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1 Introduction

1.1 F -decomposition Problem

People are interested in the so-called (hyper-)graph decomposition problem. To be pre-

cise, a (hyper-)graph G has an F -decomposition if the edges of G can be partitioned into

edge-disjoint copies of F . This essay aims to show the special case from paper [1] by Barber-

Glock-Kühn-Lo-Montgomery-Osthus where G is a simple loopless graph and F = K3. In

order to do so, we shall first introduce some general terminology and results about graph

decompositions. And then in section 1.2, we will focus on the triangle decomposition prob-

lem.

Let us begin by giving the formal definition of F -decompositions of a graph.

Definition 1.1. A simple graph is said to admit an F -decomposition if its edge set can be

partitioned into edge-disjoint copies of F .

We aim to find some sufficient conditions for a graph G to be F -decomposable, so we

can start by finding some necessary conditions first. This leads us to come up with the

following definition called F -divisible, which is a basic property that every F -decomposable

graph holds.

For a graph G, we define gcd(G) to be the greatest common divisor of the degrees of all

vertices of G, then we say a graph G is F -divisible if |E(G)| is divisible by |E(F )| and

gcd(G) is divisible by gcd(F ).

Hence, being F -divisible is a necessary condition for a graph G to be F -decomposable. Now

we are led to ask what would be the sufficient conditions? In order to elicit this matter, we

shall present and analyze results from various studies. This shall thus help direct the goal

of this paper better.

It might be worth mentioning that if G is the complete graph, then this graph decomposition

problem is already solved in 1975 by Wilson ([21]), who proves the following theorem.

Theorem 1.2 (Wilson’s theorem). For any given F , there is an integer N such that any

complete graph Kn with n ≥ N that is F -divisible is also F -decomposable.

Although this theorem is limited in its usage because it only considers complete graphs, it

inspires us to consider decomposition problems of very dense graphs. And we can see that

the definitions and results we will be introducing are mostly dealing with dense graphs. So

following the spirit of Wilson’s theorem, one may ask the following question: given an F , is
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there a number δ ∈ [0, 1) such that any F -divisible graph G with δ(G) ≥ δn on n vertices

is F -decomposable, where δ(G) is the minimum degree of graph G? This leads us of the

following definition, the so-called decomposition threshold.

Definition 1.3. For n ∈ N, define δF (n) to be the minimum of all natural numbers d such

that every F -divisible graph G on n vertices with δ(G) ≥ d admits an F -decomposition.

Furthermore, the decomposition threshold of F is defined to be δF := lim supn→∞
δF (n)
n .

The decomposition threshold is an exact real number between 0 and 1 for any given graph

F . Therefore, it would be of great importance if we can find a formula to determine it.

However, as expected, this is no easy task. A partial reason is that it can be really difficult to

prove the existence of an F -decomposition when the only property we know about the graph

is its minimum degree. Consequently, researchers tend to take some detours through some

not-so-exact decompositions. We shall introduce three ways: two regarding approximate

decompositions and one regarding fractional decompositions.

Let us consider an approximate decomposition of G. How close is it to a complete decom-

position, in other words, how large is the leftover graph? There are two ways to quantify

it, the total number of edges left or the maximum degree left. These two ways lead to two

approaches that we can use as a detour towards the graph decomposition problem.

First, consider the total number of edges left. We say that a µ-approximate F -decomposition

of G is a set of edge-disjoint copies of F covering all but at most µn2 edges of G.

Definition 1.4. For n ∈ N and µ > 0, we define δµF (n) to be the infimum over all δ such

that every graph G on n vertices with δ(G) ≥ δn has a µ-approximate F -decomposition, and

let δµF := lim supn→∞ δ
µ
F (n) to be the µ-approximate F -decomposition threshold.

Clearly, δµF is a decreasing function with respect to the variable µ. Furthermore, note that

if we take µ = 0, then we get an F -decomposition. Therefore, it is natural to ask whether

the following holds or not:

lim
µ→0

δµF = δF (1)

Interestingly, there are graphs for which equation (1) holds but there are also graphs for

which it does not. In [3; 22], it is shown that equation (1) does not hold when F = Kr,r for

even r. However, this tiny failure does not hinder δµF to be useful. In fact, the next theorem

is the main result in [3] showing us a preview of what can we can get from this approximate

threshold.

Theorem 1.5. Let F be an r-regular graph. Then for each ε > 0, there exists an n0 =
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n0(ε, F ) and an µ = µ(ε, F ) such that every F -divisible graph G on n ≥ n0 vertices with

δ(G) ≥ (δ + ε)n, where δ := max{δµF , 1− 1/3r}, has an F -decomposition.

This theorem in [3] is very useful and below we present three applications illustrating how

one can make use of it.

Application 1: Part of the proof of Theorem (1.5) and the result in [2] together gives a new

proof of Wilson’s theorem. This new proof is a purely combinatorial one, unlike the original

algebraic proof.

Application 2: It can be used to derive the exact decomposition threshold for even cycles

and get a good bound for odd cycles as well.

Theorem 1.6. Let l ≥ 4 be even, and let δ = 1/2 for l ≥ 6 and δ = 2/3 for l = 4.

Then for all ε > 0, there is an n0 such that any Cl-divisible graph on n ≥ n0 vertices with

δ(G) ≥ (δ + ε) has a Cl-decomposition.

When l ≥ 3 is odd, there is also an n0 ∈ N such that every Cl-divisible graph G on n ≥ n0

vertices with δ(G) ≥ (0.9 + ε)n has a Cl-decomposition.

In fact, one can remove the ε in the statement of theorem (1.6), but the more exact version

is shown using another method in [20]. Nevertheless, theorem (1.6) is just a special case of

a more general result in [7], which we shall introduce later in the introduction since that

result needs more terminology.

Application 3: Although theorem (1.5) and both of the first two applications are only dealing

with regular graphs, we must note that it can still be used to obtain some results for general

G, which is our goal, eventually. The next theorem illustrates the aforementioned idea:

Theorem 1.7 ([3]). Let χ = χ(F ) be the chromatic number of a given graph F , let C :=

min{9χ2(χ − 1)2/2, 10000χ3/2}, and let t := max{C, 6|E(F )|}. Then for each ε > 0, there

is an n0 = n0(ε, F ) such that every F -divisible graph G on n ≥ n0 vertices with δ(G) ≥
(1− 1/t+ ε)n has an F -decomposition.

Although our choice of t is only of size O(|F |2) which is not the best bound in general, this

is a seminal result as it does not require any further property of graph G or F .

The above three applications show the importance of theorem (1.5) and δµF . Now let us

introduce the second way of estimating the approximate decomposition.

Definition 1.8. The approximate decomposition threshold δ0+F is defined to be the infimum

of all δ ∈ [0, 1] with the following property:
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for all γ > 0, there exists n0 ∈ N such that any graph G on n ≥ n0 vertices with δ(G) ≥ δn
contains an F -decomposable subgraph H such that ∆(G − H) ≤ γn, where ∆(G) denotes

the maximum vertex degree of the graph G.

We shall see that in [1], the main result we wish to show contains δ0+K3
=: δ0+. Indeed, in

many cases, any improvement on the bound of δ0+F would lead to an improvement of δF as

well. But it is not so easy to get an estimation for δ0+F , which is why we need a third detour

through fractional decomposition. We assign each copy of F in G a weight in a way that

the total weight for any edge sums up to 1. If there is a way of assigning weights, then we

say that the graph G assumes a fractional decomposition of F .

Definition 1.9. The fractional decomposition threshold δ∗F is defined to be the infimum of

all δ such that for any large enough n, any graph G on n vertices with δ(G) ≥ δn has a

fractional decomposition.

Indeed, we do have a few non-trivial bounds on the fractional decomposition thresholds of

certain graphs. In [5], it is shown that δ∗K3
≤ 0.9. And in [16], Montgomery shows that for

r ≥ 4, δ∗Kr
≤ 1− 1/100r.

Now that we have all the recipes, we can go on and show another important result on the

F -decomposition problem, or more precisely, on δF .

