THE POINCARE SERIES OF C\ Z
JON AARONSON AND MANFRED DENKER

ABSTRACT. We show that the Poincaré series of the Fuchsian
group of deck transformations of C \ Z diverges logarithmically.
This is because C \ Z is a Z-cover of the three horned sphere,
whence its geodesic flow has a good section which behaves like a
random walk on R with Cauchy distributed jump distribution and
has logarithmic asymptotic type. (€)1996

§0 INTRODUCTION

Let H :={z € C: |z| < 1} denote unit disc, and let M&b(H) denote
the group of Mébius transformations (i.e. bianalytic diffeomorphisms
of H). These have the form z — A{=% where |A\| = 1 and o € H.

A Fuchsian group is a discrete subgroup of Méb(H). To any torsion
free Fuchsian group I', there corresponds a hyperbolic Riemann surface
which is obtained by endowing H/T" := {['(z) :={y(x) : v €T} : z €
H} with the canonical complex structure.

It is known (see [6]) that any hyperbolic Riemann surface is of this
form, the (torsion free) Fuchsian group being unique up to inner con-
jugacy in Mob(H).

The Poincaré series (|8]) of the Fuchsian group I' € Mob(H) at the
point x € H is the function

Pr(z;s) = > (1-|y(@))* <o (s>0).

yel

It is known (see §1) that Pr(z;s) < oo Vs > 1, v € H, and the
Fuchsian group I' € M6b(H) is called of divergence type if Br(z;s) —
o0 as s — 171 for some (and hence all) z € H (see [16], [27] and §1).

For divergence type groups I', Pr(z;s) ~ Pr(0;s) := Pr(s) as s —
1"V e H;and Py-1r,(s) ~ Pr(s) as s — 17V g € M6b(H) (see §1).
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Since the Fuchsian groups corresponding to a hyperbolic Riemann
surface belong to one inner conjugacy class, they are either all con-
vergence type, or all of divergence type and with the same rate of
divergence of Poincaré series up to asymptotic inequality.

A Fuchsian group I' € Méb(H ) which is a lattice (in the sense that its
homogeneous space Mob(H)/I" has finite Haar measure, equivalently
H/T has ﬁnite hyperbolic area) is always of divergence type and indeed
Pr(s) x —7ass — 17 (i.e. 3 limy 1+ (s—1)Pr(s) € Ry). This follows
from the ergodlc theorem for the geodesic flow on M6b(H)/I" ([16] and
[27], see §1).

The Fuchsian group I' is of divergence type iff its Riemann surface
H/T has no Green’s function ([22] see also [27]).

There are Fuchsian groups I' of divergence type which are not lat-
tices:

If ® C S? .= CU {oo} is a domain and |S? \ D| > 3, then D is
hyperbolic and has a Green’s function iff log- cap (S?\ @) > 0 (|6]);
the hyperbolic area of ® being finite iff [S? \ D| < oo ([27]).

It follows that I'(C \ Z) is of divergence type but is not a lattice.

In this paper we prove

Theorem

as s — 17.

1
Prev(s) o log —

The method of proof uses the ergodic theory of hyperbolic geodesic
flows.

The geodesic flow may be defined on Mob(H) /T by ¢h(T'g) := T'gy*

z+tanh(t/2)
where 7'(2) := —pfttanhé //2

It evidently preserves Haar measure on Méb(H) /T
It is ergodic on Mob(H)/I' iff T' is of divergence type (see |17] and

(the equivalent geometric definition is in §1).

[27]).
It was shown in [4] that the geodesic ﬂow is rationally ergodic with a
return sequence ar(t) satisfying PBr(1+s) ~ s [~ ap(t)e dt as s — 0

(see also [1] chapter 7).
To prove the theorem, we show that arc\z)(t) oc logt as t — oco.

The Riemann surface C \ Z appears as a Z-cover of the so called
three-horned sphere C\ {0, 1} by means of the covering map z — €*™%,
the group of deck transformations being {z +— z+n: n € Z}.

This means that I'(C \ Z) is a normal subgroup of the lattice I'(C \
{0,1}) with quotient I'(C \ Z)/T'(C \ {0,1} = Z, and our theorem is
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obtained in the context of the study of normal subgroups of lattices
with Abelian quotients.

Definitions 3 3

1) Let d > 1, T, T be Fuchsian groups and suppose that T'<T". We'll
say that T has index d in T if [[': I'] = 2%,

2) We'll say that a Fuchsian group I' has lattice index d if it has index
d in some lattice.

The Fuchsian group I' has index d in T iff H/Iis a Z%-cover of H/ I.
It is shown in [25] that if I' has index d in cocompact I' (i.e. where
H/T is compact), then I' is of convergence type (i.e. not of divergence

type) for d > 3 and
= d=1,
Pr(s) X{ !

log &5 d=
Here for a(s),b(s) € Ry (s >1), a(s) <b(s) as s — 1T means that

0< liminfﬁ, lim sup @ < 0.
s—1+ b(s) s—1+ b(S)

The < was improved to o in [5], [23], [19], [24].

