The Picard Group And some more about sheaves
Emanuel Sygal
May 27, 2018

Outline
Coherence
The story Reminders Locally Free Quasi-Coherence Coherence
The Picard Group
Invertible sheaves The Picard group Divisors Examples

Bird’s view
We want to define invariants for algebraic varieties, to be able to test whether varieties are isomorphic. To do that we will study the intrinsic geometry of a variety; In this lecture we will study the line bundles of the variety, that give rise to an invariant called the Picard group. To define it for a genral variety we define coherent modules. In the next lecture we shall define a differential form on an algebraic variety, and use it to give an intrinsic definition of the tangent and cotangent bundles on a variety. Then constructions from differential geometry will lead to additional numeric invariants. The Picard group will also later be seen to be a particular case of a cohomology group.

Outline
Coherence
The story Reminders Locally Free Quasi-Coherence Coherence
The Picard Group
Invertible sheaves The Picard group Divisors Examples

The story
X an affine variety, A = k[X]. For every A-module M, attach a module
M  ̃
over the sheaf of rings O
x
. This defines an equivalence of the category of A-modules with the category of quasi-coherent O
x
-modules.

Outline
Coherence
The story Reminders Locally Free Quasi-Coherence Coherence
The Picard Group
Invertible sheaves The Picard group Divisors Examples

Reminders and philosophical addenda
Let X be a topological space. We defined a sheaf over X. A section of a sheaf is an element of some F(U). The name is justified:
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U
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Let X be a topological space. We defined a sheaf over X. A section of a sheaf is an element of some F(U). The name is justified: in the case of a local homeomorphism π : Y → X we have the notion of a section which is well-named. (compare covering spaces and vector bundles.) Now, we define a sheaf F on Y by F(U) = {s ∈ C(U,Y )|π ◦ s = id
U
}, whose sections are the sections in the usual sense. Now, we are allowed to call a section of an arbitrary sheaf F by this name because every sheaf F has a space Y = ∪
x∈X
F
x
, its étalé space, such that there is a local homeomorphism π : Y → X. Indeed, we define the topology on Y by the following basis. Note that an element of Y is a germ. For every U open in X and for every s ∈ F(U), take the set of all germs of s in U to be in the basis.

Reminders II
Let X be a topological space with a sheaf of rings O
X
. An O
x
-module is a sheaf F on X with two morphisms of sheaves defining addition and scalar multiplication,
▶ F × F → F ▶ O
X
× F → F that make F(U) an O
X
(U)-module.
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Reminders II
Let X be a topological space with a sheaf of rings O
X
. An O
x
-module is a sheaf F on X with two morphisms of sheaves defining addition and scalar multiplication,
▶ F × F → F ▶ O
X
× F → F that make F(U) an O
X
(U)-module. We get a category by defining O
X
(U)-module morphism = (pre-)sheaf morphism + module morphism on every open U ⊆ X. Examples:
▶ If X is a single point then this is just a usual module. ▶ If F is the constant sheaf Z we get a sheaf of abelian groups.

Why Bother?
For a reason to study O
x
-modules, consider P1 over C, the
Riemann sphere.
Next week’s tangent sheaf has sections given by tangent vectors at each point (varying ”nicely”). Then the right description of this sheaf is not just as a ring, since we can multiply by the corresponding regular functions; we want to capture its structure as also an that O x
-module. this sheaf To is locally
help motivate ∼
= O
X
further development, but not globally, since notice
it does not even have constant global sections by the hairy ball theorem (Every continuous tangent field on S2 has a zero). Thus this is an example of an invertible sheaf.
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-modules can be defined without a sheafification, because belonging to the kernel can be detected locally. However, the cokernel must be checked globally.
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Abelian category
We made the category of O
X
-modules into an abelian category, so we have the snake lemma and can do cohomology later. But what is an abelian category, really?
▶ For every two objects X,Y, Hom(X,Y) is an abelian group; ▶ The composition law is bilinear, i.e. respects addition;
[preadditive category] ▶ There are a zero object (final object) and coproducts (direct
sums); [additive category] ▶ Every morphism u : X → Y has a kernel with i : Ker(u) → X
with u ◦ i = 0 ”largest”: For every object Z there is a bijection g ↦→ i ◦ g between Hom(Z,Ker(u) → {f ∈ Hom(Z,X) : u ◦ f = 0} ▶ Analogously, ∃p : Y → Coker(u), p ◦ u =0[preabelian
category] ▶ Letting Im(u) := Ker(Coker(u)),Coim(u) := Coker(ker(u)),
The path X → Coim(u) → Im(u) → Y is the same as u : X → Y . [abelian category]

