
reF, veSd-1 n

where f,(x) := (v, Vf(x)).

Proof of ©:

Fix I' c S*! countable and dense.
e By (¥) (see €4 in the proof of Rademacher’s theorem),

@t(l‘) = sup |f(l’ +tvt) — f(l’) _(

veSd-1

0.V f(@)] = 0

for a.e. xeU.



118 Measure Theory notes (C) Jon. Aaronson

e By Egorov’s theorem, 3 F' c A closed so that m(A~ F') <n and
sup &5, (z) — 0.
xeF n—o0

This is (¢). @ ©
To complete the proof of (8) let, for 0 <t <1, n,:=|¢], then

Opy 21> Onya, 5m~t&()§5m—t§i2~t2 as t—->0+.
ny
Thus
[f(z+tv) = f(z) - tfu(2)] <
|f([L‘ +t1)) - f(:L‘-l— 5Tltv)| + |f(I + 5ntv) - f(CL’) - 5Tltf’ll(x)| + (67Lt - t)|fU(I)|
S2Mf,U(6nt _t)+5mSm

< t* +tsupPs, ()
el
=o(t) as t—-0. O

Change of variables.

13.3 Lemma (non-singularity of Lipschitz equivalences)
Suppose that U ¢ R? is a domain, and that T : U - TU c R? is a

Lipschitz equivalence (i.e. both T and T~ are Lipschitz), then T : U —

TU 1s non-singular and

dmoT
dm

M4 <T':=

d
Tﬁl,TU - S MT,U'

Proof We'll prove that T" < Mzd*,w the other inequality following
from T < de,,l,TU.
It suffices to show that m(TA) < M{ m(A) (A e B(U)). Fix
AeB(U), 0<m(A) < oo.
If AcUg, B(zk,7k), then TA c Upey B(Txg, Mry), whence

[ee)

m(TA) < S m(B(Tay, Mry)) = ME S m(B(ap, ).
k=1 k=1

By Vitali’s covering theorem,
m(A) =inf {) m(B(zx, 1)) Ac Bz}
k=1 k=1

Thus m(TA) < M4m(A). O
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By the lemma, 37" : U — [M~4, M¢] (the Radon-Nikodym derivative
of T') so that m(T'A) = [, T"dm (A eB(U)). It follows from the chain
rule for RN derivatives (ex. 7.2.(ii)) that

o IfU, VcR?areopen and A: U -V, B:V — R? are Lipschitz
equivalences, then so is Bo A and (Bo A)' = B'o A- A’

Write T' = (11, ...,T;). By Rademacher’s theorem, each T}, is differ-
entiable a.e. on Ur e B(U), m(U ~Ur) =0.

Define DT : Up - hom(R?%,R?) by DT(x);; = (Ti)s,(x), then T is
differentiable at each x € Ur in the sense that

IT(z+h) - T(x) - DT(2)h| = o(|h]) as h > 0.

13.4 Lemma (chain rule for Lipschitz equivalences)
Suppose that U, V c R? are open, and A:U -V, B:V - R? are
Lipschitz equivalences, then

(a) sois Bo A;
(b) Up={zeU: Ais diffble at z & B is diffble at A(z)}

has full measure in U;

(¢c) D(BoA)(z)=DB(A(z))DA(x) ¥V x € U,.

Proof By non-singularity the set
Up={relU: Ais diffble at z}n A {yeV: B is diffble at y}

has full measure in U.
Fix x € Uy and € > 0. Since B is differentiable at A(z), 3 §; >0 such
that
| B(A(z) +h) - B(A(x)) - DB(A(z))h| <e[h] ¥ [A] < 6.

Since A is differentiable (whence continuous) at =, 3 d2 > 0 such that

VA <92,

|A(z + h) - A(z) - DA(z)h| < ||, and |A(z +h) - A(z)] < 6.
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It follows that for ||h| < d2, setting k := A(z + h) — A(z), we have
| B(A(z +h)) - B(A(x)) - DB(A(x))DA(x)h]|
<[B(A(z +h)) - B(A(x)) - DB(A(x))k[ + [ DB(A(x))(k - DA(x)h)|
<[|B(A(x) + k) - B(A(z)) - DB(A(x))k|+

+|DB(A(2))] [A(z + h) - A(z) - DA(z)h|

<e(kl+1DB(A) [ n])
<e(A(z +h) - A(z) = DA(z)h| + [DA(2)h] + [ DB(A(x)) [])
<elh[(e+[[DA@)[ + | DB(A(z))]). O

13.5 Change of variables formula for Lipschitz equivalences
Let U c R? be open and let T : U — TU be a Lipschitz equivalence, then

(8) T' = |det DT).

