CHARACTERISTIC FUNCTIONS OF RANDOM VARIABLES ATTRACTED TO 1-STABLE LAWS

Jon. Aaronson and Manfred Denker

Abstract

The domain of attraction of a 1 -stable law on \mathbb{R}^{d} is characterised by the expansions of the characteristic functions of its elements.

$\S 0$ Introduction

Let X_{1}, X_{2}, \ldots be \mathbb{R}^{d}-valued, independent, identically distributed random variables. The distributional limits of $\frac{S_{n}-A_{n}}{B_{n}}$ where $A_{n} \in \mathbb{R}^{d}, B_{n}>0$ are constants, and $S_{n}=\sum_{k=1}^{n} X_{k}$, are given by the well known stable laws. ([Le], [G-K], [I-L]).

A probability distribution function F on \mathbb{R}^{d} is called stable if for all $a, b>0$ there are $c>0$ and $v \in \mathbb{R}^{d}$ such that

$$
F_{a} * F_{b}(x)=F_{c}(x-v) \quad\left(x \in \mathbb{R}^{d}\right)
$$

where $F_{s}(x)=F(x / s)\left(x \in \mathbb{R}^{d}, s>0\right)$, and strictly stable if this is true with $v=0$.
In this case ([Le]) necessarily $a^{p}+b^{p}=c^{p}$ for some $0<p \leq 2$, and p is called the order of the stable law F.

A distribution G on \mathbb{R}^{d} belongs to the domain of attraction of the stable law F if there are constants $A_{n} \in \mathbb{R}^{d}$ and $B_{n}>0$ such that the distributions $\frac{S_{n}-A_{n}}{B_{n}}$ converge weakly to F where $S_{n}=X_{1}+\ldots+X_{n}$ and X_{1}, X_{2}, \ldots are i.i.d. with distribution G.

For $p \in(0,2]$ and $d \in \mathbb{N}$ we let $\mathrm{DA}(p, d)$ be the collection of distribution functions in the domain of attraction of some stable law on \mathbb{R}^{d} of order p.

In this paper, we obtain expansions of the characteristic functions of distributions on \mathbb{R}^{d} which are in the domain of attraction of a stable law.

In $\S 1$ we deal with the case $d=1$. The first partial results are in [G-Kor]. The expansions are given fully in [I-L] in case $p \neq 1$ (see theorem 1 below).

Our main result is theorem 2 (below) giving the expansions in case $p=1$.
In $\S 2$ we obtain as corollaries expansions in case $d \geq 2$. Other results in this case are to be found in $[\mathrm{R}]$, $[\mathrm{Me}],[\mathrm{K}-\mathrm{M}]$, $[\mathrm{A}-\mathrm{G} 1]$ and $[\mathrm{A}-\mathrm{G} 2]$.

[^0]A stable law of order p on \mathbb{R} has a characteristic function ψ of form

$$
\log \psi(t)=i t \gamma-c|t|^{p}\left[1-i \beta \operatorname{sgn}(t) \tan \left(\frac{p \pi}{2}\right)\right] \quad(p \neq 1)
$$

and

$$
\operatorname{Re} \log \psi(t)=-c|t|, \quad \operatorname{Im} \log \psi(t)=t\left(\gamma+\frac{2 \beta c}{\pi} \log (1 /|t|)\right) \quad(p=1)
$$

where $c>0, \beta, \gamma \in \mathbb{R}$ are constants ([Le]).
The form of the characteristic functions of stable laws on \mathbb{R}^{d} was obtained by Feldheim (see [Fe], [Le] and theorem 2.3.1 in $[\mathrm{S}-\mathrm{T}]$):

To each stable law of order p on \mathbb{R}^{d} there corresponds a finite measure ν on S^{d-1} (called the spectral measure) and $\mu \in \mathbb{R}^{d}$ (called the translate) so that the characteristic function ψ has the form

$$
\begin{equation*}
\log \psi(u)=i\langle u, \mu\rangle-\int_{S^{d-1}}|\langle u, s\rangle|^{p}\left(1-i \operatorname{sgn}(\langle s, u\rangle) \tan \left(\frac{p \pi}{2}\right)\right) \nu(d s) \tag{1a}
\end{equation*}
$$

for $p \neq 1$ and

$$
\begin{equation*}
\log \psi(u)=i\langle u, \mu\rangle-\int_{S^{d-1}}|\langle u, s\rangle|\left(1+i \frac{2}{\pi} \operatorname{sgn}(\langle u, s\rangle) \log (|\langle u, s\rangle|)\right) \nu(d s) \tag{1b}
\end{equation*}
$$

for $p=1$. Evidently a stable law on \mathbb{R}^{d} has a density if and only if the support of its spectral measure is not contained in a proper subspace of \mathbb{R}^{d}, and in this case we say that both the stable law, and the spectral measure are nondegenerate.

Clearly, the stability of a \mathbb{R}^{d}-valued random variable Z implies that of its inner products $\langle Z, u\rangle,\left(u \in \mathbb{R}^{d}\right)$.

An example of Marcus ([Ma]) shows that the converse of this is false without additional assumptions.

According to theorems 2.1.2 and 2.1.5 in $[\mathrm{S}-\mathrm{T}]$, the \mathbb{R}^{d}-valued random variable Z is strictly stable (stable with index ≥ 1) if its inner products $\langle Z, u\rangle,\left(u \in \mathbb{R}^{d}\right)$ are strictly stable on \mathbb{R} (stable on \mathbb{R} with index ≥ 1).

The first characterisations of domains of attraction were in terms of the tails of the distributions concerned.

In the unidimensional case ([G-K]), for $p<2$, the (right continuous) distribution function $G \in \mathrm{DA}(p, 1)$ iff there is a function $L: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, slowly varying at ∞ (see $[\mathrm{F}]$), and constants $c_{1}, c_{2} \geq 0, c_{1}+c_{2}>0$ such that

$$
\begin{align*}
L_{1}(x):=x^{p}(1-G(x)) & =\left(c_{1}+o(1)\right) L(x) \\
L_{2}(x):=x^{p} G(-x) & =\left(c_{2}+o(1)\right) L(x) \quad \text { as } x \rightarrow+\infty . \tag{2}
\end{align*}
$$

The results of $[\mathrm{G}-\mathrm{K}]$ were generalised to \mathbb{R}^{d} in $[\mathrm{R}]$ (see also [Me]), to Hilbert space in $[\mathrm{K}-\mathrm{M}]$, and to Banach space in [A-G1].

The authors would like to thank I.A. Ibragimov for a helpful conversation.