Locally-Free Module
An O
X
-module is locally free if for all x ∈ X there exists an open neighborhood U of x such that F|
U
is isomorphic to a direct sum ⊕
I
O
X
|
U
, where I might depend on x.

Locally-Free Module
An O
X
-module is locally free if for all x ∈ X there exists an open neighborhood U of x such that F|
U
is isomorphic to a direct sum ⊕
I
O
X
|
U
, where I might depend on x. The cardinality because F
x
∼ = of I, called ⊕
I
O
X,x
as the rank, depends only on F and x
O
X,x
-modules. (And every commutative ring with identity satisfies IBN, the invariant basis number.)
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Useful Preliminaries
We will use these later.
▶ Given a continuous function f : X → Y between topological
spaces, we have the pushforward of a sheaf f
∗
F(U) := F(f −1(U)) which is also a sheaf. ▶ Given a sheaf G on Y, we define the pullback by the
sheafification of f ∗G(U) = lim→G(V) over all V ⊃ f (U). Note this is necessary since f might not be an open map. ▶ in particular, stalks are given by F
x
= i∗ x
F for the embedding i
x
: {x} → X. ▶ Let p ∈ P1, then we define the ideal sheaf O(−p) of this
point to be the subsheaf of O given by:
O(−p)(U) = {f ∈ O(U)|f (p)=0}.
▶ More generally, the ideal sheaf of a closed subvariety of an
algebraic variety has the sections of the structure sheaf which vanish on the closed subset. ▶ The twisting sheaf O(d) is defined on Pn by
O(d)(U) = k[
U]  ̃
d
= {
p q
|deg(p) − deg(q) = d,q|
U  ̃
= 0}
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Affine Case II
The key property in showing the other direction of the equivalence in the affine case is the fact that for f ∈ A any section u of F over the principal open subset D(f ) can be extended essentially uniquely to X after multiplying u with some f i. We give a sketch of the proof of the other direction. For details see Roi’s notes or Kempf 5.2.2. Proposition. Let f −n be a formal notation denoting copies of F, combined in a directed system by the maps F → f −1F → ... given by f . Let j : D(f ) → X be the embedding. Then j
∗
j∗F = lim
→
f −nF, where j
∗
F(V) := F(U ∩ V). (Kempf uses ad-hoc notation for this.)

Projective Case
In the projective case, too, we have a global description of quasi-projective sheaves. For a graded module M, define a quasi-coherent sheaf U is (
M  ̃
An+1
U))
 ̃
0
on Pn, U  ̃
denoted
M  ̃
Pn
, as follows. Its section on is the lift of U to the cone An+1 \ {0}. Theorem
▶ M ↦→
(
, where
M  ̃
Pn
is an exact functor ▶ Every quasi-coherent sheaf F on Pn is of the form
M  ̃
Pn
, and for coherent sheaves we may take M finitely generated. Moreover, concretely M = ⊕n ≥ 0Γ(F(n)).