Proof It suffices to prove

() m(TB(x,r)) .

m(B(xﬂ")) 0+ |detDT(£)| for m-a.e. xzeU

because, assuming (&), we also have by the Lebesgue differentiation
theorem that for m-a.e. x € U,

, o 1 dm m(TB(x,r)) o lde .
) < mBa) Jown - = B o (et PT@)L

Proof of (&)
Let Uy denote the set of points x € U so that
T is diffble at #, 17! is diffble at 7T'z.
(T (Tx)=T'(x)™" & DT (Tz) = DT(z)".

By non singularity and the chain rules for 7" (exercise 7.6(ii)) and DT
(13.4 above), m(U ~ Uy) = 0.
By exercise 5.4(iii)

T'=|detT| V T e GL(d,R).

where GL(d,R) := {invertible, linear maps:R? > R?}.
We claim
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QB Vrely, €¢>0,3 >0 suchthat ¥V 0 <7 <9,

T(z) + DT(2)B(0,r(1-2)) € TB(x,r)
(ii)
< T(x)+DT(z)B(0,r(1+¢)).
Proof of €3:
Let M= | DT(2)], v [DT(x)|.
e 30 >0 such that

£
I7(z +h) - T(z) - DT(2)h| < -[A] ¥ |h] <.
To see inclusion (ii), let a € T'B(z,r), then a = T(x + h) where
|h| <7 <d. We show that | DT (x) " (a-Tx)| <r(1+¢). Indeed,

| DT () (a=Ta)| = |DT(x)"(T(x +h) - Tz)]
<|DT(z) ™ (T(x+h)-Tz- DT (x)h)| + |A|
<M|T(x+h)-Tx-DT(z)h|+ ||
<(1+e)|h| <r(1+e). OGED)

e J0< 51 <0 st
|T-Y(Tx+k)-x-DT(x) k| < 5% V | k| < M6y, whence
|T"Y(Tx + DT (x)h) —x - h| <e|h| ¥ |h] < é.

To see inclusion (i), choose r < 01, and be T'(z) + DT (z)B(0,r(1-¢)),
then b= Tx + DT (x)h for some |h| < (1-¢)r and

I T - 2| = |7 (Tx + DT (x)h) - z|

<|TH(Tx+ DT (x)h) -2z -h|+|h]| < (1+e)|h]
<(1-&e*)r. O@)

This proves €3, whence follows (&) using 2. &

Steiner symmetrization.
The isodiametric inequality says that the measurable set with
maximum volume among those with given Euclidean diameter is a ball.
A Steiner symmetrization is a transformation of measurable sets

preserving volume and decreasing diameter which is used to prove the
isodiametric inequality.

14.1 Isodiametric inequalityf]

9Bieberbach, L. Uber eine Extremaleigenschaft des Kreises, Jber. DMV, 24 (1915),
pp. 247-250
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For A e B(R?),

diam A
2

m(A) <m(B(1))( )
where B(1) is the unit ball and diam is diameter, both with respect to
[ -2

Steiner symmetrization.

For u e S¥1, v e R? let L,, : R - R? be defined by L, ,(t) = v+ tu
and let L(u,v) := L,,(R). Define the corresponding linear measure
Auw : R = [0,00] by Ay (A) :=m(L;LA).

The Steiner symmetrization of A € B(RY) in the direction u € S is

su(A) = {0+ tu: v Lu, Aaw(A) >0, Jf] < %AM(A)}.

For example if u = e; then u' = {0} x R¥-! and
Se, (A) = {(t,0) 1w e RTL A o(A) =mi(AY) > [t}

Given u € S%1, define reflection through u* by R, : R¢ - R by R, (z) :=
x = 2(x, u)u.