§1 UNIDIMENSIONAL CHARACTERISATION

The characteristic function ψ of $G \in \mathrm{DA}(p, 1)$ is considered in [G-Kor] and [I-L]. In [G-Kor], $\mathrm{DA}(p, 1)$ is characterised in terms of $\psi(t)$.
In [I-L], the asymptotic expansion of $\log \psi(t)$ around 0 is established with error small when compared to

$$
\text { Prob. }(|Z|>1 /|t|)=|t|^{p}\left(L_{1}(1 /|t|)+L_{2}((1 /|t|)+)=|t|^{p}\left(c_{1}+c_{2}+o(1)\right) L(1 /|t|)\right.
$$

as $t \rightarrow 0$. Here, Z is a G-distributed random variable, and $G \in \mathrm{DA}(p, 1) \quad(p \neq 1)$ satisfies (2) with the slowly varying functions L, L_{1}, L_{2} and constants $c_{1}, c_{2} \geq 0$, $c_{1}+c_{2}>0$. Specifically:

Theorem 1 (theorem 2.6.5 in [I-L]).

Suppose that G satisfies (2) with $p \neq 1$, then

$$
\log \psi(t)=i t \gamma-c|t|^{p} L\left(|t|^{-1}\right)\left[1-i \beta \operatorname{sgn}(t) \tan \left(\frac{p \pi}{2}\right)\right]+o\left(|t|^{p} L\left(|t|^{-1}\right)\right)
$$

where

$$
\beta=\frac{c_{1}-c_{2}}{c_{1}+c_{2}}, \quad c=\Gamma(1-p)\left(c_{1}+c_{2}\right) \cos \left(\frac{p \pi}{2}\right), \quad \gamma=\left\{\begin{array}{l}
0 \quad 0<p<1 \\
\int x G(d x) \quad 1<p \leq 2
\end{array}\right.
$$

The expansion of the characteristic function when $p=1$ is also treated in [I-L] for a limited class of slowly varying functions L, namely those where

$$
\int_{0}^{\lambda} \frac{x L(x) d x}{1+x^{2}}=L(\lambda)(\log \lambda+o(1))
$$

as $\lambda \rightarrow \infty$ (c.f. theorem 2 here, theorem 2.6.5 there, and formula (2.6.34) there). As can be easily checked, the functions $L(x) \sim(\log x)^{a}(a \in \mathbb{R})$, and $L(x) \sim$ $e^{(\log x)^{a}}(0<a<1)$ are slowly varying functions not in this class.

Theorem 2.

Suppose that G satisfies (2) with $p=1$, then

$$
\begin{aligned}
& \operatorname{Re} \log \psi(t)=-c|t| L\left(|t|^{-1}\right)+o\left(|t| L\left(|t|^{-1}\right)\right) \\
& \operatorname{Im} \log \psi(t)=t \gamma+\frac{2 \beta c}{\pi} C t L(1 /|t|)+t\left(H_{1}(1 /|t|)-H_{2}(1 /|t|)\right)+o\left(|t| L\left(|t|^{-1}\right)\right)
\end{aligned}
$$

as $t \rightarrow 0$, where

$$
\begin{aligned}
H_{j}(\lambda) & =\int_{0}^{\lambda} \frac{x L_{j}(x) d x}{1+x^{2}} \quad(j=1,2) \\
C & =\int_{0}^{\infty}\left(\cos y-\frac{1}{1+y^{2}}\right) \frac{d y}{y}
\end{aligned}
$$

and the constants $c>0, \beta, \gamma \in \mathbb{R}$ are defined by

$$
\beta=\frac{c_{1}-c_{2}}{c_{1}+c_{2}}, \quad c=\frac{\left(c_{1}+c_{2}\right) \pi}{2}
$$

$$
\gamma=\int_{-\infty}^{\infty}\left(\frac{x}{1+x^{2}}+\operatorname{sgn}(x) \int_{0}^{|x|} \frac{2 u^{2}}{\left(1+u^{2}\right)^{2}} d u\right) G(d x)
$$

Remark 1. Note that $H_{1}(\lambda)=\int_{0}^{\lambda} \frac{x^{2} P(Z>x) d x}{1+x^{2}}$, whence
$H_{1}(\lambda)-H_{2}(\lambda)=E\left(\left[|Z| \wedge \lambda-\tan ^{-1}(|Z| \wedge \lambda)\right] \operatorname{sgn}(Z)\right)=E((|Z| \wedge \lambda) \operatorname{sgn}(Z))+O(1)$
as $\lambda \rightarrow \infty$ where Z is G-distributed and H_{1}, H_{2} are as in theorem 2.

Remark 2.

From this representation of the characteristic function of distributions in $\mathrm{DA}(p, 1)$ one deduces existence of a p-stable random variable Y, and constants $A_{n}, B_{n} \in$ $\mathbb{R}, B_{n}>0$ so that $\frac{S_{n}-A_{n}}{B_{n}} \rightarrow Y$ in distribution. These constants (unique up to $o\left(B_{n}\right)$ as $\left.n \rightarrow \infty\right)$ are given by

$$
n L\left(B_{n}\right)=B_{n}^{p}, \quad A_{n}=\left\{\begin{array}{l}
0 \quad 0<p<1 \\
\gamma n \quad 1<p \leq 2 \\
\gamma n+n\left(H_{1}\left(B_{n}\right)-H_{2}\left(B_{n}\right)\right) \quad p=1
\end{array}\right.
$$

To see this in case $p=1$ write

$$
\log E\left(e^{i t\left(\frac{S_{n}-A_{n}}{B_{n}}\right)}\right)=-\frac{i t A_{n}}{B_{n}}+n \log \psi\left(\frac{t}{B_{n}}\right):=\alpha_{n}(t)+i \beta_{n}(t)
$$

then

$$
\alpha_{n}(t)=-c \frac{n|t|}{B_{n}} L\left(\frac{B_{n}}{|t|}\right)+o\left(\frac{n|t| L\left(B_{n} /|t|\right)}{B_{n}}\right) \rightarrow-c|t| \quad \text { as } n \rightarrow \infty
$$

and

$$
\begin{aligned}
\beta_{n}(t)=\frac{t\left(H_{1}\left(B_{n} /|t|\right)-H_{1}\left(B_{n}\right)\right)}{L\left(B_{n}\right)} & -\frac{t\left(H_{2}\left(B_{n} /|t|\right)-H_{2}\left(B_{n}\right)\right)}{L\left(B_{n}\right)} \\
& +\frac{2 \beta c t C L\left(B_{n} /|t|\right)}{\pi L\left(B_{n}\right)}+o\left(\frac{n|t| L\left(B_{n} /|t|\right)}{B_{n}}\right)
\end{aligned}
$$

Now for $j=1,2$ and $k>1$ (see (5) in lemma 3 below),

$$
H_{j}(k \lambda)-H_{j}(\lambda)=c_{j} L(\lambda) \log k+o(L(\lambda)) \quad \text { as } \lambda \rightarrow \infty
$$

Thus with $k=1 /|t|$

$$
\beta_{n}(t) \rightarrow t\left(c_{1}-c_{2}\right) \log \frac{1}{|t|}+\frac{2 \beta c C t}{\pi}=\frac{2 \beta c t}{\pi}\left(\log \frac{1}{|t|}+C\right) \quad \text { as } n \rightarrow \infty
$$

Thus, the above representation is a characterization of $\mathrm{DA}(p, 1)$.
Remark 3.

