
DISTRIBUTIONAL LIMITS FOR HYPERBOLIC,

INFINITE VOLUME GEODESIC FLOWS

Jon Aaronson and Manfred Denker

1. Geodesic flows on surfaces of constant negative curvature.

Let H denote the two-dimensional hyperbolic space and ϕt (t ∈ IR) the geodesic
flow on H × TT , where TT is the natural identification of directions. Throughout
this note we work with the model of the Poincaré disk instead of the Poincaré
upper half-plane (sometimes also called the Lobachevsky plane). So we consider
H = {z ∈ CI : |z| < 1}.

Let Γ be a discrete group of isometries of H, and let H/Γ denote the surface
defined by Γ equipped with the metric induced by the hyperbolic metric ρ (see
[Be]). The space of line elements of H/Γ is XΓ := (H/Γ)× TT = (H × TT )/Γ (also
equipped with the induced metric) and the geodesic flow transformations on XΓ

are defined by
ϕtΓΓ(ω) = Γϕt(ω).

We consider the measure m =hyperbolic area × normalised Lebesgue measure on
H × TT and the corresponding induced measure mΓ on (H/Γ)× TT .

For a compact surface the dynamical system (H/Γ, (ϕtΓ)t∈IR) is an Anosov system
([An1], [An2]), the measure mΓ is finite and ϕΓ is a Bernoulli flow. This is proven
by using the existence of expanding and contracting flow invariant foliations (also
used by Anosov and Sinai to show that ϕΓ is a K-flow (cf. [An2])) and applying
the Ornstein isomorphism theory (Ornstein, Weiss [O-W]). Here we are mainly
interested in the non-compact case and our result holds for conservative geodesic
flows ϕΓ. The following characterisation of these dynamical systems is given in the
work of Hopf and Tsuji (cf. [Ho1], [Ho2], [Ts1] and [Ts2]), which uses methods
from potential theory.

Theorem HT.
The geodesic flow ϕΓ is either totally dissipative, or conservative and ergodic.
The geodesic flow is conservative iff∑

γ∈Γ

e−ρ(x,γy) =∞.
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A new formulation of these conditions in terms of Brownian motion has been
given by Sullivan (see [Su]).

The series
∑
γ∈Γ e

−ρ(x,γy) is called the Poincaré series. The asymptotic Poincaré
series is defined by

aΓ(x, y; t) :=
∑

γ∈Γ;ρ(x,γy)≤t

e−ρ(x,γy) =

∫ t

0

aΓ(x, y; ds),

where aΓ(x, y; ·) denotes the distribution function of the measure on IR putting
mass |{γ ∈ Γ : ρ(x, γy) = s}| exp[−s] on the point s ∈ IR. The asymptotic Poincaré
series is up to asymptotic equivalence independent of x and y and denoted by aΓ(t).
Here we use aΓ(ds) = aΓ(0, 0, ds). For surfaces H/Γ of finite volume, the Poincaré
series always diverges, and indeed, aΓ(t) ∝ t (as can be deduced from the ergodic
theorem). There are also surfaces of infinite volume with divergent Poincaré series,
and the following theorem is shown in [A-S]:

Theorem AS. Any conservative geodesic flow ϕΓ is rationally ergodic with return
sequence proportional to aΓ(t).

In fact, the proportionality factor turns out to be 8π, when the specific measure
dA×dθ (as introduced above) is used. This can be deduced from our proofs below.
The proof of the theorem relies on the estimate

∀ x, y ∈ H/Γ, ε > 0, ∃ M ≥ 0

0 ≤
∫

∆(y,ε)

St(1∆(x,ε))
2dmΓ ≤M

(∫
∆(y,ε)

St(1∆(x,ε))dmΓ

)2

∀ t > 0,

where ∆(z, ε) is defined as below. In this note, we prove an extension of this
estimate for p-th moments, and this provides the distributional limit theorem:

Theorem AD. Let ϕΓ be a conservative geodesic flow, whose return sequence a(t)
is regularly varying with index α ∈ [0, 1]. Then for any f ∈ L1

+(mΓ) the sequence
St(f)/a(t) converges in distribution to a random variable Yα

∫
XΓ

f dmΓ where

St(f) :=

∫ t

0

f ◦ ϕsΓds,

and Yα has the Mittag-Leffler distribution of order α given by

E
(
exp(zYα)

)
=

∞∑
n=0

Γ(1 + α)nzn

Γ(1 + αn)

for z ∈ CI when 0 < α ≤ 1 and for |z| < 1 when α = 0.

