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Bird’s view

We want to define invariants for algebraic varieties, to be able to
test whether varieties are isomorphic. To do that we will study the
intrinsic geometry of a variety; In this lecture we will study the line
bundles of the variety, that give rise to an invariant called the
Picard group. To define it for a genral variety we define coherent
modules. In the next lecture we shall define a differential form on
an algebraic variety, and use it to give an intrinsic definition of the
tangent and cotangent bundles on a variety. Then constructions
from differential geometry will lead to additional numeric
invariants. The Picard group will also later be seen to be a
particular case of a cohomology group.
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The story

X an affine variety, A = k[X ].
For every A-module M, attach a module M̃ over the sheaf of rings
Ox . This defines an equivalence of the category of A-modules with
the category of quasi-coherent Ox -modules.
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Reminders and philosophical addenda

Let X be a topological space. We defined a sheaf over X .
A section of a sheaf is an element of some F (U). The name is
justified:

in the case of a local homeomorphism π : Y → X we have the
notion of a section which is well-named. (compare covering spaces
and vector bundles.) Now, we define a sheaf F on Y by
F (U) = {s ∈ C (U,Y )|π ◦ s = idU}, whose sections are the
sections in the usual sense.
Now, we are allowed to call a section of an arbitrary sheaf F by
this name because every sheaf F has a space Y = ∪x∈XFx , its
étalé space, such that there is a local homeomorphism
π : Y → X .
Indeed, we define the topology on Y by the following basis. Note
that an element of Y is a germ. For every U open in X and for
every s ∈ F (U), take the set of all germs of s in U to be in the
basis.
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Reminders II

Let X be a topological space with a sheaf of rings OX .
An Ox -module is a sheaf F on X with two morphisms of sheaves
defining addition and scalar multiplication,

I F ×F → F

I OX ×F → F

that make F (U) an OX (U)-module.

We get a category by defining
OX (U)-module morphism = (pre-)sheaf morphism + module
morphism on every open U ⊆ X .
Examples:

I If X is a single point then this is just a usual module.

I If F is the constant sheaf Z we get a sheaf of abelian groups.
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Why Bother?

For a reason to study Ox -modules, consider P1 over C, the

Riemann sphere.
Next week’s tangent sheaf has sections given by tangent vectors at
each point (varying ”nicely”). Then the right description of this
sheaf is not just as a ring, since we can multiply by the
corresponding regular functions; we want to capture its structure
as an Ox -module. To help motivate further development, notice
also that this sheaf is locally ∼= OX but not globally, since it does
not even have constant global sections by the hairy ball theorem
(Every continuous tangent field on S2 has a zero). Thus this is an
example of an invertible sheaf.
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Locally Free I

Familiar operations between OX -modules are defined by first
creating a subsheaf using the operation on every open set, and
then taking its sheafification if necessary.

The sheafification F̃ intuitively describes “the same objects but
with the conditions on the sections made local”. In particular, the
stalks are the same.
The specific details of the construction that we saw, such as the
sheaf of discontinuous sections and [, ], may be forgotten; the
sheafification is used via its universal property implied by it being a
functor from presheaves to sheaves. Namely, for every morphism
F → G , there is a unique F̃ → G̃ making the square diagram
commutative.
For example, the kernel of a morphism between OX -modules can
be defined without a sheafification, because belonging to the kernel
can be detected locally.
However, the cokernel must be checked globally.
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Abelian category
We made the category of OX -modules into an abelian category, so
we have the snake lemma and can do cohomology later.

But what
is an abelian category, really?

I For every two objects X ,Y , Hom(X ,Y ) is an abelian group;
I The composition law is bilinear, i.e. respects addition;

[preadditive category]
I There are a zero object (final object) and coproducts (direct

sums); [additive category]
I Every morphism u : X → Y has a kernel with i : Ker(u)→ X

with u ◦ i = 0 ”largest”: For every object Z there is a
bijection g 7→ i ◦ g between
Hom(Z ,Ker(u)→ {f ∈ Hom(Z ,X ) : u ◦ f = 0}

I Analogously, ∃p : Y → Coker(u), p ◦ u = 0 [preabelian
category]

I Letting Im(u) := Ker(Coker(u)),Coim(u) := Coker(ker(u)),
The path X → Coim(u)→ Im(u)→ Y is the same as
u : X → Y . [abelian category]



Abelian category
We made the category of OX -modules into an abelian category, so
we have the snake lemma and can do cohomology later. But what
is an abelian category, really?