We note that the expansion of $\psi(t)$ around 0 up to $o\left(|t|^{p} L(1 /|t|)\right)$ is determined entirely by the asymptotic equivalence class of the slowly varying function L and the constants $c_{1}, c_{2} \geq 0$ for G satisfying (2) with $p \neq 1$.

This is not the case when $p=1$ as shown by the following examples.
There is a distribution G so that

$$
\begin{aligned}
L_{1}(x):=x(1-G(x)) & =(\log x)^{2}+(\log x)^{\frac{3}{2}}+O(1) \\
L_{2}(x):=x G(-x) & =(\log x)^{2}+O(1) \quad \text { as } x \rightarrow+\infty
\end{aligned}
$$

Here, $L(\lambda)=(\log \lambda)^{2}, p=c_{1}=c_{2}=1$, and one calculates from theorem 2 that

$$
\operatorname{Im} \log \psi(t)=\frac{4 t}{5 \pi} L\left(\frac{1}{|t|}\right)^{\frac{5}{4}}+o\left(|t| L\left(\frac{1}{|t|}\right)\right) \text { as } t \rightarrow 0
$$

On the other hand, there is a symmetric distribution satisfying

$$
L_{1}(x)=L_{2}(x)=(\log x)^{2}+O(1) \quad \text { as } x \rightarrow+\infty
$$

for which also $L(\lambda)=(\log \lambda)^{2}$, and $p=c_{1}=c_{2}=1$; but here (owing to symmetry)

$$
\operatorname{Im} \log \psi(t) \equiv 0
$$

Proof of theorem 2. Assume that G is represented in the form (2).
For $x>0$ define distribution functions $G_{j}(j=1,2)$ on \mathbb{R}_{+}by

$$
G_{1}(x)=G(x)-G(0), \text { and } G_{2}(x)=G(0)-G(-x)
$$

We have that

$$
G_{j}(\infty)-G_{j}(x)=\frac{L_{j}(x)}{x}=\frac{\left(c_{j}+o(1)\right) L(x)}{x}
$$

Write

$$
\begin{aligned}
& \int\left(1-e^{i t x}+\frac{i t x}{1+x^{2}}\right) G(d x) \\
& =\int_{0}^{\infty}\left(1-e^{i t x}+\frac{i t x}{1+x^{2}}\right) G_{1}(d x)+\int_{0}^{\infty}\left(1-\frac{i t x}{1+x^{2}}-e^{-i t x}\right) G_{2}(d x)
\end{aligned}
$$

and let

$$
\gamma_{j}=\int_{0}^{\infty} \frac{2 x^{2}}{\left(1+x^{2}\right)^{2}}\left(G_{j}(\infty)-G_{j}(x)\right) d x=\int_{0}^{\infty} \frac{2 x L_{j}(x) d x}{\left(1+x^{2}\right)^{2}}
$$

Integration by parts gives

$$
\begin{aligned}
& \int_{0}^{\infty}\left(1-e^{-(-1)^{j} i t x}-(-1)^{j} \frac{i t x}{1+x^{2}}\right) G_{j}(d x) \\
& =(-1)^{j} i t \int_{0}^{\infty}\left(e^{-(-1)^{j} i t x}-\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}\right) \frac{L_{j}(x) d x}{x} \\
& =|t| \int_{0}^{\infty} \sin (|t| x) \frac{L_{j}(x) d x}{x}+(-1)^{j} i t \int_{0}^{\infty}\left(\cos (t x)-\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}\right) \frac{L_{j}(x) d x}{x}
\end{aligned}
$$

Changing variables, we obtain that

$$
\begin{aligned}
\int_{0}^{\infty} \sin (|t| x) \frac{L_{j}(x) d x}{x} & =\int_{0}^{\infty} \sin (x) \frac{L_{j}(x /|t|) d x}{x} \\
\int_{0}^{\infty}\left(\cos (t x)-\frac{1}{1+(t x)^{2}}\right) \frac{L_{j}(x) d x}{x} & =\int_{0}^{\infty}\left(\cos (x)-\frac{1}{1+x^{2}}\right) \frac{L_{j}(x /|t|) d x}{x}
\end{aligned}
$$

By lemma 1 (below) we see that

$$
\int_{0}^{\infty} \sin (|t| x) \frac{L_{j}(x) d x}{x}=(1+o(1)) L_{j}\left(\frac{1}{|t|}\right) \frac{\pi}{2}
$$

Now

$$
\begin{aligned}
& \int_{0}^{\infty}\left(\cos (t x)-\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}\right) \frac{L_{j}(x) d x}{x} \\
& =\int_{0}^{\infty}\left(\cos (t x)-\frac{1}{1+(t x)^{2}}\right) \frac{L_{j}(x) d x}{x}+\int_{0}^{\infty} \frac{x\left(1-t^{2}\right) L_{j}(x) d x}{\left(1+x^{2}\right)\left(1+(t x)^{2}\right)}+\int_{0}^{\infty} \frac{2 x L_{j}(x) d x}{\left(1+x^{2}\right)^{2}} \\
& =\int_{0}^{\infty}\left(\cos (t x)-\frac{1}{1+(t x)^{2}}\right) \frac{L_{j}(x) d x}{x}+\int_{0}^{\infty} \frac{x\left(1-t^{2}\right) L_{j}(x) d x}{\left(1+x^{2}\right)\left(1+(t x)^{2}\right)}+\gamma_{j} .
\end{aligned}
$$

By lemma 2 (below)

$$
\int_{0}^{\infty}\left(\cos (t x)-\frac{1}{1+(t x)^{2}}\right) \frac{L_{j}(x) d x}{x}=C L_{j}\left(\frac{1}{|t|}\right)+o\left(L\left(\frac{1}{|t|}\right)\right)
$$

Set

$$
\tilde{H}_{j}(\lambda):=\int_{0}^{\infty} \frac{x L_{j}(x) d x}{\left(1+x^{2}\right)\left(1+\frac{x^{2}}{\lambda^{2}}\right)}
$$

By lemma 3 (below), $\tilde{H}_{j}(\lambda)=H_{j}(\lambda)+o(L(\lambda))$ as $\lambda \rightarrow \infty$.
Putting everything together we obtain

$$
\begin{aligned}
& \int_{0}^{\infty}\left(1+\frac{i t x}{1+x^{2}}-e^{i t x}\right) G_{1}(d x)+\int_{0}^{\infty}\left(1-\frac{i t x}{1+x^{2}}-e^{-i t x}\right) G_{2}(d x) \\
& =L\left(\frac{1}{|t|}\right)|t|\left(c_{1}+c_{2}\right) \pi / 2-i t L(1 /|t|)\left(c_{1}-c_{2}\right) C \\
& -i t\left(\tilde{H}_{1}(1 /|t|)-\tilde{H}_{2}(1 /|t|)\right)-i t\left(\gamma_{1}-\gamma_{2}\right)+o\left(|t| L\left(\frac{1}{|t|}\right)\right) \\
& =L\left(\frac{1}{|t|}\right)|t|\left(c_{1}+c_{2}\right) \pi / 2-i t L(1 /|t|)\left(c_{1}-c_{2}\right) C \\
& -i t\left(H_{1}(1 /|t|)-H_{2}(1 /|t|)\right)-i t\left(\gamma_{1}-\gamma_{2}\right)+o\left(|t| L\left(\frac{1}{|t|}\right)\right)
\end{aligned}
$$

and hence theorem 2.

