
ON THE STRUCTURE OF STABLE RANDOM WALKS

JON. AARONSON

Abstract. We show that the Cauchy random walk on the line,
and the Gaussian random walk on the plane are similar as infinite
measure preserving transformations. (As in Proc. Indian Acad.
Sci. (Math.Sci.) 104, 1993, 413-419).

§1 Introduction

A measure preserving transformation T is considered acting on a
standard measure space (XT ,BT ,mT ) (a complete, separable metric
space equipped with its Borel sets and a σ-finite, non-atomic measure).
It is known that standardness is unaffected by replacing XT with a T -
invariant subset X ′

T ∈ BT of full measure, and we shall consider T acting
on (XT ,BT ,mT ) to be the same as T acting on (X ′

T ,BT ∩X ′

T ,mT ).

Let S and T be measure preserving transformations. A factor map
from S to T is a map π ∶XS →XT such that

πS = Tπ, π−1BT ⊂ BS, and mS ○ π−1 = cmT

where 0 < c < ∞.
In this situation (denoted by π ∶ S → T ), one says that T is a factor

of S and that S is an extension of T (both denoted S → T ).

It is necessary to consider factor maps with c ≠ 1 as our measure
spaces are not normalised. The constant c can be thought of as a
relative normalisation of the transformations concerned.

Two measure preserving transformations are said to be similar if
they have a common extension, that is: if there is another measure
preserving transformation of which they are both factors; and they are
said to be strongly disjoint if they have no common extension. We
denote the statement that S and T are similar by S ∼ T .
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2 Stable Random Walks

Any two transformations preserving finite measures are similar, their
Cartesian product being a common extension. Invariants for similar-
ity are given in [Aar77, Aar87], where it is shown that similarity is an
equivalence relation. Examples of conservative, ergodic, measure pre-
serving transformations which are strongly disjoint from their inverses
are given in [Aar87].

In this paper, we consider random walks on IR and IR2. For f a prob-
ability on G, a locally compact, second countable abelian group, the
random walk on G with jump distribution f can be defined as follows:
Let Sf be the shift on GZZ considered with the Sf -invariant product
measure mf = ∏ f . The random walk on G with jump distribution f is
the measure preserving transformation Tf defined on (GZZ×G,mf×mG)
(where mG is Haar measure on G) by

Tf(x, y) = (Sfx, y + x0).

The structure of random walks on ZZ and ZZ2 has been considered
in [AK94] and [ALP94] where conditions for isomorphism are given.

For α ∈ [1,2] let fα denote the symmetric α-stable law on IR with
characteristic function

∫
IR
eitxdfα(x) = e−∣t∣

α

.

It is well known that f1 has a Cauchy density, f2 has a Gaussian density,
and indeed, fα is absolutely continuous with strictly positive, contin-
uous density ∀α ∈ [1,2]. Let Tα = Tfα , the random walk on IR with
α-stable jump distribution.

Theorem.

T1 ∼ T2 × T2.

Remark. For α,α′ ∈ [1,2] not both 2, we have that 1
α + 1

α′ > 1, and
Tα × Tα′ is dissipative, and isomorphic to z ↦ z + 1 on IR2 equipped
with Lebesgue measure. This will be established below.

The method of proof of the theorem is by renewal theory. In §2
we formulate, and deduce the theorem from the main lemma, (also
proving the remark). The main lemma also shows (via [Aar77]) that
the transformations {Tα ∶ α ∈ [1,2]} are pairwise strongly disjoint.
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§2 Renewal theory: the main lemma.

Recall from [Fel68] that a bounded sequence of non-negative real
numbers u = (u0, u1, . . . ) is called a renewal sequence if u0 = 1 and
there is a sequence of non-negative real numbers g = g(u) = (g1, g2, . . . )
satisfying the renewal equation

un =
n

∑
k=1

gkun−k ∀ n ∈ IN.

The renewal sequence u is called recurrent if g(u) is a probability on
IN (that is ∑∞

n=1 gn = 1).

Let T be a conservative ergodic measure preserving transformation.
Recall from [Aar77] that a set A ∈ BT , 0 < mT (A) < ∞ is called a
recurrent event for T if, for every 0 = n0 < n1 < ⋅ ⋅ ⋅ < nK ,

mT (
K

⋃
k=0

T −nkA∣A) =
K

∏
k=1

unk−nk−1

where un =mT (T −nA∣A).
If A is a recurrent event for T , then the sequence

u = u(A) ∶= (u0, u1, . . . )
defined by un = mT (T −nA∣A) is a recurrent renewal sequence. Con-
versely, every recurrent renewal sequence corresponds in the above
manner to a recurrent event of some conservative ergodic measure pre-
serving transformation. Let u be a recurrent renewal sequence, and
let g = g(u) be the associated probability on IN satisfying the renewal
equation.