For example, R, (r) = x - 2xe; i.e. Re(x); = x; for j # i and
R (z); = —x;.

Note also that R,s,(A) =s,(A).

14.2 Steiner symmetrization proposition

Suppose that A € B(R?),, then
(0) Usy(A) = sy, (UA) for U € hom(R?4, R?) an isometry;
(i) 8,(A) is Lebesgue measurable and m(s,(A)) =m(A);
(ii) diams,(A) < diam A;
(iii

iii) if u L' then s,(RyA) = Rys,(A).

Proof of(o):
Uo Ly,(t) =Uv+tUu = Ly, p,(t) whence

-1 -1 -1
Ao U =mo(UoLy,)™ =mo Ly, i, = Avwvw
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and, setting a = Uu,

1
Usy,(A) ={Uv+tUu:v Lu, \,(A)>0, [t|< 5)\%@(14)}
= {b +ta:b 1 a, )\U’la,U’lb(A) > O, |t| < %AUla,Ulb(A)}

S {b+taihia, Ay(UA)>0, [t < %Aa,b(UA)}
=5,(UA) =sy,(UA). @

Proof of (i): By (0), WLOG u =e¢; :=(1,0,...,0). ef = {0} x Rd-!
and for v € ey,

Leyo(t) = (,0), Aeyw(A) =mi(Ay)

where A, :={teR: (t,v) € A}.
By Fubini’s theorem, F' : R¥*! = el — [0,00), F(x) := m(A,) is
measurable, whence

se,(A) ={(t, )+ weey, |if < F(x)}

is measurable.

By Fubini’s theorem,

m(se,(A)) = v/;m(sel(A)v)dv: ];m(Av)dv:m(A). a(i)
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ExERCISE N210

1. Convexity & Jensen’s Inequality. A function f: (a,b) - IR is
called convex if

flax+(1-a)y) <af(x)+(1-a)f(y) V z,y€e(a,b), 0<a<l.
(a) Show that if f: (a,b) - IR is convex, then V a <x <y <z <b,

FW)-1@) _ fG) 1@ fG)- W)

y—x z2-T z-y

)

whence f has non-decreasing, one-sided derivatives
ooy i J@xh) - f(x)
filz) = lim h
Show by example that maybe f/(z) # f’(x).
(b) Show that the function f: (a,b) - IR is convex iff

V z € (a,b).

V ze(a,b), 3 g(y) = ay+ [ such that
g9(z) = f(x), & g(y) < f(y) ¥ y e (a,b).
(c) Prove Jensen’s Inequality:

Let f: (a,b) = IR be convex, (X, B, m) be a probability space, and
F: X - (a,b) be integrable on X, then

f(fXde)S/;(fOde'

2. Which inequality?

Let (X, B, 1) and (Y,C,v) be probability spaces, and let m: B&C —
[0,1] be the product measure.

Suppose that f: X xY - [0,00) is B® C-measurable, 1 < p < co and
for z € X define f,: Y - [0,00) by f, = f(z,y).

Which of the following (if any) is true:

| Fliremy < [ 1 Felioydi@), or [ fliogm 2 [ 1 feliodi(e) 7
X X

When is there equality?

3. o-finiteness and separability.
Let (X,B,m) be a measure space.

(i) Show that m is o-finite iff 3 f e L1(m), f>0 a.c..
(ii) Suppose that m is finite. Show that L'(m) is separable (as a

Banach space) iff the measure algebra of (X, B,m) is separable (as in
exercise 3.3).
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4. Clarkson’s parrallelogram inequalities.
Let (X,B,m) be a o-finite measure space, and let f,g € LP(m).
Prove that

< (FIE + 9l) for p e [1,2],
If+glz+ ||f—9||§{ b lolp

2 2([f 17+ lglp) for p e [2,00),
and that for p # 2, f, g€ LP, there is equality in the relevant inequality

iff fg=0 a.e..
Hints (i) By convexity, for a >0, ¢ > 1,

<(t-1e2+(t+1)* a>1,
2t°
>(t-1)2+(t+1)* a<l.
Set fp(t) = (t-1)P+(t+1)P-2tP -2, then f,(1) =2P-4>0(p>2) and
<0 (p<2). Also fj(t)>0Vt>1 (p>2)and f)(t) <OV i>1 (p<2).
Thus f,(1) >0V t>1 (p>2) and f,(t) <0V t>1 (p<2).
Week # 11.

