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§0 Introduction.

We study locally compact group extensions of Kronecker transfor-
mations.

Let X be a compact monothetic group with Haar probability mea-
sure m =mX , and G a locally compact metric group with Haar mea-
sure mG. Let T be an ergodic translation on X, (called a Kronecker
transformation) and set µ =m ×mG.

For ϕ ∶ X Ð→ G measurable (called a cocycle), consider the skew
product (or G-extension) which is the measure preserving transforma-
tion Tϕ ∶ (X ×G,µ) Ð→ (X ×G,µ) defined by

Tϕ(x, g) = (Tx,ϕ(x)g).
Recall from [Aar81] that a measure preserving transformation τ ∶

(Y, ν) Ð→ (Y, ν) is called squashable if ∃Q ∋ Qτ = τQ and νQ−1 = cν
for certain c ≠ 1. It follows from [Aar83, Th3.4] that if the group G
is countable, and has no arbitrarily large finite normal subgroups (e.g.
G = ZZk ×Ql) then no ergodic G-extension is squashable.

Most of the results in this paper are for the case G = IR. It is an
open problem to decide if there is a conservative, ergodic, squashable
IR-extension of a Kronecker transformation. Almost all of our results
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by KBN grant 512/2/91.

1
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are in the other direction, showing that certain IR-extensions are non-
squashable.

We consider product-type cocycles for odometers in §1, obtaining
conditions for ergodicity, nonsquashability, and coalescence (q.v.) Es-
sentially the same ideas can be used in the context of [KLR94] to ob-
tain analytic cylinder flows (i.e. IR-extensions of rotations of the circle)
which are ergodic, nonsquashable, and coalescent (see §4). We show
in §5 that if ϕ ∶ TT Ð→ IR is C1+δ then for a residual set of irrational
rotations T , the cocycle is conservative and ergodic. We improve some
recent results by D. Pask (in §6) [Pas90], [Pas91] on the ergodicity of
cylinder flows also proving the non-squashability in this case.

One of our tools is a new Koksma-type inequality in L2(TT ) for
functions whose Fourier coefficients are of order O(1/n) (see §2) with
possible speeds of convergence for smooth functions and irrational ro-
tations admitting a speed of approximations by rationals (see §3).

The authors would like to thank E. Lesigne for a discussion on the
proof of Theorem 5.1.

§1 Coalescence of group extensions, and ergodicity
of product type cocycles

A non-singular transformation is called coalescent if all nonsingular
commuting with it transformations are invertible. To begin this section,
we study the form of nonsingular transformations commuting with an
ergodic, group extension of a Kronecker transformation.

Suppose that T is an ergodic measure-preserving transformation of
the probability space (X,B,m); let (G,T ) be an abelian, locally com-
pact, second countable, topological group (T = T (G) denotes the fam-
ily of open sets in the topological space G), and let ϕ ∶ X → G be a
cocycle.

Let Tϕ ∶ (X ×G,µ) Ð→ (X ×G,µ),

Tϕ(x, g) = (Tx,ϕ(x)g)

be ergodic (this implies that G has to be amenable [Zim78]), where
T is a Kronecker transformation on X, and ϕ ∶X Ð→ G is a cocycle.

Proposition 1.1 Suppose that Q ∶X×GÐ→X×G is non-singular and
QTϕ = TϕQ. Then there exist a translation S of X, and a continuous
group homomorphism w ∶ G Ð→ G which is non-singular in the sense
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that mG ○w−1 ∼mG and a measurable map f ∶X Ð→ G such that

Q(x,h) = (Sx, f(x)w(h)) for each x ∈X, h ∈ G.

Proof Write Q = (S,F ), where S ∶X×GÐ→X and F ∶X×GÐ→ G.
We have

S ○ Tϕ = T ○ S & F ○ Tϕ = (ϕ ○ S) ⋅ F.
Let U ∶X ×GÐ→X be defined by U(x,h) = x−1S(x,h), then U ○Tϕ =
U, hence by ergodicity of Tϕ, U(x,h) = x1, and S(x, g) = Sx = xx1 =
x1x. Therefore

FTϕ(x,h) = ϕ(Sx)F (x,h).
Denote σg(x,h) = (x,hg) and note that for each g ∈ G, σgTϕ = Tϕσg.
Hence

(F −1 ⋅ (F ○ σg)) ○ Tϕ(x,h) = F (Tϕ(x,h))−1F (Tϕ(x,hg))

= (ϕ(Sx)F (x,h))
−1

ϕ(Sx)F (x,hg)

= (F −1F ○ σg)(x,h),

whence there exists w ∶ G Ð→ G such that F −1(F ○ σg) = w(g) for
each g ∈ G. It follows that w is a measurable homomorphism (and
hence continuous).

Set φ(x,h) = F (x,h)w(h)−1. By the above, φ○σg = φ for each g ∈ G
whence there exists a measurable f ∶X Ð→ G such that φ(x,h) = f(x)
a.e., and

Q(x, g) = (Sx, f(x)w(g)).
To see that w ∶ G→ G is non-singular, note that µ ○ S−1

f = µ, and since
QTϕ = TϕQ, ∃ c > 0 such that µ ○Q−1 = cµ. Moreover

w̃ ∶= Id ×w = S−1
f ○Q

whence µ ○ w̃−1 = cµ, and m ○w−1 = cm. �

Remarks
If T is an invertible, ergodic probability preserving transformation
and ϕ an ergodic cocycle, and Q(x, g) = (Sx,F (x, g)) is non-singular,
and commutes with Tϕ, then Q has the above form.
If w ∶ G → G is non-singular and measurable, then w is continuous,
and onto. To see this, note that w(G) is a mG-measurable subgroup
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of G, whence

∃ x ∉ w(G) ⇒ xw(G) ⊂ G ∖w(G)
⇒ m(w(G)) =m(xw(G)) ≤m(G ∖w(G)) = 0.

If G is such that any continuous group non-singular homomorphism
is 1-1 (e.g. G = ZZk × Ql × IRm) then any ergodic G-extension of a
Kronecker transformation is coalescent. For coalescence of other group
extensions, see theorem 1.5 below.
In case G = IR a skew product Tϕ is squashable iff it commutes with a
Q of form Q(x, t) = (Sx, ct + ψ(x)), where ∣c∣ ≠ 1, or, in other words,
cϕ − ϕ ○ S is a coboundary for some ∣c∣ ≠ 1 and S a translation of X.

Next, we turn to methods of proving ergodicity of group extensions.