We identify the asymptotic types of the geodesic flows on certain
Abelian covers of surfaces with finite volume.

The method (see §2) is to find a good section for the geodesic flow
and compute its asymptotic type using a local limit theorem. Good
sections have the property that the flow has the same asymptotic type
as the section .

In §3, we consider Abelian covers of compact surfaces obtaining the
results advertised above. Here the good section is as in [13], [25].

In §4 and §5 we prove the theorem by considering normal subgroups
of the lattice I'(C \ {0,1}) of deck transformations for the covering
map of the the 3-horned sphere. This lattice is not cocompact, the
good sections are computed explicitly.

In addition to proving the theorem, we also reprove the Lyons-
McKean result ([20] see also [21] and [26]) that the subgroup having
index 2 is of convergence type.

§1 HYPERBOLIC GEODESIC FLOWS

The Poincaré plane or hyperbolic space is H equipped with the ar-
clength
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2/ du? + dv? Adudv

w2 2 and the area dA(u,v) := A=

This metric gives constant Gaussian curvature —1 (the metric used
in [4] has curvature —4). The hyperbolic distance between z,y € H is
defined by

ds(u,v) :=

p(x,y) = inf {/ ds : 7 1is an arc joining « and y} = 2tanh™* |IB——_y!
v ‘1 o xy|

Note that in particular, p(0,2) = 2tanh™'|z|, whence 1 — |z| =

1 - tanh@ ~ 27702 a5 |z| — 1 and the Poincaré series of the
Fuchsian group I' C M6b(H) satisfies Pr(z;s) < > ¢ e~ 5r(07(@)) a5

s — 1 in general, and

PBr(z;s) ~ 22 e=P0@) a5 5 1

yel

for I' of divergence type.
Note that Pr(z;s) < Pr(y;s) ass > 1V z,y € H.

The isometries of (H,p) are precisely the Mobius transformations
Mo6b(H) and their complex conjugates.

If g is an isometry of H, then Ao g = A.

The geodesics in H are arcs in H with the property that the ds-
length of any of their segments is the hyperbolic distance between the
endpoints of the segment. The geodesics turn out to be diameters of
H, and circles orthogonal to OH.

The space of line elements of H is H x T = Mo6b(H) by v
(7(0),arg~'(0)), the measure dm(z,0) = dA(x)dd on H x T corre-
sponding to Haar measure on Mob(H).

The geodesic flow transformations ¢! are defined on H x T as follows.
To each line element w there corresponds a unique directed geodesic
passing through z(w) whose directed tangent at x(w) makes an angle
6(w) with the radius (0, 1).

If ¢ > 0, the point z(p'w) is the unique point on the geodesic at
distance t from x(w) in the direction of the geodesic, and if ¢t < 0, the
point z(¢'w) is the unique point on the geodesic at distance —t against
the direction of the geodesic.

The angle 6(¢'w) is the angle made by the directed tangent to the
geodesic at the point z(¢'w) with the radius (0, 1).

There is an important involution y : H x T — H x T, of direction
reversal: x(yw) = x(w) and 0(yw) = 6(w) + 7.
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The isometries act on H x T (as differentiable maps) by

9(w) = (9(x(w)), 0(w) + arg g'(z(w))

and it is not hard to see that yg = gx and p'g = gp'.
Both the geodesic flow, the involution and the isometries preserve

the measure
dm(z,0) = dA(x)df on H x T.

Let I' be a Fuchsian group. The space of line elements of H/T is
Xr:=(H/T)xT = (H xT")/T and the geodesic flow transformations
on Xr are defined by

prl(w) =T (w).

Let mp : H — H/T', 7ir : H x T — Xt be the projections nr(z) =
[z, Tr(w) = Tw, and let F be a fundamental domain for I in H, e.g.

Fo={z e H:p(y,x) <p(y(y),z)Vyel\{e}}, yeH,

then mp and 7 are 1-1 on F' and F' x T, and so the measures Ajp
and mp induce measures Ap and mp on H/I' and Xpr = H/I' x T
respectively.

Theorem (E.Hopf, M.Tsuji)

The geodesic flow @r is either totally dissipative, or conservative and
ergodic.

The geodesic flow r is conservative iff the Fuchsian group is of
divergence type.

We consider here the asymptotic Poincaré series

t
ar(z,y;t) == Y 6"’(””’”1’):/6‘5Nr(x,y;d8)
0

veT, p(z,yy)<t

where Np(z,y;t) == #{y €' : p(z,vy) < t}.

It is shown in [4] that any conservative geodesic flow @r is rationally
ergodic with return sequence given by ar(t) := ar(0,0;t); that for
bounded sets A € B

t
/ m(ANgr*A)ds ~ m(A)2ar(t) as t — oo,
0

whence ar(z,y;t) ~ ar(t) ¥V z,y € H in the same fundamental domain
(see also [1] chapter 7).