I For every two objects X ,Y , Hom(X ,Y ) is an abelian group;
I The composition law is bilinear, i.e. respects addition;

[preadditive category]
I There are a zero object (final object) and coproducts (direct

sums); [additive category]
I Every morphism u : X → Y has a kernel with i : Ker(u)→ X

with u ◦ i = 0 ”largest”: For every object Z there is a
bijection g 7→ i ◦ g between
Hom(Z ,Ker(u)→ {f ∈ Hom(Z ,X ) : u ◦ f = 0}

I Analogously, ∃p : Y → Coker(u), p ◦ u = 0 [preabelian
category]

I Letting Im(u) := Ker(Coker(u)),Coim(u) := Coker(ker(u)),
The path X → Coim(u)→ Im(u)→ Y is the same as
u : X → Y . [abelian category]



Abelian category
We made the category of OX -modules into an abelian category, so
we have the snake lemma and can do cohomology later. But what
is an abelian category, really?

I For every two objects X ,Y , Hom(X ,Y ) is an abelian group;
I The composition law is bilinear, i.e. respects addition;

[preadditive category]

I There are a zero object (final object) and coproducts (direct
sums); [additive category]

I Every morphism u : X → Y has a kernel with i : Ker(u)→ X
with u ◦ i = 0 ”largest”: For every object Z there is a
bijection g 7→ i ◦ g between
Hom(Z ,Ker(u)→ {f ∈ Hom(Z ,X ) : u ◦ f = 0}

I Analogously, ∃p : Y → Coker(u), p ◦ u = 0 [preabelian
category]

I Letting Im(u) := Ker(Coker(u)),Coim(u) := Coker(ker(u)),
The path X → Coim(u)→ Im(u)→ Y is the same as
u : X → Y . [abelian category]



Abelian category
We made the category of OX -modules into an abelian category, so
we have the snake lemma and can do cohomology later. But what
is an abelian category, really?

I For every two objects X ,Y , Hom(X ,Y ) is an abelian group;
I The composition law is bilinear, i.e. respects addition;

[preadditive category]
I There are a zero object (final object) and coproducts (direct

sums); [additive category]

I Every morphism u : X → Y has a kernel with i : Ker(u)→ X
with u ◦ i = 0 ”largest”: For every object Z there is a
bijection g 7→ i ◦ g between
Hom(Z ,Ker(u)→ {f ∈ Hom(Z ,X ) : u ◦ f = 0}

I Analogously, ∃p : Y → Coker(u), p ◦ u = 0 [preabelian
category]

I Letting Im(u) := Ker(Coker(u)),Coim(u) := Coker(ker(u)),
The path X → Coim(u)→ Im(u)→ Y is the same as
u : X → Y . [abelian category]



Abelian category
We made the category of OX -modules into an abelian category, so
we have the snake lemma and can do cohomology later. But what
is an abelian category, really?

I For every two objects X ,Y , Hom(X ,Y ) is an abelian group;
I The composition law is bilinear, i.e. respects addition;

[preadditive category]
I There are a zero object (final object) and coproducts (direct

sums); [additive category]
I Every morphism u : X → Y has a kernel with i : Ker(u)→ X

with u ◦ i = 0 ”largest”: For every object Z there is a
bijection g 7→ i ◦ g between
Hom(Z ,Ker(u)→ {f ∈ Hom(Z ,X ) : u ◦ f = 0}

I Analogously, ∃p : Y → Coker(u), p ◦ u = 0 [preabelian
category]

I Letting Im(u) := Ker(Coker(u)),Coim(u) := Coker(ker(u)),
The path X → Coim(u)→ Im(u)→ Y is the same as
u : X → Y . [abelian category]



Abelian category
We made the category of OX -modules into an abelian category, so
we have the snake lemma and can do cohomology later. But what
is an abelian category, really?

