CORRECTIONS TO INVARIANT MEASURES AND ASYMPTOTICS FOR SOME SKEW PRODUCTS

J. AARONSON, H. NAKADA, O. SARIG, R. SOLOMYAK

Corollaries 2.7 and 2.8 in [ANSS] need correction. In the proof of 2.7, it is wrongly stated a) that ν must be non-atomic, and b) that *m* is locally finite. The following gives correct versions. References not listed here are listed in [ANSS].

2.7 Corollary. Suppose that Σ is a mixing SFT and that $f: \Sigma \to \mathbb{Z}^d$ $(d \ge 1)$ has finite memory. If $\nu \in \mathcal{P}(\Sigma)$ is S_A^f -invariant, ergodic, and with $U := \operatorname{supp} \nu \subseteq \Sigma$ clopen and $\nu \circ \tau_U \sim \nu$, then $\nu \propto \mu_{\alpha}|_U$ for some homomorphism $\alpha : \mathbb{Z}^d \to \mathbb{R}$. If (in addition) $f\Sigma \to \mathbb{Z}^d$ is aperiodic, then $U = \Sigma$.

Proof Since ν is finite and τ_U -non-singular, it is non-atomic and the unique τ_{ϕ_f} ergodic, invariant measure m on $\Sigma \times \mathbb{Z}^d$ so that $m(A \times \{0\}) = \nu(A)$ is locally
finite.

In case f is aperiodic, theorem 2.2 shows that $m = m_{\alpha}$, $U = \Sigma$ and $\nu = \mu_{\alpha}$ for some homomorphism $\alpha : \mathbb{Z}^d \to \mathbb{R}$.

Otherwise (see e.g. proposition 5.1 in [Pa-S] for d=1) there is a subgroup $\mathbb{F}\subset\mathbb{Z}^d$ and

$$(\bigstar) \qquad \qquad f = a + g - g \circ T + \overline{f}$$

where $a \in \mathbb{Z}^d$, $\overline{f} : \Sigma \to \mathbb{F}$ aperiodic and $g : \Sigma \to \mathbb{Z}^d$ both with memory no longer than that of f.

Thus $m \circ \pi^{-1}$ (where $\pi(x, z) := (x, z - g(x))$) is locally finite, $\tau_{\phi_{\overline{f}}}$ -ergodic, invariant and supported on $\Sigma \times (z_0 + \mathbb{F})$ (some $z_0 \in \mathbb{Z}^d$). The result now follows from the aperiodic case.

Remarks

1) In the situation of corollary 2.7, the ergodic decomposition of μ_{α} ($\alpha : \mathbb{Z}^d \to \mathbb{R}$ a homomorphism) is $\{[g \in b + \mathbb{F}] : b \in \mathbb{Z}^d\}$ (where g is as in (\blacklozenge)). The proof of this uses [G-H] as in the proof of ergodicity in the aperiodic case.

2) Suppose that Σ is a mixing SFT and that $\nu \in \mathcal{P}(\Sigma)$ is S_A^+ -invariant and ergodic, then (for $s \in S$) $N_s := \sum_{n=0}^{\infty} \mathbb{1}_{[s]} \circ T^n$. is S_A^+ -invariant, whence constant ν -a.e.. Call $s \in S$ ephemeral if $\mathbb{1} \leq N_s < \infty \nu$ -a.e., and recurrent if $N_s = \infty$ a.e.. Let S_∞ and S_e denote the collections of recurrent and ephemeral states (respectively). Evidently $S_\infty \neq \emptyset$ and $N := \sum_{f \in S_e} N_f$ is constant and finite $(N := 0 \text{ if } S_e = \emptyset)$.

2.8 Corollary Suppose Σ is a mixing SFT. If $\nu \in \mathcal{P}(\Sigma)$ is S_A^+ -invariant and ergodic, then \exists a cylinder $f = [f_1, \ldots, f_N] \subset \Sigma$ with $f_1, \ldots, f_N \in S_e$; a mixing SFT $\Sigma' = \Sigma_{A'} \subset \Sigma \cap S_{\infty}^{\mathbb{N}}$; a clopen, $S_{A'}^+$ -invariant subset $U \subset \Sigma'$; a homomorphism

Date: ©28/04/03.

 $\alpha: \mathbb{Z}^{S_{\infty}} \to \mathbb{R}$ so that

$$r = c \sum_{\pi \in S_N, \ \pi f \cap U \neq \varnothing} \delta_{\pi f} \times \mu|_{T^N \pi f \cap U}$$

where $\pi f := [f_{\pi(1)}, \dots, f_{\pi(N)}], \ \mu \in \mathcal{P}(\Sigma'), \ \frac{d\mu \circ T}{d\mu} = c' e^{\alpha \circ F^{\#}} \ and \ c, c' > 0.$

Proof

Suppose first that $S_e = \emptyset$. We claim first that ν is the restriction of a Markov measure to a union of initial states. To see this, choose $s \in S_{\infty}$ with $\nu([s]) > 0$, then $\nu|_{[s]}$ is ergodic, invariant under finite permutations of inter-arrival words, whence by de Finetti's theorem (see e.g. [D-F]) a product measure. By Proposition 15 of [D-F], $\nu|_{[s]}$ is the restriction of a stationary Markov measure to [s], and by S_A^+ invariance and ergodicity, the transition matrix p does not depend on s, $\nu([s]) > 0$. It follows that $U := \text{supp}\nu = \bigcup_{s \in S_{\infty}, \nu([s]) > 0}[s]$ is clopen in $\Sigma_{A'}$ ($A'_{s,t} = 1_{[p_{s,t}>0]}$), and that $\nu \circ \tau_U \sim \nu$ where τ is the adic transformation on $\Sigma_{A'}$. The result in case $S_e = \emptyset$ now follows from corollary 2.7.

In general,

$$x_n \in \begin{cases} S_e & 1 \le n \le N := \sum_{f \in S_e} N_f, \\ S_\infty & n > N, \end{cases}$$

 $\nu \circ T^{-N}$ is as above. The result follows from this.

 ν

Remarks

Examples illustrating the various cases of corollary 2.8 can be extracted from [P-S]. Corollary 2.8 now extends the one-sided version of theorem 6.2 in [P-S]. Theorems 2.9 and 2.11 there follow from it (by identification of possible Σ').

References

[ANSS] J. Aaronson, H. Nakada, O. Sarig, R. Solomyak, Invariant measures and asymptotics for some skew products. *Israel J. Math.***128** (2002), 93–134.

[D-F] P. Diaconis, D. Freedman, De Finetti's theorem for Markov chains, (French) Annals Probab. 8, no. 8, (1980), 115-130.

[Pa-S] W. Parry, K. Schmidt, Natural coefficients and invariants for Markov-shifts, *Invent. Math.* **76** (1984), no. 1, 15–32.

(Jon Aaronson) School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel

Email address: aaro@math.tau.ac.il

(Hitoshi Nakada) Dept. Math., Keio University,
Hiyoshi 3-14-1 Kohoku, Yokohama 223, Japan

Email address: nakada@math.keio.ac.jp

(Omri Sarig) School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel

Email address: sarig@math.tau.ac.il

(Rita Solomyak) DEPARTMENT OF MATHEMATICS, BOX 354350, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195-4350, USA

 $Email \ address: {\tt rsolom@math.washington.edu}$