Here, convergence in distribution means that for any bounded continuous func-
tion g : [0,∞]→ IR and any probability measure q � m, we have∫

XΓ

g

(
St(f)

a(t)

)
dq → E(g(YαmΓ(f)))
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as t→∞ where mΓ(f) =
∫
X
f dmΓ.

The theorem is applicable to Abelian covers of compact surfaces. It follows from
estimations of numbers of closed geodesics that aΓ(t) ∝

√
t when H/Γ is a ZZ-cover

of a compact surface, and that aΓ(t) ∝ log t when H/Γ is a ZZ2-cover of a compact
surface (see [Ad-S], [Ph-S], [La], [Po-S]).

The proof of the theorem uses the method of Darling-Kac [D-K], (see also [Aa]).
To our knowledge, this is the first attempt to apply this method in the absence of
some convenient Frobenius-Perron operator.

2. Preliminaries from hyperbolic geometry and geodesic flows.

Consider the hyperbolic space H := {z ∈ CI : |z| < 1} equipped with the
arclength

ds(u, v) := 2

√
du2 + dv2

1− u2 − v2
,

and the area

dA(u, v) := 4
dudv

(1− u2 − v2)2
.

The hyperbolic distance (cf. [Be]) between x, y ∈ H is denoted by

ρ(x, y) = inf {
∫
γ

ds : γ is an arc joining x and y} = 2 tanh−1 |x− y|
|1− xy|

.

Note that with this metric H/Γ has curvature −1, while the metric used in [A-S]
gives curvature −4.

For x ∈ H, and ε > 0, set

Nρ(x, ε) = {y ∈ H : ρ(x, y) < ε}, ∆(x, ε) := Nρ(x, ε)× TT.

Consider the angle set subtended by Nρ(y, ε) at 0 /∈ Nρ(y, ε),

Λ(y, ε) := {θ ∈ [0, 2π] : ∃ r ∈ (0, 1) 3 ρ(y, reiθ) < ε}.

We note that

(1) Λ(y, ε) = {θ ∈ [0, 2π] : ‖θ − arg y‖ < sin−1

(
(1− |y|2) tanh ε

2

|y|(1− tanh2 ε
2 )

)
},

where ‖θ‖ := θ ∧ (2π − θ) θ ∈ [0, 2π).
In order to see this, let δ = tanh ε

2 . Then

Nρ(y, ε) = B

(
(1− δ2)y

1− δ2|y|2
,
δ(1− |y|2)

1− δ2|y|2

)
where B(x, r) is the Euclidean ball of radius r,

B(x, r) = {y ∈ CI : |x− y| < r}.
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We’ll write

‖Λ(y, ε)‖ = 2 sin−1

(
(1− |y|2) tanh ε

2

|y|(1− tanh2 ε
2 )

)
∼

2(1− |y|2) tanh ε
2

1− tanh2 ε
2

as |y| → 1.

We also need the following fact: Suppose that x, y ∈ H, |y| > |x|, and ‖ arg y −
arg x‖ = θ, then

(2) ρ(0, y) ≥ ρ(0, x) + ρ(x, y)− 2θ

1− |x|2
.

This can easily be seen as follows: Let x′ ∈ H, |x′| = |x|, and arg x′ = arg y, then

ρ(0, y) = ρ(0, x′) + ρ(x′, y) ≥ ρ(0, x) + ρ(x, y)− ρ(x′, x),

and clearly

ρ(x′, x) ≤ 2θ

1− |x|2
.

Finally, we mention a last evident fact:

(3) A(N(x, ε)) ∼ πε2 as ε→ 0.

3. Proof of the theorem

Let A ∈ B(XΓ), p ≥ 1 and t > 0. Define aA(p, t) : XΓ → IR+ by

aA(p, t) =

∫
...

∫
0<t1<...<tp<t

p∏
ν=1

1A ◦ ϕtνΓ dt1 . . . dtp.

