DISTRIBUTIONAL LIMITS FOR HYPERBOLIC, INFINITE VOLUME GEODESIC FLOWS

Jon Aaronson and Manfred Denker

1. Geodesic flows on surfaces of constant negative curvature.

Let H denote the two-dimensional hyperbolic space and $\varphi^{t}(t \in \mathbb{R})$ the geodesic flow on $H \times \mathbb{T}$, where \mathbb{T} is the natural identification of directions. Throughout this note we work with the model of the Poincaré disk instead of the Poincaré upper half-plane (sometimes also called the Lobachevsky plane). So we consider $H=\{z \in \mathbb{C}:|z|<1\}$.

Let Γ be a discrete group of isometries of H, and let H / Γ denote the surface defined by Γ equipped with the metric induced by the hyperbolic metric ρ (see [Be]). The space of line elements of H / Γ is $X_{\Gamma}:=(H / \Gamma) \times T=(H \times T) / \Gamma$ (also equipped with the induced metric) and the geodesic flow transformations on X_{Γ} are defined by

$$
\varphi_{\Gamma}^{t} \Gamma(\omega)=\Gamma \varphi^{t}(\omega)
$$

We consider the measure $m=$ hyperbolic area \times normalised Lebesgue measure on $H \times \mathbb{T}$ and the corresponding induced measure m_{Γ} on $(H / \Gamma) \times \mathbb{T}$.

For a compact surface the dynamical system $\left(H / \Gamma,\left(\varphi_{\Gamma}^{t}\right)_{t \in \mathbb{R}}\right)$ is an Anosov system ([An1], [An2]), the measure m_{Γ} is finite and φ_{Γ} is a Bernoulli flow. This is proven by using the existence of expanding and contracting flow invariant foliations (also used by Anosov and Sinai to show that φ_{Γ} is a K-flow (cf. [An2])) and applying the Ornstein isomorphism theory (Ornstein, Weiss [O-W]). Here we are mainly interested in the non-compact case and our result holds for conservative geodesic flows φ_{Γ}. The following characterisation of these dynamical systems is given in the work of Hopf and Tsuji (cf. [Ho1], [Ho2], [Ts1] and [Ts2]), which uses methods from potential theory.

Theorem HT.

The geodesic flow φ_{Γ} is either totally dissipative, or conservative and ergodic.
The geodesic flow is conservative iff

$$
\sum_{\gamma \in \Gamma} e^{-\rho(x, \gamma y)}=\infty
$$

[^0]A new formulation of these conditions in terms of Brownian motion has been given by Sullivan (see [Su]).

The series $\sum_{\gamma \in \Gamma} e^{-\rho(x, \gamma y)}$ is called the Poincaré series. The asymptotic Poincaré series is defined by

$$
a_{\Gamma}(x, y ; t):=\sum_{\gamma \in \Gamma ; \rho(x, \gamma y) \leq t} e^{-\rho(x, \gamma y)}=\int_{0}^{t} a_{\Gamma}(x, y ; d s)
$$

where $a_{\Gamma}(x, y ; \cdot)$ denotes the distribution function of the measure on \mathbb{R} putting mass $|\{\gamma \in \Gamma: \rho(x, \gamma y)=s\}| \exp [-s]$ on the point $s \in \mathbb{R}$. The asymptotic Poincaré series is up to asymptotic equivalence independent of x and y and denoted by $a_{\Gamma}(t)$. Here we use $a_{\Gamma}(d s)=a_{\Gamma}(0,0, d s)$. For surfaces H / Γ of finite volume, the Poincaré series always diverges, and indeed, $a_{\Gamma}(t) \propto t$ (as can be deduced from the ergodic theorem). There are also surfaces of infinite volume with divergent Poincaré series, and the following theorem is shown in [A-S]:

Theorem AS. Any conservative geodesic flow φ_{Γ} is rationally ergodic with return sequence proportional to $a_{\Gamma}(t)$.

In fact, the proportionality factor turns out to be 8π, when the specific measure $d A \times d \theta$ (as introduced above) is used. This can be deduced from our proofs below. The proof of the theorem relies on the estimate

$$
\begin{gathered}
\forall x, y \in H / \Gamma, \epsilon>0, \exists M \geq 0 \\
0 \leq \int_{\Delta(y, \epsilon)} S_{t}\left(1_{\Delta(x, \epsilon)}\right)^{2} d m_{\Gamma} \leq M\left(\int_{\Delta(y, \epsilon)} S_{t}\left(1_{\Delta(x, \epsilon)}\right) d m_{\Gamma}\right)^{2} \forall t>0
\end{gathered}
$$

where $\Delta(z, \epsilon)$ is defined as below. In this note, we prove an extension of this estimate for p-th moments, and this provides the distributional limit theorem:
Theorem AD. Let φ_{Γ} be a conservative geodesic flow, whose return sequence $a(t)$ is regularly varying with index $\alpha \in[0,1]$. Then for any $f \in L_{+}^{1}\left(m_{\Gamma}\right)$ the sequence $S_{t}(f) / a(t)$ converges in distribution to a random variable $Y_{\alpha} \int_{X_{\Gamma}}^{+} f d m_{\Gamma}$ where

$$
S_{t}(f):=\int_{0}^{t} f \circ \varphi_{\Gamma}^{s} d s
$$

and Y_{α} has the Mittag-Leffler distribution of order α given by

$$
E\left(\exp \left(z Y_{\alpha}\right)\right)=\sum_{n=0}^{\infty} \frac{\Gamma(1+\alpha)^{n} z^{n}}{\Gamma(1+\alpha n)}
$$

for $z \in \mathbb{C}$ when $0<\alpha \leq 1$ and for $|z|<1$ when $\alpha=0$.

Here, convergence in distribution means that for any bounded continuous function $g:[0, \infty] \rightarrow \mathbb{R}$ and any probability measure $q \ll m$, we have

$$
\int_{X_{\Gamma}} g\left(\frac{S_{t}(f)}{a(t)}\right) d q \rightarrow E\left(g\left(Y_{\alpha} m_{\Gamma}(f)\right)\right)
$$

as $t \rightarrow \infty$ where $m_{\Gamma}(f)=\int_{X} f d m_{\Gamma}$.
The theorem is applicable to Abelian covers of compact surfaces. It follows from estimations of numbers of closed geodesics that $a_{\Gamma}(t) \propto \sqrt{t}$ when H / Γ is a \mathbb{Z}-cover of a compact surface, and that $a_{\Gamma}(t) \propto \log t$ when H / Γ is a \mathbb{Z}^{2}-cover of a compact surface (see [Ad-S], [Ph-S], [La], [Po-S]).