As in [Sch77], the essential values of ϕ are defined as those group
elements a ∈ G with the property that

∀ A ∈ B+, U ∈ T (G) with a ∈ U ; ∃ n ≥ 1 ∋ m(A∩T −nA∩[ϕ(n) ∈ U]) > 0

where ϕ(n)(x) = ϕ(T n−1x) ⋅ . . . ⋅ ϕ(x), n ≥ 1.
The collection of essential values of ϕ is denoted by E(ϕ). It is shown

in [Sch77] that E(ϕ) is a closed subgroup of G, and is the collection of
periods for Tϕ-invariant functions:

E(ϕ) = {a ∈ G ∶ f(x, y + a) = f(x, y) a.e. ∀ f ○ Tϕ = f measurable}.
In particular, Tϕ is ergodic iff E(ϕ) = G. Also,

Lemma 1.2 [Sch77] For any compact set K which is disjoint from
E(ϕ) there is a Borel set B, µ(B) > 0, such that for each integer
m > 0 we have

µ(B ∩ T −mB ∩ [ϕ(m) ∈K]) = 0.

Definition A sequence qn ∈ IN (n ≥ 1), qn ↑ ∞ is called a rigidity time

for the probability preserving transformation T if T qn
U(L2

(m))→ Ð→ Id.
Here U(L2(m) denotes the collection of unitary operators on L2(m).
Note that if T is a translation on the compact group X with Haar

measure m then T qn
U(L2

(m))→ Ð→ Id iff T qn
X→Ð→ Id.

Lemma 1.3 Suppose that K ⊂ IR is compact, and that {qn} is a rigidity
time for T such that

∀ A ∈ B+, lim inf
n→∞

m(A ∩ [ϕ(qn) ∈K]) > 0,
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then

K ∩E(ϕ) ≠ ∅.

Proof Follows immediately from Lemma 1.2. �

Let

D(ϕ) = {a ∈ G ∶ ∃ qn →∞, T qn U(L
2
(m))→ Ð→ Id ∋ ∀ nk →∞, a ∈ {ϕ(qnk)}′k≥1 a.e.}.

See also proofs of ergodicity in [Aar83, §4].

Proposition 1.4

D(ϕ) ⊂ E(ϕ).

Proof Suppose that y ∈ D, and T qn →Id, y ∈ {ϕ(qnk) ∶ k ≥ 1}′ a.e.
∀ nk →∞, then

∀ A ∈ B+ y ∈ U ∈ T (G), ∃ δ > 0 ∋ lim inf
n→∞

m(A ∩ [ϕ(qn) ∈ U]) ≥ δ,

because if there were no such δ > 0 we could choose y ∈ U ∈ T (G), and
a subsequence qnk , (k ≥ 1) satisfying m(A ∩ [ϕ(qnk) ∈ U]) < 1/2n and
use the Borel-Cantelli lemma to get a contradiction to the definition of
y ∈ D(ϕ). Hence, since T qn Ð→Id, lim infn→∞m(A ∩ T −qnA ∩ [ϕ(qn) ∈
U]) > δ

2 ∀ n large, and therefore y ∈ E(ϕ). �

Set

D̃(ϕ) = {a ∈ G ∶ ∃ qn ∋ T qn
U(L2

(m))→ Ð→ Id, & ϕ(qn) → a a.e.}.
Clearly D̃(ϕ) ⊂D(ϕ).
Theorem 1.5 Assume that T is an ergodic translation. If Gp (D̃(ϕ))
is dense in G, then Tϕ is ergodic, and

Q ∶X×G→X×G nonsingular, QTϕ = TϕQ ⇒ Q(x, g) = (Sx, g+f(x))
where ST = TS and f ∶X → G is measurable.

In particular, such a Tϕ is coalescent, and non-squashable.

Proof By the previous proposition, Tϕ is ergodic. We know from
proposition 1.1 that

Q ∶X×G→X×G nonsingular, QTϕ = TϕQ ⇒ Q(x, g) = (Sx,w(g)+f(x))
where ST = TS, f ∶ X → G is measurable, and w ∶ G → G is a continu-
ous nonsingular homomorphism. It follows that

w(ϕ) − ϕ ○ S = f − f ○ T,
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whence
D̃(w(ϕ) − ϕ ○ S) = {0}.

However, if a ∈ D̃(ϕ), and

qn →∞, T qn U(L
2
(m))→ Ð→ Id, & ϕ(qn) → a a.e.,

then
w(ϕ(qn)) − ϕ(qn) ○ S → w(a) − a a.e.

whence w(a) − a ∈ D̃(w(ϕ) −ϕ ○S) = {0} and w(a) = a ∀ a ∈ D̃(ϕ) and
hence ∀ a ∈ G. �

Set

C(ϕ) = {a ∈ G ∶ lim inf
T q
U(L2(m))
→ Ð→Id, q≠0

1U(ϕ(q)) = 1 a.e.∀ a ∈ U ∈ T (G)}.

It is not hard to show that (for T Kronecker)

E(ϕ) ⊂ C(ϕ) ⊂ Ẽ(ϕ)
where Ẽ(ϕ) ∶=
{a ∈ G ∶ ∀ I ∈ T (X), a ∈ U ∈ T (G) ∃ n ≥ 1 ∋ m(I∩T −nI∩[ϕ(n) ∈ U]) > 0}.

A popular misconception in the subject for the case G = IR ( [Con80,
proposition 1] [HL86, lemma 3] ) seems to have been that C(ϕ) ⊂ E(ϕ).

This latter claim is wrong. A counterexample for a Kronecker trans-
formation is given in example 1.7 (below). An analogous example for
the case G = TT was given in [Fur61]. See [Ore83, proposition 1] for a
related method of proving ergodicity not based on the above.

The rest of this section is devoted to
Cocycles of product type for an odometer

For an ∈ IN, (n ∈ IN), set Ω ∶= ∏∞

n=1{0, . . . , an − 1} equipped with the
addition

(ω + ω′)n = ωn + ω′n + εn mod an

where ε1 = 0 and

εn+1 = { 0 ωn + ω′n + εn < an
1 ωn + ω′n + εn ≥ an

Clearly, Ω equipped with the product discrete topology, is a com-
pact Abelian topological group (called an odometer group), with Haar
measure

m =
∞

∏
n=1

( 1

an
, . . . ,

1

an
).
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Also if τ = (1,0, . . . ) then Ω = {nτ}n∈ZZ whence x ↦ Tx(∶= τ + x)
(called an odometer transformation) is ergodic.

A cocycle of product type is a measurable function ϕ ∶ Ω→ G (where
G is an Abelian topological group) of form

ϕ(ω) =
∞

∑
n=1

(bn(Tω) − bn(ω))

where bn(ω) = βn(ωn), where βn ∶ {0, . . . , qn − 1} Ð→ G (notice that Tω
differs from ω only in finitely many places whenever ω ≠ −τ , so ϕ is
well-defined except for one point).

Set q1 = 1, qn+1 = ∏n
k=1 ak, then

(qnτ)k = { 1 k = n,
0 k ≠ n,

whence
T qnω = (ω1, . . . , ωn−1, τ̃n + (ωn, . . . ))

where

τ̃n = (1,0, . . . ) ∈
∞

∏
k=n

{0, . . . , ak − 1}.

