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1 Affine Varieties

1.1 Algebraic sets

Notation k is an algebraically closed field. An
k denotes the affine n-space

which is the set of all n-tuples of elements of k. An element of An is called a
point. R = k [x1, ..., xn].

Definition Let T ⊆ R be some subset. Then

Z (T ) = V (T ) = {P ∈ An|f (P ) = 0 for all f ∈ T}

A subset of An that is equal to V (T ) for some T ⊆ R is called algebraic or
affine algebraic set.

Proposition

1. V (T ) = V (〈T 〉) where 〈T 〉 is the ideal generated by T in R (From now
on we are interested only in ideals).

2. If I1 ⊆ I2 ⊆ R are ideals then V (I2) ⊆ V (I1).

3. If I1, I2 ⊆ R are ideals then V (I1I2) = V (I1) ∪ V (I2).

4. If Iα ⊆ R is a collection of ideals then V (
∑
Iα) =

⋂
V (Iα).

5. The empty set and the whole set are algebraic.

Proof

1. If f (P ) = 0 and g (P ) = 0 then (f + g) (P ) = 0 and (hf) (P ) = 0 for all
h ∈ R.

2. If f (P ) = 0 for all f ∈ I2 then in particular f (P ) = 0 for all f ∈ I1 so
P ∈ V (I1).
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3. Since I1I2 ⊆ I1 V (I1) ⊆ V (I1I2) and similarly for I2 so V (I1)∪ V (I2) ⊆
V (I1I2). In the other direction, if P ∈ V (I1I2) and P /∈ V (I1) then exist
f ∈ I1 s.t. f (P ) 6= 0 but then since (fg) (P ) = 0 for all g ∈ I2, g (P ) = 0
for all such g so P ∈ I2.

4. Since Iβ ⊆
∑
Iα for all β, V (

∑
Iα) ⊆

⋂
V (Iα). Conversely if P ∈⋂

V (Iα) and f ∈
∑
Iα then f =

∑
fα with fα ∈ Iα then f (P ) =∑

fα (P ) = 0 so P ∈ V (
∑
Iα).

5. ∅ = V (1), An = V (0).

Corollary The algebraic sets form the closed sets of a topology which called
the Zariski topology on An.

Example The Zariski topology on A1 is the co-finite one. Indeed, since k [x] is
a PID, any algebraic set is cut out by one polynomial which have finite number
of roots.

1.2 Ideal of a set and coordinate ring

Definition Let Y ⊆ An then

I (Y ) = {f ∈ R|f (P ) = 0 for all P ∈ Y }

it is called the ideal of Y .

Proposition

1. I (Y ) is an ideal.

2. If Y1 ⊆ Y2 then I (Y2) ⊆ I (Y1).

3. Let Y1, Y2 ⊆ An then I (Y1 ∪ Y2) = I (Y1) ∩ I (Y2).

4. For any Y ⊆ An V (I (Y )) = Y , the closure of Y with respect to the
Zariski topology.

5. For an ideal J ⊆ R, I (V (J)) =
√
J the radical of J .

Proof

1. Direct calculation.

2. The same as the analogous proposition for V .

3. I (Y1 ∪ Y2) ⊆ I (Y1)∩I (Y2) follows from 2. Conversely, if f ∈ I (Y1)∩I (Y2)
and P ∈ Y1 ∪Y2 then WLOG P ∈ Y1 and thus f (P ) = 0 since f ∈ I (Y1).
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4. Obviously, Y ⊆ V (I (Y )) and since V (I (Y )) is closed, Y ⊆ V (I (Y )). Let
W be a set containing Y . Then W = V (J) for some ideal J . Applying I
we get

J ⊆ I (V (J)) ⊆ I (Y )

and using the fact V is inclusion reversing, V (I (Y )) ⊆ V (J) = W so
V (I (Y )) = Y .

5. This is one of the formulations of Hilbert’s Nullstellensatz.

Remarks

• We get that I, V form one-to-one inclusion reversing correspondence be-
tween closed subsets of An and radical ideals of R.

• If k is not algebraically closed, the last part of the proposition does not
hold. For example, if k = R, V

(
x2 + 1

)
= ∅, I

(
V
(
x2 + 1

))
= k [x] but√

x2 + 1 =
(
x2 + 1

)
.

• We get that I (Y1 ∩ Y2) =
√
I (Y1) + I (Y2). Indeed,√

I (Y1) + I (Y2) = IV (I (Y1) + I (Y2)) = I (V I (Y1) + V I (Y2)) = I (Y1 ∩ Y2)

Example Let n = 2 Y1 = V
(
x2 − x21

)
and Y2 = V (x2). Then the intersection

Y1 ∩ Y2 is the origin (x1, x2) = (0, 0) and I (Y1 ∩ Y2) = (x1, x2). On the other
hand, I (Y1) + I (Y2) =

(
x2 − x21

)
+ (x2) =

(
x2, x

2
1

)
.