We conclude this section by collecting the lemmas on slowly varying functions needed for theorem 2.

Assume that $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is locally integrable, slowly varying at infinity, and such that $u \mapsto \frac{h(u)}{u}$ is a non-increasing function. Recall that h has a representation

$$
h(x)=\eta(x) \exp \left[\int_{1}^{x} \frac{\epsilon(s)}{s} d s\right]
$$

for some functions $\eta(s) \rightarrow K \in \mathbb{R}$ and $\epsilon(s) \rightarrow 0$ as $s \rightarrow \infty$ (see [F]).

Lemma 1.

$$
\int_{0}^{\infty} \frac{\sin y}{y} h\left(\frac{y}{t}\right) d y=(1+o(1)) h\left(\frac{1}{t}\right) \frac{\pi}{2} .
$$

Proof. As the proof of lemma 2.6.1 in [I-L].

Lemma 2.

$$
\int_{0}^{\infty}\left[\cos y-\frac{1}{1+y^{2}}\right] \frac{1}{y} h\left(\frac{y}{t}\right) d y=(1+o(1)) h\left(\frac{1}{t}\right) \int_{0}^{\infty}\left[\cos y-\frac{1}{1+y^{2}}\right] \frac{1}{y} d y
$$

Proof. We first split the region of integration into four parts: $I_{1}=\left[\Delta_{1}, \infty\right), I_{2}=$ $\left[\delta, \Delta_{1}\right), I_{3}=\left[t \Delta_{2}, \delta\right)$ and $I_{4}=\left[0, t \Delta_{2}\right)$ where $\delta<1<\Delta_{1}=\left(N-\frac{1}{2}\right) \pi \quad(N \in \mathbb{N})$.

Since $\left|\int_{\left[\Delta_{1}+n \pi, \Delta_{1}+(n+1) \pi\right]} \cos y \frac{h(y / t) d y}{y}\right|$ decreases in n,

$$
\left|\int_{I_{1}} \cos y \frac{h(y / t) d y}{y}\right| \leq \frac{\pi h\left(\Delta_{1} / t\right)}{\Delta_{1}} \sim \frac{\pi h(1 / t)}{\Delta_{1}} .
$$

Also,

$$
\int_{I_{1}} \frac{1}{1+y^{2}} \frac{h(y / t) d y}{y} \leq \frac{h\left(\Delta_{1} / t\right)}{\Delta_{1}} \pi \sim \frac{\pi h(1 / t)}{\Delta_{1}} .
$$

Since for $x \in\left[\Delta_{2} t, \delta\right)$

$$
\frac{h(x / t)}{h(1 / t)}=(1+o(1)) \exp \left[\int_{x / t}^{1 / t} \frac{\epsilon(s)}{s} d s\right]=\exp [o(-\log x)] \leq x^{-1 / 2}
$$

for t small enough and Δ_{2} large enough,

$$
\begin{aligned}
\left|\int_{I_{3}}\left(\frac{1}{1+y^{2}}-\cos y\right) h(y / t) \frac{d y}{y}\right| & =O\left(h(1 / t) \int_{0}^{\delta}\left|\frac{1}{1+y^{2}}-\cos y\right| y^{-3 / 2} d y\right) \\
& =O\left(h(1 / t) \delta^{3 / 2}\right) .
\end{aligned}
$$

Since the function h is locally integrable, it follows that for t small enough

$$
\begin{aligned}
& \left|\int_{I_{4}}\left(\frac{1}{1+y^{2}}-\cos y\right) h(y / t) \frac{d y}{y}\right|=\left|\int_{0}^{\Delta_{2}}\left(\frac{1}{1+t^{2} z^{2}}-\cos t z\right) h(z) \frac{d z}{z}\right| \\
& =O\left(t^{2} \Delta_{2} \int_{0}^{\Delta_{2}}|h(z)| d z\right)=O\left(t^{2}\right)=o(h(1 / t))
\end{aligned}
$$

For $\delta \leq x \leq \Delta_{1}$ we have (uniformly in x) by the slow variation property of h

$$
\lim _{t \rightarrow 0} \frac{h(x / t)}{h(1 / t)}=1
$$

It follows that

$$
\begin{aligned}
& \left|\int_{I_{2}}\left(\frac{1}{1+y^{2}}-\cos y\right)[h(y / t)-h(1 / t)] \frac{d y}{y}\right| \\
& \leq 2 h(1 / t)\left[\sup _{\delta \leq x \leq \Delta_{1}}\left|\frac{h(x / t)}{h(1 / t)}-1\right|\right] \int_{\delta}^{\Delta_{1}} \frac{d y}{y} \\
& =o(h(1 / t))
\end{aligned}
$$

Applying the estimates for I_{1}, I_{3}, and I_{4} with $h=1$ it follows that

$$
\int_{0}^{\infty}\left(\frac{1}{1+y^{2}}-\cos y\right) \frac{h(y / t)-h(1 / t)}{y} d y=o(h(1 / t))+O\left(h(1 / t)\left(\delta^{3 / 2}+\Delta_{1}^{-1}\right)\right)
$$

Letting $\Delta_{1} \rightarrow \infty$ and $\delta \rightarrow 0$ as $t \rightarrow 0$, the lemma follows.
Lemma 3. Let

$$
H(\lambda):=\int_{0}^{\lambda} \frac{x h(x) d x}{1+x^{2}}
$$

then H is slowly varying at infinity,

$$
\begin{equation*}
\frac{h(\lambda)}{H(\lambda)} \rightarrow 0 \quad \text { as } \lambda \rightarrow \infty \tag{3}
\end{equation*}
$$

(4) $\quad \tilde{H}(\lambda):=\int_{0}^{\infty} \frac{x h(x) d x}{\left(1+x^{2}\right)\left(1+\frac{x^{2}}{\lambda^{2}}\right)}=H(\lambda)+o(h(\lambda)) \quad$ as $\lambda \rightarrow \infty$,
and

$$
\begin{equation*}
H(k \lambda)-H(\lambda) \sim h(\lambda) \cdot \log k \quad \text { as } \lambda \rightarrow \infty \tag{5}
\end{equation*}
$$

Remark. Slow variation of $H,(3)$, and (5) are established in lemma 1 of [Par].
Proof.
We first show (5):

$$
\begin{aligned}
H(k \lambda)-H(\lambda) & =\int_{\lambda}^{k \lambda} \frac{x h(x) d x}{1+x^{2}} \sim \int_{\lambda}^{k \lambda} \frac{h(x) d x}{x} \\
& =\int_{1}^{k} \frac{h(\lambda x) d x}{x} \sim \log k h(\lambda)
\end{aligned}
$$

Next, we see that (3) follows from (5) as $\forall M>1$,
$\frac{H(\lambda)}{h(\lambda)}=\frac{H\left(e^{M} e^{-M} \lambda\right)}{h(\lambda)} \geq \frac{H\left(e^{M} e^{-M} \lambda\right)-H\left(e^{-M} \lambda\right)}{h(\lambda)} \sim \frac{h\left(e^{-M} \lambda\right) M}{h(\lambda)} \rightarrow M$ as $\lambda \rightarrow \infty$.
It follows from (3) and (5) that H is slowly varying at ∞.

