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Abstract. The domain of attraction of a 1-stable law on Rd is characterised by the

expansions of the characteristic functions of its elements.

§0 introduction

Let X1, X2, . . . be Rd-valued, independent, identically distributed random vari-
ables. The distributional limits of Sn−An

Bn
where An ∈ Rd, Bn > 0 are constants,

and Sn =
∑n
k=1Xk, are given by the well known stable laws. ([Le], [G-K], [I-L]).

A probability distribution function F on Rd is called stable if for all a, b > 0
there are c > 0 and v ∈ Rd such that

Fa ∗ Fb(x) = Fc(x− v) (x ∈ Rd)

where Fs(x) = F (x/s) (x ∈ Rd, s > 0), and strictly stable if this is true with v = 0.
In this case ([Le]) necessarily ap + bp = cp for some 0 < p ≤ 2, and p is called

the order of the stable law F .
A distribution G on Rd belongs to the domain of attraction of the stable law

F if there are constants An ∈ Rd and Bn > 0 such that the distributions Sn−An

Bn

converge weakly to F where Sn = X1 + ... + Xn and X1, X2, ... are i.i.d. with
distribution G.

For p ∈ (0, 2] and d ∈ N we let DA(p, d) be the collection of distribution functions
in the domain of attraction of some stable law on Rd of order p.

In this paper, we obtain expansions of the characteristic functions of distributions
on Rd which are in the domain of attraction of a stable law.

In §1 we deal with the case d = 1. The first partial results are in [G-Kor]. The
expansions are given fully in [I-L] in case p 6= 1 (see theorem 1 below).

Our main result is theorem 2 (below) giving the expansions in case p = 1.
In §2 we obtain as corollaries expansions in case d ≥ 2. Other results in this case

are to be found in [R], [Me], [K-M], [A-G1] and [A-G2].
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A stable law of order p on R has a characteristic function ψ of form

logψ(t) = itγ − c|t|p[1− iβsgn(t) tan(
pπ

2
)] (p 6= 1),

and

Re logψ(t) = −c|t|, Im logψ(t) = t

(
γ +

2βc

π
log(1/|t|)

)
(p = 1)

where c > 0, β, γ ∈ R are constants ([Le]).
The form of the characteristic functions of stable laws on Rd was obtained by

Feldheim (see [Fe], [Le] and theorem 2.3.1 in [S-T]):
To each stable law of order p on Rd there corresponds a finite measure ν on

Sd−1 (called the spectral measure) and µ ∈ Rd (called the translate) so that the
characteristic function ψ has the form

(1a) logψ(u) = i〈u, µ〉 −
∫
Sd−1

|〈u, s〉|p(1− isgn(〈s, u〉) tan(
pπ

2
))ν(ds)

for p 6= 1 and

(1b) logψ(u) = i〈u, µ〉 −
∫
Sd−1

|〈u, s〉|
(

1 + i
2

π
sgn(〈u, s〉) log(|〈u, s〉|)

)
ν(ds)

for p = 1. Evidently a stable law on Rd has a density if and only if the support of
its spectral measure is not contained in a proper subspace of Rd, and in this case
we say that both the stable law, and the spectral measure are nondegenerate.

Clearly, the stability of a Rd-valued random variable Z implies that of its inner
products 〈Z, u〉, (u ∈ Rd).

An example of Marcus ([Ma]) shows that the converse of this is false without
additional assumptions.

According to theorems 2.1.2 and 2.1.5 in [S-T], the Rd-valued random variable
Z is strictly stable (stable with index ≥ 1) if its inner products 〈Z, u〉, (u ∈ Rd)
are strictly stable on R (stable on R with index ≥ 1).

The first characterisations of domains of attraction were in terms of the tails of
the distributions concerned.

In the unidimensional case ([G-K]), for p < 2, the (right continuous) distribution
function G ∈DA(p, 1) iff there is a function L : R+ → R+, slowly varying at∞ (see
[F]), and constants c1, c2 ≥ 0, c1 + c2 > 0 such that

L1(x) := xp(1−G(x)) = (c1 + o(1))L(x)

L2(x) := xpG(−x) = (c2 + o(1))L(x) as x→ +∞.(2)

The results of [G-K] were generalised to Rd in [R] (see also [Me]), to Hilbert
space in [K-M], and to Banach space in [A-G1].