Then
(St(1A))p = p!aA(p, t),

and

aA(p+ 1, t)(ω) =

∫ t

0

1A(ϕsΓω)aA(p, t− s)(ϕsΓω)ds.

Set

aA(p, t) =

∫
A

aA(p, t)dmΓ,

and, for λ > 0,

uA(p, λ) =

∫ ∞
0

aA(p, t)e−λtdt

uA(p, λ) =

∫ ∞
0

aA(p, t)e−λtdt.

In case A = ∆(x, ε) = Nρ(x, ε) × TT we shall omit the index A. Also note that in
this case (see [A-S] or the proof of the Geometric Lemma below)

a∆(1, t) ∼ 8πA(N)2aΓ(t).

Our goal is the
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Main Lemma.

(4) ∃M > 0 3 ∀t > 0, p ≥ 1 a∆(p, t) ≤MpaΓ(t)p

and

(5) u∆(p, λ) ∼ 1

λ
u(λ)pmΓ(∆)p+1 as λ→ 0 ∀ p ∈ IN

where u(λ) = 1
mΓ(∆)2

∫∞
0
mΓ(∆ ∩ ϕ−tΓ ∆)e−λtdt.

We first show how Theorem AD is obtained from the Main Lemma.

Proof of Theorem AD. Since aΓ(t) is regularly varying, it has a representation
aΓ(t) = tαL(t) for some α > 0 and some slowly varying function L. An application
of Karamata’s Tauberian theorem to the Laplace transform in (5) (as in the proof
of theorem 1 in [D-K]) shows for p ≥ 1∫

∆

(
St(1∆)

)p
dmΓ ∼ mΓ(∆)p+1p!

Γ(1 + α)p

Γ(1 + pα)
aΓ(t)p

as t→∞. Since the bound in (4) is uniform over p we have∫
∆

ezSt(1∆)a−1
Γ

(t)dmΓ =

∞∑
p=0

1

p!

∫
∆

(
zSt(1∆)a−1

Γ (t)

)p
dmΓ

→ mΓ(∆)

∞∑
p=0

zpmΓ(∆)p
Γ(1 + α)p

Γ(1 + pα)
= mΓ(∆)E(exp(zYα)).

The proof of the Main Lemma follows from the following two facts:

Geometric Lemma. Let x ∈ H. There is a function η(ε)→ 0 as ε→ 0 such that
for every ε > 0, p ≥ 1 and all t sufficiently large

a(p+ 1, t) = e±η(ε)8πmΓ(∆)

∫ t

0

a(p, t− s)aΓ(ds),

where ∆ = ∆(x, ε).

The lemma can be strengthened to the following form: ∀ε > 0, p ≥ 1, t > 0

a(p+ 1, t) = e±η(ε)e±κ(t)8πmΓ(∆)

∫ t

0

a(p, t− s)aΓ(ds),

where κ(t)→ 0 as t→∞.

Probabilistic Lemma. Let ε0 > 0, and let ∆ = ∆(x, ε0). Then for A ∈ B(XΓ)∩∆
and p ≥ 1 ∫

A

uA(p, λ)dmΓ ∼
mΓ(A)p+1

mΓ(∆)p+1

∫
∆

u∆(p, λ)dmΓ

as λ→ 0.
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Proof of the Main Lemma. (4) follows immediately from an iterated application of
the Geometric Lemma.

In particular, choosing A = N(x, ε′)× TT for ε′ small,

uA(p+ 1, λ) = e±η(ε′)8πmΓ(A)

∫ ∞
0

∫ t

0

aA(p, t− s)e−λtaΓ(ds)dt

= e±η(ε′)8πmΓ(A)

∫ ∞
0

∫ ∞
0

aA(p, r)e−λ(r+s)aΓ(ds)dr

= e±η(ε′)8πmΓ(A)uA(p, λ)

∫ ∞
0

e−λsaΓ(ds).

Iterating this estimate gives

uA(p, λ) = e±pη(ε′)mΓ(A)puA(0, λ)

(
8π

∫ ∞
0

e−λsaΓ(ds)

)p
.

By the Probabilistic Lemma,

u(p, λ) ∼ mΓ(∆)p+1

mΓ(A)p+1
uA(p, λ)

= e±pη(ε′)mΓ(∆)p+1

mΓ(A)
uA(0, λ)

(
8π

∫ ∞
0

e−λsaΓ(ds)

)p
.