The proof of the theorem uses the method of Darling-Kac [D-K], (see also [Aa]). To our knowledge, this is the first attempt to apply this method in the absence of some convenient Frobenius-Perron operator.

2. Preliminaries from hyperbolic geometry and geodesic flows.

Consider the hyperbolic space $H:=\{z \in \mathbb{C}:|z|<1\}$ equipped with the arclength

$$
d s(u, v):=2 \frac{\sqrt{d u^{2}+d v^{2}}}{1-u^{2}-v^{2}}
$$

and the area

$$
d A(u, v):=4 \frac{d u d v}{\left(1-u^{2}-v^{2}\right)^{2}}
$$

The hyperbolic distance (cf. [Be]) between $x, y \in H$ is denoted by

$$
\rho(x, y)=\inf \left\{\int_{\gamma} d s: \gamma \text { is an arc joining } x \text { and } y\right\}=2 \tanh ^{-1} \frac{|x-y|}{|1-\bar{x} y|} .
$$

Note that with this metric H / Γ has curvature -1 , while the metric used in [A-S] gives curvature -4 .

For $x \in H$, and $\epsilon>0$, set

$$
N_{\rho}(x, \epsilon)=\{y \in H: \rho(x, y)<\epsilon\}, \quad \Delta(x, \epsilon):=N_{\rho}(x, \epsilon) \times \mathbb{T} .
$$

Consider the angle set subtended by $N_{\rho}(y, \epsilon)$ at $0 \notin N_{\rho}(y, \epsilon)$,

$$
\Lambda(y, \epsilon):=\left\{\theta \in[0,2 \pi]: \exists r \in(0,1) \ni \rho\left(y, r e^{i \theta}\right)<\epsilon\right\} .
$$

We note that

$$
\begin{equation*}
\Lambda(y, \epsilon)=\left\{\theta \in[0,2 \pi]:\|\theta-\arg y\|<\sin ^{-1}\left(\frac{\left(1-|y|^{2}\right) \tanh \frac{\epsilon}{2}}{|y|\left(1-\tanh ^{2} \frac{\epsilon}{2}\right)}\right)\right\} \tag{1}
\end{equation*}
$$

where $\|\theta\|:=\theta \wedge(2 \pi-\theta) \quad \theta \in[0,2 \pi)$.
In order to see this, let $\delta=\tanh \frac{\epsilon}{2}$. Then

$$
N_{\rho}(y, \epsilon)=B\left(\frac{\left(1-\delta^{2}\right) y}{1-\delta^{2}|y|^{2}}, \frac{\delta\left(1-|y|^{2}\right)}{1-\delta^{2}|y|^{2}}\right)
$$

where $B(x, r)$ is the Euclidean ball of radius r,

$$
B(x, r)=\{y \in \mathbb{C}:|x-y|<r\} .
$$

We'll write

$$
\begin{aligned}
\|\Lambda(y, \epsilon)\| & =2 \sin ^{-1}\left(\frac{\left(1-|y|^{2}\right) \tanh \frac{\epsilon}{2}}{|y|\left(1-\tanh ^{2} \frac{\epsilon}{2}\right)}\right) \\
& \sim \frac{2\left(1-|y|^{2}\right) \tanh \frac{\epsilon}{2}}{1-\tanh ^{2} \frac{\epsilon}{2}} \text { as }|y| \rightarrow 1 .
\end{aligned}
$$

We also need the following fact: Suppose that $x, y \in H,|y|>|x|$, and $\| \arg y-$ $\arg x \|=\theta$, then

$$
\begin{equation*}
\rho(0, y) \geq \rho(0, x)+\rho(x, y)-\frac{2 \theta}{1-|x|^{2}} \tag{2}
\end{equation*}
$$

This can easily be seen as follows: Let $x^{\prime} \in H,\left|x^{\prime}\right|=|x|$, and $\arg x^{\prime}=\arg y$, then

$$
\rho(0, y)=\rho\left(0, x^{\prime}\right)+\rho\left(x^{\prime}, y\right) \geq \rho(0, x)+\rho(x, y)-\rho\left(x^{\prime}, x\right),
$$

and clearly

$$
\rho\left(x^{\prime}, x\right) \leq \frac{2 \theta}{1-|x|^{2}}
$$

Finally, we mention a last evident fact:

$$
\begin{equation*}
A(N(x, \epsilon)) \sim \pi \epsilon^{2} \text { as } \epsilon \rightarrow 0 \tag{3}
\end{equation*}
$$

3. Proof of the theorem

Let $A \in \mathcal{B}\left(X_{\Gamma}\right), p \geq 1$ and $t>0$. Define $a^{A}(p, t): X_{\Gamma} \rightarrow \mathbb{R}_{+}$by

$$
a^{A}(p, t)=\int \ldots \int_{0<t_{1}<\ldots<t_{p}<t} \prod_{\nu=1}^{p} 1_{A} \circ \varphi_{\Gamma}^{t_{\nu}} d t_{1} \ldots d t_{p}
$$

Then

$$
\left(S_{t}\left(1_{A}\right)\right)^{p}=p!a^{A}(p, t)
$$

and

$$
a^{A}(p+1, t)(\omega)=\int_{0}^{t} 1_{A}\left(\varphi_{\Gamma}^{s} \omega\right) a^{A}(p, t-s)\left(\varphi_{\Gamma}^{s} \omega\right) d s
$$

Set

$$
\bar{a}^{A}(p, t)=\int_{A} a^{A}(p, t) d m_{\Gamma}
$$

and, for $\lambda>0$,

$$
\begin{aligned}
& u^{A}(p, \lambda)=\int_{0}^{\infty} a^{A}(p, t) e^{-\lambda t} d t \\
& \bar{u}^{A}(p, \lambda)=\int_{0}^{\infty} \bar{a}^{A}(p, t) e^{-\lambda t} d t
\end{aligned}
$$