The authors would like to thank I.A. Ibragimov for a helpful conversation.
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§1 unidimensional characterisation

The characteristic function ψ of G ∈DA(p, 1) is considered in [G-Kor] and [I-L].
In [G-Kor], DA(p, 1) is characterised in terms of ψ(t).
In [I-L], the asymptotic expansion of logψ(t) around 0 is established with error

small when compared to

Prob. (|Z| > 1/|t|) = |t|p(L1(1/|t|) + L2((1/|t|)+) = |t|p(c1 + c2 + o(1))L(1/|t|)

as t → 0. Here, Z is a G-distributed random variable, and G ∈DA(p, 1) (p 6= 1)
satisfies (2) with the slowly varying functions L,L1, L2 and constants c1, c2 ≥ 0,
c1 + c2 > 0. Specifically:

Theorem 1 (theorem 2.6.5 in [I-L]).
Suppose that G satisfies (2) with p 6= 1, then

logψ(t) = itγ − c|t|pL(|t|−1)[1− iβsgn(t) tan(
pπ

2
)] + o(|t|pL(|t|−1))

where

β =
c1 − c2
c1 + c2

, c = Γ(1− p)(c1 + c2) cos(
pπ

2
), γ =

{
0 0 < p < 1∫
xG(dx) 1 < p ≤ 2.

The expansion of the characteristic function when p = 1 is also treated in [I-L]
for a limited class of slowly varying functions L, namely those where∫ λ

0

xL(x)dx

1 + x2
= L(λ)(log λ+ o(1))

as λ → ∞ (c.f. theorem 2 here, theorem 2.6.5 there, and formula (2.6.34) there).
As can be easily checked, the functions L(x) ∼ (log x)a (a ∈ R), and L(x) ∼
e(log x)a (0 < a < 1) are slowly varying functions not in this class.

Theorem 2.
Suppose that G satisfies (2) with p = 1, then

Re logψ(t) = −c|t|L(|t|−1) + o(|t|L(|t|−1)),

Im logψ(t) = tγ +
2βc

π
CtL(1/|t|) + t(H1(1/|t|)−H2(1/|t|)) + o(|t|L(|t|−1)),

as t→ 0, where

Hj(λ) =

∫ λ

0

xLj(x)dx

1 + x2
(j = 1, 2),

C =

∫ ∞
0

(
cos y − 1

1 + y2

)
dy

y
,

and the constants c > 0, β, γ ∈ R are defined by

β =
c1 − c2
c1 + c2

, c =
(c1 + c2)π

2
,
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γ =

∫ ∞
−∞

(
x

1 + x2
+ sgn(x)

∫ |x|
0

2u2

(1 + u2)2
du

)
G(dx)

Remark 1. Note that H1(λ) =
∫ λ

0
x2P (Z>x)dx

1+x2 , whence

H1(λ)−H2(λ) = E

([
|Z|∧λ−tan−1(|Z|∧λ)

]
sgn (Z)

)
= E((|Z|∧λ) sgn (Z))+O(1)

as λ→∞ where Z is G-distributed and H1, H2 are as in theorem 2.

Remark 2.
From this representation of the characteristic function of distributions in DA(p, 1)

one deduces existence of a p-stable random variable Y , and constants An, Bn ∈
R, Bn > 0 so that Sn−An

Bn
→ Y in distribution. These constants (unique up to

o(Bn) as n→∞) are given by

nL(Bn) = Bpn, An =


0 0 < p < 1,

γn 1 < p ≤ 2,

γn+ n(H1(Bn)−H2(Bn)) p = 1.

To see this in case p = 1 write

logE(eit(
Sn−An

Bn
)) = − itAn

Bn
+ n logψ(

t

Bn
) := αn(t) + iβn(t),

then

αn(t) = −cn|t|
Bn

L(
Bn
|t|

) + o

(
n|t|L(Bn/|t|)

Bn

)
→ −c|t| as n→∞,

and

βn(t) =
t(H1(Bn/|t|)−H1(Bn))

L(Bn)
− t(H2(Bn/|t|)−H2(Bn))

L(Bn)

+
2βctCL(Bn/|t|)

πL(Bn)
+ o

(
n|t|L(Bn/|t|)

Bn

)
.