Proof
Proof. Let F ∈ QCoh(Pn), and An+1 \ {0} → Pn are j,π respectively. One quasi-coherent may compute sheaf π
∗ on π∗F An+1 = ⊕
with ninZ
π∗F = ⊕F(n) is a the same global sections as π∗F, which is the same as for π
∗
F(n) and j
∗
π∗F, and these global sections are ⊕
n∈Z
Γ(F(n)) =: M . Moreover let M = ⊕
n≥0
Γ(F(n)), then M /M has only negative degrees and its associated sheaf is (M M M  ̃  ̃
M  ̃
Pn Pn )
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zero F degree elements). Thus
because U)  ̃
M  ̃
An
= j
∗
π∗F so
0
= F(U). The proofs for the other claims are omitted. Corollary. if F is coherent, then ∃d,k such that O(−d)⊕k → F is a surjection, or equivalently O⊕k → F(d). In other words, every coherent sheaf is a quotient of a vector bundle. Proof. F =
M  ̃
for M finitely generated; pick d > the degrees of all generators, then M
≥d
is generated by M
d
, so
M  ̃
≥d
=
M.  ̃
By def’n of finitely generated, A⊕k[−d] → M is surjective.
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Proof. If M is finitely generated then it is in particular finitely presented, so
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is coherent. Conversely, suppose
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is coherent. Cover X by principal M finitely  ̃
f
i
open sets D(f
i
) such that on each D(f
i
) the restriction is a finitely generated many f i
, after clearing k[X]
denominators f
i
-module. Since there are only
we get a finite generating set for M. (Coherence is useful outside algebraic geometry: the deep Oka coherence theorem in complex geometry that the sheaf of holomorphic functions on Cn is coherent.)
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Intro
Let F be a locally free O
X
-module, then the dual sheaf F ∨ = Hom(F,O
X
), which is an O
X
-module by itself, is also locally free of the same rank. (Since direct sum commutes with Hom) Let L be locally free of rank 1. Then in particular the same is true for L ∨. Proof. the map
L ∨ ⊗
O
X
L → O
X
given by (φ,m) ↦→ φ(m) is an isomorphism. Indeed, isomorphism is a local that L
property ∼
= O
X
∼ = so L it ∨ is enough to check and so we’re done.
locally, where we know

Ignore this I
We will now see in two steps that the dual of L is its inverse with respect to ⊗. Lemma 1. There is an isomorphism
L
∨
⊗
O
X
L
∼ = Hom
O
X
(L,L )
. Theorem (Giving lemma 1) Let F,G,H be O
X
-modules where F is locally-free, then there is an isomorphism
Hom
O
X
(F,G) ⊗
O
X
H → Hom
O
X
(F,G ⊗
O
X
H )

Ignore this II
Lemma 2. The canonical homomorphism
O
X
→ Hom
O
X
(L ,L)
that sends a section s ∈ O
X
(U) to scalar multiplication by F is an isomorphism. Proof. This is a local question, so we may assume L = O
X

Ignore this III
Lemma 1.
L
∨
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O
X
L
∼ = Hom
O
X
(L,L )
. Lemma 2.
O
X
∼ = Hom
O
X
(L ,L)
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O
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.
L
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L
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⊗
O
X
L
∼ = Hom
O
X
(L,L )
. Lemma 2.
O
X
∼ = Hom
O
X
(L ,L)
Together we obtain the desired:
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O
X
∼ = O
X
.
L

We define an invertible sheaf to be a locally-free sheaf of rank 1. This is justified since the converse is also true: if M ⊗
O
X
N
∼ = O
X
, then M is locally-free of rank 1. (Proof omitted. See
Link
For quasi-coherent sheaves, and 19.11 in
Link
for the general case.)
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The Story II
We follow an idea from number theory to represent the Picard group as a quotient of invertible fractional ideals by its subgroup of principal ideals, using a short exact sequence. The idea is the (ideal) class group, that measures the extent to which unique factorization fails in the ring of integers of an algebraic number field, and more generally in Dedekind domains, by the quotient of the fractional ideals by the principal ideals. We then see that for smooth varieties the Picard group can be understood as classifying divisors, which generalize codimension-1 subvarieties, up to linear equivalence. We mention both a geometric heuristical reasoning and an algebraic justification: the local rings of smooth varieties are UFD, since regular local rings are UFD. This is the Auslander–Buchsbaum theorem. We use this characterization to compute the Picard group for An and for Pn.
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so the isomorphism classes of invertible O
X
modules form an abelian group under this operation, called the Picard group.