In case $A=\Delta(x, \epsilon)=N_{\rho}(x, \epsilon) \times \mathbb{T}$ we shall omit the index A. Also note that in this case (see [A-S] or the proof of the Geometric Lemma below)

$$
\bar{a}^{\Delta}(1, t) \sim 8 \pi A(N)^{2} a_{\Gamma}(t)
$$

Our goal is the

Main Lemma.

$$
\begin{equation*}
\exists M>0 \quad \ni \forall t>0, p \geq 1 \quad \bar{a}^{\Delta}(p, t) \leq M^{p} a_{\Gamma}(t)^{p} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{u}^{\Delta}(p, \lambda) \sim \frac{1}{\lambda} \bar{u}(\lambda)^{p} m_{\Gamma}(\Delta)^{p+1} \text { as } \lambda \rightarrow 0 \quad \forall p \in I N \tag{5}
\end{equation*}
$$

where $\bar{u}(\lambda)=\frac{1}{m_{\Gamma}(\Delta)^{2}} \int_{0}^{\infty} m_{\Gamma}\left(\Delta \cap \varphi_{\Gamma}^{-t} \Delta\right) e^{-\lambda t} d t$.
We first show how Theorem AD is obtained from the Main Lemma.
Proof of Theorem $A D$. Since $a_{\Gamma}(t)$ is regularly varying, it has a representation $a_{\Gamma}(t)=t^{\alpha} L(t)$ for some $\alpha>0$ and some slowly varying function L. An application of Karamata's Tauberian theorem to the Laplace transform in (5) (as in the proof of theorem 1 in [D-K]) shows for $p \geq 1$

$$
\int_{\Delta}\left(S_{t}\left(1_{\Delta}\right)\right)^{p} d m_{\Gamma} \sim m_{\Gamma}(\Delta)^{p+1} p!\frac{\Gamma(1+\alpha)^{p}}{\Gamma(1+p \alpha)} a_{\Gamma}(t)^{p}
$$

as $t \rightarrow \infty$. Since the bound in (4) is uniform over p we have

$$
\begin{aligned}
& \int_{\Delta} e^{z S_{t}\left(1_{\Delta}\right) a_{\Gamma}^{-1}(t)} d m_{\Gamma}=\sum_{p=0}^{\infty} \frac{1}{p!} \int_{\Delta}\left(z S_{t}\left(1_{\Delta}\right) a_{\Gamma}^{-1}(t)\right)^{p} d m_{\Gamma} \\
& \rightarrow m_{\Gamma}(\Delta) \sum_{p=0}^{\infty} z^{p} m_{\Gamma}(\Delta)^{p} \frac{\Gamma(1+\alpha)^{p}}{\Gamma(1+p \alpha)}=m_{\Gamma}(\Delta) E\left(\exp \left(z Y_{\alpha}\right)\right)
\end{aligned}
$$

The proof of the Main Lemma follows from the following two facts:
Geometric Lemma. Let $x \in H$. There is a function $\eta(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$ such that for every $\epsilon>0, p \geq 1$ and all t sufficiently large

$$
\bar{a}(p+1, t)=e^{ \pm \eta(\epsilon)} 8 \pi m_{\Gamma}(\Delta) \int_{0}^{t} \bar{a}(p, t-s) a_{\Gamma}(d s)
$$

where $\Delta=\Delta(x, \epsilon)$.
The lemma can be strengthened to the following form: $\forall \epsilon>0, p \geq 1, t>0$

$$
\bar{a}(p+1, t)=e^{ \pm \eta(\epsilon)} e^{ \pm \kappa(t)} 8 \pi m_{\Gamma}(\Delta) \int_{0}^{t} \bar{a}(p, t-s) a_{\Gamma}(d s)
$$

where $\kappa(t) \rightarrow 0$ as $t \rightarrow \infty$.
Probabilistic Lemma. Let $\epsilon_{0}>0$, and let $\Delta=\Delta\left(x, \epsilon_{0}\right)$. Then for $A \in \mathcal{B}\left(X_{\Gamma}\right) \cap \Delta$ and $p \geq 1$

$$
\int_{A} u^{A}(p, \lambda) d m_{\Gamma} \sim \frac{m_{\Gamma}(A)^{p+1}}{m_{\Gamma}(\Delta)^{p+1}} \int_{\Delta} u^{\Delta}(p, \lambda) d m_{\Gamma}
$$

as $\lambda \rightarrow 0$.

Proof of the Main Lemma. (4) follows immediately from an iterated application of the Geometric Lemma.

In particular, choosing $A=N\left(x, \epsilon^{\prime}\right) \times \mathbb{T}$ for ϵ^{\prime} small,

$$
\begin{aligned}
& \bar{u}^{A}(p+1, \lambda)=e^{ \pm \eta\left(\epsilon^{\prime}\right)} 8 \pi m_{\Gamma}(A) \int_{0}^{\infty} \int_{0}^{t} \bar{a}^{A}(p, t-s) e^{-\lambda t} a_{\Gamma}(d s) d t \\
& =e^{ \pm \eta\left(\epsilon^{\prime}\right)} 8 \pi m_{\Gamma}(A) \int_{0}^{\infty} \int_{0}^{\infty} \bar{a}^{A}(p, r) e^{-\lambda(r+s)} a_{\Gamma}(d s) d r \\
& =e^{ \pm \eta\left(\epsilon^{\prime}\right)} 8 \pi m_{\Gamma}(A) \bar{u}^{A}(p, \lambda) \int_{0}^{\infty} e^{-\lambda s} a_{\Gamma}(d s)
\end{aligned}
$$

Iterating this estimate gives

$$
\bar{u}^{A}(p, \lambda)=e^{ \pm p \eta\left(\epsilon^{\prime}\right)} m_{\Gamma}(A)^{p} \bar{u}^{A}(0, \lambda)\left(8 \pi \int_{0}^{\infty} e^{-\lambda s} a_{\Gamma}(d s)\right)^{p}
$$

By the Probabilistic Lemma,

$$
\begin{aligned}
& \bar{u}(p, \lambda) \sim \frac{m_{\Gamma}(\Delta)^{p+1}}{m_{\Gamma}(A)^{p+1}} \bar{u}^{A}(p, \lambda) \\
& =e^{ \pm p \eta\left(\epsilon^{\prime}\right)} \frac{m_{\Gamma}(\Delta)^{p+1}}{m_{\Gamma}(A)} \bar{u}^{A}(0, \lambda)\left(8 \pi \int_{0}^{\infty} e^{-\lambda s} a_{\Gamma}(d s)\right)^{p}
\end{aligned}
$$