Now for j = 1, 2 and k > 1 (see (5) in lemma 3 below),

Hj(kλ)−Hj(λ) = cjL(λ) log k + o(L(λ)) as λ→∞.

Thus with k = 1/|t|

βn(t)→ t(c1 − c2) log
1

|t|
+

2βcCt

π
=

2βct

π

(
log

1

|t|
+ C

)
as n→∞.

Thus, the above representation is a characterization of DA(p, 1).

Remark 3.
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We note that the expansion of ψ(t) around 0 up to o(|t|pL(1/|t|)) is determined
entirely by the asymptotic equivalence class of the slowly varying function L and
the constants c1, c2 ≥ 0 for G satisfying (2) with p 6= 1.

This is not the case when p = 1 as shown by the following examples.
There is a distribution G so that

L1(x) := x(1−G(x)) = (log x)2 + (log x)
3
2 +O(1)

L2(x) := xG(−x) = (log x)2 +O(1) as x→ +∞.

Here, L(λ) = (log λ)2, p = c1 = c2 = 1, and one calculates from theorem 2 that

Im logψ(t) =
4t

5π
L

(
1

|t|

) 5
4

+ o

(
|t|L

(
1

|t|

))
as t→ 0.

On the other hand, there is a symmetric distribution satisfying

L1(x) = L2(x) = (log x)2 +O(1) as x→ +∞

for which also L(λ) = (log λ)2, and p = c1 = c2 = 1; but here (owing to symmetry)

Im logψ(t) ≡ 0.

Proof of theorem 2. Assume that G is represented in the form (2).
For x > 0 define distribution functions Gj (j = 1, 2) on IR+ by

G1(x) = G(x)−G(0), and G2(x) = G(0)−G(−x).

We have that

Gj(∞)−Gj(x) =
Lj(x)

x
=

(cj + o(1))L(x)

x
.

Write ∫
(1− eitx +

itx

1 + x2
) G(dx)

=

∫ ∞
0

(1− eitx +
itx

1 + x2
) G1(dx) +

∫ ∞
0

(1− itx

1 + x2
− e−itx) G2(dx)

and let

γj =

∫ ∞
0

2x2

(1 + x2)2
(Gj(∞)−Gj(x))dx =

∫ ∞
0

2xLj(x)dx

(1 + x2)2
.

Integration by parts gives∫ ∞
0

(1− e−(−1)jitx − (−1)j
itx

1 + x2
)Gj(dx)

= (−1)jit

∫ ∞
0

(
e−(−1)jitx − 1− x2

(1 + x2)2

)
Lj(x)dx

x

= |t|
∫ ∞

0

sin(|t|x)
Lj(x)dx

x
+ (−1)jit

∫ ∞
0

(
cos(tx)− 1− x2

(1 + x2)2

)
Lj(x)dx

x
.
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Changing variables, we obtain that∫ ∞
0

sin(|t|x)
Lj(x)dx

x
=

∫ ∞
0

sin(x)
Lj(x/|t|)dx

x
,∫ ∞

0

(
cos(tx)− 1

1 + (tx)2

)
Lj(x)dx

x
=

∫ ∞
0

(
cos(x)− 1

1 + x2

)
Lj(x/|t|)dx

x
.

By lemma 1 (below) we see that∫ ∞
0

sin(|t|x)
Lj(x)dx

x
= (1 + o(1))Lj(

1

|t|
)
π

2
.

Now∫ ∞
0

(
cos(tx)− 1− x2

(1 + x2)2

)
Lj(x)dx

x

=

∫ ∞
0

(
cos(tx)− 1

1 + (tx)2

)
Lj(x)dx

x
+

∫ ∞
0

x(1− t2)Lj(x)dx

(1 + x2)(1 + (tx)2)
+

∫ ∞
0

2xLj(x)dx

(1 + x2)2

=

∫ ∞
0

(
cos(tx)− 1

1 + (tx)2

)
Lj(x)dx

x
+

∫ ∞
0

x(1− t2)Lj(x)dx

(1 + x2)(1 + (tx)2)
+ γj .

