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Abstract. We consider the effect of ”trimming” ergodic sums of
their maximal values on the strong law of large numbers for non-
negative, non-integrable, mixing stationary processes, and to study
the ?cusp visits? of a certain interval map.

§0 Introduction

Laws of large numbers and sum trimming. We consider non-
negative, R-valued ergodic, stationary processes (X1,X2, . . . ). In case
E(X1) = ∞, there is no strong law of large numbers for the partial
sums Sn ∶= ∑n

k=1Xk.
It is shown in [Aar77] (see also [Aar97] §2.3) that if bn > 0 are con-

stants then,

either lim
n→∞

1
bn
Sn =∞ a.s., or lim

n→∞

1
bn
Sn = 0 a.s. .(☀)

See [Fel46] and [CR61] for the original proofs in the i.i.d. case.
There may be a weak law of large numbers when E(X1) =∞. Feller

([Fel45]) showed that if (X1,X2, . . . ) are non-negative, i.i.d. random
variables, the weak law of large numbers holds in the sense that

∃ b(n) constants such that Sn

b(n)
P→Ð→ 1(♣)

(where P→Ð→ denotes stochastic convergence) iff L(t) ∶= E(X ∧ t) is
slowly varying at ∞ (see below) and in this case b(n) ∼ nL(b(n)).

The strong law here breaks down in a particular way: since E(X) =
∞ ⇒ E(b−1(X)) =∞, we have (by the Borel-Cantelli lemma)

lim
n→∞

Sn

b(n) ≥ lim
n→∞

Xn

b(n) =∞ a.s..(♠)
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2 Trimmed sums for non-negative, mixing stationary processes

The question arose as to whether the maximal terms of {X1, . . . ,Xn}
are ”responsible” for the failure of the strong law, particularly in view of
the fact that under the additional assumption that L(t) ∼ L(t log log t)
(as shown in [KT77]) ,

lim
n→∞

Sn

b(n) = 1 a.s..(♡)

Mori studied strong laws for i.i.d. random variables when finitely many
of these maximal terms are excluded (trimmed) from the sums Sn and
characterised (in terms of the distribution of the Xk and the normal-
ising constants) when a trimmed strong law holds (see [Mor76] and
[Mor77]).

In this paper, we consider such trimming for dependent processes,
extending a theorem of Mori’s (theorem 1.1 below) to certain continued
fraction mixing processes (see below), and exhibiting Markov chains
(satisfying (♣), (♠) and (♡)) for which it fails.

For simplicity, we restrict attention to non-negative processes, as
in the general R-valued case, there may be interaction of the positive
and negative parts causing strong laws which are spurious from the
viewpoint of this paper.

Regular variation. Recall (from [Kar33],[BGT87], [Fel66]) that a
measurable function f ∶ R+ → R+ is called regularly varying (at ω =
0, ∞) if ∀ λ > 0, ∃ limt→ω

f(λt)
f(t) =∶ ℓ(λ). In case f is regularly varying,

the function ℓ is necessarily of form ℓ(λ) = λα for some α ∈ R which is
called the index (of regular variation of f).

The function f ∶ R+ → R+ is called slowly varying at ω if it is regularly
varying at ω with index 0, i.e. f(λt)

f(t) →t→ω 1 ∀ λ > 0. Write E(X ∧ t) =∶
L(t) and set ϵ(t) ∶= t(log+L)′(t) = tc(t)

L(t) for large t enough that L(t) > 1,
where c(t) ∶= P (X > t) = L′(t).

Both L and log are increasing and concave whence so is logL, and
ϵ(t)
t decreases in t for t large.
By Karamata’s representation theorem ([Kar33], see also [BGT87],

[Fel66]) L(t) = E(X ∧ t) is slowly varying at ∞ iff ϵ(t)→ 0 as t→∞.
We’ll call an increasing function A ∶ R+ → R+ weakly regularly varying

if
A(2t)≪ A(t), & A−1(2t)≪ A−1(t)

equivalently ∃ M > 1 such that A(2t) ≤ MA(t), & 2A(t) ≤ A(Mt).
A decreasing function B ∶ R+ → R+ will be so called if the increasing
function 1

B is weakly regularly varying.
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It can be shown that a function f ∶ R+ → R+ which is regularly varying
at ∞ with nonzero index is weakly regularly varying, whereas a slowly
varying function cannot be weakly regularly varying.

Dependence. The asymptotic behaviours (♣), (♠) and (♡) persist
when the assumption of independence is relaxed to that of contin-
ued fraction mixing; the stationary process (X1,X2, . . . ) being called
continued fraction mixing (c.f.-mixing) if ϑ(1) <∞ and ϑ(n) ↓ 0 where

ϑ(n) ∶= sup{∣ P(A∩B)
P(A)P(B) − 1∣ ∶ A ∈ σ

k
1 , B ∈ σ∞k+n, P(A)P(B) > 0, k ≥ 1}.

Any probability preserving Gibbs-Markov map is c.f.- mixing with
ϑ(n) ↓ 0 exponentially (see [AD01] or §4.7 of [Aar97]).

The proof of (♠) in the c.f.-mixing case is the same as in the i.i.d.
case, but uses the strong Borel-Cantelli lemma of Renyi ([Ren70] p.
391). See [Aar86] and §5 of [AD90] for (♣); and [AD89] for (♡).