The lemma now follows from∫ ∞
0

e−λtaΓ(dt) = λ

∫ ∞
0

aΓ(t)e−λtdt

∼ λ

8πmΓ(∆)2

∫ ∞
0

∫ t

0

m(∆ ∩ φ−sΓ (∆))dse−λtdt

=
1

8πmΓ(∆)2

∫ ∞
0

m(∆ ∩ φ−sΓ (∆))e−λsds

and

uA(0, λ) =

∫ ∞
0

a(0, t)e−λtdt = mΓ(∆)

∫ ∞
0

e−λtdt.

4. Proof of the Geometric Lemma.

For γ ∈ Γp (resp. t ∈ IRp) we denote its coordinates by γk (resp. tk), k = 1, ..., p.
For t ∈ IR+ define

Ip(t) = {t ∈ IRp : 0 < t1 < ... < tp < t}.

Let ε > 0 be fixed and N = ∆× TT as before, where ∆ = ∆(x, ε). We assume ε to
be sufficiently small.
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First observe that

a(p, t) =

∫
∆

a(p, t)dmΓ

=

∫
∆

∫
Ip(t)

p∏
ν=1

1∆ ◦ ϕtνΓ dtdmΓ

=
∑
γ∈Γp

∫
∆

∫
Ip(t)

p∏
ν=1

1γν∆ ◦ ϕtνdtdm

=
∑
γ∈Γp

∫
N

∫ 1

0

∫
Ip(t)

p∏
ν=1

1γνN×TT ◦ ϕtν (z, θ)dtdθdA(z).

Set

ψp(t, z) =
∑
γ∈Γp

∫ 1

0

∫
Ip(t)

p∏
ν=1

1γνN×TT ◦ ϕtν (z, θ)dtdθ

=
∑
γ∈Γp

∫ 1

0

∫
Ip(t)

p∏
ν=1

1ϕ−1
z γνN

(tanh tνe
iθ)dtdθ

=

∫ 1

0

∫
Ip(t)

∑
γ∈Γp

p∏
ν=1

1ϕ−1
z γνN

(tanh tνe
iθ)dtdθ,(6)

so a(p, t) =
∫
N
ψp(t, z)A(dz).

Next consider

Γ0 := {γ ∈ Γp :

∫ 1

0

∫
Ip(t)

p∏
ν=1

1ϕ−1
z γνN

(tanh tνe
iθ)dtdθ > 0}.

Since ε is so small so that {γN}γ∈Γ are disjoint and since ϕz is ρ-preserving, it
follows that if (γ1, . . . , γp) ∈ Γ0, then

ρ(γk+1(x), z) ≥ ρ(γk(x), z) ∀ 1 ≤ k ≤ p− 1,

Denote Λγ = Λ(ϕ−1
z γ(x), ε), the angle set subtended by ϕ−1

z γN at 0, then by
(1),

‖Λγ‖ ∼ 2ε(1− |ϕ−1
z γ(x)|2) as γ →∞, and ε→ 0.

Set

Γ±p := {γ = (γ1, ..., γp) ∈ Γp : ρ(γk+1(x), z) ≥ ρ(γk(x), z),

‖ argϕ−1
z γk(x)− argϕ−1

z γk+1(x)‖ ≤
‖Λγk‖ ± ‖Λγk+1

‖
2

∀ 1 ≤ k ≤ p− 1}.

We claim that
Γ−p ⊆ Γ0 ⊆ Γ+

p .
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Clearly, if (γ1, . . . , γp) ∈ Γ0, then

p⋂
k=1

Λγk 6= ∅,

and hence for 1 ≤ k ≤ p− 1,

‖ argϕ−1
z γk(x)− argϕ−1

z γk+1(x)‖ ≤
‖Λγk‖+ ‖Λγk+1

‖
2

.