Note that

ϕ(k)(ω) ∶=
k−1

∑
j=0

ϕ(T jω) !→ =
∞

∑
n=1

[bn(T kω) − bn(ω)],

whence

ϕ(qk)(ω) =
∞

∑
n=1

[bn(T qkω) − bn(ω)]

=
`k(ω)−1

∑
n=0

[βk+n(0) − βk+n(ak+n − 1)]

+ βk+`k(ω)(ωk+`k(ω) + 1) − βk+`k(ω)(ωk+`k(ω)),
where

`k(ω) = min{n ≥ 0 ∶ ωk+n < ak+n − 1}.
We begin by considering cocycles of form

βn(k) = kλn(∶= λn +⋯ + λn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k times

), for 0 ≤ k ≤ an − 1, where λn ∈ G.

Proposition 1.6 If rn ∈ IN and ∑∞

n=1
rn
an

< ∞, then

{kλn ∶ n ≥ 1, 1 ≤ k ≤ rn}′ ⊂ D̃(ϕ).
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Proof ¿From the condition on {rn}n∈IN , for a.e. ω ∈ Ω

∃ Nω ∈ IN ∋ ωn < an − rn − 1 ∀ n > Nω,

whence ∀ n ≥ Nω, 0 ≤ k ≤ rn,

ϕ(kqn)(ω) =
k

∑
j=1

ϕ(qn)(T (j−1)qnω)

=
k−1

∑
j=0

(βn(ωn + j + 1) − βn(ωn + j)) (∵ k < rn)

= kλn

and if kνλnν → a, then for a.e. ω ∈ Ω,

ϕ(kν ⋅qnν ) ≈ kνλnν → a a.e,

and a ∈ D̃(ϕ). �

Theorem 1.5, and Proposition 1.6 facilitate easy constructions of con-
servative, ergodic, coalescent, non-squashable G-extensions of odome-
ters.

Example 1.7 There is a continuous IR-valued cocycle of product type
which is a coboundary, and satisfies

Gp(C(ϕ)) = IR.

Proof Assume that ∑∞

n=1
1
an

< +∞, an ≥ 3. Let

ϕ(ω) =
∞

∑
n=1

(bn(Tω) − bn(ω))

where, as before, bn(ω) = βn(ωn). Set β2n+1 ≡ 0, and

β2n(k) = {
1
n k = 1,

0 else.

By Borel-Cantelli lemma, since µ{ω ∶ ω2n = 1} = 1
an
, ϕ = ψ ○T −ψ with

ψ =
∞

∑
n=1

bn.
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Note that ϕ(−τ) = 0 (where −τ = (a1−1, a2−1, . . . )). For ω ≠ −τ, `(ω) <
∞

ϕ(ω) =
`(ω)−1

∑
n=0

[βn(0) − βn(an − 1)]

+ β`(ω)(ω`(ω) + 1) − β`(ω)(ω`(ω))
= β`(ω)(ω`(ω) + 1) − β`(ω)(ω`(ω)),

since βn(0) − βn(an − 1) = 0, whence

∣ϕ(ω)∣ ≤ 2

`(ω)
and the continuity of ϕ is ensured.

For a.e. ω ∈ Ω, ∃ nω such that 2 < ωn < an − 2 ∀ n > nω. Set

κn(ω) = a2n − ω2n

for n > nω
2 . Clearly κn(ω)q2nτ

Ω→Ð→ 0.
Moreover, for n > nω

2 ,

(T jq2nω)2n = { ω2n + j 0 ≤ j ≤ κn(ω) − 1

0 j = κn(ω)

(T jq2nω)2n+1 = { ω2n+1 0 ≤ j ≤ κn(ω) − 1,

ω2n+1 + 1 j = κn(ω)
and

(T jq2nω)k = ωk ∀ 0 ≤ j ≤ κn(ω), k ≠ 2n,2n + 1;

whence

ϕ((κn(ω)+1)q2n)(ω) =
∞

∑
k=1

(bk(T (κn(ω)+1)q2nω) − bk(ω))

∞

∑
k=1

(βk((T (κn(ω)+1)q2nω)k) − βk(ωk))

= β2n((T (κn(ω)+1)q2nω)2n) − β2n(ω2n)

= β2n(1) =
1

n
.

We use the fact that

∀ y > 0, N ≥ 1, ∃ N < nk(N) ↑ ∞ ∋
∞

∑
k=1

1

nk(N) = y.
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Now, for fixed ω, y, and N > nω
2 choose mN such that

∣
mN

∑
k=1

1

nk(N) − y∣ <
1

N

and set

Q
(N)
m (ω) =

m

∑
k=1

(κnk(N) + 1)(ω)q2nk(N), & QN = QN(ω) ∶= Q(N)mN (ω).

It follows that QNτ
Ω→Ð→ 0 whence TQN

U(L2
(m))→ Ð→ Id. On the other

hand,

ϕ(QN )(ω) =
mN

∑
k=1

ϕ((κnk+1)q2nk)(TQk−1(N)ω) =
mN

∑
k=1

1

nk(N) Ð→ y.

Thus C(ϕ) ⊃ IR+. With some minor adjustments, C(ϕ) = IR can be
arranged. �

§2 Homogeneous Banach spaces and Koksma inequalities.

Definition By a pseudo-homogeneous Banach space on TT we mean a
Banach space (B, ∥ ⋅ ∥B) satisfying
B ⊆ L1(TT ), and ∥ ⋅ ∥B ≥ ∥ ⋅ ∥1,
if f ∈ B and t ∈ TT then ft ∈ B, and ∥ft∥B = ∥f∥B, where ft(x) =
f(x − t), x ∈ TT. A pseudo-homogeneous Banach space on TT is called
homogeneous if t↦ ft is continuous TT Ð→ B, ∀ f ∈ B.

The following properties of pseudo-homogeneous Banach spaces are
either contained in, or can be easily deduced from [Kat68, chapter 1]:
there exists the largest homogeneous Banach subspace Bh contained in
B defined by

Bh = {f ∈ B ∶ t↦ ft is continuous TT → B};

the space Bh is the closure of trigonometric polynomials belonging to B
(this is because Bh is homogeneous and hence if f ∈ Bh and g ∈ C(TT )
then the convolution of these two functions is an element of Bh);

if f ∈ B then f ∈ Bh iff for each n ∈ ZZ such that f̂(n) ≠ 0 there exists
g ∈ Bh such that ĝ(n) ≠ 0.

Suppose now that B is a Banach space and T is an isometry on
it. Assume also that zero is the only fixed point of T . We say that for
an x ∈ B the ergodic theorem holds if

B − lim
nÐ→∞

1

n

n−1

∑
j=0

T jx = 0.
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The set of all elements of B for which the ergodic theorem holds
is denoted by ET(B,T ). An element x ∈ B is said to be a (B-
)coboundary if x = y − Ty for some y ∈ B (called a transfer element).
The following theorem is a version of the Mean Ergodic Theorem:

Theorem 2.1 (von Neumann) An element x ∈ ET(B,T ) iff x
belongs to the closure of the subspace of B-coboundaries.