Proof of (ii): Assume WLOG that A is closed and bounded and (by
(0)) that u + e;.

Fix e >0, z,y € 6., (A) with diam 5., (A) < |z —yl2 +¢.

Set x':= (x2,...,24), ¥ = (y2,...,Yaq), then (0,z), (0,y") Lej. Set

z:=inf{t: (t,2") e A}, T:==sup{t: (t,2") e A},

y=inf{t: (t,y) e A}, y=sup{t: (t,y') e A}.
Suppose (WLOG) that § -2 >7 ~y, then

N~ DN

1
> éml(Ay,) + §m1(Ax,)

> |y1| + |v1] > |21 = 1
and
diam 5., (A) —e < |z -y2
=Vl =y 15+ |21 -l
<Vle -yl + (G- x)?
= (2, 22, 2a) = (U, Y2, -+ ya) |2
<diam A. @(ii)




126 Measure Theory notes (C) Jon. Aaronson

Proof of (iii): Note that R, is an isometry, R.} = R,, and if v/ 1 ,
then R,|,+ =1d. Thus by (o), for u 1 v/,

Rulﬁu(A) = sRuzu(Ru’A) ZBU(RuIA). m(lll)

Proof of the isodiametric inequality

Set Ag:= A, A;:=5.,(A;-1) (1<i<d), then diam Ay < diam A and
m(Aq) =m(A).

Next R, o Re, = R, o R, V 4,7 whence

RekAlﬁl = Rekselﬁ—l(Ak) = 5ek+1(RekAk) =Apn &
by induction, using
Re, Aire1 = ReySerarit (Ara) = Sersrst (Rey Apar) = Apars
we see that R, Ag= A4 V 1<k <d) whence
diam Ay
2

)" <m(B(1))(

—AdZAd; — AdEB(O,

) &

diam Ay diam A

2

m(A) =m(Aq) <m(B(1))( ). d

Hausdorff measures.
Let (X,d) be a metric space. For A c X let
|A] =diam A = sup,, .4 d(,y).
A gauge function is a function a : [0,00) — [0,00) continuous and
strictly increasing, and satisfying a(0) = 0.
Given a gauge function a, define, for € >0, and A c X,

HO(A) = inf{Y a(JAx]) : Ac|J Ax, |4k <e ¥V k>1};
k=1 k=1

Hg;)(A) =inf{ > a(|B(xy,m)|) s Ac U B(ag,m), ri<eVk21}
k=1 k=1

It follows that
HUEE)(A) T Hy(A), HS(i?(A) t Hs,(A) as 0.

The set functions H,, Hs, are known as Hausdorff measure and spher-
ical measure (respectively) on (X,d) with gauge function a.

o H,< Hs,<sup, at pr |

a(t) ¢
Proof H,< Hg, " the inf is on a supset.
Hgo<sup.g 0 H, wveAc X = AcB(xz,|A]). O

Note that in e, one can replace sup,. % with lim. o4 SUPg</ee %
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Hausdorff measures as measures.
As shown in week 2, for any gauge function a, the Hausdorff measures
H,, H,s:2% - [0, 00] are metric outer measures

ie. A/Bc X, d(A,B) :=infzea yep d(z,y) >0 = u(AuB) =nu(A)+n(B),
whence by Caratheodory’s theorem

B(X) c M(H,) n M(H,s).

Hausdorff dimension.
Let (X,d) be a metric space. For a > 0, let a,(t) = t*, and let
H,:=H,, on (X,d). Note that if 0 < 8 < a, then
H(A) <e*PHE)(A) Ve>0, AcX,
therefore, for Ac X, 0<fB<a,
Hy(A)>0 = Hg(A) =00, & Hg(A) <o = H,(A)=0.
It follows that
_ ooV a<H-dim(A)
3 H-dim(A 0 H,(A)= ’
m(4) €[0,e0] > Ha(4) { 0V a>H-dim(A).