On the other hand, if γ = (γ1, . . . , γp) ∈ Γ−p , then all balls φ−1
z γνN lie in the shadow

of the first ball (ν = 1), and hence γ ∈ Γ0.
Setting, for p ≥ 1, t = (t1, ..., tp), 0 < t1 < ... < tp,

Γ0(t) = {γ = (γ1, ..., γp) ∈ Γ0 : |ρ(z, γk(x))− tk| ≤ ε ∀k}
Γ±p (t) = {γ = (γ1, ..., γp) ∈ Γ±p : |ρ(z, γk(x))− tk| ≤ ε ∀k}

we have from (6) that

ψp(t, z) =

∫ 1

0

∫
Ip(t)

∑
γ∈Γ0(t)

p∏
ν=1

1ϕ−1
z γνN

(tanh tνe
iθ)dtdθ.

It follows that
ψ−p (t, z) ≤ ψp(t, z) ≤ ψ+

p (t, z),

where

ψ±p (t, z) =

∫ 1

0

∫
Ip(t)

∑
γ∈Γ±p (t)

1ϕ−1
z γpN

(tanh tpe
iθ)dtdθ.

For β ∈ Γ, let

Γ±(β) ={γ ∈ Γ : ρ(z, γ(x)) ≥ ρ(z, β(x))− ε,

| argϕ−1
z γ(x)− argϕ−1

z β(x)| < ‖Λβ‖ ± ‖Λγ‖
2

}.

It follows that for t′ = (t1, ..., tp−1), t = (t1, ..., tp), 0 < t1 < ... < tp

Γ±p (t) := {γ ∈ Γp : (γ1, ..., γp−1) ∈ Γ±(t′), γp ∈ Γ±(γp−1), |ρ(z, γp(x)− tp| ≤ ε}.

Next

ψ±p (t, z) =

∫ 1

0

∫
Ip(t)

∑
γ∈Γ±p (t)

1ϕ−1
z γpN

(tanh tpe
iθ)dtdθ

=

∫
Ip−1(t)

∑
γ∈Γ±

p−1
(t′)

∫ 1

0

∫ tanh t

tanh tp−1

∑
γ∈Γ±(γp−1)

|ρ(z,γ(x))−tanh−1 r|≤ε

1ϕ−1
z γN (reiθ)

drdθ

1− r2
dt′

∼
∫
Ip−1(t)

∑
γ∈Γ±

p−1
(t′)

∫
Nρ(0,t)\Nρ(0,tp−1)

1− |ω|2

4|ω|
∑

γ∈Γ±(γp−1)

1ϕ−1
z γN (ω)dA(ω)dt′

∼ A(N)

∫
Ip−1(t)

∑
γ∈Γ±

p−1
(t′)

∑
γ∈Γ±(γp−1)

ρ(z,γ(x))≤t±ε

e−ρ(z,γ(x))dt′

=: A(N)Φ±p (t, z).
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The inductive step on Φ±p is (with t′′ = (t1, ..., tp−2))

Φ±p (t, z) =

∫
Ip−1(t)

∑
γ∈Γ±

p−1
(t′)

∑
γ∈Γ±(γp−1)

ρ(z,γ(x))≤t±ε

e−ρ(z,γ(x))dt′

=

∫
Ip−2(t)

∑
γ∈Γ±

p−2
(t′′)

(∫ t

tp−2

∑
β∈Γ±(γp−2)

ρ(z,|β(x))−τ|≤ε

∑
γ∈Γ±(β))

ρ(z,γ(x))≤t±ε

e−ρ(z,γ(x))dτ

)
dt′′

∼ 2ε

∫
Ip−2(t)

∑
γ∈Γ±

p−2
(t′′)

( ∑
β∈Γ±(γp−2)

ρ(z,β(x))≤t±ε

∑
γ∈Γ±(β))

ρ(z,γ(x))≤t±ε

e−ρ(z,γ(x))

)
dt′′.

Fixing β ∈ Γ, we have∑
γ∈Γ±(β))

ρ(z,γ(x))≤t±ε

e−ρ(z,γ(x)) =
∑

κ∈β−1Γ±(β))
ρ(z,βκ(x))≤t±ε

e−ρ(z,βκ(x))

∼ e−ρ(z,β(x))
∑

κ∈β−1Γ±(β))
ρ(x,κ(x))≤t−ρ(z,β(x)±2ε

e−ρ(x,κ(x))

by (2).
Let β ∈ Γ and Ω(β) denote the interval in S1 such that for ξ ∈ Ω(β) the ray

β−1(0)ξ intersects β−1Nρ(β(x), ε). It is easily seen that

(7) β−1Γ±(β) ∼ {γ ∈ Γ : arg γ(x) ∈ Ω(β)} where |Ω(β)| → θ(ε) as |β(x)| → 1,

where 2π|Ω(β)| denotes the arc length of Ω(β) and where (this can be deduced
from cosh(ε) = 2/|ξ − η| where ξ, η are the endpoints of a geodesic tangent to the
geodesic ball of radius ε and center 0)

(8) θ(ε) ∼ 4ε as ε→ 0.