For surfaces H/T" of finite volume, ar(t) ox t as can be deduced from
the ergodic theorem.
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The Poincaré series Br(s) (of the divergence type group I') can be
considered as a Laplace transform:

Pr(s) ~ 2/ e " Nr(0,0; du) :/ e~V (du)
0 0

where ar(du) := e " Nr(du) (and ar(t) = [, ar(du)).

It follows from this that PBr(z;s) ~ Pr(s) as s — 17 V x € H;
and Py-1rg(s) ~ Pr(s) as s = 17 V g € M6b(H) (as stated in the
introduction).

§2 ASYMPTOTIC TYPE OF FLOWS GOOD SECTIONS AND LOCAL
LIMIT THEOREMS

Suppose that T is a conservative, ergodic, measure preserving transformation
of the standard, o-finite measure space (X,B,m) and suppose that
h : X — R, is measurable. The special flow over T' with height func-
tion h is defined on

Xp={(z,y):2€e X:0<y < h(z)}
by
ez, y) = Tz, y +t = ha(x)) hol(z) Sy +1t < hnga(z)
where
0 n=0,
hn(z) = Z;(l) h(TFz) n>1,
—hyp (T Mz) n < -1.
The special flow ¢; preserves the product measure p defined on B(X},)

by
/Xh gdp ::/X(/Oh(x)g(x’y)dy)dm(x)'

The conservative, ergodic, measure preserving transformation 7" is a
called a section of the flow ;. It can be seen that T' is measure pre-
serving if, and only if the special flow is measure preserving; but the
finiteness of the measure preserved by the section has no connection
with the finiteness of the measure preserved by the flow.

Recall from [18] that if (X, B,m,T) is a section for ¢; with height
function h, and A € B, then T4 (the transformation induced by 7" on
A) is also a section for ¢y, with the height function

ol (x)—1

ha(z) = h(T"z)

i
I
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where % : A — N is the first return time function under 7', so that
Trx = T¥a@) g,

We’ll be interested in section transformations which visit sets of finite
measure at comparable rates to the flow.

Accordingly, we’ll consider sections for which

(%) 0<a:= liminf% <b:= limsup@ < 00 a.e.
n—oo 1 n—oo TN

We'll call a section of type (x) good if a = b.

If T is an ergodic probability preserving transformation, and the
product measure g is finite, then h is integrable and h, ~ an a.e.
by Birkhoff’s theorem where a = [ + hdm. Tt follows that any ergodic
finite measure preserving flow has a good section. We’ll find good sec-
tions for certain infinite measure preserving flows.

The good sections concerned will be skew products. Let (X, B, m,T)
be an ergodic probability preserving transformation, let A : X — R,
be integrable, and let (X}, B(X}3), i1, ¢) be the special flow over T with
height function h. As above, T' is a good section for (X, B(X3), i, ¢)
and h,, ~ cn where ¢ = [, hdm € R,.

Now let GG be a locally compact, second countable topological group
and let ¥ : X — G be measurable. Define the skew product

Ty : X xG— X xGby Ty(z,a) = (Tz,¥Y(z)a)

and define h: X x G — Ry by h(x,a) := h(z).

It follows that hy,(z,a) = hy(x) ~ cn and so Ty is a good section for
the special flow over Ty with height function .

Recall from [12] that the measurable function A : R, — Ry is

reqularly varying at oo if V k > 0, Jlim; % € R, (and regularly
varying at 0 if ¢t — A(1/t) is regularly varying at co).
The limits are always of form lim % = k® for some constant a € R

called the index (of regular variation).

In this section, we prove is that if a flow ¢; has a good section which
is rationally ergodic with regularly varying return sequence, then the
flow is also rationally ergodic, and has proportional asymptotic type
(see proposition 2.2 below).

For f: X, - Randt >0, set

Si(f) ::/0 fopgds,
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and for g: X - Rand n > 1, set

n—1
ST(g)i= S go "
k=0

Lemma 2.1 Suppose that h > ¢ > 0 and let A = B x I where I =
[a,b] C [0,d], and B € B satisfies m(B) = 1 and > — 3 € R,
uniformly on B;

then
for each e > 0, 3 t. such that for a.e. (x,y) € A and ¥V t > t,

\I|Sff1_6)t](13)(x)—2c < Sa(1x)(z,y) < |I\Sf{l+€)ﬂ(13)(x)+2c.

Proof For x € B and t > 0, let ki(x) € Z; be such that

Piy(a) (2) <t < P2y 41 ().
For x € B:

hn(x)
S (1)@ 0 = [ Liowu(e,0)ds
0

ol phiga(2)
=Y [ e 0)ds
k=0 hi(z)
nl phiya (@)
_ Z/ LA(TF, 5 — hy(x))ds
k=0 hi(z)
n=1 .p(Tkz)
= Z/ 1a4(T*2, s)ds
0

k=0
=118, (1p)(2).
If (z,y) € Athen z € Band 0 <y <¢, so

t
Si(14)(z,y) = / 140 ps(x,0)ds ¢
0
= Shkt(m)(1A>(xa 0) & 2¢
= ylys,’{t(x)(lB)(x) + 2¢.