Suppose now that B is a pseudo-homogeneous Banach space on
TT (only functions with zero mean are considered). Let T denote
an irrational translation by α, then T acts as an isometry on B.
Note that if P is a trigonometric polynomial from B then P is
a coboundary, in fact we have P = Q − Q ○ T, where Q is another
trigonometric polynomial, hence P,Q ∈ Bh. This proves

Corollary 2.2
Bh ⊂ ET(B,T ).

Let
α = [0;a1, a2, . . .]

be the continued fraction expansion of α. The positive integers an
are called the partial quotients of α. Put

q0 = 1, q1 = a1, qn+1 = an+1qn + qn−1 p0 = 0, p1 = 1, pn+1 = an+1pn +pn−1.

The rationals pn/qn are called the convergents of α and the inequality

∣α − pn
qn

∣ < 1

qnqn+1

holds. A denominator qn is said to be a Legendre denominator if
∣α− pn

qn
∣ < 1

2q2n
. We’ll sometimes denote the set of Legendre denominators

of α by L(α).
Note that if q ∈ L(α) is a Legendre denominator then

(2.1) ∥jα − j′α∥ > 1

2q
whenever 0 ≤ j ≠ j′ ≤ q − 1.

Here, for t ∈ IR,
∥t∥ = d(t,ZZ) = min

n∈ZZ
∣n − t∣.

We recall that one of any two consecutive denominators of an irra-
tional αmust be a Legendre denominator i.e. (∀ α ∉ Q, n ≥ 1), {qn, qn+1}∩
L(α) ≠ ∅.

Let B be a pseudo-homogeneous Banach space on TT . We say that
Koksma’s inequality holds for the pair (B,T ) provided that there exists
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a positive sequence D̃N = D̃N(α), N ≥ 1, satisfying D̃qn = O(1/qn)
where {qn} is the sequence of denominators of α and

(2.2) ∥ 1

N
f (N)(⋅) − ∫

1

0
f(t)dt∥L1 ≤ ∥f∥BD̃N(α) ∀ f ∈ B,

where f (N)(x) = ∑N−1
j=0 f(T jx), x ∈ TT. For the classical cases where

Koksma inequality is satisfied for functions with bounded variation or
Lipschitz continuous functions we refer to [KN74], chapter 2.

The proposition below (essentially due to M. Herman, [Her79], p.189)
will play a role in the proofs of ergodicity of certain cylinder flows.

Proposition 2.3 If Koksma’s inequality is satisfied for the pair (B,T )
then for each f ∈ Bh with ∫

1

0 f(t)dt = 0 we have

lim
nÐ→∞

f (qn) = 0 in L1(TT ).

Proof Denote by B0 the subspace of B consisting of functions with
zero mean. Then define a map S ∶ B0 Ð→ l∞ by

Sg = (∥g(qn)∥L1)n≥1.

Note that by the Koksma inequality, S is well-defined and continuous.
Hence, the set S−1(c0) is closed as c0 is a closed subspace of l∞. Each
coboundary f = h − hT, h ∈ B is in S−1(c0) since for each function
u ∈ L1(TT ) we have

(2.3) uT qn Ð→ u in L1(TT ).
It follows from this, theorem 2.1 and corollary 2.2, that

Bh ⊂ ET (B,T ) = {h − h ○ T ∶ h ∈ B} ⊂ S−1(c0).
�

We will now pass to a proof of Koksma’s inequality in the space B =
O(1/n) (of functions whose Fourier coefficients are of order O(1/n)),

where the norm is defined as ∥f∥B = ∥f∥L1+supn≠0 ∣nf̂(n)∣. If {x1, . . . , xN}
is a finite set of points from [0,1) then by discrepancy DN =DN(x1, . . . , xN)
we mean

DN = sup
x<y

{∣#{1 ≤ j ≤ N xj ∈ [x, y)}
N

− (y − x)∣}.

Lemma 2.4

sup
x

#{1 ≤ j ≤ N xj ∈ [x,x + 1

N
)} ≤ NDN + 1.
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Proof For an arbitrary x ∈ [0,1),

∣
#{1 ≤ j ≤ N xj ∈ [x,x + 1

N )}
N

− (x + 1

N
− x)∣ ≤DN ,

whence the assertions follows immediately. �

Lemma 2.5 There exists C > 0 such that
(∀m ≥ 1)(∀a ≥ 1)(∀x1, . . . , xm−1 ∈ [0,1)) if in each interval of length

1
m : there are at most a points of the form xi then ∑{i∶xi∈( 1

2m
,1− 1

2m
)}

1
∥xi∥2

≤
Cam2.

Proof Denote by I the set of those 1 ≤ i ≤ m − 1 so that xi ∈
( 1

2m ,1 − 1
2m). Then define a map i↦ j(i), i ∈ I,1 ≤ j(i) ≤m − 1, by

(2.4) ∣xi −
j(i)
m

∣ ≤ 1

2m
.

Since ∥xi∥ > 1
2m ,

(2.5) 1

2
≤ ∥xi∥

∥ j(i)m ∥
≤ 2.

Note that if k is in the image of the function j then

# j−1(k) ≤ a
by our assumption and (2.4). Hence by (2.5)

∑
i∈I

1

∥xi∥2
≤ 2a ∑

k∈ Im j

1

∥k/m∥2
≤ 4a

m−1

∑
i=1

1

(i/m)2
= Cam2.

�

Combining this with Lemma 2.4, we obtain

Corollary 2.6 Under the conditions of lemma 2.5,

∑
i∈I

1

∥xi∥2
≤ C(mDm + 1)m2,

where I is the same as in the proof of Lemma 2.5.

Now, suppose that f ∈ O( 1
n),

f(x) =
∞

∑
k=−∞

f̂ke
2πikx.

We have

f (m)(x) =
m−1

∑
i=0

f(x + iα) = f (m)(x) =
∞

∑
k=−∞

f̂k
e2πikmα − 1

e2πikα − 1
e2πikx.
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Theorem 2.7 (Koksma’s Inequality in O( 1
n)) There is a constant

K > 0 such that if we denote

D̃m =
¿
ÁÁÀK( ∑

k∈Am

1

k2
+ (mDm + 1)(∥mα∥2 + 1

m2
))

then ∀ f ∈ O( 1
n),

∥ 1

m

m−1

∑
i=0

f(⋅ + iα) − ∫
1

0
f(t)dt∥2

L2 ≤ ∥f∥2

O( 1
n
)
D̃m,

where
Dm =Dm(0, α,2α, . . . , (m−1)α), and Am = {0 ≤ j ≤m−1 ∶ 0 < ∥jα∥ <

1
2m}. Moreover,

D̃qn = O(1/qn).