Theorem 1.10 (Main theorem in [7]). Let F be a graph and χ = χ(F ) be its chromatic

number. The followings are bounds for the decomposition threshold δF :

(1) δF ≤ max{δ0+F , 1− 1/(χ+ 1)};
(2) if χ ≥ 5, then δF ∈ {δ∗F , 1− 1/χ, 1− 1/(χ+ 1)}.

Similar to theorem (1.5), this theorem also tells us a lot about decomposition thresholds.

Several applications are given below.

Corollary 1.10.1. For r ≥ 3, δKr = δ0+Kr
.

Proof. By a result from [23] which says that δ0+Kr
≥ 1−1/(r+1) and the fact that χ(Kr) = r,

we know δKr ≤ δ0+Kr
by part 1 of Theorem (1.10). By definitions 1.3 and 1.6, we know that

δKr ≥ δ0+Kr
, thus the result follows.

Indeed, another application is that one can use it to determine the exact number of the

decomposition threshold for any bipartite graph F . Since even cycles are bipartite graphs,

then the first part of theorem 1.6 is immediate. This theorem also has some more corollaries
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regarding the chromatic number of F (see [7]), but we shall omit them as chromatic number

is not what we want to study in this essay.

1.2 K3-decomposition problem

Now we shall focus on the problem of K3-decomposition, that is, we take F = K3. As

already mentioned in section 1.1, we would like to study the sufficient conditions for a

graph G to be K3-decomposable. We give the definition of K3-divisible again though it is

just a special case of F -divisibility.

Definition 1.11. A simple graph G is said to be K3-divisible if the number of edges of G

is divisible by 3, and all the vertices of G have even degrees.

The definitions of δK3 , δ
0+ := δ0+K3

, δ∗ := δ∗K3
are just the same as in section 1.1. So a natural

question arises after our introduction of the general picture: what is δK3?

A conjecture by Nash-Williams ([17]) suggests that δK3 = 3/4.

Indeed, this lower bound is tight in the sense that we can construct an explicit example

showing that any threshold smaller than 3/4 is not possible.

Example 1.12. Let V (G) := V1 ∪ V2 ∪ V3 ∪ V4, where |V1| = |V2| = |V3| = |V4| = 6k + 3,

for some integer k. Let the edges of G be the union of the complete graphs on V1, V2, V3, V4

and the complete bipartite graph between V1 ∪ V2 and V3 ∪ V4. Then δ(G) = 18k + 8

which is divisible by 2, and |E| = 4(6k + 3)(9k + 4) which is divisible by 3. Thus, G is

K3-divisible. And furthermore, δ(G)/|V | = (18k + 8)/(24k + 12) < 3/4. Let ABC be a

triangle in G, and without loss of generality, we assume that A ∈ V1. Since there is no edge

between V1 and V2, then we know that B,C 6∈ V2. Using this argument, we know that there

have to be two vertices in the same Vi. Hence, every triangle has at least one edge from

G[V1]∪G[V2]∪G[V3]∪G[V4], so we should have |E(G[V1]∪G[V2]∪G[V3]∪G[V4])| ≥ |E(G)|/3,

which in fact does not hold. Hence, this graph G does not have a triangle decomposition.

In this essay, we shall present two different ways to get some approximate decompositions,

both of which will lead to a result in the K3-decomposition problem. The first way utilizes

the approximate threshold that is defined in section 1.1, while the second way is to require G

to be typical. We shall present the first approach in details from section 2 to 6, and then we

shall briefly discuss the second approach in section 7. Now we can state our main theorem

of this essay which is the main result in [1] by Barber-Glock-Kühn-Lo-Montgomery-Osthus.
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Theorem 1.13 (Main theorem). Let δ := max{3/4, δ0+}. For all ε > 0, there exists

n0 ∈ N such that every K3-divisible graph G on n ≥ n0 vertices with δ(G) ≥ (δ+ ε)n admits

a K3-decomposition.

Corollary 1.13.1. δK3 ≤ max{3/4, δ0+}.

Proof. It follows directly from the main theorem and definition 1.3.

However, one may notice that the definition of δ0+ might seem too strong to be useful. One

may wonder whether δ0+ is too close to 1, if it is, then this theorem would be not very

interesting. In fact, the current best known bound on δ0+ shows that it is smaller than or

equal to 0.9 (see [5]), which already makes the main theorem a nontrivial result.

Indeed, in [5], Dross shows that every graph G with δ(G)/|V (G)| ≥ 0.9 assumes a fractional

triangle decomposition. In other words, [5] shows δ∗ ≤ 0.9. We shall see in [7] how to

use δ∗F for exact decomposition problems. Similar to an approximate decomposition, we

can also transfer a fractional decomposition into an exact one thanks to the theorem by

Haxell and Rödl [9]. The major result in [9] shows that one can always transfer a fractional

decomposition into an approximate decomposition whose leftover edges is of size o(n2).

In [3], it is shown that this leftover can be further transferred into a leftover with small

minimum vertex degree and thus we get the result δ∗ ≤ δ0+. Hence, one corollary of this

result in [5] is δ0+ ≤ 0.9. Furthermore, from corollary 1.13.1 we see that any improvement

on δ0+ would lead to an improvement on δK3 .

It is also worth mentioning that determining whether a graph has a K3-decomposition is

NP-hard ([4]), thus making the above results more important.

1.3 Iterative absorption method

The method used successfully in [1] and [3] is called the iterative absorption method. Al-

though this method is still quite new, the absorption method has already been used for

several decades for some other graph-related problems. In [14], the absorption method was

used to show the existence of a triangle factor in a random graph. And in [6], the absorp-

tion method was used to show vertex coverings by monochromatic cycles, which can be

seen as a graph decomposition problem into some different graphs. In [19], the absorption

method serves an important role when proving the existence of Hamilton cycle in 3-uniform

hypergraphs.
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As the name suggests, the iterative absorption method utilizes the absorption method many

times, iteratively. The first appearance of this new method was in [15], in which the method

was used to show the decomposition of large regular tournaments into Hamilton cycles. It

has been used successfully in some graph decomposition problems as in [1], [3], and [11],

which solves the decomposition problem of Kn into a sequence of bounded degree trees. In

[13], a variation of the iterative absorption method was used to show the existence of a large

collection of edge-disjoint Hamilton cycles in a random graph with certain properties.

Indeed, the proof of Theorem 1.13 is already contained in [3], but in this essay, we shall

introduce the approach as in [1] because it is easier than [3]. Let us note however that [3]

uses the same method to prove something more general (Theorem 1.5).

2 Scheme of the proof

In this section, we shall briefly introduce the idea behind the proof of Theorem 1.13, which

is the major focus of this essay. The proof uses a technique called the iterative absorption

method as a crucial tool. But before we introduce the iterative absorption method, we need

the definition of absorbers, which serves an important purpose in the whole context.

The problem we want to tackle is about K3-decomposition of K3-divisible graphs. One

possible approach might be trying to remove triangles incident to a vertex greedily. However,

because of the possible poor choice of triangles removed, we might end up with no K3-

decomposition. Consider figure 1, which clearly has a K3-decomposition. But if we choose

the triangles 1,2,3 to be in the decomposition, then all of the leftover edges which form a

C12 cannot be decomposed any further. This example tells us that although a K3-divisible

graph G has a K3-decomposition, we still need to use some “clever” way to find it. So the

takeaway of the above example is that we will constantly encounter some leftover subgraphs

of the original graph that cannot be decomposed. And the concept “absorber” which we

shall introduce next gives a possible instruction on how to deal with those leftover edges.

Definition 2.1 (Absorber for L). For a given graph L, an absorber for L is a graph A such

that V (L) ⊂ V (A) is independent in A and both A and A ∪ L have a K3-decomposition.

The letter L above indicates that L is the leftover subgraph. Let us note that the concept

of absorber now gives us a new idea of showing some graph G is K3-decomposable. The

first step is to find a large subgraph G′ ⊂ G which has a K3-decomposition. If G′ = G, then

we are already done. But in general, there are some “leftover” subgraphs L = G−G′. If we

can find an absorber A for L such that both A ∪ L and G′ − A have a K3-decomposition,
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Figure 1: Example

then G = (A ∪ L) ∪ (G′ −A) has a K3-decomposition. Then in such a case, the problem is

solved.