Results. Let (X1,X2,⋯) be a non-negative, ergodic stationary pro-
cess with E(X ∧ t) =∶ L(t). Set a(t) ∶= t

L(t) and b ∶= a−1.
Write {Xk}nk=1 = {rn,k}nk=1 where rn,1 ≥ rn,2 ≥ ⋅ ⋅ ⋅ ≥ rn,n and set M (ν)

n ∶=
∑ν

k=1 rn,k.
Let (for r > 0) Jr ∶= ∑∞n=1

ϵ(n)r
n and define

NX ∶= {
min{κ ∈ N ∶ Jκ+1 <∞} if ∃ κ, Jκ <∞,

∞ else.

Note that NX <∞ implies that L(t) ∶= E(X ∧ t) is slowly varying at
∞.
Theorem 1.1

Suppose that (X1,X2,⋯) is c.f.- mixing, then

lim
n→∞

n

∑
k=1

1[Xk>tb(n)] =NX ≤∞ ∀ t > 0. (i)

(ii) Suppose that ∑∞n=1
ϑ(n)
n <∞, and that NX <∞, then

∃ bn = o(b(n)) (depending only on the distribution of X) such that

Sn −M (NX)
n ∼ S(bn)n ∼ b(n) a.s. as n→∞.

where S
(b)
n ∶= ∑n

k=1Xk ∧ b.
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Remarks
1) It follows from (i) of theorem 1.1, that limn→∞

1
b(n)(Sn−M (K)

n ) =∞
a.s. ∀ K < NX and it follows from (ii) of theorem 1.1, that 1

b(n)(Sn −
M
(K)
n )→ 1 a.s. ∀ K ≥NX .
2) It is not hard to show using Birkhoff’s theorem, that if (X1,X2,⋯)

is an ergodic, stationary process with E(∣X ∣) <∞, then 1
n(Sn−M (K)

n )→
E(X) a.s. ∀ K ∈ N.

In case (X1,X2,⋯) are i.i.d.r.v.’s, theorem 1.1 follows from theorem
1 in [Mor77]. The proof of theorem 1.1 (given in §1) differs from that
of theorem 1 in [Mor77] mainly in the estimation of large deviation
probabilities of truncated sums. The use of log-moment generating
functions in [Mor77] is not possible here due to the dependence. We
use moment estimations. Also the truncations are different.

In §2, we present examples of mixing, non-negative Markov chains
(X1,X2, . . . ) satisfying (♣), (♡), (♠) and NX = 1, but violating theorem
1.1 in that

lim
n→∞

1
b(n)(Sn −M (K)

n ) =∞ a.s. ∀ K ∈ N.

§3 is an application of theorem 1.1 to modified continued fractions.
Let x = 1

b1− 1

b2−
1
⋱

, then ( as shown in [Aar86]) 1
n ∑

n
k=1 bk

P→ 3 with respect

to Lebesgue measure on [0,1]. We show that 1
n ∑

n
k=1 bk ↛ a.s..

§1 Proof of theorem 1.1

We’ll use the (elementary) fact that if A ∶ R+ → R+ is increasing,
weakly regularly varying, and h(n) ↓, γ > 0 then

∑∞n=1 nγh(A(n)) <∞ implies ∑∞n=1 nγh(ϵA(n)) <∞ ∀ ϵ > 0

since if K ∈ N satisfies ϵA(Kn) ≥ A(n), then
∞
∑
n=1

nγh(ϵA(n)) =
K−1
∑
j=0

∞
∑
n=1
(Kn + j)γh(ϵA(Kn + j))

≤Kγ+1
∞
∑
n=1
(n + 1)γh(A(n))) <∞.

Let Nn,b ∶=#{k ≤ n ∶ Xk > b} (b > 0).
The following is a straightforward generalisation of lemma 3 in [Mor76]

and lemma 2 in [Mor77] to the c.f.-mixing case, and we only give a
sketch of the proof.
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Lemma 1
Suppose that (X1,X2,⋯) is c.f.-mixing and that B ∶ R+ → R+ is

non-decreasing and satisfies nc(B(n))→ 0, then for ν ∈ N,

lim
n→∞

Nn,B(n) ≤ ν a.s. ⇐⇒
∞
∑
n=1

nνP (X > B(n))ν+1 <∞.

In this case, if B ∶ R+ → R+ is weakly regularly varying, then
lim
n→∞

Nn,cB(n) ≤ ν a.s. ∀ c > 0.

Proof
As above,

∞
∑
n=1

nνP (X > B(n))ν+1 ≍
∞
∑
n=1

nνP (X > cB(n))ν+1 ∀ c > 0

in case B ∶ R+ → R+ is weakly regularly varying. The proof therefore
splits into 2 parts:

P (Nn,B(n) ≥ ν) ≍ (nc(B(n)))ν ∀ ν ≥ 1; (1)
and

lim
n→∞

Nn,B(n) ≤ ν a.s. ⇐⇒
∞
∑
n=1

P (Nn,B(n)≥ν+1)
n <∞. (2)

Set Nn = Nn,B(n) for n ≥ 1. To establish (1), suppose that M is as in
the definition of c.f. mixing and that ϑ(κ) < 1.