One can define ([Chu67]) a stochastic matrix P = Pu with state space
IN by

pj,k =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

gk if j = 1,

1 if j − k = 1,

0 else.

This matrix is irreducible, recurrent, and has the stationary distribu-
tion

mk =
∞

∑
j=k

gj.

Let Tu denote the Markov shift of (Pu,m), that is the shift on INZZ

equipped with the Tu-invariant measure µ defined by

µ([s1, . . . , sn]k) =ms1ps1,s2 . . . psn−1,sn
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where [s1, . . . , sn]k = {x ∈ INZZ ∶ xk+j = sj ∀ 1 ≤ j ≤ n}, then Tu is a
conservative ergodic measure preserving transformation, and the set
[1]0 is a recurrent event for Tu with renewal sequence u.

It was shown in [Aar77] that if A is a recurrent event for (the conser-
vative ergodic measure preserving transformation) T , then T → Tu(A).

If u, u′ are recurrent renewal sequences, then uu′ (defined by (uu′)n =
unu′n) is a renewal sequence, and if uu′ is recurrent, then

Tu × Tu′ → Tuu′ .

This is because Tu × Tu′ is the Markov shift of Pu × Pu′ .
For β > 0, define u(β) by

un(β) = ( 1

n + 1
)
β

(n ≥ 0),

then un+1
un
↑ as n ↑, so by Kaluza’s theorem ([Kal28, Kin72]), u(β) is a

renewal sequence, which is recurrent iff β ≤ 1. Note that u(β)u(β′) =
u(β + β′). We are now in a position to state the
Main Lemma.

Tα ∼ Tu( 1
α
)
∀ α ∈ [1,2].

Given the main lemma, the theorem follows easily:

T1 ∼ Tu(1) = Tu( 1
2
)u( 1

2
)
← Tu( 1

2
)
× Tu( 1

2
)
∼ T2 × T2.

The truth of the remark is also established easily. Write 1
α+ 1

α′ = 1+2ε
where ε > 0, then

Tα × Tα′ ∼ Tu( 1
α
)
× Tu( 1

α′ )
← Tu( 1

α
)
× Tu( 1

α′ −ε)
× Tu(ε) ∶= S.

The transformation Tu( 1
α
)
×Tu( 1

α′ −ε)
is dissipative. If W is a generating

wandering set for it, then W ×XTu(ε) is an infinite generating wandering

set for S. It follows that Tα×Tα′ (being similar to S) also has an infinite
generating wandering set, and is therefore isomorphic to z ↦ z + 1 on
IR2 considered with respect to Lebesgue measure.

The rest of this paper is therefore devoted to the proof of the main
lemma, which is in two stages.

The first stage is to show that there is a recurrent renewal sequence
w(α) such that Tα ∼ Tw(α). This is a mild restatement of [AN78].

The second stage is to show that Tw(α) ∼ Tu( 1
α
)
. This uses the notion

of equivalence of renewal sequences introduced in [AK94]. Recall from
[AK94] that two renewal sequences u, and u′ are equivalent (denoted
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u ∼ u′) if there are positively recurrent, aperiodic renewal sequences v,
and v′ such that uv = u′v′ ∶= w. In this situation,

Tu ← Tu × Tv → Tw

whence Tu ∼ Tu′ when u ∼ u′.

§3 Proof of the the main lemma.

Fix α ∈ [1,2] and consider the positive operator P defined on L1(IR)
by

Pg(x) ∶= ∫
IR
g(x + y)dfα(y).

Lemma 1.([AN78]) There exists q ∈ (0,1) such that if

w0 = 1, wn = q∫
I
P n1Idm (n ≥ 1),

then w is a renewal sequence, and Tα ∼ Tw. Here, m = mIR denotes
Lebesgue measure on IR, and I = [0,1].
Lemma 2. Let w be as in lemma 1, then

w ∼ u(1/α).
Clearly, the main lemma follows from lemmas 1 and 2.
Proof of Lemma 1. The transformation Tα is isomorphic to TP , the
shift of P , which is the shift on IRZZ equipped with the TP -invariant
measure µP defined by

µP ([A1,A2, . . . ,An]k) = ∫
IR
τ(A1,A2, . . . ,An)dm

where, for A1,A2, . . . ,An ∈ B,

[A1,A2, . . . ,An]k = {x ∈ IRZZ ∶ xk+j ∈ Aj, 1 ≤ j ≤ n},
and τ = τP is defined by

τ(A1) ∶= 1A1 , τ(A1,A2, . . . ,An) ∶= 1A1Pτ(A2, . . . ,An).
Note that the ”consistency” and TP -invariance of µP follow from P1 = 1
and ∫IR Pgdm = ∫IR gdm.