It has been shown in [A-S], that for a suitable measure µ on H/Γ

1

aΓ(t)

∫ t

0

1Nρ(z,ε)×TT (y, ·) ◦ ϕ−sds→ µ(N)

weakly in L2(TT ). By standard arguments it follows from this that

µ(N)aΓ(t)|I| ∼
∫
I

St(1∆)dt

∼
∑

γ:arg(γ)∈I±ε;ρ(0,γ(0))≤t

1

4
(1− |γ(0)|2)µ(N).

Therefore ∑
κ∈β−1Γ±(β))

ρ(x,κ(x))≤t−ρ(z,β(x))±2ε

e−ρ(x,κ(x)) ∼ |Ω(β)|aΓ(t− ρ(z, β(x))± 2ε).

∑
κ∈γ−1

p−2
Γ±(γp−2))

ρ(x,κ(x))≤t−ρ(z,β(x)±2ε

e−ρ(x,κ(x)) ∼ |Ω(γp−2)|aΓ(t− ρ(z, β(x))± 2ε).(9)
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Using (3), (7)–(9) we obtain (with ρ0 = ρ(z, β(x)))

Φ±p (t, z)

= 2ε

∫
Ip−2(t)

∑
γ∈Γ±

p−2
(t′)

( ∑
β∈Γ±(γp−2)

ρ0≤t±ε

e−ρ0 |Ω(β)|aΓ(t− ρ0 ± 2ε)

)
dt′′

∼ 8ε2
∫
Ip−2(t)

∑
γ∈Γ±

p−2
(t′)

( ∑
β∈Γ±(γp−2)

ρ0≤t±ε

e−ρ0aΓ(t− ρ0 ± 2ε)

)
dt′′

∼ 2ε

∫
Ip−2(t)

∑
γ∈Γ±

p−2
(t′)

∑
κ∈γ−1

p−2
Γ±(γp−2)

ρ(x,κ(x))≤t−ρ0±ε

e−ρ(x,κ(x))
∑
β′

e−ρ(x,γ
−1
p−2

β′(x))dt′′

= 8ε2mΓ(∆)−1

∫ t

0

a(p− 1, t− s)aΓ(ds),

where ∑
β′

e−ρ(x,γ
−1
p−2

β′(x)) =
∑

γ
−1
p−2

β′∈γ−1
p−2

Γ±(γp−2)

ρ(x,γ
−1
p−2

β′(x))≤t−ρ(x,g−1
p−2

(z))±ε

e−ρ(x,γ
−1
p−2

β′(x)).

The lemma follows from mΓ(∆) = A(N) ∼ πε2 (see (3)).

5. Proof of the Probabilistic Lemma.

To prove this, we first show for ∆ := Nρ(x, ε)× TT that

(10) ∃ Mp 3
∫

∆

u∆(p, λ)2dmΓ ≤Mp

(∫
∆

u∆(p, λ)dmΓ

)2

∀ λ > 0.

To see this, we note that∫
∆

u∆(p, λ)2dmΓ =

∫
∆

∫ ∞
0

∫ ∞
0

a(p, s)a(p, t)e−λse−λtdsdtdmΓ

=

∫ ∞
0

∫ ∞
0

(∫
∆

a(p, s)a(p, t)dmΓ

)
e−λse−λtdsdt.

Using the Geometric Lemma we have

∫
∆

a(p, s)a(p, t)dmΓ ≤
(∫

∆

a(p, s)2dmΓ

) 1
2
(∫

∆

a(p, t)2dmΓ

) 1
2

= p!−2

√∫
∆

S2p
s dmΓ

∫
∆

S2p
t dmΓ =

(2p)!

p!2

√
a(2p, s)a(2p, t)

≤MpaΓ(s)paΓ(t)p ≤M ′p
∫

∆

a(p, s)dmΓ

∫
∆

a(p, t)dmΓ.
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Substituting in the above gives (10).
It suffices to show that for A ∈ B, A ⊂ ∆,

(11)
uA(p, λ)∫

∆
u∆(p, λ)dmΓ

−→
λ→0

mΓ(A)p

mΓ(∆)p+1
weakly in L2(∆).