Definition If Y is affine algebraic set then A (Y ) = Γ (Y ) = R/I(Y ) is called
the coordinate ring of Y .

Remarks

• Essentially by the Nullstellensatz, A (Y ) is the ring of functions from Y
to k which are restrictions of polynomial functions from An to k.

• A (Y ) is finitely generated, reduced k-algebra. Conversely, if B is finitely
generate, reduced, k-algebra, B ∼= k [x1, ..., xn] /J for radical J and then
B ∼= A (V (J)).

1.3 Irreducibility

Definition A topological space X is called irreducible if it cannot be expressed
as the union X = Y1∪Y2 of two closed proper subsets. A subset of a topological
space is called irreducible if it is irreducible in the subspace topology.

Example A1 is irreducible since any proper subsets are finite but A1 is infi-
nite.
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Example V (xy) ⊆ A2 is not irreducible since it is the union V (x) ∪ V (y).

Proposition

1. X is irreducible iff every two non empty open subsets intersect.

2. X is irreducible iff every non empty open set is dense.

3. If U ⊆ X is open subset of irreducible space X, U is irreducible.

4. If Y ⊆ X is irreducible then Y is irreducible.

Proof

1. This is just taking complements on the definition.

2. This is a restatement of 1.

3. If V ⊆ U is non empty and open, V is open in X so it is dense there so it
is dense in U and thus U is irreducible.

4. If U ⊆ Y is open and non empty then U ∩ Y is open in Y so it is dense
there and thus U is dense in Y meaning that Y is irreducible.

Definition An irreducible closed subset of An is called affine variety. An
open subset of an affine variety is called quasi-affine variety.

Remark In some literature any affine algebraic set is called variety.

Proposition In the correspondence between closed subsets of An and radical
ideals of R, prime ideals correspond to irreducible closed sets and maximal ideals
correspond to points.

Proof Let Y be irreducible, and let fg ∈ I (Y ). Then (Y ∩ V (f))∪(Y ∩ V (g)) =
Y since Y is irreducible we can assume WLOG that Y ∩ V (f) = Y meaning
that Y ⊆ V (f) and so f ∈ I (Y ). Conversely, let J ⊆ R be prime ideal and let
V (J) = Y1 ∪ Y2 where Y1, Y2 closed. Then

J =
√
J = I (V (J)) = I (Y1 ∪ Y2) = I (Y1) ∩ I (Y2)

so either J = I (Y1) or J = I (Y2) and thus V (J) = Y1 or V (J) = Y2 meaning
that V (J) is irreducible.
If P ∈ An is a point then I (P ) is the kernel of the surjective morphism R→ k,
f 7→ f (P ) and so maximal. Conversely, if J ⊆ R maximal, V (J) is non empty
by the Nullstellensatz, let P ∈ V (J). Then J ⊆ I (P ) and so J = I (P ).

Corollary Y is irreducible iff A (Y ) is integral domain. Y is a point iff A (Y )
is a field.
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Example An is irreducible since R is an integral domain.

Example If f is an irreducible polynomial in R. Then f generates a prime
ideal (since R is an UFD) so V (f) is an affine variety. It is called a curve if
n = 2, a surface if n = 3 and hyper-surface if n > 3.

1.4 Noether condition

Definition A topological space X is called Noetherian if every descending
chain of closed subsets stabilizes.

Example

• A subset of a noetherian space is noetherian. Indeed if Y ⊇ Y0 ⊇ Y1 ⊇ ...
is a descending chain of closed subsets of Y ⊆ X then Y0 ⊇ Y1 ⊇ ... is
a descending chain of closed subsets of X so it stabilizes. Let n be s.t.
Ym = Yn for all m > n then Ym = Ym ∩ Y = Yn ∩ Y = Yn and so the
original chain stabilizes.

• An is noetherian since R is noetherian ring. Indeed, let Y0 ⊇ Y1 ⊇ ... be
a descending chain of closed subsets of An then I (Y0) ⊆ I (Y1) ⊆ ... is an
ascending chain of ideals in R so it stabilizes and since Yi = V (I (Yi)) so
is the original chain.

• Thus, every affine or pseudo-affine variety is noetherian.

Proposition In a noetherian topological space every closed subset can be ex-
pressed uniquely as a finite (possibly empty) union of irreducible closed subsets
s.t. no one contained in the other.

