
COURSE NOTES ON MEASURE THEORY

JON AARONSON

Week # 1
§1 Classes of sets and set functions

Semi-rings. Let X be a set. A non-empty class S ⊂ 2X is called a
semi-ring if A,B ∈ S ⇒ A∩B ∈ S and A∖B = ⊍Nk=1Ck where N ∈ N
and C1,C2, . . . ,CN ∈ S (disjoint).

Example: boxes in Rd. A (d-dimensional)box is a Cartesian product
of finite intervals,

R =
d

∏
k=1

Ik = {x = (x1, . . . , xd) ∈ Rd ∶ xk ∈ Ik ∀ k}

where for each 1 ≤ k ≤ d, Ik is a finite interval. Let S = Sd denote the
collection of boxes in Rd.

1.1 Proposition
S is a semi-ring.

Proof
Evidently, if R,R′ are boxes then so is R∩R′. We show that if R,R′

are boxes then R ∖R′ is a finite, disjoint union of (at most 2d) boxes.
To see this write R =∏

d
k=1 Ik and R′ =∏

d
k=1 Jk. Note that if I, J are

intervals, then I ∖ J is the disjoint union of at most two intervals. We
obtain that

R ∖R′ = {x ∈ R ∶ x` ∉ J` for some 1 ≤ ` ≤ d} =
d

⋃
`=1

A`

where A` ∶=∏
`−1
i=1 Ii∩Ji×I`∖J`×∏

d
j=`+1 Ij. Clearly, each Ak is the union

of at most 2 disjoint boxes, and the A` ∈ A (1 ≤ ` ≤ d) are disjoint.
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Thus

R ∖R′ =
d

⊍
`=1

A` =
2d

⊍
j=1

Ck

where C1, . . . ,C2d ∈ S are disjoint. �

Semi-Algebras.
Let X be a set. A class S ⊂ 2X is called a semi-algebra (of subsets

of X) if

- A,B ∈ S ⇒ A ∩B ∈ S; and

- C ∈ S ⇒ X ∖ C = ⊍Nk=1Ck where N ∈ N and C1,C2, . . . ,CN ∈ S
(disjoint).

Remark.

The semi-ring of sub-boxes of a finite box in Rd is a semi-algebra, but
the semi-ring of all boxes in Rd is not.

Cylinder sets in shift spaces.
Let S be a finite set, and let X ∶= SN. Given N ≥ 1, a1, . . . , aN ∈ S,

define the cylinder

[a1, . . . , aN] ∶= {x ∈X ∶ xi = ai ∀ 1 ≤ i ≤ N}.

The length of the cylinder C = [a1, . . . , aN] is `(C) = N .

Proposition 1.2

S ∶= {cylinders} ∪ {∅} is a semi-algebra.

Proof

Suppose that a, b ∈ S. WLOG `(a) =M ≤ `(b) = N and

a = [a1, a2, . . . , aM], b = [b1, b2, . . . , bN].

If ∃ 1 ≤ k ≤ N with ak ≠ bk, then

a ∩ b = ∅ ∈ S, a ∖ b = a, b ∖ a = b ∈ S.

Otherwise

b = [a1, . . . , aM , bM+1, . . . , bN] ⊂ a

whence

a ∩ b = b ∈ S, b ∖ a = ∅ ∈ S & a ∖ b = ∅ ∈ S in case M = N

and in case M < N ,

a ∖ b = ⊍
cM+1,...,cN ∈S, (cM+1,...,cN )≠(bM+1,...,bN )

[a1, . . . , aM , cM+1, . . . , cN]. 2�
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Rings and algebras. A non-empty class R ⊂ 2X is called a ring if

A,B ∈R ⇒ A ∪B, A ∩B, A ∖B ∈R,

and an algebra (of subsets of X) if in addition, X ∈R. Note that any
ring R ∋ ∅.

1.3 Intersection propositions
Let C ⊂ 2X then:

R(C) ∶= ⋂
2X⊃R⊃C a ring

R

is a ring (known as the ring generated by R);

A(C) ∶= ⋂
2X⊃A⊃C an algebra

A

is an algebra (known as the algebra generated by C).

Note that the ring generated by a semi-ring is an algebra iff the semi-
ring is a semi-algebra.

● Is it true that if R ⊂ 2X is a ring , then

A(R) =R ∪ {X ∖A ∶ A ∈R}?

1.4 Theorem (ring generated by a semi-ring)
Suppose that S ⊂ 2X is a semi-ring, then:

R(S) = {
n

⊍
k=1

Ck ∶ n ∈ N, C1, . . . ,Cn ∈ S disjoint }.

Proof
Write

R0 ∶= {
n

⊍
k=1

Ck ∶ n ∈ N, C1, . . . ,Cn ∈ S disjoint }.

Since R(S) is a ring containing S, we have that R(S) ⊃ R0. To show
equality, we prove that R0 is a ring. It is evident that R0 is closed
under intersection and disjoint union.

¶1 If A,B ∈R0, then A ∖B ∈R0.
It follows from the semi-ring property that A ∖ C ∈ R0 ∀ A ∈ R0

and C ∈ S. Suppose that A,B ∈ R0 and that B = ⋃nk=1Ck where
{Ck}nk=1 ⊂ S. We have that

A∖C1 ∈R0 Ô⇒ A∖C1∖C2 ∈R0 Ô⇒ . . . Ô⇒ A∖C1∖⋅ ⋅ ⋅∖Cn = A∖B ∈R0.

¶2 If A,B ∈R0, then A ∪B ∈R0.
Here A ∪B = (A ∖B) ⊍B a disjoint union of sets in R0. �
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Finite subcover property.
Let S be a semi-ring of subsets of X. We’ll say that S has the finite

subcover property (FSCP) if

A, A1, A2, ⋅ ⋅ ⋅ ∈ S, A ⊂
∞

⋃
n=1

An())

Ô⇒ ∃ N ∈ N so that A ⊂
N

⋃
n=1

An.

Clopen set proposition If X is a compact, topological space and
S ⊂ clopen sets, then S has the finite subcover property.

Proof This follows from the Heine-Borel theorem.

Example 1. Products of finite spaces.
Let Ω =∏

∞
k=1 Sk where each Sk is finite.

As above, a cylinder is a set of form

[a1, a2, . . . , an] = {x ∈ Ω ∶ xk = ak ∀ 1 ≤ k ≤ n}

where a1 ∈ S1, a2 ∈ S2, . . . , an ∈ Sn. Also as above, the collection

S ∶= {cylinders}

is a semi-algebra. We’ll show

, S has the finite subcover property.

Proof of ,
Define d ∶ Ω ×Ω → [0,∞) by

d(x, y) ∶= {
0 x = y,

1
2t(x,y)

x ≠ y.

where t(x, y) ∶= min{n ≥ 1 ∶ xn ≠ yn}.
It is not hard to show that (Ω,d) is a metric space, and that the

closed ball
B(x, 1

2n+1 ) = [x1, . . . , xn].

Thus, if C is a cylinder then C is closed with

d − diam C =
1

2`(C)+1
.

Note that cylinders are also open (clopen):

Ω ∖ [c1, . . . , cN] = ⋃
a1∈S1,...,aN ∈SN , (a1,...,aN )≠(c1,...,cN )

[a1, . . . , aN]

is closed being a finite union of closed balls.
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To complete the proof of ,, it suffices to show that (Ω,d) is a com-
pact metric space.

To see this, let (x(k))k≥1 be a sequence in Ω. We’ll show existence of
a convergent subsequence.

There is a subsequence n1(1) < n2(1) ↑ ∞ and a1 ∈ S1 so that

x
(nk(1))
1 = a1 ∀ k ≤ 1.
There is also a subsequence n1(2) < n2(2) ↑∞ of n1(1) < n2(1) ↑∞

and a2 ∈ S2 so that x
(nk(2))
j = aj ∀ k ≤ 1, j = 1,2.

Continuing, we obtain a sequence of subsequences (each a subse-
quence of the previous) n1(k) < n2(k) ↑ ∞ (k ≥ 1) and a1 ∈ S1, a2 ∈

S2, . . . an ∈ Sn, . . . so that x
(nk(`))
j = aj ∀ k ≤ 1, 1 ≤ j ≤ `.

Now diagonalize and set N` = n`(`), then

x
(N`)
j = aj ∀ 1 ≤ j ≤ `.

It follows that t(x(N`), a) ≥ ` + 1 where a ∶= (a1, a2, . . . ) ∈ S whence
d(x(N`), a) ≤ 1

2`+1
ÐÐ→
`→∞

0. V

Example 2. Products of countable spaces.
Here, we exhibit an algebra of subsets of X ∶= NN with the finite

subcover property.
Let

AN ∶= {F,N ∖ F ∶ F ⊂ N ∖ {1}, #(F ) <∞},

then AN is an algebra.
An AN-cylinder in NN is a set of form

[A1,A2, . . . ,AN] ∶= {x ∈ NN ∶ xi ∈ Ai ∀ 1 ≤ i ≤ N}

where A1,A2, . . . ,AN ∈ AN.
Denote

A ∶= {AN- cylinders}.

As above, A is an algebra. We claim that
- A has the finite subcover property.

Proof of - We construct a suitable compact topology on NN.

Define d ∶ N ×N→ [0,∞) by

d(x, y) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 x = y;

1 x ≠ y, x, y ≥ 2;
1
y x ≠ y, x = 1;
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then (N, d) is a compact, metric space.
Define the product metric ρ ∶ NN ×NN → [0,∞) by

ρ(x, y) ∶=
∞

∑
k=1

d(xk, yk)

2k
,

then (NN, ρ) is a compact, metric space and the collection A is an
algebra of compect, open subsets of NN. Thus A has the finite subcover
property. V

§2 Additive set functions

Let S be a semi-ring. A set function f ∶ S → R is additive if

C, C1,C2, . . . ,CN ∈ S, C =
N

⊍
k=1

Ck ⇒ f(C) =
N

∑
k=1

f(Ck).

Example: Volume in Rd.
Let S be the semi-ring of boxes in Rd, and define v ∶ S → R by

v(∏
d
k=1 Ik) ∶=∏

d
k=1 ∣Ik∣ where ∣I ∣ denotes the length of I.

1.5 Proposition
The set function v ∶ S → R is additive.

Proof For A ⊂ Rd and ε > 0 let N
(d)
ε (A) ∶= #({n ∈ Zd ∶ εn ∈ A}).

Evidently, N
(d)
ε ∶ 2Rd → [0,∞] is additive:

N
(d)
ε (

N

⊍
k=1

Ak) =
N

∑
k=1

N
(d)
ε (Ak).(B)

Also, for ∏
d
k=1 Ik ⊂ Rd a box,

N
(d)
ε (

d

∏
k=1

Ik) =
d

∏
k=1

N
(1)
ε (Ik).(H)

Proof of(H):

{n ∈ Zd ∶ εn ∈
d

∏
k=1

Ik} =
d

∏
k=1

{n ∈ Z ∶ εn ∈ Ik}

whence (H). 2�
We claim next that

εdN
(d)
ε (R) Ð→

ε→0+
v(R).(K)

Proof By (H) it suffices to prove (K) for d = 1.
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N
(1)
ε ([a, b]) = ⌊ bε⌋ − ⌈aε ⌉+1 ∼ b−a

ε as ε→ 0 whence for I ⊂ R, I = [a, b]

εN
(1)
ε (I) ≤ εN

(1)
ε ([a, b]) Ð→

ε→0+
b − a = ∣I ∣

and ∀ 0 < δ < ∣I ∣
2 ,

εN
(1)
ε (I) ≥ εN

(1)
ε ([a + δ, b − δ]) Ð→

ε→0+
b − a − 2δ = ∣I ∣ − 2δ. 2�(K)

Now suppose that R, R1,R2, . . . ,RN ∈ S, R = ⊍Nk=1Rk, then by (B)
and (K),

v(R) ←Ð
ε→0+

εdNε(R) =
N

∑
k=1

εdNε(Rk) Ð→
ε→0+

N

∑
k=1

v(Rk).2�

Bernoulli set functions on shift space.
Let S be a finite set, X = SN & S = {cylinders}. Fix pj ∈ P(S) (j ≥

1) and define µ ∶ S → [0,1] by

µ([a1, a2, . . . , aN]) ∶=
N

∏
j=1

pj(aj).

1.6 Proposition µ ∶ S → [0,1] is additive.

Proof
Let Sn ∶= {C ∈ S ∶ `(C) = n}, then An ∶= A(Sn) ↑ A ∶= A(S).
For n ≥ 1,

An = {
N

⊍
j=1

Cj ∶ N ∈ N, C1, . . . ,CN ∈ Sn are disjoint}

and we can define µn ∶ An → [0,1] by

µn(A) ∶= ∑
C∈Sn, A⊃C

µ(C).

Evidently µn ∶ An → [0,1] is additive.
Next, for k ≤ n we have that Sk ⊂ An and we claim that µn∣Sk ≡ µ.
To see this:

µn([c1, . . . , ck]) = ∑
ak+1,...,an∈S

µ([c1, . . . , ck, ak+1, . . . , an])

= ∑
ak+1,...,an∈S

µ([c1, . . . , ck])
n

∏
j=k+1

pj(aj)

= µ([c1, . . . , ck]).
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To finish, suppose that I = ⊍NC∈C C where I ∈ S & C ⊂ S is a finite
disjoint collection. We must show that

∑
C∈C

µ(C) = µ(I).

Suppose that n ≥ 1 is larger than the lengths of I and all the C ∈ C,
then C ⊂ An and using µn∣Sk ≡ µ for k ≤ n:

µ(I) = µn(I)

= ∑
C∈C

µn(C)

= ∑
C∈C

µ(C). 2�

1.7 Ring extension proposition
Suppose that S ⊂ 2X is a semi-ring and that f ∶ S → R is additive,

then there is an additive set function F ∶R(S)→ R such that F ∣S ≡ f .

Proof Using additivity of f :

if A ∈R(S) and

A =
m

⊍
k=1

Rk =
n

⊍
k=1

R′
k

where {Rk}mk=1, {R′
k}
n
k=1 ⊂ S are both disjoint collections, then

m

∑
k=1

f(Rk) =
m

∑
k=1

n

∑
`=1

f(Rk ∩R
′
`) =

n

∑
`=1

f(R′
`).

Using the representation of R(S) in theorem 1.4, ∃ F ∶ R(S) → R
defined by

F (
m

⊍
k=1

Rk) ∶=
m

∑
k=1

f(Rk).

Evidently, F is additive and F ∣S ≡ f . 2�

Total variation.
Let X be a set and let A ⊂ 2X be an algebra. The total variation of

the additive set function µ ∶ A→ R is

∥µ∥ ∶= sup{
N

∑
k=1

∣µ(Ak)∣ ∶ N ∈ N, A1,A2, . . . ,AN ∈ A disjoint, X =
N

⊍
k=1

Ak} ≤∞.
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Example. Let X = [0,1] and let S be the semi-algebra of subinter-
vals. Given f ∶X → R continuous and I ∈ S, define µ(I) ∶= f(b) − f(a)
where I = [a, b], then f ∶ S → R is additive and

∥µ∥ =
1

⋁
0

f ∶= sup{
n−1

∑
k=0

∣f(tk+1) − f(tk)∣ ∶ 0 = t0 < t1 < t2 < ⋅ ⋅ ⋅ < tn = 1}.

Jordan decomposition theorem If µ ∶ A→ R is additive and ∥µ∥ <
∞, then ∃ positive, additive set functions µ+, µ− ∶ A → [0,∞) so that
µ = µ+ − µ−.

Proof
Define m =mµ ∶ A→ [0,∞] by

m(A) = sup{
N

∑
n=1

∣µ(An)∣ ∶ A1,A2, . . . ,An ∈ B disjoint, A =
N

⊍
n=1

An},

then m(A) ≤m(X) = ∥µ∥ <∞ ∀ A ∈ A.

¶ We show that m ∶ A→ [0,∞) is additive.
To see this, let A = ⊍Nn=1An where A, A1,A2, . . . ,AN ∈ A and An (1 ≤

n ≤ N) are disjoint.
Suppose tn < m(An), then, ∀ 1 ≤ n ≤ N, An = ⊍

Jn
k=1An,k where

An,k ∈ B, An,k (1 ≤ k ≤ Jn) are disjoint, and ∑
Jn
k=1 ∣µ(An,k)∣ > tn. It

follows that
A = ⊍

1≤n≤N, 1≤k≤Jn

An,k,

whence

m(A) ≥ ∑
1≤n≤N, 1≤k≤Jn

∣µ(An,k)∣

= ∑
1≤n≤N

( ∑
1≤k≤Jn

∣µ(An,k)∣)

>
N

∑
n=1

tn.

Therefore m(A) ≥ ∑
N
n=1m(An).

To obtain the reverse inequality, suppose A = ⋃Kk=1Ek where Ek ∈ A
and Ek (1 ≤ n ≤ N) are disjoint. Then

K

∑
k=1

∣µ(Ek)∣ ≤
N

∑
n=1

K

∑
k=1

∣µ(Ek ∩AN)∣ ≤
N

∑
n=1

m(An), ∴ m(A) ≤
N

∑
n=1

m(An). 2�¶

Now define µ± ∶=
m±µ

2 ∶ A → R. These are additive, and non-negative
and

µ = µ+ − µ−. 2�
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§3 Countable Subadditivity

Let D ⊂ 2X . The set function µ ∶ D → [0,∞) is:

● finitely subadditive if

A, A1, . . . ,AN ∈ D, A ⊂
N

⋃
k=1

Ak Ô⇒ µ(A) ≤
N

∑
k=1

µ(Ak);

● countable subadditive (or σ-subadditive) if

A, A1,A2, ⋅ ⋅ ⋅ ∈ D, A ⊂
∞

⋃
k=1

Ak Ô⇒ µ(A) ≤
∞

∑
k=1

µ(Ak);

1.8 Lemma (addivity ⇒ finite subadditiivty) If S ⊂ 2X is a
semi-algebra, and µ ∶ S → [0,∞) is additive, then it is finitely subaddi-
tive.

Proof Let A ∶= A(S) and µ̃ ∶ A→ [0,∞) be additive so that µ̃∣S ≡ µ
(as in proposition 1.7). Additivity ⇒ monotonicity i.e.

A, B ∈ A, A ⊂ B Ô⇒ µ̃(B) = µ̃(A) + µ̃(B ∖A) ≥ µ̃(A).

Now suppose that

A, A1, . . . ,AN ∈ S & A ⊂
N

⋃
k=1

Ak.

Let

B1 = A1, Bk ∶= Ak ∖
k−1

⋃
j=1

Aj (2 ≤ k ≤ N),

then

B1, . . . , BN ∈ A &
N

⋃
k=1

Ak =
N

⊍
k=1

Bk.

Thus

µ(A) = µ̃(A) ≤ µ̃(
N

⋃
k=1

Ak) = µ̃(
N

⊍
k=1

Bk)

=
N

∑
k=1

µ̃(Bk) ≤
N

∑
k=1

µ̃(Ak) =
N

∑
k=1

µ(Ak). 2�

1.9 Proposition finite subcover property & σ-subadditivity

Let C be a semi-ring of subsets of X with the finite subcover property.
Any additive µ ∶ C → [0,∞) is countable subadditive.
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Proof Suppose that C,C1,C2, ⋅ ⋅ ⋅ ∈ S and C ⫅ ⋃j≥1Cj. By assumption,
∃ N ≥ 1 so that C ⫅ ⋃Nj=1Cj and by finite subadditivity,

µ(C) ≤
N

∑
j=1

µ(Cj) ≤
∞

∑
j=1

µ(Cj). �

1.10 Example additivity ⇏ countable subadditivity.
Let X ∶= Q∩ [0,1]), Q ∶= {R ∩Q ∶ R ∈ S([0,1])} and define w ∶ Q→

[0,1] by w(R∩Q) ∶= ∣R∣ (the length of R), then Q is a semi-algebra and
w is additive. But w is not countable subadditive since X is countable.

To see this, write X = {qn ∶ n ≥ 1} & In ∶= {qn}, then In = [qn, qn] ∈
Q, w(In) = 0 and
X = ⋃∞

n=1 In but w(X) = 1 & ∑
∞
n=1w(In) = 0.

1.11 Proposition: countable subadditivity of volume on Rd

Let B be a box and let S = S(B) be the semi-algebra of sub-boxes
of B, and let µ(R) = ∣R∣ as before, then µ ∶ S → [0,∞) is countable
subadditive.

Remark. S(B) does not have the finite subcover property.

Proof
Suppose that R,R1,R2, ⋅ ⋅ ⋅ ∈ S and that R ⊂ ⋃∞

n=1Rn. Fix ε > 0. For
each n ≥ 1, ∃ an open box R′

n ⊇ Rn so that µ(R′
n) < µ(Rn)+

ε
2n , and ∃ a

compact box R′ ⊆ R so that µ(R′) > µ(R) − ε. Evidently, R′ ⊂ ⋃∞
n=1R

′
n

so that {R′
n ∶ n ≥ 1} is an open cover of the compact R′. Thus ∃ N ≥ 1

so that R′ ⊂ ⋃Nn=1R
′
n. By finite subadditivity, µ(R′) ≤ ∑

N
n=1 µ(R

′
n),

whence

µ(R) ≤ µ(R′) + ε ≤
N

∑
n=1

µ(R′
n) + ε ≤

N

∑
n=1

(µ(Rn) +
ε

2n
) + ε ≤

∞

∑
n=1

µ(Rn) + 2ε.

(∗)

�

Exercise No1

1. Product spaces and cylinder sets. Let {Xλ ∶ λ ∈ Λ} be a
collection of sets. Set

X =∏
λ∈Λ

Xλ ∶= {x ∶ Λ→ ⋃
λ∈Λ

Xλ ∶ x(λ) ∈Xλ ∀ λ ∈ Λ}.

Given N ∈ N, λi ∈ Λ, Ai ⊂Xλi (1 ≤ i ≤ N) define the cylinder set

[A1, . . . ,AN]λ1,...,λN ∶= {x ∈X ∶ x(λi) ∈ Ai ∀ 1 ≤ i ≤ N}.
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Suppose that for each λ ∈ Λ, Sλ ⊂ 2Xλ and let

S ∶= {[A1, . . . ,AN]λ1,...,λN ∶ N ∈ N, λi ∈ Λ, Ai ∈ Sλi (1 ≤ i ≤ N)} ⊂ 2X .

Show that if for each λ ∈ Λ, Sλ is a semi-algebra, then S is a semi-
algebra and that if in addition, for each λ ∈ Λ, Sλ has the finite subcover
property, then so does S.

2. Additive set functions on SΛ.
Let S be a finite set, Λ be a set and let X ∶= SΛ.
A cylinder set is a set of form

{x ∈X ∶ x(i) = a(i) ∀ i ∈ F} =∶ [a]F

where F ⊂ Λ finite and a ∈ SF . Let S = {cylinders}.
(i) Suppose that [ai]Fi ∈ S (1 ≤ i ≤ N) are disjoint and that C ∶=

⊍Ni=1[ai]Fi ∈ S. Show that ∃ G ⊂ SF (where F ∶= ⋃Ni=1Fi) so that
C = ⊍g∈G[g]F .

Now suppose that µ ∶ S → [0,∞) satisfies

∑
s∈S

µ([a1, . . . , aN , s]λ1,...,λN ,λ) = µ([a1, . . . , aN]λ1,...,λN ).(+)

(ii) Show that if F ⊂ Λ is finite, G ⊂ SF and C ∶= ⊍g∈G[g]F ∈ S, then
µ(C) = ∑g∈G µ([g]F ).

(iii) Using (i) and (ii) (or otherwise) show that µ ∶ S → [0,∞) is additive.

3. Stieltjes set functions.
Let R ⊂ R be a closed, bounded interval and let S = S(R) be the

semi-algebra of sub-intervals of R.

(a) Given F ∶ R → R non-decreasing define νF ∶ S → R as follows.
Given I ∈ S, I = [a, b], set

νF (I) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F (b+) − F (a−) I = [a, b],

F (b+) − F (a+) I = (a, b],

F (b−) − F (a−) I = [a, b),

F (b−) − F (a+) I = (a, b)

where

F (x+) ∶= lim
y→x, y>x

F (y) & F (x−) ∶= lim
y→x, y<x

F (y).

Show that νF ∶ S → [0,1] is additive and countable subadditive.

(b) Does S have the FSCP?
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4. Finitely additive & infinite total variation?
Let X ∶= R+ and let A be the algebra generated by finite intervals.

Let f ∶X → R be unformly continuous so that ∃ limR→∞

r R
0
f(x)dx ∈ R.

Here
r

denotes the Riemann integral.

(i) Show that for A ∈ A, ∃ limR→∞

r
A∩[0,R]

f(x)dx =∶ µ(A) and that

µ ∶ A→ R is additive.

(ii) Show that ∥µ∥ = limR→∞ ∫
R

0 ∣f(x)∣dx.

5. Countably infinite σ-algebras?
Is there a set X and a σ-algebra B ⊂ 2X which is countably infinite?

Week # 2
Monotone classes, σ-algebras and measures

Let X be a set. A class M of subsets of X is called a monotone
class if

An ∈M (n ≥ 1), An
mon
Ð→ A ⇒ A ∈M.

Here An
mon
Ð→ A means

either An ↑ A i.e. An ⊂ An+1 & A = ⋃∞
n=1An;

or An ↓ A i.e. An ⊃ An+1 & A = ⋂∞
n=1An.

An algebra B ⊂ 2X is called a σ-algebra if in addition

An ∈ B (n ≥ 1) ⇒
∞

⋃
n=1

An ∈ B.

Evidently a σ-algebra is also a monotone class, and an algebra which
is a monotone class is also a σ-algebra.

2.1 Intersection proposition
Let R ⊂ 2X then:

M(R) ∶= ⋂
M⊃R a monotone class

M

is a monotone class (known as the monotone class generated by
R);

σ(R) ∶= ⋂
B⊃R a σ-algebra

B

is a σ-algebra (known as the σ-algebra generated by R);

2.2 Monotone Class Theorem
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Let A be an algebra of subsets of X, then

M(A) = σ(A).

Proof
Evidently M(A) ⊂ σ(A) as σ(A) is a monotone class.
It suffices to show that M(A) is an algebra, for then (being a mono-

tone class) it is a σ-algebra and M(A) ⊃ σ(A).
To see this fix any F ⊂X set

L(F ) = {E ⊂X ∶ E ∪ F,E ∩ F,E ∩ F c,Ec ∩ F ∈M(A)}.

It follows that

● E ∈ L(F ) iff F ∈ L(E);

● if L(F ) ≠ ∅, then L(F ) is a monotone class;

● L(A) ⊃M(A) ∀ A ∈ A;

● L(A) ⊃M(A) ∀ A ∈M(A);

● M(A) is an algebra. �

Let A be an algebra of subsets of X. The function ν ∶ σ(A) → R is
σ-additive if it is additive and

An ∈ σ(A), An ↑ A Ô⇒ ν(An)→ ν(A).

From this we obtain (!) that

An ∈ σ(A), An ↓ A Ô⇒ ν(An)→ ν(A).

2.3 Proposition (Unicity of extension)
Let X be a set, let A be an algebra of subsets of X, and let µi ∶

σ(A) → R (i = 1,2) be σ-additive such that µ1(A) = µ2(A) ∀ A ∈ A,
then µ1 ≡ µ2.

Proof
Set C ∶= {A ∈ σ(A) ∶ µ1(A) = µ2(A)}. Evidently C ⊃ A and by

σ-additivity, C is a monotone class, whence C ⊃M(A) = σ(A). �

2.4 Proposition (Approximation of a non-negative extension)
Let X be a set, let A be an algebra of subsets of X, and let µ ∶

σ(A) → [0,∞) be σ-additive, then ∀ A ∈ σ(A), ε > 0, ∃ A0 ∈ A such
that µ(A∆A0) < ε.

Proof
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Set C ∶= {A ∈ σ(A) ∶ ∀ ∃ A0 ∈ A, µ(A∆A0) < ε}, then C ⊃ A. We
show directly that C is a σ-algebra.

If A ∈ σ(A), B ∈ A then Bc ∈ A, A∆B = Ac∆Bc whence A ∈ C ⇒
Ac ∈ C.

Suppose A,B ∈ C and ε > 0, then ∃ A0,B0 ∈ A with µ(A∆A0) +
µ(B∆B0) < ε. Now A0 ∪B0 ∈ A and (A ∪B)∆(A0 ∪B0) ⊂ (A∆A0) ∪
(B∆B0) whence µ((A ∪ B)∆(A0 ∪ B0)) ≤ µ(A∆A0) + µ(B∆B0) < ε.
Thus A ∪B ∈ C. This shows that C is an algebra.

Now let Cn ∈ C (n ≥ 1). We show that C ∶= ⋃n≥1Cn ∈ C. To see
this, set A1 = C1, An ∶= Cn ∖⋃

n−1
k=1 Ck (n ≥ 2), then A1,A2, ⋅ ⋅ ⋅ ∈ C and

C = ⊍n≥1An.
Fix ε > 0, then ∃:

● nε such that µ(⊍k>nε Ak) <
ε
2 ,

● D ∈ A such that m(D∆⊍
nε
k=1Ak) <

ε
2 , then

C∆D ⊂ (
nε

⋃
k=1

Ak)∆D ⊍ ⊍
j>nε

Aj,

whence

µ(C∆D) ≤ µ((
nε

⋃
k=1

Ak)∆D) + µ(⊍
j>nε

Aj) < ε.

Thus C is a σ-algebra and C ⊃ σ(A). �

Outer measures. Definition: Outer measure
An outer measure on X is a function µ ∶ 2X → [0,∞] satisfying:

● µ(∅) = 0;

● µ(A) ≤ µ(B) whenever A ⊆ B (monotonicity);

● µ(⋃∞
n=1An) ≤ ∑

∞
n=1 µ(An) ∀ A1,A2, ⋅ ⋅ ⋅ ⊂X (sub-σ-additivity).

2.5 Caratheodory’s construction theorem
Let X be a set, and let µ be an outer measure on X. Then

M ∶= {E ⊂X ∶ µ(A) = µ(A ∩E) + µ(A ∩Ec) ∀ A ⊂X}

is a σ-algebra, and µ∣M is a measure.

Proof of Caratheodory’s construction theorem

Step 1 M is an algebra.

Proof Clearly E ∈M⇔ Ec ∈M. Also ∅ ∈M since µ(∅) = 0. We
must show that E,F ∈M ⇒ E ∪ F ∈M. Fix A ⊂X. Since E ∈M,

µ(A) = µ(A ∩E) + µ(A ∩Ec),
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and since F ∈M,

µ(A ∩Ec) = µ(A ∩Ec ∩ F ) + µ(A ∩Ec ∩ F c).

∴ µ(A) = µ(A ∩E) + µ(A ∩Ec)

= µ(A ∩E) + µ(A ∩Ec ∩ F ) + µ(A ∩Ec ∩ F c)

≥ µ(A ∩ (E ∪ F )) + µ(A ∩ (E ∪ F )c)

by subadditivity since A ∩ (E ∪ F ) = (A ∩E) ⊍ (A ∩Ec ∩ F ). �

Step 2 For E1, . . . ,En ∈M disjoint:

µ(A ∩
n

⊍
k=1

Ek) =
n

∑
k=1

µ(A ∩Ek) ∀ A ⊂X.

Proof Suppose E,F ∈M are disjoint, and let A ⊂X.

µ(A ∩ (E ⊍ F )) = µ(A ∩ (E ⊍ F ) ∩E) + µ(A ∩ (E ⊍ F ) ∩Ec) ∵ E ∈M

= µ(A ∩E) + µ(A ∩ F ) ∵ E ∩ F = ∅.

�

Step 3 If E1,E2, ⋅ ⋅ ⋅ ∈M are disjoint, then

µ(A ∩E) =
∞

∑
n=1

µ(A ∩En) ∀ A ⊂X, where E ∶=
∞

⋃
n=1

En.

Note that it is not assumed that ⋃∞
n=1En ∈M.

Proof Suppose A ⊂X, then
∞

∑
n=1

µ(A ∩En) ≥ µ(A ∩E) ≥ µ(A ∩
N

⋃
n=1

En)

=
N

∑
n=1

µ(A ∩En)→
∞

∑
n=1

µ(A ∩En) ≥ µ(A ∩E)

as N →∞. �

Step 4 M is a σ-algebra.

Proof Let E1,E2, ⋅ ⋅ ⋅ ∈M and let

E ∶=
∞

⋃
n=1

En.

Set

F1 = E1, Fn+1 ∶= En+1 ∖
n

⋃
k=1

Ek (n ≥ 1),
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then F1, F2, ⋅ ⋅ ⋅ ∈M, and are disjoint, whence for A ⊂X,

µ(A) = µ(A ∩
n

⊍
k=1

Fk) + µ(A ∩ (
n

⊍
k=1

Fk)
c) (∀ n ≥ 1)

≥
n

∑
k=1

µ(A ∩ Fk) + µ(A ∩Ec)

→ µ(A ∩E) + µ(A ∩Ec) as n→∞.

�

2.6 Caratheodory’s extension theorem Let X be a set, S be an
semi-ring of subsets of X which σ-covers X.

Suppose that µ ∶ S → [0,∞) is additive and countable subadditive,
then there is a measure µ ∶ σ(S)→ [0,∞] such that µ∣S ≡ µ.

Proof Define, for E ⊂X (using the σ-covering property),

µ(E) ∶= inf {
∞

∑
n=1

µ(An) ∶ A1,A2, ⋅ ⋅ ⋅ ∈ S, E ⊂
∞

⋃
n=1

An}.

Let µ̂ ∶R(S)→ [0,∞) is the additive extension of µ obtained using 1.5.

● We claim first that µ ≡ µ̃ where

µ̃(E) ∶= inf {
∞

∑
n=1

µ̂(An) ∶ A1,A2, ⋅ ⋅ ⋅ ∈R(S), E ⊂
∞

⋃
n=1

An}.

Since R(S) ⊃ S and µ̂∣S ≡ µ, we have µ̃ ≤ µ.
For the reverse inequality, suppose that

E ⊂X, A1,A2, ⋅ ⋅ ⋅ ∈R(S), E ⊂
∞

⋃
n=1

An.

By 1.4, for each n ≥ 1, ∃ Nn ≥ 1, Cn,1, . . . ,Cn,Nn ∈ S disjoint, such that
An = ⊍

Nn
k=1Cn,k. It follows that E ⊂ ⋃∞

n=1⊍
Nn
k=1Cn,k, whence

µ(E) ≤
∞

∑
n=1

Nn

∑
k=1

µ(Cn,k) =
∞

∑
n=1

µ̂(An).

● Next, we show that µ is an outer measure.
Evidently µ(∅) ≤ µ(∅) = 0. Monotonicity is immediate. To see

sub-σ-additivity, suppose that E = ⋃n≥1En and let ε > 0. Choose
An,1,An,2, ⋅ ⋅ ⋅ ∈ S (n ≥ 1) so that En ⊂ ⋃k≥1An,k and ∑k≥1 µ(An,k) ≤
µ(En) +

ε
2n (n ≥ 1). It follows that En ⊂ ⋃n,k≥1An,k, whence

µ(E) ≤ ∑
n,k≥1

µ(An,k) ≤∑
n≥1

(µ(En) +
ε

2n
) =∑

n≥1

µ(En) + ε.
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● Continuing, we note that µ(A) = µ(A) ∀ A ∈ S by countable
subadditivity.