P (Nn ≥ ν) ≤ ∑
K⊂{1,...,n}, ∣K∣=ν

P (Xk > B(n) ∀ k ∈K)

≤M ν(n
ν
)c(B(n))ν

≪ nνc(B(n))ν .

Now fix n≫ κ so that nc(B(n)) < 1
2 . For 1 ≤ k ≤ n let

Ak ∶= ⋂
1≤j≤n, ∣j−k∣≥κ

[Xk > B(n), Xj ≤ B(n)],

then
n

∑
k=1

1Ak
≤ κ1[Nn≥1]

and

P (Ak) ≥ (1 − ϑ(κ))2P (
k−κ
⋂
j=1
[Xj ≤ B(n)])c(B(n))P (

n

⋂
j=k+κ
[Xj ≤ B(n)])

≥ (1 − ϑ(κ))2(1 − kc(B(n)))c(B(n))(1 − (n − k)c(B(n)))
≥ 1

4(1 − ϑ(κ))
2c(B(n))
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whence

P (Nn ≥ 1) ≥ 1
κ

n

∑
k=1

P (Ak) ≥ 1
4κ(1 − ϑ(κ))

2nc(B(n)) =∶ ηnc(B(n)).

It now follows that for n≫ νκ so large that nc(B(n)) < 1
2

P (Nn ≥ ν) ≥ P (
n
ν
−κ

∑
ℓ=1

1[Xj n
ν +ℓ
>B(n)] ≥ 1 ∀ 0 ≤ j ≤ ν − 1)

≥ (1 − ϑ(κ))νP (Nn
ν
−κ,B(n) ≥ 1)ν ≥ (1 − ϑ(κ))ν(η(nν − κ)c(B(n)))

ν

≫ nνc(B(n))ν .
This establishes (1).
The proof of (2) is that of lemma 3 of [Mor76], but using the strong

Borel-Cantelli lemma of Renyi (see [Ren70] p. 391) which is valid for
c.f.-mixing processes instead of the classical one (which is only valid
for i.i.d.r.v.’s). □

Proof of (i) of theorem 1.1
By lemma 1 , a.s.,

lim
n→∞

n

∑
k=1

1[Xk>b(n)] =min{κ ≥ 1 ∶ ∑
n=1

nκc(b(n))κ+1 <∞}

Using c(x) = ϵ(x)L(x)
x and b(n + 1) − b(n) ≍ L(b(n)) = b(n)

n , we have for
r > 0,

∞
∑
n=1

nr−1c(b(n))r =
∞
∑
n=1

ϵ(b(n))r
n ≍

∞
∑
n=1
(b(n + 1) − b(n)) ϵ(b(n))

r

b(n)

≍
∞
∑
n=1

∑
b(n)≤k<b(n+1)

ϵ(k)r
k = Jr.

Thus, min{κ ≥ 1 ∶ ∑n=1 n
κc(b(n))κ+1 <∞} =NX establishing (i). □

Proof of (ii) of theorem 1.1
The main ingredient here is the estimation of moments of truncated

sums in claim 1.
Define ∆(b) ∶= 1

L(b) ∫
1

0 ϵ(bt)L(bt)dt, then ∆(b) →
b→∞
Ð→ 0.

As in [Mor77] (but with ∆ in place of ϵ), define

ϕ(x) ∶= a(x)√
∆(x)

.

We claim that ϕ(x) ↑∞ as x ↑∞. Indeed
1

ϕ(x)2 =
∆(x)
a(x)2 =

L(x)
x ⋅

1
x2 ∫

x

0
tc(t)dt ↓ 0.
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Set bn ∶= ϕ−1(n).
Claim 1

E(∣S
(bn)
n

b(n) − 1∣
Q)≪∆(bn)

Q+1
2 + 1

n

n

∑
k=1

ϑ(k) ∀ Q ∈ 2N. (1).1

Proof Set bn ∶= ϕ−1(n). Fix n ≥ 1 and set Yk ∶=X ∧ bn −L(bn), then

E(∣S(bn)n − nL(bn)∣Q) = E((
n

∑
k=1

Yk)Q)) = ∑
1≤k1,...,kQ≤n

E(
Q

∏
i=1

Yki).

The latter sums need further organisation before estimation.
Given 1 ≤ k1, . . . , kQ ≤ n let K ∶= {k1, . . . , kQ} = {κ1, . . . , κν} where

ν ≤ Q and κ1 < ⋅ ⋅ ⋅ < κν , and define f ∶ {1, . . . , ν} → N by f(j) ∶= #{1 ≤
i ≤ Q ∶ ki = κj}, then ∑ν

j=1 f(j) = Q and it follows that

∑
1≤k1,...,kQ≤n

E(
Q

∏
i=1

Yki) =
Q

∑
ν=1

∑
1≤κ1<⋅⋅⋅<κν≤n

∑
f∈E(Q)ν

E(
ν

∏
j=1

Y
f(j)
κj )

where

E
(Q)
ν ∶= {f ∶ {1, . . . , ν}→ N,

ν

∑
j=1

f(j) = Q = 2p}.

There are two cases: f ≥ 2 and min1≤k≤ν f(k) = 1. Given 1 ≤ ν ≤ Q let

F
(Q)
ν ∶= {f ∈ E(Q)ν ∶ f ≥ 2}, G(Q)ν ∶= {f ∈ E(Q)ν ∶ min

1≤k≤ν
f(k) = 1}.