Since fα has a strictly positive, continuous density, it follows that

∃ q ∈ (0,1) ∋ Pg ≥ q1I ∫
I
gdm ∀ g ∈ L1

+
(IR).

As in [AN78], let X = IR × {0,1}, m = m × (1 − q, q), and define R ∶
L1(X) → L1(X) by

Rg ∶= 1Ic×{0,1}(PEg)○ψ+1I×{0}
1

1 − q((PEg)○ψ−q∫I Egdm)+1I×{1}(x, δ)∫
I
Egdm
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where E ∶ L1(X) → L1(IR) is defined by Eg(x) ∶= (1 − q)g(x,0) +
qg(x,1), and ψ ∶ X → IR is defined by ψ(x, δ) = x. The choice of q
ensures that R is a positive operator. It may be checked that R1 = 1
and ∫IRRgdm = ∫IR gdm, and so TR, the shift of R may be defined as
above.

It follows from ERg = PEg that π ∶ TR → TP , where π ∶ XZZ =
IRZZ × {0,1}ZZ → IRZZ is the projection π(x, ε) = x.

We now show that w is a renewal sequence (for the chosen value of
q), and that TR → Tw. Set A = I ×{1}, and B = [A]0. We claim that B
is a recurrent event for TR with renewal sequence w, whence lemma 1.
It may be checked that

1ARg = 1A∫
I
Egdm,

whence

1AR
n+11A = 1A∫

I
ERn1Adm = q1A∫

I
P n1Idm.

In particular, we have that

µR(T −(n+1)
R B∣B) = 1

q ∫X 1AR
n+11Adm = wn+1.

To show that B is a recurrent event for TR, note that for 0 = n0 <
n1 < ⋅ ⋅ ⋅ < nk,

k

⋂
j=0

T
−nj
R B = [A,Xm1 ,A,Xm2 ,A, ...,A,Xmk ,A]0

where mj = nj − nj−1 − 1. Now,

τR(A,Xm1 ,A,Xm2 ,A, ...,A,Xmk ,A) = τR(A,Xm1 ,A,Xm2 ,A, ...,A,Xmk−1 ,A)wmk

= ⋯
k

∏
j=1

wmj1A.

This shows that B is a recurrent event for TR.
Proof of Lemma 2. By lemma 5.2 of [AK94], it is sufficient to show

wn =
1

n
1
α

(a + b

n
2
α

+ c

n
4
α

+O( 1

n
6
α

))

as n→∞ where a > 0, b, c ∈ IR.
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To see this, let fn∗α denote the n-th convolution power of the proba-
bility fα, and note that

wn = ∫
I
∫
IR

1I(x + y)dfn∗α (y)dx

= ∫
[−1,1]

(1 − ∣y∣)dfn∗α (y)

= ∫
IR
∫

[−1,1]
(1 − ∣y∣) cos tydye−n∣t∣

α

dt

= 4∫
∞

0
φ(t)e−ntαdt

where

φ(t) = 1 − cos t

t2
.

Changing variables,

wn =
4

αn
1
α
∫

∞

0
φ((x

n
)

1
α

)x 1
α
−1e−xdx,

and we analyse the integral.
There exists r ∈ (0,1) such that

∫
∞

n
φ((x

n
)

1
α

)x 1
α
−1e−xdx = O(rn),

and

∫
∞

n
x
k
α
−1e−xdx = O(rn),

as n→∞ for k ≥ 1.
By Taylor’s theorem,

φ(t) = a + bt2 + ct4 + κ(t)t6

where sup
−1≤t≤1 ∣κ(t)∣ ∶=M < ∞. It follows that

∫
n

0
φ((x

n
)

1
α

)x 1
α
−1e−xdx = ∫

n

0
(

2

∑
k=0

bk(
x

n
)

2k
α

+ κ(x
n
)(x
n
)

6
α

)x 1
α
−1e−xdx

=
2

∑
k=0

b′k

n
2k
α

+O( 1

n
6
α

)

where {bk, b′k ∶ 0 ≤ k ≤ 2} are constants and b′0 > 0. This proves lemma
2.
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[Kal28] Th. Kaluza. Über die Koeffizienten reziproker Potenzreihen. Math. Z.,
28:161–170, 1928.

[Kin72] J. F. C. Kingman. Regenerative phenomena. John Wiley & Sons Ltd.,
London-New York-Sydney, 1972. Wiley Series in Probability and Math-
ematical Statistics.

School of Mathematical Sciences, Tel Aviv University, 69978 Tel
Aviv, Israel.

Email address: aaromath.tau.ac.il


	§1 Introduction
	§2 Renewal theory: the main lemma.
	§3 Proof of the the main lemma.
	References