By lemma 2 (below)∫ ∞
0

(
cos(tx)− 1

1 + (tx)2

)
Lj(x)dx

x
= CLj

(
1

|t|

)
+ o

(
L

(
1

|t|

))
.

Set

H̃j(λ) :=

∫ ∞
0

xLj(x)dx

(1 + x2)(1 + x2

λ2 )
.

By lemma 3 (below), H̃j(λ) = Hj(λ) + o(L(λ)) as λ→∞.
Putting everything together we obtain∫ ∞

0

(1 +
itx

1 + x2
− eitx)G1(dx) +

∫ ∞
0

(1− itx

1 + x2
− e−itx)G2(dx)

= L(
1

|t|
)|t|(c1 + c2)π/2− itL(1/|t|)(c1 − c2)C

− it(H̃1(1/|t|)− H̃2(1/|t|))− it(γ1 − γ2) + o

(
|t|L(

1

|t|
)

)
= L(

1

|t|
)|t|(c1 + c2)π/2− itL(1/|t|)(c1 − c2)C

− it(H1(1/|t|)−H2(1/|t|))− it(γ1 − γ2) + o

(
|t|L(

1

|t|
)

)
and hence theorem 2. �

We conclude this section by collecting the lemmas on slowly varying functions
needed for theorem 2.

Assume that h : R+ → R+ is locally integrable, slowly varying at infinity, and

such that u 7→ h(u)
u is a non-increasing function. Recall that h has a representation

h(x) = η(x) exp

[∫ x

1

ε(s)

s
ds

]
for some functions η(s)→ K ∈ R and ε(s)→ 0 as s→∞ (see [F]).
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Lemma 1. ∫ ∞
0

sin y

y
h(
y

t
)dy = (1 + o(1))h(

1

t
)
π

2
.

Proof. As the proof of lemma 2.6.1 in [I-L]. �

Lemma 2.∫ ∞
0

[
cos y − 1

1 + y2

]
1

y
h(
y

t
)dy = (1 + o(1))h(

1

t
)

∫ ∞
0

[
cos y − 1

1 + y2

]
1

y
dy.

Proof. We first split the region of integration into four parts: I1 = [∆1,∞), I2 =
[δ,∆1), I3 = [t∆2, δ) and I4 = [0, t∆2) where δ < 1 < ∆1 = (N − 1

2 )π (N ∈ N).

Since
∣∣ ∫

[∆1+nπ,∆1+(n+1)π]
cos y h(y/t)dy

y

∣∣ decreases in n,

∣∣∣∣∫
I1

cos y
h(y/t)dy

y

∣∣∣∣ ≤ πh(∆1/t)

∆1
∼ πh(1/t)

∆1
.

Also, ∫
I1

1

1 + y2

h(y/t)dy

y
≤ h(∆1/t)

∆1
π ∼ πh(1/t)

∆1
.

Since for x ∈ [∆2t, δ)

h(x/t)

h(1/t)
= (1 + o(1)) exp[

∫ 1/t

x/t

ε(s)

s
ds] = exp[o(− log x)] ≤ x−1/2

for t small enough and ∆2 large enough,∣∣∣∣∫
I3

(
1

1 + y2
− cos y

)
h(y/t)

dy

y

∣∣∣∣ = O

(
h(1/t)

∫ δ

0

∣∣∣∣ 1

1 + y2
− cos y

∣∣∣∣y−3/2dy

)
= O

(
h(1/t)δ3/2

)
.

Since the function h is locally integrable, it follows that for t small enough

∣∣∣∣∫
I4

(
1

1 + y2
− cos y

)
h(y/t)

dy

y

∣∣∣∣ =

∣∣∣∣∣
∫ ∆2

0

(
1

1 + t2z2
− cos tz

)
h(z)

dz

z

∣∣∣∣∣
= O

(
t2∆2

∫ ∆2

0

|h(z)|dz
)

= O(t2) = o(h(1/t))

For δ ≤ x ≤ ∆1 we have (uniformly in x) by the slow variation property of h

lim
t→0

h(x/t)

h(1/t)
= 1.
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It follows that ∣∣∣∣∫
I2

(
1

1 + y2
− cos y

)
[h(y/t)− h(1/t)]

dy

y

∣∣∣∣
≤ 2h(1/t)

[
sup

δ≤x≤∆1

∣∣∣∣h(x/t)

h(1/t)
− 1

∣∣∣∣] ∫ ∆1

δ

dy

y

= o(h(1/t)).

