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1 Zariski Cotangent Space

Insert Motivation

Definition 1. Let us have some variety X. Let us have some x ∈ X, with local
ring OX,x and maximal ideal mx. Then the finite dimensional vector space
mx/m

2
x is called the Zariski cotangent space of X at x, and denoted Cotx(X).

Definition 2. Let f be a germ in OX,x. The differential df |x ∈ Cotx(X) of f at
x is (f − f(x)) mod m2

x (intuitively,this definition lets us study the first-order
variation of f at x - which is what we want from a definition of the differential).

Claim 1. d− |x : OX,x → Cotx(X) satisfies the following properties:

1. d constant |x = 0

2. d(f + g)|x = df |x + dg|x
3. d(f · g)|x = f(x)dg|x + g(x)df |x
The proof is omitted here, but is completely straightforward.

Lemma 2. 1. dimk Cotx(X) ≥ dimxX

2. Cot(x1,x2)(X1 ×X2) = Cotx1(X1)⊕ Cotx2(X2)

3. If X is affine and nx is the maximal ideal of k[X] in corresponding to x
then Cotx(X) = nx/n

2
x.

Proof. 1. We already saw this in the lecture on nonsingular varieties.

3. Any element k[X]− nx acts invertibly on nx/n
2
x. Therefore:(

nx/n
2
x

)
=
(
nx/n

2
x

)
nx

=
(
nxnx

/n2xnx

)
= mx/m

2
x

2. This is a local argument, so we may assume that X1, X2 are affine. Then
X1 ×X2 is affine and:

Cot(x1,x2)(X1 ×X2) = n(x1,x2)/n
2
(x1,x2)

= nx1
⊗ k[X2] + k[X1]⊗ nx2

/ (nx1
⊗ k[X2] + k[X1]⊗ nx2

)
2

= nx1/n
2
x1
⊗ k ⊕ k ⊗ nx2/n

2
x2

= Cotx1(X1)⊕ Cotx2(X2)

Recall we call a variety smooth (or nonsingular) if dim Cotx(X) = dimX.
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2 The Sheaf of Differentials

Definition 3. Let A be a k-algebra and M be an A-module. Then a derivation
D : A→M over k is a function satisfying:

1. D(a+ b) = D(a) +D(b).

2. D(ab) = aD(b) + bD(a).

3. For all k ∈ K, D(k) = 0.

Definition 4. Let X be a variety. Define ε : k[X] ⊗k k[X] by ε(b ⊗ b′) = bb′,
and let I = ker ε. Then we define the module of (Kahler) differentials of k[X]
over k by Ω[X] = I/I2. We have a derivation, then, d : k[X]→ Ω[X] given by:

b 7→ 1⊗ b− b⊗ 1 + I2

Proposition 3. Ω[X] is generated by {df | f ∈ k[X]}.

Proof. It suffices to show that I is generated by elements of the form 1⊗f−f⊗1
where f ∈ k[X]. For f, g ∈ k[X] we have:

f ⊗ g = fg ⊗ 1 + f · (1⊗ g − g ⊗ f)

And hence: ∑
fi ⊗ gi =

(∑
figi

)
⊗ 1 +

(∑
fi (1⊗ gi − gi ⊗ 1)

)
But being in I means that

∑
figi = 0, and therefore we get our claim.

Proposition 4. We have the following universal property - if δ is another
derivation of k[X] over k into some k[X]-module M , then there is a unique
homomorphism of modules ` : Ω[X]→M with D = ` ◦ d.

Proof. The previous proposition gives us uniqueness - if `1, `2 both satisfy the
claim, then `1(g) =

∑
(`1(df)) =

∑
D(f) = `2(g).

For existence, set B = k[X]⊗k k[X] and look at the k[X]-module A⊕M . Then
look and the homomorphism φ : B → A⊕M :

φ(f ⊗ g) = (fg, f ·D(g))

Notice that I2 ⊆ kerφ (since φ(f1f2⊗g1g2) = (f1f2g1g2, f1f2 · (g1D(g2) + g2 ·D(g1))) =
0), we get an induced homomorphism of k[X]-algebras φ′ : B/I2 → A⊕M with:

1⊗ y − y ⊗ 1 7→ (0, D(y))

Therefore having ` be the restriction of φ′ to Ω[X] via the second coordinate
yields the desired result.