Let us keep in mind that the above procedure may be difficult, as we do not know how

to show G′ − A has a K3-decomposition. So a more promising approach should be in the

“reversed” direction.

At first, we somehow force our possible leftover subgraph L to be small, and then we find

an absorber A for L. Then let G′ = G − A for we want to show that G′ − L has a K3-

decomposition. We shall see that in section 6 (the complete proof), roughly speaking, we

let L to be the set of all possible leftovers which is in a small subset of V (G), and A is the

absorber for all such possible leftovers. And in order to show G′−L has a K3-decomposition,

we need to use the iterative absorption method.

The idea behind iterative absorption method is not very difficult, as we are just applying

the absorption method iteratively. The main theorem is talking about graph G with a very

large number of vertices. As discussed regarding the possible leftovers, we want to control

the size of them. In other words, we want to restrict the leftover edges to a small subset,

considering that constant size would be ideal.

This is why we should introduce a structure called vortex. A vortex is a nested subset

of V (G) : U0 = V (G) ⊃ U1 ⊃ ... ⊃ U`, where |U`| is a constant. These nested subsets

also satisfy some additional properties. Once we have this structure, we absorb iteratively

as follows: In step 1, the leftover is the whole graph (in U0), then we use some edges in

G[U1]−G[U2] to “absorb” all leftover edges in G[U0]−G[U1]. In step i, we use some edges

in G[Ui] − G[Ui+1] to “absorb” all leftover edges in G[Ui−1] − G[Ui]. So after step i, the

leftover edges would be in G[Ui]. We do this iteratively until all possible leftovers are in
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G[U`]. Then we shall have rather good control of the leftover so that the size would be

constant.

And now the only difficult part is how to “absorb” in the above procedure. This is different

from “absorber” of a leftover subgraph which requires an important lemma: the cover down

lemma. If U ⊂ V (G) is a relatively small subset, then the cover down lemma tells us the

following: If certain conditions are satisfied, then there is a subgraph H of G with H ⊃
G−G[U ] that is K3-decomposable, that is, we can find an approximate K3-decomposition

and the only possible leftovers are in G[U ], which is smaller than G. In other words, we use

some edges in G[U ] to absorb everything in G−G[U ], and that is exactly what we want for

the preceding iterative absorption.

Interestingly, later when we prove the cover down lemma in section 5, we may notice that

the idea behind the proof of the cover down lemma and the main theorem has something

in common. In both cases, we wish to get an approximate decomposition first, then absorb

the leftover edges. We already stated that this approach may not work in the main theorem

case, as we want to get a precise K3-decomposition of the whole graph. However, in the

cover down lemma case, we do allow certain leftover edges to be left inside G[U ] so that

this natural approach works more easily.

The above discussion is just a rough structure of the proof. As one can see, there are three

parts that we need to work with before giving the final proof: absorber, vortex and cover

down lemma. And we shall devote the following three sections to these aspects. And then

proceed with the proof of Theorem 1.13 in section 6.

3 Absorber

In this section, we study in details what an absorber is and some properties regarding it.

Then at the end of the section, we shall prove a lemma which serves an important role in

the final proof of the main theorem (section 6). To begin with, let us recall the definition

of an absorber.

Definition 3.1 (Absorber for L). For a given graph L, an absorber for L is a graph A such

that V (L) ⊂ V (A) is independent in A and both A and A ∪ L have a K3-decomposition.

Remark 3.2. Note that since V (L) ⊂ V (A) is independent in A, then we know that A and

L are edge-disjoint. Furthermore, both A and A ∪ L have a K3-decomposition implies that

both are K3-divisible. As a result, we know that L is K3-divisible.
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Example 3.3. Let L be a triangle, we give an example of an absorber for L as illustrated

in the picture.

Figure 2: Example

The example above is not a coincidence. In fact, it is a special case of something general

which we will introduce next. In brief, one can generalize the above construction to try

to find an absorber for any given K3-divisible graph. From remark 3.2, we know that if L

admits an absorber, then it has to be K3-divisible. In fact, the absorber lemma will tell us

that the converse is also true, that is, for every K3-divisible graph L, there is an absorber.

But in order to prove this lemma, we need some more preparations.

Definition 3.4 (Transformer). Given vertex-disjoint graphs L,L′, an (L,L′)-transformer

is a graph T such that V (L ∪ L′) ⊂ V (T ) is independent in T and both T ∪ L and T ∪ L′

have a K3-decomposition.

Corollary 3.4.1. If T is an (L,L′)-transformer, and L′ is K3-decomposable, then A :=

T ∪ L′ is an absorber for L.

Proof. By definition, we know that V (L) ⊂ V (A) is independent. The fact that A has

a K3-decomposition follows from T is a transformer. Note that A ∪ L = (T ∪ L′) ∪ L =

(T ∪ L) ∪ L′. (T ∪ L) is K3-decomposable as T is a transformer. L′ is K3-decomposable

by assumption. Also, we know that L′ and T ∪L are edge-disjoint, then their union is also

K3-decomposable.

From the name of transformers and also the context of corollary 3.4.1, we know that the

usage of a transformer would be to transform one leftover L to another L′. Since we can

define L′ ourselves, this will give us more flexibility to construct the absorber. As a result,

transformers would be used as a tool to show the existence of an absorber.
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Definition 3.5. Given graphs G,G′, a function φ : V (G) → V (G′) is said to be an edge-

bijective homomorphism from G to G′ if φ(x)φ(y) ∈ E(G′) whenever xy ∈ E(G), and

|E(G)| = |E(G′)| = |{φ(x)φ(y) : xy ∈ E(G)}|. If such a function exists, then we write

G G′.

Definition 3.6. For m ∈ N, define Lm to be the (canonical) graph with

V (Lm) = {v∗, v1, ..., v3m}, E(Lm) =
⋃
i∈[m]

{v∗v3i−2, v3i−2v3i−1, v3i−1v3i, v3iv∗}.

Definition 3.7. For any graph L, define ∇̃L to be the graph with

V (∇̃L) = V (L) ∪ {ve : e ∈ E(L)}, E(∇̃L) = E(L) ∪ {xve, yve : e = xy ∈ E(L)}.

Define ∇L := ∇̃L− L, and ∇∇L = ∇(∇L).

Remark 3.8. It is very obvious that ∇̃L = ∇L∪L = {(e = xy, xve, yve) : e ∈ E(L)} has a

K3-decomposition. And now we see that in example 3.3, our choice of absorber is nothing

but ∇̃(∇L).

Remark 3.9. For every graph L with m edges, we have ∇∇L Lm.

Proof. Define φ : ∇∇L → L by φ(v) = v∗ for all v ∈ V (L). And there are 3m vertices

left in each graph, map them bijectively in the natural way. And this φ is an edge-bijective

homomorphism.

Now we have enough recipe to prove the lemma, but note that from our above definition

of the canonical graph Lm and ∇L, one can imagine that our proof will be constructive,

that is, we will give an explicit construction of an absorber of a K3-divisible graph L using

some transformer in the middle step. Note that through this construction, some additional

structure comes almost for free, namely the degeneracy of the graph. And this property will

turn out to be useful in the final proof. So next, we will give the definition of degeneracy

first, and then proceed to present and prove the lemma.

Definition 3.10 (Degeneracy). For a graph G and a subset U ⊂ V (G), the degeneracy of

G rooted at U is the smallest d ∈ N such that there exists an ordering v1, ...v|V (G)|−|U | of

the vertices of V (G)− U such that for all i ∈ [|V (G)| − |U |],

dG(vi, U ∪ {vj : 1 ≤ j < i}) ≤ d.

We need one more lemma in order to prove the final absorber lemma.
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Lemma 3.11 (Absorber lemma). For any K3-divisible graph L, there exists an absorber A

for L such that the degeneracy of A rooted at V (L) is at most 4.

We need one more lemma in order to prove the final absorber lemma.

Lemma 3.12. Let L,L′ be vertex-disjoint graphs such that L  L′ and 2|dL(x) for all

x ∈ V (L). There exists an (L,L′)-transformer T such that the degeneracy of T rooted at

V (L ∪ L′) is at most 4.

