CORRECTIONS TO INVARIANT MEASURES AND ASYMPTOTICS FOR SOME SKEW PRODUCTS

J. AARONSON, H. NAKADA, O. SARIG, R. SOLOMYAK

Corollaries 2.7 and 2.8 in [ANSS] need correction. In the proof of 2.7 , it is wrongly stated a) that ν must be non-atomic, and b) that m is locally finite. The following gives correct versions. References not listed here are listed in [ANSS].
2.7 Corollary. Suppose that Σ is a mixing SFT and that $f: \Sigma \rightarrow \mathbb{Z}^{d} \quad(d \geq 1)$ has finite memory. If $\nu \in \mathcal{P}(\Sigma)$ is S_{A}^{f}-invariant, ergodic, and with $U:=$ supp $\nu \subseteq \Sigma$ clopen and $\nu \circ \tau_{U} \sim \nu$, then $\left.\nu \propto \mu_{\alpha}\right|_{U}$ for some homomorphism $\alpha: \mathbb{Z}^{d} \rightarrow \mathbb{R}$. If (in addition) $f \Sigma \rightarrow \mathbb{Z}^{d}$ is aperiodic, then $U=\Sigma$.

Proof Since ν is finite and τ_{U}-non-singular, it is non-atomic and the unique $\tau_{\phi_{f}}$ ergodic, invariant measure m on $\Sigma \times \mathbb{Z}^{d}$ so that $m(A \times\{0\})=\nu(A)$ is locally finite.

In case f is aperiodic, theorem 2.2 shows that $m=m_{\alpha}, U=\Sigma$ and $\nu=\mu_{\alpha}$ for some homomorphism $\alpha: \mathbb{Z}^{d} \rightarrow \mathbb{R}$.

Otherwise (see e.g. proposition $5.1 \mathrm{in}[\mathrm{Pa}-\mathrm{S}]$ for $d=1$) there is a subgroup $\mathbb{F} \subset \mathbb{Z}^{d}$ and

$$
f=a+g-g \circ T+\bar{f}
$$

where $a \in \mathbb{Z}^{d}, \bar{f}: \Sigma \rightarrow \mathbb{F}$ aperiodic and $g: \Sigma \rightarrow \mathbb{Z}^{d}$ both with memory no longer than that of f.

Thus $m \circ \pi^{-1}$ (where $\left.\pi(x, z):=(x, z-g(x))\right)$ is locally finite, $\tau_{\phi_{\bar{f}}}$-ergodic, invariant and supported on $\Sigma \times\left(z_{0}+\mathbb{F}\right)\left(\right.$ some $\left.z_{0} \in \mathbb{Z}^{d}\right)$. The result now follows from the aperiodic case.

Remarks

1) In the situation of corollary 2.7 , the ergodic decomposition of $\mu_{\alpha}\left(\alpha: \mathbb{Z}^{d} \rightarrow \mathbb{R}\right.$ a homomorphism) is $\left\{[g \in b+\mathbb{F}]: b \in \mathbb{Z}^{d}\right\}$ (where g is as in $(\boldsymbol{\oplus})$). The proof of this uses [G-H] as in the proof of ergodicity in the aperiodic case.
2) Suppose that Σ is a mixing SFT and that $\nu \in \mathcal{P}(\Sigma)$ is S_{A}^{+}-invariant and ergodic, then (for $s \in S$) $N_{s}:=\sum_{n=0}^{\infty} 1_{[s]} \circ T^{n}$. is S_{A}^{+}-invariant, whence constant ν a.e.. Call $s \in S$ ephemeral if $1 \leq N_{s}<\infty \nu$-a.e., and recurrent if $N_{s}=\infty$ a.e.. Let S_{∞} and S_{e} denote the collections of recurrent and ephemeral states (respectively). Evidently $S_{\infty} \neq \varnothing$ and $N:=\sum_{f \in S_{e}} N_{f}$ is constant and finite ($N:=0$ if $S_{e}=\varnothing$).
2.8 Corollary Suppose Σ is a mixing SFT. If $\nu \in \mathcal{P}(\Sigma)$ is S_{A}^{+}-invariant and ergodic, then \exists a cylinder $f=\left[f_{1}, \ldots, f_{N}\right] \subset \Sigma$ with $f_{1}, \ldots f_{N} \in S_{e}$; a mixing SFT $\Sigma^{\prime}=\Sigma_{A^{\prime}} \subset \Sigma \cap S_{\infty}^{\mathbb{N}} ;$ a clopen, $S_{A^{\prime}}^{+ \text {-invariant subset } U \subset \Sigma^{\prime} ; \text { a homomorphism }}$

