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1 Zariski Cotangent Space

Insert Motivation

Definition 1. Let us have some variety X. Let us have some x € X, with local
ring Ox,, and maximal ideal m,. Then the finite dimensional vector space
my/m2 is called the Zariski cotangent space of X at x, and denoted Cot,(X).

Definition 2. Let f be a germ in Ox 5. The differential df |, € Cot,(X) of f at
xis (f — f(x)) mod m?2 (intuitively,this definition lets us study the first-order
variation of f at x - which is what we want from a definition of the differential).

Claim 1. d — |, : Ox , — Cot,(X) satisfies the following properties:
1. dconstant|, =0
2. d(f +9)le = df|o +dgla
3. d(f - 9l = f(x)dgla + g(x)df |2
The proof is omitted here, but is completely straightforward.
Lemma 2. 1. dimy Cot,(X) > dim, X
2. Cot(y, 4,)(X1 X Xo) = Coty, (X1) ® Coty, (X2)
3. If X is affine and n, is the mazximal ideal of k[X] in corresponding to x
then Coty(X) = ng/n2.
Proof. 1. We already saw this in the lecture on nonsingular varieties.
3. Any element k[X] — n, acts invertibly on n, /n2. Therefore:
(na/n2) = (nafr2),, = (no,, /n2,) = ma/m?
2. This is a local argument, so we may assume that X7, X5 are affine. Then
X1 x X5 is affine and:

COt(zl’m)(Xl X XQ) = N(ml’m)/’IlQ

(z1,72)

= N, @ k[Xo] + k[X1] ® g, / (N, @ K[Xo] + K[X1] @ 1)
= nml/nil kOk® ’I’Lm2/ni2

= Coty, (X1) ® Coty, (X2)

O

Recall we call a variety smooth (or nonsingular) if dim Cot,(X) = dim X.



2 The Sheaf of Differentials

Definition 3. Let A be a k-algebra and M be an A-module. Then a derivation
D : A— M over k is a function satisfying:

1. D(a+b) = D(a) + D(b).
2. D(ab) = aD(b) + bD(a).
3. Forall k € K, D(k) = 0.

Definition 4. Let X be a variety. Define € : k[X] ®; k[X] by e(b® b') = b/,
and let I = kere. Then we define the module of (Kahler) differentials of k[X]
over k by Q[X] = I/I?. We have a derivation, then, d : k[X] — Q[X] given by:

b+ 1®b—b®1+ I
Proposition 3. Q[X] is generated by {df | f € k[X]}.

Proof. Tt suffices to show that I is generated by elements of the form 1® f— f®1
where f € k[X]. For f,g € k[X] we have:

fRg=fg1+f-1®g—-9g®f)

And hence:

Y fiwg = (Zfigi) ®1+ (Zfi(l®gi_gi®l)>

But being in I means that > f;g; = 0, and therefore we get our claim. O

Proposition 4. We have the following universal property - if 0 is another
derivation of k[X] over k into some k[X]|-module M, then there is a unique
homomorphism of modules € : Q[X] — M with D = £od.

Proof. The previous proposition gives us uniqueness - if ¢, /s> both satisfy the
claim, then 1(g) = 3 (1 (df)) = 52 D(f) = fa(g).

For existence, set B = k[X]| ®, k[X] and look at the k[X]-module A& M. Then
look and the homomorphism ¢ : B — A& M:

o(f @g)=(fg,f D(g))

Notice that I? C ker ¢ (since ¢(f1 fa®g192) = (f1f29192, f1f2 - (91 D(g2) + g2 - D(g1))) =
0), we get an induced homomorphism of k[X]-algebras ¢' : B/I? — A& M with:

loy—y®1w (0,D(y))

Therefore having £ be the restriction of ¢’ to Q[X] via the second coordinate
yields the desired result. O

Definition 5. Let X be a variety. We have the diagonal morphism A : X —
X xX. The sheaf of differentials of X, Qx, is the (sheafification of) the pullback
A*(Z/T?), where T is the ideal sheaf of the diagonal in X x X, i.e. the sheaf of
functions that vanish on A(X). We also define the (easily seen to be) derivation
d: Ox — Qx sending g to (g(x1) — g(z2)) mod Z?.



Proposition 5. If X is affine, then Qx = Q[iX']

Proof. On any open subset U x U C X x X, where U C X is open, and assume
B is its coordinate ring. We have that U x U is isomorphic to the affine variety
corresponding to B® B. Now, A(X)N (U x U) is the closed subvariety defined
by the kernel of the multiplication homomorphism B ® B — B. Therefore
Z/I% = (I/I?) on any open set, so globally Z/Z2 = (I/12). O

Claim 6. Qx|, = Cot,(X).

Proof. As this is a local claim, assume that X is affine, and let n be a maximal
ideal of = in k[X]. Then we want an isomorphism Q[X] ®yx] k[X]/n ~ n/n?.
Now, recall that d — |, : k[X] — n/n? is a derivation, and hence we have a
unique k[X]-linear mapping ¢ : Q[X] — n/n? with df|, = £(df). We get, then,
a k-linear mapping £ : Q[X] ®yx] k[X]/n — n/n® (with £(df @ u) = ((udf))
satisfying df |, = £(df ®1). Now, the mapping k[X]| — Q[X]|®yx)k[X]/n defined
by f — df ® 1 is also a derivation. Therefore there is a unique linear mapping
m :n/n? — Q[X] ®yx) k[X]/n with m(df|,) = df ® 1. £ and m are inverse to
each other, so we are done O]

Claim 7. Let f be a reqular function on A™. Then df = ax —dX+- - +ax Of 4X,,.

Proof. Just write f = Zail,”_inxil ...z’ and compute by induction and the
formal rules of a derivation. O

We now wish to calculate Qpn. Define 7 : U = A" — {0} — P" to be the
projection, then we have an induced homomorphism 7* : Qprn — Qp. Then 7*
identifies Qp» with a subsheaf of <@ dX; - Opn(—1). Now, we may also define

1<i<n
a: @ dX; Opn(—1) = Opr by a(dX;-0) =X, - 0.

1<i<n
Claim 8. (Euler’s Exact Sequence) We have an exact sequence:

05 5 @ dXi Opa(—1) S Opa — 0

1<i<n

Proof. The proof will not be 100 percent rigorous, so apologies in advance. Ex-

actness at Qpn and at Op» are immediate. For exactness at @& dX;-Opn(—1),
1<i<n

let us compute explicitly 7*. For f = fid <§—é) + o+ frd (

s ), we have:

Xl fl fn
f=dXo | —= cee— n dX dX,
7Tf 0( ngl X2f>+ 1X0 -+ X()
Then one easily checks that an*f = 0, so Im7* C ker a. On the other hand, if
0 (godXo + -+ + gudX,) = 0, then take f = Xogid (32) ++ -+ Xognd (32),
so ker o = Im7*. O