The lemma now follows from

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-\lambda t} a_{\Gamma}(d t)=\lambda \int_{0}^{\infty} a_{\Gamma}(t) e^{-\lambda t} d t \\
& \sim \frac{\lambda}{8 \pi m_{\Gamma}(\Delta)^{2}} \int_{0}^{\infty} \int_{0}^{t} m\left(\Delta \cap \phi_{\Gamma}^{-s}(\Delta)\right) d s e^{-\lambda t} d t \\
& =\frac{1}{8 \pi m_{\Gamma}(\Delta)^{2}} \int_{0}^{\infty} m\left(\Delta \cap \phi_{\Gamma}^{-s}(\Delta)\right) e^{-\lambda s} d s
\end{aligned}
$$

and

$$
\bar{u}^{A}(0, \lambda)=\int_{0}^{\infty} \bar{a}(0, t) e^{-\lambda t} d t=m_{\Gamma}(\Delta) \int_{0}^{\infty} e^{-\lambda t} d t
$$

4. Proof of the Geometric Lemma.

For $\underline{\gamma} \in \Gamma^{p}$ (resp. $\underline{t} \in \mathbb{R}^{p}$) we denote its coordinates by γ_{k} (resp. t_{k}), $k=1, \ldots, p$.
For $t \in \mathbb{R}_{+}$define

$$
I_{p}(t)=\left\{\underline{t} \in \mathbb{R}^{p}: 0<t_{1}<\ldots<t_{p}<t\right\}
$$

Let $\epsilon>0$ be fixed and $N=\Delta \times \mathbb{T}$ as before, where $\Delta=\Delta(x, \epsilon)$. We assume ϵ to be sufficiently small.

First observe that

$$
\begin{aligned}
\bar{a}(p, t) & =\int_{\Delta} a(p, t) d m_{\Gamma} \\
& =\int_{\Delta} \int_{I_{p}(t)} \prod_{\nu=1}^{p} 1_{\Delta} \circ \varphi_{\Gamma}^{t_{\nu}} d \underline{t} d m_{\Gamma} \\
& =\sum_{\underline{\gamma} \in \Gamma^{p}} \int_{\Delta} \int_{I_{p}(t)} \prod_{\nu=1}^{p} 1_{\gamma_{\nu} \Delta} \circ \varphi^{t_{\nu}} d \underline{t} d m \\
& =\sum_{\underline{\gamma} \in \Gamma^{p}} \int_{N} \int_{0}^{1} \int_{I_{p}(t)} \prod_{\nu=1}^{p} 1_{\gamma_{\nu} N \times T} \circ \varphi^{t_{\nu}}(z, \theta) d \underline{t} d \theta d A(z) .
\end{aligned}
$$

Set

$$
\begin{aligned}
\psi_{p}(t, z) & =\sum_{\underline{\gamma} \in \Gamma^{p}} \int_{0}^{1} \int_{I_{p}(t)} \prod_{\nu=1}^{p} 1_{\gamma_{\nu} N \times T} \circ \varphi^{t_{\nu}}(z, \theta) d \underline{t} d \theta \\
& =\sum_{\underline{\gamma} \in \Gamma^{p}} \int_{0}^{1} \int_{I_{p}(t)} \prod_{\nu=1}^{p} 1_{\varphi_{z}^{-1} \gamma_{\nu} N}\left(\tanh t_{\nu} e^{i \theta}\right) d \underline{t} d \theta
\end{aligned}
$$

$$
\begin{equation*}
=\int_{0}^{1} \int_{I_{p}(t)} \sum_{\underline{\gamma} \in \Gamma^{p}} \prod_{\nu=1}^{p} 1_{\varphi_{z}^{-1} \gamma_{\nu} N}\left(\tanh t_{\nu} e^{i \theta}\right) d \underline{t} d \theta \tag{6}
\end{equation*}
$$

so $\bar{a}(p, t)=\int_{N} \psi_{p}(t, z) A(d z)$.
Next consider

$$
\Gamma_{0}:=\left\{\underline{\gamma} \in \Gamma^{p}: \int_{0}^{1} \int_{I_{p}(t)} \prod_{\nu=1}^{p} 1_{\varphi_{z}^{-1} \gamma_{\nu} N}\left(\tanh t_{\nu} e^{i \theta}\right) d \underline{t} d \theta>0\right\}
$$

Since ϵ is so small so that $\{\gamma N\}_{\gamma \in \Gamma}$ are disjoint and since φ_{z} is ρ-preserving, it follows that if $\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in \Gamma_{0}$, then

$$
\rho\left(\gamma_{k+1}(x), z\right) \geq \rho\left(\gamma_{k}(x), z\right) \forall 1 \leq k \leq p-1,
$$

Denote $\Lambda_{\gamma}=\Lambda\left(\varphi_{z}^{-1} \gamma(x), \epsilon\right)$, the angle set subtended by $\varphi_{z}^{-1} \gamma N$ at 0 , then by (1),

$$
\left\|\Lambda_{\gamma}\right\| \sim 2 \epsilon\left(1-\left|\varphi_{z}^{-1} \gamma(x)\right|^{2}\right) \text { as } \gamma \rightarrow \infty, \text { and } \epsilon \rightarrow 0
$$

Set

$$
\begin{aligned}
& \Gamma_{p}^{ \pm}:=\left\{\underline{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in \Gamma^{p}: \rho\left(\gamma_{k+1}(x), z\right) \geq \rho\left(\gamma_{k}(x), z\right),\right. \\
& \left.\quad\left\|\arg \varphi_{z}^{-1} \gamma_{k}(x)-\arg \varphi_{z}^{-1} \gamma_{k+1}(x)\right\| \leq \frac{\left\|\Lambda_{\gamma_{k}}\right\| \pm\left\|\Lambda_{\gamma_{k+1}}\right\|}{2} \forall 1 \leq k \leq p-1\right\} .
\end{aligned}
$$

We claim that

$$
\Gamma_{p}^{-} \subseteq \Gamma_{0} \subseteq \Gamma_{p}^{+} .
$$

Clearly, if $\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in \Gamma_{0}$, then

$$
\bigcap_{k=1}^{p} \Lambda_{\gamma_{k}} \neq \emptyset
$$

and hence for $1 \leq k \leq p-1$,

$$
\left\|\arg \varphi_{z}^{-1} \gamma_{k}(x)-\arg \varphi_{z}^{-1} \gamma_{k+1}(x)\right\| \leq \frac{\left\|\Lambda_{\gamma_{k}}\right\|+\left\|\Lambda_{\gamma_{k+1}}\right\|}{2}
$$

On the other hand, if $\underline{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in \Gamma_{p}^{-}$, then all balls $\phi_{z}^{-1} \gamma_{\nu} N$ lie in the shadow of the first ball $(\nu=\overline{1})$, and hence $\gamma \in \Gamma_{0}$.