● Finally, we show that S ⊂ M. This will establish the extension
theorem by Caratheodory’s construction theorem (2.1).

For this, it suffices to show that for B ∈ S:

µ(F ) ≥ µ(F ∩B) + µ(F ∩Bc) ∀ F ⊂X.

To this end, fix ε > 0 and let A1,A2, ⋅ ⋅ ⋅ ∈ S be such that

F ⊂
∞

⋃
n=1

An, µ(F ) + ε ≥
∞

∑
n=1

µ(An).

For each n ≥ 1, we have that

µ(An) = µ(An ∩B) + µ̂(An ∩B
c)

where µ̂ ∶ R(S) → [0,∞) is the additive extension of µ obtained using
1.5.

It follows that

µ(F ) + ε ≥
∞

∑
n=1

µ(An)

=
∞

∑
n=1

(µ(An ∩B) + µ̂(An ∩B
c))

=
∞

∑
n=1

µ(An ∩B) +
∞

∑
n=1

µ̂(An ∩B
c)

≥ µ(F ∩B) + µ̃(F ∩Bc)

= µ(F ∩B) + µ(F ∩Bc). 2�

Lebesgue measure on Rd.
Let S be the semi-ring of boxes in Rd which σ-covers Rd, and let

v(R) = ∣R∣ as before. By 1.4 and 1.11, v ∶ S → [0,∞) is additive and
countable subadditive. By Caratheodory’s extension theorem, there is
a measure (aka Lebesgue measure on σ(S) ) extending v ∶ S → [0,∞).

Bernoulli measure with finite state space. Let Λ be a set, S
be a finite set, and let X = XΛ ∶= SΛ. As in exercise 1.1, and given
N ≥ 1, λ1, . . . , λN ∈ Λ, a1, . . . , aN ∈ S, define the cylinder

[a1, . . . , aN]λ1,...,λN ∶= {x ∈X ∶ x(λi) = ai ∀ 1 ≤ i ≤ N}.

Recall from your topology course that with respect to the product
discrete topology, X is a compact Hausdorff space and cylinder sets
are both open and compact.
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Note that the topological space XΛ is metrizable iff Λ is countable.

Let

S ∶= {[a1, . . . , aN]λ1,...,λN ∶ N ∈ N, λi ∈ Λ, ai ∈ S (1 ≤ i ≤ N)} ∪ {∅},

then (ex. 1.1(a)) S is a semi-algebra.
Let p ∶ S → (0,1) be a probability (∑s∈S p(s) = 1). Define P ∶ S →

[0,∞) by P (∅) ∶= 0 and P ([a1, . . . , aN]) ∶=∏
N
k=1 pak . Fix λ1, . . . , λN , λ ∈

Λ. Since

P ([a1, . . . , aN , s]λ1,...,λN ,λ) = P ([a1, . . . , aN]λ1,...,λN )ps ∀ a1, . . . , aN , s ∈ S,

we have

∑
s∈S

P ([a1, . . . , aN , s]λ1,...,λN ,λ) = µ([a1, . . . , aN]λ1,...,λN ).(+)

and P is additive by exercise 1.2 and therefore finitely subadditive.
Because each member of S is both compact and open, S has the FSCP,
P is countable subadditive and ∃ a probability P ∶ σ(S) → [0,1] so
that

P ([a1, . . . , aN]λ1,...,λN ) =
N

∏
k=1

pak .

Lebesgue measure and coin tossing.
Let Ω = {0,1}N and let P be as above with p(0) = p(1) = 1

2 . Define
Φ ∶ Ω → [0,1] by

Φ(ω1, ω2, . . . ) ∶=∑
n≥1

ωn
2n
.

This is a continuous map, therefore (!!) Borel measurable i.e.

A ∈ B([0,1]) Ô⇒ Φ−1A ∈ B(Ω).

We claim
P (Φ−1A) = Leb (A).

To see this, let A be a closed dyadic interval, i.e. of form

A = [
p

2n
,
p + 1

2n
] where p, n ∈ N, p < 2n,

then (!)

Φ−1(A) = [a1, a2, . . . , an] where a1, a2, . . . , an = 0, 1 &
p

2n
=

n

∑
k=1

ak
2k
.

Consequently

P (Φ−1(A)) =
1

2n
= Leb (A).
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The collection of measurable sets A with this property is a σ-algebra
(!!) and the claim is proved. V

Outer measures on metric spaces. Let (X,d) be a metric space.
A metric outer measure on X is an outer measure µ ∶ 2X → [0,∞] with
the property that

A,B ⊂X, d(A,B) ∶= inf
x∈A,y∈B

d(x, y) > 0 ⇒ µ(A ∪B) = µ(A) + µ(B).

Example 1: Metric outer measures from regular Borel measures.

Let (X,d) be a metric space and let µ be a regular, finite Borel
measure on X. Define µ ∶ 2X → [0,∞) by µ(A) ∶= inf{µ(U) ∶ A ⊂ U ∈
B(X)}.

Proposition 2.7 µ ∶ 2X → [0,∞] is a metric outer measure.

Proof It is easy to see that µ is an outer measure.
Note also that

∀ A ⊂X, ∃ B = BA ∈ B(X), B ⊃ A, µ(A) = µ(B).(j)

In fact if A ⊂ Un open with µ(Un) < µ(A) + 1
n then one choice is the

Gδ set BA = ⋂n≥1Un.
If E, F ⊂ X and d(E,F ) > 0, then the sets BE, BF ∈ B in (j) can

be chosen disjoint since if d(E,F ) > 3ε > 0, then E ⊂ Bo(E, ε) & F ⊂
Bo(F, ε) (where Bo(A, ε) ∶= ⋃x∈ABo(x, ε)); the sets Bo(E, ε) & Bo(F, ε)
being open and disjoint.

To see that µ is a metric outer measure, fix E, F ⊂X, d(E,F ) > 0.
Let BE, BF , BE⊍F ∈ B satisfy (j) with BE ∩BF = ∅ and (WLOG)

BE ⊍BF ⊂ BE∪F . It follows that

µ(E ⊍ F ) = µ(BE⊍F )

≥ µ(BE ⊍BF )

= µ(BE + µ(BF )

= µ(E) + µ(F ). 2�

Pre-masses.
Let X be a set and let C ⊂ 2X with ∅ ∈ C. A pre-mass on C is a

function τ ∶ C → [0,∞] satisfying τ(∅) = 0.
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Example: Hausdorff-type pre-masses.
For (X,d) be a metric space and a ∶ [0,∞) → [0,∞] with a(0) = 0,

τa ∶ 2X → [0,∞] defined by

τa(A) ∶= a(diamA)

is a pre-mass.

Proposition 2.8 Let τ ∶ C → [0,∞] be a pre-mass. The set function
µ = µτ,C ∶ 2

X → [0,∞] defined by

µτ,C(A) ∶= inf {∑
n≥1

τ(Cn) ∶ Cn ∈ C ∀ n & A ⊂ ⋃
n≥1

Cn}

(with inf ∅ ∶=∞) is an outer measure.

Proof (As in the proof of theorem 2.6).
Evidently µ(∅) ≤ τ(∅) = 0. Monotonicity is immediate. To see

sub-σ-additivity, suppose that E = ⋃n≥1En. and let ε > 0. WLOG,
µ(En) < ∞ ∀ n and we may choose An,1,An,2, ⋅ ⋅ ⋅ ∈ C (n ≥ 1) so that
En ⊂ ⋃k≥1An,k and ∑k≥1 τ(An,k) ≤ µ(En) +

ε
2n (n ≥ 1). It follows that

En ⊂ ⋃n,k≥1An,k, whence

µ(E) ≤ ∑
n,k≥1

τ(An,k) ≤∑
n≥1

(µ(En) +
ε

2n
) =∑

n≥1

µ(En) + ε. 2�

Pre-masses on a metric space.
Let (X,d) be a metric space and let τ ∶ C → [0,∞] be a pre-mass.
For r > 0, let

Cr ∶= {A ∈ C ∶ diamA < r}

and let µr = µτ,Cr be the outer measure as in proposition 1.

Proposition 2.9 The set function µ ∶ 2X → [0,∞] defined by

µ(A) ∶= lim
r→0

µr(A)

is a metric outer measure.

Proof By proposition 1, each µr is an outer measure, whence so is
µ = supr→0 µr.

To check the metric property, fixA, B ⊂X, d(A,B) > 0 & µ(A), µ(B) <
∞ (the latter ensuring countable covers of A & B by elements of
Cr ∀ r > 0).

It suffices to show that

µr(A ∪B) = µr(A) + µr(B) ∀ r <
d(A,B)

3
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which in turn is true since if A ∪B ⊂ ⋃n≥1Cn where diamCn <
d(A,B)

3 ,
then ∃ K ⊂ N such that

A ⊂ ⋃
n∈K

Cn & B ⊂ ⋃
n∉K

Cn. 2�

Theorem (Caratheodory) If µ is a metric outer measure on X,
then B(X) ⊂M(µ).

Lemma Let µ be a metric outer measure on the metric space X. Then

An ↑ A, µ(A) <∞, d(An,A ∖An+1) > 0 ∀ n ≥ 1 ⇒ µ(An) ↑ µ(A).

Proof Without loss of generality, µ(An) ↑ a <∞ as n→∞. We prove
that µ(A) ≤ a.

Set B1 = A1, Bn = An ∖An−1 (n ≥ 2). We show first that

∞

∑
k=1

µ(Bk) ≤ 2a.(h)

Proof For ` ≥ k + 2, Bk ⊂ Ak, & B` ⊂ A ∖A`−1 ⊂ A ∖Ak+1, and so

d(Bk,
∞

⋃
`=k+2

B`) > 0,

Therefore, for ε = 0,1,

a ≥ µ(A2N) = µ(
2N

⋃
k=1

Bk)

≥ µ(
N

⋃
k=1

B2k−ε)

= µ(B2−ε) + µ(
N

⋃
k=2

B2k−ε)

⋮

=
N

∑
k=1

µ(B2k−ε)

Ð→
N→∞

∞

∑
k=1

µ(B2k−ε). 2� (h)

Using (h),

µ(A) = µ(An ∪
∞

⋃
k=n

Bk) ≤ µ(An) +
∞

∑
k=n

µ(Bk)→ a as n→∞. 2�
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Proof of the theorem To prove the theorem, we show that for
B,E ⊂X, E closed,

µ(B) ≥ µ(B ∩E) + µ(B ∩Ec)

Let εj ↓ 0. Note that

B ⊃ (B ∩E) ∪ (B ∖B(E, εj)), & d(B ∩E,B ∖B(E, εj)) ≥ εj

So
µ(B) ≥ µ(B ∩E) + lim

j→∞
µ(B ∖B(E, εj)).

Since E is closed, B ∖B(E, εj) ↑ B ∖E.
We shall apply the lemma with Aj = B ∖ B(E, εj) and A = B ∖ E.

Evidently Ak ⊂ B(E, εj)c and A∖Ak+1 ⊂ B(E, εk+1), whence d(Ak,A∖
Ak+1) ≥ εk−εk+1 > 0. By the lemma, µ(B∖B(E, εk)) = µ(Ak)→ µ(A) =
µ(B ∖E) whence

µ(B) ≥ µ(B ∩E) + µ(B ∖E).

�

NoExercise 2

1. Outer measures.
Let µ ∶ 2R → [0,∞] be Lebesgue outer measure defined by

µ(E) ∶= inf{
∞

∑
n=1

∣In∣ ∶ I1, I2, . . . intervals, E ⫅
∞

⋃
n=1

In}.

a) Show that if A ⊂ R, and µ(A∩J) ≤ 1
2 ∣J ∣ for every interval J , then

µ(A) = 0.

Let An ⊂ [0,1] (n ≥ 1).
b) Is it true that

A1 ⊃ A2 ⊃ . . .An ⊃ An+1 ⊃ . . . ⇒ µ(An)→ µ(
∞

⋂
n=1

An) as n→∞?

2. An extended measure space. Let (X,B,m) be the unit
interval equipped with Borel sets and Lebesgue measure.

a) Let A ⊂ R, µ(A) > 0. Show that if K ⊂ Q, K = R, then
µ(J ∩⋃k∈K(k +A mod 1)) = ∣J ∣ ∀ intervals J .
b) Show that ∃ a partition {En ∶ n ≥ 1} of [0,1] (i.e. En ⊂ [0,1]

disjoint & ⊍n≥1En = [0,1]) with µ(En)) = 1 ∀ n ≥ 1) where µ denotes
Lebesgue outer measure on [0,1].

Hint Take En = ⊍k∈Kn
(k+A mod 1) for suitableKn ⊂ Q and suitable (non-measurable)

A ⊂X.

Let {En ∶ n ≥ 1} be a partition as in b), and let B1 be the σ-algebra
generated by B, and {En ∶ n ≥ 1}.
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Show that

(c) B1 = {⊍n≥1Bn ∩En ∶ B1,B2, . . . ∈ B}; that

⊍
n≥1

Bn ∩En = ⊍
n≥1

B′
n ∩En⇒(d)

m(Bn∆B
′
n) = 0 ∀ n ≥ 1;

and that

p((⊍
n≥1

Bn ∩En) =∑
n≥1

m(Bn)

2n
(e)

defines a probability p ∶ B1 → [0,1] satisfying p∣B ≡m.

3 Bernoulli probabilities on countable shift spaces.
A (regular) cylinder in X ∶= NN is a set of form

[n1, n2, . . . , nk] ∶= {x ∈X ∶ xj = nj ∀ 1 ≤ j ≤ k}.

Let C ∶= {cylinders}.
In this exercise you construct, for any p ∈ P(N) with p(s) > 0 ∀ s ∈ N,

a probability P on (X,σ(C)) so that

P ([a1, a2, . . . , aN]) =
N

∏
k=1

p(ak) ∀(M)

[a1, a2, . . . , aN] ∈ C.

Let AN & A be as in example 2 on page5. Define µ ∶ AN = {F, N ∖ F ∶
F ⊂ N ∖ {1} #F <∞} by µ(A) ∶= ∑k∈A p(a).

For [A1,A2, . . . ,AN] ∈ A ∶= {AN- cylinders}, set

µ̂([A1,A2, . . . ,AN]) ∶=
M

∏
k=1

µ(Ak).

Show that

(i) µ̂ ∶ A→ [0,1] is additive and countably subadditive;

(ii) there is a measure P ∶ σ(A))→ [0,1] so that P ∣A ≡ µ̂;

(iii) σ(A) = σ(C) and P satisfies (M).

4. Regular Borel measures.
Let X be a topological space. The Borel σ-algebra is B(X) ∶=

σ({open sets} and a Borel probability on X is a probability measure
P ∶ B(X) → [0,1]. In this exercise, you show that if X is a separable
metric space, then Borel probabilities on X are regular in the sense
that P (A) = inf {P (U) ∶ A ⊂ U, U open}.
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Fix a Borel probability P on X and let

C ∶= {A ∈ B(X) ∶ ∀ ε > 0, ∃ F closed, U open, F ⊂ A ⊂ U, P (U ∖ F ) < ε}.
Show that:

(i) C is a σ-algebra;

(ii) {open sets} ⊆ C;

(iii) P is regular.

5. Measurable union of a hereditary collection.
Let (X,B,m) be a finite measure space. Let H ⊂ B be a hereditary

collection in the sense that

C ∈ H, B ⊂ C, B ∈ B Ô⇒ B ∈ H.

Show that
(i) ∃ A1,A2, ⋅ ⋅ ⋅ ∈ H disjoint such that U ∶= ⊍∞

n=1An covers H in the
sense that A ⊂ U mod m ∀ A ∈ H;

Hint Take ε1 ∶= sup{m(A) ∶ A ∈ H} & A1 ∈ H, m(A1) ≥
ε1
2

and then take ε2 ∶= sup{m(A) ∶

A ∈ H, A ∩A1 = ∅} & A2 ∈ H, A2 ∩A1 = ∅, m(A2) ≥
ε2
2

⋯

(ii) if V = ⊍∞
n=1Bn (Bn ∈ H) also covers H, then U = V mod m.

The set U ∈ B above is called the measure theoretic union of the
hereditary collection H and denoted U(H).

6. Non-atomicity.
Let (X,B,m) be a probability space. An atom of (X,B,m) is a set

A ∈ B satisfying m(A) > 0 and B ∈ B, B ⊆ A ⇒ m(B) = 0, m(A).

Show that if (X,B,m) is non-atomic (i.e. has no atoms), then ∀ p ∈
(0,1), ∃ A ∈ B with m(A) = p.

Hint: Show first (using the previous exercise or not) that ∀ ε > 0 ∃ a finite

partition α ⊂ B of X with m(A) < ε ∀ A ∈ α.

Week # 3
§4 Polish spaces

A measurable space (X,B) is composed of a set X equipped with a
σ-algebra B ⊂ 2X of subsets of X. A common example of such is when
X is a metric (or topological) space and

B = B(X) = {Borel sets in X} ∶= σ({open sets in X}).

Let (X,B) & (Y,C) be measurable spaces. A function f ∶ X → Y is
called measurable if f−1(C) ∈ B ∀ C ∈ C.

If Y is a metric space and C = B(Y ) ∶= σ({open sets}), then f ∶
X → Y is measurable iff f−1(U) ∈ B ∀ U ⊂ Y open.
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In particular, if (X,B) & (Y,C) are both metric spaces eqipped with
their Borel sets, then any continuous f ∶X → Y is measurable.

The measurable spaces (X,B) and (X ′,B′) are isomorphic ((X,B) ≅
(X ′,B′)) if ∃ a bimeasurable bijection (isomorphism) π ∶X →X ′.

Standard (aka Polish ) measurable spaces. A standard measur-
able (or Borel) space is a measurable space (X,B) where X is Polish
space and B = B(X) its Borel sets.

Uncountable examples.

X = Ω ∶= {0,1}N, Rd, C([0,1]), ⋯

It turns out that standard measurable spaces are isomorphic iff their
cardinalities are the same, and that the possible cardinalities are:

N ∪ ,0א!} c}.(∗)

Remark
Completeness (of the underlying Polish space) is necessary for (∗)

to hold without the continuum hypothesis.

Kuratowski’s isomorphism theorem
If X is an uncountable Polish space, then X ≅ Ω ∶= {0,1}N.

Corollary
If X is an uncountable Polish space, then there is a countable, algebra
A ⊂ B(X) with FSCP so that σ(A) = B(X).

Proof Let π ∶X → Ω be an isomorphism of measurable spaces, then

π(A({cylinders})

is as required. V
Our proof of Kuratowski’s theorem is a “measurable version” of the

proof of the theorem of Cantor-Bernstein1

Let X be a separable metric space.
Consider the collection of condensation points

Xc ∶= {x ∈X ∶ ∣B(x, ε)∣ > 0א! ∀ ε > 0}.

Here (and throughout)

B(x, ε) ∶= {y ∈X ∶ d(x, y) ≤ ε} & Bo(x, ε) ∶= {y ∈X ∶ d(x, y) < ε}.

By separability, X ∖ Xc is countable and open, whence ∣X ∣ > 0א! iff
Xc ≠ ∅. A Polish space is called perfect if X =Xc.

1Formulated by Yuval Peres while a student at TAU.
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Lemma 1 If X is a Polish space with ∣X ∣ > ,0א! then ∃ a closed set
K ⊂Xc which is homeomorphic to {0,1}N.

Proof
∃ x(0), x(1) ∈Xc and δ1 > 0 such that the closed balls B(x(i), δ1) (i =

0,1) are disjoint, uncountable subsets of X. We can continue this to
obtain δn > 0, {x(i) ∶ i ∈ {0,1}n} ⊂ Xc (n ≥ 1) such that ∀ n ≥ 1, i ∈
{0,1}n, B(x(i, j), δn+1) (j = 0,1) are disjoint, uncountable subsets of
B(x(i), δn). By completeness, ∀ (i1, i2, . . . ) ∈ {0,1}IN ,

∞

⋂
n=1

B(x(i1, . . . , in), δn) ≠ ∅.

The map π ∶ Ω →X defined by

{π(i1, i2, . . . )} ∶=
∞

⋂
n=1

B(x(i1, . . . , in), δn)

is continuous and injective. K ∶= π(Ω) is the required set. 2�

Polish subsets. Let (X,d) be a Polish space.
A subset Y ⊂ X is called a Polish (subset) if ∃ a metric ρ on Y

equivalent to d∣Y such that (Y, ρ) is a Polish space.

4.1 Proposition Suppose that (X,d) is a Polish space, then Y ⊂ X
is Polish iff Y is a Gδ set.

Proof WLOG X = Y .

Polish Ô⇒ Gδ :
Let ρ be a complete metric on Y generating the topology inherited

from X. For n ≥ 1, let

Vn = {x ∈X ∶ ∃ U ∋ x open, d − diam (U), ρ − diam (U ∩ Y ) ≤
1

n
}.

It suffices to show

Y =
∞

⋂
n=1

Vn.

Evidently Y ⊂ ⋂∞
n=1 Vn.

Proof that Y ⊃ ⋂∞
n=1 Vn.

If x ∈ ⋂∞
n=1 Vn ∩ Y , then ∃ W1 ⊃W2 ⊃ . . . , open in X such that

∀ n ≥ 1 ∶ x ∈Wn, ρ − diam (Wn ∩ Y ) ≤
1

n
, & d − diam (Wn) ≤

1

n
.
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By completeness of (Y, ρ), ⋂∞
n=1W n ∩ Y ≠ ∅. On the other hand,

⋂∞
n=1Wn = {x}. Thus:

{x} =
∞

⋂
n=1

W n ⊇
∞

⋂
n=1

W n ∩ Y ≠ ∅

and x ∈ Y . �

Gδ Ô⇒ Polish
Now let Y = ⋂∞

n=1Un where Un is open (n ≥ 1). For n ≥ 1, define
fn ∶ Un → R+ by fn(x) ∶=

1
d(x,Ucn)

(a d-continuous function on Un) and

define ρ ∶ Y × Y → [0,∞) by

ρ(x, y) ∶= d(x, y) +
∞

∑
n=1

1

2n
⋅ (∣fn(x) − fn(y)∣ ∧ 1).

Then ρ is a metric on Y , and ρ ≥ d.
To see equivalence of ρ and d on Y , suppose that xn, x ∈ Y and

xn
d
→ x, then fk(xn)→ fk(x) ∀ k ≥ 1 whence (!) xn

ρ
→ x.

To see completeness of (Y, ρ) let (xn)n≥1 be a ρ-Cauchy sequence
in Y , then (xn)n≥1 is a d-Cauchy sequence in Y , and (fk(xn))n≥1 is a

Cauchy sequence in R ∀ k ≥ 1. It follows that ∃ x ∈X such that xn
d
→ x

and ∃ limn→∞ fk(xn) ∈ R ∀ k ≥ 1. It follows that x ∈ Y 2 and xn
ρ
→ x.

�

Lemma 4.2 If X is a Polish space, then ∃ a Gδ set G ⊂ [0,1)N which
is homeomorphic to X.

Proof Choose an equivalent metric d ≤ 3/4, and a countable dense
set A ⊂ X. Define f ∶ X → Z ∶= [0,1)A by fa(x) ∶= d(x, a). Clearly
f ∶X → G ∶= f(X) is bijective. We claim it is a homeomorphism.

Let xn, x ∈X.
If xn → x as n → ∞, then d(xn, a) → d(x, a) as n → ∞ ∀ a ∈ A and

f(xn)→ f(x).
If f(xn)→ f(x), then d(xn, a)→ d(x, a) as n→∞ ∀ a ∈ A whence

d(xn, x) ≤ d(xn, a) + d(x, a) Ð→
n→∞

2d(x, a) ∀ a ∈ A.

Let ε > 0. Since A is dense, ∃ aε ∈ A such that d(x, aε) < ε/2 and

lim
n→∞

d(xn, x) ≤ 2d(x, aε) < ε.

2
else x ∉ Uk and fk(xn)→∞ as n→∞ for some k
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Thus f ∶ X → G is a homeomorphism. The set G is now Polish (a
complete equivalent metric being given by ρ(f(x), f(y)) ∶= d(x, y)) and
hence a Gδ. �

Lemma 4.3 There is a Borel subset Z of Ω = {0,1}N which is Borel
isomorphic to X.

Proof Let Y ∶= {ω ∈ {0,1}N ∶ ωn ↛ 1} then π ∶ Y → [0,1) defined by
π(ω) = ∑

∞
n=1

ωn
2n is a Borel isomorphism.

The Borel isomorphism Ψ = φ○ψ ∶ [0,1)N → Z ∈ B(Ω) is as advertised,
where:

φ ∶ [0,1)N → Y N is defined by φ(y1, y2, . . . )k ∶= π−1(yk),

ψ ∶ ΩN = {0,1}N
2
→ Ω is defined by ψ((ωu ∶ u ∈ N2))` = ωσ(`) where

σ ∶ N→ N2 is bijective
and

Z = φ ○ ψ(G) ∈ B(Ω) where G is as in lemma 4.2. �

Proof of Kuratowski’s theorem à la Cantor-Bernstein
We have bimeasurable maps f ∶ X → f(X) ∈ B(Ω) and g ∶ Ω →

g(Ω) ∈ B(X).
Define

X2n = (g ○ f)n(X ∖ g(Ω)) ∈ B(X), Ω2n = (f ○ g)n(Ω ∖ f(X)) ∈ B(Ω),

X2n+1 = g(Ω2n) ∈ B(X), Ω2n+1 = f(X2n) ∈ B(Ω),

and

X∞ =X ∖
∞

⋃
n=0

Xn ∈ B(X), Ω∞ = Ω ∖
∞

⋃
n=0

Ωn ∈ B(X).

Define α ⊂ B(X) and β ⊂ B(Ω) by

α = {A0,A1,X∞}, β = {B0,B1,Ω∞}

where

A0 =
∞

⋃
n=0

X2n, A1 =
∞

⋃
n=0

X2n+1,

B0 =
∞

⋃
n=0

Ω2n = g
−1(A1), B1 =

∞

⋃
n=0

Ω2n+1 = f(A0).

● We claim that α and β are partitions of X and Ω (respectively).

Proof For x ∈ g(Ω) ⊂ X, call the point g−1(x) ∈ Ω a preimage of x,
and for y ∈ f(X) ⊂ Ω, call the point f−1(y) ∈X a preimage of y.

Define a map N ∶X ∪Ω → Z+ ∪ {∞} by

N(z) = max{n ≥ 0 ∶ ∃ (z0, . . . , zn), z0 = z, zk+1 is a preimage of zk ∀ 0 ≤ k < n},
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then Xn =X ∩ [N = n] and Ωn = Ω ∩ [N = n] for 0 ≤ n ≤∞. �

The required Borel isomorphism is π ∶X → Ω defined by

π(x) = {
f(x) x ∈ A0 ∪X∞,

g−1(x) x ∈ A1. �

Universably nonmeasurable sets in Polish spaces.
We “construct” subsets of Polish spaces which are not completion

measurable (in the sense of exercise 4.0 below) with respect to any
non-atomic Borel probability on X.

We’ll need:

Lemma 4.4
If X is a Polish space with ∣X ∣ = c, then

∣{uncountable closed subsets}∣ = c.

Proof

Let C ∶= {uncountable, closed subsets of X}.

¶ To see that ∣C∣ ≤ c let U be a countable base for the topology of X,
then

∣C∣ = ∣{open subsets of X}∣ ≤ ∣2U ∣ = c.

¶ To show that ∣C∣ ≥ c we exhibit a continuum of disjoint, uncountable
closed subsets of X. By lemma 1, it suffices to this in Ω. To this end
fix A ⊂ N such that ∣A∣ = ∣N ∖A∣ = ∞. For a ∈ {0,1}A, let Ωa ∶= {ω ∈ Ω ∶
ω∣A = a}, then

● Ωa ∩Ωa′ ≠ ∅ Ô⇒ a = a′;

● Ωa is homeomorphic with Ω ∀ a ∈ {0,1}A.
Thus F ∶= {Ωa ∶ a ∈ {0,1}A} is a continuum of disjoint, uncountable

closed subsets of Ω. 2�

Big sets & Bernstein sets.
Let X be an uncountable, Polish space. A big set in X is a set

B ⊂ X such that F ∩B ≠ ∅ ∀ F ⊂X closed, uncountable,

F ∩B ≠ ∅ & F ∖B ≠ ∅.

A Bernstein set in X is a big set whose complement is also big.

4.5 Bernstein’s Theorem3

3Felix Bernstein, ”Zur Theorie der trigonometrischen Reihen”, Sitzungsber. Sachs. Akad.
Wiss. Leipzig. Math.-Natur. Kl. 60 (1908), 325-338.
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Bernstein sets exist in any uncountable Polish space.

Proof Let C ∶= {uncountable, closed subsets of X}, then (as
shown above) ∣C∣ = c.

The initial segment (רישא!) of an ordinal β is

Ω(β) ∶= {α ordinal, α ≺ β}.

Let ωc be the minimal ordinal with ∣ωc∣ ∶= cardΩ(ωc) = c. Write
Ωc ∶= Ω(ωc), then

∣α∣ < c ∀ α ∈ Ωc

and it follows that
C = {Fα ∶ α ∈ Ωc}.

We’ll also need the

Transfinite recursion theorem.

Suppose that Z is a set, z ∈ Z and for α ∈ Ωc, fα ∶ ZΩ(α) → Z, then
∃ ! f ∶ Ωc → Z such that f(1) = z and

f(α) = fα(f ∣Ω(α)) ∀ α ∈ Ωc.

To use transfinite recursion, we claim

¶ ∀ α ∈ Ωc, ∃ Ψα ∶= (fα, gα) ∶ (X × X)Ω(α) → X × X such that

∀ (u, v) ∈ (X ×X)Ω(α),

(a) fα(u, v) ≠ gα(u, v);

(b) fα(u, v), gα(u, v) ∈ Fα;

(c) fα(u, v), gα(u, v) ∉ u(Ω(α)) ∪ v(Ω(α)).

Proof of ¶:
Fix (u, v) ∈ (X × X)Ω(α), then ∣u(Ω(α)) ∪ v(Ω(α))∣ < c whereas

∣Fα∣ = c whence #(Fα ∖ u(Ω(α)) ∖ v(Ω(α))) > 2 ensuring existence of
such fα(u, v), gα(u, v). 2� ¶

By transfinite recursion ∃ Ψ = (p(α), q(α)) ∶ Ωc → X ×X such that

Ψ(α) = Ψα(Ψ ∣Ω(α)).

It follows that

(i) p(α) ≠ q(α);

(ii) p(α), q(α) ∈ Fα;

(iii) p(α), q(α) ∉ p(Ω(α)) ∪ q(Ω(α))

whence p(Ωc) ∩ q(Ωc) = ∅.
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The Bernstein set constructed is B ∶= p(Ωc). Evidently X ∖ B ⊃
q(Ωc). For each ∀F ∈ C, ∃ α ∈ Ωc, F = Fα whence

p(α) ∈ F ∩B & q(α) ∈ Bc ∩ F. 2�

4.7 Proposition If B ⊂ X is a Bernstein set, and µ ∶ 2X → [0,∞) is
a metric outer measure on X with µ({x}) = 0 ∀ x ∈X, then B ∉Mµ.

Proof

Since µ({x}) = 0 ∀ x ∈ X, any closed set of positive measure is
uncountable. Thus, if B ∈M, then by regularity of µ∣M, either

● µ(B) > 0 and ∃ C ∈ C, C ⊂ B Ô⇒ ∅ ≠ C ∩Bc ⫅ B ∩Bc = ∅; or

● µ(Bc) > 0 and ∃ C ∈ C, C ⊂ Bc Ô⇒ ∅ ≠ C ∩B ⫅ Bc ∩B = ∅. 4
See also exercise 4.3(a).

4.8 Ulam’s theorem
Suppose that ∣X ∣ = .1א! If µ ∶ 2X → [0,1] is a measure, non-atomic in

the sense that µ({x}) = 0 ∀ x ∈X, then µ ≡ 0.

Proof By the WOT, ∃ an ordering ≺ on X so that

● every subset has a minimal element; and

● {x ∈X ∶ x ≺ y} is at most countable ∀ y ∈X.

For y ∈ X let x ↦ fy(x) = f(x, y) be an injection of {x ∈ X ∶ x ≺ y}
into N.

For x ∈X, n ∈ N let F n
x ∶= {y ∈X ∶ x ≺ y, f(x, y) = n}.

¶1 F n
x ∩ F

n
x′ = ∅ ∀ n ∈ N, x ≠ x′ ∈X.

Proof If y ∈ F n
x ∩F

n
x′ , then f(x, y) = f(x′, y) = n whence by construc-

tion of f , x = x′. 2�

¶2 ⋃n∈NF n
x = {y ∈X ∶ x ≺ y} since ∀ x ≺ y, y ∈ F

f(x,y)
x .

Now for fixed n ∈ N,

∣{x ∈X ∶ µ(F n
x ) > 0}∣ ≤ .0א!

Therefore

∣{x ∈X ∶ ∃ n ∈ N, µ(F n
x ) > 0}∣ ≤ 0א!

and ∃ r ∈X, µ(F n
r ) = 0 ∀ n ∈ N.
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Thus

µ(X) =µ({x ∈X ∶ x ⪯ r}) + µ(⋃
n∈N

F n
r )(,)

= µ({x ∈X ∶ x ≺ r}) + µ({r}) +∑
n∈N

µ(F n
r )

= 0. 2�

Exercise No3, 29/3/2017 פסח! תרגיל

1. Completions.
The measure space (Z,C,m) is complete if arbitrary subsets of mea-

sureable null sets are measurable.
Let (X,B, µ) be a finite measure space.
The µ-completion of B is the σ-algebra

Bµ ∶= σ(B ∪ ⋃
N∈B, µ(N)=0

2N).

Here, you extend µ to Bµ.

Show that

(i) µ ∶ 2X → [0,∞) defined by µ(A) ∶= inf {µ(U) ∶ A ⊂ U ∈ B} is an
outer measure;

(ii) Mµ = Bµ and µ∣B = µ;
and that

(iii) a function g ∶ X → R is Bµ–measurable iff ∃ f ∶ X → R B–
measurable such that f(x) = g(x) for µ-a.e. x ∈X.

The measure space (X,Bµ, µ) is called the µ-completion of (X,B, µ).

2. Measure algebra. Let (X,B,m) be a finite measure space. Define
a relation on B by A ∼ B if m(A∆B) = 0.
a) Show that ∼ is an equivalence relation.
b) Let B∼ = {[A] ∶= {A′ ∈ B ∶ A′ ∼ A} ∶ A ∈ B} be the collection of
equivalence classes.

Show that

d(a, b) ∶=m(A∆B) for a, b ∈ B∼, A ∈ a,B ∈ b

defines a metric on B∼, and that (B∼, d) is a complete metric space
(called the measure algebra of (X,B,m)).
c) Show that the measure algebra of a measure space is isometric with
the measure algebra of its completion.
d) Show that the following are equivalent:
(i) B∼ is separable;



34 Measure Theory notes © Jon. Aaronson

(ii) ∃ An ∈ B (n ≥ 1) such that ∀ A ∈ B ∃ A′ ∈ σ({An}∞n=1) with
m(A∆A′) = 0;

e) Is there a probability space (X,B, µ) equipped with sets
{As ∶ s ∈ (0,1)} ⊂ B such that µ(As∆At) ≥

1
4 ∀ s ≠ t ?