Proof Without loss of generality we will assume that ∫
1

0 f(t)dt = 0
and it is enough to prove that
(2.6)
∥f (m)∥2

L2 ≤ C2∥f∥2

O( 1
n
)
(m2 ∑

k∈Am

1

k2
+C(mDm+1)m2∥mα∥2+C3(mDm+1)),

where C2,C,C3 are some absolute constants. Since f is real,

∥f (m)∥2
L2 ≤ 2C1

∞

∑
k=1

∣f̂k∣2
∥kmα∥2

∥kα∥2
= C2(S1 + S2),

where

S1 =
m−1

∑
k=1

∣f̂k∣2∥kmα∥2

∥kα∥2
, S2 =

∞

∑
k=m

∣f̂k∣2∥kmα∥2

∥kα∥2
.

Now,

S1 =
m−1

∑
k=1

∣f̂kk∣2∥kmα∥2

k2∥kα∥2
≤ ∥f∥2

O( 1
n
)

m−1

∑
k=1

∥kmα∥2

k2∥kα∥2
= ∥f∥2

O( 1
n
)
(S11 + S12),

where

S11 = ∑
k∈Am

∥kmα∥2

k2∥kα∥2
, S12 = ∑

k∉Am

∥kmα∥2

k2∥kα∥2
.

We have, S11 ≤m2∑k∈Am
1
k2 , and S12 ≤ ∥mα∥2∑k∉Am

1
∥kα∥2 .

By Corollary 2.6,

S12 ≤ ∥mα∥2C(mDm + 1)m2.
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We pass now to estimate S2. We have

S2 =
∞

∑
k=m

∣f̂k∣2∥kmα∥2

∥kα∥2
=

∞

∑
p=1

m−1

∑
r=0

∣f̂pm+r∣2∥(pm + r)mα∥2

∥(pm + r)α∥2
≤

∥f∥2

O( 1
n
)

∞

∑
p=1

1

p2

m−1

∑
r=0

∥(pm + r)mα∥2

m2∥(pm + r)α∥2
≤

1

m2
∥f∥2

O( 1
n
)

∞

∑
p=1

1

p2

m−1

∑
r=0

min(m2,
1

∥pmα + rα∥2
).

Denote x = pmα. In the interval (− 1
2m ,

1
2m) = [0, 1

2m) ∪ [1 − 1
2m ,1)

(mod 1) we have at most mDm+1 points of the form x+rα because
Dm =Dm(x,x + α, . . . , x + (m − 1)α). By Corollary 2.6 we thus have

S2 ≤
1

m2
∥f∥2

O( 1
n
)

∞

∑
p=1

1

p2
((mDm+1)m2+C(mDm+1)m2) ≤ C3∥f∥2

O( 1
n
)
(mDm+1).

To complete the proof we have to show that the sequence {qnD̃qn}
is bounded. But classically, Dqn = O(1/qn) and also qn∥qnα∥ is
bounded. Now, note that in the interval Mn = [0, 1

2qn
)∪[1− 1

2qn
,1) we

can have at most one point of the form jα, where j = 1, . . . , qn − 1.
Moreover, ∣jα−j pnqn ∣ <

j
qnqn+1

, so if jα ∈Mn then we must have j
qnqn+1

>
1

2qn
. In particular, j > qn/2, so ∑k∈Aqn

1
k2 = O(1/q2

n).
�

Now, proceeding as in the proof of Proposition 2.3, we obtain the
following extension of the main result from [LM94]

Corollary 2.8 If f ∈ o( 1
n), ∫

1

0 f(t)dt = 0 and {qn} is the sequence
of all denominators of α then

∥f (qn)∥L2 Ð→ 0.

§3 Speed of approximation in Koksma’s Inequality for
spaces O(1/a(n)).

Assume that a ∶ IN Ð→ IR+ satisfies

(3.1) a(k) ≥ k,

(3.2) a(pm + r) ≥ a(p)a(m), for arbitrary p,m ≥ 1, r = 0, . . . ,m − 1.

We will now concentrate on a pseudo-homogeneous Banach space B =
O(1/a(n)) of functions

f(x) =
∞

∑
k=−∞

f̂ke
2πikx,
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with f̂k = O(1/a(k)). The norm is defined as

∥f∥ O(1/a(n)) = ∥f∥L1 + sup
n≠0

∣a(n)f̂n∣.

Notice that in this case Bh = o(1/a(n)) the subspace of functions
whose Fourier coefficients are of order o(1/a(n)). Keeping the nota-
tion from the proof of Theorem 2.7 and proceeding as before we obtain
that

S1 ≤ ∥f∥2

O(1/a(n))(S11 + S12),
where

S11 =m2 ∑
k∈Am

1

a(k)2
,

and by (3.1)

S12 ≤ ∥mα∥2 ∑
k∉Am

k2

a(k)2

1

∥kα∥2
≤ ∥mα∥2m2(Dmm + 1) ⋅C.

In view of (3.2),

S2 ≤ ∥f∥2

O(1/a(n))

∞

∑
p=1

1

a(p)2

m−1

∑
r=0

∥(pm + r)mα∥2

a(m)2∥(pm + r)α∥2
≤

1

a(m)2
∥f∥2

O(1/a(n))m
2C4(mDm+1)

∞

∑
p=1

1

a(p)2
≤ ( m

a(m))
2∥f∥2

O(1/a(n))(mDm+1)C5.

For a function a(⋅) satisfying (3.1) and (3.2) denote

I(a) = {α ∈ [0,1) ∖Q ∶ lim inf
q→∞, q∈L(α)

a(q)∥qα∥ < ∞}.

Lemma 3.1 If f = gT − g, g ∈ O(1/a(n)), α ∈ I(a) and qnk ∈ L(α)
with a(qnk)∥qnkα∥ = O(1), then

∥f (qnk)∥L2 = o( qnk
a(qnk)

).

Proof All we need to show is that ∑∞

s=1 ∣ĝs∣2∥qnksα∥2 = o(( qnk
a(qnk)

)2).
We have

∞

∑
s=1

∣ĝs∣2∥qnksα∥2 ≤ ∥g∥2

O(1/a(n))(
qnk−1

∑
s=1

∥qnksα∥2

a(s)2
+

∞

∑
s=qnk

∥qnksα∥2

a(s)2
) ≤

∥g∥2

O(1/a(n))(qnk∥qnkα∥
2 + qnk

∞

∑
p=1

1

(a(p)a(qnk))2
) =

∥g∥2

O(1/a(n))(
qnk

a(qnk)2
a(qnk)2∥qnkα∥2+ qnk

a(qnk)2

∞

∑
p=1

1

a(p)2
) = o(( qnk

a(qnk)
)2).
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�

Corollary 3.2 If f ∈ O(1/a(n)), ∫
1

0 f(t)dt = 0 and α ∈ I(a) and
qnk ∈ L(α) with a(qnk)∥qnkα∥ = O(1), then

∥f (qnk)∥L2 ≤ const.∥f∥ O(1/a(n))
qnk

a(qnk)
.