I For every two objects X ,Y , Hom(X ,Y ) is an abelian group;
I The composition law is bilinear, i.e. respects addition;

[preadditive category]
I There are a zero object (final object) and coproducts (direct

sums); [additive category]
I Every morphism u : X → Y has a kernel with i : Ker(u)→ X

with u ◦ i = 0 ”largest”: For every object Z there is a
bijection g 7→ i ◦ g between
Hom(Z ,Ker(u)→ {f ∈ Hom(Z ,X ) : u ◦ f = 0}

I Analogously, ∃p : Y → Coker(u), p ◦ u = 0 [preabelian
category]

I Letting Im(u) := Ker(Coker(u)),Coim(u) := Coker(ker(u)),
The path X → Coim(u)→ Im(u)→ Y is the same as
u : X → Y . [abelian category]



Abelian category
We made the category of OX -modules into an abelian category, so
we have the snake lemma and can do cohomology later. But what
is an abelian category, really?

I For every two objects X ,Y , Hom(X ,Y ) is an abelian group;
I The composition law is bilinear, i.e. respects addition;

[preadditive category]
I There are a zero object (final object) and coproducts (direct

sums); [additive category]
I Every morphism u : X → Y has a kernel with i : Ker(u)→ X

with u ◦ i = 0 ”largest”: For every object Z there is a
bijection g 7→ i ◦ g between
Hom(Z ,Ker(u)→ {f ∈ Hom(Z ,X ) : u ◦ f = 0}

I Analogously, ∃p : Y → Coker(u), p ◦ u = 0 [preabelian
category]

I Letting Im(u) := Ker(Coker(u)),Coim(u) := Coker(ker(u)),
The path X → Coim(u)→ Im(u)→ Y is the same as
u : X → Y . [abelian category]



Locally-Free Module

An OX -module is locally free if for all x ∈ X there exists an open
neighborhood U of x such that F |U is isomorphic to a direct sum
⊕IOX |U , where I might depend on x .

The cardinality of I , called the rank, depends only on F and x
because Fx

∼= ⊕IOX ,x as OX ,x -modules. (And every commutative
ring with identity satisfies IBN, the invariant basis number.)
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Useful Preliminaries
We will use these later.

I Given a continuous function f : X → Y between topological
spaces, we have the pushforward of a sheaf
f∗F(U) := F(f −1(U)) which is also a sheaf.

I Given a sheaf G on Y , we define the pullback by the
sheafification of f ∗G(U) = lim→G(V ) over all V ⊃ f (U).
Note this is necessary since f might not be an open map.

I in particular, stalks are given by Fx = i∗xF for the embedding
ix : {x} → X .

I Let p ∈ P1, then we define the ideal sheaf O(−p) of this
point to be the subsheaf of O given by:

O(−p)(U) = {f ∈ O(U)|f (p) = 0}.
I More generally, the ideal sheaf of a closed subvariety of an

algebraic variety has the sections of the structure sheaf which
vanish on the closed subset.

I The twisting sheaf O(d) is defined on Pn by
O(d)(U) = k[Ũ]d = {pq |deg(p)− deg(q) = d , q|Ũ 6= 0}



Quasi-Coherent modules

To study a whole sheaf of modules, it helps if there is a single
module that ”generates” it, as this reduces local computations
regarding these sheaves to computations in commutative algebra.

This is what quasi-coherence encapsulates; define an OX - module
M̃ by Mf := M[f −1] on every D(f ) in every affine patch and glue
(Hartshorne 5.1).
Then for every variety (even every scheme), an OX - module is
quasi-coherent iff on every affine open set it is of the form M̃.
However, for a general sheaf of rings this fails, and the definition
that ’works’ in general is a sheaf with a local presentation. Kempf
defines quasi-coherence in general and only then shows that it
comes from a module in the affine and the projective cases.
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Affine Case

In the affine case we can write explicitly M̃ = M ⊗k[X ] OX .