3. Polish probability spaces.
Let X be a Polish space, and let p ∈ P(X,B(X)) be non-atomic. Let

(I,B(I), λ), the unit interval equipped with its Borel sets and Lebesgue
measure. Show that (X,B(X), p) and (I,B(I), λ) are isomorphic in the
sense that there are sets X ′ ∈ B(X), I ′ ∈ B(I) such that p(X ∖X ′) =
λ(I ∖ I ′) = 0; and a bimeasurable bijection π ∶ X ′ → I ′ satisfying
p ○ π−1 = λ.
Hint: First use Kuratowski’s theorem to show that (X, ,B(X), p) is isomorphic with

(I,B(I), q) for some nonatomic q ∈ P(I,B(I)).

4. Bernstein sets.
Let X be an uncountable polish space.
Show that there is a disjoint collection B of Bernstein sets so that

∣B∣ = c and ⊍B∈BB =X.

5. Generalised Cantor sets. For I = [a−c, a+c] a bounded closed
interval, and 0 < h < 1, define

I0(h) ∶= [a − c, a − (1 − h)c], I1(h) ∶= [a + (1 − h)c, a + c];

I ′(h) ∶= I0(h) ⊍ I1(h) = I ∖ (a − (1 − h)c, a + (1 − h)c).

For A = ⊍k Ik a disjoint union of closed intervals, define

A′(h) =⊍
k

I ′k(h).

Clearly ∣A′(h)∣ = h∣A∣. For h1, h2, ⋅ ⋅ ⋅ ∈ (0,1) define

A1 ∶= [0,1], An+1 ∶= A
′
n(hn), A ∶=

∞

⋂
n=1

An.

a) Prove that A is closed and nowhere dense.

b) Prove that the Lebesgue measure of A is m(A) = limn→∞∏
n
k=1 hn.
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6. Volterra’s function (1881).
Here you construct this differentiable function V ∶ R → R whose

uniformly bounded derivative is not Riemann integrable on [0,1].

a) For the construction, you need a closed, nowhere dense subset E
of [0,1], with positive Lebesgue measure. Construct such (e.g. using
the previous exercise).

Set f(x) = x2 sin( 1
x) when x ≠ 0, and f(0) = 0 and recall that

● f is differentiable on R;
● f ′(x) = 2x sin( 1

x) − cos( 1
x) when x ≠ 0, f ′(0) = 0; and

● there is a sequence yn ↓ 0 such that f ′(yn) = 0.

For r > 0, set z = zr ∶= max{z ∈ (0, r/2) ∶ f ′(z) = 0}, and define
fr ∶ R→ R by

fr(x) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f(x) 0 ≤ x ≤ z,

f(z) z ≤ x ≤ r − z,

f(r − z) r − z ≤ x ≤ r,

0 else.

b) For I = (a, b), define fI ∶ R→ R by fI(x) = fb−a(x − a).

Show that ∣fI ∣ ≤
∣I ∣2

4 ; fI is differentiable on R with ∣f ′I ∣ ≤ ∣I ∣ + 1 and
ω(f ′I , x) = 2 ⋅ 1∂I(x)

where for g ∶ (x − η, x + η)→ R,

ω(g, x) ∶= lim
ε→0

sup
y,z∈(x−ε,x+ε)

∣g(y) − g(z)∣.

For E ⊂ [0,1] a closed, nowhere dense set, write R∖E = ⋃n In where
the In are disjoint, open intervals, and set

V (x) ∶= {
fIn(x) x ∈ In
0 else.

c) Show that V is differentiable on R, sup[0,1] ∣V
′∣ ≤ 2, V ′∣E ≡ 0 and

that ω(V ′, x) = 2 ⋅ 1E(x).
Hint ∣V (y)∣ ≤ ∣y − x∣2 ∀ x ∈ E, y ∈ R.

d) Show that if m(E) > 0, then V ′ is not Riemann integrable on
[0,1].

Week # 4
Measurable sets in Polish spaces: Analytic sets
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Definition A subset of a Polish space is analytic if it is the continuous
image of NN (i.e. the irrationals – see exercise 4.1(a)).

4.9 Proposition Any Polish space is a continuous image of NN.

The proof is standard and uses the

4.10 Lemma Let X be a separable metric space. Given εk > 0 (k ≥
1), there is a collection of nonempty closed sets

{F (n1, ..., nk) ∶ k,n1, ..., nk ∈ N}

such that F (n1, ..., nk)o = F (n1, ..., nk) ∀ = k,n1, ..., nk ∈ N,
∞

⋃
ν=1

F (ν) =X,

∞

⋃
ν=1

F (n1, ..., nk, ν) = F (n1, ..., nk))
o∀ k,n1, ..., nk ∈ N,

and

sup{diamF (n1, ..., nk) ∶ n1, ..., nk ∈ N} ≤ εk ∀ k ≥ 1.

The lemma is proved using the Lindelöf property of separable metric
spaces.

The following shows that Borel sets are analytic:

4.11 Theorem Let X be Polish, then every non-empty A ∈ B(X) is
an injective, continuous image of a Polish space.

Proof Let

P ∶= {A ∈ B(X) ∶ ∃ Z Polish & a continuous bijection π ∶ Z → A};

Q0 ∶= {A ∈P ∶ Ac ∈P} & Q =Q0 ∪ {∅,X}.

We show that Q = B(X).
If ∅ ≠ U ⫋ X is open, then U ∈ P (as a non-empty Gδ set), and

U c ∈ P (as a non-empty closed set), hence U ∈ Q. We show that Q is
a σ-algebra.

First:

An ∈P, A ∶=
∞

⋂
n=1

An ≠ ∅ Ô⇒ A ∈P.(®)

To see this, let Xn be Polish, and πn ∶ Xn → X be a continuous
injection with πn(Xn) = An. Consider the product (Polish) space

X̂ ∶=
∞

∏
n=1

Xn
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and the continuous injection π ∶ X̂ →XN defined by (π(x1, x2, . . . ))n ∶=
πn(xn).

Now let

X̃ = {x ∈ X̂ ∶ πn(xn) = π1(x1) ∀ n ≥ 1}

= π−1{(x1, x2, . . . ) ∈ A
N ∶ xn = x1 ∀ n ≥ 1},

- a non-empty, closed subset of X̂ and hence Polish, and consider
π̃ ∶ X̃ →X defined by π̃(x1, x2, . . . ) = π1(x1). Clearly this is continuous,
and π̃(X̃) = ⋂∞

n=1An. V(®)
Next:

An ∈P disjoint, ⇒
∞

⊍
n=1

An ∈P.())

Proof Let Xn be Polish, and πn ∶Xn →X be a continuous injection
with πn(Xn) = An. Consider the union space U ∶= {(k, y) ∶ k ∈ N, x ∈
Xk} which is Polish equipped with the metric

d((k, x), (k′, y)) = {
1 k ≠ k′,

dk(x,x′) k = k′.

If π((k, x)) ∶= πk(x), then π is continuous and injective and π(U) =

⋃∞
n=1An. V())
Now, we show

A,B ∈Q0 Ô⇒ A ∪B ∈P.(Z)

To see this

A,B ∈Q0 Ô⇒ A,B,Bc ∈P

(®)
Ô⇒ A ∩Bc,B ∈P

())
Ô⇒ A ∪B = (A ∩Bc) ⊍B ∈P. 2�(Z)

To see that Q is an algebra we must show that

A,B ∈Q Ô⇒ A ∪B ∈Q.

This true for A,B ∈ Q0 by (®) & (Z) and the extension to A,B ∈ Q
is easy.

To see that Q is a σ-algebra, it’s enough to show that

An ∈Q ⇒ A ∶=
∞

⋃
n=1

An ∈Q.

If ∃ n, An =X then A =X ∈Q.
So WLOG, we assume An ∈Q0 ∀ n ≥ 1.
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Proof that A ∈P
Since Q is an algebra, ∃ Bn ∈Q, disjoint, such that A ∶= ⊍∞

n=1Bn. For
each n ≥ 1, either Bn ∈ P or Bn = ∅. WLOG Bn ∈ P ∀ n ≥ 1 & A ∈ P
by ()).

Proof that Ac ∈P
For each n ≥ 1, Acn ∈P whence

(
∞

⋃
n=1

An)

c

=
∞

⋂
n=1

Acn ∈P.

�

Universally Measurable.
A subset of a Polish space a ⊂ X is universally measurable if a ∈

B(X)p ∀ p ∈ P(X).

4.12 Luzin’s Measurability Theorem
An analytic subset of a Polish space a ⊂X is universally measurable.

Proof We’ll show that ∃ U ⊂ a ⊂ V, U,V ∈ B(X) such that p(U) =
p(V ).

Define p ∶ 2X → [0,1] by

p(A) ∶= inf{p(B) ∶ A ⊂ B ∈ B(X)}.

It follows from the basics that p is an outer measure.

If A ⊂X then ∃ UA ⊃ A, UA ∈ B(X) with p(A) = p(UA).
We’ll show that ∀ ε > 0, ∃Kε ⊂ a compact, such that p(Kε) ≥ p(a)−ε

whence a = ⋃∞
n=1K 1

n
mod p.

Suppose that f ∶ NN →X is continuous and a = f(NN). For k,n1, . . . , nk ≥
1, let

L(n1, . . . , nk) = {x ∈ NN ∶ xj ≤ nj 1 ≤ j ≤ k}.

By ex. 3.1(c), if An ⊂ An+1 ↑ A = ⋃∞
n=1An, then p(An) ↑ p(A).

Thus, since f(L(n)) ↑ f(NN) = a, ∃ n1 such that

p(f(L(n1))) > p(a) −
ε

2
;

and since f(L(n1, n)) ↑ f(L(n)), ∃ n2 such that

p(f(L(n1, n2))) > p(f(L(n1))) −
ε

22
= p(a) −

ε

2
−
ε

22
.

Continuing inductively, we obtain nk ≥ 1 (k ≥ 1) such that

p(f(L(n1, . . . , nk))) > p(a) − ε ∀ k ≥ 1.
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Set

Cε =
∞

⋂
k=1

L(n1, . . . , nk)

then Cε is compact in NN, whence K = Kε ∶= f(Cε) is compact in X.
We claim that p(Kε) > p(a) − ε.

To establish this, it is sufficient to show that

K =
∞

⋂
k=1

f(L(n1, . . . , nk))(K)

for then,

p(K)←Ð p(f(L(n1, . . . , nk))) ≥ p(f(L(n1, . . . , nk))) > p(a) − ε.

Proof of (K)

Clearly K ⊂ ⋂∞
k=1 f(L(n1, . . . , nk)).

Suppose that x ∈ ⋂∞
k=1 f(L(n1, . . . , nk)). We’ll show that x ∈ K.

For each k ≥ 1, ∃ y(k) ∈ NN such that d(x, f(y(k)) < 1
k and yj(k) ≤

nj (1 ≤ j ≤ k). There is a subsequence k` → ∞ and y ∈ NN such
thatyj(k`) = yj ∀ 1 ≤ j ≤ `, whence y ∈ Cε and y(k`) → y. It follows
that

x← f(y(k`))→ f(y) ∈K.

�

Souslin Universality

Definition Let X be a set, and F ⊂ 2X . A subset A of NN ×X is
universal for F if

{Ay ∶ y ∈ NN} = F

where Ay ∶= {x ∈X ∶ (y, x) ∈ A}.

Souslin’s existence theorem Let X be an uncountable Polish space.
There is an analytic subset of X which is not Borel.

Lemma Suppose that X is a separable metric space. There is an open
subset of NN×X which is universal for the open subsets of X, and there
is a closed subset of NN ×X which is universal for the closed subsets of
X.

Proposition Let X be Polish. There is an analytic subset of NN ×X
which is universal for the analytic subsets of X.
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Proof Each analytic set in X is the projection of a closed subset of
NN ×X. Choose a closed subset F of NN × (NN ×X) which is universal
for the closed subsets of NN ×X.

Set

G = {(x, z) ∈ NN ×X ∶ ∃ y ∈ NN, (x, y, z) ∈ F}.

Evidently G is an analytic subset of NN×X. To see that G is universal
for the analytic subsets of X, let A ⊂ X be analytic. There is a closed
B ⊂ NN ×X so that

A = {y ∈X ∶ ∃ x ∈ NN, (x, y) ∈ B}.

By universality of F , ∃ u ∈ NN such that

B = Fu.

Therefore,

A = {z ∈X ∶ ∃ y ∈ NN, (y, z) ∈ Fu}

= {z ∈X ∶ ∃ y ∈ NN, (u, y, z) ∈ F}

= {z ∈X ∶ (u, z) ∈ G}

= Gu.

�

Proof of Souslin’s existence theorem We first show that there is
an analytic subset of NN which is not Borel.

To see this let A ⊂ NN ×NN be universal for the collection of analytic
subsets of NN, and let B = {x ∈ NN ∶ (x,x) ∈ A}, which is analytic
being a continuous image of A.

We claim that B ∉ B(NN). To see this, we show that Bc is not
analytic.

If Bc is analytic, then Bc = Au for some u ∈ A. However,

u ∈ Bc ⇔ (u,u) ∉ A ⇔ u ∉ Au = B
c ⇔ u ∈ B.

This contradiction blocks the analyticity of Bc, and shows that B ∉
B(NN).

The general existence theorem follows from Kuratowski’s isomor-
phism theorem. �

Definition 4

Let X be Polish. Subsets A1,A2, ⋅ ⋅ ⋅ ⊂ X are (Borel) separated if
∃ B1,B2, ⋅ ⋅ ⋅ ∈ B(X) such that Bi ∩Bj = ∅ ∀ i ≠ j and Ai ⊂ Bi ∀ i ≥ 1.

423/11/95
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Souslin’s separation theorem Disjoint analytic subsets of a Polish
space are separated.

Lemma 1Suppose A1,A2, . . . , B1,B2, ⋅ ⋅ ⋅ ⊂ X and for each m,n ≥ 1,
Am and Bn are separated, then ⋃∞

m=1Am and ⋃∞
n=1Bn are separated.

Proof We first fix n ≥ 1 and show that ⋃∞
m=1Am and Bn are separated.

To see this suppose that Am ⊂ Fm ∈ B(X) (m ≥ 1) and Bn ⊂
F c
m ∀ m ≥ 1; then

∞

⋃
m=1

Am ⊂ F ∶=
∞

⋃
m=1

Fm ∈ B(X), & Bn ⊂
∞

⋂
m=1

F c
m = F c.

We now have that ⋃∞
m=1Am and Bn are separated ∀ n ≥ 1. Let

Bn ⊂ Gn ∈ B(X) (n ≥ 1) and ⋃∞
m=1Am ⊂ Gc

n ∀ n ≥ 1. It follows that
∞

⋃
n=1

Bn ⊂ G ∶=
∞

⋃
n=1

Gn ∈ B(X), &
∞

⋃
m=1

Am ⊂
∞

⋂
n=1

Gc
n ∶= G

c.

�

Lemma 2 Suppose A,B ⊂ X are disjoint and analytic, then A and B
are separated.

Proof There is no loss of generality in assuming A,B ≠ ∅. Suppose
A = f(NN) and B = g(NN) where f, g ∶ NN → X are continuous, and
that A and B are not separated.

We claim that ∃ m1, n1 ≥ 1 such that f([m1]) and g([n1]) are
not separated, else A and B are separated by lemma 1 since A =

⋃∞
m=1 f([m]) and B = ⋃∞

n=1 g([n]).
Continuing in this manner, we obtain m,n ∈ NN such that

f([m1,m2, . . . ,mk]) and g([n1, n2, . . . , nk]) are not separated ∀ k ≥ 1.
However, since f(m) ≠ g(n) (being contained in disjoint sets), we

have by continuity of f and g that for some k ≥ 1

∃ ε > 0 such that B(f([m1,m2, . . . ,mk]), ε)∩B(g([n1, n2, . . . , nk]), ε) = ∅.

�

Proof of the separation theorem Suppose that A1,A2, ⋅ ⋅ ⋅ ⊂X are
disjoint and analytic. For each n ≥ 1 ⋃k≠nAn is analytic and disjoint
from An; so

∀ n ≥ 1 ∃ Bn ∈ B(X), An ⊂ Bn, & ⋃
k≠n

An ⊂ B
c
n.

Set
Cn ∶= Bn ∖ ⋃

k≠n

Bk ∈ B(X).
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Clearly Ci ∩C)j = ∅ (i ≠ j). To see that An ⊂ Cn, note that An ⊂ Bn

and

∀ k ≠ n, An ⊂ ⋃
m≠k

Am ⊂ Bc
k,

whence An ⊂ ⋂k≠nB
c
k and An ⊂ Cn. �

Inverse function theorem Suppose that X and Y are Polish spaces,
and that f ∶ X → Y is 1-1, and measurable, then ∃ g ∶ Y → X measur-
able suchj that g ○ f =Id.

Proof Let εn → 0 as n→∞ and let for n ≥ 1 αn ⊂ B(X) be a countable
partition of X such that

max
a∈αn

diam (a) ≤ εn.

For each n ≥ 1, {f(a) ∶ a ∈ αn} is a countable collection of analytic
sets, ans by the separation theorem ∃ {Bn(a) ∶ a ∈ αn} ⊂ B(Y ), disjoint
such that Bn(a) ⊃ a ∀ a ∈ αn.

Choose xa ∈ a ∈ αn, fix x∗ ∈X, and define gn ∶ Y →X by

gn(y) = {
xa y ∈ Bn(a)

x∗ y ∉ ⋃a∈αn Bn(a).

Clearly gn ∶ Y →X is measurable. Define g ∶ Y →X by

g(y) = {
limn→∞ gn(y) ∃ limn→∞gn(y),

x∗ else.

Clearly g ∶ Y →X is measurable. Moreover for x ∈X, f(x) ∈ Bn(an(x)) ∀ n ≥
1 where x ∈ an(x) ∈ αn; whence gn(f(x)) = xan(x) → x as n → ∞
(∵ x,xan(x) ∈ an(x) ∈ αn), and g(f(x)) = x. �

Souslin’s measurability theorem Suppose that X and Y are Polish
spaces, and that f ∶X → Y is 1-1, and measurable, then:
f(X) ∈ B(X), and f−1 ∶ f(X)→X is measurable.

Proof Let g ∶ Y → X be as in the inverse function theorem. We have
that :
{y ∈ Y ∶ f ○ g(y) = y} ∈ B(Y ) ∵ f ○ g ∶ Y → Y is measurable; and

f(X) = {y ∈ Y ∶ f ○ g(y) = y}.

The measurability of f−1 ∶ f(X)→X follows from f−1 = g∣f(X). �
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Cross sections. Consider the ordering on NN defined by x < y if
∃ n ≥ 1 such that xn < yn and xj = yj ∀ 1 ≤ j < n (if any). Every closed
set has a mininum with respect to this ordering. Note that 1 ≤ NN

where (a)n ∶= a ∀ a,n ≥ 1. For x < y ∈ NN, write

[x, y] ∶= {z ∈ NN ∶ x ≤ z ≤ y}, [x, y) = [x, y] ∖ {y} . . . .

Note that for each x ∈ NN, [1, x) is open.

Exercise Show that cylinder sets are generated by the countable col-
lection

{[1, x] ∶ x ∈ NN, xn → a}.

Cross section theorem Let X and Y be Polish spaces, ∅ ≠ a ⊂X ×Y
be analytic, and p = {x ∈ X ∶ ∃ y ∈ Y (x, y) ∈ a}, then ∃ f ∶ p → Y
analytically measurable (i.e. f−1B(Y ) ⊂ A(X)) such that

{(x, f(x)) ∶ x ∈ p} ⊂ a.

Proof Let T ∶ NN →X × Y be continuous with a = T (NN).
Writing π(x, y) = x, (π ∶X ×Y →X) we have that g ∶= π ○T ∶ NN → p

is continuous and onto. For each x ∈ p, g−1({x}) is closed in NN. We
define h ∶ p→ NN by h(x) ∶= min g−1({x}).

Clearly g ○h =Id. To check analytic measurability of h ∶ p→ NN, note
that

h−1([1, a)) = {y ∈ p ∶ h(y) < a} = {y ∈ p ∶ min g−1({y}) < a} = g([1, a))

is analytic ∀ a ∈ NN.
Writing ψ(x, y) = yx, (ψ ∶ X × Y → Y ) we have that f = ψ ○ T ○ h ∶

p→ Y is analytically measurable, and

{(x, f(x)) ∶ x ∈ p} = {T ○ h(x) ∶ x ∈ p} ⊂ a.

�

Remark ∃ a ∈ B(X × Y ) such that ∄ f ∶ p→ Y Borel measurable.

Corollary: Section theorem5 Suppose that X and Y are Polish
spaces, and that T ∶ X → Y is measurable. There is an analytically
measurable function f ∶ T (X)→X such that

T ○ f = IdT (X).

530/11/95
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Proof Let a ⊂ Y ×X be defined by

a ∶= {(T (x), x) ∶ x ∈X}
(!)
∈ B(Y ×X),

and let p, f ∶ p→X be as in the cross section theorem; then p = T (X)
and

{(x, f(x)) ∶ x ∈ T (X)} ⊂ {(T (x), x) ∶ x ∈X}

whence T ○ f = IdT (X). �

Exercise Let (X,B,m) be a standard probability space, and let T ∶X →
X be measurable and measure preserving (i.e. m(T −1A) =m(A) ∀ A ∈
B). Suppose that for m-a.e. x ∈X, ∣T −1{x}∣ <∞. Prove that ∃ disjoint
sets A1,A2, ⋅ ⋅ ⋅ ∈ B such that ∪∞n=1 = X mod m, TA1, TA2, ⋅ ⋅ ⋅ ∈ B, and
T ∶ Ak → TAk is 1-1 and bimeasurable.

Exercise No4

1. Generalized Hausdorff-type measures.
Let (X,d) be a metric space, let a ∶ 2X → [0,∞] with a(∅) = 0 and

define, for ε > 0, and A ⊂X,

H(ε)(A) ∶= inf{
∞

∑
k=1

a(Ak) ∶ A ⊂
∞

⋃
k=1

Ak, diamAk < ε ∀ k ≥ 1};

where diamA ∶= supx,y∈A d(x, y); and let H(A) ∶= limε→0H(ε)(A) ≤∞.
Show that H ∶ 2X → [0,∞] is a metric outer measure.

3. Measure algebra. Let (X,B,m) be a finite measure space. Define
a relation on B by A ∼ B if m(A∆B) = 0.
a) Show that ∼ is an equivalence relation.
b) Let B∼ = {[A] ∶= {A′ ∈ B ∶ A′ ∼ A} ∶ A ∈ B} be the collection of
equivalence classes.

Show that

d(a, b) ∶=m(A∆B) for a, b ∈ B∼, A ∈ a,B ∈ b

defines a metric on B∼, and that (B∼, d) is a complete metric space
(called the measure algebra of (X,B,m)).
c) Show that the following are equivalent:
(i) B∼ is separable;
(ii) ∃ An ∈ B (n ≥ 1) such that ∀ A ∈ B ∃ A′ ∈ σ({An}∞n=1) with
m(A∆A′) = 0;

d) Is there a probability space (X,B, µ) equipped with sets
{As ∶ s ∈ (0,1)} ⊂ B such that µ(As∆At) ≥

1
4 ∀ s ≠ t ?
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§5 Lebesgue integral on a finite measure space

5.1 Integral of a bounded, measurable function.
Countable additivity is not needed for the integration of bounded

functions. This observation will be used when computing L∞∗ (below).
A finitely additive, finite measure space is a triple (X,B, µ) with B

an algebra of subsets of X and µ ∶ B → [0,∞) finitely additive (e.g.
a normal probability space). A function f ∶ X → R is measurable if
f−1U ∈ B for open sets U ⊂ R.

Let be a finitely additive, finite measure space. A simple function is
a finite linear combination of measurable indicators. The same simple
function can be represented by many different finite linear combina-
tions as above.

● A representation of the simple function f is a finite collection
{(ak,Ak)}Nk=1 ⊂ R × B satisfying (and denoted by) f = ∑

N
k=1 ak1Ak .

● The representation f = ∑
N
k=1 ak1Ak is disjoint if the sets {Ak}Nk=1 are

disjoint.

● The canonical representation of the simple function f ∶ X → R is
f = ∑v∈f(X) v1[f=v]. This is disjoint.

The integral of the simple function f ∶X → R is
w

X

fdµ = µ(f) ∶= ∑
v∈f(X)

vµ([f = v]).

5.2 Proposition Let f ∶ X → R be simple with representation f =

∑
N
k=1 ak1Ak where a1, . . . , an ∈ R and A1, . . . ,An ∈ B, then

µ(f) =
N

∑
k=1

akµ(Ak).

Proof Suppose that f = ∑
N
k=1 ak1Ak is a disjoint representation, then

[f = v] = ⊍
1≤k≤N, ak=v

Ak ∀ v ∈ f(X)

and by additivity of µ,

µ(f) = ∑
v∈f(X)

vµ([f = v])

= ∑
v∈f(X)

∑
1≤k≤N, ak=v

akµ(Ak)

=
N

∑
k=1

akµ(Ak). 2�
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For a general (non disjoint) representation, we need to consider the
partition generated by A1, . . . ,AN ∈ B.

For V ⊂X define V 1 ∶= V and V 0 ∶=X ∖ V = V c.

For ε = (ε1, . . . , εN) ∈ {0,1}N define Aε ∶= ⋂
N
k=1A

εk
k .

Note that X = ⊍ε∈{0,1}N Aε and Ak = ⊍ε∈{0,1}N , εk=1Aε. We claim that

f = ∑
ε∈{0,1}N

(
N

∑
k=1

akεk)1Aε .(i)

Proof of i:

f =
N

∑
k=1

ak1Ak =
N

∑
k=1

ak ∑
ε∈{0,1}N , εk=1

1Aε

= ∑
ε∈{0,1}N

(
N

∑
k=1

akεk)1Aε . 2� (i)

This is a disjoint representation and so by the above,

µ(f) = ∑
ε∈{0,1}N

(
N

∑
k=1

akεk)µ(Aε)

=
N

∑
k=1

ak ∑
ε∈{0,1}N , εk=1

µ(Aε)

=
N

∑
k=1

akµ(Ak). 2�

5.3 Proposition (linearity and positivity)

Let f, g ∶X → R be simple functions, then
w

X

(af + bg)dµ = a
w

X

fdµ + b
w

X

gdµ ∀ a, b ∈ R;

f ≥ 0 ⇒
w

X

fdµ ≥ 0,

and

∣µ(f)∣ ≤
w

X

∣f ∣dµ ≤ sup
X

∣f ∣
w

X

1dµ = sup
X

∣f ∣µ(X).
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Integral of a bounded, measurable function.
Let (X,B, µ) be a finite measure space.

5.4 Proposition
For f ∶X → R bounded, measurable ,

∃ lim
g simple, supX ∣f−g∣→0

w

X

gdµ =∶
w

X

fdµ.

Proof ∃ sequences of simple functions converging uniformly to f .
By positivity, if gn are simple and gn → f uniformly, {µ(gn)}n is a
Cauchy sequence. If gn, hn are simple and gn, hn → f uniformly, then
∃ limn→∞ µ(gn) =∶ a, limn→∞ µ(hn) =∶ b. To see that a = b, again by
positivity,

∣a − b∣← ∣µ(gn) − µ(hn)∣ ≤ µ(X) sup
X

∣gn − hn∣→ 0. �

This number µ(f) =
r
X
fdµ is the integral (of f with respect to µ).

The linearity and positivity are preserved under the limit.

5.5 Proposition
Suppose f, g ∶X → R are bounded measurable functions, and α,β ∈ R.

w

A

(αf + βg)dm = α
w

A

fdm + β
w

A

gdm.(1)

f ≤ g ⇒
w

A

fdm ≤
w

A

gdm.(2)

Integral of unbounded, measurable functions.
For this, countable additivity is needed and henceforward, (X,B,m)

is a finite (σ-additive) measure space.

Integral of a non-negative, measurable function.
For f ∶X → [0,∞) measurable and A ∈ B, define

w

A

fdm ∶= sup{
w

A

gdm ∶ g ≤ f, g simple } ≤∞.

● Note that if f, g ∶X → [0,∞) are measurable,
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(i) f ≤ g on A ∈ B Ô⇒
r
A
fdµ ≤

r
A
gdµ;

w

A

fdm = sup{
w

A

gdm ∶ g ≤ f, g bounded, measurable }(ii)

= sup{
w

A

gdm ∶ g ≤ f, g ≥ 0 measurable }.

Integrability.
The measurable function f ∶ X → R is called integrable on A ∈ B

if
r
A
∣f ∣dm < ∞. As above, in this case

r
A
f±dm < ∞ where f± ∶=

max{±f,0} so that f = f+ − f−. We define
w

A

fdm ∶=
w

A

f+dm −
w

A

f−dm.

Before proving positivity and linearity for the integrals of integrable
functions, we need some:

Basic convergence theory

Throughout this section, (X,B,m) is a probability space.
We’ll need the

5.6 BC lemma6

Let An ∈ B, (n ≥ 1).

If ∑n≥1m(An) <∞, then m([∑
∞
n=1 1An =∞]) = 0.

Proof

m([
∞

∑
n=1

1An =∞])←ÐÐ
n→∞

m(
∞

⋃
k=n

Ak)

≤
∞

∑
k=n

m(Ak)

ÐÐ→
n→∞

0. 2�

Let fn, f ∶X → R be measurable.

Convergence in measure. We say that fn converges in measure to

f written fn
m
ÐÐ→
n→∞

f if

m([∣fn − f ∣ > ε])ÐÐ→
n→∞

0 ∀ ε > 0.

6BC=Borel Cantelli
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a.e. convergence. We say that fn converges a.e. to f written

fn
a.e.
ÐÐ→
n→∞

f if

m([∣fn ↛ f]) = 0.

5.7 Proposition
Suppose fn, f ∶X → R are measurable.

(i) fn
a.e.
ÐÐ→
n→∞

f ⇒ fn
m
ÐÐ→
n→∞

f ;

(ii) fn
m
ÐÐ→
n→∞

f ⇏ fn
a.e.
ÐÐ→
n→∞

f ;

(iii) fn
m
ÐÐ→
n→∞

f ⇒ ∃ nk →∞ such that fnk
a.e.
ÐÐ→
k→∞

f .

Proof of (i)
For ε > 0,

m([∣fn − f ∣ ≥ ε]) ≤m(
∞

⋃
k=n

[∣fk − f ∣ ≥ ε])

ÐÐ→
n→∞

m(
∞

⋂
n=1

∞

⋃
k=n

[∣fk − f ∣ ≥ ε])

=m([
∞

∑
n=1

1[∣fn−f ∣≥ε] =∞])

=m([ lim
n→∞

∣fn − f ∣ ≥ ε])

= 0 2�

Proof of (ii) Exercise.

Proof of (iii) Fix nk ↑∞ so that
∞

∑
k=1

m([∣fnk − f ∣ >
1

k
]) <∞.

It is easy to see using the BC lemma that fnk
a.e.
ÐÐ→
k→∞

f . V

5.8 Egorov’s Theorem
Suppose fn, f ∶X → R are measurable and that fn → f a.e. as n→∞,

then ∀ ε > 0 ∃ F ∈ B such that m(X ∖F ) < ε and fn → f uniformly on
F .

Proof Since fn → f a.e., we have that

∀ η > 0, A(n, η) ∶= ⋂
k≥n

[∣fk − f ∣ < η] ↑ X mod µ

as n → ∞. Thus, ∃ nm (m ∈ N) so that µ(A(nm,
1
m)c) < ε

2m and
F ∶= ⋂∞

m=1A(nm,
1
m) is as advertised. �



50 Measure Theory notes © Jon. Aaronson

5.9 Monotone convergence theorem (Beppo Levi)
Let (X,B,m) be a finite measure space. Suppose fn, f ∶ X → [0,∞)

are measurable. If fn ↑ f a.e., then
w

A

fndm→
w

A

fdm as n→∞ ∀ A ∈ B.

Proof

It suffices, given ε > 0, A ∈ B. 0 ≤ g ≤ f, g simple to show that
limn→∞

r
A
fndm >

r
A
gdm − ε.

Let K ∶= sup g. By Egorov’s theorem ∃ B ∈ B, B ⊂ A such that
fn → f uniformly on B and m(A ∖B) < ε

2K .
Choose n0 such that

fn(x) > g(x) −
ε

2m(B)
∀ n ≥ n0, x ∈ B,

then for n ≥ n0:
w

A

fndm ≥
w

B

fndm

>
w

B

gdm −
ε

2

=
w

A

gdm −
w

A∖B

gdm −
ε

2

>
w

A

gdm − ε.

�

5.10 Fatou’s lemma
For fn ≥ 0 measurable,

lim inf
n→∞

w

A

fndm ≥
w

A

lim inf
n→∞

fndm.

Proof Let gN(x) ∶= infk≥N fk(x), then gN ↑ lim infn→∞ fn, whence by
the monotone convergence theorem, ∀ N ≥ 1

w

A

fNdm ≥
w

A

gNdm Ð→
N→∞

w

A

lim inf
n→∞

fndm. �
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5.11 Proposition
Suppose f, g ∶ X → [0,∞) are measurable functions, and α,β ∈ R+.

Then
w

A

(αf + βg)dm = α
w

A

fdm + β
w

A

gdm.(1)

f ≤ g ⇒
w

A

fdm ≤
w

A

gdm.(2)

Proof Take limits of simple functions using the monotone convergence
theorem. �

5.12 Lemma
If f, g, h ∶X → R are integrable functions, g, h ≥ 0 and
f = g − h, then

w

A

fdm =
w

A

gdm −
w

A

hdm.

Proof Since
r
A
fdm ∶=

r
A
f+dm −

r
A
f−dm, it suffices to show that

if gi, hi ∶ X → [0,∞) (i = 1,2) are integrable functions, satisfying
g1 − h1 = g2 − h2, then

w

A

g1dm −
w

A

h1dm =
w

A

g2dm −
w

A

h2dm.

To see this, note that g1 + h2 = g2 + h1 whence
w

A

g1dm +
w

A

h2dm =
w

A

g2dm +
w

A

h1dm. 2�

5.13 Linearity and positivity theorem
Suppose f, g ∶ X → R are integrable functions, and α,β ∈ R. Then:

(αf + βg) is integrable, and
w

A

(αf + βg)dm = α
w

A

fdm + β
w

A

gdm.(1)

f ≤ g ⇒
w

A

fdm ≤
w

A

gdm.(2)

Proof Recall
r
f ∶=

r
f+ −

r
f−.

● For α > 0, αf± = (αf)± and (−f)± = −f∓ so (!)
r
(αf) = α

r
f .
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● To see
r
(f + g) =

r
f +
r
g note that f + g = (f+ + g+)− (f− + g−) and

use the lemma.

● To see (2), let f ≤ g, then g − f ≥ 0 whence

0 ≤
w
(g − f) =

w
g −
w
f. 2�

Uniform integrability

Let (X,B,m) be a finite measure space, and let

L(X,B,m) ∶= {f ∶X → R ∶ measurable}.