Applying the estimates for I1, I3, and I4 with h = 1 it follows that∫ ∞
0

(
1

1 + y2
− cos y

)
h(y/t)− h(1/t)

y
dy = o(h(1/t)) +O

(
h(1/t)(δ3/2 + ∆−1

1 )

)
.

Letting ∆1 →∞ and δ → 0 as t→ 0, the lemma follows. �

Lemma 3. Let

H(λ) :=

∫ λ

0

xh(x)dx

1 + x2
;

then H is slowly varying at infinity,

(3)
h(λ)

H(λ)
→ 0 as λ→∞,

(4) H̃(λ) :=

∫ ∞
0

xh(x)dx

(1 + x2)(1 + x2

λ2 )
= H(λ) + o(h(λ)) as λ→∞,

and

(5) H(kλ)−H(λ) ∼ h(λ) · log k as λ→∞.

Remark. Slow variation of H, (3), and (5) are established in lemma 1 of [Par].

Proof.
We first show (5):

H(kλ)−H(λ) =

∫ kλ

λ

xh(x)dx

1 + x2
∼
∫ kλ

λ

h(x)dx

x

=

∫ k

1

h(λx)dx

x
∼ log k h(λ).

Next, we see that (3) follows from (5) as ∀ M > 1,

H(λ)

h(λ)
=
H(eMe−Mλ)

h(λ)
≥ H(eMe−Mλ)−H(e−Mλ)

h(λ)
∼ h(e−Mλ)M

h(λ)
→M as λ→∞.

It follows from (3) and (5) that H is slowly varying at ∞.
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To continue, we claim that

(6) H̃(λ) =

∫ λ

0

xh(x)dx

(1 + x2)(1 + x2

λ2 )
+

log 2

2
h(λ) + o(h(λ)) as λ→∞.

To see this, note that∫ ∞
λ

xh(x)dx

(1 + x2)(1 + x2

λ2 )
=

∫ ∞
1

xh(λx)dx

( 1
λ2 + x2)(1 + x2)

= h(λ)

∫ ∞
1

xdx

( 1
λ2 + x2)(1 + x2)

+ h(λ)

∫ ∞
1

(
h(λx)

h(λ)
− 1)

xdx

( 1
λ2 + x2)(1 + x2)

=
log 2

2
h(λ) + o

(
h(λ)

)
as λ → ∞ by the dominated convergence theorem since |h(λx)

h(λ) − 1| → 0 as λ →
∞ ∀ x > 1 and |h(λx)

h(λ) − 1| ≤ x ∀ x large enough. This establishes (6).

To finish the proof of (4), we note that

xh(x)

(1 + x2)(1 + x2

λ2 )
=

λ2

λ2 − 1

(
xh(x)

x2 + 1
− xh(x)

x2 + λ2

)
,

whence in view of (6),

H̃(λ) =
λ2

λ2 − 1

∫ λ

0

xh(x)dx

x2 + 1
− λ2

λ2 − 1

∫ λ

0

xh(x)dx

x2 + λ2
+

log 2

2
h(λ) + o(h(λ))

Now

λ2

λ2 − 1

∫ λ

0

xh(x)dx

x2 + 1
= H(λ) +O(

H(λ)

λ2
) = H(λ) + o(h(λ)) as λ→∞

because both h and H are slowly varying at ∞; and

λ2

λ2 − 1

∫ λ

0

xh(x)dx

x2 + λ2
∼
∫ λ

0

xh(x)dx

x2 + λ2
=

∫ 1

0

xh(λx)dx

x2 + 1
∼ log 2

2
h(λ) as λ→∞.

Thus
H̃(λ) = H(λ) + o(h(λ)) as λ→∞

which is (4). �

§2 multidimensional characterisation

Corollary 1. Let 0 < p < 2, p 6= 1 and G be a distribution function on Rd. The
following are equivalent:

(A) G belongs to the domain of attraction of the nondegenerate stable law of
order p, spectral measure ν and translate µ.