Proof. Let φ : L→ L′ be an edge-bijective homomorphism.

Since 2|dL(x) for all x ∈ V (L), then we can decompose L into cycles C, then {φ(C)}C∈C is

a decomposition of L′. Then I claim that as long as we prove the case where L is a cycle,

we are done. That is, assume that there is a (C, φ(C))-transformer TC for every C ∈ C such

that the degeneracy of TC rooted at V (C∪φ(C)) is at most 4. Clearly, we may assume that

for all C, V (TC) ∩ V (L ∪ L′) = V (C ∪ φ(C)). And we can always choose distinct vertices

for distinct transformers, that is, we may also assume that V (TC) ∩ V (TC′) ⊂ V (L ∪ L′)
for every C 6= C ′ ∈ C. We order the vertices of T :=

⋃
C∈C TC so that for every C, if we

only look at the sequence of vertices of TC in T , it has degeneracy at most 4. For any

v ∈ V (T ) − V (L ∪ L′), there is C ∈ C such that v ∈ V (TC). For any C ′ that has some

vertex with a smaller index, we have V (TC) ∩ V (T ′C) ∩ V (L ∪ L′) ⊂ V (C ∪ φ(C)). Hence,

the degeneracy of T rooted at V (L ∪ L′) is also at most 4.

What remains to show is the case when L is a cycle x1x2...xs. In this case, we construct a

transformer T explicitly as follows.

V (T ) = V (L ∪ L′) ∪ {ui, vi, wi : i ∈ [s]},

where {ui, vi, wi : i ∈ [s]} is a set of 3s vertices that are disjoint from V (L∪L′). Define the

set of edges as follows:

E := {xiui, xivi, xiwi, xiui+1 : i ∈ [s]}

E′ := {φ(xi)ui, φ(xi)vi, φ(xi)wi, φ(xi)ui+1 : i ∈ [s]}

Ẽ := {uivi, wiui+1 : i ∈ [s]}

E∗ := {viwi : i ∈ [s]},

where the indices are modulo s. Let E(T ) := E ∪ E′ ∪ Ẽ ∪ E∗. Then T is the desired

transformer.

By construction, we know that the vertices V (L ∪ L′) are independent in T . Moreover,

E′ ∪ Ẽ = {φ(xi)uivi : i ∈ [s]} ∪ {φ(xi)wiui+1 : i ∈ [s]}, E(L) ∪ E ∪ E∗ = {xiuiui+1 : i ∈
[s]} ∪ {xiviwi : i ∈ [s]} are K3-decomposable, so T ∪ L has a K3-decomposition. Similarly,
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E ∪ Ẽ = {xiuivi} ∪ {xiwiui+1}, and E(L′) ∪ E′ ∪ E∗ = {φ(xi)uiui+1} ∪ {φ(xi)viwi} are

K3-decomposable, so T ∪ L′ admits a K3-decomposition as well. We order the vertices so

that V (L ∪ L′) come before {ui} before {vi, wi}. Then the number of neighbors of ui with

a smaller index is at most 4, namely xi, xi−1, φ(xi), φ(xi−1). The number of neighbors of vi

with a smaller index is at most 4, namely xi, φ(xi), ui, wi and that of wi is xi, φ(xi), ui+1, vi.

Hence, the degeneracy of T rooted at V (L∪L′) is at most 4. And this finishes the proof of

lemma 3.12.

Proof of the absorber lemma. Let m := |E(L)|. Then 3|m as L is K3-divisible. Let L′

be the vertex-disjoint union of m/3 triangles. Let Lm be the canonical graph defined in

definition 3.6. Let ∇L,∇∇L,∇L′,∇∇L′ be defined as in definition 3.7 and assume that

∇∇L,∇∇L′, Lm are vertex-disjoint.

By remark 3.9, we know that ∇∇L Lm and ∇∇L′  Lm, by lemma 3.12, we know there

exists an (∇∇L,Lm)-transformer T such that the degeneracy of T rooted at V (∇∇L∪Lm)

is at most 4. Similarly, there exists an (∇∇L′, Lm)-transformer T ′ such that the degeneracy

of T ′ rooted at V (∇∇L′ ∪Lm) is at most 4. Furthermore, we may assume that we use new

vertices for T and T ′ whenever it is possible to do so, that is, we assume that V (T )∩V (T )′ =

V (Lm), V (T ) ∩ V (∇∇L′) = ∅, V (T ′) ∩ V (∇∇L) = ∅.
Define

A := ∇L ∪∇∇L ∪ T ∪ Lm ∪ T ′ ∪∇∇L′ ∪∇L′ ∪ L′.

Then this graph A is the absorber for L. It is obvious that V (L) is independent in A.

A = (∇L∪∇∇L)∪ (T ∪Lm)∪ (T ′ ∪∇∇L′)∪ (∇L′ ∪L′). By remark 3.8 and the definition

of transformer, using the fact that each graph in the parentheses are edge-disjoint, we know

that A is K3-decomposable. Moreover, A ∪ L = (L ∪ ∇L) ∪ (∇∇L ∪ T ) ∪ (Lm ∪ T ′) ∪
(∇∇L′ ∪ ∇L′) ∪ L′ is also K3-decomposable. So we’ve shown that A is an absorber for L.

We order the vertices of A such that the degeneracy of T rooted at V (∇∇L′ ∪ Lm) is at

most 4 and the degeneracy of T ′ rooted at V (∇∇L ∪ Lm) is at most 4. This can be done

because we assume that V (T )∩V (∇∇L′) = ∅, V (T ′)∩V (∇∇L) = ∅. Then we can see that

the degeneracy of A rooted at V (L) is at most 4.

Remark 3.13. Notice that by examining the construction, we also know that |V (A(L))| =
O(|V (L) + E(L)|), because each ∇L,∇∇L,L′, T, Lm, T ′,∇L′,∇∇L′ has linear size.

We end this section by trying to give an explanation of why the degeneracy condition will

be useful. As stated in section 2, in our final proof of the main theorem, our L would be

a small leftover subgraph inside some small subset U`, and we wish to find an absorber for

it at the very beginning. The absorber lemma ensures that there is an absorber A for L,
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but the proof given above is very constructive, which means that it may not be easy for

us to find this absorber A in a general graph G. Hence, instead of finding A in G directly,

we can try to embed it into the graph G, which is an easier task thanks to the degeneracy

condition. Assume v1, ..., vs is an enumeration of the vertices in V (A)− V (L) with respect

to which the degeneracy is at most 4. We will embed the vertices of A into G according

to this order. Assume v1, ..., vi are embedded and now we want to embed vi+1. Since the

degeneracy is at most 4, then as long as any four vertices in {v1, ..., vi} ∪ V (L) still have an

available common neighbor u, we can define u to be the image of vi+1 under this embedding.

And the existence of common neighbors of four vertices is not so difficult to show as our

graph G is a very dense graph. For the more detailed explanation, see section 6 where we

prove the main theorem.

4 Vortex

We mentioned the idea of a vortex in section 2 very briefly. In this section, we will state

the definition of a vortex and then prove a lemma about the existence of vortex, which will

be used for the iterative step in the final proof.

Definition 4.1 (Vortex). Let G be a graph on n vertices. A (δ, ε,m)-vortex in G is a

sequence U0 ⊃ U1 ⊃ ... ⊃ U` with the following properties:

(V1) U0 = V (G);

(V2) |Ui| = bε|Ui−1|c for all i ∈ [`];

(V3) |U`| = m;

(V4) dG(x, Ui) ≥ δ|Ui| for all i ∈ [`] and x ∈ Ui−1.

Let us try to understand why we define vortex as above. As discussed in the early section,

the vortex would be the main structure for us to iteratively absorb the “leftover” edges.

And in order to control the size of the final possible leftovers, we need |U`| = m to have a

constant size. And since we do want to absorb everything of G, so we also need U0 = V (G).

Now if we look back at the discussion on how to absorb in one particular step, (that is,

the cover down lemma), we wish to cover the leftover edges in G[Ui]−G[Ui+1] using some

edges from G[Ui+1]−G[Ui+2], so that the remaining leftovers have smaller size (in G[Ui+1]

instead of G[Ui]). Hence, we wish to exponentially decrease the size of possible leftovers,

which means that Ui’s are supposed to be decreasing exponentially as well. Thus, we require

|Ui| = bε|Ui−1|c for all i ∈ [`] .