The family F ⊂ L(X,B,m) is called uniformly integrable (UI) if

∀ ε > 0 ∃ M > 0 ∋
w

[∣f ∣≥M]

∣f ∣dm < ε ∀ f ∈ F .

● If F ⊂ L(X,B,m) is uniformly integrable, then supf∈F ∥f∥1 <∞.

Proof Fix M > 0 such that
r
[∣f ∣≥M]

∣f ∣dm < 1 ∀ f ∈ F , then

supf∈F ∥f∥1 ≤Mm(X) + 1. �

● If F ⊂ L(X,B,m), p = 1 + η > 1 and supf∈F ∫ ∣f ∣p =∶ C <∞, then F
is UI.

Proof For f ∈ F ,
w

[∣f ∣≥k]

∣f ∣dm ≤
1

kη ∫
∣f ∣p ≤

C

kη
. �

● supf∈F ∥f∥1 <∞ ⇏ F UI.

Proof Let X = [0,1], m =Lebesgue, fn ∶= n1[0, 1
n
], then ∥fn∥1 = 1 but

supn
r
[fn≥k]

fn = 1 ∀ k > 0. �

5.14 Proposition (dominated ⇒ UI) If F ⊂ L(X,B,m) and ∣f ∣ ≤
g ∀ f ∈ F where g is integrable, then F is uniformly integrable.

Proof We have Gk ∶= g(1 − 1[g≥k]) ↑ g as k ↑ ∞. By Beppo-Levi’s
theorem ∫ Gk ↑ ∫ g. It follows that

r
[g≥k]

gdm Ð→
k→∞

0 . Thus

sup
f∈F

w

[∣f ∣≥k]

∣f ∣dm ≤
w

[g≥k]

gdm Ð→
k→∞

0. 2�

The converse implication is wrong. See exercise 5.2.
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The idea of uniform integrability is to obtain the best possible con-
vergence theorems.

5.15 Convergence theorem Suppose that fn ∶ X → R are measur-
able, fn → 0 a.e., and {fn ∶ n ≥ 1} is uniformly integrable, then

w

X

fndm→ 0 as n→∞.

Proof WLOG, fn ≥ 0.

w

X

fndm ≤
w

X

1[fn<M]fndm +
w

[fn≥M]

fndm

≤
w

X

1[fn<M]fndm + sup
n≥1

w

[fn≥M]

fndm.

Given ε > 0 choose using UI M =Mε such that

sup
n

w

[fn≥M]

fndm <
ε

2
.

By Egorov’s theorem, ∃ F ∈ B with m(X ∖ F ) < ε
2M so that fn → 0

uniformly on F . Fix Nε so that

fn(x) <
ε

4
∀ x ∈ F, n > Nε.

It follows that for n > Nε,
w

X

1[fn<M]fndm =
w

F

1[fn<M]fndm +
w

X∖F

1[fn<M]fndm

≤
ε

4
+Mm(X ∖ F )

<
ε

2
. 2�

5.16 Corollary: Dominated convergence theorem

Suppose fn, f, g ∶ X → R are measurable functions, and suppose that
fn → f a.e., ∣fn∣ ≤ g ∀ n ≥ 1, and

r
X
gdm <∞, then f is integrable, and

w

X

fndm→
w

X

fdm as n→∞.

Proof Exercise.
Exercise No5
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1. Tightness of probability on a polish space.
Let X be polish and let p ∈ P(X). Show that ∀ ε > 0, ∃ K compact,

such that p(K) > 1 − ε.

2. Uniformly integrable example.
Let (X,B,m) = ((0,1],B((0,1]),Lebesgue). For x, y ∈ X, define

ry(x) ∶= x⊕ y ∶= x + y mod 1.

(i) Show that for each a ∈ X, ra ∶ X → X is a measure preserving
transformation in the sense that m(raA) =m(A) ∀ A ∈ B(X).

(ii) Show that if g ∶ [0,1)→ R is integrable and a ∈X, then so is g ○ ra
with

r
X
g ○ radm =

r
X
gdm.

(iii) Set f(x) ∶= 1√
x
, F ∶= {f ○ ra ∶ a ∈ X}. Show that F is uniformly

integrable and supq∈X∩Q f ○ rq ≡∞.

3. Convergence in measure.
Let (X,B,m) be a probability space, and suppose that fk ∶ X →

R (k ≥ 1) are measurable functions.
Is it true that

(i) fn
m
ÐÐ→
n→∞

0 ⇒ fn
a.e.
ÐÐ→
n→∞

0 ?

(ii ) fn
m
ÐÐ→
n→∞

0 ⇒ 1
n ∑

n
k=1 fk

m
ÐÐ→
n→∞

0 ?

4. Baire space and the irrationals.
(a) Show (using continued fractions or otherwise) that NN is home-

omorphic with (0,1) ∖Q.
(b)☆ Show that in every perfect Polish space there is a dense Gδ

set which is homeomorphic with NN.

5. Analytic sets.
Show that countable unions and intersections of analytic sets are

analytic if nonempty.

6 Non Borel analytic sets.
Let X, Y be Polish. A projection is a map of form f ∶ X × Y →

X, f(x, y) = x. The projection of a set is its image under a projection.
This problem is about Lebesgue’s claim (1905) that the projection

of a Borel set is Borel, and its refutation by Suslin (1917).

6.a Projections of closed sets.
Show that a subset of a Polish space X is analytic ⇐⇒ it is the

projection of a closed subset of NN ×X.
Hint for ⇒) Consider the graph of T where T ∶ NN → X continuous

with T (NN) = A.
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Definition of Universality Let X be a set, and F ⊂ 2X . A
subset A of NN ×X is universal for F if

{Ay ∶ y ∈ NN} = F

where Ay ∶= {x ∈X ∶ (y, x) ∈ A}.

6.b Universal open and closed sets.
Suppose that X is a separable metric space. Let u ∶= ⋃k,n∈N[n]k ×Un

where [n]k ∶= {x ∈ NN ∶ xk = n} and {Un ∶ n ≥ 1} is a base for the open
sets in X. Show that u is an open subset of NN ×X which is universal
for the open subsets of X, and that there is a closed subset of NN ×X
which is universal for the closed subsets of X.

6.c Universal analytic sets.
Let X be Polish. Fix a closed subset F is of NN × (NN ×X) which is

universal for the closed subsets of NN ×X. Let G ∶= {(x, z) ∈ NN ×X ∶
∃ y ∈ NN, (x, y, z) ∈ F}. Show that G is an analytic subset of NN ×X
which is universal for the analytic subsets of X.
Hint Use ex. 6.a repeatedly.

6.d Non-Borel, analytic subset of NN.
Let

B ∶= {x ∈ NN ∶ (x,x) ∈ A}

where A ⊂ NN ×NN is universal for the collection of analytic subsets of
NN. Show that

(i) B is analytic;

(ii) ∄ u ∈ NN with Bc = Au;

(iii) Bc is not analytic;

(iv) B is not Borel.

6.e General non-Borel, analytic subsets. Show that in any uncount-
able polish space, there is a non-Borel, analytic subset.

6.f Lebesgue’s claim (1905). Refute it.

Week # 5
§6 Approximation by continuous functions

6.1 Frechet’s theorem Let X be a polish space and let p ∈ P(X) and
let f ∶X → R be measurable, then

∀ ∆ > 0 ∃ h ∈ CB(X) with p([∣f − h∣ ≥∆]) <∆.(ï)

Proof of (✠) for f = 1F where F is closed:
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Let ∆ > 0 and let d be a Polish metric on X and for n ≥ 1, define
hn ∶X → R by hn(x) ∶= (1 − nd(x,F )) ∨ 0. Evidently

hn(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∈ [0,1] ∀ x ∈X;

1 x ∈ F ;

0 d(x,F ) ≥ 1
n .

Thus [hn ≠ 1F ] = B(x, 1
n) ∖ F ↓ ∅ whence p([hn ≠ 1F ]) < ∆ for n large.

2�

Proof of (✠) for f = 1A where A ∈ B(X):
Let ∆ > 0, then ∃ F ⊂ A closed so that p(A ∖F ) < ∆

2 and by (✠) for

f = 1F , ∃ h ∈ CB(X) such that p([∣1F − h∣ ≥∆]) < ∆
2 . Thus

p([∣1A − h∣ ≥∆]) ≤ p([1F ≠ 1A]) + p([∣1F − h∣ ≥∆])

= p(A ∖ F ) + p([∣1F − h∣ ≥∆])

<∆. 2�

Proof of (✠) for s simple:
Suppose that ∣s∣ ≤M , and let ∆ > 0.
For each y ∈ s(X), ∃ hy ∈ CB(X) such that

p([∣1[s=y] − hy ∣ ≥
∆

M ∣s(X)∣
]) <

∆

∣s(X)∣
.

Define h ∶= ∑y∈s(X) yhy ∈ CB(X), then

p([∣s − h∣ ≥∆]) = p([∣ ∑
y∈s(X)

y(1[s=y] − hy)∣ ≥∆])

≤ ∑
y∈s(X)

p([∣1[s=y] − hy ∣ ≥
∆

M ∣s(X)∣
])

<∆. 2�

Proof of (✠) in general:
Let f ∶X → R be measurable and let ∆ > 0.

● b ∶ X → R bounded, measurable with p([f ≠ b]) < ∆
4 (∵ p([∣f ∣ ≥

n]) Ð→
n→∞

0);

● ∃ s ∶X → R simple with sup ∣b − s∣ < ∆
2 ;
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● ∃ h ∈ CB(X) such that p([∣s = h∣ ≥ ∆
2 ]) < ∆

4 . It follows that

p([∣h − f ∣ ≥∆]) ≤ p([f ≠ b]) + p([∣b − s∣ ≥
∆

2
]) + p([∣s = h∣ ≥

∆

2
])

<
∆

4
+ 0 +

∆

4
<∆. 2� (✠)

6.2 Corollary: Luzin’s theorem
Let X be a polish space and let p ∈ P(X) and let f ∶ X → R be

measurable, then ∀ ε > 0 ∃ F ⊂ X compact with p(F ) > 1 − ε and
g ∈ CB(X) so that f ∣F ≡ g∣F .

Proof
By Frechet’s theorem and proposition 5.7(iii), ∃ hn ∈ CB(X) such that hn →

f a.e. and by Egorov’s theorem ∃ F ∈ B such that m(X ∖ F ) < ε and
such that this convergence is uniform on X. By tightness, F may be
chosen to be compact. It follows that f is continuous on f . By Tietze’s
extension theorem ∃ g ∈ CB(X) such that g∣F ≡ f ∣F . 2�

§7 Product spaces and integration of measures

Let (X,B) and (Y,C) be measurable spaces. The product measurable
space is (X × Y,σ(B × C)) where B × C ∶= {B ×C ∶ B ∈ B, C ∈ C}.

The sections of A ⊂ X × Y are defined by Ax ∶= {y ∈ Y ∶ (x, y) ∈ A},
and Ay ∶= {x ∈X ∶ (x, y) ∈ A}. Evidently,

(Ac)x = (Ax)
c, (⋃

t∈Λ

A(t))x =⋃
t∈Λ

(A(t))x, (A ×B)x = {
B x ∈ A,

∅ x ∉ A.

The collection of σ-finite measures on the measurable space (X,B) is
denoted M(X,B) and the collection of probabilities is

P(X,B) ∶= {µ ∈M(X,B) ∶ µ(X) = 1}.

7.3 Theorem (integration of probabilities) Let (X,B) and
(Y,C) be measurable spaces and let µ ∈ P(X,B).

Suppose that ν ∶ X → P(Y,C) is measurable in the sense that x ↦
νx(A) is measurable ∀ A ∈ C, then there is a unique

m ∈ P(X × Y,σ(B × C))

such that

m(A ×B) =
w

A

νx(B)dµ(x) ∀ A ×B ∈ B × C.
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Proof
Since B × C is a semi-algebra, it suffices to show that m0 ∶ B × C →

[0,∞) defined by

m0(B ×C) =
w

B

νx(C)dµ(x) ∀ B ×C ∈ B × C

is additive and countable subadditive.
To see additivity, suppose that

B ×C =
N

⊍
k=1

Bk ×Ck where B, B1,B2, . . .BN ∈ B, C, C1,C2, . . .CN ∈ C,

then for x ∈X,

(B ×C)x =
N

⊍
k=1

(Bk ×Ck)x,

whence

1B(x)νx(C) = νx((B ×C)x) =
N

∑
k=1

νx((Bk ×Ck)x) =
N

∑
k=1

1Bk(x)νx(Ck),

and, integrating

m0(B ×C) =
N

∑
k=1

m0(Bk ×Ck).

To prove that m0 is countable subadditive, let

B, B1,B2, ⋅ ⋅ ⋅ ∈ B, C, C1,C2, ⋅ ⋅ ⋅ ∈ B

and

B ×C ⊂
∞

⋃
j=1

Bj ×Cj,

then

∀ x ∈X, (B ×C)x ⊂
∞

⋃
j=1

(Bj ×Cj)x;

∴ 1B(x)νx(C) = νx((B ×C)x) ≤
∞

∑
j=1

νx((Bj ×Cj)x) =
∞

∑
j=1

1Bj(x)νx(Cj),
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and

m0(B ×C) =
w

B

νx(C)µ(x)

=
w

X

(1B(x)νx(C))dµ(x)

≤
w

X

(
∞

∑
j=1

1Bj(x)νx(Cj))dµ(x)

=
∞

∑
j=1

m0(Bj ×Cj).

The measure m exists by proposition 3.2 and is unique by proposition
2.3. �

7.4 Corollary (integration of measures) Let (X,B) and (Y,C)
be measurable spaces.

Suppose that µ ∈ M(X,B) and that ν ∶ X →M(Y,C) is measurable
and define m0 ∶ B × C → [0,∞] by m0(A ×B) =

r
A
νx(A)dµ(x).

If ∃ An ∈ B, An ↑ X and Bn ∈ C, Cn ↑ Y such that m(An × Bn) <
∞ ∀ n ≥ 1, then there is a unique m ∈ M(X × Y,σ(B × C)) such that
m∣B×C ≡m0.

In case νx ≡ ν is constant, m is called product measure and denoted
m = µ × ν.

Remark. Suppose that (X,B, µ) and (Y,C, ν) are Rd, Rd′ equipped
with Lebesgue measure, then µ × ν is Lebesgue measure on Rd+d′

Disintegration of sets, the Fubini-Tonelli theorems and
generalizations

Let (X,B) and (Y,C) be measurable spaces.
The sections of A ⊂X × Y are

Au ∶= {y ∈ Y ∶ (u, y) ∈ A} & Av ∶= {x ∈X ∶ (x, v) ∈ A} (u ∈X, v ∈ Y ).

Theorem 7.5 Let µ ∈M(X,B) and let ν ∶ X →M(Y,C) be measur-
able, so that ∃ An ∈ B, An ↑X and Bn ∈ C, Cn ↑ Y with

w

An

νx(Bn)dµ(x) <∞ ∀ n.



60 Measure Theory notes © Jon. Aaronson

Let m ∈M(X × Y,σ(B × C)) such that

m(A ×B) =
w

A

νx(B)dµ(x) ∀ A ×B ∈ B × C.

If A ∈ σ(B × C), then (i) Ax ∈ C ∀ x ∈ X, (ii) the function
x↦ νx(Ax) is B-measurable, and (iii) m(A) =

r
X
νx(Ax)dµ(x).

Proof in case m(X × Y ) <∞
The collectionD ⊂ σ(B×C) of sets satisfying (i), (ii), and (iii) contains

the algebra A generated by B × C, and is a monotone class. By the
monotone class theorem, D ⊃ σ(B × C). �

Theorem 7.6
If h ∶X ×Y → R is σ(B × C)-measurable, then y ↦ hx(y) ∶= h(x, y)

is C-measurable ∀ x ∈X, and

h ≥ 0 ⇒ x↦
w

Y

hxdνx is measurable on X,(i)

&
w

X×Y

hdm =
w

X

⎛

⎝

w

Y

hxdνx
⎞

⎠
dµ(x).

h ∈ L1(m) ⇒ hx ∈ L
1(νx) for a.e. x ∈X,(ii)

x↦
w

Y

hxdνx is integrable on X,

&
w

X×Y

hdm =
w

X

⎛

⎝

w

Y

hxdνx
⎞

⎠
dµ(x).

w

X

⎛

⎝

w

Y

∣hx∣dνx
⎞

⎠
dµ(x) <∞ ⇒ h ∈ L1(m).(iii)

Here, L1(m) denotes the collection of m-integrable functions.

Proof In case h is an indicator function: h = 1A, A ∈ σ(B × C), this
theorem follows from the previous theorem. Assume that h ∶X×Y → R
is a simple function, h = ∑

N
k=1 ak1Ak Ak ∈ σ(B × C), then for x ∈ X,

hx = ∑
N
k=1 ak1(Ak)x , (Ak)x ∈ C, whence hx is C-measurable. Moreover
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x↦
r
Y
hxdνx = ∑

N
k=1 akνx((Ak)x) is B-measurable, and

w

X

⎛

⎝

w

Y

hxdνx
⎞

⎠
dµ(x) =

w

X

(
N

∑
k=1

akνx((Ak)x))dµ(x)

=
N

∑
k=1

ak
w

X

νx((Ak)x)dµ(x) =
N

∑
k=1

akm(Ak) =
w

X×Y

hdm.

If h ∶ X × Y → R is σ(B × C)-measurable, then h is a pointwise limit
of σ(B × C)-measurable simple functions, whence, ∀ x ∈ X, hx is a
pointwise limit of C-measurable simple functions, and hence is itself
C-measurable.

If h ≥ 0 then h is a pointwise limit of an increasing sequence hn
of non-negative, σ(B × C)-measurable simple functions. By Lebesgue’s
monotone convergence theorem

w

Y

(hn)xdνx →
w

Y

hxdνx as n→∞ ∀ x ∈X

whence x ↦
r
Y
hxdνx is B-measurable on X. To complete the proof of

(i), use monotone convergence again to show

w

X

⎛

⎝

w

Y

hxdνx
⎞

⎠
dµ(x) ←

w

X

⎛

⎝

w

Y

(hn)xdνx
⎞

⎠
dµ(x)

=
w

X×Y

hndm →
w

X×Y

hdm as n→∞.

Statement (iii) follows immediately from (i). To deduce (ii), note that
by (i),

w

X

⎛

⎝

w

Y

(hx)±dνx
⎞

⎠
dµ(x) =

w

X×Y

h±dm

where f± ∶= max{±f,0}. �

7.7 Corollary (Fubini-Tonelli theorem)
If h ∈ L1(µ × ν), then

w

X

⎛

⎝

w

Y

hxdν
⎞

⎠
dµ(x) =

w

Y

⎛

⎝

w

X

hydµ
⎞

⎠
dν(y) <∞

where hy(x) = h(x, y).

Proof Apply 7.6 in case νx ≡ ν. �
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Convolutions. Let f, g ∶ R → R be measurable. For every x ∈ R,
the function y ↦ f(x − y)g(y) is measurable. In case this function is
integrable, or non-negative, we can define the convolution of f and g
at x by

f ∗ g(x) =
w

R

f(x − y)g(y)dy.

Let mRd denote Lebesgue measure on Rd.
Note that mRd =mR ⊗ ⋅ ⋅ ⋅ ⊗mR

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d-times

.

Proposition 7.8 If f, g ∈ L1(mRd), then the function h ∶ R2d → R
defined by h(x, y) ∶= f(x − y)g(y) is integrable on R2d, and f ∗ g ∈
L1(mRd).

Proof You establish the measurability of h in exercise 6.2.
For y ∈ R, ∥hy∥1 = ∣g(y)∣∥f∥1, whence, by Fubini’s theorem, h ∈
L1(mR2d).

Also by Fubini’s theorem, we obtain that the convolution

f ∗ g(x) ∶=
w

Rd
hx(y)dy

is defined at a.e. x ∈ Rd, and is integrable:

∥f ∗ g∥1 ≤ ∥h∥1 =
w

Rd
∥hy∥1dy = ∥f∥1∥g∥1.

�

Sierpinski’s counterexample sets

These show that for A ⊂ R2, the Borel measurability of the sections
Ax, Ax ⊂ R (x ∈ R) does not imply Lebesgue measurability of A.

7.9 Sierpinski 1919
Iterated integrals exist and differ.

Let m be Lebesgue measure on I ∶= [0,1]. Assuming the continuum
hypothesis, ∃ M ⊂ I × I such that for every x, y ∈ I,

Mx = {t ∶ (x, t) ∈M}, My = {t ∶ (t, y) ∈M} ∈ B(I) ∶= {Borel sets}

but such that m(My) = 0, m(Mx) = 1.

It follows that M ∉M(I × I) ∶= {Lebesgue sets}.
Proof
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Assuming the continuum hypothesis, there is an order ≺ on I = [0,1]
such that {x ∈ I ∶ x ≺ y} is countable for every y ∈ I. Set M ∶= {(x, y) ∈
I2 ∶ x ≺ y}. Evidently My = {t ∶ (t, y) ∈ M} ∈ B(I) has zero measure
being countable and Mx = {t ∶ (x, t) ∈M} ∈ B(I) has full measure being
co-countable. 2�

7.10 Sierpinski 1920
Section measures zero but set not measurable.

∃ E ⊂ R2 such that

(a) #E ∩L ≤ 2 ∀ L line;

(b) E ∩ F ≠ ∅ ∀ F ⊂ R2 closed, with positive measure.

Note that (b) entails m(E] ∩ A) = m(A) ∀ A ∈ B(R2) where m is
Lebesgue measure on R2 and m(F ) ∶= inf {m(U) ∶ F ⊂ U open}.

Proof We first establish the

Lemma 7.11 Suppose that A ∈ B(R2), m(A) > 0 and let L0 be a line
in R2, then ∃ a line L ∥ L0 with ∣L ∩A∣ = c.

Proof of the Lemma :

Let Tθ = (
cos θ sin θ

− sin θ cos θ
) ∶ R2 → R2 be a rotation in R2 about 0 so that

TθL0 is a vertical line. By exercise 6.1, m(TθA) > 0. By the Fubini-
Tonelli theorem, ∃ a vertical line V with mV (V ∩ TθA) > 0 (where mV is

linear measure on V ), whence ∣V ∩ TθA∣ = c. It follows that L ∶= T−θV ∥ L0

with ∣L ∩A∣ = c. 2�

Proof of 7.10 :
Let E = {closed subsets of positive measure in R2}, then

E ≅ R2 ≅ c.
As in Bernstein’s theorem, we construct the set by transfinite recur-

sion. Write E = {Fα ∶ α ∈ Ωc}.
We claim that

¶ ∀ α ∈ Ωc ∃ fα ∶ (R2)Ω(α) → R2 such that ∀ u ∈ (R2)Ω(α)

(i) fα(u) ∈ Fα;

(ii) fα(u) ∉ L(u(β), u(γ)) ∶= {tu(β)+(1−t)u(γ) ∶ t ∈ R} ∀ β, γ ∈ Ω(α).

Proof of ¶:

● The cardinality of the collection of directions of the lines

{L(u(β), u(γ)) ∶ β, γ ∈ Ω(α)} < c

whence, using the lemma, ∃ a line L such that
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● L ∦ L(u(β), u(γ)) ∀ β, γ ∈ Ω(α);

● ∣L ∩ Fα∣ = c.
It follows that

∣ ⋃
β, γ∈Ω(α)

L ∩ Fα ∩L(u(β), u(γ))∣ < c,

whence

∃ fα(u) ∈ L ∩ Fθ ∖ ⋃
β, γ∈Ω(α)

L ∩ Fα ∩L(u(β), u(γ)). 2� ¶

By transfinite recursion ∃ q ∶ Ωc → R2 such that q(α) = fα(q∣Ω(α)).
We claim that E ∶= q(Ωc) is as required. Evidently q(α) ∈ Fα ∀ α ∈ Ωc

and so E satisfies (b).

● To check (b) suppose otherwise that α, β, γ ∈ Ωc are distinct, and
that L is a line with q(α), q(β), q(γ) ∈ L. WLOG, α ≺ β ≺ γ and we
have q(γ) ∈ L(q(α), q(β)). However, by construction,

q(γ) = fγ(q∣Ω(γ)) ∉ L(q(α), q(β)). 2� ¶

Such a set E ⊂ R2 is called a Sierpinski set. By regularity, a Sierpinski
set intersects with every measurable set of positive measure.

¶ To see that a Sierpinski set E is not Lebesgue measurable, suppose
otherwise, then by Fubini mR2(E) = 0 whence mR2(Ec) > 0 and E∩Ec ≠
∅. 4

Exercise (No5), 26/4/2017

1. Baire’s theorem. 7 Suppose that (X,d) is a complete metric
space.

(i) Prove that if Un ⊂ X is open and dense in X ∀ n ≥ 1, then G ∶=

⋂n≥1Un is dense in X.

(ii) Now suppose that X = ⋃∞
n=1Fn where each Fn is closed. Show

that ∃ n ≥ 1 so that F o
n ≠ ∅.

(iii) Let fn ∈ CB(X) and suppose that fn(x) ÐÐ→
n→∞

f(x) ∀ x ∈ R.

Show ∃ x ∈X so that f is continuous at x.
Hint [ωf < ε] is open and dense ∀ ε > 0 where ωf(x) ∶= limr→0+ diam f([x − r, x + r]).

7Revision
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2. Baire classes.
Let X be a polish space. The collection of Baire class 0 functions is

B0 ∶= CB(X).
For α ∈ Ω ∶= {countable ordinals}, define the collection of Baire

class α functions

Bα ∶= {f ∶X → R ∶ ∃ fn ∈ Bβn , βn ∈ Ω, βn < α, fn(x) Ð→n→∞
f(x) ∀ x ∈X}

B1 = {limits of bounded continuous functions},
i.e.

B2 ∶= {limits of limits of bounded continuous functions},

⋮

Show that

BΩ ∶= ⋃
α∈Ω

Bα = {Borel measurable functions};(i)

Hint: {A ∈ B(X) ∶ 1A ∈ BΩ} is a monotone class.

(ii) if m ∈ P(X) and f ∶ X → R is measurable then ∃ g ∈ B2 such that

f = g m - a.e..

Let (X,B,m) = ([0,1],Borel,Leb). The rest of this exercise shows
∃ a measurable function f ∶X → R for which ∄ g ∈ B1, f = g m - a.e..

Let (B∼, d) be the measure algebra of (X,B,m) as in exercise 3.2.

(iv) Show that

d ∶= {a ∈ B∼ ∶ m(A∩(s, t)) > 0 & m(Ac∩(s, t)) > 0 ∀A ∈ a, s, t ∈ Q, s < t}

is dense in B∼.
Hint Use Baire’s theorem.

(v) Show that if f = 1A, A ∈ a ∈ d, then ∄ g ∈ B1, f = g m - a.e..

3. Uniform integrability theorem.
Let (X,B,m) be a finite measure space. Show that the family F ⊂

L(X,B,m) is UI ⇔

∃ a ∶ R+ → R+ ∋
a(x)

x
↑∞ as x ↑∞, sup

f∈F

w

X

a(∣f ∣)dm <∞.
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4. Linear change of variable.
Let

G ∶= {nonsingular linear transformations of Rd}

and let m ∶ B(Rd)→ [0,∞] be Lebesgue measure.
(i) Show that if T ∈ G then m ○ T ∶ B(Rd) → [0,∞] is a translation

invariant, locally finite measure which is homogeneous in the sense that
m ○ T (aB) = adm ○ T (B) ∀ a > 0, B ∈ B(Rd).

(ii) Show that ∃ a multiplicative homomorphism ∆ ∶ G → (0,∞) so
that m ○ T =∆(T )m.

(iii) Show that ∆(T ) = ∣detT ∣ for T ∈ G orthogonal or diagonal.
Hint Choose suitable A ∈ B.

Fix T ∈ G.
(iv) Show that for T tT = M tM where M =  LU with U orthogonal

&  L diagonal; and that ∣detT ∣ =∆(M).
(iii) Show that ∆(T ) =∆(M).

Hint Choose suitable A ∈ B.

5. Convolutions.
Let m denote Lebesgue measure on Rd.

(i) Show that if f, g ∶ Rd → R are Lebesgue measurable, then so is the
function h ∶ Rd ×Rd → R defined by h(x, y) ∶= f(x − y)g(y).

(ii) Prove that if f, g ∶ Rd → [0,∞] are measurable, then f ∗ g = g ∗ f.

(iii) Show, using Hölder’s inequality (or otherwise), that if f ∈ L1(Rd),
and g ∈ Lp(Rd) where 1 < p < ∞, then ∥f ∗ g∥p ≤ ∥f∥1∥g∥p. When is
there equality?

(iv) Suppose that h ∶ Rd → R+ is measurable, and suppose that
r
Rd h(x)dx =

1. Define, for t > 0, ht ∶ Rd → R+ by ht(x) = 1
th(

x
t ). Prove that for

1 ≤ p <∞,
∥f ∗ ht − f∥pÐ→

t→0
0 ∀ f ∈ Lp(Rd).

6. Fourier transform on L1(Rd). For f ∈ L1(Rd), define the Fourier
transform of f by

f̂(t) ∶=
w

Rd
f(x)e−i⟨x,t⟩dx (t ∈ Rd)

where ⟨x, t⟩ = ⟨(x1, . . . , xd), (t1, . . . , td)⟩ ∶= ∑
d
k=1 xktk.

a) Prove that f̂ ∶ Rd → C is bounded, and uniformly continuous
∀ f ∈ L1(Rd),

b) Show that f̂ ∗ g ≡ f̂ ĝ ∀ f, g ∈ L1(Rd).

c) Show that if f ∶ Rd → R is C1 and [f ≠ 0] is compact, then

(̂∇f)k(t) = itkf̂(t) where (∇f)k(x) ∶=
∂f
∂xk

(x).
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d) Prove the Riemann-Lebesgue Lemma, that if f ∈ L1(Rd), then

f̂(t)→ 0 as t→∞.

7. Measurability and Fubini.

(i) Let (X,B, µ) and (Y,C, ν) be finite, non-atomic, Polish, probability
spaces and let m = µ × ν ∶ F ∶= σ(B × C)→ [0,1] be product measure.

Show that ∃ E ⊂ X × Y so that ν(Ex) = 0 = µ(Ey) ∀ x ∈ X, y ∈ Y
and so that E ∉ Fm.
Hint: Isomorphism.

(ii) Show that there is a continuum of disjoint Sierpinski sets in R2.

Week # 6
§8 Signed measures

A signed measure on the measurable space (X,B) is a σ-additive set
function µ ∶ B → R. For example, if µ± ∶ B → [0,∞) are measures, then
µ = µ+ − µ− is a signed measure.

The total variation of a signed measure is a set function m = mµ =
∣µ∣ ∶ B → [0,∞] defined by

m(A) = sup{
∞

∑
n=1

∣µ(An)∣ ∶ An ∈ B disjoint, A =
∞

⊍
n=1

An}.

8.1 Theorem (finite total variation) If µ ∶ B → R is a signed
measure, then m ∶ B → [0,∞) is a finite measure.

Proof We must show that: (i) m is σ-additive, and that (ii) m(X) <
∞.

To prove (i), let A = ⊍∞
n=1An where A, An ∈ B and An (n ≥ 1) are

disjoint. Suppose tn < m(An)(≤ ∞), then, ∀ n ≥ 1, An = ⊍∞
k=1An,k

where An,k ∈ B, An,k (k ≥ 1) are disjoint, and ∑
∞
k=1 ∣µ(An,k)∣ > tn. It

follows that

m(A) ≥
∞

∑
n,k=1

∣µ(An,k)∣ >
∞

∑
n=1

tn, ∴ m(A) ≥
∞

∑
n=1

m(An).

To obtain the reverse inequality, suppose A = ⊍∞
n=1En where En ∈ B

and En (n ≥ 1) are disjoint. Then

∞

∑
n=1

∣µ(En)∣ ≤
∞

∑
n,k=1

∣µ(En ∩Ak)∣ ≤
∞

∑
n=1

m(An), ∴ m(A) ≤
∞

∑
n=1

m(An).

To establish (ii), we use the
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Lemma 8.2 If E ∈ B, m(E) =∞, then E = A∪B where A,B ∈ B are
disjoint, m(B) =∞ and ∣µ(A)∣, ∣µ(B)∣ > 1.

Using the lemma, if m(X) = ∞, then there are disjoint sets An ∈
B (n ≥ 1) such that ∣µ(An)∣ > 1 ∀ n ≥ 1, contradicting the countable
additivity of µ. �

Proof of lemma 8.2 Let t = 2(1 + ∣µ(E)∣), then ∃ En ∈ B (n ≥ 1)
disjoint sets, such that E = ⋃∞

n=1En and ∑
∞
n=1 ∣µ(En)∣ > t. It follows

that ∃ S ⊂ IN ∋ ∣∑
∞
n∈S µ(En)∣ >

t
2 . Set A = ⋃n∈S En and B = E ∖ A,

then

∣µ(A)∣ > 1 + ∣µ(E)∣, & ∣µ(B)∣ ≥ ∣µ(A)∣ − ∣µ(E)∣ > 1.

By additivity of m, one of m(A), m(B) is infinite. �

8.3 Corollary (σ-additive Jordan decomposition) If µ ∶ B → R
is a signed measure, then µ = µ+ − µ− where µ± ∶ B → [0,∞) are finite
measures.

Proof µ± ∶=
m±µ

2 .

Hahn decomposition of signed measures.
Let X be a set, let A ⊂ 2X be an algebra and let µ ∶ A → R be

additive. Define m =mµ = ∣µ∣ ∶ A→ [0,∞] by

m(A) = sup{
N

∑
n=1

∣µ(An)∣ ∶ A1,A2, . . . ,An ∈ B disjoint, A ⊃
N

⊍
n=1

An}.

As on page 9, m is additive, and, in case ∥µ∥ ∶= ∣µ∣(X) < ∞, we have
the Jordan decomposition:

µ = µ+ − µ− where µ± =
m ± µ

2
∶ A→ [0,∞).

In case A is a σ-algebra and µ is a signed measure, then ∣µ∣(X) <∞
and ∣µ∣ is σ-additive.

8.4 Theorem (Hahn decomposition)
There are disjoint sets A± ∈ B such that X = A+ ∪A−, and

µ±(B) = ∣µ∣(B ∩A±) = ±µ(B ∩A±) ∀ B ∈ B.
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Positive sets.
Let µ ∶ B → R be a signed measure on the measurable space (X,B).

Call A ∈ B a positive set for µ if µ(B) ≥ 0 ∀ B ∈ B, B ⊂ A. Let

Pµ ∶= {positive sets for µ }.

8.5 Proposition

(1) Pµ is a heriditary σ-ring.
(2) µ(A) = ∣µ∣(A) ∀ A ∈ Pµ.
(3) If A ∈ B, µ(A) > 0, then ∃ P ⊂ A, µ(P ) > 0, P ∈ Pµ.