Setting, for $p \geq 1, \underline{t}=\left(t_{1}, \ldots, t_{p}\right), 0<t_{1}<\ldots<t_{p}$,

$$
\begin{aligned}
& \Gamma_{0}(\underline{t})=\left\{\underline{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in \Gamma_{0}:\left|\rho\left(z, \gamma_{k}(x)\right)-t_{k}\right| \leq \epsilon \quad \forall k\right\} \\
& \Gamma_{p}^{ \pm}(\underline{t})=\left\{\underline{\gamma}=\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in \Gamma_{p}^{ \pm}:\left|\rho\left(z, \gamma_{k}(x)\right)-t_{k}\right| \leq \epsilon \quad \forall k\right\}
\end{aligned}
$$

we have from (6) that

$$
\psi_{p}(t, z)=\int_{0}^{1} \int_{I_{p}(t)} \sum_{\underline{\gamma} \in \Gamma_{0}(\underline{t})} \prod_{\nu=1}^{p} 1_{\varphi_{z}^{-1} \gamma_{\nu} N}\left(\tanh t_{\nu} e^{i \theta}\right) d \underline{t} d \theta
$$

It follows that

$$
\psi_{p}^{-}(t, z) \leq \psi_{p}(t, z) \leq \psi_{p}^{+}(t, z)
$$

where

$$
\psi_{p}^{ \pm}(t, z)=\int_{0}^{1} \int_{I_{p}(t)} \sum_{\underline{\gamma} \in \Gamma_{p}^{ \pm}(\underline{t})} 1_{\varphi_{z}^{-1} \gamma_{p} N}\left(\tanh t_{p} e^{i \theta}\right) d \underline{t} d \theta
$$

For $\beta \in \Gamma$, let

$$
\begin{aligned}
\Gamma^{ \pm}(\beta)=\{\gamma \in & \Gamma: \rho(z, \gamma(x)) \geq \rho(z, \beta(x))-\epsilon \\
& \left.\left|\arg \varphi_{z}^{-1} \gamma(x)-\arg \varphi_{z}^{-1} \beta(x)\right|<\frac{\left\|\Lambda_{\beta}\right\| \pm\left\|\Lambda_{\gamma}\right\|}{2}\right\}
\end{aligned}
$$

It follows that for $\underline{t}^{\prime}=\left(t_{1}, \ldots, t_{p-1}\right), \underline{t}=\left(t_{1}, \ldots, t_{p}\right), 0<t_{1}<\ldots<t_{p}$

$$
\Gamma_{p}^{ \pm}(\underline{t}):=\left\{\underline{\gamma} \in \Gamma^{p}:\left(\gamma_{1}, \ldots, \gamma_{p-1}\right) \in \Gamma^{ \pm}\left(\underline{t}^{\prime}\right), \gamma_{p} \in \Gamma^{ \pm}\left(\gamma_{p-1}\right), \mid \rho\left(z, \gamma_{p}(x)-t_{p} \mid \leq \epsilon\right\}\right.
$$

Next

$$
\begin{aligned}
& \psi_{p}^{ \pm}(t, z)=\int_{0}^{1} \int_{I_{p}(t)} \sum_{\substack{\gamma \in \Gamma_{p}^{ \pm}(\underline{t})}} 1_{\varphi_{z}^{-1} \gamma_{p} N}\left(\tanh t_{p} e^{i \theta}\right) d \underline{t} d \theta \\
& =\int_{I_{p-1}(t)} \sum_{\underline{\gamma} \in \Gamma_{p-1}^{ \pm}\left(\underline{t}^{\prime}\right)} \int_{0}^{1} \int_{\tanh t_{p-1}}^{\tanh t} \sum_{\substack{\gamma \in \Gamma^{ \pm}\left(\gamma_{p-1}\right) \\
|\rho(z, \gamma(x))-\tanh -1 \\
r| \leq \epsilon}} 1_{\varphi_{z}^{-1} \gamma N}\left(r e^{i \theta}\right) \frac{d r d \theta}{1-r^{2}} d \underline{t}^{\prime} \\
& \sim \int_{I_{p-1}(t)} \sum_{\underline{\gamma} \in \Gamma_{p-1}^{ \pm}\left(\underline{t}^{\prime}\right)} \int_{N_{\rho}(0, t) \backslash N_{\rho}\left(0, t_{p-1}\right)} \frac{1-|\omega|^{2}}{4|\omega|} \sum_{\gamma \in \Gamma^{ \pm}\left(\gamma_{p-1}\right)} 1_{\varphi_{z}^{-1} \gamma N}(\omega) d A(\omega) d \underline{t}^{\prime} \\
& \sim A(N) \int_{I_{p-1}(t)} \sum_{\underline{\gamma} \in \Gamma_{p-1}^{ \pm}\left(\underline{t}^{\prime}\right)} \sum_{\substack{\gamma \in \Gamma^{ \pm}\left(\gamma_{p-1}\right) \\
\rho(z, \gamma(x)) \leq t \pm \epsilon}} e^{-\rho(z, \gamma(x))} d \underline{t}^{\prime} \\
& =A(N) \Phi_{p}^{ \pm}(t, z) .
\end{aligned}
$$

The inductive step on $\Phi_{p}^{ \pm}$is $\left(\right.$with $\left.\underline{t}^{\prime \prime}=\left(t_{1}, \ldots, t_{p-2}\right)\right)$