Notice that if we wish to achieve the above goal of absorbing, the first three conditions are
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not sufficient. In other words, there has to be some additional structure on the Ui’s such

that we could absorb the leftover edges. The main theorem we wish to prove (Theorem

1.13) requires that the minimum degree of the graph to be large. So naturally, we wish

each of our sets Ui in the vortex to inherit similar properties. On the other hand, if we

wish to use edges from G[Ui+1]−G[Ui+2] to absorb almost everything from G[Ui]−G[Ui+1],

analogous to the statement of the main theorem, we wish the vertices in Ui to have large

degree in Ui+1 and that is why we need V 4 in the definition.

Remark 4.2. If we wish to prove some other theorems other than theorem 1.13, we may

change condition (V4) to other conditions which fits with the statement of the theorem. For

example, in the second part of this essay where we wish to prove theorem, where G is a

(ξ, 4, p)-typical graph, instead of the large degree condition we will need the vortex to possess

a similar property as the (ξ, 4, p)-typical property instead of the degree property.

Let us go back and stick with this definition of a vortex for a while and show the vortex

existing lemma now:

Lemma 4.3 (Vortex existing lemma). Let δ ∈ [0, 1] and 1/m′ � ε < 1. Suppose that G is

a graph on n > m′ vertices with δ(G) ≥ δn. Then G has a (δ − ε, ε,m)-vortex for some m

with bεm′c ≤ m ≤ m′.

Remark 4.4. Observe that if we choose a random subset Ui+1 of Ui of size bε|Ui|c, then the

expected value of dG(v, Ui+1) is δ′|Ui+1|/|Ui|, where v ∈ Ui and δ′ = dG(v, Ui). This inspires

us to use the probabilistic method and merely choose a random subset Ui+1 ⊂ Ui. Then we

can use Chernoff inequality to show that such a random subset with certain properties exists

with positive possibility. And this is also why we have δ− ε instead of δ in the vortex degree

condition, because each time we use Chernoff inequality, we need to have a little variation

off the expected value, which in this case is ε.

Proof. We will prove this by induction. In fact, we will induct on some statement which is

a bit stronger than the lemma, but turns out to be easier for the induction to carry on.

Some setups: define n0 := n, ni := bεni−1c. Then we have εin ≥ ni ≥ εin − 1/(1 − ε). Let

l := 1 + max{i ≥ 0 : ni ≥ m′} and let m := nl. Then we have bεm′c ≤ m ≤ m′. For i ∈ [`],

let

εi := n−1/3
i∑

j=1

ε−(j−1)/3 = εn−1/3
ε−i/3 − 1

ε(ε−1/3 − 1)
.

For any i, ε−i/3−1
(ε−1/3−1)ε is an expression only depending on ε, since 1/n� ε, we know that we

can choose n so that n−1/3 ε−i/3−1
ε(ε−1/3−1) ≤ 1, hence εi ≤ ε.
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Now suppose that for some i ∈ [`], we have already found a (δ − εi−1, ε, ni−1)-vortex

U0, ..., Ui−1 in G. Now we wish to find Ui and carry on the induction. Let Ui ⊂ Ui−1 be a

random subset of size ni. For any x ∈ Ui−1, let X be the random variable for the number of

neighbors of x in Ui. Then X :=
∑

u∈NUi−1
(x)Xu, where Xu is the indicator random vari-

able of the event u ∈ Ui. By the inductive hypothesis, we have |NUi−1(x)| ≥ (δ− εi−1)ni−1,
and P[Xu = 1] = ni

ni−1
, thus, EX ≥ (δ − εi−1)ni. By the Chernoff bound, we have, for some

constant c,

P[X ≤ (δ − εi)ni] ≤ P[EX −X ≥ ni · ε−(i−1)/3] ≤ ce−(ε
−2/3(i−1)ni)/(δ−εi−1).

Thus, by union bound and the fact that 1/n � ε, we have P[dG(x, Ui) ≥ (δ − εi)ni] ≤
ni−1ce

−(ε−2/3(i−1)ni)/(δ−εi−1) ≤ 1 for all x ∈ Ui−1, thus, with positive probability, our random

choice of Ui works. So we obtain a (δ− εi, ε, ni)-vortex in G. By induction, we finally get a

(δ − εl, ε,m)-vortex U0, ..., U` in G. Since εi ≤ ε, the lemma follows.

5 Cover down lemma

Now we introduce the cover down lemma, which is the final missing piece for our proof.

Lemma 5.1 (Cover down lemma). Suppose 1/n � ε and let δ := max{2/3, δ0+}. Let G

be a graph on n vertices and U ⊂ V (G) with |U | = bεnc. Suppose that δ(G) ≥ (δ + 3ε)n

and dG(x, U) ≥ (δ + 2ε)|U | for all x ∈ V (G), and assume that dG(x) is even for all x ∈
V (G)−U . Then there exists a K3-decomposable subgraph H of G such that G−G[U ] ⊂ H
and ∆(H[U ]) ≤ ε10n.

The proof of the cover down lemma is a bit complicated. But before proving it, let us

discuss the statement of this lemma. Although there is some imprecision, we want to apply

this lemma to (G[Ui], Ui+1) in the role of (G,U), where Ui’s are in the vortex of G. And one

can see that the subsets in the vortex actually satisfy a similar condition about the degree

as the cover down lemma.

The existence of H is as expected when we discussed the usage of this lemma back in section

2. Just as discussed, H serves the role as “absorber” of G −G[U ]. But if we only need to

absorb once, we do not need the property of H where ∆(H[U ]) ≤ ε10n. We require our

“absorber” H to have this property, that is, we wish H to use not too many edges inside

G[U ] because we need to iteratively apply the cover down lemma to the subsets of the

vortex. And this condition on H makes it possible that if the leftover edges in G[Ui+1] still

have the large minimum degree property, then we can continue to apply this cover down

lemma until all the possible leftover edges are in U`.
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Next, we present the rough idea about the proof of the cover down lemma. As discussed

before, the general procedure to such problems is always to try to find an approximate

K3-decomposition first (of G−G[U ]), and we are left with some leftover subgraph L. Then

we try to absorb L using only a few edges from G[U ].

This time, the approximate K3-decomposition will be guaranteed by the definition of δ0+.

So let us look at L more closely. Notice that L ⊂ G−G[U ] so L = L[W ] ∪ L[W,U ], where

W = V (G) − U . Hence we can try to absorb L[W ] and L[W,U ] separately. For an edge

e ∈ L[W ], e = xy, where x, y ∈ W . The degree condition will make sure that there exists

some u ∈ U such that u ∈ NG(x) ∩NG(y). Hence {ux, uy} will absorb the edge e. Now as

long as we can find exclusive ue for all e ∈ L[W ], we get an absorber for L[W ]. For edges

of the form u1x, u2x, ..., ukx, where x ∈W,ui ∈ U , since dG(x) is even and we remove even

number of edges when removing triangles incident to x, then we know k is even. Thus, it

would be ideal if there was a perfect matching Mx between {u1, ..., uk}. This way, we can

say for sure that Mx is an absorber for {u1x, ..., ukx} and we know that Mx does not use

too many edges from G[U ]. Hence, in order to absorb L[W,U ], we need to find edge-disjoint

perfect matchings Mx for all possible x.

But notice that the above ideal conditions are not very easy to achieve, that is why in the

real proof, we need to set aside a sparse graph R and some sets U1, ..., UN before doing the

approximate decomposition, just to give some additional structure so that the discussion

above is easier to be satisfied. We will see the power of R later in the real proof. But before

the proof, we still need to give a lemma regarding the property of the perfect matching Mx

that would be useful in the proof.