(B) The characteristic function ψ of G has the form

logψ(tu) =

{ −tpL( 1
t )Φ(u) + it〈u, µ〉+ o(tpL( 1

t )) if p > 1

−tpL( 1
t )Φ(u) + o(tpL( 1

t )) if p < 1
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as t → 0+, ∀ u ∈ Sd−1, where µ ∈ Rd, L is slowly varying at infinity, ν is a
nondegenerate finite measure on Sd−1 and

Φ(u) :=

∫
Sd−1

|〈u, s〉|p(1− isgn〈s, u〉 tan(
pπ

2
))ν(ds).

Proof of corollary 1. (A)⇒(B).
Let X1, X2, ... be i.i.d. with distribution G and An ∈ Rd, Bn > 0 such that

Sn−An

Bn
→ Z weakly where Z is p-stable. Let u ∈ Rd. It follows from Feldheim’s

theorem that 〈u, Z〉 has a 1-dimensional p-stable distribution with parameters γ′u =
〈u, µ〉, c′u =

∫
Sd−1 |〈u, s〉|pν(ds) and

β′u =
1

c′u

∫
Sd−1

|〈u, s〉|psgn(〈u, s〉)ν(ds).

The characteristic function ψ(tu) of 〈u,X1〉 has a form

logψ(tu) = itγu − |t|pLu(1/|t|)
(

1− iβusgn(t) tan

(
πp

2

))
as in theorem 1 with some slowly varying function Lu and parameters γu and βu
(we normalize Lu so that cu = 1). Hence

it

(
nγu
Bn
− 〈u,An〉

Bn

)
− |t|p n

Bpn
Lu

(
Bn
|t|

)(
1− iβusgn(t) tan

(
pπ

2

))
→ itγ′u − c′u|t|p

(
1− iβ′usgn(t) tan

(
pπ

2

))
.

The parameter γu must be linear in u if p > 1, since nγu−〈u,An〉
Bn

→ 〈u, µ〉 and
n
Bn
→ ∞. In case p < 1, γu can be arbitrary since n

Bn
→ 0. Moreover, n

Bp
n
Lu(Bn)

converges to c′u and βu = β′u. Setting L(t) = 1
c′u
Lu(t) for some fixed u we obtain

for v ∈ IRd

lim
n→∞

L(Bn)

Lv(Bn)
= lim
n→∞

(n/Bpn)Lu(Bn)

c′u(n/Bpn)Lv(Bn)
= 1/c′v,

hence Lv(λ) ∼ c′vL(λ) as λ→∞.

(B)⇒(A).
Conversely, if the characteristic function ψ of G is as in (B), then for every u ∈ Rd

the characteristic functions of Y
(u)
n = B−1

n

∑n
k=1(〈u,Xk〉−〈An, u〉) converges, where

X1, X2, ... are i.i.d. with distribution G, where Bn is defined by nL(Bn) = Bpn and
where An = 0 if p < 1 and An = nµ if p > 1.

It follows that the characteristic functions of Sn−An

Bn
converge (necessarily to a

characteristic function), such that the limit variable Z has all distributions 〈u, Z〉
(u ∈ IRd) p-stable. Thus Z is stable itself if p > 1. In case p < 1 we note that Z
has a characteristic function of the form (1a) with µ = 0 and is strictly stable. �

If G is a distribution function on Rd we define Gu(·) to be the distribution
function of 〈u, Z〉 where Z is a random variable with distribution G.
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Corollary 2. (A) If a distribution function G on Rd belongs to the domain of at-
traction of the nondegenerate stable law of order 1, spectral measure ν and translate
µ, then its characteristic function ψ has the form

Re logψ(tu) = −tL(
1

t
)

∫
Sd−1

|〈u, s〉|ν(ds) + o(tL(
1

t
)),

Im logψ(tu) = tHu(
1

t
) + tL(

1

t
)
2C

π

∫
Sd−1

〈u, s〉ν(ds) + tγu + o

(
tL(

1

t
)

)
(7)

as t → 0+ ∀ u ∈ Sd−1, where : L is slowly varying at infinity, C =
∫∞

0
(cos y −

1
1+y2 )dyy , and where

Hu(x) =

∫ x

0

v(1−Gu(v)−Gu(−v))