Moreover, if in addition f ∈ o( 1
a(n)) then

(3.3) ∥f (qnk)∥L2 = o( qnk
a(qnk)

).

Proof Since (3.3) is satisfied for all coboundaries by Lemma 3.1, the
mechanism described in the proof of Proposition 2.3 works well. The

map S is defined as Sf = (a(qnk)qnk
∥f (qnk)∥L2)k≥1. �

Suppose now that a(n) = 1
nt for certain natural number t ≥ 1. Hence

I(a) =∶ I(t) is the set of those irrationals α for which (qtnk∥qnkα∥)
is bounded for certain subsequence of Legendre denominators of α.

Corollary 3.3 If f ∈ o( 1
nt ), ∫

1

0 fdλ = 0 then for an arbitrary α ∈ I(t)
and qnk ∈ L(α) with qtnk∥qnkα∥ = O(1), we have

(i) ∥f (qnk)∥L2 = o( 1
qt−1nk

),
(ii) the sequence (qtnk) is a rigidity time for α and

lim
k→∞

f (q
t
nk
) = 0 in L2(TT ).

Proof It is enough to notice that f (q
t
nk
) = f (qnkqt−1nk

) and that ∥f (qnkqt−1nk
)∥L2 ≤

qt−1
nk

∥f (qnk)∥L2 . �

§4 Constructions of ergodic analytic cylinder flows.

Constructions which are known of ergodic cylinder flows are rather
based on some irregularities in the smoothness of the cocycle (e.g.
[HL86], [HL89], [Pas90], [Pas91], [BM92], [BM91]). Below, we will show
a new method coming from [KLR94] for constructing analytic cylinder
flows which are ergodic.

Assume that Tx = x+α, where α = [0;a1, a2, . . .]. From the continued
fraction expansion of α we obtain, for each n, two Rokhlin towers ξn, ξn
whose union coincides with the whole circle. For n even

ξn = {[0,{qnα}), T [0,{qnα}), . . . , T (an+1qn+qn−1)−1[0,{qnα})},
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ξn = {[{qn+1α},1), . . . , T qn−1[{qn+1α},1)}.
Given a subsequence {nk} of natural numbers we will denote

Ik = [0,{a2nk+1q2nkα}), Jkt = T (t−1)q2nk (0,{q2nkα}],
t = 1, . . . , a2nk+1. Notice that

Ik =
a2nk+1

⋃
t=1

Jkt ,

and

(4.1) ∣Jk1 ∣ <
1

a2nk+1q2nk

.

We will recall here a notion of an a.a.c.c.p. (almost analytic cocycle
construction procedure) from [KLR94] which is to construct a real 1-
periodic cocycle ϕ̃ ∶ IR Ð→ IR such that in its IR−cohomology class (for
certain α) there is an analytic cocycle.

An a.a.c.c.p. is given by a collection of parameters as follows. We are
given a sequence {Mk} of natural numbers and an array {(dk,1, . . . , dk,Mk

)}, dk,i ∈
IR satisfying for each k

Mk

∑
i=1

dk,i = 0.

Denote Dk = max1≤i≤Mk
∣dk,i∣. Choose a sequence {εk} of positive real

numbers satisfying
∞

∑
k=1

√
εkMk < +∞,

∞

∑
k=1

εk < 1,

εk <
1

D2
k

, k = 1,2, . . . .

Finally, we are given A > 1 completing the parameters of the a.a.c.c.p.
We say that this a.a.c.c.p. is realized over an irrational number α

with continued fraction expansion [0;a1, a2, . . .] and convergents pn/qn, n ≥
1 if there exists a strictly increasing sequence {nk} of natural numbers
such that

ANk
DkMk∥Pk∥F
a2nk+1q2nk

< 1

2k

and
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Dk∥P ′

k∥∞
a2nk+1q2nk

< √
εk,

where {Pk} is a sequence of ”bump” real trigonometric polynomials,
i.e.

(i) ∫
1

0
Pk(t)dt = 1,

(ii) Pk ≥ 0,

(iii) Pk(t) < εk for each t ∈ (ηk/2,1),
where the ηk’s are chosen in such a way that

(4.2) 4Mkηk <
εk
q2nk

and Nk is the degree of Pk. Finally, a2nk+1 > 1 and

(4.3) 1

a2nk+1q2nk

< 1

2
ηk

Using the above parameters define a cocycle

ϕ =
∞

∑
k=1

ϕ(k)

as follows. In view of (4.2),(4.3) (and (4.1)), in the interval Ik =
[0,{a2nk+1q2nkα}) we can choose wk,1, . . . ,wk,Mk

to be consecutive pair-
wise disjoint intervals of the same length contained between ηk and 2ηk
such that each wk,i consists of say ek consecutive subintervals Jkt , where
ek is an odd number. Let Jksk,i be the central subinterval in wk,i and
now define

ϕ(k)(x) = { dk,i if x ∈ Jksk,i ,
0 otherwise.

Note that the ϕ(k)’s have disjoint supports so ϕ is well defined.
As proved in [KLR94]

(A) The set of α’s over which an a.a.c.c.p. is realized is a Gδ and
dense subset of the circle.
(B) If an a.a.c.c.p. is realized over α then there exists an analytic
cocycle f ∶ TT Ð→ IR which is α−cohomologous to ϕ.

We will need an additional property of an a.a.c.c.p. which is not
explicitly formulated in [KLR94]. Namely,

(4.4) ϕ∣T sIk is constant for s = 1, . . . , q2nk − 1, &
q2nk−1

∑
s=1

ϕ∣T sIk = 0
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which is Lemma 3 from [KLR92].

Example 4.1 There is an a.a.c.c.p. with Gp(D̃(ϕ)) = E(ϕ) = ZZλ.

Proof Assume that λ ∈ IR is given. We will assume that an a.a.c.c.p.
satisfies the following additional requirements:

a2nk+1 =Mkrk +Nk,

with 0 ≤ Nk < rk and both Mk, rk tending to infinity. We put
dk,1 = 0, dk,i = λ for i = 2, . . . ,Mk − 1 and dk,Mk

= −(Mk − 1)λ. In the
definition of ϕk we require that ϕk∣Jkirk+1 = dk,i for i = 0, . . . ,Mk − 1

and zero for all others subintervals Jkt , k ≥ 1.
Notice that E(ϕ) ⊂ ZZλ because the values of ϕ are from the group

ZZλ. It is then enough to show that λ ∈ D̃(ϕ). Define

Xk =
q2nk−1

⋃
s=0

(Mk−1)rk

⋃
t=rk+1

T sJkt .