Proof of (3) by exhaustion
Let ε1 ∶= sup{(−µ(B)) ∨ 0 ∶ B ∈ B, B ⊂ A} and choose B1 ∈ B, B1 ⊂

A, −µ(B1) ≥
ε1
2 . Note that A ∈ Pµ iff ε1 = 0 in which case B1 = ∅ is a

possible choice.
Let ε2 ∶= sup{(−µ(B)) ∨ 0 ∶ B ∈ B, B ⊂ A ∖ B1} and choose B2 ∈

B, B2 ⊂ A ∖B1, −µ(B2) ≥
ε2
2 .

Continue to obtain:
● ε1 ≥ ε2 ≥ . . . ≥ 0,
● disjoint sets Bn ∈ B (n ≥ 1) so that

− µ(Bn) ∨ 0 ≥
εn
2
∀ n ≥ 1 &

εn+1 = sup{(−µ(B)) ∨ 0 ∶ B ∈ B, B ⊂ A ∖
n

⊍
j=1

Bj}.

Let B ∶= ⊍n≥1Bn, then

µ(B) =∑
n≥1

µ(Bn) ≤ 0, whence ∑
n≥1

εn <∞.

Set P ∶= A ∖B, then

µ(P ) = µ(A) − µ(B) > 0.

To see that P ∈ Pµ, suppose not; then

∃ ε > 0, B ∈ B, B ⊂ P, −µ(B) > ε.

However, B ⊂ A ∖⊍nj=1Bj ∀n ≥ 1 whence −µ(B) ≤ εn → 0.4

Proof of Hahn decomposition
We show that there are disjoint sets A±(µ) ∈ B such that X = A+⊍A−,

and
∣µ∣(B ∩A±(µ)) = ±µ(B ∩A±(µ)) ∀ B ∈ B.

Let A± = A±(µ) ∈ B be the measure theoretic union of P±µ, then by
(1) in the lemma, A±(µ) ∈ P±µ.

It remains to show that ∣µ∣(X ∖ (A+ ⊍A−)) = 0.
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If not ∃ G ∈ B, G ⊂X ∖A+ ⊍A−, ε = ±1 with εµ(G) > 0.
By (3) in the proposition ∃ P ⊂ G, ∣µ∣(P ) > 0, P ∈ Pεµ. But then

P
∣µ∣
⊂ Aε and

0 < ∣µ∣(P ) = ∣µ∣(P∩(A+⊍A−))+∣µ∣(P∖A+⊍A−) = ∣µ∣(P∩(A+⊍A−)) = 0. 4

Absolute continuity and singularity

Let (X,B) be a measurable space, and let µ, ν ∶ B → [0,∞) be
measures. The measure ν is absolutely continuous with respect to µ
(ν ≪ µ) if A ∈ B, µ(A) = 0 ⇒ ν(A) = 0. The measures µ and ν are
singular (µ ⊥ ν) if ∃ A ∈ B ∋ µ(A) = 0, & ν(Ac) = 0.

8.6 Theorem (Radon-Nikodym for finite measures) Let µ, m
be finite measures on the measurable space (X,B).

If µ≪m then ∃ f ∈ L1(m), f ≥ 0 such that

µ(A) =
w

A

fdm ∀ A ∈ B.(∗)

The function f (determined up to equality a.e.) is known as the
Radon-Nikodym derivative and denoted f = dµ

dm .

Proof
For q ∈ Q0 ∶= Q ∩ [0,∞), set Bq ∶= A−(µ − qm) where {Aε(µ − qm) ∶

ε = ±} is the Hahn decomposition of µ − qm. Note that B0 = ∅.
We have

Ba ∖Bb = A−(µ − am) ∩A+(µ − bm) ∈ Pam−µ ∩Pµ−bm ∀ a, b ∈ Q0.

For b > a,

0 ≤ (µ − bm)(Ba ∖Bb) ≤ (µ − am)(Ba ∖Bb) ≤ 0

whence

m(Ba ∖Bb) = 0.

Define the sets {Cq ∶ a ∈ Q0} ⊂ B by

Cq ∶= Bq ∖ ⋃
t∈Q0, t>q

Bt;

then

m(Bq∆Cq) = 0 ∀ q ∈ Q0 & Ca ⊆ Cb ∀ a, b ∈ Q0, a < b.

Define f ∶X → R by

f(x) ∶= inf {q ∈ Q0 ∶ x ∈ Cq}.

It follows that [f ≤ q] = Cq whence f is measurable.
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Moreover, by the above if a < b ∈ Q0, then

[a < f ≤ b] = Cb ∖Ca ∈ Pam−µ ∩Pµ−bm,

whence for Z ∈ B,

am(Z ∩ [a < f ≤ b]) ≤ µ(Z ∩ [a < f ≤ b]) ≤ bm(Z ∩ [a < f ≤ b])

with the consequence that (!)

µ(Z) = ∫
Z
fdm ∀ Z ∈ B. 2�

8.7 Lebesgue Decomposition Theorem
Let λ,µ ∶ B → [0,∞) be finite measures, then ∃ and finite measures

λac, λs ∶ B → [0,∞), λac ≪ µ & λs ⊥ µ such that

λ(A) =
w

A

gdµ + λs(A) ∀ A ∈ B.

Proof
Let ρ = λ + µ. By the Radon-Nikodym theorem ∃ h ∈ L1(ρ) so that

λ(A) =
w

A

hdρ ∀ A ∈ B,

whence w

A

hdµ =
w

A

(1 − h)dλ ∀ A ∈ B.(∗)

It follows that:

● h ≥ 0 ρ−a.e. (else 0 ≤ λ([h < 0]) = r
[h<0] hdρ < 0);

● h ≤ 1 ρ−a.e. (else ρ([h > 1]) ≥ λ([h > 1]) = r
[h>1] hdρ > ρ([h > 1])).

Now define λac, λs ∶ B → [0,∞) by

λac(A) ∶=
w

A

gdµ where g ∶=
h

1 − h
1[h<1]; & λs(A) = λ(A ∩ [h = 1]).

Evidently λac ≪ µ and λac + λs = λ.

Moreover, λs ⊥ µ because λs([h ≠ 1]) = 0 and

µ([h = 1]) =
w

X

h1[h=1]dµ =
w

X

1[h=1](1 − h)dλ = 0. 2�

8.8 Corollary (R-N for signed measures)
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Let µ be a signed measure, and m be a measure on the measurable
space (X,B).

If µ≪m then ∃ f ∈ L1(m) such that

µ(A) =
w

A

fdm ∀ A ∈ B.

8.9 Corollary (R-N for infinite measures)
Let µ, m be σ-finite measures on the measurable space (X,B).

If µ≪m then ∃ f ∶X → [0,∞), B-measurable, such that

µ(A) =
w

A

fdm ∀ A ∈ B.

§9 Conditional Expectations, Conditional Probabilities
and disintegrations

The following is the converse to the theorem 7.3 on “integration
of probabilities” for Polish spaces.

9.1 Theorem (disintegration of probabilities)
Suppose that X, Y are Polish spaces and that m ∈ P(X × Y ).

Let µ ∈ P(X) be the marginal of m defined by µ(A) = m(A × Y ),
then there is a set X0 ∈ B(X), X0 = X mod µ, and a measurable map
x↦ νy (X0 → P(Y )) such that

m(A ×B) =
w

A

νx(B)dµ(x) ∀ A ∈ B(X), B ∈ B(Y ).

Proof Let A ⊂ B(Y ) be a countable, generating algebra with the
FSCP.

For B ∈ B(Y ), define the measure νB ∶ B(X) → [0,∞) by νB(A) ∶=
m(A × B), then νB ≪ µ ≡ νΩ and so by the RN theorem, ∃ a B(X)-
measurable function x↦ vx(B) = dνB

dµ (x) so that

w

A

vx(B)dµ(x) =m(A ×B) ∀ A ∈ B(X)

whence vx(Y ) = 1 for µ-a.e. x ∈X.
Also, if A1, ... ∈ B(Y ) are disjoint, then

ux(
∞

⊍
k=1

Ak) =
∞

∑
k=1

ux(Ak),

for µ-a.e. x ∈X.
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Since A is countable, there is a set X0 ∈ B(X), X0 = X mod µ such
that

ux(
n

⊍
k=1

Ak) =
n

∑
k=1

ux(Ak) ∀x ∈X0

whenever A1, ...,An ∈ A are disjoint.
Since A has the FSCP,

∃ {νx ∶ x ∈X0} ⊂ P(Y )

such that
νx(A) = ux(A) ∀ A ∈ A, x ∈X0.

In order to complete the proof of the theorem, we note that the collec-
tions

D ∶= {A ∈ B(Y ) ∶ x↦ νx(A) measurable},

and

E ∶= {B ∈ B(Y ) ∶
w

A

νx(B)dµ(x) =m(A ×B) ∀ A ∈ B(X)}

are both monotone classes containing A. 2�

9.2 Theorem (Existence of conditional expectations) Suppose
that (X,B,m) is a probability space and that C ⊂ B is a sub-σ-algebra,
then for every f ∈ L1(B), ∃! g ∈ L1(C) such that

w

C

fdm =
w

C

gdm ∀ C ∈ C.

This is proved using the Radon-Nikodym theorem. The function g ∈
L1(C) is clearly unique mod m. It is called the conditional expectation
of f with respect to C, and denoted

g = E(f ∣C).

9.3 Proposition (Properties of conditional expectations)
a) If An ∈ B (n ≥ 1) are disjoint, and A = ⋃∞

n=1An, then

E(1A∣C) =
∞

∑
n=1

E(1An ∣C) a.e.

b) If C = σ(α) where α ⊂ B is a countable partition of X, then

E(f ∣C) = ∑
A∈α

1AE(f ∣A) a.e. ∀ f ∶X → [0,∞)

measurable, where E(f ∣A) ∶= 1
m(A)

r
A
fdfm.

c) If f ∶X → R is bounded, B-measurable, and g ∶X → R is bounded,
C-measurable, then E(fg∣C) = gE(f ∣C).

d) If C1 ⊂ C2 then E(E(f ∣C1)∣C2) = E(E(f ∣C2)∣C1) = E(f ∣C1).



74 Measure Theory notes © Jon. Aaronson

e) ∥E(f ∣C)∥p ≤ ∥f∥p ∀ 1 ≤ p ≤∞.
f)
r
X
(f −E(f ∣C))gdm = 0 ∀ f ∈ L2(X), g ∈ L2(C).

Remark
E(⋅∣C) is the orthogonal projection P ∶ L2(B)→ L2(C), whence

∥f −E(f ∣C)∥2 ≤ ∥f − g∥2 ∀ f ∈ L2(B), g ∈ L2(C)

with equality iff g = E(f ∣C).

Regular conditional probabilities.
Suppose that (X,B,m) is a probability space and that C ⊂ B is a

sub-σ-algebra.
A regular conditional probability on (X,B,m) given C is a function

p ∶X0 × B → [0,1] where X0 ∈ C, X0 =X mod m, such that

(a) for every x ∈X0, mx ∈ P(X,B) where mx(A) ∶= p(x,A);

(b) for every A ∈ B, the R-valued function x ↦ mx(A) = p(x,A) is
C-measurable, and

(c) ∫Cmx(A)dm(x) =m(A∩C) ∀ A ∈ B, C ∈ C (i.e. p(⋅,A) = E(1A∣C)
a.e.).

9.4 Theorem (Existence of regular, conditional probabilities)
Suppose that (X,B,m) is a Polish probability space and that C ⊂ B

is a sub-σ-algebra, then there is a regular conditional probability on
(X,B,m) given C.

Proof
By Kuratowski’s isomorphism theorem, we may assume (!) that

X = Ω.

Let A denote the algebra of finite unions of cylinder sets in X, then
each set in A is both open, and compact.

Consequently any non-negative, finitely additive set function µ ∶ A→
R+ satisfies Caratheodory’s condition (*) (as on p.11) and extends to
a measure ν on (X,σ(A)) defined by

ν(E) = inf{
∞

∑
n=1

µ(An) ∶
∞

⋃
n=1

An ⊇ E, An ∈ A}.

Choose C-measurable functions

ux(A) = E(1A∣C)(x) a.e. (A ∈ B),

then w

C

ux(A)dm(x) =m(A ∩C) ∀ A ∈ B, C ∈ C.
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Also, if A1, ... ∈ B are disjoint, then

ux(
∞

⊍
k=1

Ak) =
∞

∑
k=1

ux(Ak),

for m-a.e. x ∈ X. Since A is countable, there is a set X0 ∈ C, X0 = X
mod m such that

ux(
n

⋃
k=1

Ak) =
n

∑
k=1

ux(Ak) ∀x ∈X0

whenever A1, ...,An ∈ A are disjoint.
It follows from the remarks above that there are measures

{mx ∶ x ∈X0}

on (X,B) such that

mx(A) = ux(A) ∀ A ∈ A, x ∈X0.

In order to complete the proof of the theorem, we note that the collec-
tions

D ∶= {A ∈ B ∶ x↦mx(A) C −measurable},

and

E ∶= {A ∈ B ∶
w

C

mx(A)dm(x) =m(A ∩C) ∀ C ∈ C}

are both monotone classes containing A. �

Exercise No6

1. Measure space isomorphism.
Measure spaces (X,B, p) and (Y,C, q) are isomorphic if there are sets

X ′ ∈ B, Y ′ ∈ C such that p(X ∖X ′) = q(Y ∖ Y ′) = 0; and a bijection
π ∶ X ′ → Y ′ satisfying π−1(C ∩ Y ′) = B ∩X ′ and p ○ π−1 = q. The map
π is called a measure space isomorphism and denoted π ∶ (X,B, p) →
(Y,C, q).

A Polish measure space is a σ-finite measure space (X,B,m) where
X is a Polish space, B = B(X) and m ∈M(X,B). In this exercise, you
prove that

a non-atomic, Polish probability space is isomorphic to the unit in-
terval equipped with Borel sets and Lebesgue measure

(i) Let X be a metric space, and suppose that p ∶ B(X) → [0,1] is a
probability. The support of p is defined by

Sp ∶= {x ∈X ∶ p(B(x, ε)) > 0 ∀ ε > 0}.
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Show that Sp is a closed subset of X, and that if X is separable,
then p(Scp) = 0.

(ii) Let I = [0,1] & p ∈ P(I) be a non-atomic probability. Define
π ∶ I → I by π(x) ∶= p([0, x]). Show that π ∶ (I,B(I), p) → (I,B,Leb)
is a measure space isomorphism.

(iii) Prove that a non-atomic, Polish probability space is isomorphic to
the unit interval equipped with Borel sets and Lebesgue measure.

2. Lebesgue measure spaces and conditional probabilities.
A (nonatomic) Lebesgue measure space is a measure space which is

isomorphic to a subinterval of R equipped with Lebesgue subsets, and
Lebesgue measure.

(a) Show that the completion of a non-atomic, Polish probability space
is Lebesgue.

(b) Let (X,B1, p) be an extended measure space where

X = [0,1], B1 ∶= {E(B1,B2) ∶= (B1 ∩E) ∪ (B2 ∩E
c) ∶ B1,B2 ∈ B(X)}

where E ⊂ [0,1] satisfies µ(E) = µ([0,1]∖E) = 1, µ denoting Lebesgue
outer measure on [0,1] ( e.g. E a Bernstein set) and

p(E(B1,B2)) =
1

2
(Leb (B1) + Leb (B2)) (B1,B2 ∈ B(X)).

Construction as in exercise 2.2.

Show that

(i) E(1E(B1,B2)∥B(X)) = 1
2(1B1 + 1B2) a.e.;

(ii) ∄ “regular conditional probabilities given B(X)” at any
point satisfying (i).

(iii) (X, (B1)p, p) is not a Lebesgue measure space where (B1)p is the
p-completion of B1.

3. A measure on product space.
Let I = [0,1] and Ω = {0,1}N be equipped with their natural topolo-

gies.

a) Show that there is a probability m ∶ B(I × Ω) → [0,1] such that
∀ n ≥ 1, a1, . . . , an ∈ {0,1} & J ∈ B(I),

m(J × [a1, . . . , an]) = ∫
J
tsn(1 − t)n−sndt

where
[a1, . . . , an] = {(x1, x2, . . . ) ∈ Ω ∶ xk = ak 1 ≤ k ≤ n}
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and sn = a1 + ⋅ ⋅ ⋅ + an.

b) Show that

∫
I×Ω

(An − T )2dm =
1

6n

where T (t, x) ∶= t and An(t, x) ∶=
1
n ∑

n
k=1 xk.

c) Define π ∶ Ω → {0,1}N by π(ω, t) ∶= ω.
By identifying a regular, conditional probability on (Ω,B(Ω),m)

given A = I × B(Ω) (or otherwise), show that

π ∶ (Ω,B(Ω),m)→ ({0,1}N,B({0,1}N, µ)

is a measure space isomorphism where µ(A) ∶=m(I ×A).

4. Non-singular bijections.
Let (X,B, µ) be a σ-finite measure space, and let A,B ∈ B. A non-

singular bijection of A and B is a T ∶ A→ B, such that both T and T −1

are measurable, and such that m ○ T, m ○ T −1 ≪m. Show that

(i) if T ∶ A → B is a non-singular bijection, then ∃ T ′ ∶ A → R, positive
on A, such that m(TC) = ∫C T

′dm ∀ C ∈ B ∩A;

(ii) (Chain rule for R-N derivatives) if S ∶ A→ B, and T ∶ B → C are
non-singular bijections, then so is T ○S ∶ A→ C, and (T ○S) ′ = T ′○S ⋅S′

a.e..

(iii) Let T ∶ X → X be a non-singular bijection of X. For 1 ≤ p < ∞

and f ∶ X → R measurable, define Vp(f) ∶= (T ′)
1
pf ○ T . Show that

Vp ∶ Lp(µ)→ Lp(µ) is an invertible isometry.

(iv) Let (X,B, µ) = ([0,1],Borel,Leb.) and let T ∶ X → X be C1 and
strictly increasing. Is T ∶X →X necessarily a non-singular bijection?

5. Invariant measures on groups.
Let G = {( x y

0 1 ) ∶ (x, y) ∈ R2, x > 0} equipped with the topology
inherited from R2, and matrix multiplication.

Find measures mL, mR ∶ B(G) → [0,∞] such that ∀ f ∶ G → R+

measurable,

w

G

f(gh)dmL(h) =
w

G

f(h)dmL(h),
w

G

f(gh)dmR(g) =
w

G

f(h)dmR(h).

Hint: Try dmJ((
x y
0 1 )) = pJ(x, y)dxdy (J = L,R).
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6. Fourier transform on L2(R).

Let ϕ(t) ∶= e−
t2

2 (t ∈ R).

a) Show that ϕ̂ =
√

2πϕ.
Hint d

dx ϕ̂(x) = −xϕ̂(x)??

Let f ∈ L1(R) ∩L2(R).
b) Show that

w

R

ϕ(
x

√
n
)∣f̂(x)∣2dx =

√
2nπ

w

R

ϕ(x
√
n)g(x)dx

where g(x) =
r
R f(x + y)f(y)dy.

c) Deduce that

∥f̂∥2
2 ←

√
2nπ

w

R

ϕ(x
√
n)g(x)dx → 2πg(0) = 2π∥f∥2

2.

Week # 7
§10 Banach spaces and linear functionals

Let (X,B,m) be a σ-finite measure space. Denote the collection of
f ∶X → R measurable by

L(X,B,m) = {f ∶X → R ∶ f−1B(R) ⊂ B}.

For p > 0 and f ∈ L, let

∥f∥p =
⎛

⎝

w

X

∣f ∣pdm
⎞

⎠

1
p

,

∥f∥∞ ∶= inf {K > 0 ∶ m([∣f ∣ >K]) = 0} ≤∞,

and

Lp = Lp(X,B,m) = {f ∈ L ∶ ∥f∥p <∞.}

It is not hard to show that if m(X) <∞, then

∥f∥p ÐÐ→
p→∞

∥f∥∞.

Also, for f ∈ L1, g ∈ L∞ non-we have fg ∈ L1 and

∣∫
X
fgdm∣ ≤ ∥f∥1∥g∥∞.

More generally,

10.1 Hölder’s inequality For 1 < p <∞, q = p
p−1 ,

∣
w

X

fgdm∣ ≤ ∥f∥p∥g∥q
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with equality iff fg ≥ 0 a.e. and there is a constant c > 0 so that
∣f ∣p = c∣g∣q.

Proof See exercises.

10.2 Minkowski’s inequality For

∥f + g∥p ≤ ∥f∥p + ∥g∥p ∀ f, g ∈ Lp, 1 ≤ p ≤∞

with equality when p ∈ (1,∞) iff f & g are linearly dependent.

Proof See exercises.

From Minkowski’s inequality, it follows that if Lp = Lp/ ∼ where ∼
means ”a.e. equality”, then for 1 ≤ p <∞, (Lp, ∥ ⋅ ∥p) is a normed linear
space.

10.3 Theorem (Lp, ∥ ⋅ ∥p) is a Banach space.

Proof We show that if fn ∈ Lp is a Cauchy sequence, i.e. ∥fm−fn∥p → 0
as m,n→∞, then ∃ f ∈ Lp such that

∥f − fn∥p Ð→ 0 as n→∞.

To see this, ∃ nk ↑ such that

∥fm − fn∥p <
1

4k
∀ m,n > nk.

It follows that

m([∣fnk − fnk+1 ∣ >
1

2k
]) ≤ 2pk∥fnk − fnk+1∥

p
p <

1

2pk

whence, a.e.,

∃ lim
K→∞

fn1 +
K

∑
k=1

(fnk+1 − fnk) ∶= f,

and f ∈ Lp as

∥
∞

∑
k=1

(fnk − fnk+1)∥p ≤
∞

∑
k=1

∥fnk − fnk+1∥p ≤ 1.

It also follows from this that

∥f − fn`∥p ≤
∞

∑
k=`+1

∥fnk − fnk+1∥p → 0

as ` → ∞, whence, choosing `(N) such that n`(N) ≤ N < n`(N)+1, we
have

∥f − fN∥p ≤ ∥f − fn`(N)∥p + ∥fN − fn`(N)∥p → 0

as N →∞. �



80 Measure Theory notes © Jon. Aaronson

Dual spaces.
For (B, ∥ ⋅ ∥) a normed linear space over IR, the dual space is the

space of bounded linear functionals

B∗ = {L ∶ B → IR ∶ linear, ∃ M ∋ ∣L(f)∣ ≤M∥f∥ ∀ f ∈ B}.

It can be shown that ∥L∥∗ ∶= supf∈B, ∥f∥=1 ∣L(f)∣ defines a norm on B∗.
Here, we identify B∗ for some examples.

10.4 Theorem (Riesz)
Suppose that (X,B,m) is a σ-finite measure space, and suppose that

1 ≤ p <∞, then

(Lp(m))∗ ≅ Lq(m)(‡)

where q ∶= p
p−1 and ≅ means isomorphism by Banach space isometry.

Proof For g ∈ Lq, by Hölder’s inequality, fg ∈ L1 ∀ f ∈ Lp,
and if Ag(f) =

r
X
fgdm (f ∈ Lp) then Ag ∈ (Lp)∗, and ∥Ag∥(Lp)∗ ∶=

sup{∣Ag(f) ∶ ∥f∥p = 1} = ∥g∥q.
It remains to prove (‡): ∀ A ∈ (Lp)∗, ∃ g ∈ Lq ∋ A ≡ Ag.
We prove (‡) first under the assumption m(X) <∞.
Let A ∈ (Lp)∗, and define µ ∶ B → R by µ(E) = A(1E) for E ∈ B. By

linearity of A. µ is additive, and if En ∈ B, En ↑ E, then 1En
Lp

Ð→ 1E,
whence µ(En) → µ(E) as n → ∞, and µ is a signed measure. Clearly
µ ≪ m, and so by the R-N theorem, ∃ g ∈ L1 ∋ dµ = gdm. We claim
that (i) g ∈ Lq, and (ii) A ≡ Ag.

We treat only the (more difficult) case of p > 1. By linearity of A and
Ag we have that A(f) = Ag(f) for every simple function f . If f ∈ L∞,

then ∃ fn, simple functions, such that fn
L∞

Ð→ f , whence

A(f)← A(fn) = Ag(fn)→ Ag(f),

and A(f) = Ag(f) ∀ f ∈ L∞. We use this next to show that g ∈ Lq. Let
h =sgn(g), and for κ > 0 set fκ = 1[∣g∣≤κ]h∣g∣q−1 ∈ L∞, then

w

[∣g∣≤κ]

∣g∣qdm = Ag(fκ) = A(fκ) ≤

∥A∥(Lp)∗∥fκ∥p = ∥A∥(Lp)∗
⎛
⎜
⎝

w

[∣g∣≤κ]

∣g∣qdm
⎞
⎟
⎠

1
p

,

whence ∥g∥q ← ∥1[∣g∣≤κ]g∥q ≤ ∥A∥(Lp)∗ .
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To prove (‡) in general, let h ∶ X → R+, be such that
r
X
hdm =

1, and let dµ = hdm. Then f ∈ Lp(µ) iff fh
1
p ∈ Lp(m). Let A ∈

(Lp(m))∗, and set B(f) = A(fh
1
p ) for f ∈ Lp(µ). By the above, ∃ g ∈

Lq(µ) ∋ B(f) =
r
X
fgdµ =

r
X
fghdm, whence, for f ∈ Lp(m), A(f) =

B(fh−
1
p ) =

r
X
fgh

1
q dm. �

Dual space of L∞. Let (X,B,m) be a σ-finite, measure space. A
finitely additive set function F ∶ B → R is called m-absolutely continu-
ous if

A ∈ B, m(A) = 0 ⇒ F (A) = 0.

Denote by C(X,B,m) the collection ofm-absolutely continuous, finitely
additive set functions F ∶ B → R with finite total variation:

∥F ∥ ∶= sup{
N

∑
n=1

∣F (An)∣ ∶ A1,A2, . . . ,An ∈ B disjoint} <∞.

It follows from the Jordan decomposition theorem that

C(X,B,m) = {µ − ν ∶ µ, ν ∈ C(X,B,m)+}

where C(X,B,m)+ ∶= {F ∈ C(X,B,m) ∶ F (A) ≥ 0 ∀ A ∈ B}.
This implies that for µ ∈ C(X,B,m), the integral functional f ↦

∫X fdµ:

● can be defined as in proposition 5.4,

● is bounded on L∞ as in proposition 5.5; and

● f = g m-a.e. Ô⇒ ∫X fdµ = ∫X gdµ.

10.5 Theorem

L∞∗(X,B,m) = C(X,B,m).

Proof As above, if µ ∈ C(X,B,m), then f ↦ Lµ(f) = ∫X fdµ defines
am element of L∞∗. Conversely, let L ∈ L∞∗ and define µ ∶ B → R by
µ(A) = L(1A). We need to show that ∥µ∥ <∞ and that L ≡ Lµ.

To see that ∥µ∥ ≤ ∥L∥L∞∗ , let A1,A2, . . . ,An ∈ B be disjoint and set
f ∶= ∑

n
k=1 sign (µ(Ak))1Ak , then ∥f∥∞ = 1 and

n

∑
k=1

∣µ(Ak)∣ = L(f) ≤ ∥L∥L∞∗

whence ∥µ∥ ≤ ∥L∥L∞∗ , µ ∈ C(X,B,m) and Lµ ∈ L∞∗.
We have L(f) = Lµ(f) for simple functions f ∈ L∞ and hence ∀ f ∈

L∞ as the collection of simple functions is uniformly dense. 2�
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Remark.
Let (X,B,m) be X ∶= [0,1] equipped with Borel sets and Lebesgue

measure, then L1(m) ⫋ L∞(m)∗. To see this, by the Hahn-Banach

theorem ∃ L ∈ L∞(m)∗ so that L(f) ∶= f(0) ∀ f ∈ C([0,1]).

It is not hard to show (!) that ∄ g ∈ L1(m) so that
r 1

0
f(t)g(t)dt =

f(0) ∀ f ∈ C([0,1]).

§11 Linear functionals of continuous functions on a
compact Hausdorff space

Topological Background.

We’ll need the following results about a compact Hausdorff space
(X,T ):

● Normality or T4:
If F,G ⊂X are disjoint closed sets, then ∃ U,V ∈ T so that U ∩ V =

∅, U ⊃ F, & V ⊃ G.

● Urysohn’s lemma:
The space (X,T ) is normal iff whenever F ⊂ U ⊂ X, F closed and

U open, ∃ f ∈ C(X, [0,1]) so that F ≺ f ≺ U .

Here, F ≺ f means 1F ≤ f ≤ 1 and f ≺ U means suppf ∶= [f ≠ 0] ⊂ U
(and hence 0 ≤ f ≤ 1U).

Linear functionals.
Let X be a compact Hausdorff space and let C(X) be the Banach

space of continuous R-valued functions with respect to the norm ∥f∥C ∶=
supx∈X ∣f(x)∣.

A linear functional L ∶ C(X) → R is called bounded if ∃ M > 0 such
that ∣L(f)∣ ≤M∥f∥C ∀ f ∈ C(X) and positive if f ≥ 0 Ô⇒ L(f) ≥ 0.

Note that positive Ô⇒ bounded and (!) that a linear functional L
is positive ⇐⇒ ∣L(f)∣ ≤ L(1)∥f∥C ∀ f ∈ C(X)

Set

C(X)∗ ∶= {L ∶ C(X)→ R ∶ L linear, bounded},

C(X)∗+ = {L ∈ C(X)∗ ∶ L positive }.

The question arises:

L(f)
?
=
w

X

fdµL

for some measure defined on some sufficiently large σ-algebra.
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Baire sets and Borel sets. Given a topological space X, call a
σ-algebra A ⊂ 2X admissible if each f ∈ C(X) is A-measurable (i.e.
f−1(B(R)) ⊂ A)

b(X) ∶= ⋂
A⊂2X ,admissible σ-algebra

A = σ( ⋃
f∈C(X)

f−1(B(R))).

The standard proof shows that b(X) is itself an admissible σ-algebra.
Sets in b(X) are called Baire sets.

11.1 Proposition If X is a separable metric space, then b(X) = B(X).

Proof For any open ball U ⊂ X, ∃ fn ∈ C(X) so that fn(x) →
1U(x) ∀ x ∈ X and 1U is b(X)-measurable as the pointwise limit of
a sequence of b(X)-measurable (continuous) functions. By separabil-
ity each open set is the union of countably many balls and B(X) =
σ({balls}).2�

11.2 Example: A compact Hausdorff space with b ≠ B.
Let Ω ∶= SΛ (where S is a finite set and Λ is an arbitrary, uncountable

set) equipped with the product discrete topology, then Ω is a compact
Hausdorff space.

Let S be the semiring of cylinder sets in Ω (see exercise 1.3 p.9) and
let

A ∶= {
N

∑
k=1

ak1Ck ∶ ak ∈ R, Ck ∈ S ∀ 1 ≤ k ≤ N},

then A is a subalgebra of C(Ω) which separated points. By the Stone-
Weierstrass theorem, A is dense in C(Ω), whence b(Ω) = σ(S).

A standard monotone class argument shows that if A ∈ σ(S) then
∃ Γ ⊂ [0,1] countable, A′ ⊂ {0,1}Γ so that A = {x ∶ [0,1] → {0,1} ∶
x∣Γ ∈ A′}.

Thus any singleton {x} ∈ B(X) ∖ b(X).

11.3 Frechet Lemma
Let X be a compact Hausdorff space, let p ∈ P(X,b(X)) and let

f ∶ X → R be bounded, Baire measurable, then ∀ ε > 0, ∃ h ∈ C(X)
with p([∣f − h∣ > ε]) < ε.

Proof for f = 1A Let A denote the algebra of finite unions of subin-
tervals of R. Let η > 0.

Since A ∈ b(X), ∃ f1, . . . , fN ∈ C(X) and I1, . . . , IN ∈ A so that

ε

2
> p(A∆

N

⋂
k=1

f−1
k (Ik)) = p([1A ≠ F ])

where F ∶=∏
N
k=1 1Ik ○ fk.
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For each k, ∃ Gn,k ∈ CB(R), Gn,k(z) ÐÐ→
n→∞

1Ik(z) ∀ z ∈ R and it

follows that Hn ∶=∏
N
k=1Gn,k ○ fk ∈ C(X) (n ≥ 1) and

Hn ÐÐ→
n→∞

F (x) ∀ x ∈X.

Thus, for n ≥ 1 large

p([∣Hn − 1A∣ > ε]) < p([∣Hn − F ∣ > ε] + P ((F ≠ 1A]) < ε. 2�

Open Baire sets and uniqueness of weak representation.
Let (X,T ) be a compact Hausdorff space. A Fσ set in X is a set of

form A = ⋃∞
n=1Kn where K1,K2, . . . are closed.

Let Tσ be the collection of open Fσ sets.
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11.4 Proposition

b(X) = σ(Tσ),(i)

µ, ν ∈M(X,b(X)), ∫
X
fdµ = ∫

X
fdν ∀ f ∈ C(X) ⇒ µ = ν.(ii)

Proof of (i)
We prove first that Tσ ⊂ b(X).8 Let U ∈ T , U = ⋃∞

n=1Kn where
K1 ⊂ K2 ⊂ . . . are closed.

By Urysohn’s lemma, ∃ fn ∈ C(X, [0,1]) (n ≥ 1) so thatKn ≺ fn ≺ U .
In particular,

1Kn ≤ fn ≤ 1U .

By assumption, 1Kn ↑ 1U , whence fn ÐÐ→
n→∞

1U on X and U ∈ b(X).

Consequently, σ(Tσ) ⊂ b(X).

To see σ(Tσ) ⊃ b(X), let

U ∶= {
N

⋂
k=1

f−1
k (Ik) ∶ f1, . . . , fN ∈ C(X) & I1, . . . , IN ∈ T (R)},

then U ⊂ Tσ because T (R) = Tσ(R). Thus

b(X) = σ(U) ⊂ σ(Tσ). 2�(i)

Proof of (ii)
For U ∈ Tσ, ∃ hn ∈ C(X, [0,1]), hn → 1U on X, whence µ(U) = ν(U).

It follows from (i) that µ = ν. V(ii)

11.5 Theorem: Structure of compact Hausdorff spaces
Let X be a compact Hausdorff space, then ∃ a set Λ and a closed

subset ΩX ⊂ {0,1}Λ so that X is a continuous image of ΩX .

Proof
Let C ⊂ C(X, [0,1]) be uniformly dense and define β ∶X → [0,1]C by

β(x)(g) ∶= g(x).

We claim that β is continuous and injective.

Proof of continuity A cylinder in [0,1]C is a set of form

[U1, . . . , UN]g1,...,gn ∶= {ω ∈ [0,1]C ∶ ω(gk) ∈ Uk ∀ 1 ≤ k ≤ N}

8The other inclusion also holds. See Halmos’ book.
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where g1, . . . , gN ∈ C & U1, . . . , UN ∈ T ([0,1]).
The collection of cylinders forms a base for the compact, Hausdorff,

product topology on [0,1]C. Thus, continuity of β is established by

β−1[U1, . . . , UN]g1,...,gn =
N

⋂
k=1

g−1
k Uk ∈ T . 2�

Proof of injectivity Suppose that x, y ∈X, x ≠ y. By Urysohn’s
lemma ∃ f ∈ C(X, [0,1]) so that f(x) ≠ f(y), whence by density of
C, ∃ g ∈ C so that g(x) ≠ g(y). Consequently, β(x) ≠ β(y). V

Next β(X) is compact in [0,1]C and β ∶ X → β(X) is a homeomor-
phism.