By assumption,
a5
uniformly on B, whence
T
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uniformly on B, and

Ve>03t 3 kalr) =1xetVit>t, v B.

Thus, for t > t., (x,y) € A,

Sut(La)(@,y) = |11Sg .y (15) (2) £ 2¢ = [1|S{(11.09(15)(2) + 2¢

uniformly on A.

Proposition 2.2 Suppose that
T is a good section for ¢ and is rationally ergodic with

a-regularly varying return sequence a,(T),
then ¢ is rationally ergodic, and

an(p) ~ 2 an(T)

hn
where 7 — x € Ry a.e.

Proof

Let B(T) denote
the collection of sets A € B of positive finite measure with the prop-

erty that 3 M > 1 such that

/A(S,{(lA))zdm < M(/A S,f(lA)dm>2,

and recall
that there is a return sequence a,(7") such that

n—1

> m(BNT*C) ~m(Bym(C)an(T)V A€ B(T), B,C € BNA.

k=0

It follows that if A € B(T), then (BNA), C B(T). Also, if A € B(T),

then J;_, T %A € B(T)Vn > 1.
By Egorov’s theorem, 3 B € B(T) such that m(B) = 1 and %= —

» € R, uniformly on B. Setting A = B x [0, |, and using lemma 2.1
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and regular variation of a,(7),

[ Sataian= [ [ 80102 pdydn(a)

< [ [ (eshatin)(e0) + 20y

=& [ Shou(La) (w0 dm(z) + OlagrrT))

< MEm(B)?agqen(T)? + Olagsai(T))
< M'ag—en(T)?

<M ( /] (ST u(Le)(,0) - 2c>dydm<w>)2

<A ( / / Slla), y>)2dydm<a:>

proving rational ergodicity of ¢. To get the asymptotic type of ¢,

H(A aale) ~ [ Sattdn= [ |  S.0(1)(, y)dydm(z)
/ / lzte)t (1g)(x,0) £ 2¢)dydm(z)
= c*'m(B)*ause(T)(1 + o(1))

Zu(A)2<1i€) ()1 + o(1).

V.l

4

As mentioned above, the good sections concerning us will be skew
products. The base transformations of these will be Gibbs-Markov
maps (see below).

The rest of this section is a description of the method used in the
sequel to identify asymptotic types of such skew products. Full proofs
can be found in [2].

A nonsingular transformation (X, B, m,T) of a standard probability
space is called a Markov map if there is a generating measurable par-
tition « such that Ta € o(o) modm Va € a,and T : a — Ta is
invertible, nonsingular for a € a.
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Write a = {a, : s € S} and endow S with its canonical (Polish)
product topology. Let

Y= {s=(s1,8,...) €S": m(ﬂT‘kask)>O Vn>1},

k=1

then X is a closed, shift invariant subset of SY, and there is a measurable
map ¢ : X — X defined by {¢(s1,s9,...)} == e, T *Va,,. If
m' =mo ¢t € P(SY) then ¥ is the closed support of m’, and ¢ is a
conjugacy of (X, B, m,T) with (X, B(X), m’,shift). Thus we may, and
sometimes do, assume that X = X, T is the shift, and o = {[s] : s € S}.

Given r € (0,1), we define a metric on X by d,(z,y) = r@¥ where
t(z,y) = min{n > 1: z, # y,} < oo, then (X,d,) is a Polish space
and T': X — X is Lipschitz continuous on each a € «.

For n > 1, there are m-nonsingular inverse branches of 7" denoted
vy : T"a — a (a € af~') with Radon Nikodym derivatives

, dmou,

U, 1=

dm

Since Taw C o(a), T"af™' = Ta, and 3 a (finite or countable )

partition § > aso that o(T«a) = o(8). The Frobenius-Perron operators
Pro : LY(m) — L'(m) defined by

/PTnf-gdm:/f-gOT"dm
X X

PTnf221b Z Ua-fova.

bep a€o¢3*17 T™a>b
A Markov map (X, B,m, T, «) is Gibbs-Markov if
inf m(Ta) >0

aco

have the form

(we call this the big image property), and 3 r € (0,1) such that

/

IM>0 3 |ZE“§§ 1< Mdy(z,y) ¥ n>1, acall, z,y € Ta.

The examples of Gibbs-Markov maps considered here include:
topological Markov shifts equipped with Gibbs measures ([9],[10]) and
uniformly expanding C? Markov interval maps T : [0, 1] — [0, 1] satis-
fying
Adler’s condition sup,¢p 1 % < 00.

A Gibbs-Markov map 1" which is mizing in the sense that

Vabea, 3n.g > T"aDbVn>mn.
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has the property that 3 M >0, § € (0,1) and h : X — R, bounded,
Lipschitz continuous such that

|Praf —h / fdmly, < MO"||fILY f € L
X

where || f|[z := sup,ex | f(2)] + sup, ,ex W and L :={f: X —
C: [[fllz < oo}
In case T is measure preserving (m o T~! =m) we have h = 1.