To show that M̃ is quasicoherent, we see more generally that
quasi-coherence is equivalent to being locally of the form
M ⊗A(X ) A|X .

Proof.
Choose a local presentation A⊕J → A⊕I →M→ 0 and note that
the operator (̃·) is right-exact and respects direct sums.
Explicitly, tensoring is right-exact so we have another exact
seqeuence

A⊕J → A⊕I → M̃ → 0

forcing M ∼= M̃
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Affine Case II

The key property in showing the other direction of the equivalence
in the affine case is the fact that for f ∈ A any section u of F
over the principal open subset D(f ) can be extended essentially
uniquely to X after multiplying u with some f i .

We give a sketch of the proof of the other direction. For details see
Roi’s notes or Kempf 5.2.2.
Proposition. Let f −n be a formal notation denoting copies of F ,
combined in a directed system by the maps F → f −1F → ...
given by f . Let j : D(f )→ X be the embedding. Then
j∗j
∗F = lim→ f −nF , where j∗F (V ) := F (U ∩ V ). (Kempf uses

ad-hoc notation for this.)
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over the principal open subset D(f ) can be extended essentially
uniquely to X after multiplying u with some f i .
We give a sketch of the proof of the other direction. For details see
Roi’s notes or Kempf 5.2.2.
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Projective Case

In the projective case, too, we have a global description of
quasi-projective sheaves. For a graded module M, define a
quasi-coherent sheaf on Pn, denoted M̃Pn , as follows. Its section on
U is (M̃An+1(Ũ))0, where Ũ is the lift of U to the cone An+1 \ {0}.

Theorem

I M 7→ M̃Pn is an exact functor

I Every quasi-coherent sheaf F on Pn is of the form M̃Pn , and
for coherent sheaves we may take M finitely generated.
Moreover, concretely M = ⊕n ≥ 0Γ(F(n)).



Proof

Proof.
Let F ∈ QCoh(Pn), and An+1 \ {0} → Pn are j , π respectively.
One may compute π∗π

∗F = ⊕ninZF(n) and j∗π
∗F = ⊕F(n) is a

quasi-coherent sheaf on An+1 with the same global sections as
π∗F, which is the same as for π∗π

∗F, and these global sections are
⊕n∈ZΓ(F(n)) =: M ′. Moreover let M = ⊕n≥0Γ(F(n)), then
M ′/M has only negative degrees and its associated sheaf is

˜(M
′

M )Pn = 0 (as there are no zero degree elements). Thus

M̃ ′Pn = M̃Pn . Finally M̃ ′Pn = F because M̃ ′An = j∗π
∗F so

M̃ ′Pn(U) = j8π
∗(F(Ũ))0 = π∗(F)(Ũ)0 = F(U). The proofs for

the other claims are omitted.

Corollary. if F is coherent, then ∃d , k such that O(−d)⊕k → F is
a surjection, or equivalently O⊕k → F(d). In other words, every
coherent sheaf is a quotient of a vector bundle.
Proof. F = M̃ for M finitely generated; pick d > the degrees of
all generators, then M≥d is generated by Md , so M̃≥d = M̃. By
def’n of finitely generated, A⊕k[−d ] → M is surjective.
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Coherence
Coherence is the requirement that the module M generating the
sheaf be finitely generated.

The general definition, where the situation is as in quasi-coherence,
is that there is a local finite presentation.

Theorem
Let X be an affine variety. Then a module M is finitely generated
iff M̃ is coherent.

Proof.
If M is finitely generated then it is in particular finitely presented,
so M̃ is coherent. Conversely, suppose M̃ is coherent. Cover X by
principal open sets D(fi ) such that on each D(fi ) the restriction
M̃fi is a finitely generated k[X ]fi -module. Since there are only
finitely many fi , after clearing denominators we get a finite
generating set for M.