1 + v2
dv

has a representation

(8) Hu(λ) = 〈u,Γλ〉 −
2L(λ)

π

∫
Sd−1

〈u, s〉 log(|〈u, s〉|)ν(ds)− γu + o(L(λ))

for some Γλ ∈ Rd and satisfies

(9) Hu(kλ)−Hu(λ) ∼ 2

π
L(λ)

∫
Sd−1

〈u, s〉ν(ds) log k

as λ→∞.
(B) Let the characteristic function ψ of a distribution G on Rd satisfy (7) for

some γu ∈ R, some finite measure ν on Sd−1, some slowly varying function L and
some functions Hu with representation (8) and satisfying (9). Then G belongs to
the domain of attraction of a nondegenerate stable law of order 1.

Proof of corollary 2. (A) As before, let X1, X2, ... be i.i.d. with distribution G
and An ∈ Rd, Bn > 0 such that Sn−An

Bn
→ Z weakly where Z is 1-stable. Let

u ∈ Rd. It follows from Feldheim’s theorem that 〈u, Z〉 has a 1-dimensional 1-
stable distribution with parameters

γ′u = 〈u, µ〉 − 2

π

∫
Sd−1

〈u, s〉 log(|〈u, s〉|)ν(ds)

c′u =

∫
Sd−1

|〈u, s〉|ν(ds), β′u =
1

c′u

∫
Sd−1

〈u, s〉ν(ds).

By theorem 2, the characteristic function ψ(tu) of 〈u,X1〉 has a form

logψ(tu) = −|t|Lu
(

1

|t|

)
+

itγu + it
2βuC

π
Lu

(
1

|t|

)
+ it

(
H1u(1/|t|)−H2u(1/|t|)

)
+ o

(
|t|Lu(1/|t|)

)
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where

Hju(λ) =

∫ λ

0

xLju(x)

1 + x2
dx

Lju(x) =

{
x(1−Gu(x)) if j = 1

xGu(−x) if j = 2

for some parameters γu, βu and slowly varying functions Lu (normalised so that
cu = 1), Lju. Also note that by theorem 2 Lju(x) = (cju + o(1))Lu(x) with
c1u + c2u = 2/π. Set Hu = H1u −H2u.

From the assumed convergence of characteristic functions, we have that

Ren logψ(
tu

Bn
) ∼ nLu(Bn)|t|

Bn
→ c′u|t|.

As in the proof of corollary 1, there exists a function L so that c′vL ∼ Lv for all
v ∈ Rd. Moreover, using (5) ∀ t ∈ R, as n→∞,

Imn logψ(
tu

Bn
)− 〈An, u〉

t

Bn
=
nLu(Bn)

Bn
(c1u − c2u)t log

1

|t|
+

t

(
nγu
Bn
− 〈An, u〉

Bn
+
nHu(Bn)

Bn
+

2CnβuLu(Bn)

πBn

)
+ o(1)

→ tγ′u +
2β′uc

′
ut

π
log

1

|t|
.

Equating coefficients of t, and t log 1
|t| , we see that

nLu(Bn)

Bn
(c1u − c2u)→ 2β′uc

′
u

π

and
n

Bn

(
Hu(Bn) +

2Cβu
π

Lu(Bn) + γu − 〈u,An/n〉
)
→ γ′u

as n→∞.
Hence c′u(c1u − c2u) = c′uβu2/π = c′u2β′u/π and βu = β′u.
To conclude, we determine the conditions for Hu and γu. Since c′uL ∼ Lu and

since Lu is slowly varying,

Hu(Bn) +
2Cβ′uc

′
u

π
L(Bn) + γu − 〈u,An/n〉

− 〈u, Bnµ
n
〉+

2Bn
nπ

∫
Sd−1

〈u, s〉 log(|〈u, s〉|)ν(ds)

= o(
Bn
n

),

or (because β′uc
′
u is linear in u and nL(Bn) ∼ Bn)

Hu(Bn) = 〈u,ΓBn
〉 − 2L(Bn)

π

∫
Sd−1

〈u, s〉 log(|〈u, s〉|)ν(ds)− γu + o(L(Bn)),
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where

ΓBn
=
An
n

+ µL(Bn)− 2CL(Bn)

π

∫
Sd−1

〈·, s〉ν(ds).