The good sections which we’ll see will be Z?-extensions of mixing,
measure preserving Gibbs-Markov maps of form

To(z,y) = (Tz,y + o(x)), (Tp: X x 27— X x Z9)
where (X, B,m,T,«) is a mixing, measure preserving Gibbs-Markov
map and ¢ : X — Z? is Lipschitz continuous on each a € « such that

D¢ := sup sup M < 00

aca T,yea dr (.T, y)
Let ¢ : X — Z? be Lipschitz continuous on each a € a such that
D,¢ < oo and let

Q(p) == {t € R?: €“? is cohomologous to a constant}.

By §3 of [2], Q is closed and:
either  is a discrete subgroup of R?, or
J a vector subspace V C 9, v € V, and Lipschitz continuous functions
g: X —V, ¢ : X — V<, Lipschitz continuous on each a € «, such
that ¢ = go T — g + v + ¢ and such that Q(v) N V= is a discrete
subgroup of V.

Let Pi(f) = Pr(e!®¥ f) (t € TY). By theorem 4.1 of [2]
there are constants € > 0, K > 0 and # € (0,1); and functions A :
B(0,¢) — Bc(0,1), g: B(0,e) — L such that

|Prh — )\(t)”g(t)/ hdm|, < KO"|h|, Y |t|<e n>1, hel
X

and
lg(t) = 1|z < K([t| + E(le"” —1])).
Assume that Q is discrete and either that F(¢?) < oo and E(¢) = 0,
or that m-dist ¢ is in the strict domain of attraction of a nondegenerate

symmetric p-stable distribution for some 0 < p < 2.
It turns out that 3 € > 0 such that |A(¢)] <1V 0 < |t| < e. Set for

0<n<e un(n) = [, At)"dt.
The expansion of A(t) around 0 is similar to that of E(e'®9)):
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in case E(¢?) < oo and E(¢) = 0 we have by [14] that \(z) =
1 — 2t Az + o(||x]]*) as @ — 0 for some A € GL(d,R); whence 3¢ > 0
such that for n > 0 small enough, u,(n) ~ 5 = uy;

and

in case m-dist ¢ is in the domain of attraction of a nondegenerate
symmetric p-stable distribution for some 0 < p < 2 we have by §5
of [2] that the asyptotic expansion of A(t) around 0 is identical to
that of E(e’*?)). Thus, if m-dist ¢ is in the domain of attraction of
a nondegenerate symmetric p-stable distribution for some 0 < p < 2
with normalising constants B,,, then by theorem 6.5 of |2], 3¢ > 0 such
that for n > 0 small enough, u,(n) ~ B%‘i = Up.

By theorem 7.3 of [2]:

1) T} is either totally dissipative or conservative according to whether
> oo o Un converges or diverges (respectively);

2) if T}, is conservative then each of its ergodic components is
pointwise dual ergodic with return sequence a,(Ty) oc Y, _; wy.

§3 GEODESIC FLOWS ON COMPACT HYPERBOLIC SURFACES AND
THEIR ABELIAN COVERS

In this section, we reprove

Theorem 3.1 ([5], [23], [19], [24])
If ' has index d in cocompact I' then I is of convergence type for

d>3 and
=1
ar(t) o Vid=1,
logt d=2.

We shall use Bowen’s theorem ([9], see also [10]) on the special rep-
resentation of the geodesic flow on a compact, hyperbolic surface by a
special flow over a subshift of finite type as refined by Rees (theorem
1.3 of [25)).

Let M be a compact, hyperbolic surface, let @y, : TM — T'M denote
the geodesic flow on T'M and let x : "M — T'M be the involution of
direction reversal.

By Bowen’s theorem, there is a subshift of finite type (3, 7"), a Gibbs
measure m € P(X), and a Hélder continuous function h : ¥ — R, such
that (X5, ®), the special flow of (3,7, m) under h "represents” ¢, in
the sense that

dm: ¥, = TM a Holder continuous measure theoretic isomorphism
such that 7® = 7.
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By Rees’ refinement, (3,7, m) and 7 can be chosen so that x(7%) =
m.

Now, as in [25] and [13] suppose that for some d > 1, V is a Z%-
cover of M that is V is a complete hyperbolic surface equipped with
a covering map p : V — M so that 3 v : Z¢ — Mob(V) such that if
y €V and p(y) = x € M then p~H{z} = {y.y: n e Z}.

Since 7X is a section for ¢,; with height function h o 7!, we have
that p~ 7% = ¥ x Z% is a section for ¢y with height function homr~lop.
The section transformation 7 : p~ 7Y — p~ 7Y satisfies poT =T op
and Tov, =7,0T (n € Z%), whence 3 ¢ : ¥ — Z? Hélder continuous

such that ® is the special flow over (X x Z? T,) with height function
h(z,n) = h(z) and 7 : (¥ x Z%); — V is defined by 7(x,n,t) :=
©! v, (), then 7o & = @y o 7.

It is important to note that ¢y = — whence the distribution of ¢
is symmetric about 0.