Now define Φ ∶ {0,1}N×C → [0,1]C by

Φ(ω)(g) ∶=
∞

∑
n=1

ω(n, g)

2n
.

It follows that Φ is a continuous surjection.
Let ΩX ∶= Φ−1(β(X)), then ΩX is closed in {0,1}N×C and

π ∶= Φ ○ β−1 ∶ ΩX →X

is a continuous surjection. V,

11.6 Riesz representation theorem (RRT) (Riesz, Saks, Markov)

Suppose (X,T ) is a compact Hausdorff space, and suppose that L ∈
C(X)∗, then ∃ a unique, signed, Baire measure µ ∶ b(X)→ R such that

L(f) =
w

X

fdµ ∀ f ∈ C(X).

Proof For ν ∈ M(X,b(X)), f ↦ Lµ(f) ∶= ∫X dµ defines an element
Lµ ∈ C(X)∗. By proposition 11.4(iii), ν ↦ Lµ is injective. We must
show that it is surjective.

By theorem 11.5 (structure theorem for compact Hausdorff spaces)
∃ a set C and a closed subset Ω ⊂ {0,1}C and π ∶ Ω →X continuous and
onto. Define π∗ ∶ C(X)→ C(Ω) by π∗(f) ∶= f○π, thenDX ∶= π∗(C(X))
is a closed linear subspace of C(Ω).

Now let L ∈ C(X)∗ and define L1 ∈ (DX)∗ by L1(f ○ π) ∶= L(f).
By the Hahn-Banach theorem ∃ L2 ∈ C(Ω)∗ such that L2∣DX = L1

whence L2(f ○ π) = L(f) ∀ f ∈ C(X).
We claim that

, ∃ a signed measure µ ∶ b(Ω)→ [0,∞) such that L2(g) = ∫Ω gdµ.

Proof of ,
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Let A be the algebra of subsets of Ω generated by cylinders.
Since cylinders are clopen in Ω, this algebra has the finite subcover

property.

Define ν ∶ A→ R by ν(A) ∶= L(1A), then ν is additive by the linearity
of L.

We claim that ∥µ∥ < ∞. To see that in fact ∥µ∥ ≤ ∥L∥C(Ω)∗ , let
A1,A2, . . . ,An ∈ A be disjoint and set f ∶= ∑

n
k=1 sign (µ(Ak))1Ak , then

f ∈ C(Ω) & ∥f∥C(Ω) = 1. Moreover
n

∑
k=1

∣µ(Ak)∣ = L(f) ≤ ∥L∥C(Ω)∗

whence our claim.
By the Jordan decomposition, µ = µ+ −µ− where µ± ∶ A→ [0,∞) are

additive, whence countable subadditive and extend to measures µ± on
σ(A) = b(Ω). Thus µ ∶= µ+ − µ− is a signed, Baire measure satisfying

L2(F ) =Lµ(F ) ∶= ∫
Ω
Fdµ ∀ F =

N

∑
k=1

ak1Ak

with a1, . . . , aN ∈ R, A1, . . . ,AN ∈ A.

By the Stone-Weierstrass theorem, such functions are uniformly dense
in C(Ω) whence L2 ≡ Lµ. 2�,

It follows from , that ν ∶= µ ○ π−1 ∶ b(X) → [0,∞) is also a signed
measure, and for f ∈ C(X),

∫
X
fdν = ∫

Ω
f ○ πdµ = L2(f ○ π) = L(f).

Uniqueness follows because the indicator of a Baire set is the a.s. point-
wise limit of a uniformly bounded sequence of continuous functions. 2�

Regular Borel measures. Let (X,T ) be a topological space. A
Borel measure µ ∈ (X,B(X)) is regular if

µ(A) = inf {µ(U) ∶ A ⊂ U ∈ T }.

11.7 Kakutani’s extension theorem
Suppose (X,T ) is a compact Hausdorff space, and suppose that µ ∈
P(X,b(X)), then there is a unique, regular m ∈ P(X,B(X)) such that
m∣b(X) ≡ µ.

Proof See exercises.
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Exercise No7

1. Hölder’s, and Minkowski’s inequalities.
Let 1 < p <∞, and q = p

p−1 .

a) Prove that for a, b ≥ 0, ab ≤ ap

p +
bq

q with equality iff ap = bq.

(Hint: One way to do this is to prove that αλβ1−λ
≤ λα + (1 − λ)β ∀ α,β ≥ 0, 0 < λ < 1,

and substitute α = ap, β = bq with appropriate λ...)
Now suppose that (X,B,m) is a σ-finite measure space and that

f, g ∶X → IR are measurable functions satisfying
r
X
∣f ∣pdm,

r
X
∣g∣qdm <

∞.
b) Prove that fg is integrable, and

∣
w

X

fgdm∣ ≤
1

p

w

X

∣f ∣pdm +
1

q

w

X

∣g∣qdm.

c) Using b), or otherwise, prove Hölder’s inequality: ∣
r
X
fgdm∣ ≤

∥f∥p∥g∥q where

∥f∥p ∶= (
w

X

∣f ∣pdm)

1
p

.

with equality iff fg ≥ 0 a.e. and ∃ a constant c > 0 so that ∣g∣q = c∣f ∣p

a.e..
d) Prove that ∥f∥p = max{

r
X
fgdm ∶ ∥g∥q ≤ 1}.

e) Prove Minkowski’s inequality: ∥f + g∥p ≤ ∥f∥p + ∥g∥p with
equality iff f & g are linearly dependent

2. Regular Borel measures.
Suppose (X,T ) is a compact Hausdorff space, and suppose that

µ ∈ P(X,b(X)). Here, in a series of exercises, you prove Kakutani’s
theorem that:
∃ a unique, regular m ∈ P(X,B(X)) such that m∣b(X) ≡ µ.

Write L(f) ∶= ∫X fdµ (f ∈ C(X)).

(i) Show that for U ∈ T ,

m(U) ∶= sup{L(f) ∶ f ∈ C(X), f ≺ U} = sup{µ(A) ∶ U ⊇ A ∈ b(X)}.
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(ii) Show that m ∶ T → [0,∞) satisfies

U,V ∈ T , U ⊂ V ⇒ m(U) ≤m(V ),(a)

U,V ∈ T , U ∩ V = ∅ ⇒ m(U ⊍ V ) =m(U) +m(V ),(b)

m(
∞

⋃
n=1

Un) ≤
∞

∑
k=1

m(Un) ∀ U1, U2, ⋅ ⋅ ⋅ ∈ T .(c)

For E ⊂X, let

µ(E) ∶= inf{m(U) ∶ E ⊂ U ∈ T }.

(iii) Show that µ is an outer measure and that
(a) µ(U) =m(U) ∀ U ∈ T , (b) µ(A) = µ(A) ∀ A ∈ b(X).

(iv) Show that if U ∈ T , then

∀ a <m(U), ∃ F ⊂ U, F closed, such that µ(F ) > a.

(v) Show that µ(F1 ∪ F2) ≥ µ(F1) + µ(F2) ∀ F1, F2 closed, disjoint.
Hint: Use normality (T4) to get Ui ∈ T (i = 1,2) disjoint, so that Fi ⊂ Ui (i = 1,2).

Let

C ∶= {A ⊂X ∶ ∀ a < µ(A), ∃ F ⊂ A, F closed ∋ µ(F ) > a}.

(vi) Show that if A,B ∈ C are disjoint, then µ(A ∪B) = µ(A) + µ(B).

(vii) Show that A,B ∈ C ⇒ A ∖B ∈ C.
Hint: Let ε > 0, and F ⊂ A ⊂ U, G ⊂ B ⊂ V , F,G closed, U,V open be such that

µ(U) − µ(F ), µ(V ) − µ(G) < ε.

(viii) Show that

µ(A) ≥ µ(A ∩U) + µ(A ∩U c) ∀ U ∈ T , A ⊂X.

Hint Fix A ⊂W ∈ T , then W ∩U, W ∩Uc ∈ C.

(ix) Using the above exercises, prove Kakutani’s theorem.
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3. Non-regular Borel measures.
Here, you show that X compact, Hausdorff, p ∶ B(X) → [0,1] a

probability ⇏ p regular.
Let X be the collection of ordinals up to and including Ω, the least

uncountable ordinal, and let ≺ be the usual well ordering of X. Let T be
the topology generated by open intervals, i.e. sets of form (a, b) = {x ∈
X ∶ a ≺ x ≺ b}, [0, a) = {x ∈X ∶ x ≺ a}, and (b,Ω] = {x ∈X ∶ x ≻ b}.

Show that:

(a) (X,T ) is a compact Hausdorff space;

(b) [0,Ω) is open and not σ-compact;

(c) ∀ f ∈ C(X) ∃ a ∈ [0,Ω) so that f is constant on (a,Ω];

(d) if A ⊂ [0,Ω) is countable, then ∃ a ≺ Ω such that A ⊂ [0, a);

(e) if K is compact, and an ∈K (n ≥ 1), then supn an ∈K;

(f) if Kn is compact, and uncountable (n ≥ 1), then so is ⋂∞
n=1Kn;

(g) if E ∈ B(X), then either E, or Ec contains an uncountable compact
set (but not both).

Define p ∶ B(X) → [0,1] by p(E) = 1 if E contains an uncountable
compact set, and p(E) = 0 otherwise. Show that

f) p is a probability, and is not regular.

g) Exhibit a regular probability q ∶ B(X)→ [0,1] such that

∫
X
fdp = ∫

X
fdq ∀ f ∈ C(X).

Week # 8
§12 Haar measure.

A topological group is a group G, which is a topological space such
that (g, h)↦ gh−1 is continuous (G ×G→ G).

A measure m ∶ B(G)→ [0,∞] is called a left Haar measure on G if
(i) m(U) > 0 ∀ U open,
(ii) m(K) <∞ ∀ K compact,

and
(iii) m(xA) =m(A) ∀ x ∈ G, A ∈ B(G).

An analogous definition can be given for right Haar measure on G.
For Abelian groups, the definitions coincide.

Examples
1) For G = Rd under addition, Lebesgue measure is Haar measure.
2) For G = C∖ {0} under multiplication, a Haar measure is given by

dm(x + iy) = dxdy
√
x2+y2

.
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3) In exercise 6.5, you identified both left and right Haar measures on
G = {( x y

0 1 ) ∶ (x, y) ∈ R2, x > 0} equipped with the topology inherited
from R2, and matrix multiplication.

It follows from exercise 9.3 (!) that left Haar measure is unique up to
constant multiplication. Our next result is existence of Haar measure
on any locally compact topological group.

Theorem (A. Haar) If G is a locally compact, Hausdorff, topological
group, then ∃ a left Haar measure on G. This measure is regular.

If, in addition, G is σ-compact, then the left Haar measure is σ-finite.

Example
Let G = R equipped with the discrete topology, then G is a locally

compact topological group, and Haar measure is counting measure.
This shows that Haar measure on a locally compact topological group
need not be σ-finite.

Proof of Haar’s theorem (A.Weil).
Let C be the collection of compact subsets of G.

Step 1 ∃ λ ∶ C → [0,∞) which is non-zero, left invariant, monotone,
subadditive, and additive.

Define (∅ ∶ B) ∶= 0 (∅ ≠ B ⊆ G) and

(A ∶ B) = min{n ∈ N ∶ ∃ x1, x2, . . . , xn ∈ G, A ⊂
n

⋃
k=1

xkB} (∅ ≠ A, B ⊆ G)

where it is understood that inf ∅ =∞. Evidently (A ∶ B) <∞ in case
A ∈ C and Bo ≠ ∅.

Also, for A, ,A′,B, ,B′,C ⊂ G,

A ⊆ A′, B ⊇ B′ ⇒ (A ∶ B) ≤ (A′ ∶ B′).(0)

(A ∶ B) = (xA ∶ yB) ∀ x, y ∈ G,(1)

(A ∶ C) ≤ (A ∶ B)(B ∶ C),(2)

(A ∪B ∶ C) ≤ (A ∶ C) + (B ∶ C),(3)

with equality if A(C)−1 ∩B(C)−1 = ∅.
Let Ce = {K ∈ C ∶ Ko ∋ e}. Fix Ω ∈ Ce, and define, for U ∈ Ce,

λU ∶ C → [0,∞) by

λU(K) ∶=
(K ∶ U)

(Ω ∶ U)
.
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Evidently λU(Ω) = 1 ∀ U ∈ Ce. By (1), λU is left invariant ∀ U ∈ Ce,
and by (2), λU(K) ≤ (K ∶ Ω). By (3), λU is subadditive, and sometimes
additive:

C(U)−1 ∩D(U)−1 = ∅ ⇒ λU(C ∪D) = λU(C) + λU(D).(4)

Let

Φ ∶= {φ ∶ C → [0,∞) ∶ φ(Ω) = 1, φ(C) ≤ (C ∶ Ω) ∀ C ∈ C},

then by Tychonov’s theorem, Φ is a compact subset of RC (equipped
with the product topology). For K ∈ Ce, let

Λ(K) = {λL ∶K ⊃ L ∈ Ce} ⊂ Φ.

The family {Λ(K) ∶K ∈ Ce} has the finite intersection property:

n

⋂
k=1

Λ(Kk) ⊃ Λ(
n

⋂
k=1

Kk) ≠ ∅ ∀ K1, . . . ,Kn ∈ Ce,

and by compactness of Φ,

∃ λ ∈ ⋂
K∈Ce

Λ(K).

We claim that λ is as required for step 1.
● To prove that λ is monotone and subadditive, let X = {ν ∈ Φ ∶ ν is
left invariant, monotone and subadditive.}, then ∀ U ∈ Ce, Λ(U) ⊂ X

which is closed, whence X ⊃ Λ(U) ∋ λ.
● To prove additivity of λ, suppose that B,C ∈ C and B ∩C = ∅. We
show that ∃ K ∈ Ce such that BK−1 ∩CK−1 = ∅, obtaining by (4) that
µ(B ∩C) = µ(B) + µ(C) ∀ µ ∈ Λ(K), whence (!) also for µ = λ.

Now for every b ∈ B, ∃ Ub ∈ Ce such that bUb ⊂ Cc. By conti-
nuity of (g, h) ↦ gh, ∃ Vg ∈ Ce such that V 2

g ⊂ Ug. By compact-
ness of B, ∃ b1, . . . , bn ∈ B ∋ B ⊂ ⋃nk=1 bkVbk . Set W = ⋂nk=1 Vbk ,
then BW ⊂ ⋃nk=1 bkVbkW ⊂ ⋃nk=1 bkV

2
bk

⊂ Cc. Lastly, by continuity

of (g, h) ↦ gh−1, ∃ K ∈ Ce ∋ K−1K ⊂ W , and it follows that
BK−1 ∩CK−1 = ∅. � Step 1

Define

λ(U) ∶= sup
U⊃K∈C

λ(K) for U open, and

µ(B) ∶= inf {λ(U) ∶ B ⊂ U open} ∀ B ⊂ G.

Step 2

µ(Ko) ≤ λ(K) ≤ µ(K) <∞ ∀ K ∈ C(1)
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µ is a left invariant outer measure,(2)

and

Mµ ⊃ B(G).(3)

Proof
● 1) If K ∈ C, then for every open set U ⊃ K, λ(K) ≤ λ(U) = µ(U),
whence λ(K) ≤ µ(K); and if Ko ⊃K1 ∈ C, then λ(K1) ≤ λ(K), whence
µ(Ko) = λ(Ko) ≤ λ(K).

To see that µ(K) < ∞, note that (!) ∃ L ∈ C, K ⊆ Lo whence
µ(K) ≤ λ(Lo) ≤ λ(L) <∞ and (1) is established.

Clearly, both λ and µ are left invariant.
● We show that λ is additive, and subadditive.

Suppose that U,V are open sets.
Let U ∪ V ⊃ B ∈ C, then ∃ C,D ∈ C ∋ C ⊂ U, D ⊂ V and B = C ∪D;

whence λ(B) ≤ λ(C) + λ(D) ≤ λ(U) + λ(V ) &

λ(U ∪ V ) ≤ λ(U) + λ(V ).

Now suppose that U,V are disjoint open sets. Let C,D ∈ C, C ⊂
U, D ⊂ V , then λ(C) + λ(D) = λ(C ∪D) ≤ λ(U ∪ V ), whence λ(U) +
λ(V ) ≤ λ(U ∪ V ), and λ is additive.
● Next, we show that µ is countably subadditive. Suppose that A =

⋃∞
n=1An, and let ε > 0. There are open sets Un ⊃ An such that λ(Un) ≤

µ(An) +
ε

2n . Let C ∋ K ⊂ ⋃∞
n=1Un. By compactness ∃ N <∞ such that

K ⊂ ⋃Nn=1Un, and by subadditivity, λ(K) ≤ ∑
N
n=1 λ(Un).

Thus,

µ(A) ≤ λ(
∞

⋃
n=1

Un) ≤
∞

∑
n=1

λ(Un) ≤
∞

∑
n=1

λ(An) + ε.

Finally µ(∅) = λ(∅) = λ(∅) = 0 and µ is an outer measure. V(2)
We now show that

● (3) Mµ ⊃ B(G), equivalently,

µ(F ) ≥ µ(F ∩ V ) + µ(F ∩ V c) ∀ F ⊂ G, V open.

Suppose first, that U,V are open.

We claim that λ(U) ≥ λ(V ∩U) + µ(V c ∩U).

To see this, fix V ∩U ⊃D ∈ C, and Dc ∩U ⊃ E ∈ C, then

λ(U) ≥ λ(D ∪E) = λ(D) + λ(E).
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Leaving D fixed, we have λ(U) ≥ λ(D) + λ(Dc ∩ U), and noting that
V c ∩U ⊂Dc ∩U , an open set, we have

λ(U) ≥ λ(D) + µ(V c ∩U).

Now let F ⊂ G, and V be open. For any F ⊂ U open, we have that
λ(U) ≥ λ(V ∩U) + µ(V c ∩U) ≥ µ(F ∩ V ) + µ(F ∩ V c),

∴ µ(F ) ≥ µ(F ∩ V ) + µ(F ∩ V c). 2�

To complete the proof of the theorem:

Step 3 µ ∶= µ∣B(G) is a left Haar measure.

Proof By step 2, µ(xA) = µ(A) ∀ A ∈ B(G) and µ(K) <∞ ∀ K ∈ C.
It suffices to show that µ(U) > 0 ∀ U ∈ Ce. By step 1, ∃ Ω ∈ Ce with
µ(Ω) ≥ λ(Ω) > 0. Let U ∈ Ce, then (Ω ∶ U) = N ∈ N and ∃ x1, . . . , xN ∈ G
so that Ω ⊆ ⋃Nn=1 xnU . Thus

0 < µ(Ω) ≤
N

∑
n=1

µ(xnU) = Nµ(U)

and µ(U) ≥ µ(Ω)

N > 0. �

§13 Applications to probability theory

12.1 Kolmogorov’s existence theorem Let A be an index set, and
for a ∈ A let Xa be a polish space. For F ⊂ A let XF = ∏a∈F Xa, and
for F ⊂ G ⊂ A let πG,F ∶XG →XF be the canonical projection.

Suppose that for F ⊂ A finite, there is a probability pF ∶ B(XF ) →
[0,1], and that these probabilities are consistent in the sense

pG ○ π
−1
G,F = pF whenever F ⊂ G,

then there is a unique probability

p ∶ BA ∶= σ ( ⋃
F⊂A, finite

π−1
A,FB(XF ))→ [0,1] ∋ p○π−1

A,F = pF ∀ F ⊂ A finite.

Proof
Up to measurable isomorphism, Xa is discrete whenever Xa is finite,

Xa =XN (as on p.5) whenever Xa is countable and using Kuratowski’s
theorem, Xa = Ω = {0,1}N for Xa uncountable. Accordingly, consider
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the algebras

A(Xa) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2Xa A finite,

AN A countable,

A({cylinders}) Xa = Ω.

For F ⫅ A let
XF ∶=∏

a∈F

Xa (F ⊆ A).

A cylinder in XF be a set of form

{x ∈XF ∶ x(a) ∈ B(a) ∀ a ∈ T}

where T ⊂ F is finite and B(a) ∈ A(Xa) ∀ a ∈ T .
For F ⊆ A, let AF ⊂ B(XF ) be the collection of finite, disjoint unions

of cylinders in XF , then AF is an algebra.
For F ⊂ G ⊆ A, π−1

G,FAF ⊂ AG and

Ã ∶= AA = ⋃
F⊂A, finite

π−1
A,FAF .

We claim first that

¶1 p(π−1
A,FB) ∶= pF (B) defines an additive set function p ∶ Ã→ [0,1].

Proof To show that this is a definition, we must show that

π−1
A,FA = π−1

A,GB ⇒ pF (A) = pG(B).

To see this, again let H = F ∪G, and note that

π−1
A,FA = π−1

A,GB ⇒ π−1
H,FA = π−1

H,GB ⇒

pF (A) = pH(π−1
H,FA) = pH(π−1

H,GB) = pG(B).

To see that p ∶ Ã → [0,1] is additive, let A,B ∈ Ã be disjoint, A =
π−1
A,FA

′, B = π−1
A,GB

′ where A′ ∈ AF , B′ ∈ AG. As before, let H = F ∪G,

and note that π−1
H,FA

′ ∩ π−1
H,GB

′ = ∅, whence

p(A∪B) = pH(π−1
H,FA

′∪π−1
H,GB

′) = pH(π−1
H,FA

′)+pH(π−1
H,GB

′) = p(A)+p(B). 2�¶1

Next, we claim that

¶2 Ã has the finite subcover property.

Proof By Tychonov’s theorem XA is a compact Haussdorf space and
sets of form A = π−1

A,FB are both open and compact. V¶2

Thus p ∶ Ã → [0,1] is countable subadditive and by Caratheodory’s

theorem, ∃ a probability p ∶ σ(Ã)→ [0,1] such that p∣Ã = p.

To conclude the proof, it suffices to note that σ(Ã) = B(XA) and
that since each pF (F ⊂ A finite) is a measure, we have p ○ π−1

A,F = pF .
�
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Weak convergence of probability measures on Polish
spaces

Let X be a topological space and let µn, µ ∈ P(X,B(X)). We say
that µn tends to µ weakly (written µnÔ⇒

n→∞
µ), if

w

X

fdµn Ð→
n→∞

w

X

fdµ

∀ f ∈ CB(X) ∶= {bounded continuous functions ∶X → R}.

If X is compact then

● µnÔ⇒
n→∞

µ iff µn → µ weak ∗ in C(X)∗.

12.3 Examples.

¶1 Let X ∶= [0,1] and define µn ∈ P(X) by µn(A) = 1
n ∑

n
k=1 δ k

n
(A) =

1
n ∑

n
k=1 1A(

k
n), then

µn Ô⇒
n→∞

Leb.

Proof Any f ∈ C([0,1]) is Riemann integrable, so by Darboux’s
theorem

∫
[0,1]

fdµn =
1

n

n

∑
k=1

f(
k

n
) Ð→

n→∞
∫

1

0
f(x)dx.

¶2 Let X = R, (Ω,A, P ) be a probability space and let Z1, Z2, ⋅ ⋅ ⋅ ∶ Ω →
R be independent, identically distributed, R-valued, random variables
random variables with E(Zi) = 0 and E(Z2

i ) = 1. Let Sn ∶= ∑
n
k=1Zk and

define µn ∈ P(R) by µn(A) ∶= Prob ([ Sn√
n
∈ A]), then

µnÔ⇒
n→∞

N , N (A) =
1

√
2π
∫
A
e−

t2

2 dt.

This result is aka the central limit theorem (CLT) and will be
proved in the sequel.

¶3 Let (Ω,A, P ) & Z1, Z2, . . . , Sn be as above, and let X = C([0,1]).
Define Bn ∶ Ω → C([0,1]) by

Bn(s
k

n
+ (1 − s)

k + 1

n
) ∶= s

Sk
√
n
+ (1 − s)

Sk+1
√
n
. (1 ≤ k ≤ n, 0 ≤ s ≤ 1),
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then (!) Bn is measurable. Define µn ∈ P(C([0,1])) by µn(A) ∶=
Prob ([Bn ∈ A]) (A ∈ B(C([0,1]))), then

∃ W ∈ P(C([0,1])) such that µnÔ⇒
n→∞

W.

The measure is called Wiener measure and is the distribution of Brownian
motion. The result is aka the functional central limit theorem

(FCLT) and is proved in advanced courses on probability theory.

12.4 Helly’s theorem for compact spaces
If X is a compact metric space, then ∀ {νn ∶ n ≥ 1} ⊂ P(X),

∃ nk →∞, µ ∈ P(X) such that µnk Ô⇒
k→∞

µ.

In view of the Riesz representation theorem, this follows from
the Banach-Alaoglu theorem which says that the bounded sets in the
dual of a separable Banach space are weak ∗ sequentially compact.

Remark.
If (X,d) is a metric space which is not pre-compact, Helly’s theorem

fails.

Sketch proof of remark

Since (X,d) is not pre-compact, ∃ ε > 0 and an infinite set Γ ⊂ X
which is ε-separated in the sense that d(x,x′) ≥ ε ∀ x,x′ ∈ Γ, x ≠ x′. If
xn ∈ Γ, xn ≠ xn′ (n ≠ n′) then

∀ (ω1, ω2, . . . ) ∈ {0,1}N, ∃ f ∈ CB(X) such that f(xn) = ωn.

It follows that the sequence of point masses µn = δxn has no weakly
convergent subsequence. ◻

12.5 Weak convergence proposition Let (X,d) be a Polish space
and let µ, µ1, µ2, . . . ∈ P(X). TFAE:

(i) µnÔ⇒
n→∞

µ;

(ii) limn→∞ µn(F ) ≤ µ(F ) ∀ F ⊂X closed;

(iii) limn→∞ µn(G) ≥ µ(G) ∀ G ⊂X open;

(iv) µn(A) Ð→
n→∞

µ(A) ∀ A ⊂X such that µ(∂A) = 0.

Proof
Evidently (ii) ⇐⇒ (iii).
To see (i) ⇒ (ii), fix F ⊂ X closed and define fk ∶ X → [0,1] by

fk(x) ∶= (1 − kd(x,F )) ∨ 0, then fk ∈ CB(X), 1F ≤ fk ↓ 1F , whence

µn(F ) ≤ µn(fk)
(i)
Ð→
n→∞

µ(fk) Ð→
k→∞

µ(F ).
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To see (iii) ⇒ (iv), fix A ⊂X such that µ(∂A) = 0, then

lim
n→∞

µn(A) ≥ lim
n→∞

µn(A
o)

(iii)
≥ µ(Ao) = µ(A)

and

lim
n→∞

µn(A) ≤ lim
n→∞

µn(A)
(ii)
≤ µ(A) = µ(A).

To see (iv) ⇒ (i), fix f ∶X → [0,1] continuous, then

ν(f) =

1w

0

ν([f > t])dt ∀ ν ∈ P(X).

By continuity, for t ∈ (0,1) ∂[f > t] ⊆ [f = t], thus Γ ∶= {t ∈ [0,1] ∶
µ(∂[f > t]) > 0} is at most countable. Moreover, by (iv)

µn([f > t]) Ð→
n→∞

µ([f > t]) ∀ t ∈ [0,1] ∖ Γ.

Since the Lebesgue measure of Γ is zero, by bounded convergence,

µn(f) =

1w

0

µn([f > t])dt Ð→
n→∞

1w

0

µ([f > t])dt = µ(f). 2�
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Exercise No8

0. Riesz representation on a locally compact space.
Let (X,T ) be a locally compact, Hausdorff space and let

CC(X) ∶= {f ∈ CB(X) ∶ [f ≠ 0] compact}.

Suppose that L ∶ CC(X)→ R is linear and positive in the sense that

f ∈ CC(X), f ≥ 0 Ô⇒ L(f) ≥ 0,

then there is a Borel measure µ ∶ B(X)→ [0,∞] so that

µ(C) <∞ ∀ C ⊂X compact,(i)

L(f) = ∫
X
fdµ ∀ f ∈ CC(X).(ii)

1. Cartan’s proof of uniqueness of Haar measure. Suppose that
µ, ν are both left Haar measures on the locally compact, topological
group G, and let m = µ × ν.

¶1 Show that m○S ≡m ≡m○T where S,T ∶ G×G→ G×G are defined
by S(x, y) = (x,xy), T (x, y) = (yx, y).

¶2 Let g ∶ G→ R be non-negative, and measurable. Show that

µ(E)∫
G
gdν = ∫

G
g(x−1)ν(Ex−1)dµ(x) ∀ E ∈ B(G).

Hint: Show first that m ○ R ≡ m where R(x, y) ∶= S−1 ○ T (x, y) =
(yx, x−1).

¶3 Let E ⊂ G be compact with Eo ≠ ∅.
Show that for f ∶ G→ R non-negative, and measurable:

µ(E)∫
G

f(y−1)

ν(Ey)
dν(y) = ∫

G
fdµ.

Hint: Set g(y) = f(y−1)
ν(Ey) and use ¶2.

¶4 Show (using ¶3 or otherwise) that ∫G fdν = c ∫G fdµ where c = ν(E)

µ(E)
.

2. The modular function and right Haar measure.
Let m be a left Haar measure on the locally compact, topological

group G.
a) Show that mR(A) ∶= m(A−1) defines a right Haar measure on

(G,B(G)), where A−1 ∶= {x−1 ∶ x ∈ A}.
b) Show that ∃ a continuous, multiplicative homomorphism ∆ ∶ G→

R+ so that m(Ax) =∆(x)m(A) ∀ x ∈ G, A ∈ B(X).
Hint: Uniqueness and regularity of Haar measure.

c) Show that ∆(x) = 1 for x ∈ Z(G) ∶= {x ∈ G ∶ xz = zx ∀ z ∈ G} or
x ∈ [G,G], the group generated by {ghg−1h−1 ∶ g, h ∈ G}.



100 Measure Theory notes © Jon. Aaronson

d) Show that

∫
G
m(x−1A ∩B)dm(x) =m(A)∫

B

dm

∆
=m(A)m(B−1) ∀ A,B ∈ B(G).

e) Let mR be as in a). Show that mR ≪ m, that dmR
dm = 1

∆ and that

mR(xA) = mR(A)

∆(x) ∀ x ∈ G, A ∈ B(X).

f) Show that G is compact iff m(G) <∞ and that in this case m is
also a right Haar measure.
Hint: If G is not compact, then ∃ K ∈ Ce and xn ∈ G so that {xnK ∶
n ∈ N} are pairwise disjoint.

3. Ulam’s converse to Haar’s theorem. Let m be a σ-finite,
left-invariant measure on the Polish topological group G. Using the
hints below (or otherwise) prove the Ulam-Weil theorem: that G is
locally compact.
Hints:

(i) For K ⊂ G compact with 0 <m(K) <∞, let C1 ∶=KK−1, C+n + 1 ∶=
CnCn, then Cn is compact and H ∶= ⋃∞

n=1Cn is a subgroup of G.

(ii) If Γ ⊂ G satisfies G = ⊍g∈Γ gH, then Γ is at most countable;

(iii) ∃ n ≥ 1 such that Co
n ≠ ∅.

4. Finite dimensional distributions but no stochastic process.
Let (X,B,m) be the unit interval equipped with Borel sets and

Lebesgue measure and let µ denote Lebesgue outer measure on [0,1].

(a) Show that ∃ En ⊂ [0,1] (n ≥ 1) such that

● En ⊃ En+1, µ(En) = 1 ∀ n ≥ 1; and

● ⋂∞
n=1En = ∅.

(b) For n ≥ 1, show that ∃ pn ∈ P(En,Bn) with pn(A) = µ(A) where
Bn ∶= B ∩En ∶= {A ∩En ∶ A ∈ B}.

For n ≥ 1 define pn ∶ ∏
n
k=1Bk → [0,1] by pn(∏

n
k=1Ak) ∶= pn(⋂

n
k=1Ak).

Show that

(d) ∃ Pn ∈ P(∏
n
k=1Ek,⊗

n
k=1Bk ∶= σ(∏

n
k=1Bk)) such that Pn(∏

n
k=1Ak) =

pn(∏
n
k=1Ak) ∀ A1 ∈ B1, . . . ,An ∈ Bn;

(e) Pn+1 ○ π−1
n = Pn where πn ∶∏

n+1
k=1 Ek →∏

n
k=1Ek is defined by

πn(x1, . . . , xn+1) ∶= (x1, . . . , xn);

(f) Pn(Dn) = 1 where

Dn ∶= {x ∈
n

∏
k=1

Ek ∶ x1 ∈ En & x1 = x2 = ⋅ ⋅ ⋅ = xn ∈ En}.

(g) ∄ P ∈ P(∏
∞
k=1Ek,⊗

∞
k=1Bk) with P ○ φ−1

n = Pn where
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φn ∶∏
∞
k=1Ek →∏

n
k=1Ek is defined by φn(x1, . . . ) ∶= (x1, . . . , xn).

Hint for (g): Consider φ−1
n Dn.

5. Riemann integrability & weak convergence. Let (X,d) be
a Polish space and let µ, µ1, µ2, . . . ∈ P(X), µnÔ⇒

n→∞
µ.

Let f ∶X → R be bounded, measurable and µ-Riemann integrable in
the sense that µ(Cf) = 1 where Cf ∶= {x ∈X ∶ f continuous at x}.

Show that
µn(f)ÐÐ→

n→∞
µ(f).

Hints Show that (i) WLOG, f ∶X → [0,1]; (ii) For t ∈ [0,1], µ(∂[f >
t]) = µ([f = t]); .....

6. Riemann integrability on a metric space.
Let X be a metric space.

A. Semicontinuity revision from topology.

The function f ∶X → R is said to be

● lower semicontinuous (lsc) at x ∈ X if lim
y→x

f(y) ≥ f(x) and upper

semicontinuous (usc) at x ∈X if −f is lsc at x.

● Call f lsc on A ⫅X if it is lsc at every x ∈ A.
Show that

(a) The function f ∶ X → R is continuous at x iff it is both lsc and
usc at x.

(b) The function f ∶ X → R is lsc at x ∈ X if x ∈ {z ∈ X ∶ f(z) >
a}o ∀ a < f(x), whence lsc on X if {z ∈X ∶ f(z) > a} is open ∀ a ∈ R;

(c) If A is open, then 1A is lsc on X.

(d) The supremum of functions which are lsc at x ∈ X is also lsc at
x.

Suppose that f ∶ X → R is lsc on X and f ≥ 0. Define Uq (q ∈ Q)
by Uq ∶= {x ∈X ∶ 0 < q < f(x)}. Show that

(e) Uq is open and ∃ closed sets Fq,n such that Uq = ⋃n≥1Fq,n;

(f) ∃ fq,n ∶X → [0, q] continuous such that fq,n∣Fq,n⊍Ucq ≡ q1Fq,n .

(g) supq,n fq,n(x) = f(x).

(h) ∃ fn ∶X → R continuous such that fn(x) ↑ f(x) ∀ x ∈X.

(i) For f ∶ X → R bounded below, show that f ∶ X → R is lsc on X

where f(x) ∶= lim
y→x

f(y).
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The function f is known as the lsc envelope of f . The usc envelope

of the bounded function f is the function x↦ f(x) ∶= −(−f)(x).