Invertible sheaf
Let L be an invertible sheaf. Set L ⊗−n := (L ∨)
n
. Then
L
⊗n
⊗
O
X
L
⊗m ∼
= L
⊗n+m
,
so the isomorphism classes of invertible O
X
modules form an abelian group under this operation, called the Picard group. The neutral element is the class of O
X
.
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X
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be Let X be an irreducible variety. Let K
X
the constant sheaf equal to the field k(X) of rational functions on X,
k(X) =
⋃
U∈top(X)
k[U]
. Then O
X
is a subsheaf of K
X
. (The definition of the sheaf of rational functions is less trivial for schemes, where there might be zero divisors.) A sheaf of fractional ideals I is a coherent subsheaf of K
X
. The invertible sheaves of fractional ideals form a group IFI(X) under multiplication. There is a subgroup P(X) of IFI consisting of the principal ideals f · O
X
. It is important because of the following theorem.

Exact sequence of Picard group
Theorem There is a short exact sequence
0 → P(X) → IFI(X) →ψ Pic(X) → 0,
where ψ sends an invertible fractional ideal to its isomorphism class.
Proof. ker(ψ) = P(X): By definition ψ((I)) = 0 iff I
∼ = O
X
. Let f be the image of 1 under Conversely f · O X
this ∼ = O
isomorphism, X
, so indeed then I = f · O
X
, so I ∈ P(X). ker(ψ) = P(X). All left is showing ψ is surjective. Let L be an invertible sheaf, then I ∼ = L. we construct Let σ ∈ L(V) an invertible for V open fractional and dense. ideal I (Note such we that
cannot simply take I(U) = {f V = X ∈ k(X)|f as there may be · σ = τ ∈ L(U)}
no ∼
= global L sections.) Then
via multiplication by σ.
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Motivation
It is a classical question to determine the sets of zeros and poles of rational (”meromorphic”) functions on a given variety.
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It is a classical question to determine the sets of zeros and poles of rational (”meromorphic”) functions on a given variety. We want to determine the local/global relationship: given zero/pole configurations on an open covering, are these configurations induced from a global rational function?

Motivation
It is a classical question to determine the sets of zeros and poles of rational (”meromorphic”) functions on a given variety. We want to determine the local/global relationship: given zero/pole configurations on an open covering, are these configurations induced from a global rational function? (E.g. in complex analysis: Mittag-Leffler, Weierstrass product)
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closed subsets of codimension one,

What is exactly a “configuration”?
▶ A Weil divisor: Formal Z-linear combinations of irreducible
closed subsets of codimension one, where the coefficient says whether we want to see the corresponding subset as a zero locus of some multiplicity, or as the locus of poles of some order.

What is exactly a “configuration”?
▶ A Weil divisor: Formal Z-linear combinations of irreducible
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work and we need the Cartier divisor.
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X
)× — u is a unit, so f and g should be thought of having the same zero/pole configuration.

What is exactly a “configuration”?
▶ A Weil divisor: Formal Z-linear combinations of irreducible
closed subsets of codimension one, where the coefficient says whether we want to see the corresponding subset as a zero locus of some multiplicity, or as the locus of poles of some order. ▶ For a general, non-smooth variety, the Weil divisor does not work and we need the Cartier divisor. Here we abstractly define a “configuration” as an equivalence class of rational functions where f ∼ g on some open subset U iff f = ug for some u ∈ Γ(U,O
X
)× — u is a unit, so f and g should be thought of having the same zero/pole configuration. On smooth varieties, the two notions are equivalent.
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Another motivation for studying divisors is that divisors generalize codimension-1 subvarieties. codimension-1 subvarieties are understood much better than higher-codimension subvarieties. This happens in both global and local ways.
▶ Globally, every codimension-1 subvariety of Pn is defined by
one homogeneous polynomial; by contrast, a codimension-r subvariety need not be definable by only r equations when r > 1. ▶ Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher codimension.

