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Some notation remarks: In this lecture, we will write k[X] instead of
A(X), so it will be easier to distinguish from the much often used notation A(X),
where A is a sheaf of modules. Also, for a sheaf F, I will interchangeably use
the notations I'(U, F) and F(U), which are the same. Finally, for an algebraic
function f, D(f) is the domain where f is nonzero.

1 Basic Definitions

Reminder 1. Let X be a topological space. A sheaf of rings A over X is a
sheaf of X such that for any open U C X, A(U) is a ring, and the restrictions
are ring homomorphisms.

Definition 1. Let A be a sheaf of rings over a topological space X. A sheaf of
A-modules M is an abelian sheaf such that for any open U C X the set M(U) is
an A(U)-module, and restrictions satisfy multiplication - (a-m)|y = aly - m|y.

Example 1. A% for some set of indexes I, with multiplication and addition
being the obvious ones and we additionally require (3;),.; to locally only have
finitely many non-zero entries. These are free A-modules, and if |I| < oo then
|I] is called the rank of A%

Definition 2. An A-module M is locally free if there exists an open cover
X = U X, such that M|x, is a free A|x,-module. If all M|x,’s have the same
finite rank n, then M is said to have rank n. If n = 1 then M is said to be
invertible.

Definition 3. An A-module is said to be quasi-coherent if it is locally given by
generators and relations - i.e., there is an open cover X = |JX; such that for
any ¢ there is an exact relation of A|x,-modules:

AY =AY - M|x, =0

Definition 4. Now, let A be a sheaf of X, and let M be an A(X)-module.
We may define an A-module M ® 4(x) A by taking the sheaf associated to the
presheaf given by M ® 4(x) A(U) for any open U C X.

An exact sequence M7 — My — M3 — 0 gives us an exact sequence:
M @px) A= My @x) A= M3z @4x)A—0
Then, since on noetherian spaces we have AP L(U) = @ A(U), we get that
icl

on a noetherian space we can write a quasicoherent sheaf of A-modules as locally
having the form M; ® 4x,) (Alx,) for some A(X;)-module M;.




2 Quasi-coherent Sheaves on Affine Varieties

Let M be a k[X]-module. Denote M ® 4(x) Ox as M
Proposition 1. 1. M 2T'(X, M)
2. For any f € k[X], My = D(D(f), M).

3. Foranyzr e X, M, = (M) , where n is the ideal of vanishing function
at x in k[X].
Proof. 3. M, = lim (M @yx) Ox (U)) = M @yx) Oxe = M @px) [ X, =

zeU ’
M, . (Recall k[X],, = Oxz).

2. Use the homomorphism 1 : M) — T'(D(f), M) given by zﬁ(%) =m® %
Let us show that it is an isomorphism:

e Injectivity: Assume %% is in the kernel. Then fm ®1=0.So0 fl'm=0
for some [ € N. Therefore m = 0.

e Surjectivity: Let m ® s € T'(D(f), M). By definition, we can cover
D(f) with open sets D(g;), where s = 2 in D(g;).
Now, observe that D(f) is covered by finitely many D(g;)’s - D(f) C
UD(g;) ifand only if V((f)) 2 NV ((g:)) =V (3_(g:)). By Hilbert’s
nullestensatz, this is equivalent to saying that f € /> (g;), or equiv-
alently f™ € > (g;). So for some n € N, f can be expressed as a
finite sum f™ =3 a;¢;, and thus only a finite number of g;’s will do.
Now, for some ¢, j, there are two elements of D(g;,)ND(g;) = D(gi9;),
namely, a;/g; and a;/g;, which s is equal to. Then, for some n:

(9i9;)" (gjai — gia;) =0

Since there are finitely many such 4, j’s, we may pick some n that is
large enough to work for all. Then:

97 (grai) = g7 (g7 ay)

Then we may replace g; by gl”'l and a; by gl'a; and still get s = a;/g;
on D(g;), only now gja; = g;a; for all ¢, j. Now, write f™ = b;g;.
Denote a = »_ b;a;, so for each j we have:

gja = Zbiaigj = Zbigiaj = f"a;
So s = a;/g; = a/f" and therefore m ® s = ¢ (‘}—T), so we have
surjectivity and injectivity, and therefore an isomorphism.

1. This comes directly from 2 by putting f = 1.

Corollary 1. M is quasi-coherent.

Next, we wish to prove the converse - any quasi-coherent O x-module is of
the form M for some k[X]-module M. First we will need a few definitions:



Definition 5. Let F be a sheaf over a topological space X, and let U be an
open subset of X. Then we define a new sheaf yF by ¢ F(V) =FUNV).