Lemma 5.2. Let 1/n � ρ and N ∈ N. Let H be a graph on n vertices and suppose there

are sets U1, ..., UN ⊂ V (H) with the following properties:

(a), 2||Ui| and δ(H[Ui]) ≥ (1/2 + 4ρ1/6)|Ui| for all i ∈ [N ];

(b), |Ui| ≥ ρ4/3n for all i ∈ [N ];

(c), |Ui ∩ Uj | ≤ ρ2n for all i 6= j;

(d), every vertex u ∈ V (H) is contained in at most ρn of the sets Ui.

Then for every i ∈ [N ], there exists a perfect matching Mi of H[Ui], such that all the

matchings {Mi}i∈[N ] are pairwise edge-disjoint.

Remark 5.3. Dirac’s theorem on Hamilton cycles says that if H is a graph with n vertices

and δ(H) ≥ n/2, then there is a Hamilton cycle in H. Therefore, by (a), we know that

there exist perfect matchings Mi in Ui for all i ∈ [N ]. But as discussed above, what we want

is edge disjoint union of perfect matchings, and that is why we need three more conditions.

Remark 5.4. We will use randomized algorithm in the proof to show the existence of such

matchings.
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Proof. Set t := d2ρ3/2ne and define Hi := H[Ui] for all i ∈ [N ].

We use a randomized algorithm inductively. Suppose M1, ...Mi−1 are found such that they

are perfect matchings and they are edge-disjoint, now we find Mi. First, define Li−1 :=⋃i−1
j=1Mj . Let H ′i := (H − Li−1)[Ui].

If we have

∆(Li−1[Ui]) ≤ ρ3/2n, (2)

then δ(H ′i) ≥ |Ui|/2 + t, so there are t edge-disjoint prefect matchings A1, ..., At of G′i by

applying remark 5.3 successively. If condition (1) does not hold, then we set A1, ..., At to be

the empty graph. In either case, we choose s ∈ [t] uniformly at random and set Mi = As.

Then the lemma holds if (1) holds for all i ∈ [N ].

For u ∈ Ui, define Y i,u
j be the indicator variable of the event that there exists some u′ ∈ Ui

with uu′ ∈ E(Mj). Since Mj is a perfect matching, then for fixed j, there could be at most

one u′ ∈ Ui with uu′ ∈ E(Mj). Hence, we get

dLi−1[Ui](u) =
∑

j∈[i−1]

Y i,u
j .

But by property (d), there can be at most ρn indices j ∈ [i− 1] such that Y i,u
j could be 1

as there are at most such number of j with u ∈ Uj . For an index j ∈ [i − 1] with u ∈ Uj ,
by the inductive procedure above, we know that we have t edge-disjoint choices of perfect

matchings, but there are at most ρ2n number of u′ for us to choose, thus

P[Y i,u
j |u ∈ Uj ] ≤

ρ2n

t
≤ ρ1/2

2
.

Hence, we know that E(
∑

j∈[i−1] Y
i,u
j ) ≤ ρn · ρ

1/2

2 = ρ3/2n/2. By a variation of Chernoff

inequality, we get that

P[
∑

j∈[i−1]

Y i,u
j > ρ3/2n] ≤ 2e−ρ

2n/2.

Furthermore, using (d) again, we know that there are at most ρn such i with u ∈ Ui, and

at most n such u, thus, by a union bound, P[(1) does not hold] ≤ 2e−ρ
2n/2ρn2 � 1. Hence,

there is positive probability such that (1) holds, so the induction procedure works and thus

lemma holds.

Remark 5.5. In the proof of the cover down lemma, we will apply lemma 5.2 where G[U ]

serves the role as H in lemma 5.2.

Now we will prove the cover down lemma. But in order to make the proof more accessible,

we will make a few more preparations.

From now on, the settings will be the same as the cover down lemma, and furthermore, set

W := V (G)− U and N := |W |, order the vertices in W by w1, ..., wN .
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Lemma 5.6. There exist sets U1, ..., UN with the following properties:

(a) Ui ⊂ NG(wi) ∩ U for all i ∈ [N ];

(b) (1− ρ)ρ|NG(wi) ∩ U | ≤ |Ui| ≤ (1 + ρ)ρ|NG(wi) ∩ U | for all i ∈ [N ];

(c) ρ2|U |/4 ≤ |Ui ∩ Uj | ≤ 2ρ2|U | for all 1 ≤ i < j ≤ N ;

(d) |NG(u) ∩ Ui| ≥ (1− ρ)ρ(1/2 + 3ε)|NG(wi) ∩ U | for all U ∈ U, i ∈ [N ];

(e) each u ∈ U is contained in at most 2ρn of the Ui’s.

Proof. We use a probabilistic argument. In fact, for any u ∈ NG(wi) ∩ U , include u in Ui

with probability ρ independently of all other choices. Then (a) is clearly satisfied. Next we

will show that with positive probability, the other four conditions can also be satisfied.

For (b), let X = |Ui| be a random variable. Then X =
∑

u∈NG(wi)∩U Xu, where Xu is

the indicator random variable which takes the value 1 if u ∈ Ui and 0 otherwise. Then

EX = ρ|NG(wi) ∩ U |. Since X is the sum of Bernoulli random variables, by the Chernoff

bound, we have

P[|X − EX| ≥ ρ2|NG(wi) ∩ U |] ≤ 2e−2ρ
4|NG(wi)∩U |.

By union bound, we know that the probability that (b) does not hold is at most

2Ne−2ρ
4|NG(wi)∩U | ≤ 2ne−2ρ

4(2/3εn) � 1,

since 1/n� ρ� ε.

For (c), similar to (b), let X := |Ui ∩ Uj | =
∑

u∈NG(wi)∩NG(wj)∩U Xu, where Xu = 1 if

u ∈ Ui ∩ Uj . Hence, EX = ρ2|NG(wi) ∩ NG(wj) ∩ U |. Since dG(x, U) ≥ 2/3|U | for all

x ∈ V (G), then we have |U | ≥ |NG(wi) ∩ NG(wj) ∩ U | ≥ 2/3|U | + 2/3|U | − |U | ≥ 1/3|U |.
Therefore, ρ2|U |/3 ≤ EX ≤ ρ2|U |. Hence, by the Chernoff bound again, the probability

that (c) does not hold is at most

cn2e−ερ
4n � 1,

where c is a constant and the inequality holds again by 1/n� ρ� ε.

For (d). For any x, y ∈ V (G), let X := NG(x) ∩ U and Y := NG(y) ∩ U . Then |X| − |Y | ≤
|U | − |Y |. Since |Y | ≥ (2/3 + 2ε)|U |, then we know that

|X ∩ Y | = |X| − |X − Y | ≥ (2/3 + 2ε)|U | − |U |+ |Y | ≥ (1/2 + 3ε)|Y |,

where the last inequality holds because ε is small, in particular, we can choose ε ≤ 1/6.

Take x = u, y = wi, and by the Chernoff bound, one can see that the probability that (d)

holds is less than 1 (using the fact that E[NG(U) ∩ Ui] ≥ ρ(1/2 + 3ε)|NG(wi) ∩ U |).
For (e), let X =

∑N
i=1Xi be the number of Ui that u ∈ U is contained in, where Xi = 1 if

u ∈ Ui. Since |U | ≥ |NG(wi) ∩ U | ≥ 2|U |/3, then we know that 2/3ρn ≤ EX ≤ ρ. Hence,

by Chernoff bound, the probability that (e) does not hold is at most cεne−ρ
2n � 1, where

c is a constant and the inequality holds by 1/n� ρ� ε.
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The usage of these sets is still not very clear at this stage. Although one can already see

that the conditions that these Ui’s satisfy look really similar to those conditions in lemma

5.2. This is not a coincidence, in fact, we will make slight changes to make Ui into U ′i later

in the proof and those U ′i will serve the role as in lemma 5.2.

We point out one more observation before the proof so that it is not so tedious: for any

u ∈ U, i ∈ [N ],

dG(u, Ui) = |NG(u)∩Ui| ≥ (1−ρ)ρ(1/2+3ε)|NG(wi)∩U | ≥
1− ρ
1 + ρ

(1/2+3ε)|U | ≥ (1/2+2ε)|U |,

(3)

by (d), (b), and ρ� ε.