Another motivation for studying divisors is that divisors generalize codimension-1 subvarieties. codimension-1 subvarieties are understood much better than higher-codimension subvarieties. This happens in both global and local ways.
▶ Globally, every codimension-1 subvariety of Pn is defined by
one homogeneous polynomial; by contrast, a codimension-r subvariety need not be definable by only r equations when r > 1. ▶ Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher codimension.
On singular varieties we need to distinguish between the two:
▶ codimension-1 subvarieties = Weil divisors ▶ varieties which can locally be defined by one equation =
Cartier divisors

We will also see a correspondence between divisors and invertible sheaves, which are by definition line bundles;

We will also see a correspondence between divisors and invertible sheaves, which are by definition line bundles; Thus much of algebraic geometry studies an arbitrary variety by analyzing its codimension-1 subvarieties and the corresponding line bundles.

Weil Divisors
Definition Let X be an irreducible variety. An irreducible Weil divisor on X is an irreducible subvariety D with dimD = dimX − 1. The group Div
W (X) divisors. is the free abelian group Thus a Weil divisor is generated of the form by D =
∑ the n i irreducible
D
i
for n
i
∈ Z. A divisor D is effective if n
i
≥ 0∀i.

Cartier Divisors
Let X be an irreducible variety. The Cartier divisor group, Div
C
(X), consists of subvarieties locally given by a nonzero rational function defined up to multiplication by a nonvanishing function. Definition An element of Div
C
(X) is given by an open cover U
i
together with rational functions f
i
= 0 on U
i
, such that on the intersection U
i
∩ U
j
we have f
i
= phi
ij
f
j
for some φ
ij
∈ O∗(U i
∩ U
j
). A more abstract way of viewing this is as Div
C (X) signifies being nowhere zero.
= Γ(Rat* X
/O* X
), where ∗

Cartier Divisors
Let X be an irreducible variety. The Cartier divisor group, Div
C
(X), consists of subvarieties locally given by a nonzero rational function defined up to multiplication by a nonvanishing function. Definition An element of Div
C
(X) is given by an open cover U
i
together with rational functions f
i
= 0 on U
i
, such that on the intersection U
i
∩ U
j
we have f
i
= phi
ij
f
j
for some φ
ij
∈ O∗(U i
∩ U
j
). A more abstract way of viewing this is as Div
C (X) signifies being nowhere zero.
= Γ(Rat* X
/O* X
), where ∗

Claim. The Cartier divisors are equivalent to the category of invertible sheaves. Indeed, match a divisor D to the sheaf defined locally by f
i
O
X
which is invertible, and conversely an invertible sheaf has local data defining a divisor.

Claim. The Cartier divisors are equivalent to the category of invertible sheaves. Indeed, match a divisor D to the sheaf defined locally by f
i
O
X
which is invertible, and conversely an invertible sheaf has local data defining a divisor. Claim. There is an exact sequence Γ(K) → Div
C
(X) = IFI(X) → Pic(X). Indeed, the latter morphism is just L → [L, and it is surjective: Choose a local trivialization of a given isomorphism L sections of K∗/O∗ ⊗
O
x isomorphic K ∼ = line K. bundle Now for L to O X
, then we have an the kernel: it consists of , which is the set of nowhere zero rational functions.

Reduction in smooth case
We saw in a previous lecture that for smooth varieties the local rings O
X,x
are regular local rings. Theorem (Auslander, Buchsbaum, 1959) Any local regular ring (R,m) is UFD.
(Sketch to give a sense of the difficulty).
▶ Let k = R/m, then the completion of R is isomorphic to
k[[x
1
, ..,x
d
]] where d = dimR. ▶ For Noetherian local rings, if the completion is UFD then the
ring itself is UFD. ▶ k[[x
1
, ..,x
d
]] is UFD.
Theorem Let X be a locally factorial variety, meaning that all O
X,x
are regular local rings. Then Div
C
(X) = Div
W
(X).

Proof of Weil = Cartier
Consider the map Div
W
(X) given by D ↦→ O(−D) ⊆ O
X
(X) → Div
C ⊆ K, where O(−D) denotes the sheaf of functions vanishing on D.