Definition 6. Let X be a variety, and let f be a regular function on X. Let F
be an Ox-module. Then we have a directed system:

]—':%}"%l}‘%...i}'%...

f fr
sending fi(oz) to #(fa) We denote F(y) = hgfi]:

Proposition 2. Let F be an Ox-module on an affine variety. Then the follow-
ing conditions are equivalent:

1. F is quasi-coherent.
2. For all f € k[X], there is an isomorphism h : F(r)y = ps)F.
3. F = M for some k[X]-module M.

Proof. 3 = 1 is what we proved earlier. We will prove, then, 1 = 2 and 2 < 3:

Assume 1. Then X has an open cover | J D(g;), where F|pg,y = M|;®@r[p(g:)]

Ox(D(g:)), so F locally has the form of M; for some k[D(g;)] module M;. Then
if we prove 3 = 2, we will have proved 1 = 2. Assume 3, then.

Lemma 3. IfU C X is open, then F5(U) = (F(U))(y)-

Proof. For directed systems of abelian sheaves on a noetherian space we know

that pre—lim F; = lim F;, and in our case FpU) = lim (fi]:) (U) = liﬂfi(U)
and (F(U))(s) = limg (- F(V)) = pre — li Fy(U). O

Now, let D(g) be an open subset of X. Then:

L(D(g), My)) = T(D(g), M)(s) = (M(w)(f) = Mz

=TI(D(fg), M) = T(D(9) N D(f), M) =T(D(g), p(s)M)

So we get an isomorphism between the two sheaves.
Now, let us prove 2 = 3. Assume 2, and define M = I'(X, F). Then for any

algebraic g over X, we have I'(D(g), M) = M, but also:

By definition
So we have an isomorphism between the two sheaves, proving 2 = 3. O

Propositions 1 and 2 suggest that the functor ~ from the category of k[X]-
modules to the category of quasi-coherent sheaves on X is inverse to the functor
I'(X, —) - so we have an equivalence of categories. We may also show exactness
of this equivalence:

Proposition 4. 1. The functor ~ is exact.



2. The functor I'(X, —) is exact.

Proof. 1. Assume an exact sequence of k[X]-modules 0 — M; — M; —
M3 — 0. Then (by exactness of localization) all stalks at each point
z € X give an exact sequence - 0 — My, — My, — M3z, — 0is
exact. Thus we get an exact sequence of abelian sheaves.

2. Assume 0 — F; — Fo — F3 — 0 is an exact sequence of quasi-coherent
Ox-modules. To check right-exactness, otherwise we generally have an
exact sequence of k[X]-modules:

NX, ) -»T(X,F) -T(X,F3) > M—=0

For some module M. But applying ~ we get that M = 0, so M =
(X, M) =0. Thus we get right-exactness, and left exactness is achieved
in the same way.

O

3 Coherent Sheaves

Definition 7. Let A be a sheaf of rings on a topological space X. An A-module
M is called coherent if it locally has a presentation A@I — Ag‘] - M|yp =0
with finite I, J.

If X is a variety, an Ox-module M is coherent if it locally has the form M
for a finitely generated k[U]-module M, for an open subvariety U of X - this
comes from what we proved earlier about quasi-coherent modules over affine
varieties (and the fact that a variety has an open cover of affine varieties).

Lemma 5. Let M be a k[X]-module where X is an affine variety. Then M s
coherent if and only if M is a finitely generated k[X]-module.

Proof. If M is finitely generated, then clearly M is coherent. Now, if M is
coherent, then we have a finite open cover X = |J D(f;) for some regular f;’s,
where M|D(fi) = N, for some finitely generated E[X](,)-modules N;. Now,
N; = D(D(f;), M) = M(y,), so for each i we have a finite number of elements

M;; = ;Z—”] € M(y,) that span N;. Then define M; to be the submodule of M

generated by the finitely many m; ;. By construction, the inclusion « : M, — M
is locally surjective, so we get that « is an isomorphism and hence I'(X, ) :
M; — M is an isomorphism. O

Definition 8. Let X be a variety, and let x € X. Define Fl|, = F/m,F,
(where my, is the maximal ideal corresponding to x).

Let o be a section of F over some neighborhood of . Then the image of o, in
Flg is denoted by o(z).

Lemma 6. If F is a coherent sheaf on a variety X, and x € X, then F|, =0
if and only if F|ly = 0 for some neighborhood U of x.

