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1 Introduction
When one wants to classify algebraic varieties (up to isomorphisms), one way of
tackling this problem is by classifying the varieties via a weaker type of equiva-
lence, namely, birational equivalence. Now, a nonsingular variety is considered
more ”well-behaved” than a general variety, and has some stronger conditions
that one can work with. Therefore, one can reach two sub-problems, which may
help him classify varieties up to birational equivalence:

• Within any birational equivalence class, find a nonsingular projective va-
riety.

• Classify all nonsingular projective varieties within one birational equiva-
lence class.

Generally, both questions are very difficult. However, in one dimension,
this is a problem we can tackle. The two problems will get answered as we
will show that in each birational equivalence class, there is a single nonsingu-
lar curve. We will therefore be able to talk, for each field K of trancendence
degree 1 over the base field k, about its nonsingular curve CK . Furthermore,
we will show an equivalence of categories between the category of such field,
with k-homomorphisms, to the category of nonsingular projective curves, with
dominant morphisms, to the category of quasi-projective curves, with dominant
rational maps.

In order to show this, we will also define the notion of an ”abstract algebraic
curve”. While this will only be used as a tool here (and we will show that we
have added nothing new to our category of curves), it will be interesting to see
this notion as another, much more purely algebraic, way, of defining varieties.

2 Valuations and Valuation Rings
Before we continue with nonsingular curves, we need to note a few facts from
commutative algebra - mainly, valuations, DVR’s, and Dedekind domains.
Definition 1. Let us have a field K, and a totally ordered abelian group G. A
valuation v of K with values in G is a function v : K\{0} → G that satisfies
for all x, y ∈ K such that x, y 6= 0:

v(xy) = v(x) + v(y) (1)
v(x+ y) ≥ min (v(x), v(y)) (2)
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Definition 2. Given a valuation v : K\{0} → G, we may define the valuation
ring of v as the subring of K R = {x ∈ K | v(x) ≥ 0} ∪ {0}. It has an ideal
m = {x ∈ K | v(x) > 0} ∪ {0}.

Remark. Many courses and textbooks use the equivalent definition that R is a
valuation ring if in its field of fraction K, for any x ∈ K we have either x ∈ R
or x−1 ∈ R.

Definition 3. An integral domain R is called a valuation ring if it is a valuation
ring of some valuation of its quotient field. If we have a subfield k ⊆ K for which
v(x) = 0 for all x ∈ k\{0}, we say that v is a valuation of K/k, and R is a
valuation ring of K/k.

Definition 4. We say a local ring B dominates a local ring A if A ⊆ B and
mB∩A = mA (mA,mB being the corresponding rings’ unique maximal ideals).

Fact 1. Let K be a field. A local ring R ⊆ K is a valuation ring of K if
and only if it is maximal in the set of local rings contained in K, with respect
to domination. Furthermore, every local ring contained in K is dominated by
some valuation ring of K.

Proof. See Atiyah-Macdonald [Ch. 5, page 65]

Definition 5. A valuation v is discrete (in short DVR) if it takes values in Z.
The corresponding valuation ring is called a discrete valuation ring.

Fact 2. Let A be a local noetherian ring of dimension 1, with maximal ideal m.
Then the following are equivalent:

• A is a discrete valuation ring.

• A is integrally closed.

• A is a regular local ring

• m is a principal ideal.

Proof. See [Atiyah-Macdonald Proposition 9.2, page 94].

Definition 6. A Dedekind domain is an integrally closed noetherian domain of
dimension 1.

Fact 3. An integral domain R is integrally closed if and only its localization at
any nonzero prime ideal Rp is integrally closed.

Proof. See [Atiyah-Macdonald, Prop. 5.13, page 63].

This implies that a localization of a Dedekind domain at a nonzero prime
ideal is a DVR.

Fact 4. If R is a Dedekind domain and k is its fraction field, then the integral
closure of R in a finite extension of k is also a Dedekind domain.

Proof. See [Zariski-Samuel, vol.1, Theorem 19, page 281].
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Fact 5. Let A be an integral domain which is a finitely generated algebra over
a field k. Let K be the quotient field of A, and L be a finite algebraic extension
of K. Then the integral closure of A in L is a finitely generated A-module, and
also a finitely generated k-algebra.

Proof. See [Zariski-Samuel, vol. 1, Ch. 5, Theorem 9, page 267].