Proof of Weil = Cartier
Consider the map Div
W
(X) given by D ↦→ O(−D) ⊆ O
X
(X) → Div
C ⊆ K, where O(−D) denotes the sheaf of functions vanishing on D.
▶ O(−D) is locally principal. In a UFD, every prime ideal of
height one is principal: O(−D) is locally induced by a prime ideal of height 1 by definition, so when we pass to the stalk it is induced by (f
x
) and O(−D) only differ on components that do not pass x (as they agree on the stalk), which can only happen on finitely many other components, so after shrinking our local neighborhood we can have (f
x
) for some f
x
∈ K. Now (f
x
) agreeing with O(−D) on some neighborhood.

Proof of Weil = Cartier
Consider the map Div
W
(X) given by D ↦→ O(−D) ⊆ O
X
(X) → Div
C ⊆ K, where O(−D) denotes the sheaf of functions vanishing on D.
▶ O(−D) is locally principal. In a UFD, every prime ideal of
height one is principal: O(−D) is locally induced by a prime ideal of height 1 by definition, so when we pass to the stalk it is induced by (f
x
) and O(−D) only differ on components that do not pass x (as they agree on the stalk), which can only happen on finitely many other components, so after shrinking our local neighborhood we can have (f
x
) for some f
x
∈ K. Now (f
x
) agreeing with O(−D) on some neighborhood. ▶ The map D ↦→ O(−D) is injective: enough to see that
nD ↦→ 0 does not hold for n > 0, but the image is O(−D)n = 0.

Proof Cont.
▶ The map is surjective: Assume first L ⊂ O, we want to find
a Weil divisor D ↦→ L . We can asssume that we know this for all bigger L , L ⊂ L ⊂ O
X
. Working locally, there is some L = (f ). Let D be an irreducible component of D(f ), O(−D) ⊃ L. Let (φ) = L, then φ−1L ⊃ L comes from some D , and we have D + D ↦→ L.

Proof Cont.
▶ The map is surjective: Assume first L ⊂ O, we want to find
a Weil divisor D ↦→ L . We can asssume that we know this for all bigger L , L ⊂ L ⊂ O
X
. Working locally, there is some L = (f ). Let D be an irreducible component of D(f ), O(−D) ⊃ L. Let (φ) = L, then φ−1L ⊃ L comes from some D , and we have D + D ↦→ L. Finally, in the general case where we don’t assume L ⊂ O, we still have locally L first case we know that = there (
g h
) are for D some ↦→ α,D g,h ∈ ↦→ O(U). β, so By the
all in all D − D ↦→ L .
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Pic(An)
Example
Pic(A
n
)=0
. Indeed: Proposition. Let A be a UFD. Then every polynomial ring A[x
1
, ...,x
n
] is also a UFD, and for every multiplicative set the localization S−1A is a UFD. Thus An is locally factorial, and we conclude by noting that every variety of codimension 1 is given by a single polynomial, so is principal. Cn is a contractible manifold, and hence has no nontrivial topological vector bundles, which is analogous to this result.
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Pic(An)
Example
Pic(A
n
)=0
. Indeed: Proposition. Let A be a UFD. Then every polynomial ring A[x
1
] is also a UFD, and for every multiplicative set the localization S−1A is a UFD. Thus An is locally factorial, and we conclude by noting that every variety of codimension 1 is given by a single polynomial, so is principal. Cn is a contractible manifold, and hence has no nontrivial topological vector bundles, which is analogous to this result. So is it true that An has no nontrivial vector bundles? This is the Quillen-Suslin Theorem, formerly known as Serre’s Conjecture, part of Quillen’s work leading to his 1978 Fields Medal.
, ...,x
n

Pic(Pn)
Example
Pic(P
n
) = Z
. Concretely, this means that every codimension-1 subvariety of Pn is defined by the vanishing of a single homogeneous polynomial. Indeed, O(d
1
) ⊗ Z O(d
⊆ Pic(Pn) 2 )
∼ = O(d because +1+ d
we 2
). have
Moreover these are pairwise nonisomorphic: enough to show specific two are nonisomrphic, but O is not isomorphic to O(d) for negative d since there the global sections of O(d) vanish, as we saw. Now for the other inclusion, let D be of codimension 1, then there is homogeneous a homogeneous ideal polynomial of D, so O(−D)
p of degree ∼
= O(−d) d that by generates multiplication the
by p.