To continue, we claim that
(6) $\quad \tilde{H}(\lambda)=\int_{0}^{\lambda} \frac{x h(x) d x}{\left(1+x^{2}\right)\left(1+\frac{x^{2}}{\lambda^{2}}\right)}+\frac{\log 2}{2} h(\lambda)+o(h(\lambda)) \quad$ as $\lambda \rightarrow \infty$.

To see this, note that

$$
\begin{aligned}
& \int_{\lambda}^{\infty} \frac{x h(x) d x}{\left(1+x^{2}\right)\left(1+\frac{x^{2}}{\lambda^{2}}\right)}=\int_{1}^{\infty} \frac{x h(\lambda x) d x}{\left(\frac{1}{\lambda^{2}}+x^{2}\right)\left(1+x^{2}\right)} \\
& =h(\lambda) \int_{1}^{\infty} \frac{x d x}{\left(\frac{1}{\lambda^{2}}+x^{2}\right)\left(1+x^{2}\right)}+h(\lambda) \int_{1}^{\infty}\left(\frac{h(\lambda x)}{h(\lambda)}-1\right) \frac{x d x}{\left(\frac{1}{\lambda^{2}}+x^{2}\right)\left(1+x^{2}\right)} \\
& =\frac{\log 2}{2} h(\lambda)+o(h(\lambda))
\end{aligned}
$$

as $\lambda \rightarrow \infty$ by the dominated convergence theorem since $\left|\frac{h(\lambda x)}{h(\lambda)}-1\right| \rightarrow 0$ as $\lambda \rightarrow$ $\infty \forall x>1$ and $\left|\frac{h(\lambda x)}{h(\lambda)}-1\right| \leq x \forall x$ large enough. This establishes (6).

To finish the proof of (4), we note that

$$
\frac{x h(x)}{\left(1+x^{2}\right)\left(1+\frac{x^{2}}{\lambda^{2}}\right)}=\frac{\lambda^{2}}{\lambda^{2}-1}\left(\frac{x h(x)}{x^{2}+1}-\frac{x h(x)}{x^{2}+\lambda^{2}}\right)
$$

whence in view of (6),

$$
\tilde{H}(\lambda)=\frac{\lambda^{2}}{\lambda^{2}-1} \int_{0}^{\lambda} \frac{x h(x) d x}{x^{2}+1}-\frac{\lambda^{2}}{\lambda^{2}-1} \int_{0}^{\lambda} \frac{x h(x) d x}{x^{2}+\lambda^{2}}+\frac{\log 2}{2} h(\lambda)+o(h(\lambda))
$$

Now

$$
\frac{\lambda^{2}}{\lambda^{2}-1} \int_{0}^{\lambda} \frac{x h(x) d x}{x^{2}+1}=H(\lambda)+O\left(\frac{H(\lambda)}{\lambda^{2}}\right)=H(\lambda)+o(h(\lambda)) \quad \text { as } \lambda \rightarrow \infty
$$

because both h and H are slowly varying at ∞; and

$$
\frac{\lambda^{2}}{\lambda^{2}-1} \int_{0}^{\lambda} \frac{x h(x) d x}{x^{2}+\lambda^{2}} \sim \int_{0}^{\lambda} \frac{x h(x) d x}{x^{2}+\lambda^{2}}=\int_{0}^{1} \frac{x h(\lambda x) d x}{x^{2}+1} \sim \frac{\log 2}{2} h(\lambda) \quad \text { as } \lambda \rightarrow \infty
$$

Thus

$$
\tilde{H}(\lambda)=H(\lambda)+o(h(\lambda)) \quad \text { as } \lambda \rightarrow \infty
$$

which is (4).

§2 MULTIDIMENSIONAL CHARACTERISATION

Corollary 1. Let $0<p<2, p \neq 1$ and G be a distribution function on \mathbb{R}^{d}. The following are equivalent:
(A) G belongs to the domain of attraction of the nondegenerate stable law of order p, spectral measure ν and translate μ.
(B) The characteristic function ψ of G has the form

$$
\log \psi(t u)= \begin{cases}-t^{p} L\left(\frac{1}{t}\right) \Phi(u)+i t\langle u, \mu\rangle+o\left(t^{p} L\left(\frac{1}{t}\right)\right) & \text { if } p>1 \\ -t^{p} L\left(\frac{1}{t}\right) \Phi(u)+o\left(t^{p} L\left(\frac{1}{t}\right)\right) & \text { if } p<1\end{cases}
$$

as $t \rightarrow 0^{+}, \quad \forall u \in S^{d-1}$, where $\mu \in \mathbb{R}^{d}, L$ is slowly varying at infinity, ν is a nondegenerate finite measure on S^{d-1} and

$$
\Phi(u):=\int_{S^{d-1}}|\langle u, s\rangle|^{p}\left(1-i \operatorname{sgn}\langle s, u\rangle \tan \left(\frac{p \pi}{2}\right)\right) \nu(d s) .
$$

Proof of corollary 1. (A) $\Rightarrow(\mathrm{B})$.
Let X_{1}, X_{2}, \ldots be i.i.d. with distribution G and $A_{n} \in \mathbb{R}^{d}, B_{n}>0$ such that $\frac{S_{n}-A_{n}}{B_{n}} \rightarrow Z$ weakly where Z is p-stable. Let $u \in \mathbb{R}^{d}$. It follows from Feldheim's theorem that $\langle u, Z\rangle$ has a 1-dimensional p-stable distribution with parameters $\gamma_{u}^{\prime}=$ $\langle u, \mu\rangle, c_{u}^{\prime}=\int_{S^{d-1}}|\langle u, s\rangle|^{p} \nu(d s)$ and

$$
\beta_{u}^{\prime}=\frac{1}{c_{u}^{\prime}} \int_{S^{d-1}}|\langle u, s\rangle|^{p} \operatorname{sgn}(\langle u, s\rangle) \nu(d s) .
$$

The characteristic function $\psi(t u)$ of $\left\langle u, X_{1}\right\rangle$ has a form

$$
\log \psi(t u)=i t \gamma_{u}-|t|^{p} L_{u}(1 /|t|)\left(1-i \beta_{u} \operatorname{sgn}(t) \tan \left(\frac{\pi p}{2}\right)\right)
$$

as in theorem 1 with some slowly varying function L_{u} and parameters γ_{u} and β_{u} (we normalize L_{u} so that $c_{u}=1$). Hence

$$
\begin{aligned}
& i t\left(\frac{n \gamma_{u}}{B_{n}}-\frac{\left\langle u, A_{n}\right\rangle}{B_{n}}\right)-|t|^{p} \frac{n}{B_{n}^{p}} L_{u}\left(\frac{B_{n}}{|t|}\right)\left(1-i \beta_{u} \operatorname{sgn}(t) \tan \left(\frac{p \pi}{2}\right)\right) \\
& \quad \rightarrow i t \gamma_{u}^{\prime}-c_{u}^{\prime}|t|^{p}\left(1-i \beta_{u}^{\prime} \operatorname{sgn}(t) \tan \left(\frac{p \pi}{2}\right)\right) .
\end{aligned}
$$