It follows that

E(∣S(bn)n − nL(bn)∣Q) ≤
Q

∑
ν=1
∑

f∈E(Q)ν

∑
1≤κ1<⋅⋅⋅<κν≤n

∣E(
ν

∏
j=1

Y
f(j)
κj )∣

=
Q

∑
ν=1
∑

f∈F (Q)ν

+
Q

∑
ν=1
∑

f∈G(Q)ν

(‡)

Since F
(Q)
ν = ∅ for ν > p, we have by c.f.-mixing that

Q

∑
ν=1
∑

f∈F (Q)ν

=
p

∑
ν=1
∑

f∈F (Q)ν

≪
p

∑
ν=1
∑

f∈F (Q)ν

∑
1≤κ1<⋅⋅⋅<κν≤n

ν

∏
j=1

E(∣Yκj
∣f(j))
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For r ≥ 2 we have

E(∣Y ∣r) ≤ 2rE((X ∧ bn)r) = 2rr∫
bn

0
xr−2ϵ(x)L(x)dx

= r2rbr−1n ∫
1

0
tr−2ϵ(bnt)L(bnt)dt = r2rbr−1n L(bn)∆(bn)

so for 1 ≤ κ1 < ⋅ ⋅ ⋅ < κν ≤ n and f ∈ F (Q)ν :
ν

∏
j=1

E(∣Yκj
∣f(j))≪

ν

∏
k=1
(bf(k)−1n ∆(bn)L(bn)) = bQn (

L(bn)∆(bn)
bn

)ν .

Now L(x)
x ∼

1
a(x) =

1

ϕ(x)
√
∆(x)

whence L(bn)
bn
= 1

ϕ(bn)
√
∆(bn)

= 1

n
√
∆(bn)

and

ν

∏
j=1

E(∣Yκj
∣f(j))≪ bQn

∆(bn)
ν
2

nν .

Thus:
Q

∑
ν=1
∑

f∈F (Q)ν

≪
p

∑
ν=1
(n
ν
)bQn

∆(bn)
ν
2

nν ≍
p

∑
ν=1

bQn∆(bn)
ν
2 ∼ bQn

√
∆(bn).

We now turn to the estimation of ∑f∈G(Q)ν
in (‡). Although E(∣X ∧

bn∣r) = o(br−1n L(bn)) ∀ r ≥ 2, we have E(∣X ∧ bn∣) = L(bn), which is too
large, and we must use c.f.-mixing more delicately in this case.

Fix ν ≤ Q, f ∈ G(Q)ν and suppose that 1 ≤ J ≤ ν satisfies f(J) = 1.
We’ll do the ”generic” (difficult) case 2 ≤ J ≤ ν − 1 (⇒ ν ≥ 3).

∑
1≤κ1<⋅⋅⋅<κν≤n

∣E(
ν

∏
i=1

Y
f(i)
κi )∣

=
n

∑
L=1

∑
1≤κ1<⋅⋅⋅<κJ−1≤L−1

∑
L+1≤κJ+1<⋅⋅⋅<κν≤n

∣E(
J−1
∏
i=1

Y
f(i)
κi YL

ν

∏
i=J+1

Y
f(i)
κi )∣

Fix κ1 < ⋅ ⋅ ⋅ < κJ−1 < L < κJ+1 < ⋅ ⋅ ⋅ < κν ≤ n. By c.f.–mixing and
E(YL) = 0,

∣E(
J−1
∏
i=1

Y
f(i)
κi YL

ν

∏
i=J+1

Y
f(i)
κi )∣

≤ E(
J−1
∏
i=1
∣Yκi
∣f(i))E(∣YL∣)E(

ν

∏
i=J+1
∣Y f(i)

κi ∣)(ϑ(L − κJ−1) + ϑ(κJ+1 −L))

≪ bQ−νn L(bn)ν(ϑ(L − κJ−1) + ϑ(κJ+1 −L)),
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whence, by the above

∑
1≤κ1<⋅⋅⋅<κν≤n

∣E(
ν

∏
i=1

Y
f(i)
κi )∣≪

bQ−νn L(bn)ν ∑
1≤K<L<K′≤n

(K − 1
J − 2

)(n −K
′ − 1

ν − J − 1
)(ϑ(L −K) + ϑ(K ′ −L))

≤ bQ−νn L(bn)νnν−3 ∑
1≤K<L<K′≤n

(ϑ(L −K) + ϑ(K ′ −L))

≤ 2bQ−νn L(bn)νnν−3n2
n

∑
k=1

ϑ(k)

≪ nν−1bQ−νn L(bn)ν
n

∑
k=1

ϑ(k) = bQn
n (

1
∆(bn))

ν
2

n

∑
k=1

ϑ(k)

It follows that
Q

∑
ν=1
∑

f∈E(Q)ν

∑
1≤κ1<⋅⋅⋅<κν≤n

∣E(∏
k∈K

Y f(k))∣≪ bQn
n

Q

∑
ν=1
( 1
∆(bn))

ν
2

n

∑
k=1

ϑ(k)

∼ bQn
n (

1
∆(bn))

Q
2

n

∑
k=1

ϑ(k).