By our definition of ϕ and a basic property of an a.a.c.c.p. (see (4.4))
we have ϕ(Mkrk)(x) = λ for all x ∈ Xk. It is clear also that Mkrk is a

rigidity time for T. Therefore λ ∈ D̃(ϕ). �

Example 4.2 An a.a.c.c.p. with Gp(D̃(ϕ)) = IR.
This is an obvious modification of the previous construction. We di-

vide the sequence {nk} into two disjoint subsequences say {nik}k (i =
1,2) and repeat the previous construction for rationally independent
λ1, λ2 ∈ IR, with the sequences {nik}, i = 1,2. From the previous argu-

ments we find λ1, λ2 ∈ D̃(ϕ). The group generated by λ1, λ2 is dense
in IR and the advertised condition is attained.

Remark It follows from proposition 1.5 that the cocycles of example
4.2 are ergodic, coalescent, and nonsquashable.

§5 Ergodicity of smooth cylinder flows. Generic point of
view.

Suppose that f ∶ TT → IR is smooth. We shall prove that under
certain assumptions, the set of those irrational translations for which
the corresponding cylinder flow is ergodic is residual. For similar results
see [Kry74], [Kat03].

Assume that f(x) = ∑∞

n=−∞ bne
2πinx with zero mean is in A(TT ),

that is its Fourier transform is absolutely summable. Put fm(x) =
f(x) + f(x + 1

m) + . . . + f(x + m−1
m ) =m∑∞

l=−∞ blme
2πilmx, m = 1, . . . .
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Theorem 5.1 Suppose that there exist an infinite subsequence {qn}
and a constant C > 0 such that
qn∑∞

l=−∞ ∣blqn ∣ ≤ C∥fqn∥L2 , n = 1,2, . . . ,
0 < ∥fqn∥L2 → 0, then there exists a dense Gδ set of irrational numbers
α such that the corresponding cylinder flow Tf , Tx = x+α is ergodic.

Proof We will need the following

Lemma 5.2 Given C > 0 there exist positive numbers K,L,M
such that 0 < K < 1 < L, 0 < M < 1 and for each h ∈ L4(TT ) if
∥h∥4 ≤ C∥h∥2, then

µ{x ∈ TT ∶ K∥h∥2 ≤ ∣h(x)∣ ≤ L∥h∥2} >M

We will prove the lemma later. Denote

gn(x) = qn
∞

∑
l=−∞

blqne
2πilx.

In view of (1) we have that

(5.1) gn(qnx) = fqn(x), x ∈ TT

and

∥gn∥L∞ ≤ qn∑∣blqn ∣ ≤ C∥gn∥L2 ,

in particular, ∥gn∥4 ≤ C∥gn∥2. Hence by Lemma 5.2

µ{x ∈ TT ∶ K∥gn∥2 ≤ ∣gn(x)∣ ≤ L∥gn∥2} >M.

By (2) we have ∥gn∥2 = ∥fqn∥2 → 0.

Let {Dn} be a family of pairwise disjoint closed intervals, Dn =
[cn, dn], with

dn/cn = 100
L

K
and dn → 0.

Assume that {D′

n} is a sequence of the above intervals with the prop-
erty that each Dn repeats infinitely many times in {D′

n}.
Now, fix n, that is we have the interval D′

n. Choose a natural
number kn so that for some natural sn

[snK∥gkn∥L2 , snL∥gkn∥L2] ⊂ D̃′

n,

where D̃′

n is a strict subinterval of D′

n. This gives us a subsequence
{kn}. For it we have that

µ{x ∈ TT ∶ ∣sngkn(x)∣ ∈ D̃′

n} ≥M.
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¿From this and (5.1) we obtain that for each interval I of length being
a multiple of 1

qkn

(5.2) µ{x ∈ I ∶ ∣snfqkn(x)∣ ∈ D̃
′

n} ≥M ∣I ∣.
We will also use the following lemma whose proof is contained in
[KLR94].

Lemma 5.3 Given an infinite set {Qn} of natural numbers and a pos-
itive real valued function δ = δ(Qn) the set

A = {α ∈ [0,1) ∶ #{n ∶ ∃ Pn ∋ Pn
Qn

a convergent of α, & ∣α−Pn
Qn

∣ < δ(Qn)} = ∞}

is a dense Gδ.

Let us fix r. So we have infinitely many n = n(r) with D′

n = Dr.

Consider now those α which are approximated by
pkn(r)
qkn(r)

so well to

have
∥sn(r)qkn(r)α∥ → 0

and

(5.3) µ{x ∈ I ∶ ∣f (sn(r)qkn(r))(x)∣ ∈D′

n(r)} ≥
M

2
∣I ∣

for each interval I with ∣I ∣ = t
qkn(r)

, t = 1, . . . , qkn(r) (remember that we

know the modulus of continuity of f and that

s−1

∑
i=0

(
q−1

∑
j=0

f(x + j
q
) −

q−1

∑
k=0

f(x + iqα + kα)) =

s−1

∑
i=0

(
q−1

∑
k=0

f(x + kp
q
) − f(x + iqα + kα)) ≤

s−1

∑
i=0

q−1

∑
k=0

ω(f, iqα + k(α − p
q
)),

where gcd(p, q) = 1, p = pkn(r) , q = qkn(r) and ω(f, h) stands for the
modulus of the continuity of f ; now given s, q the size of the above
quantity depends on the distance between α and p

q .)

In view of Lemma 5.3 we have a Gδ and dense subset of α, say
Yr, for which (5.3) holds true for an infinite subsequence of {qkn(r)}.
Finally take

Y =
∞

⋂
r=1

Yr

which is Gδ and dense. If we take α ∈ Y then for each r we have an
infinite subsequence n(α) such that

µ{x ∈ I ∶ ∣f (sn(α)qkn(α)(x)∣ ∈D′

n(α)} ≥
M

2
∣I ∣
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for each interval I with ∣I ∣ = t
qkn(r)

and D′

n(α)
=Dr.

It remains to prove that if Tx = x + α, where α ∈ Y then the
cylinder flow Tf is ergodic. Suppose that E(f) = λZZ. Choose r so
big to have that the compact set Kr ∶= Dr ∪ (−Dr) is disjoint with
λZZ. By Lemma 1.2 there exists a Borel set B, with µ(B) > 0 such
that for all m ≥ 1

(5.4) µ(B ∩ T −mB ∩ {x ∈ TT ∶ f (m)(x) ∈Kr}) = 0.

If m = snqkn , n = n(α), then µ(B △ T snqknB) → 0 since snqkn is a
rigidity time for T . If y is a density point of B then for an interval
I of length t/qkn containing y we will have µ(B ∩ I) > (1 − M

4 )∣I ∣.
Hence a subset An of B of measure at least M

4 µ(B) has the property
that f (snqkn)(x) ∈Kr whenever x ∈ An. This contradicts (5.4). �

Proof of Lemma 5.2 It is enough to consider the case ∥h∥2 = 1. Take
two real numbers K,L satisfying 0 < K < 1 < L. From Tchebycheff
inequality we have

µ{∣h∣ ≤ L} ≥ µ{∥h∣2−1∣ ≤ L2−1} ≥ 1− Var(∣h∣2)(L2−1)−2 ≥ 1−(C4−1)(L2−1)−2.

