Definitions:
Let D be a dinisor and
o degD =5 n;
e If F is an invertible sheaf s.t. F = O¢ (D) then define deg F := deg D.

e If F is a coherent sheaf and x € V then we have a vector space F |,=

k ,PeU
e Define a sheaf kp on C s.t. kp (U) = £ € .
0 ,P¢U
Lemma:
Sequence
0——=0c(D)—=0c(D+P)——=k, —=0
Is exact.

Proof: Look at P :
O—>OC(D)P—Q>OC(D+P)P—>k—>O

Here we have inclusion of @ in t"~ 1O
and at Q:

0 — O¢ (D) —= Oc (D + P)y —> 0 —>0
Here we have nothing changed i.e. t"O

Lemma:

Let F be an invertible sheaf. Then dimT' (C, F) < deg F + 1

Proof:

Assume thatI"' (C, F) # 0. Then F =~ O¢ (D’) if D’ is not an effective divisor
then ther is f € T'(C, F) s.t. divf+ D’ > 0 and denote divf+ D’ = D but then
we know Oc¢ (divf + D') = O¢ (D’) which means F ~ O¢ (D) for an effective
divisor D.

If deg F = 0 then D = 0, which means F ~ O¢. Hence ' (C,F) = k. And
thus dimI" (C, F) = 1.

If degD > 0. Then D = P + D; for some effective divisor D;. Then we
have exact sequence:

0——=0c¢ (D) ——= O¢ (D) ——=kp ——=0



Then in global sections we have an exact sequence:
0 ——=T(Oc (D1)) —=T'(Oc (D)) —=T (kp)
Then dimTI' (O¢ (D)) < dimI' (O¢ (D1))+dimT (k) but I' (k,) = k. And so we

are done by induction.
|

Lemma:

If T (C, Q0 ® M) =0 then H' (C, M) = 0.

Proof: Let F = M (D) for some effective divisor D. Then
L(C,Q®F)=T(C,(Q®@M")(-D))C0
Let P € C'. We have exact sequence 0 —— F —— F (P) ——= F (P) |p ——=0
which gives us a differential
Sp: H*(C,F(P)|p) — H' (C,F)
We will look on how ¢, variates globally in C'. Look at exact sequence:

0 T F T F (A) —= i F (A) |a—0

Then taking mo, we have differential:
8 Mo (TP F (A) |A) = HY (F) @ Oc

We can see that the value of 0 (¢) is J. (because 72 is isomorphism from A to
0). Now Ocxc (—A) |am Qc. Thus 7o, (17F (A) |a) is just F @0, Q1.
Hence ¢ has dual

sV . H! (.F)v ®kr Oc — Q¢ o FY

which has to be zedo due to the lack of non-zero sections in Q¢ ® FV.
By lemma (from the first hour) to show that F has zero first cohomology
we need the following: By the previous paragraph we have exact sequence

0——=T(C,M(E)) —=T(C,M(E)) —=T(C,M(E+P) |p) —=0

Where FE is an effective divisor. And hence we get that the restriction is quotient.
Then we have dimT' (C,F (E + P) |p) = 1. And thus M is ordinary.
O

Proposition
e H'(C,F) and HY (C,F) are finite dimensional vector spaces over k.

e And dim H® (C,F) — dim H! (C, F) = deg (div.F) + (1 — g) where g =
dim H* (C, O¢) is genus of C.
Denote dim H® (C, F) — dim H' (C, F) = x (F) and call it Euler characteristic
of F.



Proof: For every invertible sheaf F there is a divisor D s.t. M =~ O¢ (D).
Notice that H? (O¢ (D)) =T (C,O¢ (D)) and then because of the inequality
above we have that H° (Oc¢ (D)) is finite dimentional.
Now let P € C be some point.
Then we have an exact sequence of sheafs

0——=0¢(D)——=0Oc(D+P)——=kp—0
Which induces a long exact sequnce in cohomology

0 — H°(O¢ (D)) —= H° (O¢ (D + P)) — H° (kp)

—— H'(Oc¢ (D)) — H' (O¢ (D + P)) ——0

The last cohomology is zero because H' (kp) = 0 becasue k, is flabby (becasue
id and zerp-morphism (to zero) are surjective).

Then H! (O¢ (D)) is finite dimentional iff H! (O¢ (D + P)) is fintie dimen-
tional. Notice that in this case x (O¢ (D + P)) = x (O¢ (D)) + 1.

Then what do we have:

X (Oc (D)) =deg D + x (Oc) =
= deg O¢ (D) + dimT (C,Oc¢) — dim H' (C,O¢) =
=degD+1—g
Let £ be such an invertible sheaf that deg £ > deg Q¢ then T’ (C, Qc o £®’1) =
01
And by lemma ther exist a locally free coherent sheaf s.t. H! (C, M) = 0
and we are finished.
a
Serre duality:
H'(O¢ (D)) = H° (O¢ (K — D))

Riemann-Roch theorem:
Let F be an invertible sheaf then:
dim H° (O¢ (D)) — dim H® (Oc (K — D)) = deg (divF) +1—g

Which is an exact application of Serre’s duality to the previous proposition.

!Because deg Q¢ ®o, L8~ < 0 and impling previous lemma.



Application 1:
e degQlg =29 —2
e dimI' (C,Qc) =g

Proof:

From Riemann-Roch we get

R’ (D) —h° (K — D) =degD — g +1

Now let D =0 and then h° (K) = g i.e. dimT (C,Qc) = g.
Now letm D = K and then h° (K) = deg K — g+ 2 and thus deg K = 2 —2g
O

Application 2:

Let C' be a smooth curve which is not complete. Then C' is affine.

Proof:

Let C be the completion of C. C\C is finite. Define a divisor D = """ | n; P; we
a free to choose n; to be positive and large enough to promice existance of regular
function f : X — P! s.t. f~1(c0) = {Py,..., Py} and finite verywhere else.
Why can we? Since n; are large then deg D > 2g—2 we get H? (C, L (K — D)) =
0. Then Riemann-Roch gives us H° (C, £ (D)) = >_n;+1-g. So there is some
function of C' which is meromorphic and has poles exactly at P; of orders worst
n; and nowehere else.

Now we use the linear system defined by D to embed C into projective space.
Then divisor D becomes a hyperplane section with n;’s being the intersection
multiplicity. See Kempf 5.7.1 Then we have C = C\ (C'N H) for a hyperplane
H. But removing hyperplane turns projective space to an affine space and we
still habe X embedded as a closed subvariety.

|