Putting things together:

E(∣S(bn)n − nL(bn)∣Q)≪ bQn (
√
∆(bn) + 1

n(
1

∆(bn))
Q
2

n

∑
k=1

ϑ(k)).

Next, note that ϕ(x) = a(x)√
∆(x)

whence
a(ϕ−1(x)) = x

√
∆(ϕ−1(x)), a(bn) = n

√
∆(bn) and

E(∣ S
(bn)
n

nL(bn) − 1∣
Q)≪ ( bn

nL(bn))
Q(
√
∆(bn) + 1

n(
1

∆(bn))
Q
2

n

∑
k=1

ϑ(k))

=∆(bn)
Q+1
2 + 1

n

n

∑
k=1

ϑ(k)→ 0.

Thus S
(bn)
n

nL(bn)
P→→ 1. Since nc(bn) → 0, we have Sn

nL(bn)
P→→ 1, whence

nL(bn) ∼ b(n) and

E(∣S
(bn)
n

b(n) − 1∣
Q)≪∆(bn)

Q+1
2 + 1

n

n

∑
k=1

ϑ(k)

which is (1.1) and the claim is established. □

Claim 2
∞
∑
n=1

1
nP ([∣

S
(bn)
n

b(n) − 1∣ > ϵ]) <∞ ∀ ϵ > 0. (1).2
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Proof
By the Chebyshev-Markov inequality, P ([∣S

(bn)
n

b(n) −1∣ > ϵ])≪ E(∣S
(bn)
n

b(n) −

1∣Q), ∀ Q > 1, so by claim 1, (1.2) will follow from ∑∞n=1
∆(bn)

Q+1
2

n <∞
for some Q > 1 and ∑∞n=1 1

n2 ∑n
k=1 ϑ(k) <∞. The latter follows form the

assumptions on {ϑ(n)}n≥1 as
∞
∑
n=1

1
n2

n

∑
k=1

ϑ(k) =
∞
∑
k=1

ϑ(k)
∞
∑
n=k

1
n2 ≍

∞
∑
k=1

ϑ(k)
k <∞.

We’ll show that
∞
∑
n=1

∆(bn)κ
n ≍ Jκ ∀ κ > 0. (1).3

The proof of (1.3) is in two parts.
Firstly, for κ, γ > 0 and writing γ′ = ϕ(γ), we have

∞
∑
n=1

∆(bn)κ
n ≍ ∫

∞

γ′

∆(ϕ−1(x))κdx
x = ∫

∞

γ′

a(ϕ−1(x)))2κdx
x2κ+1 ←t→∞ ∫

t

γ

a(y)2κϕ′(y)dy
ϕ(y)2κ+1

= [ −a(y)
2κ

2κϕ(y)κ ]
t

ϕ−1(γ) +∫
t

γ

a(y)2κ−1a′(y)dy
ϕ(y)2κ = ∫

t

γ

L(y)∆(y)κa′(y)dy
y + o(1)

≍ ∫
∞

γ

∆(y)κdy
y .

Next, we show that ∫
∞
γ

∆(y)κdy
y ≍ Jκ.

We start with Jκ ≪ ∫
∞
c

∆(x)κdx
x because ϵ ≪ ∆. To see this, recall

that ϵ(x)
x ↓ whence ϵ(by) ≥ yϵ(b) ∀ b > 0, 0 < y < 1 and

∆(b) = 1
L(b) ∫

1

0
ϵ(by)L(by)dt ≥ ϵ(b)

L(b) ∫
1

0
yL(by)dt ∼ ϵ(b)

2 .

To show ∫
∞
c

∆(x)κdx
x ≪ Jκ:

∫
∞

1

∆(b)κdb
b = ∫

∞

1

1
b(∫

1

0
ϵ(bt)L(bt)dtL(b) )

κdb
Jensen’s ineq.

→ ≤∫
∞

1

1
b ∫

1

0
ϵ(bt)κ L(bt)dt

L(b) db

≤ ∫
1

0
∫
∞

1

ϵ(bt)κdbdt
b

y∶=bt→ =∫
1

0
∫
∞

t

ϵ(y)κdydt
y

= ∫
∞

1

ϵ(y)κdy
y +∫

1

0
∫

1

t

ϵ(y)κdydt
y = ∫

∞

1

ϵ(y)κdy
y +∫

1

0
ϵ(y)κdy

= Jκ +O(1),

(1.3) and claim 2 are established. □

Claim 3 S
(bn)
n

b(n) → 1 a.s..
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Proof From claim 2 by condensation,
∞
∑
j=1

P ([∣
S
(b[λj ])

[λj ]
b([λj]) − 1∣ > ϵ]) <∞ ∀ ϵ > 0, λ > 1

whence
S
(b[λj ])

[λj ]
b([λj]) → 1 a.s. ∀ λ > 1. By monotonicity, ∀ λ > 1, a.s.,

1
λ = lim

j→∞

S
(b[λj−1])

[λj−1]
b([λj]) ≤ lim

n→∞

S
(bn)
n

b(n) ≤ lim
n→∞

S
(bn)
n

b(n) ≤ lim
j→∞

S
(b[λj+1])

[λj+1]
b([λj]) = λ a.s.

showing that S
(bn)
n

b(n) → 1 a.s.. □
Claim 4

lim
n→∞

n

∑
k=1

1[Xk>bn] ≤ 2N + 2 a.s..