Fixing $\beta \in \Gamma$, we have

$$
\begin{aligned}
\sum_{\substack{\left.\gamma \in \Gamma^{ \pm}(\beta)\right) \\
\rho(z, \gamma(x)) \leq t \pm \epsilon}} e^{-\rho(z, \gamma(x))} & =\sum_{\substack{\left.\kappa \in \beta-1 \Gamma^{ \pm}(\beta)\right) \\
\rho(z, \beta \kappa(x)) \leq t \pm \epsilon}} e^{-\rho(z, \beta \kappa(x))} \\
& \sim e^{-\rho(z, \beta(x))} \sum_{\substack{\left.\kappa \in \beta^{-1} \Gamma^{ \pm}(\beta)\right) \\
\rho(x, \kappa(x)) \leq t-\rho(z, \beta(x) \pm 2 \epsilon}} e^{-\rho(x, \kappa(x))}
\end{aligned}
$$

by (2).
Let $\beta \in \Gamma$ and $\Omega(\beta)$ denote the interval in S^{1} such that for $\xi \in \Omega(\beta)$ the ray $\beta^{-1}(0) \xi$ intersects $\beta^{-1} N_{\rho}(\beta(x), \epsilon)$. It is easily seen that
(7) $\quad \beta^{-1} \Gamma^{ \pm}(\beta) \sim\{\gamma \in \Gamma: \arg \gamma(x) \in \Omega(\beta)\}$ where $|\Omega(\beta)| \rightarrow \theta(\epsilon)$ as $|\beta(x)| \rightarrow 1$,
where $2 \pi|\Omega(\beta)|$ denotes the arc length of $\Omega(\beta)$ and where (this can be deduced from $\cosh (\epsilon)=2 /|\xi-\eta|$ where ξ, η are the endpoints of a geodesic tangent to the geodesic ball of radius ϵ and center 0)

$$
\begin{equation*}
\theta(\epsilon) \sim 4 \epsilon \text { as } \epsilon \rightarrow 0 \tag{8}
\end{equation*}
$$

It has been shown in [A-S], that for a suitable measure μ on H / Γ

$$
\frac{1}{a_{\Gamma}(t)} \int_{0}^{t} 1_{N_{\rho}(z, \epsilon) \times T}(y, \cdot) \circ \varphi^{-s} d s \rightarrow \mu(N)
$$

weakly in $L^{2}(\mathbb{T})$. By standard arguments it follows from this that

$$
\begin{aligned}
& \mu(N) a_{\Gamma}(t)|I| \sim \int_{I} S_{t}\left(1_{\Delta}\right) d t \\
& \sim \sum_{\gamma: \arg (\gamma) \in I \pm \epsilon ; \rho(0, \gamma(0)) \leq t} \frac{1}{4}\left(1-|\gamma(0)|^{2}\right) \mu(N) .
\end{aligned}
$$

Therefore

$$
\sum_{\substack{\kappa \in \beta-1 \Gamma \pm(\beta)) \\ \rho(x, \kappa(x)) \leq t-\rho(z, \beta(x)) \pm 2 \epsilon}} e^{-\rho(x, \kappa(x))} \sim|\Omega(\beta)| a_{\Gamma}(t-\rho(z, \beta(x)) \pm 2 \epsilon) .
$$

$$
\begin{equation*}
\sum_{\substack{\left.\kappa \in \gamma_{p}^{-1} \Gamma^{ \pm}\left(\gamma_{p-2}\right)\right) \\ \rho(x, \kappa(x)) \leq t-\rho(z, \beta(x) \pm 2 \epsilon}} e^{-\rho(x, \kappa(x))} \sim\left|\Omega\left(\gamma_{p-2}\right)\right| a_{\Gamma}(t-\rho(z, \beta(x)) \pm 2 \epsilon) . \tag{9}
\end{equation*}
$$

$$
\begin{aligned}
& \Phi_{p}^{ \pm}(t, z)=\int_{I_{p-1}(t)} \sum_{\substack{\gamma \in \Gamma_{p-1}^{ \pm}\left(\underline{t}^{\prime}\right)}} \sum_{\substack{\gamma \in \Gamma^{ \pm}\left(\gamma_{p-1}\right) \\
\rho(z, \gamma(x)) \leq t \pm \epsilon}} e^{-\rho(z, \gamma(x))} d \underline{t}^{\prime} \\
& =\int_{I_{p-2}(t)} \sum_{\underline{\gamma} \in \Gamma_{p-2}^{ \pm}\left(\underline{t}^{\prime \prime}\right)}\left(\int_{t_{p-2}}^{t} \sum_{\substack{\beta \in \Gamma^{ \pm}\left(\gamma_{p-2}\right) \\
\rho(z, \mid \beta(x))-\tau \mid \leq \epsilon}} \sum_{\substack{\gamma \in \Gamma^{ \pm(\beta))} \\
\rho(z, \gamma(x)) \leq t \pm \epsilon}} e^{-\rho(z, \gamma(x))} d \tau\right) d \underline{t}^{\prime \prime} \\
& \sim 2 \epsilon \int_{I_{p-2}(t)} \sum_{\substack{\hat{\gamma} \in \Gamma_{p-2}^{ \pm}\left(\underline{t}^{\prime \prime}\right)}}\left(\sum_{\substack{\beta \in \Gamma^{ \pm\left(\gamma_{p-2}\right)} \\
\rho(z, \beta(x)) \leq t \pm \epsilon}} \sum_{\substack{\left.\gamma \in \Gamma^{ \pm}(\beta)\right) \\
\rho(z, \gamma(x)) \leq t \pm \epsilon}} e^{-\rho(z, \gamma(x))}\right) d \underline{t}^{\prime \prime} .
\end{aligned}
$$