Proof We will first show existence. Let C be the set of all closed subsets of
X that cannot be represented in such a way. Since X is noetherian if C is not
empty it has a minimal element Y . If Y is not empty since then it can be
represented as the empty union. Y is not irreducible so exist closed Y1, Y2 ( Y
s.t. Y = Y1 ∪ Y2. From the minimality of Y , Y1, Y2 /∈ C so they can be written
as finite unions of irreducible sets and thus so is Y which is a contradiction,
thus C is empty. Now let Y = Y1 ∪ ... ∪ Yr and Y = Y ′

1 ∪ ... ∪ Y ′
r′ be 2 such

representations. Then for each 1 ≤ i ≤ r′ Y ′
i = (Y ′

i ∩ Y1) ∪ ... ∪ (Y ′
i ∩ Yr) so

Y ′
i ⊆ Yj for some j. Similarly, Yj ⊆ Y ′

l for some l. But since for each l 6= i
Yi 6′⊆ Y ′

l , i = l and so Y ′
i = Yj .

Corollary Every affine algebraic set can be expressed uniquely as a union of
varieties no one containing the other. They are called irreducible components.

Proposition A noetherian topological space is quasi-compact (every open
cover has a finite sub-cover). In particular, any quasi-affine variety is quasi-
compact.
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Proof Let U be open cover of X. Since X is noetherian, {
⋃
U0|U0 ⊆ U finite}

has a maximal element V . If P ∈ X then exist U0 ∈ U s.t. P ∈ U0 and then
V ∪ U0 is a finite union of elements in U so U0 ⊆ V and thus P ∈ V .

1.5 Dimension

Definition

• Let X be a topological space. The supremum of all integers n s.t. there
exist a chain of strictly increasing irreducible closed subsets Y0 ( Y1 (
... ( Yn is called the dimension of X. The dimension of an affine or
quasi-affine variety is its dimension as topological space.

• If I ⊆ R is a prime ideal in a ring R its height is defined as the supremum
of n s.t. exist a chain of prime ideals I0 ( I1 ( ... ( In = I. The
dimension (Krull dimension) of R is the supremum of heights of its prime
ideals.

Proposition The dimension of an affine algebraic set Y is the dimension of
A (Y ).

Proof The closed irreducible subsets of Y correspond to the prime ideals of
R containing I (Y ) which correspond to the prime ideals of A (Y ).

Fact Let k be a field and letB be an integral domain which is finitely generated
k-algebra. Then:

1. The dimension of B is equal to the transcendence degree of the field of
fractions K (B) over k.

2. For any prime ideal J ⊆ B

height J + dimB/J = dimB

Proof

1. [Mil13, Theorem 18.17].

2. [Gat14, Lemma 11.6] together with [Gat14, Proposition 11.9].

Proposition dimAn = n.

Proof

dimAn = dim k [x1, ..., xn] = tr. deg. k(x1,...,xn)/k = n

Proposition If Y is quasi-affine variety, dimY = dimY .
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Proof If Y0 ( Y1 ( ... ( Yn is a chain of irreducible closed subsets of Y then
Y0 ( Y1 ( ... ( Yn is such a chain in Y so dimY ≤ dimY . Thus dimY is finite
so we have a maximal chain of irreducible closed subsets Y0 ( Y1 ( ... ( Yn
with n = dimY . Since the chain is maximal, Y0 is a point P . There is a one-
to-one correspondence between irreducible closet subsets of Y containing P and
irreducible closed subsets of Y containing P given by

Z 7→ Z

Z ′ ∩ Y ← [ Z ′

and thus the co-dimension of P in Y is n which means that height I (P ) = n in
A
(
Y
)
. Thus, since A(Y )/I(P ) ∼= k,

dimY = dimA
(
Y
)

= height I (P ) + heightA(Y )/I(P ) = n+ 0 = n

Facts

1. Let A be a noetherian ring, and let f ∈ A be an element which is neither
zero divisor nor a unit. Then every minimal prime ideal containing f has
height 1.

2. A noetherian integral domain A is a UFD iff every prime ideal of height
1 is principal.

Proof

1. [Mil13, Proposition 21.3].

2. One direction is [Mil13, Corollary 21.4]. The other direction (which is
the one we will use) is the easier one and the proof will presented here.
Let A be a noetherian UFD and let I ⊆ A be a prime ideal of height 1.
If I = (0) it is of height 0 (and also principal) let 0 6= a ∈ I. Since A
is an UFD, a = pn1

1 · ... · pnm
m for prime p1, ..., pm and natural exponents

n1, ..., nm. Since I is prime, one of the prime factors of a contained in it,
assume WLOG that p1 ∈ I. Then (p1) ⊆ I is prime ideal, so since I is of
height 1, I = (p) and so principal.

Proposition A variety Y in An has dimension n−1 iff it is the zero set V (f)
of a non constant irreducible polynomial in R.

Proof If f is an irreducible polynomial in R then (f) is prime so V (f) is a
variety and (f) has height 1 so V (f) has dimension n−1. Conversely, if Y ⊆ An

is a variety of dimension n− 1 then I (Y ) has height 1 and since R is an UFD,
I (Y ) is principal. Obviously the generator of I (Y ) has to be irreducible since
I (Y ) is prime.
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