Proof By lemma 1, it suffices to show
∞
∑
n=1

n2N+1c(bn)2N+2 <∞.

For κ = 2N + 2,
∞
∑
n=1

nκ−1c(bn)κ =
∞
∑
n=1

1
n(

nϵ(bn)
a(bn) )

κ ≪
∞
∑
n=1

1
n(

n∆(bn)
a(bn) )

κ

=
∞
∑
n=1

∆(bn)
κ
2

n

(1.3)
→ ≍Jκ

2
= JN+1 <∞.

□
Claim 5

Sn −M (NX)
n ∼ b(n) a.s..

Proof
∀ η > 0, a.s. for n large

Sn −M (NX)
n = S(ηb(n))n = S(bn)n ± (2N + 2)ηb(n)

whence
1 − (2N + 2)η ≤ lim

n→∞

Sn−M(ν)
n

b(n) ≤ lim
n→∞

Sn−M(ν)
n

b(n) ≤ 1 + (2N + 2)η.

□ This finishes the proof of theorem 1.1.

Example
If ϵ(t)→ 0, ϵ(t) = 1

(log t)o(1) as t→∞ (e.g. ), then NX =∞.
If ϵ(t) = o( 1

log log log t), then L(t) ∼ L(t log log t) and (♡) holds.
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Both conditions are satisfied for L(t) = e
log(t+30)

log log(t+30) . Thus there are
processes (i.i.d.r.v.’s) (X1,X2, . . . ) satisfying (♡), but for which NX =∞
and trimming of any bounded number of maxima will not ensure a.s.
convergence.
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§2 Markov chains with no trimmed strong law

In this section we construct examples showing that theorem 1 fails
for general mixing Markov chains.
Examples

There are non-negative, mixing Markov chains (Y1, Y2, . . . ) satisfying
E(Y ) =∞, NY = 1, (♣), (♠) and (♡) with normalising constants b(n) =
nE(Y ∧ b(n)); but such that

lim
n→∞

(Sn −M (K)
n )

b(n)
=∞ a.s. ∀ K ∈ N.

For convenience, we construct the Markov chains over probability
preserving transformations. Let S be an ergodic probability preserving
transformation of the standard probability space (Ω,A, p) and f ∶ Ω→
N be measurable, integrable and so that {f○Sn ∶ n ≥ 0} are independent
(e.g. Ω = NN, S = shift, f(x) = x1 and p is a product measure).

Build (X,B, q, T ) the tower transformation over S with height func-
tion f (see [Kak43] or §1.5 of [Aar97]). This is an ergodic probability
preserving transformation :

X ∶= {(x,n) ∶ 1 ≤ n ≤ f(x)}, q(A × {n}) ∶= p(A)
E(f) ,

T (x,n) ∶= { (x,n + 1) n < f(x)),
(Sx, 1) n = f(x).

Now define g ∶X → N by g(x,n) ∶= n.
Our examples will be of form (Y1, Y2, . . . ) ∶= (g, g ○ T, g ○ T 2, . . . ). A

calculation indeed shows that the ergodic stationary process (g, g○T, g○
T 2, . . . ) is a Markov chain (a renewal process) whose joint distributions
are given by

q([g = s0, g ○ T = s1, . . . , g ○ T n = sn]) = πs0ps0,s1 . . . psn−1,sn

where πs ∶= p([f≥s])
E(f) and

pj,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p([f=j])
E(f)πj

if j ∈ N, k = 1
πj+1
πj

if j ∈ N, k = j + 1,
0 else.

This chain is mixing if (e.g.) p([f = n]) > 0 ∀ n ≥ 1 large.
Proposition 2.1 ([Tan74])

g ○ T n

n
→

n→∞
→ 0 a.s.
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Proof Since E(f) < ∞, we have f○Sn

n → 0 a.s. on Ω. Next, for a.e.
x ∈ Ω and ∀ n large, ∃ 0 ≤ kn ≤ n such that g(T nx) ≤ f(Sknx) whence
g○Tn

n → 0 a.s. on Ω. The proposition follows from the T -invariance of
limn→∞

g○Tn

n . □

Next, we investigate the asymptotic behaviour of gn = g(T )n ∶= ∑n−1
k=0 g○

T k. To this end, let

L(t) ∶= E((f(f+1)2 ) ∧ t).

Lemma 2.2
(1) If L(t) is slowly varying at ∞ and E(f 2) =∞, then

L(t) ∼ 1
2E(f

2 ∧ t) as t→∞.

(2) If p([f ≥ u]) ∼ h(u)
u2 where ∫

∞
1

h(u)du
u =∞ and h is slowly varying

at ∞, then E(g) =∞, L is slowly varying at ∞ and

Lg(t) ∶= E(g ∧ t) ∼ 1
E(f)L(t

2) as t→∞.