(Coherence is useful outside algebraic geometry: the deep Oka
coherence theorem in complex geometry that the sheaf of
holomorphic functions on Cn is coherent.)
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Intro

Let F be a locally free OX -module, then the dual sheaf
F∨ = Hom(F ,OX ), which is an OX -module by itself, is also
locally free of the same rank. (Since direct sum commutes with
Hom)

Let L be locally free of rank 1. Then in particular the same is true
for L ∨.

Proof.
the map

L ∨ ⊗OX
L → OX

given by (φ,m) 7→ φ(m) is an isomorphism. Indeed, isomorphism is
a local property so it is enough to check locally, where we know
that L ∼= OX

∼= L ∨ and so we’re done.
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Ignore this I

We will now see in two steps that the dual of L is its inverse with
respect to ⊗. Lemma 1. There is an isomorphism

L ∨ ⊗OX
L ∼= HomOX

(L ,L )

.

Theorem (Giving lemma 1)

Let F ,G ,H be OX -modules where F is locally-free, then there is
an isomorphism

HomOX
(F ,G )⊗OX

H → HomOX
(F ,G ⊗OX H )



Ignore this II

Lemma 2. The canonical homomorphism

OX → HomOX
(L ,L )

that sends a section s ∈ OX (U) to scalar multiplication by F is an
isomorphism.
Proof. This is a local question, so we may assume L = OX



Ignore this III

Lemma 1.
L ∨ ⊗OX

L ∼= HomOX
(L ,L )

.
Lemma 2.

OX
∼= HomOX

(L ,L )

Together we obtain the desired:

L ∨ ⊗OX
L ∼= OX

.
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Ignore this III

Lemma 1.
L ∨ ⊗OX

L ∼= HomOX
(L ,L )

.
Lemma 2.

OX
∼= HomOX

(L ,L )

Together we obtain the desired:

L ∨ ⊗OX
L ∼= OX

.



We define an invertible sheaf to be a locally-free sheaf of rank 1.
This is justified since the converse is also true: if M ⊗OX

N ∼= OX ,
then M is locally-free of rank 1. (Proof omitted. See Link For
quasi-coherent sheaves, and 19.11 in Link for the general case.)

https://mathoverflow.net/questions/33489/justification-of-the-term-invertible-sheaf
http://math.uga.edu/~pete/integral.pdf#page=281
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The Story I

We define the Picard Group of a general variety as the
isomorphism classes of ”line bundles”.

The Picard group is an invriant of isomorphism, and so is useful to
show that two varieties are not isomorphic. For example, it can be
proven that the Picard group of a smooth cubic curve in P2 of a
smooth cubic curve in P2 is nontrivial, and so it is never
isomorphic to P1.
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The Story II

We follow an idea from number theory to represent the Picard
group as a quotient of invertible fractional ideals by its subgroup
of principal ideals, using a short exact sequence.

The idea is the (ideal) class group, that measures the extent to
which unique factorization fails in the ring of integers of an
algebraic number field, and more generally in Dedekind domains,
by the quotient of the fractional ideals by the principal ideals.
We then see that for smooth varieties the Picard group can be
understood as classifying divisors, which generalize codimension-1
subvarieties, up to linear equivalence.
We mention both a geometric heuristical reasoning and an
algebraic justification: the local rings of smooth varieties are UFD,
since regular local rings are UFD. This is the
Auslander–Buchsbaum theorem.
We use this characterization to compute the Picard group for An

and for Pn.
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Invertible sheaf

Let L be an invertible sheaf. Set L ⊗−n := (L ∨)n. Then

L ⊗n ⊗OX
L ⊗m ∼= L ⊗n+m,

so the isomorphism classes of invertible OX modules form an
abelian group under this operation, called the Picard group. The
neutral element is the class of OX .
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Let X be an irreducible variety. Let KX be the constant sheaf
equal to the field k(X ) of rational functions on X ,

k(X ) =
⋃

U∈top(X )

k[U]

.