On the other hand, from Cauchy-Schwartz inequality

1 = ∫
{∣h∣>K}

h2 + ∫
{∣h∣≤K}

h2 ≤ (∫ h4)1/2(µ{∣h∣ >K})1/2 +K2;

whence µ{∣h∣ >K} ≥ (1 −K2)2/C4. Now to have the conclusion of the
lemma it is enough to choose ε > 0, put M = 1/C4 − 2ε, then find
K small enough to have (1 −K2)2/C4 >M + ε and finally select L
sufficiently big to have (C4 − 1)(L2 − 1)−2 < ε. �

Remarks.
As shown in [KLR94], the assumptions of Theorem 5.1 are satisfied

for each zero mean function f ∈ C1+δ(TT ), δ > 0 which is not a trigono-
metric polynomial. Recall that a subset E ⊂ ZZ is called of type Λ(2) if
for every q ≥ 2 there exists a constant C = C(q,E) such that for every

function h ∈ Lq(TT ) we have ∥h∥q ≤ C∥h∥2 whenever supp(ĥ) ⊂ E.
For instance, each lacunary subset is of that type ( [Kat68], Chap-
ter 5.). Now, if f ∈ L2(TT ) with the absolutely summable Fourier
transform has the property that the support of its Fourier transform
is an infinite Λ(2) type set and moreover that f̂(n) = o(1/n) then
the assumptions of Theorem 5.1 are also satisfied.

§6 Ergodicity of a class of cylinder flows.

This section will be devoted to a generalization of a result of Pask
[Pas90].
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A function f ∶ TT → IR is called piecewise linear (piecewise absolutely
continuous) if there are points x1 < x2 < . . . < xK such that f
restricted to [xj, xj+1) is linear (absolutely continuous), j = 1,2, . . .
(mod K). Denote by dj the jump of the values of f at xj. It is
clear that if f is piecewise absolutely continuous then

∫
1

0
f ′(t)dt =

K

∑
j=1

dj.

Lemma 6.1 Suppose that f ∶ TT → IR, ∫
1

0 f(t)dt = 0 is piecewise

linear, and ∑K
j=1 dj ≠ 0, then for each irrational number α the corre-

sponding cylinder flow Tf is ergodic.

Proof There is no loss of generality in assuming that ∑K
j=1 dj > 0. Since

f ′ is Riemann integrable, the ergodic theorem holds uniformly, so

1

q

q−1

∑
j=0

f ′(x + jα) → ∫
1

0
f ′(t)dt > 0

uniformly in x. Hence, we can find two constants 0 < C1 < C2 such
that for all q sufficiently large,

(6.1) C1q ≤ f (q)′(x) ≤ C2q ∀ x ∈ TT.
On the other hand, f (q) is still piecewise linear with the discontinuity
points of the form xi + jα, with the jump at it equal to di, where
i = 1, . . . ,K, j = 0, . . . , q −1. Substitute from now on q = qn a Legendre
denominator of α. Take the division of the circle given by the points
of the form xi+jα. It may happen that for i ≠ i′ we will have for some
j ≠ j′ that xi + jα = xi′ + j′α. This gives rise to a partition, say ξn,
of the circle into closed-open subintervals. Consequently the number
of atoms in ξn is not bigger than Kqn. Note that no subinterval in ξn
can be longer than 1/qn, so ξn is tending to the point partition. Let us
call a subinterval in ξn long if its length is at least 1

100Kqn
. Hence there

must exist a constant D =D(K) > 0 such that for all n ≥ 1 the number
of long subintervals is at least Dqn. Finally, by the classical Koksma
inequality, we have

∣f (qn)(x) − f (qn)(y)∣ ≤ Var(f) for all x, y ∈ TT.
Suppose now that E(f) = ZZλ. Choose a very small ε = ε(λ, Var(f),C1,C2,D) >
0 and let

K = {r ∈ [−2 Var(f),2 Var(f)] ∶ dist(r,ZZλ) ≥ ε}.
It is clear that K is compact. If ε is small enough, in view of (6.1) and
(6.2), there exists a constant F > 0 such that for each long subinterval
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of ξn there exists a subset with measure at least F 1
qn

such that for

each x from this subset we have f (qn)(x) ∈ K. It is now sufficient to
apply Lemma 1.3 to obtain an obvious contradiction to K ∩E(f) = ∅.

�

It is clear that the arguments from the above proof persist if instead
of a piecewise continuous function we consider a function g = f + h,
where f is piecewise linear with ∫

1

0 f
′(t)dt ≠ 0, h is integrable,

∫
1

0 fdt = ∫
1

0 hdt = 0 and h(qn) is tending to zero in measure along
the sequence of Legendre denominators of α. In particular, because of
Proposition 2.3, we have proved the following

Theorem 6.2 Let B be a homogeneous Banach space on TT and T
an irrational translation. If for the pair (B,T ) the Koksma inequality
holds true then for each cocycle g = f +h, where f is piecewise linear
with ∫

1

0 f
′(t)dt ≠ 0, h ∈ Bh, ∫

1

0 fdt = ∫
1

0 hdt = 0 the corresponding
cylinder flow Tf is ergodic.

In particular (see Corollary 2.8)

Corollary 6.3 Suppose that g = f + h where f is piecewise linear
with ∫

1

0 f
′(t)dt ≠ 0, and ĥ(n) = o(1/n), ∫

1

0 fdt = ∫
1

0 hdt = 0 then for
each irrational translation T the corresponding cylinder flow Tf is
ergodic.

Remarks 1. Assume as in [Pas90] that g ∶ TT → IR is piecewise

absolutely continuous, with ∫
1

0 g
′(t)dt ≠ 0 and ∫

1

0 g(t)dt = 0. Denote
by x1, . . . , xK the discontinuity points and let dj be the jump at
xj. Take any piecewise linear function f with the same discontinuity

points and the same jumps as g; in particular ∫
1

0 f
′(t)dt ≠ 0. By

adding a constant if necessary we can assume that ∫
1

0 f(t)dt = 0.Define
h = g−f . We have that h has zero mean and is absolutely continuous.
Now, the result from [Pas90] directly follows from Corollary 6.3.

2. Notice that if g is of the form as in Corollary 6.3 then for
each β ∈ TT, c ≠ 1 the cocycle g(⋅ +β)− cg(⋅) is still of the same form,
hence ergodic. We have proved that all ergodic cocycles from Corollary
6.3 are not squashable. In particular, piecewise absolutely continuous
cocycles with a nonzero sum of the jumps are not squashable.

3. Using our result on the speed in Koksma’s inequality (see Corol-
lary 3.3) and the technique from [Pas91], we can slightly improve the
main result of that paper by requiring that the functions from this
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paper can be modified by those whose Fourier coefficients are of or-
der o( 1

nt ) with an additionally remark that all those cocycles are not
squashable.
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