Proof
1
2E(f

2∧t) = E(f
2

2 ∧t) ≤ L(t) ∼ L(
t
2) =

1
2E(f(f+1)∧t) ∼

1
2E(f

2∧t). (1)

To establish 2), we first note that ∀ ϵ > 0, ∫
t

1
h(u)du

u ≥ ∫
t

ϵt
h(u)du

u ∼
h(t) log 1

ϵ as t → ∞, whence h(t) = o(∫
t

1
h(u)du

u ) as t → ∞. It follows
that ∫

t

1
h(u)du

u is slowly varying at ∞ (because ∫
λt

t
h(u)du

u ∼ h(t) logλ as
t→∞). Next

1
2E(f

2 ∧ t) = 1
2E((f ∧

√
t)2) = ∫

√
t

0
sp([f ≥ s])ds ∼ ∫

√
t

1

h(u)du
u

which latter is slowly varying at ∞. Analogously to the proof of 1), we
see that L(t) is slowly varying at ∞. Next,

q(g ≥ u) = 1
E(f)

∞
∑
ν=u

p(f ≥ ν) ∼ h(u)
E(f)u

whence

Lg(t) =
t

∑
k=1

q(g ≥ k) ∼ 1
E(f)

t

∑
u=1

h(u)
u ∼

1
E(f)L(t

2).

□
We use the notation gn = g(T )n ∶= ∑n−1

k=0 g ○ T k.
Proposition 2.3
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1) Suppose that E(g) = ∞, L is slowly varying and let β(n) =
nL(β(n)), then

gn
β(n)

q→→ 1
E(f) , lim

n→∞
gn

β(n) =∞ a.s.,

and, in case L(t) ∼ L(t log log t):
lim
n→∞

gn
β(n) =

1
E(f) a.s..

2) Under the assumptions of lemma 2.2 and L(t2) ∼ L(t); (g, g ○
T, . . . ) satisfies (♣), (♠) and (♡).

Proof Note that TΩ = T f = S whence T n
Ω = T f

(S)
n where fn = f (S)n ∶=

∑n−1
k=0 f ○ Sk. It follows that on Ω:

g
(T )
f
(S)
n

= h(S)n

where
h ∶= g(T )f =

f−1

∑
k=0

g ○ T k=f(f+1)2 .

Since {h ○ Sn ∶ n ≥ 1} are independent, by (♣), (♠) and (♡):
h
(S)
n

β(n)
q→→ 1, lim

n→∞
h
(S)
n

β(n) =∞ a.s.,

and, in case L(t) ∼ L(t log log t):

lim
n→∞

h
(S)
n

β(n) = 1 a.s..

By the PET, fn ∼ E(f)n a.s. on Ω, whence, a.s. on Ω (!):
gE(f)n
β(n)

q→→ 1, lim
n→∞

gE(f)n
β(n) =∞ and, in case L(t) ∼ L(t log log t), lim

n→∞

gE(f)n
β(n) = 1.

Using the 1-regular variation of β(n), and ergodicity of T , we establish
1) from which 2) follows since L(t2) ∼ L(t) implies β(n) ∼ E(f)b(n)
where b(n) = nE(g ∧ b(n)). □

Remark Note that L(t2) ∼ L(t) if ϵ(t) ∶= t(log+L)′(t) = o( 1
log t) as

t→∞.

Proposition 2.4 If E(g) =∞, then

lim
n→∞

(g(T )n −M (K)
n )

β(n)
=∞ a.s. ∀ K ∈ N.

Proof rn,1(x) = g ○ T kn(x)(x) for some 0 ≤ kn(x) ≤ n − 1. Thus,

M
(K)
n ≤Krn,1(x) =Kg ○ T kn(x)(x) = o(n)
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as n→∞ by proposition 2.1. On the other hand, E(g) =∞, so gn
n →∞

and M
(K)
n = o(gn) a.s.. □

The advertised examples. If p([f ≥ t]) ∼ h(t)
t2 as t → ∞ where

1
h(t) = ∏

r
j=1 log(t + ej) for some r ∈ N where e1 ∶= e, ej+1 ∶= eej , then

L(t) ∼ logr+1(t) ∼ L(t2) as t→∞ where log1(t) ∶= log(t) and logr+1(t) ∶=
log(logr(t)).

Thus, E(g) =∞, Ng = 1, and (g, g ○T, . . . ) satisfies (♣), (♠) and (♡)
with normalising constants b(n) = nE(Y ∧b(n)) but limn→∞

(g(T )n −M(K)
n )

b(n) =
∞ a.s. ∀ K ∈ N..

§3 Applications

3.1 Modified continued fractions. Let x = 1
b1− 1

b2−
1
⋱

, then bn(x) =

[ 1
V n−1x] + 1 where V x ∶= 1 − { 1x}. The transformation V ∶ [0,1] → [0,1]

has an infinite, invariant measure µ with density dµ
dm(x) =

1
1−x with re-

spect to which the function b(x) = [ 1x]+1 is not integrable. Nevertheless
( as shown in [Aar86])

A(n) ∶= 1
n

n

∑
k=1

bk
P→ 3.

We prove here that a.s.,

lim
n→∞

A(n) = 2, & lim
n→∞

A(n) =∞.(✠)

As shown in [DK00],

A(
n

∑
k=1

a2k−1) = 2 + ∑n
k=1 a2k

∑n
k=1 a2k−1

where x = 1/a1 + 1/a2 + 1/ . . . . The regular continued fraction process
(a1, a2, . . . ) is given by an(x) ∶= a(Un−1x) where a(x) ∶= [ 1x] and U ∶
(0,1)→ (0,1) is defined by Ux ∶= { 1x}. Gauß’ measure dP(x) = dx

log 2(1+x)
is U -invariant on [0,1]. As shown in [Doe40], it is c.f.-mixing with
ϑ(n) = O(θn) for some 0 < θ < 1.