The parameter γ_{u} must be linear in u if $p>1$, since $\frac{n \gamma_{u}-\left\langle u, A_{n}\right\rangle}{B_{n}} \rightarrow\langle u, \mu\rangle$ and $\frac{n}{B_{n}} \rightarrow \infty$. In case $p<1, \gamma_{u}$ can be arbitrary since $\frac{n}{B_{n}} \rightarrow 0$. Moreover, $\frac{n}{B_{n}^{p}} L_{u}\left(B_{n}\right)$ converges to c_{u}^{\prime} and $\beta_{u}=\beta_{u}^{\prime}$. Setting $L(t)=\frac{1}{c_{u}^{\prime}} L_{u}(t)$ for some fixed u we obtain for $v \in \mathbb{R}^{d}$

$$
\lim _{n \rightarrow \infty} \frac{L\left(B_{n}\right)}{L_{v}\left(B_{n}\right)}=\lim _{n \rightarrow \infty} \frac{\left(n / B_{n}^{p}\right) L_{u}\left(B_{n}\right)}{c_{u}^{\prime}\left(n / B_{n}^{p}\right) L_{v}\left(B_{n}\right)}=1 / c_{v}^{\prime}
$$

hence $L_{v}(\lambda) \sim c_{v}^{\prime} L(\lambda)$ as $\lambda \rightarrow \infty$.

$(\mathrm{B}) \Rightarrow(\mathrm{A})$.

Conversely, if the characteristic function ψ of G is as in (B), then for every $u \in \mathbb{R}^{d}$ the characteristic functions of $Y_{n}^{(u)}=B_{n}^{-1} \sum_{k=1}^{n}\left(\left\langle u, X_{k}\right\rangle-\left\langle A_{n}, u\right\rangle\right)$ converges, where X_{1}, X_{2}, \ldots are i.i.d. with distribution G, where B_{n} is defined by $n L\left(B_{n}\right)=B_{n}^{p}$ and where $A_{n}=0$ if $p<1$ and $A_{n}=n \mu$ if $p>1$.

It follows that the characteristic functions of $\frac{S_{n}-A_{n}}{B_{n}}$ converge (necessarily to a characteristic function), such that the limit variable Z has all distributions $\langle u, Z\rangle$ $\left(u \in \mathbb{R}^{d}\right) p$-stable. Thus Z is stable itself if $p>1$. In case $p<1$ we note that Z has a characteristic function of the form (1a) with $\mu=0$ and is strictly stable.

If G is a distribution function on \mathbb{R}^{d} we define $G_{u}(\cdot)$ to be the distribution function of $\langle u, Z\rangle$ where Z is a random variable with distribution G.

Corollary 2. (A) If a distribution function G on \mathbb{R}^{d} belongs to the domain of attraction of the nondegenerate stable law of order 1, spectral measure ν and translate μ, then its characteristic function ψ has the form
(7) $\operatorname{Im} \log \psi(t u)=t H_{u}\left(\frac{1}{t}\right)+t L\left(\frac{1}{t}\right) \frac{2 C}{\pi} \int_{S^{d-1}}\langle u, s\rangle \nu(d s)+t \gamma_{u}+o\left(t L\left(\frac{1}{t}\right)\right)$
as $t \rightarrow 0^{+} \forall u \in S^{d-1}$, where : L is slowly varying at infinity, $C=\int_{0}^{\infty}(\cos y-$ $\left.\frac{1}{1+y^{2}}\right) \frac{d y}{y}$, and where

$$
H_{u}(x)=\int_{0}^{x} \frac{v\left(1-G_{u}(v)-G_{u}(-v)\right)}{1+v^{2}} d v
$$

has a representation

$$
\begin{equation*}
H_{u}(\lambda)=\left\langle u, \Gamma_{\lambda}\right\rangle-\frac{2 L(\lambda)}{\pi} \int_{S^{d-1}}\langle u, s\rangle \log (|\langle u, s\rangle|) \nu(d s)-\gamma_{u}+o(L(\lambda)) \tag{8}
\end{equation*}
$$

for some $\Gamma_{\lambda} \in \mathbb{R}^{d}$ and satisfies

$$
\begin{equation*}
H_{u}(k \lambda)-H_{u}(\lambda) \sim \frac{2}{\pi} L(\lambda) \int_{S^{d-1}}\langle u, s\rangle \nu(d s) \log k \tag{9}
\end{equation*}
$$

as $\lambda \rightarrow \infty$.
(B) Let the characteristic function ψ of a distribution G on \mathbb{R}^{d} satisfy (7) for some $\gamma_{u} \in \mathbb{R}$, some finite measure ν on S^{d-1}, some slowly varying function L and some functions H_{u} with representation (8) and satisfying (9). Then G belongs to the domain of attraction of a nondegenerate stable law of order 1.

Proof of corollary 2. (A) As before, let X_{1}, X_{2}, \ldots be i.i.d. with distribution G and $A_{n} \in \mathbb{R}^{d}, B_{n}>0$ such that $\frac{S_{n}-A_{n}}{B_{n}} \rightarrow Z$ weakly where Z is 1 -stable. Let $u \in \mathbb{R}^{d}$. It follows from Feldheim's theorem that $\langle u, Z\rangle$ has a 1-dimensional 1stable distribution with parameters

$$
\begin{gathered}
\gamma_{u}^{\prime}=\langle u, \mu\rangle-\frac{2}{\pi} \int_{S^{d-1}}\langle u, s\rangle \log (|\langle u, s\rangle|) \nu(d s) \\
c_{u}^{\prime}=\int_{S^{d-1}}|\langle u, s\rangle| \nu(d s), \quad \beta_{u}^{\prime}=\frac{1}{c_{u}^{\prime}} \int_{S^{d-1}}\langle u, s\rangle \nu(d s) .
\end{gathered}
$$

By theorem 2, the characteristic function $\psi(t u)$ of $\left\langle u, X_{1}\right\rangle$ has a form

$$
\begin{aligned}
& \log \psi(t u)=-|t| L_{u}\left(\frac{1}{|t|}\right)+ \\
& i t \gamma_{u}+i t \frac{2 \beta_{u} C}{\pi} L_{u}\left(\frac{1}{|t|}\right)+i t\left(H_{1 u}(1 /|t|)-H_{2 u}(1 /|t|)\right)+o\left(|t| L_{u}(1 /|t|)\right)
\end{aligned}
$$

where

$$
\begin{aligned}
H_{j u}(\lambda) & =\int_{0}^{\lambda} \frac{x L_{j u}(x)}{1+x^{2}} d x \\
L_{j u}(x) & = \begin{cases}x\left(1-G_{u}(x)\right) & \text { if } j=1 \\
x G_{u}(-x) & \text { if } j=2\end{cases}
\end{aligned}
$$

for some parameters γ_{u}, β_{u} and slowly varying functions L_{u} (normalised so that $\left.c_{u}=1\right), L_{j u}$. Also note that by theorem $2 L_{j u}(x)=\left(c_{j u}+o(1)\right) L_{u}(x)$ with $c_{1 u}+c_{2 u}=2 / \pi$. Set $H_{u}=H_{1 u}-H_{2 u}$.