We obtain the expansion for Hu(λ) (Bn ≤ λ < Bn+1) from

Hu(λ)−Hu(Bn) = H1u(λ)−H1u(Bn)− [H2u(λ)−H2u(Bn)]

∼ log

(
λ

Bn

)(
L1u(λ)− L2u(λ)

)
+ o(L(λ)) = o(L(λ))

and

Hu(λ) = Hu(Bn) +Hu(λ)−Hu(Bn) = Hu(Bn) + o(L(λ))

= 〈u,ΓBn
〉 − 2L(λ)

π

∫
Sd−1

〈u, s〉 log(|〈u, s〉|)ν(ds)− γu + o(L(λ)),

since

1 ≤ λ

Bn
≤ Bn+1

Bn
∼ (n+ 1)L(Bn+1)

nL(Bn)
→ 1.

(8) follows setting Γλ = ΓBn
if Bn ≤ λ < Bn+1. Finally, (9) holds because

Hu(kλ)−Hu(λ) ∼ log(k)

(
L1u(λ)− L2u(λ)

)
∼ log(k)(c1u − c2u)Lu(λ)

∼ log(k)(c1u − c2u)c′uL(λ) =
2

π
c′uβ
′
u log(k)L(λ).

(B) Conversely, if the characteristic function ψ of G is as in (B), then for every
u ∈ Rd the characteristic functions of

Y (u)
n = B−1

n

n∑
k=1

(〈u,Xk〉 − 〈An, u〉)

converges, where X1, X2, ... are i.i.d. with distribution G, where Bn is defined by
nL(Bn) = Bn and where

An = nΓBn
+

2CnL(Bn)

π

∫
Sd−1

〈·, s〉ν(ds).

Let c′u =
∫
Sd−1 |〈u, s〉|ν(ds) be defined as before. We have that

log

(
ψ
( tu
Bn

)n
e−

it〈u,An〉
Bn

)
→ −|t|c′u − it

2

π

∫
Sd−1

〈u, s〉 log |〈tu, s〉|ν(ds).

�
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Example. Let 0 < p < 2, ν ∈ P(Sd−1) be nondegenerate, and let L be slowly
varying at ∞.

If Y ∈ DA (p, 1), Y > 0 with tails given by P (Y > λ) = 2L(λ)
πλp , and Z is a

ν-distributed random variable on Sd−1 independent of Y , then X := Y Z is in the
domain of attraction of a nondegenerate stable law of order p on Rd, and with
spectral measure ν.

This follows from (and illustrates) corollaries 1 and 2. Indeed, using the notation

ψU (u) := − log

(
E(ei〈U,u〉

)
, we have that for u ∈ Sd−1 and t > 0

ψX(tu) = E

(
ψY (〈Z, tu〉) +O(ψY (〈Z, tu〉)2)

)
= E(ψY (〈Z, tu〉)) + o(tpL(1/t)),

as t→ 0, whence by [I-L] for p 6= 1

ψX(tu) = itγ〈u,E(Z)〉−tpL(1/t)

∫
Sd−1

|〈u, s〉|p(1−isgn(〈s, u〉) tan(
pπ

2
))ν(ds)+o(tpL(1/t))

as t→ 0,
and by theorem 2 for p = 1

ReψX(tu) = −tL(1/t)

∫
Sd−1

|〈s, u〉|dν(s) + o(tL(1/t)),

ImψX(tu) = tγ〈u,E(Z)〉+ t(H(1/t) +
2C

π
L(1/t))

∫
Sd−1

〈s, u〉dν(s)

+ tL(1/t)
2

π

∫
Sd−1

〈s, u〉 log
1

|〈s, u〉|
dν(s) + o(tL(1/t))

as t→ 0, where H(λ) :=
∫ λ

0
2xL(x)dx
π(1+x2) and where γ := E

(
Y

1+Y 2 +
∫ Y

0
2u2

(1+u2)2 du

)
.

If, in the example Y was not chosen positive, but satisfying (2) with constants
c, c1, c2, then the spectral measure of X is given by

ν∗(A) = c1ν(A) + c2ν(−A) (A ∈ B(Sd−1).
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