Proof of the cover down lemma. As mentioned before, we set aside a sparse graph R at

first. Let R = {uwi : u ∈ Ui, wi ∈ W} be a subgraph of G[U,W ]. Then by lemma 5.6 (e),

we know that ∆(R) ≤ 2ρn.

Set G′ := G−G[U ]−R, then

δ(G′) ≥ δ(G)− |U | −∆(R) ≥ (δ + 3ε− ε− 2ρ)n ≥ (δ0+ + ε)n.

Hence, by the definition of δ0+, there exists a subgraph L of G′ such that ∆(L) ≤ γn and

G′ − L is K3-decomposable.

As the name suggests, L is the leftover subgraph and we need to absorb it. Notice that

L = L[W ] ∪ L[U,W ] so we absorb each part separately using edges from R.

First, we absorb L[W ]. For every edge e = wiwj ∈ L[W ], we would like to choose ue ∈ Ui∩Uj ,
and we would like to have ue 6= ue′ when e∩ e′ 6= ∅. But this can be done greedily. Since by

lemma 5.6 (c), there are at least ρ2|U |/4 choices of ue, but there are at most 2∆(L) ≤ 2γn

such e′ with e′ ∩ e 6= ∅. Since we can choose γ so that γ � ρ, then 2∆(L) ≤ ρ2|U |/4,
so the greedy algorithm works. Let A = {uwiwjwi, uwiwjwj} contains all such edges for

wiwj ∈ L[W ], then it is a subgraph of R such that A ∪ L[W ] has a K3-decomposition.

Now, we absorb L[U,W ] using the rest of edges from R and possibly some edges (ideally

not too many) from G[U ] if necessary. Let R′ = L[U,W ] ∪ (R − A), then the goal is to

absorb R′ using a few edges from G[U ]. We will use lemma 5.2 now.

Define

U ′i := NR′(wi) = (Ui −NA(wi) ∪NL[U,W ](wi).

Now we wish to show that U ′i satisfy the conditions in lemma 5.2.

Define H := G[U ], n′ := |U |, and ρ′ := 4ρ/ε. Since dG(wi) is even and we only remove

edge-disjoint triangles to get G[U ] ∪ R′, then we know that |U ′i | is even. By inequality (2)
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that appears in the remark before the proof of the cover down lemma, we know dG(u, Ui) ≥
(1/2 + 2ε)|Ui|. Since dA(wi) ≤ ∆(A) ≤ γn, then δ(H[U ′i ]) = δ(G[U ′i ]) ≥ dG(u, Ui)−∆(A) ≥
(1/2+ε′)|U ′i |. And this proves condition (a) in lemma 5.2. |U ′i | ≥ |Ui|−|A| ≥ (1−ρ)ρ(2/3+

2ε)|U | − γ|U | ≥ ρ|U |/2 ≥ ρ′n′, then condition (b) is shown. Since dL[U,W ](wi) ≤ γn,

then |U ′i ∩ U ′j | ≤ |Ui ∩ Uj | + |NL[U,W ](wi)| + |NL[U,W ](wj)| ≤ 2ρ2n′ + 2γn ≤ ρ′2n′, which

leads to condition (c). Similarly, each u ∈ U is contained in at most 2ρn of the Ui’s and

dL[U,W ](wi) ≤ γn, then each u is contained in at most 3ρn of the Ui’s, which is smaller than

or equal to ρ′n′, thus (d) is shown.

Hence, we can apply lemma 5.2 and get a perfect matching Mi for each i ∈ [N ] such that

they are edge-disjoint. Then
⋃
i∈[N ]Mi ∪R′ is K3-decomposable. Thus, H := (G−G[U ])∪⋃

i∈[N ]Mi is K − 3-decomposable and ∆(H[U ]) = ∆(
⋃
i∈[N ]Mi) ≤ ε10n.

As we can see from the last inequality of the proof, ∆(H[U ]) ≤ ε2n might be a better bound.

However, in the final proof (section 6), we actually prove the theorem 1.13 with 8ε instead

of ε, and dealing with ε10n would make the final proof easier because of that reason. In

fact, when proving lemmas of similar nature, the constants are usually not so important.

6 Proof of the main theorem

Finally, we have enough preparation to prove the main theorem (theorem 1.13).

Recall section 2 on the outline of the proof. We will apply the vortex existing lemma to G

to get a platform to apply the cover down lemma iteratively. For convenience, we prove the

theorem with 8ε instead of ε, that is, we assume G to be a graph on n ≥ n0 vertices with

δ(G) ≥ (δ+ 8ε)n. Then by lemma 4.3, there exists a (δ+ 7ε, ε,m)-vortex U0, ..., U` in G for

some bεm′c ≤ m ≤ m′.

The idea of the proof is to use edges of G[Ui+1] to absorb the leftover edges from G[Ui] −
G[Ui+1], so that we are eventually left with only possible leftover edges inside U`. So it is

better for us to deal with the “final” leftovers first.

Let L be the collection of all spanning K3-divisible subgraphs of G[U`]. Then since |U`| = m,

we know |L| ≤ 2(m2 ). The goal is to find absorbers AL for each L ∈ L such that they are edge-

disjoint. Apply the absorber lemma (lemma 3.11), we know that there exists an absorber

BL for L as |L| ≤ m′ such that |BL| ≤ M and the degeneracy of BL rooted at V (L) is

at most 4. Since BL is not subgraph of G in general, we need to use them to find those

AL which are subgraphs of G. We show that this is possible by induction. Suppose some

absorbers (AL′ ’s) are already found as subgraphs of G − G[U1], we would like to find AL.
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Consider the graph K obtained from G − G[U1] by deleting those edges of the previously

chosen absorbers. Then δ(K) ≥ δ(G)− |U1| −M2(m2 ) ≥ (3/4 + ε)n. Thus, any four vertices

in K would have at least 4 · (3/4 + ε)n − (4 − 1)n = 4εn ≥ M common neighbors. Since

on the other hand there is an ordering of the vertices in V (BL) − V (L) such that every

vertex is connected to at most 4 preceding vertices in BL. And |V (BL) − V (L)| thus we

can embed the vertices of V (BL)− V (L) according to this order into K to obtain AL. Let

A :=
⋃
L∈LAL, then A has the property:

For any K3-divisible subgraph L∗ of G[U`], A ∪ L∗ has a K3-decomposition. (4)

Now it is obvious what to do next. Let G′ := G−A. Since ∆(A) ≤M |L| ≤ ε2n, and A[U1]

is empty, then for any x ∈ U0, dG′(x, U1) ≥ dG(x, U1)− ε2n ≥ (δ+ 6ε)|U1|. Hence, we know

that U0, ..., U` is now a (δ + 6ε, ε,m)-vortex of G′. Since we also have ∆(A) ≤ M |L| ≤ εn,

then δ(G′) ≥ (δ+ 7ε)n. Since A is K3-decomposable, then it is K3-divisible, thus G′ is also

K3-divisible. Now we iteratively apply the cover down lemma to vortex in G′.

Precisely speaking, for every i ∈ [`] ∪ {0}, we wish to show there exists a subgraph

Gi ⊂ G′[Ui] such that G′ − Gi has a K3-decomposition, and the following holds (where

Ul+1 := ∅):

δ(Gi) ≥ (δ + 4ε)|Ui|; (5)

dGi(x, Ui+1) ≥ (δ + 5ε)|Ui+1| for all x ∈ Ui; (6)

Gi[Ui+1] = G′[Ui+1]. (7)

Clearly, this holds for i = 0 with G0 := G′ so the induction can start.

The induction step: Assume for some i ∈ [l−1]]∪{0}, we found Gi with the above properties.

Then Gi is K3-divisible. Define G′i := Gi −Gi[Ui+2]. Then for all x ∈ Ui − Ui+1, x 6∈ Ui+2,

so dG′i(x) is even since G′i is K3-divisible. By (4) and (5), we know that we can apply the

cover down lemma with (G′i, Ui+1, ε) in the role of (G,U, ε), and get a K3-decomposable

subgraph H ⊂ G′i with G′i − G′i[Ui+1] ⊂ H and ∆(H[Ui+1]) ≤ ε10|Ui| ≤ ε|Ui+1|. Define

Gi+1 := (Gi − H)[Ui+1], then it is a subgraph of G′[Ui] and clearly G′ − Gi+1 has a K3-

decomposition and Gi+1[Ui+2] = G′[Ui+2]. So we only need to show that (4) and (5) still

hold and that will finish the induction.