Theorem 1.1 holds with Na = 1. The trimmed strong law for the
regular continued fraction process was first established in [DV86].

Thus, (✠) follows from the following lemma.
Lemma 3.1
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Let {Xk}k≥1 be a non-negative, stationary process with ∑∞k=1
ϑ(k)
k <∞,

and suppose that NX <∞, then for d ≥ 2 and 0 ≤ i ≠ j < d,

lim
n→∞

∑n
k=1 Xdk+i
∑n

k=1 Xdk+j
= 0 & lim

n→∞
∑n

k=1 Xdk+i
∑n

k=1 Xdk+j
=∞ a.s..

Proof
Since NX < ∞, L is slowly varying at ∞, whence b(t) defined by

b(t) = tL(b(t)) is regularly varying at ∞ with index 1 . We claim first
that ∃ βn = o(b(n)) such that limn→∞∑n

k=1 1[Zk>βn] = NX a.s. for any
stationary process {Zn} with ∑∞n=1

ϑ(n)
n <∞ and distZ = distX.

By lemma 1, ∑n∈NnNXc( b(n)k )NX+1 < ∞. To obtain such a sequence
{βn}, fix mk ↑ such that

∑
n≥mk

nNXc( b(n)k )
NX+1 < 1

2k
∀ k ≥ 1

and set βn ∶= b(n)
k for n ∈ N, mk ≤ n < mk+1. Evidently, βn = o(b(n))

and ∑n∈NnNXc(βn)NX+1 <∞, whence limn→∞∑n
k=1 1[Zk>βn] =NX a.s..

By theorem 1.1, S(βn)
n ∼ b(n) a.s., and to see limn→∞

∑n
k=1 Xdk+i
∑n

k=1 Xdk+j
= ∞

a.s., fix M > 0 large and note that a.s., ∃ nℓ → ∞ and Bℓ ⊂ {dk +
i}nℓ

k=1, ∣Bℓ∣ =NX such that
(i) Xk >Mb(nℓ) ∀ k ∈ Bℓ, and (ii) Xk ≤ βnℓ

∀ k ∉ Bℓ, k ≤ (d + 1)nℓ. It
follows that

nℓ

∑
k=1

Xdk+j =
nℓ

∑
k=1

Xdk+j ∧ βnℓ
∼ b(nℓ) a.s.,

whereas
nℓ

∑
k=1

Xdk+i ≥MNXb(nℓ)

with the conclusion that

lim
n→∞
∑n

k=1Xdk+i

∑n
k=1Xdk+j

≥ lim
ℓ→∞

∑nℓ

k=1Xdk+i

∑nℓ

k=1Xdk+j
≥ lim

ℓ→∞

MNXb(nℓ)
∑nℓ

k=1Xdk+j ∧ βnℓ

=MNX .

□

3.2 Visits to cusps. Define W ∶ [0,1] → [0,1] by W (x) = x
1−x (0 <

x < 1
2) and W (1 − x) = 1 −W (x).

The measure ν ∼m with dν
dm(x) =

1
x(1−x) is W -invariant, and as shown

in [Tha83] (see also [Aar97]), ([0,1],m,W ) is conservative and ergodic.
The invariant measure density ν has ”cusps” at 0 and 1 in the sense

µ([0, ϵ)) = µ([1 − ϵ,1)) = ∞ ∀ ϵ > 0, but µ((a, b)) < ∞ ∀ 0 < a < b < 1
and it is natural to ask about the frequency of visits to these ”cusps”.
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It was shown in [Tha02] that

1
n

n−1
∑
k=0

1[0, 1
2
) ○W k m→→ 1

2 , whence
∑n−1

k=0 1[0, 12 )
○Wk

∑n−1
k=0 1[ 12 ,1)○W

k

m→→ 1. (†)

We show, using (✠) that

lim
n→∞

∑n−1
k=0 1[0, 1

2
)(W kx)

∑n−1
k=0 1[ 1

2
,1)(W kx)

= 0, lim
n→∞

∑n−1
k=0 1[0, 1

2
)(W kx)

∑n−1
k=0 1[ 1

2
,1)(W kx)

=∞ (‡)

(c.f. [Ino97] and [Ino01]).
Define K ∶ [0,1] → Z+ by K(x) ∶= min{j ≥ 0 ∶ W jx > 1

2} and
W̃ ∶ [0,1] → [0, 12] × {0,1} by W̃ (x) ∶= WK(x)+1(x). It turns out that
K(x) = b(x) − 2 ∶= [ 1x] − 1, W (x) = V (x) ∶= 1 − { 1x} (b, V as above),
whence by (✠), limn→∞

Kn(x)
n = 0 and limn→∞

Kn(x)
n = ∞ a.s. where

Kn ∶= 1
n ∑

n−1
k=0 K ○ V k.

This proves (‡) as
Kn(x)−1

∑
k=0

1
[0,12 )
(W kx) =Kn(x) and

Kn(x)−1

∑
k=0

1
[12 ,1)
(W kx) = n.
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