The number H-dim(A) is called the Hausdorff dimension of the set A.

Quasi-isometry of metric spaces and Hausdorff measures.
Let M > 1. A M-quasi-isometry of the metric spaces (X,d) and
(Y, p) is a bijection T : X — Y satisfying
d(z,z")
M

A surjective map is a Lipschitz equivalence iff it is a M-quasi-isometry
for some M > 1.

< p(Tz,Tz") < Md(z,z") V z,2"eX.

Quasi-isometry lemma

Suppose that (X,d) and (Y, p) are metric spaces, that M > 1 and
that a:[0,00) - [0,00) is a gauge function with a(%[;) <K Vit>0.
IfAcX and T: A—-TAcY is an M-quasi-isometry, then

H,,(TA)=K*'H, 4(A), Hsa.,(TA)=K*Hgs,a(A).

The proof is straightfoward and standard.
The quasi-isometry lemma will be useful when sup,. % -1 as
M — 1.
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Hausdorff measures on R?.
Let as(t) :==t5 (s,t>0).
Theorem (Norm-spherical measure on R?)
Let | -| be a norm on R4, then Hs,, .| = WZ(I))de where B(r) =
B(0,r) where B(z,r) ={xeR%: |z —-z|<r}.

Proof Both measures are translation invariant and o-finite so Hg, 4 =
cmpa for some ¢ > 0.
Suppose that A c Upe; B(2k, k), then
= 24 > 29m(A)
(2rp)? = ———< > m(B(z, 1)) 2 ——te
2= ) A m(B(D)

whence ¢ > #d(l)).

Let £, § > 0. By the Vitali covering theorem, 3 disjoint balls B(x, ) (k >
1) such that r, < 0 and A c Upey B(xg, ) mod m and m(WUrey B(xg, 7))\
A) <e. Tt follows that

m(A) + > gm(B(wk,rk))

=m<B(1>>k§rz

L m(BO) o

5a Hsag(A) U
Round Hausdorff measure Theorem
Let aq(t) :=t¢, then on RY, Hs.ay 112 = Hag,)-|2-
e In general, if |- | is a norm on R? we have that on R?, Hg,, || =

cH,, | for some 1 < ¢ <29,

e Besicovitch showedm that 3 A € B(R?) so that Hgg, .,(A4) >
Ha, ). (A)
Proof of the round Hadusdorff measure theorem
Since H,, < Hs,, = mm, it suffices to show that
m(B(1))

THad > m.

YO On the fundamental geometrical properties of linearly measurable plane sets of

points; Math. Ann. 98 422-464. (1927)
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Suppose that A cU;2; A, then by the isodiametric inequality,

m(B(1) ST Ym(A,) 2 m(A).

diam A

Thus,
m(B(1))

S Hay(A) > m(4). O

Hausdorff measures on submanifolds and the Area Formula.
The "surface area formula” says that if U c R? and T : U - R3 is

1-1, C' and regular in the sense that r(DT(x)) =2 V x € U, then the

surface area of a subset of TU c R3 is defined in some calculus courses

by

f|8T oT

(I0) Area(TA) |—><—||2dm (AeB(U)).

o Let k <d. We define k-dimensional “area” in R< to be

mgr(B(1))
9k

where a;,(t) = t* and B(1) := Bj,(0,1). This has the property that
or(Ax{c}) =mpe(A) (AeB(RF), ce RTF

Ok =04 = He, 10

In this section we prove a generalization of the “surface area formula”.

Lipschitz regularity.
Suppose that k < d, U c R¥ is a domain and T : U - TU c R? is a
Lipschitz equivalence (i.e. M-quasi-isometry), then

e by the quasi-isometry lemma, o, (T A) = M**mpx(A) V U € B(U);
e by Rademacher’s theorem m(U \ Uy) = 0 where

Uy:={xeU: T diffble. at z};

o for zeUy, helRF,

|7 (2 +th) = T(x)]2
t

DT (x)hl2 — = M= A,

whence r(DT(x)) = k.
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Linear Algebra.