Using (3), (7)-(9) we obtain (with $\rho_{0}=\rho(z, \beta(x))$)

$$
\begin{aligned}
& \Phi_{p}^{ \pm}(t, z) \\
& =2 \epsilon \int_{I_{p-2}(t)} \sum_{\underline{\gamma} \in \Gamma_{p-2}^{ \pm}\left(\underline{t}^{\prime}\right)}\left(\sum_{\substack{\beta \in \Gamma^{ \pm}\left(\gamma_{p-2}\right) \\
\rho_{0} \leq t \pm \epsilon}} e^{-\rho_{0}}|\Omega(\beta)| a_{\Gamma}\left(t-\rho_{0} \pm 2 \epsilon\right)\right) d \underline{t}^{\prime \prime} \\
& \sim 8 \epsilon^{2} \int_{I_{p-2}(t)} \sum_{\underline{\gamma} \in \Gamma_{p-2}^{ \pm}\left(\underline{t}^{\prime}\right)}\left(\sum_{\substack{\beta \in \Gamma^{ \pm}\left(\gamma_{p-2}\right) \\
\rho_{0} \leq t \pm \epsilon}} e^{-\rho_{0}} a_{\Gamma}\left(t-\rho_{0} \pm 2 \epsilon\right)\right) d \underline{t}^{\prime \prime} \\
& \sim 2 \epsilon \int_{I_{p-2}(t)} \sum_{\underline{\gamma} \in \Gamma_{p-2}^{ \pm}\left(\underline{t}^{\prime}\right)} \sum_{\substack{k \in \gamma_{p-2}^{-1} \Gamma^{ \pm}\left(\gamma_{p-2}\right) \\
\rho(x, \kappa(x)) \leq t-\rho_{0} \pm \epsilon}} e^{-\rho(x, \kappa(x))} \sum_{\beta^{\prime}} e^{-\rho\left(x, \gamma_{p-2}^{-1} \beta^{\prime}(x)\right)} d \underline{t}^{\prime \prime} \\
& =8 \epsilon^{2} m_{\Gamma}(\Delta)^{-1} \int_{0}^{t} \bar{a}(p-1, t-s) a_{\Gamma}(d s),
\end{aligned}
$$

where

$$
\sum_{\beta^{\prime}} e^{-\rho\left(x, \gamma_{p-2}^{-1} \beta^{\prime}(x)\right)}=\sum_{\substack{\gamma_{p}^{-1} \beta^{\prime} \in \gamma_{p-2}^{-1} \Gamma^{ \pm}\left(\gamma_{p-2}\right) \\ \rho\left(x, \gamma_{p-2}^{-1} \beta^{\prime}(x)\right) \leq t-\rho\left(x, g_{p-2}^{-1}(z)\right) \pm \epsilon}} e^{-\rho\left(x, \gamma_{p-2}^{-1} \beta^{\prime}(x)\right)} .
$$

The lemma follows from $m_{\Gamma}(\Delta)=A(N) \sim \pi \epsilon^{2}$ (see (3)).

5. Proof of the Probabilistic Lemma.

To prove this, we first show for $\Delta:=N_{\rho}(x, \epsilon) \times \mathbb{T}$ that

$$
\begin{equation*}
\exists M_{p} \ni \int_{\Delta} u^{\Delta}(p, \lambda)^{2} d m_{\Gamma} \leq M_{p}\left(\int_{\Delta} u^{\Delta}(p, \lambda) d m_{\Gamma}\right)^{2} \forall \lambda>0 . \tag{10}
\end{equation*}
$$

To see this, we note that

$$
\begin{aligned}
\int_{\Delta} u^{\Delta}(p, \lambda)^{2} d m_{\Gamma} & =\int_{\Delta} \int_{0}^{\infty} \int_{0}^{\infty} a(p, s) a(p, t) e^{-\lambda s} e^{-\lambda t} d s d t d m_{\Gamma} \\
& =\int_{0}^{\infty} \int_{0}^{\infty}\left(\int_{\Delta} a(p, s) a(p, t) d m_{\Gamma}\right) e^{-\lambda s} e^{-\lambda t} d s d t
\end{aligned}
$$

Using the Geometric Lemma we have

$$
\begin{aligned}
& \int_{\Delta} a(p, s) a(p, t) d m_{\Gamma} \leq\left(\int_{\Delta} a(p, s)^{2} d m_{\Gamma}\right)^{\frac{1}{2}}\left(\int_{\Delta} a(p, t)^{2} d m_{\Gamma}\right)^{\frac{1}{2}} \\
& =p!^{-2} \sqrt{\int_{\Delta} S_{s}^{2 p} d m_{\Gamma} \int_{\Delta} S_{t}^{2 p} d m_{\Gamma}}=\frac{(2 p)!}{p!^{2}} \sqrt{\bar{a}(2 p, s) \bar{a}(2 p, t)} \\
& \leq M_{p} a_{\Gamma}(s)^{p} a_{\Gamma}(t)^{p} \leq M_{p}^{\prime} \int_{\Delta} a(p, s) d m_{\Gamma} \int_{\Delta} a(p, t) d m_{\Gamma}
\end{aligned}
$$

Substituting in the above gives (10).
It suffices to show that for $A \in \mathcal{B}, A \subset \Delta$,

$$
\begin{equation*}
\frac{u^{A}(p, \lambda)}{\int_{\Delta} u^{\Delta}(p, \lambda) d m_{\Gamma}} \underset{\lambda \rightarrow 0}{\longrightarrow} \frac{m_{\Gamma}(A)^{p}}{m_{\Gamma}(\Delta)^{p+1}} \text { weakly in } L^{2}(\Delta) \tag{11}
\end{equation*}
$$

We begin by showing this for $A=\Delta$. Using (10), we get that for fixed $p \geq 1$

$$
\begin{equation*}
\sup _{\lambda>0}\left\|\frac{u^{\Delta}(p, \lambda)}{\int_{\Delta} u^{\Delta}(p, \lambda) d m_{\Gamma}}\right\|_{L^{2}(\Delta)}<\infty \tag{12}
\end{equation*}
$$