(j) Show that if f ∶ X → R is bounded, then ∃ continuous functions
fn,± (n ≥ 1) such that

fn,−(x) ↑ f(x) & fn,+(x) ↓ f(x) ∀ x ∈X

B. Riemann integrability. Let p ∈ P(X). Call a bounded function
f ∶ X → R p-Riemann integrable if p(X ∖Cf) = 0 where Cf ∶= {x ∈ X ∶
xn → x⇒ f(xn)→ f(x)} (the continuity points of f).

Show that f ∶X → R is p- Riemann integrable iff ∀ ε > 0, ∃ f+, f− ∈
C(X) with f− ≤ f ≤ f+ and ∫X f+dp − ∫X f−dp < ε.
Hint: p(X ∖Cf) = 0 iff f = f p-a.e..

Week # 9
Tightness

Let X be a Polish space. A collection K ⊂ P(X) is called tight if
∀ ε > 0 ∃ C ⊂X compact such that

µ(C) > 1 − ε ∀ µ ∈ K.

● By exercise 5.1, a singleton (whence any finite collection) in P(X)
is tight.

A collection Π ⊂ P(X) is called weakly precompact (WPC) if ∀ µn ∈
Π ∃ nk →∞, Q ∈ P(X) so that µnk Ô⇒ Q.

12.7 Prohorov’s tightness theorem
Let X be a Polish space and let Π ⊂ P(X), then Π is weakly pre-

compact if and only if Π is tight.

Illustration:
Prohorov’s tightness theorem on locally compact metric spaces

The metric space (X,d) is called locally compact if ∀ x ∈ X ∃ εx > 0
so that B(x, εx) is compact.
e.g.: any compact metric space, any set equipped with the discrete
metric, Rd, ⋯

● If the metric space (X,d) is separable and locally compact, then (by
the Lindelöf property) there is a countable cover of compact balls and
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X is σ-compact in the sense that ∃ Kn compact so that Kn ⊂Ko
n+1 ↑X.

Set N(x) ∶= min{n ≥ 1 ∶ x ∈ Kn}. Note that X is compact iff N is
bounded.

● In case X is not compact, the one point compactification of (X,d)

is the compact metric space (X̂ =X ∪ {∞}, ρ) with

ρ(x,∞) ∶=
1

N(x)
& ρ(x, y) ∶= min{d(x, y),

1

N(x)
+

1

N(y)
}.

Let X be a locally compact, separable metric space which is not
compact (e.g. X = Rd).

If Π ⊂ P(X), then Π is weakly precompact in P(X̂) by Helly’s
theorem.

It is not hard to show that Π is weakly precompact in P(X) iff

µ({∞}) = 0 for every limit point µ of Π in P(X̂), and that this latter
property holds iff Π is tight in P(X).

Proof of Prohorov’s theorem

Proof of WPC Ô⇒ tightness
For each k ≥ 1, ∃ countable set of balls Γk = {Bn,k ∶ n ≥ 1} so that

⋃
n≥1

Bn,k =X, diamBn,k <
1

k
∀ n, k ≥ 1.

Let GN,k ∶= ⋃
N
n=1Bn,k. Evidently Q(GN,k) Ð→

N→∞
1 ∀ Q ∈ P(X). We

claim first that

¶ For k ≥ 1 fixed, µ(GN,k) Ð→
N→∞

1 uniformly in µ ∈Π.

Proof Fix k and set GN ∶= GN,k. If ¶1 fails, then ∃ ε > 0 and
µn ∈ Π such that µn(Gn) ≤ 1 − ε ∀ n ≥ 1. By weak precompactness,
∃ nk →∞ and µ ∈ P(X) such that µnk ⇒ µ. It follows that ∀ N ≥ 1:

lim
k→∞

µnk(GN) ≤ lim
k→∞

µnk(Gnk) ≤ 1 − ε

whence
1 − ε ≥ lim

k→∞

µnk(GN) ≥ µ(GN) Ð→
N→∞

1. 4¶

By ¶,

● ∀ ε > 0, k ≥ 1, ∃ Nk,ε such that µ(GNk,ε,k) > 1 − ε
2k
∀ µ ∈Π.

It follows that (!)

Kε ∶=
∞

⋂
k=1

GNk,ε,k

is compact and µ(Kε) > 1 − ε ∀ µ ∈Π. 2�
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Proof of tightness Ô⇒ WPC

Let Π ⊂ P(X) be tight.
Choose Kn ⊂X compact, such that Kn ⊂Kn+1 and

µ(Kn) > 1 − 1
n ∀ µ ∈Π, n ≥ 1.

Let A be a countable base for the topology on X and let

H ∶= {KN ∩ ⋃
A∈F

A ∶ N ∈ N & F ⊂ A finite} ⊂ {compact sets}.

Now let {µn}n≥1 ⊂ Π. By diagonalization, ∃ nk → ∞, α ∶ H →
[0,1] such that

µnk(H) Ð→
k→∞

α(H) ∀ H ∈ H.

¶1 It suffices to show ∃ P ∈ P(X) such that

P (G) = sup{α(H) ∶ G ⊇H ∈ H} ∀ G ⊂X open.(♀)

Proof In this case, for G open, G ⊇H ∈ H,

µnk(G) ≥ µnk(H) Ð→
k→∞

α(H)

whence limk→∞ µnk(G) ≥ P (G) and µnk Ô⇒ P . 2�¶1

The rest of the proof is to show ∃ P ∈ P(X) satisfying (♀). Evidently

(a) α(H) ≤ α(H ′) for H, H ′ ∈ H, H ⊂H ′;

(b) α(H ∪ H ′) ≤ α(H) + α(H ′) for H, H ′ ∈ H with equality when
H ∩H ′ = ∅.

Define β ∶ {open sets}→ [0,1] by

β(G) ∶= sup{α(H) ∶ G ⊇H ∈ H}.

¶2 If F is closed and F ⊂ G open, F ⊂ H ∈ H, then ∃ H0 ∈ H such that

F ⊂H0 ⊂ G.

Proof

Since F ⊂H ∈ H, F is compact and ∃ u ≥ 1, H ⊂Ku.
∀ x ∈ F ∃ Ax ∈ A such that x ∈ Ax ⊂ Ax ⊂ G.
By compactness ∃ {xk}Nk=1 ⊂ F such that F ⊂ ⋃Nk=1Axk .

Set H0 ∶= ⋂
N
k=1Axk ∩Ku. 2�¶2

¶3 β(⋃nk=1Gk) ≤ ∑
n
k=1 β(Gk) ∀ G1, . . . ,Gn open.
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Proof for n = 2: Let G1, G2 be open and suppose G1∪G2 ⊃H ∈ H.
Set

F1 ∶= {x ∈H ∶ d(x,Gc
1) ≥ d(x,G

c
2)}, F2 ∶= {x ∈H ∶ d(x,Gc

2) ≥ d(x,G
c
1)}.

We claim that F1 ⊂ G1:
Else ∃ x ∈ F1 ∖G1 ⇒ d(x,Gc

1) = 0 & x ∈ G2.
But then d(x,Gc

2) > 0 contradicting x ∈ F1.
Similarly F2 ⊂ G2.
By ¶2 ∃ Hi ∈ H (i = 1,2) such that Fi ⊂Hi ⊂ Gi (i = 1,2). Thus

α(H) ≤ α(H1 ∪H2) ≤ α(H1) + α(H2) ≤ β(G1) + β(G2). 2�¶3

¶4 β(⋃∞
k=1Gk) ≤ ∑

∞
k=1 β(Gk) ∀ G1, . . . open.

Proof

Suppose ⋃∞
k=1Gk ⊃ H ∈ H, then by compactness of H, ∃ n such that

H ⊂ ⋃nk=1Gk, whence using ¶3,

α(H) ≤ β(
n

⋃
k=1

Gk) ≤
n

∑
k=1

β(Gk) ≤
∞

∑
k=1

β(Gk). 2�¶4

Now define µ ∶ 2X → [0,1] by

µ(E) ∶= inf {β(G) ∶ E ⊂ G open}.

Evidently µ(G) = β(G) for G open.

¶5 µ is an outer measure.

Proof of sub-σ-additivity:
Let En ⊂ X and let ε > 0. Fix En ⊂ Gn open such that µ(En) >

β(Gn) −
ε

2n . It follows that ⋃n≥1En ⊂ ⋃n≥1Gn and

µ(⋃
n≥1

En ≤ β(⋃
n≥1

Gn)
¶4

≤ ∑
n≥1

β(Gn) ≤∑
n≥1

µ(En) + ε. 2�¶5

We complete the proof of (♀) by showing that Mµ ⊃ B(X).

¶6 For G open and F closed,

β(G) ≥ µ(G ∩ F ) + µ(G ∩ F c).

Proof Fix ε > 0. ∃H1 ∈ H such that H1 ⊂ G∩F c & α(H1) > β(G∩F c)−ε.
∃ H2 ∈ H such that H2 ⊂ G ∩Hc

1 & α(H2) > β(G ∩Hc
1) − ε.
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Evidently H1 ∩H2 = ∅ so

β(G) ≥ α(H1 ⊍H2)

= α(H1) + α(H2)

> β(G ∩ F c) + β(G ∩Hc
1) − 2ε

≥ µ(G ∩ F ) + µ(G ∩ F c) − 2ε. 2�¶6

¶7 {closed sets} ⊂Mµ.

Proof Fix F closed and L ∈ 2X . For L ⊂ G open,

β(G) ≥ µ(L ∩ F ) + µ(L ∩ F c),

whence

µ(L) ≥ µ(L ∩ F ) + µ(L ∩ F c). 2�

Thus, µ∣B(X) is a measure with µ(G) = β(G) ∀ G open. This is (♀). �

Corollary: (Central limit theorem)

Suppose that (Ω,F , P ) is a probability space and that X1,X2, ⋅ ⋅ ⋅ ∶
Ω → R are independent, identically distributed, R-valued, random vari-
ables random variables with E(Xi) = 0 and E(X2

i ) = 1. Let Sn ∶=

∑
n
k=1Xk and define µn ∈ P(R) by µn(A) ∶= P ([ Sn√

n
∈ A]), then

µnÔ⇒
n→∞

N , N (A) =
1

√
2π
∫
A
e−

t2

2 dt.(CLT)

Proof sketch We use the exercises 9.2 & 9.3 (below).

By ex. 9.2(v), ϕ Sn√
n
Ð→
n→∞

ϕg(t) = N̂ (t) ∀ t ∈ R where g is the standard

Gaussian random variable on R defined by Prob([g ∈ A]) = N (A).

If nk →∞ and µnk Ô⇒
k→∞

ν ∈ P(R) then ν̂ ≡ N̂ whence by ex. 9.3(v),

ν = N .
To complete the proof of (CLT) we show that {µn ∶ n ≥ 1} is a tight

family in P(R). To see this, for ε > 0 let K =Kε ∶= [− 1√
ε
, 1√

ε
], then for
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n ≥ 1

µn(K
c) = P ([∣∑

n
k=1Xk∣ ≥

√
n

ε
∣])

≤
ε

n
E((

n

∑
k=1

Xk)
2)

=
ε

n
∑

1≤k≤`≤n

E(XkX`)

=
ε

n
∑

1≤k≤n

E(X2
k) ∵ E(XkX`) = 0 ∀ k ≠ `;

= ε.

By Prohorov’s theorem, {µn ∶ n ≥ 1} is a tight family in P(R) and by
the above µnÔ⇒

n→∞
N . V
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§14 Geometric measure theory

Covering and differentiation theorems.
Recall that

L1
loc(Rd) = {f ∶ Rd → R measurable , f ∣A ∈ L1(Rd) ∀ boundedA ∈ B(Rd)}.

Differentiation theorem Fix a norm ∥ ⋅ ∥ on Rd. Suppose that f ∈
L1
loc(Rd), then for a.e. x ∈ R,

lim sup
diam (B)→ 0, x ∈ B, B a ball

1

m(B)

w

R

∣f − f(x)∣dm = 0

where m is Lebesgue measure on Rd.

To prove this, we need the Hardy Littlewood maximal inequality:
Fix a bounded, open set U ⊂ Rd. For f ∶ U → R integrable, define

the Hardy-Littlewood maximal function on U by

Mf(x) =MUf(x) ∶= sup
x ∈ B a ball, B ⊂ U

1

m(B)

w

B

∣f ∣dm.

The Hardy-Littlewood maximal function is measurable since the set
U ∩ [Mf > λ] is open ∀ λ > 0 (!).

Note also (!) that the definition gives the same function if we restrict
to the family of rational balls (rational centers and rational radii).

Hardy-Littlewood maximal inequality

m(U ∩ [MUf > λ]) ≤
3d

λ
∥f∥L1(U).

Proof of the differentiation theorem given the maximal in-
equality The theorem is evident for f ∶ Rd → R continuous. Suppose
that f ∈ L1

loc(Rd) and fix a bounded, open set U ⊂ Rd. We’ll prove the
theorem for m-a.e. x ∈ U .

Given ε > 0 choose g ∶ U → R continuous such that
r
U
∣f − g∣dm < ε2.

We have that for x ∈ B ⊂ U , B a ball:

1

m(B)

w

B

∣f − f(x)∣dm ≤
1

m(B)

w

B

∣f − g∣dm +
1

m(B)

w

B

∣g−g(x)∣dm

+ ∣f(x) − g(x)∣
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and 1
m(B)

r
B
∣f − g∣dm ≤MU(∣f − g∣)(x), whence

L(x) ∶= lim sup
diam (B)→0, x∈B, B a ball

1

m(B)

w

B

∣f − f(x)∣dm

= lim sup
diam (B)→0, x∈B⊂U, B a ball

1

m(B)

w

B

∣f − f(x)∣dm

≤MU(∣f − g∣)(x) + ∣f(x) − g(x)∣.

Thus

m(U ∩ [L > 2ε]) ≤m(U ∩ [M(∣f − g∣) > ε]) +m(U ∩ [∣f − g∣ > ε])

≤
3d + 1

ε

w

U

∣f − g∣dm < (3d + 1)ε

and L = 0 a.e. on U . �

To prove the maximal inequality, we need

Vitali’s covering lemma Let X be a metric space, and let C be a
finite collection of balls (with positive radius) in X. There are disjoint
balls B1, . . . ,Bn ∈ C such that

⋃
B∈C

B ⊂
n

⋃
k=1

B̃k

where
B̃(x, r) ∶= B(x,3r).

Proof

Choose B1 ∈ C with maximum diameter. Let d2 = max{diam (B) ∶
B ∈ C, B ∩ B1 = ∅} ≥ 0 where max∅ ∶= 0. Note that if d2 = 0 then
∀ B ∈ C we have diam (B) ≤ diam (B1) and either B ∩B1 ≠ ∅, whence
B ⊂ B̃1 or B ∩B1 = ∅ whence diam (B) ≤ diam (B2), B ∩B2 ≠ ∅ and
B ⊂ B̃2 . Continuing, we obtain n ≥ 1, disjoint balls B1, . . . ,Bn ∈ C,
such that

dk = max{diam (B) ∶ B ∈ C, B ∩Bi = ∅, i = 1, . . . , k − 1} > 0

for 2 ≤ k ≤ n with diam (Bk) = dk and

dn+1 = max{diam (B) ∶ B ∈ C, B ∩Bi = ∅, i = 1, . . . , n} = 0.

To show that ⋃B∈CB ⊂ ⋃nk=1 B̃k, suppose that B ∈ C. Since dn+1 =
0, ∃ 1 ≤ j ≤ n so that B ∩ Bj ≠ ∅. Let j be minimal, i.e. B ∩ Bi =

∅ ∀ i = 1, . . . , j − 1 and B ∩Bj ≠ ∅. Thus diam (B) ≤ dj and B ⊂ B̃j. 2�
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Proof of the Hardy-Littlewood maximal inequality
Let K ⊂ U ∩ [MUf > λ] be compact. For each x ∈K, ∃ an open ball

Bx ⊂ U, x ∈ Bx with
r
Bx

∣f ∣dm > λm(Bx). By compactness, ∃ F ⊂ K

finite so that K ⊂ ⋃x∈F Bx. By Vitali’s covering lemma with C = {Bx ∶
x ∈ F}, there are disjoint open balls B1, . . . ,BN ∈ C such that

K ⊂
N

⋃
n=1

B̃n, and
w

Bn

∣f ∣dm > λm(Bn) ∀ 1 ≤ n ≤ N.

Here B̃n ∶= B(xn,3rn) where Bn ∶= B(xn, rn).
By exercise 5.5(iii) (or otherwise), m(B̃n) = 3dm(Bn), whence

m(K) ≤
N

∑
n=1

m(B̃n)∣ = 3d
N

∑
n=1

m(Bn) ≤
3d

λ
∑
n≥1

w

Bn

∣f ∣dm ≤
3d

λ

w

U

∣f ∣dm.

�

Vitali’s Covering theorem
Fix a norm ∥ ⋅∥ on Rd. Let U ⊂ Rd be open and bounded. Let A ⊂ U ,

and let B be a collection of balls, each contained in U and with positive
radius, such that

∀ x ∈ A, ε > 0, ∃ x ∈ B(u, r) ∈ B, r < ε,(1)

then there are disjoint Bn ∈ B such that

µ(A ∖
∞

⋃
n=1

Bn) = 0.

Proof
For B = B(u, r) we write u(B) ∶= u and r(B) ∶= r.
Let r1 = sup{r(B) ∶ B ∈ B}, choose B1 ∈ B with r(B1) ≥ r1

2 , and
define r2 = sup{r(B) ∶ B ∈ B, B ∩B1 = ∅}.

In case r2 > 0, choose B2 ∈ B, B2 ∩ B1 = ∅ with r(B2) ≥ r2
2 , and

continue to get:

● ω ∈ N ∪ {∞};

● a sequence rn > 0, (1 ≤ n < ω) and disjoint balls Bn ∈ B, (1 ≤ n < ω)
such that for 1 ≤ n < ω,

rn = sup{r(B) ∶ B ∈ B, B ∩Bk = ∅,1 ≤ k ≤ n − 1}, and r(Bn) ≥
rn
2
.

● for ω <∞, rω = 0.

In case ω <∞, we claim that A ⊂ ⋃ω−1
k=1 Bk.
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To see this, suppose otherwise, and let

x ∈ A ∖
ω−1

⋃
k=1

Bk ⊂ U ∖
ω−1

⋃
k=1

Bk

which latter is an open set, whence ∃ δ > 0 such that B(x, δ) ⊂ U ∖

⋃ω−1
k=1 Bk. By assumption x ∈ B ∈ B with r(B) < δ

3 , whence rω ≥ r(B) >
0.4

Now suppose that ω = ∞. Since U is bounded, ∑n≥1 r
d
n < ∞ and

rn → 0.
We claim that

A ∖
N

⋃
k=1

Bk ⊂
∞

⋃
k=N+1

B̂k ∀ N ≥ 1

where u(B̂) = u(B) and r(B̂) = 5r(B). To see this, let x ∈ A∖⋃Nk=1Bk,
then ∃ x ∈ B ∈ B so that B ⊂ U∖⋃Nk=1Bk, whence 0 < r(B) ≤ rN+1. Since
rn → 0, ∃ K ≥ N + 1 so that rK ≥ r(B) > rK+1, whence ∃ j ∈ [N + 1,K]

so that B ∩Bj ≠ ∅. Since r(Bj) ≥
rj−1

2 ≥ r(B)

2 , we have B ⊂ B̂j. Thus

m(A ∖
N

⋃
k=1

Bk) ≤
∞

∑
k=N+1

m(B̂k) Ð→
N→∞

0.

�

Exercise No9

1. Well distributed sequences.
Let X be a metric space and let p ∈ P(X). A sequence (w1,w2, . . . ) ∈

XN is called p-well-distributed if 1
n ∑

n
k=1 δwk Ô⇒n→∞

p.

Let X ∶= TN (some N ∈ N) where T ∶= R/Z ≅ [0,1) equipped with the
metric d(x, y) ∶= min{∣x− y∣,1− ∣x− y∣} and let m be Lebesgue measure
on TN .

(i) Prove Weyl’s theorem that

● (w1,w2, . . . ) ∈XN is m-well-distributed iff

1

n

N

∑
k=1

e2πi⟨ν,wk⟩ Ð→
n→∞

0 ∀ ν ∈ ZN ∖ {0}

and, in this case {wk ∶ k ≥ 1} =X.

(ii) Define wk = (w
(1)
k , . . . ,w

(N)

k ) ∈X ∶= TN by w
(j)
k ∶= kxj mod 1.

Show that (w1,w2, . . . ) ∈ XN is m-well-distributed iff {1, x1, . . . , xN}
are linearly independent over Q.
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2. Characteristic function of a random variable on R.
The characteristic function of a random variable X on R is ϕ = ϕX ∶

R→ C is defined by

ϕX(t) ∶= E(eitX) = µ̂(t)

where µ = µX ∈ P(R) is defined by µ(A) = Prob([X ∈ A]) and

ν̂(t) ∶=
w

R

eitxdν(x) (t ∈ R, ν a signed measure on R).

(i) Show that ϕX ∈ CB(R) and that µXn Ô⇒ µX implies that ϕXn Ð→
νX uniformly on compact subsets of R.

(ii) Show that if X is a random variable on R with E(X2) <∞, then

ϕX(t) = 1 + itE(X) −
1

2
E(X2)t2 + o(t2) as t→ 0.

(iii) Show that if g is a standard Gaussian random variable on R (ie

Prob([g ∈ A]) = 1√
2π

r
A
e−

t2

2 dt), then ϕg(t) = e
− t

2

2 .

(iv) Show that if X1,X2, . . . ,Xn are independent random variables on
R, that is:

Prob (
n

⋂
k=1

[Xk ∈ Ak]) =
n

∏
k=1

Prob ([Xk ∈ Ak]) ∀ A1,A2. . . . ,AnB ∈ B(R);

then ϕSn(t) =∏
n
k=1ϕXk(t) where Sn ∶= ∑

n
k=1Xk.

(v) Now suppose thatX1,X2, . . . are independent, identically distributed

random variables on R with E(Xi) = 0, E(X2
i ) = 1. Let Sn ∶= ∑

n
k=1Xk.

Show that

ϕ Sn√
n
Ð→
n→∞

ϕg(t) ∀ t ∈ R.

3. The inversion and uniqueness for characteristic functions.
In this exercise, you show that if X is a random variable on R, and

(a, b) ⊂ R satisfies µX({a, b}) = 0, then

1

2π

Tw

−T

e−ita − e−itb

it
ϕX(t)dt Ð→

T→∞
µX((a, b)).())

(i) Show that S(T ) ∶=
r T

0
sinx
x dx Ð→

T→∞

π
2 .

Write I(T ) ∶=
r T
−T

e−ita−e−itb

it ϕX(t)dt. Show that:
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I(T ) = E(

Tw

−T

eit(X−a) − e−it(X−b)

it
dt)(ii)

= 2E(sgn (X − a)S(T ∣X − a∣) − sgn (X − b)S(T ∣X − b∣))

(iii) Prove ()).

(iv) Show that if ϕX ∈ L1(m) (m = Lebesgue measure), then µX ≪ m
and

dµX
dm

(x) =
1

2π

w

R

ϕX(t)e−itxdt.

(v) Show that if X, Y are random variables on R with ϕX = ϕY , then
µX = µY .

4. Differentiation revision.

(A) Suppose that F ∶ I ∶= [0,1] → R is non decreasing. Here you show
that ∃ F ′ ∈ L1([0,1] so that

, for m-a.e. x ∈ [0,1], 1
h(F (x + h) − F (x))Ð→

h→0
F ′(x)

(where m ∶= Lebesgue measure).
Let

DF (x) ∶= lim
h→0

1
h(F (x + h) − F (x)), DF (x) ∶= lim

h→0

1
h(F (x + h) − F (x)).

Show that

(0) WLOG F ∶ [0,1]→ [0,1] is a homeomorphism;
Hint: F (x)↝ x+F (x)

2
....

(i) DF, DF ∶ [0,1]→ R are measurable;
Hint: DF (x)

?
= lim
h→0, h∈Q

1
h
(F (x + h) − F (x)).

DF < r on A ∈ B(I)⇒ m(FA) ≤ rm(A).(ii)

DF > s on A ∈ B(I)⇒ m(FA) ≥ sµ(A).(iii)

Hint: Vitali’s covering theorem.

(iv) Show that DF =DF m-a.e. on [0,1].
Hint: Let A(r, s) ∶= {x ∈ I ∶DF (x) < r < s <DF (x)} ⋯

(v) Show that F (1)−F (0) ≥ ∫
1

0 DFdm where DF ∶=DF =DF . When
is there equality?

(B) Show that if F ∶ [0,1]→ R has bounded variation

ie ∃ M such that ∑
n−1
k=0 ∣F (tk+1) − F (tk)∣ ≤M whenever 0 = t0 < t1 < ⋅ ⋅ ⋅ < tn = 1, then F

is differentiable at a.e. x ∈ [0,1].
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Hint: F = G −H where G, H ∶ I ∶= [0,1]→ R are non decreasing.

(C) The function f ∶ [0,1] → R is said to be absolutely continuous if
given ε > 0, ∃ δ > 0 such that for any collection {[aj, bj]}j≥1 of disjoint
subintervals of [0,1],

∑
j≥1

∣bj − aj ∣ < δ Ô⇒ ∑
j≥1

∣f(bj) − f(aj)∣ < ε.

Show that if f ∶ [0,1] → R is absolutely continuous, then ∃ a signed
measure µf ∶ B([0,1]) → R, µf ≪ m such that µf([a, b]) = f(b) − f(a)
for any interval [a, b] ⊂ [0,1].

5. Fundamental theorem of calculus?
Let (X,B,m) = ([0,1],Borel,Leb).
A measurable function f ∶ X → R is called locally integrable at x ∈

(0,1) if ∃ ε > 0 such that
r
(x−ε,x+ε)

∣f ∣dm <∞. Show that

(i) for f ∶X → R measurable,

loc-int (f) ∶= {x ∈ [0,1] ∶ f locally integrable at x}

is open in [0,1];

(ii) if f ∶ [0,1]→ R is differentiable on [0,1], then loc-int (f ′) is dense
in [0,1];
Hint f ′ ∈ B1.

(iii) By suitably modifying Volterra’s construction (ex. 3.6 on p. 36),
or otherwise, show that ∀ 0 < λ < 1, ∃ f ∶ [0,1] → R differentiable on
[0,1] so that m([0,1] ∖ loc-int (f ′)) > λ.

6. Fractal differentiation theorem.
Suppose that (X,ρ) is a metric space and µ ∈ P(X) satisfies the

condition

(⋆) lim
r→0

µ(Bρ(x,3r))
µ(Bρ(x,r))

≤M for µ-a.e. x ∈X.

a) Prove the differentiation theorem: If f ∈ L1(µ), then for µ-a.e.
x ∈X,

lim sup
ρ−diamB→0, x∈B, B a ρ-ball

1

µ(B) ∫B
∣f − f(x)∣dµ = 0.

Hint: Generalize the Hardy-Littlewood maximal inequality.

b) Let Ω = {0,1}N and let p ∈ P(Ω) be defined by p([a1, . . . , an]) =
1

2n

and define Cantor-Lebesgue measure µ on R by

µ(A) ∶= p({ω = (ω1, ω2, . . . ) ∈ Ω ∶
∞

∑
n=1

2ωn
3n ∈ A}).

Show that µ satisfies (⋆) with respect to the regular metric on R.
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Week # 10
Lipschitz maps. Let ∥ ⋅ ∥ = ∥ ⋅ ∥2 and let m be Lebesgue measure on
Rd.

● A function f ∶ U → R (U ⊂ Rd) is called Lipschitz continuous on U
if ∃ M > 0 st

∣f(y) − f(x)∣

∥x − y∥
≤M ∀ x, y ∈ U.

● The Lipschitz constant of f on U is Mf,U ∶= supx,y∈U, x≠y
∣f(y)−f(x)∣

∥x−y∥ .

● The function f ∶ U → R (U ⊂ Rd open) is called differentiable at
z ∈ U if ∃ L ∈ Rd so that

f(z + h) − f(z) − ⟨L,h⟩ = o(∥h∥) as h→ 0.

● In this case ∃ limt→0
f(z+tek)−f(x)

t =∶ fxk(z) (1 ≤ k ≤ d), and L
(above) is given by L = (fx1(z), . . . , fxd(z)). It is called the derivative
(aka gradient) of f at z and denoted ∇f(z) ∶= (fx1(x), . . . , fxd(x)).

13.1 Rademacher’s theorem
Suppose that f ∶ U → R (U ⊂ Rd open) is Lipschitz continuous on U ,

then f is differentiable at m-a.e. point in U and ∥∇f∥ ≤Mf,U a.e..

We first prove theorem 1 and then use this to prove theorem d ∀ d ≥ 2.

¶1 Rademacher’s theorem when d = 1

Proof The function f ∶ U → R is absolutely continuous and ¶1 follows
from exercise 11.7(C).

Now fix d ≥ 2.

¶2 ∀ v ∈ Sd−1, for md-a.e. x ∈ Rd,

∃ lim
t→0

f(x + tv) − f(x)

t
=∶Dvf(x) ∈ [−Mf,U ,Mf,U].(⋆v)

Here mk is Lebesgue measure on Rk.

Proof

Set Lv = {tv ∶ t ∈ R} ≅ R and L⊥v ∶= {x ∈ Rd ∶ ⟨x, v⟩ = 0} ≅ Rd−1, then

Rd = Lv ⊕L
⊥
v ≅ Lv ×L

⊥
v .

Define the measures µv on Lv, νv on L⊥v by µv(A) ∶=m1({t ∈ R ∶ tv ∈
A}) and νv ∶=md−1 ○ T −1 where md−1 is Lebesgue measure on Rd−1 and
T ∶ Rd−1 → L⊥v is a linear isometry. Note (!) that νv does not depend
on the isometry T .
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By ¶1, ∀ y ∈ L⊥v , (⋆v) holds at y + x for µv-a.e. x ∈ Lv ∩U .
By Fubini’s theorem, (⋆v) holds q-a.e. on U where

q(A) ∶=
w

L⊥v

µv((A − y) ∩Lv)dνv(y).

To see that q = md, note that by definition q = md ○ S where S ∈
hom(Rd,Rd) is defined by S(x1, . . . , xd) ∶= x1v +T (x2, . . . , xd). Since S
is a linear isometry, ∣detS∣ = 1 and by exercise 6.1 (p. 66), q =m ○ S =
∣detS∣m =m. Thus (⋆v) holds m-a.e. on U . �

¶3 Dvf = ⟨v,∇f⟩ m-a.e. ∀ v ∈ Sd−1.

Proof

● Let g ∶ U → R be C1 and suppose [g ≠ 0] ⊂ U is compact. Since f is
Lipschitz and g is C1 with compact support,

∣f(x+tv)−f(x)t ∣ ≤Mf,U , ∣g(x+tv)−g(x)t ∣ ≤ supz∈Rd ∥∇g(z)∥2 ∀ x ∈ U, t ∈ R with
x + tv ∈ U .

By the bounded convergence theorem,
w

U

Dvfgdm =
w

Rd
Dvfgdm ←Ð

t→0+

w

Rd

f(x + tv) − f(x)

t
g(x)dx

=
w

Rd
f(x)

g(x − tv) − g(x)

t
dx Ð→

t→0+
−
w

Rd
fDvgdm

= −
w

U

fDvgdm.

Since g is C1, Dvg ≡ ⟨v,∇g⟩ and so using the above for e1, . . . , ed,

w

U

Dvfgdm = −
d

∑
k=1

vk
w

U

fDekgdm =
d

∑
k=1

vk
w

U

Dekfgdm =
w

U

⟨v,∇f⟩gdm.

Approximating, we get
r
U
Dvfgdm =

r
U
⟨v,∇f⟩gdm ∀ g ∈ L1(U) whence

¶3. �

Fix Γ ⊂ Sd−1 countable and dense, Γ ⊃ {e1, . . . , ed} and let

UΓ ∶= {x ∈ U ∶ (⋆) holds at x & Dvf(x) = ⟨v,∇f(x)⟩ ∀ v ∈ Γ}.

By ¶2 and ¶3, UΓ is the intersection of countable many sets of full
measure in U and so m(U ∖UΓ ) = 0.

¶4 f is differentiable at each x ∈ UΓ .
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Proof To prove differentiability at x ∈ UΓ , (!) it suffices to show that

sup
v∈Sd−1

∣
f(x + tv) − f(x)

t
− ⟨v,∇f(x)⟩∣Ð→

t→0
0.(')

To see this, fix x ∈ UΓ , ε > 0 and choose Γε ⊂ Γ finite so that Sd−1 =

⋃v∈Γε B(v, ε);

● find δ > 0 so that ∣f(x+tv)−f(x)t − ⟨v,∇f(x)⟩∣ < ε ∀ 0 < ∣t∣ < δ, v ∈ Γε.

We claim that

∣
f(x + tv) − f(x)

t
−⟨v,∇f(x)⟩∣ < (1+M(1+

√
d))ε ∀ 0 < ∣t∣ < δ, v ∈ Sd−1.

Indeed, fix v ∈ Sd−1, then ∃ w ∈ Γε, ∥v −w∥ < ε. For 0 < ∣t∣ < δ∣

∣
f(x + tv) − f(x)

t
− ⟨v,∇f(x)⟩∣ ≤

∣f(x + tv) − f(x + tw)∣

∣t∣
+ ∣⟨v −w,∇f(x)⟩∣ + ∣

f(x + tw) − f(x)

t
− ⟨w,∇f(x)⟩∣

≤ (M + ∥∇f(x)∥)∥v −w∥ + ε

≤ (1 + 2M)ε. �

In the sequel, we’ll need the:

13.2 Uniform differentiation lemma:
Suppose that f ∶ U → R (U ⊂ Rd open) is Lipschitz continuous on

U and let A ∈ B(U), 0 < m(A) < ∞, then ∀ η > 0, ∃ F ⊂ A closed st
m(A ∖ F ) < η and

sup
x∈F, v∈Sd−1

∣
f(x + tv) − f(x)

t
− ⟨v,∇f(x)⟩∣ Ð→

t→0+
0.(♁)

Proof Let δn ∶=
1
n . We claim first that

, ∀ η > 0, ∃ F ⊂ A closed st m(A ∖ F ) < η and

sup
x∈F, v∈Sd−1

∣
f(x + δnv) − f(x)

δn
− fv(x)∣∣ Ð→

n→∞
0(♀)

where fv(x) ∶= ⟨v,∇f(x)⟩.

Proof of ,:
Fix Γ ⊂ Sd−1 countable and dense.

● By (') (see ¶4 in the proof of Rademacher’s theorem),

Φt(x) ∶= sup
v∈Sd−1

∣
f(x + tv) − f(x)

t
− ⟨v,∇f(x)⟩∣ Ð→

t→0+
0

for a.e. x ∈ U .
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● By Egorov’s theorem, ∃ F ⊂ A closed so that m(A ∖ F ) < η and

sup
x∈F

Φδn(x) Ð→n→∞
0.

This is (♀). 2� ,
To complete the proof of (♁) let, for 0 < t < 1, nt ∶= ⌊1

t ⌋, then

δnt ≥ t > δnt+1, δnt ∼ t & 0 ≤ δnt − t ≤
1

n2
t

∼ t2 as t→ 0 + .