Definition 5. Let X be a variety. We have the diagonal morphism ∆ : X →
X×X. The sheaf of differentials of X, ΩX , is the (sheafification of) the pullback
∆∗(I/I2), where I is the ideal sheaf of the diagonal in X ×X, i.e. the sheaf of
functions that vanish on ∆(X). We also define the (easily seen to be) derivation
d : OX → ΩX sending g to (g(x1)− g(x2)) mod I2.
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Proposition 5. If X is affine, then ΩX = ˜Ω[X].

Proof. On any open subset U ×U ⊆ X ×X, where U ⊆ X is open, and assume
B is its coordinate ring. We have that U ×U is isomorphic to the affine variety
corresponding to B ⊗B. Now, ∆(X)∩ (U ×U) is the closed subvariety defined
by the kernel of the multiplication homomorphism B ⊗ B → B. Therefore
I/I2 = ˜(I/I2) on any open set, so globally I/I2 = ˜(I/I2).

Claim 6. ΩX |x = Cotx(X).

Proof. As this is a local claim, assume that X is affine, and let n be a maximal
ideal of x in k[X]. Then we want an isomorphism Ω[X] ⊗k[X] k[X]/n ' n/n2.
Now, recall that d − |x : k[X] → n/n2 is a derivation, and hence we have a
unique k[X]-linear mapping ` : Ω[X] → n/n2 with df |x = `(df). We get, then,
a k-linear mapping ¯̀ : Ω[X] ⊗k[X] k[X]/n → n/n2 (with ¯̀(df ⊗ u) = `(udf))
satisfying df |x = ¯̀(df⊗1). Now, the mapping k[X]→ Ω[X]⊗k[X]k[X]/n defined
by f 7→ df ⊗ 1 is also a derivation. Therefore there is a unique linear mapping
m : n/n2 → Ω[X] ⊗k[X] k[X]/n with m(df |x) = df ⊗ 1. ¯̀ and m are inverse to
each other, so we are done.

Claim 7. Let f be a regular function on An. Then df = ∂f
∂X1

dX1+· · ·+ ∂f
∂Xn

dXn.

Proof. Just write f =
∑
ai1,...inx

i1 · · ·xin and compute by induction and the
formal rules of a derivation.

We now wish to calculate ΩPn . Define π : U = An+1 − {0} → Pn to be the
projection, then we have an induced homomorphism π∗ : ΩPn → ΩU . Then π∗

identifies ΩPn with a subsheaf of ⊕
1≤i≤n

dXi · OPn(−1). Now, we may also define

α : ⊕
1≤i≤n

dXi · OPn(−1)→ OPn by α(dXi · σ) = Xi · σ.

Claim 8. (Euler’s Exact Sequence) We have an exact sequence:

0→ ΩPn
π∗

→ ⊕
1≤i≤n

dXi · OPn(−1)
α→ OPn → 0

Proof. The proof will not be 100 percent rigorous, so apologies in advance. Ex-
actness at ΩPn and at OPn are immediate. For exactness at ⊕

1≤i≤n
dXi ·OPn(−1),

let us compute explicitly π∗. For f = f1d
(
X1

X0

)
+ · · ·+ fnd

(
Xn

X0

)
, we have:

π∗f = dX0

(
−X1

X2
0

f1 − · · · −
Xn

X2
0

fn

)
+ dX1

f1
X0

+ · · ·+ dXn
fn
X0

Then one easily checks that απ∗f = 0, so Imπ∗ ⊆ kerα. On the other hand, if

α (g0dX0 + · · ·+ gndXn) = 0, then take f = X0g1d
(
X1

X0

)
+ · · ·+X0gnd

(
Xn

X0

)
,

so kerα = Imπ∗.
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