From the assumed convergence of characteristic functions, we have that

$$
\operatorname{Re} n \log \psi\left(\frac{t u}{B_{n}}\right) \sim \frac{n L_{u}\left(B_{n}\right)|t|}{B_{n}} \rightarrow c_{u}^{\prime}|t| .
$$

As in the proof of corollary 1 , there exists a function L so that $c_{v}^{\prime} L \sim L_{v}$ for all $v \in \mathbb{R}^{d}$. Moreover, using (5) $\forall t \in \mathbb{R}$, as $n \rightarrow \infty$,

$$
\begin{aligned}
& \operatorname{Im} n \log \psi\left(\frac{t u}{B_{n}}\right)-\left\langle A_{n}, u\right\rangle \frac{t}{B_{n}}=\frac{n L_{u}\left(B_{n}\right)}{B_{n}}\left(c_{1 u}-c_{2 u}\right) t \log \frac{1}{|t|}+ \\
& t\left(\frac{n \gamma_{u}}{B_{n}}-\frac{\left\langle A_{n}, u\right\rangle}{B_{n}}+\frac{n H_{u}\left(B_{n}\right)}{B_{n}}+\frac{2 C n \beta_{u} L_{u}\left(B_{n}\right)}{\pi B_{n}}\right)+o(1) \\
& \rightarrow t \gamma_{u}^{\prime}+\frac{2 \beta_{u}^{\prime} c_{u}^{\prime} t}{\pi} \log \frac{1}{|t|} .
\end{aligned}
$$

Equating coefficients of t, and $t \log \frac{1}{|t|}$, we see that

$$
\frac{n L_{u}\left(B_{n}\right)}{B_{n}}\left(c_{1 u}-c_{2 u}\right) \rightarrow \frac{2 \beta_{u}^{\prime} c_{u}^{\prime}}{\pi}
$$

and

$$
\frac{n}{B_{n}}\left(H_{u}\left(B_{n}\right)+\frac{2 C \beta_{u}}{\pi} L_{u}\left(B_{n}\right)+\gamma_{u}-\left\langle u, A_{n} / n\right\rangle\right) \rightarrow \gamma_{u}^{\prime}
$$

as $n \rightarrow \infty$.
Hence $c_{u}^{\prime}\left(c_{1 u}-c_{2 u}\right)=c_{u}^{\prime} \beta_{u} 2 / \pi=c_{u}^{\prime} 2 \beta_{u}^{\prime} / \pi$ and $\beta_{u}=\beta_{u}^{\prime}$.
To conclude, we determine the conditions for H_{u} and γ_{u}. Since $c_{u}^{\prime} L \sim L_{u}$ and since L_{u} is slowly varying,

$$
\begin{aligned}
& H_{u}\left(B_{n}\right)+\frac{2 C \beta_{u}^{\prime} c_{u}^{\prime}}{\pi} L\left(B_{n}\right)+\gamma_{u}-\left\langle u, A_{n} / n\right\rangle \\
& -\left\langle u, \frac{B_{n} \mu}{n}\right\rangle+\frac{2 B_{n}}{n \pi} \int_{S^{d-1}}\langle u, s\rangle \log (|\langle u, s\rangle|) \nu(d s) \\
& =o\left(\frac{B_{n}}{n}\right),
\end{aligned}
$$

or (because $\beta_{u}^{\prime} c_{u}^{\prime}$ is linear in u and $\left.n L\left(B_{n}\right) \sim B_{n}\right)$

$$
H_{u}\left(B_{n}\right)=\left\langle u, \Gamma_{B_{n}}\right\rangle-\frac{2 L\left(B_{n}\right)}{\pi} \int_{S^{d-1}}\langle u, s\rangle \log (|\langle u, s\rangle|) \nu(d s)-\gamma_{u}+o\left(L\left(B_{n}\right)\right),
$$

where

$$
\Gamma_{B_{n}}=\frac{A_{n}}{n}+\mu L\left(B_{n}\right)-\frac{2 C L\left(B_{n}\right)}{\pi} \int_{S^{d-1}}\langle\cdot, s\rangle \nu(d s)
$$

We obtain the expansion for $H_{u}(\lambda)\left(B_{n} \leq \lambda<B_{n+1}\right)$ from

$$
\begin{aligned}
& H_{u}(\lambda)-H_{u}\left(B_{n}\right)=H_{1 u}(\lambda)-H_{1 u}\left(B_{n}\right)-\left[H_{2 u}(\lambda)-H_{2 u}\left(B_{n}\right)\right] \\
& \sim \log \left(\frac{\lambda}{B_{n}}\right)\left(L_{1 u}(\lambda)-L_{2 u}(\lambda)\right)+o(L(\lambda))=o(L(\lambda))
\end{aligned}
$$

and

$$
\begin{aligned}
H_{u}(\lambda) & =H_{u}\left(B_{n}\right)+H_{u}(\lambda)-H_{u}\left(B_{n}\right)=H_{u}\left(B_{n}\right)+o(L(\lambda)) \\
& =\left\langle u, \Gamma_{B_{n}}\right\rangle-\frac{2 L(\lambda)}{\pi} \int_{S^{d-1}}\langle u, s\rangle \log (|\langle u, s\rangle|) \nu(d s)-\gamma_{u}+o(L(\lambda)),
\end{aligned}
$$

since

$$
1 \leq \frac{\lambda}{B_{n}} \leq \frac{B_{n+1}}{B_{n}} \sim \frac{(n+1) L\left(B_{n+1}\right)}{n L\left(B_{n}\right)} \rightarrow 1
$$

(8) follows setting $\Gamma_{\lambda}=\Gamma_{B_{n}}$ if $B_{n} \leq \lambda<B_{n+1}$. Finally, (9) holds because

$$
\begin{aligned}
H_{u}(k \lambda)-H_{u}(\lambda) & \sim \log (k)\left(L_{1 u}(\lambda)-L_{2 u}(\lambda)\right) \sim \log (k)\left(c_{1 u}-c_{2 u}\right) L_{u}(\lambda) \\
& \sim \log (k)\left(c_{1 u}-c_{2 u}\right) c_{u}^{\prime} L(\lambda)=\frac{2}{\pi} c_{u}^{\prime} \beta_{u}^{\prime} \log (k) L(\lambda)
\end{aligned}
$$