Suppose that k < d and that T € hom(R* R?) is regular (i.e. injec-
tive), then 7% o T' € hom(IR¥, R¥) is regular and we define the Jacobian
A(T) :=+/detT*oT eR,. In case k = d, we have A(T) :=|det T].
The area formula

Suppose that k < d, U c R* is a domain and T : U - TU c R? is a
Lipschitz equivalence, then

on(TA) = jA(DT)dmRk ¥ AeBU).
A

e The area formula generalizes (I): if 7" € hom(R? R3) is of
form T'(z,y) := xa + yb where a, beR3, then (!)

A(T) = V[ det(T*T)| = la x b -

We first prove the area formula in case T' € hom(R* R%). We'll need
the

Polar decomposition lemma

Suppose that k < d and that T € hom(R* R?) has rank k, then
3 U € Hom(R*, R?) orthogonal and S € Hom(RF R*) symmetric, non-
singular such that T'=U o S and A(S) = A(T).

Proof Let C := T* oT € Hom(R¥,R¥), then C is symmetric and
positive definite and 3 an orthonormal basis {z;}¥, ¢ R* with C'(z;) =
A2z where \; #0 (1<i<k).

Now set x; := /\Lszj eRI (1<j5<k).

We claim that {z;}} c R? is orthonormal. To see this,

1 1
(w3, 75) = E(T%aTZﬁ = E(Czi,zj)
A 0 i+j
= (2, 25) = 0i = .
)\] <Z ZJ) sJ { 1 i :j-

We claim that the required decomposition is 7' = U o S where Sz; =
)\ij, UZ]' =xy.

To see that U is orthogonal, (Uz;,Uz;) = (x;, z;) = d; ;.

To see that T=U o S,

USZl = )\ZUZZ = )\lﬂfl =: TZI
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To see det S2 =detT*o T,
T*oT=(Uo8)oUoS=5"0oU"0UocS=5% W

Proof of the area formula in case T € hom(RF R?)

By the polar decomposition, T' = U o S where U € hom(R* R?) is
orthogonal; and S € hom (R, R¥) is symmetric with A(S) = A(T). It
follows that

or(TA) = wﬂakm(ﬂl)
- WHM.Q(USA)
mpx(B(1))

=———""H,, |,(SA) - U is an isometry;

= Mpk (S A) by the norm-spherical and round Hausdorff measure theorems
= A(S)m]Rk (A) by the change of variables formula

= A(T)mgr(A). O

Proof of the area formula in general:

As before, let
Uy:={xeU: T diffble. at z},
then m(U ~\ Uy) = 0.
Suppose that T': U - T'U is a M-quasi-isometry, then
o | DT(x)h|y=M=*|hlsV xeUs, heRk
Let Ae B(U), 0<m(A) <oo, AcUy and fix £ € (0,1).

e By Luzin’s theorem and the uniform differentiation lemma, 3 F' c A
closed and 7 > 0 such that

() o (T(AN F)), [, ADT)dim < &;

(ii) for y,z € F, |y —z]2 <,
| DT (y)v - DT(2)v]s < %||v||2 VueRY &
[log A(DT'(y)) —log A(DT'(2))| < &;

and such that for x € F), ||hH <

(i) [T'(z + h) = T(z) - DT(2)h]2 < 357[| ]2 < 5| DT (z)h]2,
whence (!)

(iv) |T(z+h) -T(2)|2 = (1= 5)[DT(z)h]s.
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e ForxeF, yzeB(z,n)NnF,

i)

IT() - 1) (12 )IDT()(y =)
Y (1 2PIDT @)y -2l
= e**| DT (z)(y - 2)].
e Now fixxeF, 0<d<n. We claim that
R:=ToDT(x)™": DT (2)(B(x,0)nF) - T(B(x,6)nF)
is a e?*-quasi-isometry.
Proof
|R(DT (2)y) - R(DT(2)2)]> = |T(y) - ()]
=e***| DT (x)y - DT (x)z|.. @