We begin by showing this for A = ∆. Using (10), we get that for fixed p ≥ 1

(12) sup
λ>0

∥∥∥∥ u∆(p, λ)∫
∆
u∆(p, λ)dmΓ

∥∥∥∥
L2(∆)

<∞.

Given λk → 0, ∃ a subsequence λ′k → 0 and h ∈ L2(∆) such that

u∆(p, λ′k)∫
∆
u∆(p, λ′k)dmΓ

−→
k→∞

h,

and ∃ a further subsequence λ′′k → 0 such that∣∣∣∣∫
∆

(
u∆(p, λ′′k)∫

∆
u∆(p, λ′′k)dmΓ

− h
)(

u∆(p, λ′′` )∫
∆
u∆(p, λ′′` )dmΓ

− h
)
dmΓ

∣∣∣∣ < 1

2`
∀ k < `,

whence

1

N

N∑
k=1

(
u∆(p, λ′′k)∫

∆
u∆(p, λ′′k)dmΓ

− h
)
→ 0 a.e. as N →∞,

and

1

N

N∑
k=1

u∆(p, λ′′k)∫
∆
u∆(p, λ′′k)dmΓ

→ h a.e. as N →∞.

The set on which this convergence takes place is clearly ϕΓ-invariant, and h is also
ϕΓ-invariant, whence the convergence is a.e. on XΓ, and h is constant. Since,
clearly

∫
∆
hdmΓ = 1, we have that h = 1

mΓ(∆) .

Now fix A ∈ B, A ⊂ ∆. By the ratio theorem

(13)
uA(p, λ)

u∆(p, λ)
−→
λ→0

mΓ(A)p

mΓ(∆)p
a.e.

Also, we have, by (12) that

sup
λ>0

∥∥∥∥ uA(p, λ)∫
∆
u∆(p, λ)dmΓ

∥∥∥∥
L2(∆)

≤ sup
λ>0

∥∥∥∥ u∆(p, λ)∫
∆
u∆(p, λ)dmΓ

∥∥∥∥
L2(∆)

<∞,

whence, as above, ∀ λk → 0, ∃ a subsequence λ′k → 0 and h ∈ L2(∆) such that

1

N

N∑
k=1

uA(p, λ′k)∫
∆
u∆(p, λ′k)dmΓ

→ h a.e. as N →∞.

Note that λ′k → 0 can be chosen so that in addition,

1

N

N∑
k=1

u∆(p, λ′k)∫
∆
u∆(p, λ′k)dmΓ

→ 1

mΓ(∆)
a.e. as N →∞,
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whence, by (13)

h =
mΓ(A)p

mΓ(∆)p+1
.
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Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 261-304.

[Ho2] E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative
curvature, Bull. Am. Math. Soc. 77 (1971), 863-877.

[La] S. Lalley, Closed geodesics in homology classes on surfaces of variable negative
curvature, Duke Math. J. 58 (1989), 795-821.

[O-W] D. Ornstein, B. Weiss, Geodesic flows are Bernoullian, Isr. J. Math. 14 (1973),

184–198.
[Ph-S] R. Phillips, P. Sarnak, Geodesics in homology classes, Duke Math. J. 55 (1987),

287-297.

[Po-S] M. Pollicott, R. Sharp, Orbit counting for some discrete groups acting on simply
connected manifolds with negative curvature, Invent. Math. 117 (1994), 275-304.

[Su] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Publ.

Math. IHES 50 (1979), 171-202.
[Ts1] M. Tsuji, Some metrical theorems in Fuchsian groups, Kodai Math. Sem. Reports

(1950), 89–93.

[Ts2] M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd, Tokyo,
1959.

Aaronson: School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv,

Israel.

Denker: Institut für Mathematische Stochastik, Universität Göttingen, Lotzestr.
13, 37083 Göttingen, Germany

E-mail address: denker@namu01.gwdg.de