[^0]$\alpha: \mathbb{Z}^{S_{\infty}} \rightarrow \mathbb{R}$ so that
$$
\nu=c \sum_{\pi \in S_{N},}, \pi f \cap U \neq \varnothing \text { } \delta_{\pi f} \times\left.\mu\right|_{T^{N} \pi f \cap U}
$$
where $\pi f:=\left[f_{\pi(1)}, \ldots, f_{\pi(N)}\right], \mu \in \mathcal{P}\left(\Sigma^{\prime}\right), \frac{d \mu \circ T}{d \mu}=c^{\prime} e^{\alpha \circ F^{\#}}$ and $c, c^{\prime}>0$.

Proof

Suppose first that $S_{e}=\varnothing$. We claim first that ν is the restriction of a Markov measure to a union of initial states. To see this, choose $s \in S_{\infty}$ with $\nu([s])>0$, then $\left.\nu\right|_{[s]}$ is ergodic, invariant under finite permutations of inter-arrival words, whence by de Finetti's theorem (see e.g. [D-F]) a product measure. By Proposition 15 of $[\mathrm{D}-\mathrm{F}],\left.\nu\right|_{[s]}$ is the restriction of a stationary Markov measure to $[s]$, and by S_{A}^{+} invariance and ergodicity, the transition matrix p does not depend on $s, \nu([s])>0$. It follows that $U:=\operatorname{supp} \nu=\bigcup_{s \in S_{\infty}, \nu([s])>0}[s]$ is clopen in $\Sigma_{A^{\prime}}\left(A_{s, t}^{\prime}=1_{\left[p_{s, t}>0\right]}\right)$, and that $\nu \circ \tau_{U} \sim \nu$ where τ is the adic transformation on $\Sigma_{A^{\prime}}$. The result in case $S_{e}=\varnothing$ now follows from corollary 2.7.

In general,

$$
x_{n} \in\left\{\begin{array}{l}
S_{e} \quad 1 \leq n \leq N:=\sum_{f \in S_{e}} N_{f} \\
S_{\infty} \quad n>N
\end{array}\right.
$$

$\nu \circ T^{-N}$ is as above. The result follows from this.

Remarks

Examples illustrating the various cases of corollary 2.8 can be extracted from [P-S]. Corollary 2.8 now extends the one-sided version of theorem 6.2 in $[\mathrm{P}-\mathrm{S}]$. Theorems 2.9 and 2.11 there follow from it (by identification of possible Σ^{\prime}).

References

[ANSS] J. Aaronson, H. Nakada, O. Sarig, R. Solomyak, Invariant measures and asymptotics for some skew products. Israel J. Math. 128 (2002), 93-134.
[D-F] P. Diaconis, D. Freedman, De Finetti's theorem for Markov chains, (French) Annals Probab. 8, no. 8, (1980), 115-130.
[Pa-S] W. Parry, K. Schmidt, Natural coefficients and invariants for Markov-shifts, Invent. Math. 76 (1984), no. 1, 15-32.
(Jon Aaronson) School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel

Email address: aaro@math.tau.ac.il
(Hitoshi Nakada) Dept. Math., Keio University, Hiyoshi 3-14-1 Kohoku, Yokohama 223, JAPAN

Email address: nakada@math.keio.ac.jp
(Omri Sarig) School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel

Email address: sarig@math.tau.ac.il
(Rita Solomyak) Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195-4350, USA

Email address: rsolom@math.washington.edu

[^0]: Date: © $28 / 04 / 03$.