Then OX is a subsheaf of KX .
(The definition of the sheaf of rational functions is less trivial for
schemes, where there might be zero divisors.)
A sheaf of fractional ideals I is a coherent subsheaf of KX .
The invertible sheaves of fractional ideals form a group IFI(X )
under multiplication.
There is a subgroup P(X ) of IFI consisting of the principal ideals
f · OX . It is important because of the following theorem.
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Exact sequence of Picard group

Theorem
There is a short exact sequence

0→ P(X )→ IFI(X )→ψ Pic(X )→ 0,

where ψ sends an invertible fractional ideal to its isomorphism
class.

Proof.
ker(ψ) = P(X ): By definition ψ((I )) = 0 iff I ∼= OX . Let f be the
image of 1 under this isomorphism, then I = f ·OX , so I ∈ P(X ).
Conversely f · OX

∼= OX , so indeed ker(ψ) = P(X ).
All left is showing ψ is surjective. Let L be an invertible sheaf,
then we construct an invertible fractional ideal I such that
I ∼= L . Let σ ∈ L (V ) for V open and dense. (Note we cannot
simply take V = X as there may be no global sections.) Then
I(U) = {f ∈ k(X )|f · σ = τ ∈ L (U)} ∼= L via multiplication by
σ.
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Motivation

It is a classical question to determine the sets of zeros and poles of
rational (”meromorphic”) functions on a given variety.

We want to determine the local/global relationship: given
zero/pole configurations on an open covering, are these
configurations induced from a global rational function? (E.g. in
complex analysis: Mittag-Leffler, Weierstrass product)
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What is exactly a “configuration”?

I A Weil divisor: Formal Z-linear combinations of irreducible
closed subsets of codimension one, where the coefficient says
whether we want to see the corresponding subset as a zero
locus of some multiplicity, or as the locus of poles of some
order.

I For a general, non-smooth variety, the Weil divisor does not
work and we need the Cartier divisor. Here we abstractly
define a “configuration” as an equivalence class of rational
functions where f ∼ g on some open subset U iff f = ug for
some u ∈ Γ(U,OX )× — u is a unit, so f and g should be
thought of having the same zero/pole configuration.
On smooth varieties, the two notions are equivalent.
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Another motivation for studying divisors is that divisors generalize
codimension-1 subvarieties.

codimension-1 subvarieties are understood much better than
higher-codimension subvarieties. This happens in both global and
local ways.

I Globally, every codimension-1 subvariety of Pn is defined by
one homogeneous polynomial; by contrast, a codimension-r
subvariety need not be definable by only r equations when
r > 1.

I Locally, every codimension-1 subvariety of a smooth variety
can be defined by one equation in a neighborhood of each
point. Again, the analogous statement fails for higher
codimension.

On singular varieties we need to distinguish between the two:

I codimension-1 subvarieties = Weil divisors

I varieties which can locally be defined by one equation =
Cartier divisors
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can be defined by one equation in a neighborhood of each
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We will also see a correspondence between divisors and invertible
sheaves, which are by definition line bundles;

Thus much of algebraic geometry studies an arbitrary variety by
analyzing its codimension-1 subvarieties and the corresponding line
bundles.
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Weil Divisors

Definition
Let X be an irreducible variety. An irreducible Weil divisor on X
is an irreducible subvariety D with dimD = dimX − 1. The group
DivW (X ) is the free abelian group generated by the irreducible
divisors. Thus a Weil divisor is of the form D =

∑
niDi for ni ∈ Z.

A divisor D is effective if ni ≥ 0∀i .



Cartier Divisors

Let X be an irreducible variety. The Cartier divisor group,
DivC (X ), consists of subvarieties locally given by a nonzero rational
function defined up to multiplication by a nonvanishing function.

Definition
An element of DivC (X ) is given by an open cover Ui together with
rational functions fi 6= 0 on Ui , such that on the intersection
Ui ∩ Uj we have fi = phiij fj for some φij ∈ O∗(Ui ∩ Uj). A more
abstract way of viewing this is as DivC(X) = Γ(Rat*X/O*

X), where ∗
signifies being nowhere zero.
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Claim. The Cartier divisors are equivalent to the category of
invertible sheaves. Indeed, match a divisor D to the sheaf defined
locally by fiOX which is invertible, and conversely an invertible
sheaf has local data defining a divisor.