Evidently T}, is a good section for ¢, and so to prove theorem 3.1,
it suffices by proposition 1.2 to establish

Proposition 3.2
For d > 3 Ty is totally dissipative, and Ty is rationally ergodic for
d = 1,2 with return sequence given by

d=1
an(Ty) o vn '
logn d=2.

Proof

As in [14], we may assume that 7" is a unilateral subshift of finite
type and ¢ is Holder continuous. By symmetry [ « ¥dm = 0. Let Pr be
the Frobenius-Perron operator of T, let P,(f) = Pr(e?™¥)f) (t € T

and let A(f) be the maximal eigenvalue of P, for |t| small.
As in §3 of [2] let

Q:={teR?: ¥ is cohomologous to a constant},

then 0 is a closed subgroup of R? (proposition 3.8 in [2]).

We claim first that it is sufficient to show that 9 is discrete. Indeed
if this is the case, then for small enough [t| > 0 (t € R?), %) is not
cohomologous to a constant whence by proposition 3.7 of [2] |A(¢)] < 1.
It follows (as in [14]) that A(z) = 1 —2' Az +o(||x||?) as z — 0 for some
A € GL(d,R); whence for ¢ > 0 small enough,

1 X n 1 t
)\t)”dt:—/ M—= dazw—/e—“rdx
/B(O,e) ( n2 JBo.eym) (\/ﬁ) ns Jra
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and by theorem 7.3 of |2], T} is totally dissipative if d > 3 and rationally
ergodic with the advertised return sequence if d = 1, 2.

When d = 1, Ty is conservative (see [7]). The geodesic flow is also
conservative (since T}, is a section) whence ergodic by the Hopf-Tsuji
theorem and so T, is ergodic. It follows that 1 is not cohomologous to
a constant, whence £ is discrete.

To prove in case d = 2 that £ is discrete, it is necessary to eliminate
the other possibilities for 9.

If Q = R? then by proposition 3.8 in 2], 3 ¢ € R? such that et¥—2
is a coboundary V ¢ € R2. By [15] ¢ — ¢ is a coboundary. By symmetry
of ¢, ¢ =0 and 7 is a coboundary. It follows that 7T}, is conservative.
So is the geodesic flow, which is ergodic (as before by the Hopf-Tsuji
theorem) whence Ty, is ergodic contradicting ¢ being a coboundary.
Thus Q # R2

If Q # R? is not discrete, then (again using symmetry of 1) by
proposition 3.9 of [2], 3 a, b € R*\ {0} such that (a,b) = 0, and Holder
continuous functions g, ¢ : X — R such that ¥ = (9o T — g)a + ¢b. It
follows that [, ¢dm = 0 whence (again by [7]) T} is conservative hence
(by conservativity and hence ergodicity of the geodesic flow) ergodic,
contradicting ) = (g o T'— g)a + ¢b. Thus Q is discrete.

Now let d > 3 and suppose that T}, is not totally dissipative. This
implies (by the Hopf-Tsuji theorem for the geodesic flow) that T}, is
conservative and ergodic. It follows that £ is discrete. U

§4 A SECTION FOR THE GEODESIC FLOW ON THE 3-HORNED
SPHERE

Let R** := {2 € C: Tmz > 0} denote the upper half plane which
is conformal to H by z — Z;. The group of Mobius transformations

is given by Mob(R*") = PSL(2,R) with the action z — 2% where
(¢q) € SLZ,R).
The 3-horned sphere C\ {0, 1} is conformal to the Riemann surface
R** /T(2) where
P@) = {(2}) € SL@.Z): (24) = (J0) mod 2}

A fundamental domain for the action of I'(2) is given by

1 1
F:={z€ H:|Rez| <1, |z:|:§|>§}.

The 3-horned sphere is F' under the boundary identifications:
{Rez =1} = ¢({Rez = —1}) where ¢(z) = z + 2, and
{lz =3l = 3} =v{lz + 3| = 3}) where ¥(2) = 2.
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As the fundamental group for the 3-horned sphere is the free group
on two generators, it follows from the nature of the identifications that

[(2) = Fle, ¢).

The geodesic flow is defined on F' x T. The set
X :={(2,0) COF x T : z +ec®™ € F Y e >0 small}

is a Poincaré section for the geodesic flow on F x T.
The section map 7 : X — X is given by

(¢(x),0) mi(w) < -1,
(W) = (W(x),0) —1<my(w) <0,
(=), 0) 0<mi(w) <1,
¢

)
(07 (x),0) mp(w)>1,
where (z,0) = ¢ (w) and t, = inf{t > 0 : ¢;(w) € OF}. Here,

¢ : HXT — H xT is the geodesic flow, and 7, (w) := lim;_, o, 2(pw) €
R U {o0}.

-1
-1

We note that this section is infinite measure preserving, and cannot
be a section of type () for the geodesic flow on the 3-horned sphere,
which has finite area. A good section will be obtained in the sequel by
inducing on a set of finite measure.

We’ll be interested in the factor 75 : R — R defined by

o) =x+2 r < —1,
T(I) w(m):mfﬁ -1 <x<0,
0 v z) = 25 0<z<l,

) =1

¢ Hz) =2 —2 x> 1

and satisfying oo, =7, oT.