Thus

∣f(x + tv) − f(x) − tfv(x)∣ ≤

∣f(x + tv) − f(x + δntv)∣ + ∣f(x + δntv) − f(x) − δntfv(x)∣ + (δnt − t)∣fv(x)∣

≤ 2Mf,U(δnt − t) + δntSnt

≪ t2 + t sup
x∈F

Φδnt(x)

= o(t) as t→ 0. �

Change of variables.

13.3 Lemma (non-singularity of Lipschitz equivalences)
Suppose that U ⊂ Rd is a domain, and that T ∶ U → TU ⊂ Rd is a

Lipschitz equivalence (i.e. both T and T −1 are Lipschitz), then T ∶ U →
TU is non-singular and

M−d
T−1,TU ≤ T ′ ∶=

dm ○ T

dm
≤Md

T,U .

Proof We’ll prove that T ′ ≤ Md
T,U , the other inequality following

from T −1′ ≤Md
T−1,TU

.

It suffices to show that m(TA) ≤ Md
T,Um(A) (A ∈ B(U)). Fix

A ∈ B(U), 0 <m(A) <∞.
If A ⊂ ⋃∞

k=1B(xk, rk), then TA ⊂ ⋃∞
k=1B(Txk,Mrk), whence

m(TA) ≤
∞

∑
k=1

m(B(Txk,Mrk)) =M
d
∞

∑
k=1

m(B(xk, rk)).

By Vitali’s covering theorem,

m(A) = inf {
∞

∑
k=1

m(B(xk, rk)) ∶ A ⊂
∞

⋃
k=1

B(xk, rk)}.

Thus m(TA) ≤Mdm(A). �
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By the lemma, ∃ T ′ ∶ U → [M−d,Md] (the Radon-Nikodym derivative
of T ) so that m(TA) =

r
A
T ′dm (A ∈ B(U)). It follows from the chain

rule for RN derivatives (ex. 7.2.(ii)) that

● If U, V ⊂ Rd are open, and A ∶ U → V, B ∶ V → Rd are Lipschitz
equivalences, then so is B ○A and (B ○A)′ = B′ ○A ⋅A′.

Write T = (T1, . . . , Td). By Rademacher’s theorem, each Tk is differ-
entiable a.e. on UT ∈ B(U), m(U ∖UT ) = 0.

Define DT ∶ UT → hom(Rd,Rd) by DT (x)i,j ∶= (Ti)xj(x), then T is
differentiable at each x ∈ UT in the sense that

∥T (x + h) − T (x) −DT (x)h∥ = o(∥h∥) as h→ 0.

13.4 Lemma (chain rule for Lipschitz equivalences)

Suppose that U, V ⊂ Rd are open, and A ∶ U → V, B ∶ V → Rd are
Lipschitz equivalences, then

(a) so is B ○A;

U0 ∶= {x ∈ U ∶ A is diffble at x & B is diffble at A(x)}(b)

has full measure in U ;

(c) D(B ○A)(x) =DB(A(x))DA(x) ∀ x ∈ U0.

Proof By non-singularity the set

U0 ∶= {x ∈ U ∶ A is diffble at x} ∩A−1{y ∈ V ∶ B is diffble at y}

has full measure in U .
Fix x ∈ U0 and ε > 0. Since B is differentiable at A(x), ∃ δ1 > 0 such

that

∥B(A(x) + h) −B(A(x)) −DB(A(x))h∥ ≤ ε∥h∥ ∀ ∥h∥ < δ1.

Since A is differentiable (whence continuous) at x, ∃ δ2 > 0 such that
∀ ∥h∥ < δ2,

∥A(x + h) −A(x) −DA(x)h∥ ≤ ε∥h∥, and ∥A(x + h) −A(x)∥ < δ1.
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It follows that for ∥h∥ < δ2, setting k ∶= A(x + h) −A(x), we have

∥B(A(x + h)) −B(A(x)) −DB(A(x))DA(x)h∥
≤ ∥B(A(x + h)) −B(A(x)) −DB(A(x))k∥ + ∥DB(A(x))(k −DA(x)h)∥
≤ ∥B(A(x) + k) −B(A(x)) −DB(A(x))k∥+

+ ∥DB(A(x))∥ ∥A(x + h) −A(x) −DA(x)h∥
≤ ε(∥k∥ + ∥DB(A(x))∥ ∥h∥)
≤ ε(∥A(x + h) −A(x) −DA(x)h∥ + ∥DA(x)h∥ + ∥DB(A(x))∥ ∥h∥)
≤ ε∥h∥(ε + ∥∣DA(x)∥ + ∥DB(A(x))∥). �

13.5 Change of variables formula for Lipschitz equivalences

Let U ⊂ Rd be open and let T ∶ U → TU be a Lipschitz equivalence, then

T ′ = ∣detDT ∣.([)

Proof It suffices to prove

m(TB(x, r))

m(B(x, r))
Ð→
r→0+

∣detDT (x)∣ for m-a.e. x ∈ U(R)

because, assuming (R), we also have by the Lebesgue differentiation
theorem that for m-a.e. x ∈ U ,

T ′(x) ←Ð
r→0+

1

m(B(x, r)) ∫B(x,r)
T ′dm =

m(TB(x, r))

m(B(x, r))
Ð→
r→0+

∣detDT (x)∣.

Proof of (R)
Let U0 denote the set of points x ∈ U so that

T is diffble at x, T −1 is diffble at Tx.

(T −1)′(Tx) = T ′(x)−1 & DT −1(Tx) =DT (x)−1.

By non singularity and the chain rules for T ′ (exercise 7.6(ii)) and DT
(13.4 above), m(U ∖U0) = 0.

By exercise 5.4(iii)

T ′ = ∣detT ∣ ∀ T ∈ GL(d,R).

where GL(d,R) ∶= {invertible, linear maps ∶ Rd → Rd}.
We claim
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¶3 ∀x ∈ U0, ε > 0,∃ δ > 0 such that ∀ 0 < r < δ,

T (x) +DT (x)B(0, r(1 − ε))
(i)
⊆ TB(x, r)

(ii)
⊆ T (x) +DT (x)B(0, r(1 + ε)).

Proof of ¶3:
Let M ∶= ∥DT (x)∥,∨ ∥DT (x)−1∥.

● ∃ δ > 0 such that

∥T (x + h) − T (x) −DT (x)h∥ <
ε

M
∥h∥ ∀ ∥h∥ < δ.

To see inclusion (ii), let a ∈ TB(x, r), then a = T (x + h) where
∥h∥ ≤ r < δ. We show that ∥DT (x)−1(a − Tx)∥ ≤ r(1 + ε). Indeed,

∥DT (x)−1(a − Tx)∥ = ∥DT (x)−1(T (x + h) − Tx)∥

≤ ∥DT (x)−1(T (x + h) − Tx −DT (x)h)∥ + ∥h∥

≤M∥T (x + h) − Tx −DT (x)h∥ + ∥h∥

< (1 + ε)∥h∥ ≤ r(1 + ε). �(ii)

● ∃ 0 < δ1 < δ st
∥T −1(Tx + k) − x −DT (x)−1k∥ ≤ ε ∥k∥

M ∀ ∥k∥ <Mδ1, whence

∥T −1(Tx +DT (x)h) − x − h∥ ≤ ε∥h∥ ∀ ∥h∥ < δ1.

To see inclusion (i), choose r < δ1, and b ∈ T (x)+DT (x)B(0, r(1− ε)),
then b = Tx +DT (x)h for some ∥h∥ < (1 − ε)r and

∥T −1b − x∥ = ∥T −1(Tx +DT (x)h) − x∥

≤ ∥T −1(Tx +DT (x)h) − x − h∥ + ∥h∥ ≤ (1 + ε)∥h∥

≤ (1 − ε2)r. �(i)

This proves ¶3, whence follows (R) using ¶2. 2�

Steiner symmetrization.
The isodiametric inequality says that the measurable set with

maximum volume among those with given Euclidean diameter is a ball.
A Steiner symmetrization is a transformation of measurable sets
preserving volume and decreasing diameter which is used to prove the
isodiametric inequality.

14.1 Isodiametric inequality9

9
Bieberbach, L. Über eine Extremaleigenschaft des Kreises, Jber. DMV, 24 (1915),

pp. 247-250
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For A ∈ B(Rd),

m(A) ≤m(B(1))(
diamA

2
)d

where B(1) is the unit ball and diam is diameter, both with respect to
∥ ⋅ ∥2.

Steiner symmetrization.
For u ∈ Sd−1, v ∈ Rd let Lu,v ∶ R → Rd be defined by Lu,v(t) ∶= v + tu

and let L(u, v) ∶= Lu,v(R). Define the corresponding linear measure
λu,v ∶ R→ [0,∞] by λu,v(A) ∶=m(L−1

u,vA).
The Steiner symmetrization of A ∈ B(Rd) in the direction u ∈ Sd−1 is

su(A) ∶= {v + tu ∶ v ⊥ u, λu,v(A) > 0, ∣t∣ <
1

2
λu,v(A)}.

For example if u = e1 then u⊥ = {0} ×Rd−1 and

se1(A) ∶= {(t, v) ∶ v ∈ Rd−1, λe1,v(A) =m1(A
v) > ∣t∣}.

Given u ∈ Sd−1, define reflection through u⊥ by Ru ∶ Rd → Rd by Ru(x) ∶=
x − 2⟨x,u⟩u.

For example, Rej(x) = x − 2xjej i.e. Rei(x)j = xj for j ≠ i and
Rei(x)i = −xi.

Note also that Rusu(A) = su(A).

14.2 Steiner symmetrization proposition
Suppose that A ∈ B(Rd)+, then

(o) Usu(A) = sUu(UA) for U ∈ hom(Rd,Rd) an isometry;
(i) su(A) is Lebesgue measurable and m(su(A)) =m(A);
(ii) diam su(A) ≤ diamA;
(iii) if u ⊥ u′ then su(Ru′A) = Ru′su(A).

Proof of(o):
U ○Lu,v(t) = Uv + tUu = LUu,Uv(t) whence

λu,v ○U
−1 =m ○ (U ○Lu,v)

−1 =m ○L−1
Uu,Uv = λUu,Uv
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and, setting a = Uu,

Usu(A) = {Uv + tUu ∶ v ⊥ u, λu,v(A) > 0, ∣t∣ <
1

2
λu,v(A)}

= {b + ta ∶ b ⊥ a, λU−1a,U−1b(A) > 0, ∣t∣ <
1

2
λU−1a,U−1b(A)}

= {b + ta ∶ b ⊥ a, λa,b(UA) > 0, ∣t∣ <
1

2
λa,b(UA)}

= sa(UA) = sUu(UA). 2�

Proof of (i): By (o), WLOG u = e1 ∶= (1,0, . . . ,0). e⊥1 = {0} ×Rd−1

and for v ∈ e⊥1 ,

Le1,v(t) = (t, v), λe1,v(A) =m1(Av)

where Av ∶= {t ∈ R ∶ (t, v) ∈ A}.
By Fubini’s theorem, F ∶ Rd−1 = e⊥1 → [0,∞), F (x) ∶= m(Ax) is

measurable, whence

se1(A) = {(t, x) ∶ x ∈ e⊥1 , ∣t∣ < F (x)}

is measurable.

By Fubini’s theorem,

m(se1(A)) = ∫
e⊥1

m(se1(A)v)dv = ∫
e⊥1

m(Av)dv =m(A). 2�(i)
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Exercise No10

1. Convexity & Jensen’s Inequality. A function f ∶ (a, b) → IR is
called convex if

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) ∀ x, y ∈ (a, b), 0 ≤ α ≤ 1.

(a) Show that if f ∶ (a, b)→ IR is convex, then ∀ a < x < y < z < b,

f(y) − f(x)

y − x
≤
f(z) − f(x)

z − x
≤
f(z) − f(y)

z − y
,

whence f has non-decreasing, one-sided derivatives

f ′±(x) ∶= lim
h→0+

f(x ± h) − f(x)

h
∀ x ∈ (a, b).

Show by example that maybe f ′+(x) ≠ f
′
−(x).

(b) Show that the function f ∶ (a, b)→ IR is convex iff

∀ x ∈ (a, b), ∃ g(y) = αy + β such that

g(x) = f(x), & g(y) ≤ f(y) ∀ y ∈ (a, b).

(c) Prove Jensen’s Inequality:
Let f ∶ (a, b)→ IR be convex, (X,B,m) be a probability space, and

F ∶X → (a, b) be integrable on X, then

f(∫
X
Fdm) ≤ ∫

X
f ○ Fdm.

2. Which inequality?
Let (X,B, µ) and (Y,C, ν) be probability spaces, and let m ∶ B⊗C →

[0,1] be the product measure.
Suppose that f ∶X × Y → [0,∞) is B ⊗ C-measurable, 1 < p <∞ and

for x ∈X define fx ∶ Y → [0,∞) by fx ∶= f(x, y).
Which of the following (if any) is true:

∥f∥Lp(m) ≤
w

X

∥fx∥Lp(ν)dµ(x), or ∥f∥Lp(m) ≥
w

X

∥fx∥Lp(ν)dµ(x) ?

When is there equality?

3. σ-finiteness and separability.
Let (X,B,m) be a measure space.

(i) Show that m is σ-finite iff ∃ f ∈ L1(m), f > 0 a.e..

(ii) Suppose that m is finite. Show that L1(m) is separable (as a
Banach space) iff the measure algebra of (X,B,m) is separable (as in
exercise 3.3).
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4. Clarkson’s parrallelogram inequalities.
Let (X,B,m) be a σ-finite measure space, and let f, g ∈ Lp(m).

Prove that

∥f + g∥pp + ∥f − g∥pp {
≤ 2(∥f∥pp + ∥g∥pp) for p ∈ [1,2],

≥ 2(∥f∥pp + ∥g∥pp) for p ∈ [2,∞),

and that for p ≠ 2, f, g ∈ Lp, there is equality in the relevant inequality
iff fg = 0 a.e..
Hints (i) By convexity, for a > 0, t > 1,

2ta {
< (t − 1)a + (t + 1)a a > 1,

> (t − 1)a + (t + 1)a a < 1.

Set fp(t) ∶= (t− 1)p + (t+ 1)p − 2tp − 2, then fp(1) = 2p − 4 > 0(p > 2) and
< 0 (p < 2). Also f ′p(t) > 0 ∀ t > 1 (p > 2) and f ′p(t) < 0 ∀ t > 1 (p < 2).
Thus fp(t) > 0 ∀ t > 1 (p > 2) and fp(t) < 0 ∀ t > 1 (p < 2).

Week # 11.

Proof of (ii): Assume WLOG that A is closed and bounded and (by
(o)) that u + e1.

Fix ε > 0, x, y ∈ se1(A) with diam se1(A) < ∥x − y∥2 + ε.
Set x′ ∶= (x2, . . . , xd), y′ ∶= (y2, . . . , yd), then (0, x′), (0, y′) ⊥ e1. Set

x ∶= inf {t ∶ (t, x′) ∈ A}, x ∶= sup{t ∶ (t, x′) ∈ A},

y ∶= inf {t ∶ (t, y′) ∈ A}, y ∶= sup{t ∶ (t, y′) ∈ A}.

Suppose (WLOG) that y − x ≥ x − y, then

y − x ≥
1

2
(y − x) +

1

2
(x − y)

=
1

2
(y − y) +

1

2
(x − x)

≥
1

2
m1(Ay′) +

1

2
m1(Ax′)

≥ ∣y1∣ + ∣x1∣ ≥ ∣x1 − y1∣

and

diam se1(A) − ε < ∥x − y∥2

=
√

∥x′ − y′∥2
2 + ∣x1 − y1∣2

≤
√

∥x′ − y′∥2
2 + (y − x)2

= ∥(x,x2, . . . , xd) − (y, y2, . . . , yd)∥2

≤ diam A. 2�(ii)
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Proof of (iii): Note that Ru′ is an isometry, R−1
u′ = Ru′ and if u′ ⊥ u,

then Ru′ ∣u′⊥ ≡ Id. Thus by (o), for u ⊥ u′,

Ru′su(A) = sRu′u(Ru′A) = su(Ru′A). 2�(iii)

Proof of the isodiametric inequality

Set A0 ∶= A, Ai ∶= sei(Ai−1) (1 ≤ i ≤ d), then diam Ad ≤ diam A and
m(Ad) =m(A).

Next Rei ○Rej = Rej ○Rei ∀ i, j whence

RekAk+1 = Reksek+1(Ak) = sek+1(RekAk) = Ak+1 &

by induction, using

RekAk+r+1 = Reksek+r+1(Ak+1) = sek+r+1(RekAk+r) = Ak+r,

we see that RekAd = Ad ∀ 1 ≤ k ≤ d) whence

−Ad = Ad; Ô⇒ Ad ⊆ B(0,
diam Ad

2
) &

m(A) =m(Ad) ≤m(B(1))(
diam Ad

2
)d ≤m(B(1))(

diam A

2
)d. 2�

Hausdorff measures.
Let (X,d) be a metric space. For A ⊂X, let

∣A∣ =diamA ∶= supx,y∈A d(x, y).
A gauge function is a function a ∶ [0,∞) → [0,∞) continuous and
strictly increasing, and satisfying a(0) = 0.

Given a gauge function a, define, for ε > 0, and A ⊂X,

H
(ε)
a (A) ∶= inf{

∞

∑
k=1

a(∣Ak∣) ∶ A ⊂
∞

⋃
k=1

Ak, ∣Ak∣ < ε ∀ k ≥ 1};

H
(ε)
S,a (A) ∶= inf{

∞

∑
k=1

a(∣B(xk, rk)∣) ∶ A ⊂
∞

⋃
k=1

B(xk, rk), rk < ε ∀ k ≥ 1}

It follows that

H
(ε)
a (A) ↑Ha(A), H

(ε)
S,a (A) ↑HS,a(A) as ε ↓ 0.

The set functions Ha, HS,a are known as Hausdorff measure and spher-
ical measure (respectively) on (X,d) with gauge function a.

● Ha ≤HS,a ≤ supt>0
a(2t)
a(t) Ha.

Proof Ha ≤HS,a ∵ the inf is on a supset.

HS,a ≤ supt>0
a(2t)
a(t) Ha ∵ x ∈ A ⊂X Ô⇒ A ⊂ B(x, ∣A∣). �

Note that in ●, one can replace supt>0
a(2t)
a(t) with limε→0+ sup0<t<ε

a(2t)
a(t) .
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Hausdorff measures as measures.
As shown in week 2, for any gauge function a, the Hausdorff measures

Ha, Ha,S ∶ 2X → [0,∞] are metric outer measures

i.e. A,B ⊂X, d(A,B) ∶= infx∈A,y∈B d(x, y) > 0 ⇒ µ(A ∪B) = µ(A) + µ(B),

whence by Caratheodory’s theorem

B(X) ⊂M(Ha) ∩M(Ha,S).

Hausdorff dimension.
Let (X,d) be a metric space. For α > 0, let aα(t) ∶= tα, and let

Hα ∶=Haα on (X,d). Note that if 0 < β < α, then

H
(ε)
aα (A) ≤ εα−βH

(ε)
aβ (A) ∀ ε > 0, A ⊂X,

therefore, for A ⊂X, 0 < β < α,

Hα(A) > 0 ⇒ Hβ(A) =∞, & Hβ(A) <∞ ⇒ Hα(A) = 0.

It follows that

∃ H-dim(A) ∈ [0,∞] ∋ Hα(A) = {
∞ ∀ α < H-dim(A),

0 ∀ α > H-dim(A).

The number H-dim(A) is called the Hausdorff dimension of the set A.

Quasi-isometry of metric spaces and Hausdorff measures.
Let M ≥ 1. A M-quasi-isometry of the metric spaces (X,d) and

(Y, ρ) is a bijection T ∶X → Y satisfying

d(x,x′)

M
≤ ρ(Tx,Tx′) ≤ Md(x,x′) ∀ x,x′ ∈X.

A surjective map is a Lipschitz equivalence iff it is a M -quasi-isometry
for some M ≥ 1.

Quasi-isometry lemma
Suppose that (X,d) and (Y, ρ) are metric spaces, that M ≥ 1 and

that a ∶ [0,∞)→ [0,∞) is a gauge function with a(Mt)
a(t) ≤K ∀ t > 0.

If A ⊂X and T ∶ A→ TA ⊂ Y is an M-quasi-isometry, then

Ha,ρ(TA) =K±1Ha,d(A), HS,a,ρ(TA) =K±1HS,a,d(A).

The proof is straightfoward and standard.

The quasi-isometry lemma will be useful when supt>0
a(Mt)
a(t) → 1 as

M → 1.
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Hausdorff measures on Rd.
Let as(t) ∶= ts (s, t > 0).

Theorem (Norm-spherical measure on Rd)

Let ∥ ⋅ ∥ be a norm on Rd, then HS,ad,∥⋅∥ =
2d

mRd(B(1))mRd where B(r) =

B(0, r) where B(z, r) ∶= {x ∈ Rd ∶ ∥x − z∥ ≤ r}.

Proof Both measures are translation invariant and σ-finite so HS,a,d =
cmRd for some c > 0.

Suppose that A ⊂ ⋃∞
k=1B(zk, rk), then

∞

∑
k=1

(2rk)
d =

2d

m(B(1))

∞

∑
k=1

m(B(zk, rk)) ≥
2dm(A)

m(B(1))

whence c ≥ 2d

m(B(1)) .

Let ε, δ > 0. By the Vitali covering theorem, ∃ disjoint ballsB(xk, rk) (k ≥
1) such that rk < δ andA ⊂ ⊍∞

k=1B(xk, rk) mod m andm(⊍∞
k=1B(xk, rk)∖

A) < ε. It follows that

m(A) + ε >
∞

∑
k=1

m(B(xk, rk))

=m(B(1))
∞

∑
k=1

rdk

≥
m(B(1))

2d
H

(δ)

S,ad,∥⋅∥
(A). �

Round Hausdorff measure Theorem
Let ad(t) ∶= td, then on Rd, HS,ad,∥⋅∥2 =Had,∥⋅∥2.

● In general, if ∥ ⋅ ∥ is a norm on Rd we have that on Rd, HS,ad,∥⋅∥ =
cHad,∥⋅∥ for some 1 ≤ c ≤ 2d.

● Besicovitch showed10 that ∃ A ∈ B(R2) so that HS,a1,∥⋅∥2(A) >
Ha1,∥⋅∥2(A).

Proof of the round Hausdorff measure theorem

Since Had ≤HS,ad =
2d

m(B(1))m, it suffices to show that

m(B(1))

2d
Had ≥m.

10On the fundamental geometrical properties of linearly measurable plane sets of
points; Math. Ann. 98 422-464. (1927)
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Suppose that A ⊂ ⋃∞
n=1An, then by the isodiametric inequality,

m(B(1))
∞

∑
n=1

(
diam An

2
)d ≥

∞

∑
n=1

m(An) ≥m(A).

Thus,

m(B(1))

2d
Had(A) ≥m(A). �

Hausdorff measures on submanifolds and the Area Formula.
The ”surface area formula” says that if U ⊂ R2 and T ∶ U → R3 is

1-1, C1 and regular in the sense that r(DT (x)) = 2 ∀ x ∈ U , then the
surface area of a subset of TU ⊂ R3 is defined in some calculus courses
by

Area (TA) ∶=
w

A

∥
∂T

∂x
×
∂T

∂y
∥2dm (A ∈ B(U)).(^)

● Let k ≤ d. We define k-dimensional “area” in Rd to be

σk = σd,k =
mRk(B(1))

2k
Hak,∥⋅∥2

where ak(t) = tk and B(1) ∶= B∥⋅∥2(0,1). This has the property that

σk(A × {c}) =mRk(A) (A ∈ B(Rk), c ∈ Rd−k.

In this section we prove a generalization of the “surface area formula”.

Lipschitz regularity.

Suppose that k < d, U ⊂ Rk is a domain and T ∶ U → TU ⊂ Rd is a
Lipschitz equivalence (i.e. M -quasi-isometry), then

● by the quasi-isometry lemma, σk(TA) =M±kmRk(A) ∀ U ∈ B(U);

● by Rademacher’s theorem m(U ∖U∇) = 0 where

U∇ ∶= {x ∈ U ∶ T diffble. at x};

● for x ∈ U∇, h ∈ Rk,

∥DT (x)h∥2 ←Ð
t→0+

∥T (x + th) − T (x)∥2

t
= M±1∥h∥2,

whence r(DT (x)) = k.
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Linear Algebra.

Suppose that k ≤ d and that T ∈ hom(Rk,Rd) is regular (i.e. injec-
tive), then T ∗ ○ T ∈ hom(Rk,Rk) is regular and we define the Jacobian

∆(T ) ∶=
√

detT ∗ ○ T ∈ R+. In case k = d, we have ∆(T ) ∶= ∣detT ∣.

The area formula
Suppose that k < d, U ⊂ Rk is a domain and T ∶ U → TU ⊂ Rd is a

Lipschitz equivalence, then

σk(TA) =
w

A

∆(DT )dmRk ∀ A ∈ B(U).

● The area formula generalizes (^): if T ∈ hom(R2,R3) is of
form T (x, y) ∶= xa + yb where a, b ∈ R3, then (!)

∆(T ) ∶=
√

∣det(T ∗T )∣ = ∥a × b∥2.

We first prove the area formula in case T ∈ hom(Rk,Rd). We’ll need
the

Polar decomposition lemma
Suppose that k ≤ d and that T ∈ hom(Rk,Rd) has rank k, then

∃ U ∈ Hom(Rk,Rd) orthogonal and S ∈ Hom(Rk,Rk) symmetric, non-
singular such that T = U ○ S and ∆(S) =∆(T ).

Proof Let C ∶= T ∗ ○ T ∈ Hom(Rk,Rk), then C is symmetric and
positive definite and ∃ an orthonormal basis {zi}ki=1 ⊂ Rk with C(zi) =
λ2
i zi where λi ≠ 0 (1 ≤ i ≤ k).
Now set xj ∶=

1
λj
Tzj ∈ Rd (1 ≤ j ≤ k).

We claim that {xi}ki=1 ⊂ Rd is orthonormal. To see this,

⟨xi, xj⟩ =
1

λiλj
⟨Tzi, T zj⟩ =

1

λiλj
⟨Czi, zj⟩

=
λi
λj

⟨zi, zj⟩ = δi,j ∶= {
0 i ≠ j,

1 i = j.

We claim that the required decomposition is T = U ○ S where Szj ∶=
λjzj, Uzj ∶= xj.

To see that U is orthogonal, ⟨Uzi, Uzj⟩ = ⟨xi, xj⟩ = δi,j.
To see that T = U ○ S,

USzi = λiUzi = λixi =∶ Tzi.
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To see detS2 = detT ∗ ○ T ,

T ∗ ○ T = (U ○ S)∗ ○U ○ S = S∗ ○U∗ ○U ○ S = S2. 2�

Proof of the area formula in case T ∈ hom(Rk,Rd)
By the polar decomposition, T = U ○ S where U ∈ hom(Rk,Rd) is

orthogonal; and S ∈ hom(Rk,Rk) is symmetric with ∆(S) = ∆(T ). It
follows that

σk(TA) =
mRk(B(1))

2k
Hak,∥⋅∥2(TA)

=
mRk(B(1))

2k
Hak,∥⋅∥2(USA)

=
mRk(B(1))

2k
Hak,∥⋅∥2(SA) ∵ U is an isometry;

=mRk(SA) by the norm-spherical and round Hausdorff measure theorems

=∆(S)mRk(A) by the change of variables formula

=∆(T )mRk(A). �

Proof of the area formula in general:

As before, let

U∇ ∶= {x ∈ U ∶ T diffble. at x},

then m(U ∖U∇) = 0.

Suppose that T ∶ U → TU is a M -quasi-isometry, then

● ∥DT (x)h∥2 =M±1∥h∥2 ∀ x ∈ U∇, h ∈ Rk.

Let A ∈ B(U), 0 <m(A) <∞, A ⊂ U∇ and fix ε ∈ (0,1).

● By Luzin’s theorem and the uniform differentiation lemma, ∃ F ⊂ A
closed and η > 0 such that

(i) σk(T (A ∖ F )),
r
A∖F

∆(DT )dm < ε;

(ii) for y, z ∈ F, ∥y − z∥2 ≤ η,

∥DT (y)v −DT (z)v∥2 ≤
ε

2
∥v∥2 ∀ v ∈ Rd, &

∣ log∆(DT (y)) − log∆(DT (z))∣ < ε;

and such that for x ∈ F, ∥h∥ < η:

(iii) ∥T (x + h) − T (x) −DT (x)h∥2 <
ε

2M ∥h∥2 ≤
ε
2∥DT (x)h∥2,

whence (!)

(iv) ∥T (x + h) − T (x)∥2 = (1 ± ε
2)∥DT (x)h∥2.
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● For x ∈ F, y, z ∈ B(x, η) ∩ F ,

∥T (y) − T (z)∥2
(iv)
= (1 ±

ε

2
)∥DT (z)(y − z)∥2

(ii)
= (1 ±

ε

2
)2∥DT (x)(y − z)∥2

= e±2ε∥DT (x)(y − z)∥2.

● Now fix x ∈ F, 0 < δ < η. We claim that

R ∶= T ○DT (x)−1 ∶DT (x)(B(x, δ) ∩ F )→ T (B(x, δ) ∩ F )

is a e2ε-quasi-isometry.

Proof

∥R(DT (x)y) −R(DT (x)z)∥2 = ∥T (y) − T (z)∥2

= e±2ε∥DT (x)y −DT (x)z∥2. 2�

By the quasi-isometry lemma, (ii) and the area formula for linear trans-
formations, ∀ C ∈ B(B(x, δ) ∩ F ),

σk(TC) = σk(RDT (x)C) = e±2kεσk(DT (x)C)

= e±2kε∆(DT (x))m(C)

= e±4kε
w

C

∆(DT )dm.

● Now fix G open, A ⊂ G ⊂ U , m(G ∖ F ) < ε
M .

C ∶= {B(x, δ) ∶ x ∈ F, 0 < δ < η, B(x, δ) ⊂ G}.

● By Vitali’s covering theorem, ∃ Bk = B(xk, rk) ∈ C (k ≥ 1) disjoint
st F ⊂H ∶= ⊍∞

k=1Bk mod mk and

σk(T (G ∖ F )),
w

G∖F

∆(DT )dm < ε.

σk(TF ) =
∞

∑
n=1

σk(T (Bn ∩ F ))

= e±4kε
∞

∑
n=1

w

Bn∩F

∆(DT )dm

= e±4kε
w

F

∆(DT )dm.

We obtain σk(TA) ± ε = e±4kε(
r
A
∆(DT )dm ± ε). The area formula

follows as ε→ 0. 2�
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Exercise No11

1. Hausdorff dimension of the Cantor set.
Let Ω = {0,1}N and let π ∶ Ω → [0,1] be defined by π(ω) ∶= ∑

∞
n=1

2ωn
3n .

The set C ∶= π(Ω) is called the Cantor set.
In this exercise, you show that

H-dim(C) =
log 2

log 3
.

For s > 0, let Hs =Has on R equipped with the metric d(x, y) = ∣x−y∣
where as(t) = ts and let h = log 2

log 3 .

(i) Show that Hh(C) ≤ 1 .
Hint: ∀ n ≥ 1, C ⊂ ⊍ε∈{0,2}n I(ε) where for ε = (ε1, . . . , εn) ∈ {0,1,2}n, I(ε) = [x(ε), x(ε)+
1
3n

], x(ε) = ∑
n
k=1

εk
3k

.

Let P = ∏(1
2 ,

1
2) ∈ P(Ω) be symmetric product measure and define

Cantor-Lebesgue measure µ ∶= P ○ π−1 ∈ P(C).

(ii) Show that µ(I) ≤ 4∣I ∣h for any subinterval I ⊂ [0,1].

(iii) Show that Hh(C) ≥ 1
4 .

(iv) Show that H-dim(C) = h.

2. Cantor-Lebesgue theorem.
In this exercise, you continue the previous exercise and show that

Hh∣C ≡ µ.
The first step is to show that

¶1 Hh(C) = 1
The order of an interval I(ε) is n where ε ∈ {0,1,2}n, and the interval

I(ε) is basic if ε ∈ {0,2}n and complementary otherwise.
Call an interval [a, b] compound-basic if ∃ n,n′ ≥ 1, ε ∈ {0,2}n, ε′ ∈

{0,2}n
′

so that a = x(ε) and b = x(ε′) + 1
3n′

.

a) Show that if I ⊂ [0,1] is a compound-basic interval, then
I ∩ C = ⊍Nn=1 I(ε

(n)) ∩ C where I(ε(1)), . . . , I(ε(N)) are basic intervals
(not necessarily of the same order).

We’ll need such a decomposition together with ∣I ∣h ≥ ∑
N
n=1 ∣In∣

h.

b) For I ⊂ [0,1] a compound-basic interval, let #(I) be the minimal
N ≥ 1 so that I ∩C = ⊍Nn=1 In where I1, . . . , IN are basic intervals. Show
that a compound-basic interval I is basic iff #(I) = 1.

c) Show that if I = [a, d] ⊂ [0,1] is a compound-basic interval with
#(I) > 1, I ∩ C = (J ∪ K) ∩ C where J = [a, b] and K = [c, d] are
compound-basic intervals with #(J), #(K) < #(I) and [b, c] is a
complementary interval with c − b ≥ (b − a), (d − c). Show that in this
case ∣I ∣h ≥ ∣J ∣h + ∣K ∣h.
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Hint: Choose a complementary interval of maximal length contained in I....

d) Show that if I ⊂ [0,1] is a compound-basic interval, then ∃ I1, . . . , IN
basic intervals so that I ∩C = ⊍Nn=1 In ∩C and ∣I ∣h ≥ ∑

N
n=1 ∣In∣

h.
Hint: Use c) successively to reduce #(⋅).

e) Show that if I ⊂ [0,1] is a compound-basic interval, then ∀ k ≥ 1
large enough, I ∩C = ⊍

Nk
n=1 In(k) ∩C where I1(k), . . . , INk(k) are basic

intervals of order k and ∣I ∣h ≥ ∑
Nk
n=1 ∣In(k)∣

h.
Hint: If I = [a, d] is basic of order ν then I∩C = (J ∪K)∩C where J = [a, b] and K = [c, d]

are basic of order ν + 1, b − a = c − b = d − c and ∣I ∣h = ∣J ∣h + ∣K ∣
h.

f) Show that if I1, I2, . . . are intervals, C ⊂ ⋃∞
k=1 Ik, then ∑

∞
k=1 ∣Ik∣

h ≥ 1.
Conclude that Hh(C) = 1.
Hint: Show first that WLOG, there are only finitely many Ik’s and that (WLOG) these

are compound-basic. Then ”split” using e).

¶2 Hh∣C = µ.

a) Show that Hh(C ∩ I(ε)) = 1
2n ∀ n ≥ 1, ε ∈ {0,2}n.

Hint: ϕε(C) = I(ε) ∩C ∀ ε ∈ {0,2}n where ϕε(y) ∶= x(ε) +
y
3n

.

b) Show that Hh(A) = µ(A) ∀ A ∈ B(C).

End of coursenotes
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