Claim. There is an exact sequence
Γ(K)→ DivC (X ) = IFI (X )→ Pic(X ). Indeed, the latter
morphism is just L → [L , and it is surjective: Choose a local
trivialization of a given line bundle L , then we have an
isomorphism L ⊗Ox K ∼= K. Now for the kernel: it consists of
sections of K∗/O∗ isomorphic to OX , which is the set of nowhere
zero rational functions.
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Reduction in smooth case
We saw in a previous lecture that for smooth varieties the local
rings OX ,x are regular local rings.

Theorem (Auslander, Buchsbaum, 1959)

Any local regular ring (R,m) is UFD.

(Sketch to give a sense of the difficulty).

I Let k = R/m, then the completion of R is isomorphic to
k[[x1, .., xd ]] where d = dimR.

I For Noetherian local rings, if the completion is UFD then the
ring itself is UFD.

I k[[x1, .., xd ]] is UFD.

Theorem
Let X be a locally factorial variety, meaning that all OX ,x are
regular local rings. Then DivC (X ) = DivW (X ).



Proof of Weil = Cartier

Consider the map DivW (X )→ DivC (X ) given by
D 7→ O(−D) ⊆ OX ⊆ K, where O(−D) denotes the sheaf of
functions vanishing on D.

I O(−D) is locally principal. In a UFD, every prime ideal of
height one is principal: O(−D) is locally induced by a prime
ideal of height 1 by definition, so when we pass to the stalk it
is induced by (fx) for some fx ∈ K. Now (fx) and O(−D) only
differ on components that do not pass x (as they agree on the
stalk), which can only happen on finitely many other
components, so after shrinking our local neighborhood we can
have (fx) agreeing with O(−D) on some neighborhood.

I The map D 7→ O(−D) is injective: enough to see that
nD 7→ 0 does not hold for n > 0, but the image is
O(−D)n 6= 0.
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Proof Cont.

I The map is surjective: Assume first L ⊂ O, we want to find
a Weil divisor D 7→ L . We can asssume that we know this for
all bigger L ′, L ⊂ L ′ ⊂ OX . Working locally, there is some
L = (f ). Let D be an irreducible component of D(f ),
O(−D) ⊃ L . Let (φ) = L , then φ−1L ⊃ L comes from
some D ′, and we have D + D ′ 7→ L .

Finally, in the general case where we don’t assume L ⊂ O,
we still have locally L = (gh ) for some g , h ∈ O(U). By the
first case we know that there are D 7→ α,D ′ 7→ β, so all in all
D − D ′ 7→ L .
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Pic(An)

Example

Pic(An) = 0

.

Indeed: Proposition. Let A be a UFD. Then every polynomial
ring A[x1, ..., xn] is also a UFD, and for every multiplicative set the
localization S−1A is a UFD.
Thus An is locally factorial, and we conclude by noting that every
variety of codimension 1 is given by a single polynomial, so is
principal.
Cn is a contractible manifold, and hence has no nontrivial
topological vector bundles, which is analogous to this result.

So is
it true that An has no nontrivial vector bundles?
This is the Quillen-Suslin Theorem, formerly known as Serre’s
Conjecture, part of Quillen’s work leading to his 1978 Fields
Medal.
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Pic(Pn)

Example

Pic(Pn) = Z

.

Concretely, this means that every codimension-1 subvariety of Pn is
defined by the vanishing of a single homogeneous polynomial.
Indeed, Z ⊆ Pic(Pn) because we have
O(d1)⊗ O(d2) ∼= O(d + 1 + d2). Moreover these are pairwise
nonisomorphic: enough to show specific two are nonisomrphic, but
O is not isomorphic to O(d) for negative d since there the global
sections of O(d) vanish, as we saw.
Now for the other inclusion, let D be of codimension 1, then there
is a homogeneous polynomial p of degree d that generates the
homogeneous ideal of D, so O(−D) ∼= O(−d) by multiplication by
p.
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