This is the Markov map associated with the Fuchsian group by
Bowen and Series in [11].

Note that 7y is an even function, and that 7o(—1/z) = —1/7(x). We
use these relations to get some simplifications.

Define : (0,1) x {—1,+1}*> = R by

77(377 57 6) = Elﬁ?

and define T': (0,1) x {=1,+1}* — (0,1) x {—1,+1}* by

T:=n'oron.
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Defining 77 : X — (0,1) x {—1,+1}* by 77 = n~'om, we have that

7tor=Tom,.

Proposition 4.1

where
T O<x<%,
R(z) = 1-2 f<z<g,
2-1 1l<a<l,

and

L(z)=1-2- 1(%,1)(1’% & K(z) = 1(0,%)(95) — L y(@).
The proof of proposition 4.1 is a routine calculation which is left for
the reader.

We'll induce later on [1, 2] x {—1,+1}* since Tool(L, 2] (1,412 Das
an absolutely continuous invariant probability and is therefore a good
section for the geodesic flow in the 3-horned sphere.

[NIES

§5 THE Z?-COVERS OF THE 3-HORNED SPHERE AND THEIR
SECTIONS

Since ['(2) = F(¢,v), any v € I'(2) is of form

v =gyl
for some n € N and ay,...,a,.b1,...,b, € Z.
Thus we can define a homomorphism T = (T,, T3) : ['(2) — Z? by

Tt . gonyt) = (Z Zbk).
k=1 k=1
The Fuchsian group of the Z-cover of the 3-horned sphere will be
R, :=KerY,, and the Fuchsian group of the Z?-cover of the 3-horned
sphere will be
Rap :=Ker T.
Indeed, a fundamental domain for the action of K, is

Fy = (U sonf)o,

and a fundamental domain for the action of &,

1S o
F= ( U w%"F) ,

m,ne’l
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Lot U = (T,,T,) : R — 77
be defined by

The set X x Z2 is a Poincaré section for the geodesic flow on F' x T,
and the section map 75 : X x Z? — X x Z? is given by
rg(w,n) = (rw,n + ¥(ms (w)).
Similarly, the set X X Z is a Poincaré section for the geodesic flow on
F, x T, with section map 75 : X x Z — X X Z given by

75, (w,n) = (Tw,n + U, (my (w)).

As mentioned above, these are not sections of type (x). We’ll obtain a
good section of form

(7g,)axz 1esp. (Tg)axze
for some set A € B with positive finite measure.

We'll be interested in simpler factors of

7y, and 7.

Define 7 : X x Z¢ — (0,1) x {—1,+1}? x Z by 7} (x,n) =
(77 (x),n), and define ¥ = (¥, ¥;) : (0,1) x {—1,+1}*> — Z? by

U, (z,0,€) := 617—6’ & Wy(z,d,€) := 61 ; 5.

Proposition 5.1

ﬁTOT@a =Ty, o7y .

ﬁJOTg:T\pofT;
The proof of proposition 5.1 is a routine calculation which is left for
the reader.

In order to facilitate production of good section, we now consider
R:(0,1) — (0,1) as a shift.

Write (0,1) 2 {A, B, C}Y where A = (0,1/3), B= (1/3,1/2), C =
(1/2,1), then R = shift, and

L(l‘) = 2(5“714 - 1, & K(I‘) =1- 25$17c.
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We have

T"(z,d,¢) = (R"x,0L,(x), eK,(x))
where Lo = Kg =1, and for n > 1,

n—1
7=0

and

n—1
K,(x) = H K(Riz) = (—1)# (1<ksna=C},
=0

We'll use the notation

[Ar, . A = (B4,
k=1
where Ay, ..., A, C (0,1).
We have that
11 12
::__:AAC = |l=,=) = ¢
U (573) [ Y ]7 &W (273) [070]7
whence | 9
J = (5, g) = [A,AC] U B U [C, CC]
Define, for n > 1,
U,=1U, C,....,C ,BUW]|, W,:=[W, A,...,A ,UUB],
———— ——
(n—1)-times (n—1)-times
Bl = [B, JL
and for n > 2,
B, :=[B, A,..., A, UUB|, B':=[B, C,...,C ,BUW]|.
N—— N——
(n—1)-times (n—1)-times
It can be checked that:-

1) a:={U,, Wy, B1,B,., Bl : n>1}is a partition of J;
that

(2)

where o : J — N is the first return time function under R, so that
Ryx = R‘PIJ%(@J:;
that

R U, UW,,UB, UB if n>2
Yy =mnon s, : = .
Ui U U By ifn>1,

R;U, =BUW, RyW, =UUB (n>1); (3)
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and
R;By=J, R;Bf=BUW, R;B, =UUB (n>2) (4)

showing that « is indeed a Markov partition for R, and
Ryja={UUB,BUW, J}.