Proof. If F|y = 0 for some neighborhood of x then the statement is clear.
Otherwise (since this is a local statement) assume X is affine and then F =
M for some finitely generated k[X]-module M. We claim Fl|, = M/m,M -



this is because M/m,M is a k[X] module on which k[X]\m, acts invertibly,
so (M/mzM)m, = M/m;M, but also (M/m;M)m, = My, /memeMy,, =
Fu/myFy. Thus M = m, M.

Recall Nakayama’s lemma - if M is a finitely generated module over a ring A,
and [ is an ideal of A such that IM = 0, then there some a € A such that
(1+a)M = 0. In our case, this means that there is a regular f that does not
vanish on z such that fM = 0. Then taking D(f), we get a neighborhood of x

on which ]:|D(f) ZM(f) =0. O
Corollary 2. In the conditions of the lemma:
1. Letoy,...,o, be sections of F. Then the homomorphism 1) : (’);‘?” — F s
surjective given by sending e; to o; is surjective if and only if o1(x), ..., on(x)
span F|z.

2. The function x — dimg (F|) is upper semi-continuous - the subsets {x € X | dimg(F|,) > m}
are closed.

8. This function has constant value m if and only if F is locally free of rank
m.

Proof. 1. Apply the lemma to the cokernel of ¢ - Cokv|, = (F/Im)|, =
Flo/Imp = F|,/Span(o;(z)).

2. Let n = dimy F|,. We wish to show that the set {y € X | dimy, F|, < n}
contains a neighborhood of z. Choose, now, a basis o1 (), ..., o (z) which
spans F|, (where o1, ..., 0, are sections over a neighborhood of z). By 1,
there is some neighborhood of x such that for each y in that neighborhood,
01(y), - ..,0on(y) span Fl,, so dim F|, < n. Thus we get 2.

3. If F is locally free of rank m, we clearly get what we wanted. In the
other direction, let o1,...,0, be local sections near a point = such that
o1(x),...,0n(x) is a basis for F|,. Then by 1 we have a surjection ¥ :
Ogm — Fl. for some open neighborhood U of z. By our dimension
assumption, |, is an isomorphism for all y € U. Now, let (f1,..., fm) be
a section of ker ¢). Then by definition f;(y) = 0 for all i and for all y € U,
so we must have f; = 0, so kery = 0, so 9 is an isomorphism and we get
our claim.

O

4 Quasi-coherent Sheaves on Projective Vari-
eties

Definition 9. Let m,n be integers, and U be open in P". Then we define
Opn (m)(U) to be the set of regular functions on 7~ 1U which are homogeneous of
degree m (7 : A"*1\{0} — P" being the projection). Note that Opn (0) = Opn.
We have homomorphisms Opn(m1) & Opn(ma) — Opn(my + ma) given by
f®g — fg, which are isomorphisms. Notice that since Opn (m) s, 20y = 27" Opn,
so Opn (m) is invertible.

For closed subvariety of P* X, we define Ox(m) = Opn(m)|x. generally, if
F an Ox-module, we define F(m) = F Qo Ox(m).



Now let X be a projective variety in P, and let C(X) be the cone over X.
Then S(X) is a graded ring, and let M be a graded module over S(X) - we
wish to define a sheaf M over X.

Recall we have the old sheaf My» over C(X). Now, define for any open U
in X M(U) = (M(zx—'U))o where 7~ is the lifting of U into C(X). Then,
by construction, we get that M is quasi-coherent, and coherent if M is finitely
generated.

Theorem 7. Any quasi-coherent sheaf F on a projective variety X is of the
form M. If F is coherent then it is of the form M where M is a finitely generated
S(X)-module.

Proof. Let us have a quasi-coherent sheaf F on a projective variety X. We wish
to construct a graded module over S(X) that will satisfy M = F. Consider:

M = EPr(x, F(n))

n>0

We claim that M & F. By the equivalence we saw on affine varieties we
know that S(X) = @ T(X,0x(n)) - so M is a graded module over S(X).
n>0

Now, we will prove the statement locally. Let f be a homogeneous regular
[0

function of C'(X) of degree d. Since (My))o is built by elements  for o €
(X, F(id)), we get:

So indeed F = M.

Now, if F is coherent then F = U]\Z/Z where the M;’s are finitely generated
graded S(X)-submodules of M. Since M; + M; = (M; + M;) (and the fact
that F is coherent, and thus is locally M with M finitely generated module
on a coordinate ring of an open affine variety), we get by the ascending chain
condition (as X is compact) that F must equal some M;, finishing our proof. [J

Corollary 3. If F is a coherent sheaf on a projective variety X then there exists
some ng such that we have a surjection OF™ — F(n) for any finite m and any
n 2 no-.

Proof. Just take ng to be the maximal number of generators of M, and the
statement is obvious. O