By the quasi-isometry lemma, (ii) and the area formula for linear trans-
formations, V C e B(B(z,0)nF),

o (TC) = 0 (RDT (2)C) = e***0,(DT(x)C)
= e A(DT (2))m(C)
= ke f A(DT)dm.
C

e Now fix G open, AcGcU, m(G\F) < 47

C:={B(z,0): xeF, 0<d<n, B(x,d)cG}.
e By Vitali’s covering theorem, 3 By = B(xy,71) € C (k > 1) disjoint
st F'c H:=J;2; By mod my and

oo(T(G~ F)), f A(DT)dm < e.
G\F

on(TF) = i::lak(T(Bn n F))

:eﬂkai f A(DT)dm

n=lp np

= e*t [ A(DT)dm.
F

We obtain oy,(T'A) + ¢ = e***<([, A(DT)dm +¢). The area formula
follows as e = 0. @
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EXERCISE N@211

1. Hausdorff dimension of the Cantor set.

Let 2= {0,1}" and let 7 : 2 - [0,1] be defined by m(w) := Y02, 2.
The set C':=7({2) is called the Cantor set.

In this exercise, you show that

H-dim(C) = loﬁ.
log 3
For s >0, let Hy; = H,, on R equipped with the metric d(x,y) =[x -y|
where a4(t) =t* and let h = %.
(i) Show that H,(C)<1.
Hint: ¥V n 21, C c eeqo,2yn I(€) where for € = (€1,...,6,) € {0,1,2}", I(g) = [z(g),x () +
317]: z(g) = X1 %
Let P =TI(3,1) € P(£2) be symmetric product measure and define
Cantor-Lebesgue measure p:= Pont e P(C).
(i) Show that p(I) < 4|I|* for any subinterval I c [0,1].
(iii) Show that H,(C') > 5.
(iv) Show that H-dim(C') = h.

2. Cantor-Lebesgue theorem.
In this exercise, you continue the previous exercise and show that

Hile = p.
The first step is to show that
1 H,(C) =1

The order of an interval I(¢) is n where ¢ € {0, 1,2}", and the interval
I(g) is basic if £ € {0,2}™ and complementary otherwise.

Call an interval [a,b] compound-basic if 3 n,n’ > 1, € € {0,2}", &' €
{0,2}"" so that a = x(g) and b=z(g') + 57.

a) Show that if I c [0,1] is a compound-basic interval, then
InC =N, I(e™)nC where I(¢W),..., I(¢M) are basic intervals
(not necessarily of the same order).

We'll need such a decomposition together with |I|* > YN |1,

b) For I c [0,1] a compound-basic interval, let # (/) be the minimal
N >1sothat InC = UnN:1 I,, where I, ..., Iy are basic intervals. Show
that a compound-basic interval I is basic iff #(7I) = 1.

¢) Show that if I = [a,d] c [0,1] is a compound-basic interval with
#()>1, InC = (JuK)nC where J = [a,b] and K = [¢,d] are
compound-basic intervals with #(J), #(K) < #(I) and [b,c] is a
complementary interval with ¢—b> (b—a), (d-c). Show that in this
case |I|" > |J|h + | K|
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Hint: Choose a complementary interval of maximal length contained in I....

d) Show that if 7 c [0, 1] is a compound-basic interval, then 3 I, ..., Iy
basic intervals so that 1 nC =N, I, nC and |I|h > 2N |1,|".

Hint: Use c¢) successively to reduce #(-).

e) Show that if [ c [0,1] is a compound-basic interval, then V k > 1
large enough, I nC = W™ I,(k) n C where I (k),..., Iy, (k) are basic
intervals of order k and |I|" > XM |, (k)|

Hint: If I = [a,d] is basic of order v then InC = (JUK)NC where J = [a,b] and K = [¢,d]
are basic of order v+ 1, b—a=c-b=d-cand |I|" = |J|" + |K|".

f) Show that if I, I, ... are intervals, C' ¢ Uge, I, then 22, [Ix|* > 1.
Conclude that H,(C) = 1.

Hint: Show first that WLOG, there are only finitely many Ij’s and that (WLOG) these

are compound-basic. Then ”split” using e).

2 Hle = p.

a) Show that H,(C'nI(g)) =5 ¥V n>1, c€{0,2}™
Hint: . (C)=1I(g)nC V g¢€{0,2}" where @c(y) := z(g) + 5%

b) Show that Hy(A) = u(A) ¥ A e B(C).

End of coursenotes
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