Lemma 5.2 (R;,«) is a mizing Gibbs-Markov map, and is almost
onto in the sense thatV b,c € o, 3 n >1, b =ag,ay,...,a, =c € «
such that Ryax N Ryaps1 #0 (0 <k <n-—1).

Proof
As checked above, (R, ) is a Markov map which evidently is almost

onto. The Gibbs-Markov property follows in the standard manner from
|R))

inf; [R)[ > 1 and sup; 7% < oo.
J
U
Next, we consider Ty, 1 132 given by
Trxi—11y2(x,0,€) = T#5@) (2,8, €) = (Rym, M(2)8, k(x)e)
where A(z) 1= Ly g, (2), and £(2) = K,z (2).
We have that for 2 < k <n = ¥,
(—=1)k1 on U,, (-=1)*1 on U, U B},
L, = (-1)*on BF, ,& K= —1 on W,,
—lon W,UB,_, lon B, ,
In particular,
1on Uy UBy, and B, , -1 on W,,UB,,
K= —1 on W, ,&E&A=¢(-1)"  on B/,
(=)t on U,UBS (n>2); (=)™t on U,.

To get a Markov partition for Ty, (_1 132, let

B:={Ax{(6e}: Aca, (0,¢) € {-1,1}°},
then (as can be checked)

TJX{—l,l}zﬂ = {A X {((5, 6)} A < RJOK, (5, E) € {—1, 1}2}
whence

Lemma 5.3 (Tx_1132, () is a mizing Gibbs-Markov map.
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Finally, to get our good sections, we investigate (Ty)jx{—11}2xz2
given by

(Tw) yxg—1132x22(2, 0, €,n) = (Ryx, A(x)d, K(x)€e, n + P(x, 5, €))

where
es(@)—1 A ¢
N 7 N _
d(x,0,€) : ; WoT/(z,d,€), W(x,d,€)=(1=061+0).

We have

For
.ﬁEEUlUBluwlz[gD?:l],

O(x,8,¢) = U(z,6,¢) = %(1 —5,1+50).

For
oMx)=n>2,
O(x,0,€) = % ; eKi(z)(1 —0L(x), 1+ 6 Lk(x))
- %((1 —5.146)+ i Ki(2)(1 — 5Li(x),1 + 5Lk(x)))
Now,

we calculate

n—1

> Ki(z)(1 = 0Li(x), 1+ 6 Ly(x)).

k=1
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Lemma 5.4

5(—an_2(—5),an_2(5)) T &€ Un,

n—1
(n—1)(1+0,1-96) z€B,,
K, 1-0L 1+0L = n
g;; k()( k(x), 146 Ly (x)) 5(ano(6), —ans(3)) € B
—(n-1)(1+61-9) zeW,
where
- n+2 n odd
a,(8) == (1+6(-1)%) = { ’
o n+14+09 n even

Proof It’s not hard to show that

n

D DRI+ 6(=1)F) = dan(s)

k=0

and that

0n(5) = n+1 nodd,
e n+1+0 n even.

It follows that

n—1

> Ki(z)(1 4 0Li())

k=1

D G L S G L ) B R
(n—1)(1-9¢) z€B,,

UL (-14) w e B

| —(n—-D(1-6) zeW,

([ Sa,_5(8) z€U,,

(n—1)(1-46) =€ B,

—0a,—2(—0) x € B,

| —(h—D)(1=0) zeW,

The lemma follows from this. O

It follows that for
o) =n>2,
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%(1 — 5(1 + an_g(—5)), 1+ 5(1 + an—Q(é))) z € Un,

S(r.60) =4 0T =2dn—(n=2)) z€By,
(1 T 6(au-2(8) — 1),1 — 8(a,2(—5) - 1>) e B
{ 5(—n+2—-nd,—n+2+nd) zecW,
whence
E<€i(s<1>a+tq>b))
~ B(1yyqo1ape 975 4 E(lB—x{fl,l}ﬂfi%(s_t)E@?)
+ E(lps 1 qpe@ 0597 et R

) 4+ E(1W><{71,1}2€ 2 J)

as s,t — 0
and 3 a, b, c > 0 such that V (u,v) € R?\ {0},

—log E(e""* ™)) = (alu — o] + blu| + clv])|t](L + o(1))

ast — 0.

As in §3, let Pr be the

Frobenius-Perron

operator of T, let
Pi(f) = Pr(e’®® f) (t € T?) and let A(t) be the maximal eigenvalue
of P, for |t| small.

By theorem 5.1 of [2],

—log A(t) = (alu — v| + blu| + c|v|)|t|(1 + o(1))

ast — 0.
As in §3, it follows that

Q= {t e R*: %) is cohomologous to a constant},

is discrete.

Theorem 7.3 in [2] now shows that T is totally dissipative and that
Ty, is rationally ergodic with return sequence a,(Ts,) o logn.

Since these were good sections for the flows concerned, we have that
the geodesic flow on the Z? cover of the thrice punctured sphere is
totally dissipative (confirming [20]); and that on the Z cover of the
thrice punctured sphere is conservative, and rationally ergodic with
return sequence o logn.

This completes the proof of our theorem.
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