By (5),

δ(Gi+1) ≥ (δ + 5ε)|Ui+1| −∆(H[Ui+1]) ≥ (δ + 4ε)|Ui+1|,

so (4) holds. For every x ∈ Ui+2, we have

dGi+1(x, Ui+2) ≥ (δ + 6ε)|Ui+2| −∆(H[Ui+1]) ≥ (δ + 5ε)|Ui+2|,
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so (5) holds, where the first inequality above uses (6) and condition (V4) of definition

of vortex (definition 4.1). Therefore, the induction works and there exists a subgraph

Gl ⊂ G′[U`] such that G′ −Gl has a K3-decomposition.

Since Gl is K3-divisible, then A∪Gl has a K3-decomposition. Thus, G = (G′−Gl)∪(Gl∪A)

is K3-decomposable and the theorem is proved.

7 The second approach to K3-decomposition problem

Recall section 1.2 of this essay, we would like to tackle the K3-decomposition problem of

a graph. A promising idea is to get some approximate decompositions first, then transfer

it to a complete decomposition. In order to get an approximate decomposition, our first

approach was to introduce a new constant called the approximate decomposition threshold

and require our graph G to have large enough minimum degree. The problem with the above

approach is that the result really depends on the value of δ0+, which we do not know yet.

Therefore, in this section, we shall give a second way to get approximate decompositions,

which will eventually lead to another theorem on the triangle decomposition problem.

The major concept we will be dealing with in section 7 is called typicality, which is a natural

way to describe the quasi-randomness of a graph.

Definition 7.1. Given p, ξ > 0, h ∈ N, a graph G with n vertices is said to be (ξ, h, p)-typical

if for every set A ⊂ V (G) with |A| ≤ h, (1− ξ)p|A|n ≤ |NG(A)| ≤ (1 + ξ)p|A|n.

The analogous result of theorem 1.13 is the following theorem:

Theorem 7.2. For all p > 0, there exist n0 ∈ N, ξ > 0 such that every (ξ, 4, p)-typical

K3-divisible graph on n ≥ n0 vertices is K3-decomposable.

This theorem is proved as a corollary in the paper by Keevash in 2014 ([8]), but the proof

used in [8] was different, and here we present an outline of a new proof using the iterative

absorption method. In fact, the proof is very similar to that of the main theorem (theorem

1.13), that is, we will also use the iterative absorption method on the vortex structure.

Therefore, we need an analogous version of the vortex existing lemma as well as an analogous

cover down lemma.

Just as we mentioned in remark 4.2, the definition of vortex should be changed here to

reflect the property of G. The new definition of a vortex is defined below:
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Definition 7.3 (Vortex’). Let G be a graph on n vertices. For any fixed p ∈ (0, 1), a

(ξ, ε,m)-vortex in G is a sequence U0 ⊃ U1 ⊃ ... ⊃ U` with the following properties:

(V1) U0 = V (G);

(V2) |Ui| = bε|Ui−1|c for all i ∈ [`];

(V3) |U`| = m;

(V4) for every set A ⊂ Ui−1 with |A| ≤ 4, we have (1−ξ)p|A||Ui| ≤ |NUi(A)| ≤ (1+ξ)p|A||Ui|.

Regarding this new definition, we can state and prove the analogous version of the vortex

existing lemma:

Lemma 7.4 (Vortex existing lemma’). Let ξ, p ∈ [0, 1] and 1/m′ � ε < 1. Suppose that G

is a (ξ, 4, p)-typical graph on n > m′ vertices. Then G has a (ξ+ ε, ε,m)-vortex for some m

with bεm′c ≤ m ≤ m′.

Proof. The proof will be very similar to the proof of the previous vortex existing lemma.

We will use the same notation for ni, l,m, εi. We also use mathematical induction here.

Suppose for some i ∈ [l], we already get a (ξ + εi−1, ε, ni−1)-vortex. Let Ui ⊂ Ui−1 be a

random subset of size ni. Now we would like to show that

(1− ξ − εi)p|A||Ui| ≤ |NUi(A)| ≤ (1 + ξ + εi)p
|A||Ui|. (8)

Let X :=
∑

u∈Ui
Xu, where Xu is the indicator random variable that takes the value 1 if

u is in the common neighborhood of A. But by the inductive hypothesis, we know that

EX = |Ui|
|NUi−1(A)|
|Ui−1| , which leads to

(1− ξ − εi−1)p|A||Ui| ≤ EX ≤ (1 + ξ + εi−1)p
|A||Ui|.

Hence, in order for equation (7) to hold, we need to show

P[|X − EX| ≥ t] ≤ 1,

where t = n−1/3ε−(i−1)/3p|A||Ui|. By the Chernoff inequality,

P[|X − EX| ≥ t] ≤ 2e−2t
2/|Ui| ≤ 1.

In fact, the basic step (i = 1) for the induction uses the same inequality, but instead of

inductive hypothesis, we use the condition that G is (ξ, 4, p)-typical. Hence, the induction

shows that we can finally get a (ξ + εl, ε,m)-vortex, and thus a (ξ + ε, ε,m)-vortex.

We also need to use the analogous cover down lemma:
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Lemma 7.5 (Cover down lemma’). Let ξ, p ∈ [0, 1] be given, and suppose 1/n � ε. Let

G be a (ξ, 4, p)-typical graph on n vertices and U ⊂ V (G) with |U | = bεnc. Suppose

that for all x ∈ V (G), G[NG(x) ∩ U ] is (
√
ξ, 3, p)-typical and assume that dG(x) is even

for all x ∈ V (G) − U . Then there exists a K3-decomposable subgraph H of G such that

G−G[U ] ⊂ H and ∆(H[U ]) ≤ ε10n.

Note that in the proof of the cover down lemma (lemma 5.1), we use the definition of δ0+ to

get an approximate decomposition first. However, in this setting, we do not have δ0+. So

we need to get some approximate decompositions using the typicality condition. A so-called

nibble method turns out to be handy in this situation, the method was introduced by Rödl

in [18]. The next lemma shows how to use the typicality condition to get an approximate

decomposition:

Lemma 7.6. Let 1/n� ξ, p and ξ ≤ p7/20. Then any (ξ, 4, p)-typical graph on n vertices

contains a collection of triangles T such that: for every edge e ∈ E(G), the number of

triangles in T that contains e is between (1− n−1/3)p2n/4 and (1 + n−1/3)p2n/4.

After stating the vortex existing lemma and the cover down lemma, the proof of theorem 7.2

is the same as that of 1.13. In the first step, we obtain a vortex Ul ⊂ Ul−1 ⊂ ... ⊂ U0 whose

existence is guaranteed by lemma 7.4. Then let L be the collection of all possible leftovers

that are in G[Ul] and let A be an absorber of it. Let G′ = G−A, then the previous vortex

is also a vortex of G′. We then apply the cover down lemma iteratively on the subsets Ui,

at each step, the size of the leftover subgraph decreases with a factor of ε until finally we

end up with only possible leftover edges in G[Ul]. By construction, these leftover edges can

be absorbed by A and we finish the proof. Of course, the actual proof requires much more

details, but the above outline is sufficient to illustrate the idea of iterative absorption again.

For more details of the proof, please see [1].

8 Conclusion

In this essay, we briefly discuss the graph decomposition problem, in particular, the K3-

decomposition problem. Of all the methodologies that could be used for this problem, we

introduce the iterative absorption method, which is especially handy when it comes to the

decomposition problem of dense graphs. There are also some interesting applications of this

method regarding combinatorial designs, for example in [10]. Back to the K3-decomposition

problem, we might also work with some other properties of the graph than minimal degree

and typicality. For example, we can assume that every edge is in roughly the same number
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of triangles. Such “regularity” condition may also fall into the same framework as we are

dealing with in this essay, that is, we may also use the iterative absorption method to

tackle it. One can also generalize the problem further to hypergraphs, in [8], the iterative

absorption method is used for the hypergraph case.
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