3 Preliminaries on Algebraic Curves
Now that we have covered the necessary commutative algebraic background, we
can go back to algebraic curves. Let us have a function field K of dimension 1
over k, with k algebraically closed.

Take a point P on a nonsingular curve Y over k. By last week’s lecture OP
is a regular local ring of dimension 1, and thus is a DVR. Its quotient field is
K, and since k ⊆ OP , it is a valuation ring of K/k.

Now, define CK to be the set of all DVR’s of K/k. We see, therefore, that the
set of local rings of Y is a subset of CK . This will motivate later our definition
of an abstract nonsingular curve, but only after a few more preliminaries.

Lemma 1. Let Y be a quasi-projective variety. Let P,Q ∈ Y , and suppose that
OQ ⊆ OP . Then P = Q.

Proof. Let us embed Y in Pn for some n. By replacing Y with its closure, we
may assume Y is a projective variety. By linearly changing coordinates, we may
assume that P,Q are not in the hyperplane H0 defined by x0 = 0. Therefore
P,Q ∈ Y ∩ (Pn\H0), which is an affine variety. So we may assume Y to be
affine.
Let A = A(Y ). Then there are maximal ideals m,n ⊆ A for which OP =
Am,OQ = An (this fact was proven in the lecture about morphisms that Omer
gave - there is a 1-1 correspondence between points of Y and maximal ideals
of A). Now, since OQ ⊆ OP , we have n ⊆ m, so by maximality of n we have
m = n, and therefore P = Q.

Lemma 2. Let us have some x ∈ K. Then the set {R ∈ CK |x /∈ R} is finite.

Proof. For any valuation ring R, x /∈ R if and only if x−1 ∈ mR, where mR is
the maximal ideal of R (this comes directly from the well-known fact that all
non-units in a ring are contained in a maximal ideal).
Therefore, let us denote y = x−1, so we have to show that {R ∈ CK | y ∈mR}
is finite. If y ∈ k then y is invertible in R so there are no such R. Let us assume,
then, that y /∈ k.
Now consider the subring k[y] in K. k is algebraically closed, and therefore y
is trancendental over k. Then k[y] is a free polynomial ring so K is a finite
extension over k(y).
Now let B be the integral closure of k[y] in K. It is an integral closure of a
Dedekind domain (k[y] is noetherian, integrally closed, and of dimension 1), and
therefore a Dedekind domain itself, and also a finitely generated k-algebra by a
theorem shown in the lecture about morphisms.
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Now, if y ∈ R for any DVR of K/k, then k[y] ⊆ R, and since R is equivalently
integrally closed in K, we have B ⊆ R. Now, let n = mR ∩ B. Then is a
maximal ideal of B, and B is dominated by R. But Bn is also a DVR of K/k by
our note from earlier, so Bn = R by maximality of valuation rings with respect
to domination.
If, now, y ∈ mR, then y ∈ n. Aside from that, B, as a finitely generated k-
algebra which is an integral domain, is the affine coordinate ring of some affine
variety Y (we mentioned this in the first lecture). B is Dedekind, and therefore
dimY = 1 and it is nonsingular (all its localizations are regular local). Now,
since y ∈ n, then y, as a regular function on Y , vanishes at the point of Y
corresponding to n. But y 6= 0, so it vanishes only at a finite set of points.
This is in 1-1 correspondence with the maximal ideals of B, and therefore there
can be only a finite number of maximal ideals that y is in. Since R = Bn is
dependent only on n, we may conclude that y ∈ mR for only finitely many
R ∈ CK .

Corollary. Any DVR of K/k is isomorphic to the local ring of a point on some
nonsingular affine curve.

Proof. Given a DVR R, let y ∈ R\k. Then we may construct such a curve in
the same way as in the proof above (as the corresponding curve to the integral
closure of k[y]).

4 Abstract Nonsingular Curves
Now we have enough preliminaries so we can define an abstract nonsingular
curve. This construction is a particular case of the more general concept of ab-
stract varieties that we had talked about briefly in the lecture about morphisms
- a ringed space that is locally isomorphic to an affine variety.