(B) Conversely, if the characteristic function ψ of G is as in (B), then for every $u \in \mathbb{R}^{d}$ the characteristic functions of

$$
Y_{n}^{(u)}=B_{n}^{-1} \sum_{k=1}^{n}\left(\left\langle u, X_{k}\right\rangle-\left\langle A_{n}, u\right\rangle\right)
$$

converges, where X_{1}, X_{2}, \ldots are i.i.d. with distribution G, where B_{n} is defined by $n L\left(B_{n}\right)=B_{n}$ and where

$$
A_{n}=n \Gamma_{B_{n}}+\frac{2 C n L\left(B_{n}\right)}{\pi} \int_{S^{d-1}}\langle\cdot, s\rangle \nu(d s)
$$

Let $c_{u}^{\prime}=\int_{S^{d-1}}|\langle u, s\rangle| \nu(d s)$ be defined as before. We have that

$$
\log \left(\psi\left(\frac{t u}{B_{n}}\right)^{n} e^{-\frac{i t\left\langle u, A_{n}\right\rangle}{B_{n}}}\right) \rightarrow-|t| c_{u}^{\prime}-i t \frac{2}{\pi} \int_{S^{d-1}}\langle u, s\rangle \log |\langle t u, s\rangle| \nu(d s)
$$

Example. Let $0<p<2, \nu \in \mathcal{P}\left(S^{d-1}\right)$ be nondegenerate, and let L be slowly varying at ∞.

If $Y \in \mathrm{DA}(p, 1), Y>0$ with tails given by $P(Y>\lambda)=\frac{2 L(\lambda)}{\pi \lambda^{p}}$, and Z is a ν-distributed random variable on S^{d-1} independent of Y, then $X:=Y Z$ is in the domain of attraction of a nondegenerate stable law of order p on \mathbb{R}^{d}, and with spectral measure ν.

This follows from (and illustrates) corollaries 1 and 2. Indeed, using the notation $\psi_{U}(u):=-\log \left(E\left(e^{i\langle U, u\rangle}\right)\right.$, we have that for $u \in S^{d-1}$ and $t>0$

$$
\psi_{X}(t u)=E\left(\psi_{Y}(\langle Z, t u\rangle)+O\left(\psi_{Y}(\langle Z, t u\rangle)^{2}\right)\right)=E\left(\psi_{Y}(\langle Z, t u\rangle)\right)+o\left(t^{p} L(1 / t)\right)
$$

as $t \rightarrow 0$, whence by [I-L] for $p \neq 1$
$\psi_{X}(t u)=i t \gamma\langle u, E(Z)\rangle-t^{p} L(1 / t) \int_{S^{d-1}}|\langle u, s\rangle|^{p}\left(1-i \operatorname{sgn}(\langle s, u\rangle) \tan \left(\frac{p \pi}{2}\right)\right) \nu(d s)+o\left(t^{p} L(1 / t)\right)$
as $t \rightarrow 0$,
and by theorem 2 for $p=1$

$$
\operatorname{Re} \psi_{X}(t u)=-t L(1 / t) \int_{S^{d-1}}|\langle s, u\rangle| d \nu(s)+o(t L(1 / t))
$$

$$
\begin{aligned}
& \operatorname{Im} \psi_{X}(t u)=t \gamma\langle u, E(Z)\rangle+t\left(H(1 / t)+\frac{2 C}{\pi} L(1 / t)\right) \int_{S^{d-1}}\langle s, u\rangle d \nu(s) \\
& +t L(1 / t) \frac{2}{\pi} \int_{S^{d-1}}\langle s, u\rangle \log \frac{1}{|\langle s, u\rangle|} d \nu(s)+o(t L(1 / t))
\end{aligned}
$$

as $t \rightarrow 0$, where $H(\lambda):=\int_{0}^{\lambda} \frac{2 x L(x) d x}{\pi\left(1+x^{2}\right)}$ and where $\gamma:=E\left(\frac{Y}{1+Y^{2}}+\int_{0}^{Y} \frac{2 u^{2}}{\left(1+u^{2}\right)^{2}} d u\right)$.
If, in the example Y was not chosen positive, but satisfying (2) with constants c, c_{1}, c_{2}, then the spectral measure of X is given by

$$
\nu^{*}(A)=c_{1} \nu(A)+c_{2} \nu(-A) \quad\left(A \in \mathcal{B}\left(S^{d-1}\right)\right.
$$

References

[A-G1] A. Araujo, E. Giné, On tails and domains of attraction of stable measures in Banach spaces, Trans. Amer. Math. Soc. 248 (1979), 105-119.
[A-G2] A. Araujo, E. Giné, The central limit theorem for real and Banach space valued random variables, Wiley, New York, 1980.
[Fe] E.Feldheim, Etudes de la stabilité des lois de probabilite, Thèse de la Faculté des Sciences, Paris, 1937.
[F] W. Feller, An introduction to probability theory and its applications Vol. 2, 2nd. edition, Wiley, New York, 1971.
[G-K] B.V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Translated by K. L. Chung; with an appendix by J.L. Doob, Addison-Wesley, Cambridge, Mass. U.S., 1954.
[G-Kor] B.V. Gnedenko, V.S. Koroluk, Some remarks on the theory of domains of attraction of stable distributions, Dopovidi Akad. Nauk. Ukraine 4 (1950), 275-278.
[I-L] I.A Ibragimov, Y.V. Linnik, Independent and stationary sequences of random variables, edited by J. F. C. Kingman, Wolters-Noordhoff, Groningen, Netherlands, 1971.
[K-M] J. Kuelbs, V. Mandrekar, Domains of attraction of stable measures on a Hilbert space, Studia Math. 50 (1974), 149-162.
[Le] P. Lévy, Théorie de l'addition des variables aléatoires, 2nd. edition, GauthiersVillars, Paris, 1954.
[Ma] D. Marcus, Non-stable laws with all projections stable, Z.W. u. verw. Geb. 164 (1983), 139-156.
[Me] M.M. Meerschaert, Regular variation and domains of attraction in \mathbb{R}^{k}, Stat. and Prob. Lett. 4 (1986), 43-45.
[Par] S. Parameswaran, Partition functions whose logarithms are slowly varying, Trans. Amer. Math. Soc. 100 (1961), 217-240.
[R] E. L. Rvac̃eva, Domains of attraction of multidimensional distributions, Selected Translations in Mathematical Statistics and Probability 2 (1962), 183-206.
[S-T] G. Samorodnitsky, M.S Taqqu, Stable non-Gaussian random processes: stochatic models with infinite variance, Chapman and Hall, New York, London, 1994.

Aaronson: School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, IsRAEL.

Denker: Institut für Mathematische Stochastik, Universität Göttingen, Lotzestr. 13, 37083 Göttingen, Germany

E-mail address: denker@namu01.gwdg.de

[^0]: 1991 Mathematics Subject Classification. 60E07, 60E10, 60F05.
 This research was supported by a grant from G.I.F., the German-Israel Foundation for Scientific Research and Development.

 As in Ann. Probab. 26 (1998), no. 1, 399-415