Given $\lambda_{k} \rightarrow 0, \exists$ a subsequence $\lambda_{k}^{\prime} \rightarrow 0$ and $h \in L^{2}(\Delta)$ such that

$$
\frac{u^{\Delta}\left(p, \lambda_{k}^{\prime}\right)}{\int_{\Delta} u^{\Delta}\left(p, \lambda_{k}^{\prime}\right) d m_{\Gamma}} \underset{k \rightarrow \infty}{\longrightarrow} h
$$

and \exists a further subsequence $\lambda_{k}^{\prime \prime} \rightarrow 0$ such that

$$
\left|\int_{\Delta}\left(\frac{u^{\Delta}\left(p, \lambda_{k}^{\prime \prime}\right)}{\int_{\Delta} u^{\Delta}\left(p, \lambda_{k}^{\prime \prime}\right) d m_{\Gamma}}-h\right)\left(\frac{u^{\Delta}\left(p, \lambda_{\ell}^{\prime \prime}\right)}{\int_{\Delta} u^{\Delta}\left(p, \lambda_{\ell}^{\prime \prime}\right) d m_{\Gamma}}-h\right) d m_{\Gamma}\right|<\frac{1}{2^{\ell}} \quad \forall k<\ell
$$

whence

$$
\frac{1}{N} \sum_{k=1}^{N}\left(\frac{u^{\Delta}\left(p, \lambda_{k}^{\prime \prime}\right)}{\int_{\Delta} u^{\Delta}\left(p, \lambda_{k}^{\prime \prime}\right) d m_{\Gamma}}-h\right) \rightarrow 0 \text { a.e. as } N \rightarrow \infty
$$

and

$$
\frac{1}{N} \sum_{k=1}^{N} \frac{u^{\Delta}\left(p, \lambda_{k}^{\prime \prime}\right)}{\int_{\Delta} u^{\Delta}\left(p, \lambda_{k}^{\prime \prime}\right) d m_{\Gamma}} \rightarrow h \text { a.e. as } N \rightarrow \infty
$$

The set on which this convergence takes place is clearly φ_{Γ}-invariant, and h is also φ_{Γ}-invariant, whence the convergence is a.e. on X_{Γ}, and h is constant. Since, clearly $\int_{\Delta} h d m_{\Gamma}=1$, we have that $h=\frac{1}{m_{\Gamma}(\Delta)}$.

Now fix $A \in \mathcal{B}, A \subset \Delta$. By the ratio theorem

$$
\begin{equation*}
\frac{u^{A}(p, \lambda)}{u^{\Delta}(p, \lambda)} \underset{\lambda \rightarrow 0}{\longrightarrow} \frac{m_{\Gamma}(A)^{p}}{m_{\Gamma}(\Delta)^{p}} \text { a.e. } \tag{13}
\end{equation*}
$$

Also, we have, by (12) that

$$
\sup _{\lambda>0}\left\|\frac{u^{A}(p, \lambda)}{\int_{\Delta} u^{\Delta}(p, \lambda) d m_{\Gamma}}\right\|_{L^{2}(\Delta)} \leq \sup _{\lambda>0}\left\|\frac{u^{\Delta}(p, \lambda)}{\int_{\Delta} u^{\Delta}(p, \lambda) d m_{\Gamma}}\right\|_{L^{2}(\Delta)}<\infty
$$

whence, as above, $\forall \lambda_{k} \rightarrow 0, \exists$ a subsequence $\lambda_{k}^{\prime} \rightarrow 0$ and $h \in L^{2}(\Delta)$ such that

$$
\frac{1}{N} \sum_{k=1}^{N} \frac{u^{A}\left(p, \lambda_{k}^{\prime}\right)}{\int_{\Delta} u^{\Delta}\left(p, \lambda_{k}^{\prime}\right) d m_{\Gamma}} \rightarrow h \text { a.e. as } N \rightarrow \infty
$$

Note that $\lambda_{k}^{\prime} \rightarrow 0$ can be chosen so that in addition,

$$
\frac{1}{N} \sum_{k=1}^{N} \frac{u^{\Delta}\left(p, \lambda_{k}^{\prime}\right)}{\int_{\Delta} u^{\Delta}\left(p, \lambda_{k}^{\prime}\right) d m_{\Gamma}} \rightarrow \frac{1}{m_{\Gamma}(\Delta)} \text { a.e. as } N \rightarrow \infty
$$

whence, by (13)

$$
h=\frac{m_{\Gamma}(A)^{p}}{m_{\Gamma}(\Delta)^{p+1}} .
$$

[Aa] J. Aaronson, The asymptotic distributional behaviour of transformations preserving infinite measures, J. D'Anal. Math. 39 (1981), 203-234.
[A-S] J. Aaronson, D. Sullivan, Rational ergodicity of geodesic flows, Ergod. Theory \& Dynam. Syst. 4 (1984), 165-178.
[Ad-S] T. Adachi, T. Sunada, Homology of closed geodesics in a negatively curved manifold, J. Diff. Geom. 26 (1987), 81-99.
[An1] D.V. Anosov, Roughness of geodesic flows on compact Riemannian manifolds of negative curvature, Sov. Math. Dokl. 3 (1962), 1068-1070.
[An2] D.V. Anosov, Proceedings of the Steklov Inst. of Math., vol. 90, Amer. Math. Soc., Providence, 1967.
Be] A.F. Beardon, The geometry of discrete groups, Springer Verlag, New York, 1983.
[D-K] D.A. Darling, M. Kac, On occupation times for Markov processes, Trans. Amer. Math. Soc. 84 (1957), 444-458.
[Ho1] E. Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939), 261-304.
[Ho2] E. Hopf, Ergodic theory and the geodesic flow on surfaces of constant negative curvature, Bull. Am. Math. Soc. 77 (1971), 863-877.
[La] S. Lalley, Closed geodesics in homology classes on surfaces of variable negative curvature, Duke Math. J. 58 (1989), 795-821.
[O-W] D. Ornstein, B. Weiss, Geodesic flows are Bernoullian, Isr. J. Math. 14 (1973), 184-198.
[Ph-S] R. Phillips, P. Sarnak, Geodesics in homology classes, Duke Math. J. 55 (1987), 287-297.
[Po-S] M. Pollicott, R. Sharp, Orbit counting for some discrete groups acting on simply connected manifolds with negative curvature, Invent. Math. 117 (1994), 275-304.
[Su] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Publ. Math. IHES 50 (1979), 171-202.
[Ts1] M. Tsuji, Some metrical theorems in Fuchsian groups, Kodai Math. Sem. Reports (1950), 89-93.
[Ts2] M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd, Tokyo, 1959.

Aaronson: School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel.

Denker: Institut für Mathematische Stochastik, Universität Göttingen, Lotzestr 13, 37083 Göttingen, Germany

E-mail address: denker@namu01.gwdg.de

[^0]: This research was supported by a grant from G.I.F., the German-Israel Foundation for Scientific Research and Development.

 As in Tr. Mat. Inst. Steklova 216 (1997), Din. Sist. i Smezhnye Vopr., 181-192.