Let K, k and CK be as before. Note that following the previous corollary,
we may call elements of CK points, and write P ∈ CK where P corresponds
to the DVR RP . Note, that CK is infinite - it contains all local rings of any
nonsingular curve with function field K. Those are all distinct by a previous
lemma and there is an infinite number of them [Hartshorne Ex. 4.8].
Now, define the finite complement topology on CK . Now, if U ⊆ CK is open,
define the ring of regular functions on U to be O(U) =

⋂
P∈U

RP . Given an

element f ∈ O(U), it defines a function from U to k by taking f modulo the
maximal ideal of RP . If two elements f, g ∈ O(U) define the same function,
then f − g ∈ mP (the maximal ideal of RP ) for infinitely many P ∈ CK , so
f − g = 0 by the previous theorem. Therefore, we may identify the elements of
O(U) with functions f : U → k. By the theorem we just proved, any f ∈ K is
regular on some open subset U ⊂ CK .

Definition 7. An abstract nonsingular curve is an open subset U ⊆ CK (with
K, k, and CK as before), with the induced topology, and induced notion of
regular functions on its open subsets.
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Definition 8. A morphism ϕ : X → Y between abstract nonsingular curves is
a continuous map such that for every open V ⊆ Y and every regular function
f : V → k, f ◦ ϕ is a regular function on ϕ−1(V ).

Our main mission for the rest of the lecture will be to show that in fact, the
category of nonsingular quasi-projective curves is equivalent to the category of
abstract nonsingular curves.

Proposition 1. Every nonsingular quasi-projective curve Y is isomorphic to
an abstract nonsingular curve.

Proof. Let K be the function field of Y . Then each local ring OP is a regular
local ring of dimension 1, and hence a DVR of K/k. Furthermore, we know that
distinct points give rise to distinct subrings of K, by a previous lemma. Then
let U ⊆ CK be the set of local rings of Y and let ϕ : Y → U be the bijective
map:

ϕ(P ) = OP
We want to show that ϕ is our required isomorphism. We will need to show

several things then - that U is an abstract nonsingular curve, and that ϕ is an
isomorphism.
First, let us show that U is an open subset of CK . Since U has the finite
complement topology, it is enough to show that U contains a nonempty open
subset. Combining that with the fact we have seen in the lecture about rational
maps that any variety has a topological base of affine varieties, we may assume
that Y is affine, and denote by A its affine coordinate ring, which is a finitely
generated k-algebra. Additionally, K is A’s field of fractions, and U is the set of
localizations of A at its maximal ideals (all this was proven in the Omer’s lecture
about morphisms). We see, then, that U is a set of DVR’s of K/k containing
A. Now, let x1, ..., xn be generators of A over k.
A ⊆ RP for some DVR RP if and only if x1, ..., xn ∈ RP . Then U =

⋂
Ui, with

Ui = {P ∈ CK |xi ∈ RP }. But we know that {P ∈ CK |xi /∈ RP } is a finite set
- so for each i Ui is a finite complement and therefore U is open.
Now, let us show that ϕ is an isomorphism. By construction, ϕ is a bijection.
Additionally, a nonempty set in Y is open if and only if its complement is finite,
and that is true also in U , so ϕ is bi-continuous. Finally, for any open set
V ⊆ Y , O(V ) =

⋂
P∈V
OP,Y , (and the same is true of sheaves in U), so ϕ is an

isomorphism.

We have seen, then, that any quasi-projective curve is an abstract curve. We
will see soon the converse to this, that will tell us that every abstract nonsingular
curve is isomorphic to a projective curve.

5 Equivalence of Categories
For the converse, we will need first the following proposition:

Proposition 2. Let X be an abstract nonsingular curve, let P ∈ X, let Y be
a projective variety, and let ϕ : X\{P} → Y be a morphism. Then ϕ can be
uniquely extended to a morphism ϕ̄ : X → Y .
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Proof. Embed Y as a closed set in Pn for some n. It is enough, then, to assume
that Y = Pn. Indeed, if we have a morphism ϕ : X\{P} → Pn that extends to
ϕ̄ : X → Pn and sends X\{P} into Y , it will send P , which is in the closure of
X\{P}, to the closure of ϕ(X\{P}), which is contained in Y - so we lose nothing
from assuming Y = Pn. Where x0, ..., xn are the homogeneous coordinates of
Pn, let U be the open set:

U = {[x0 : · · · : xn] | ∀1 ≤ i ≤ n : xi 6= 0}

If ϕ (X\{P})∩U = ∅, then ϕ (X\{P}) (by irreducibility) is contained in one of
the hyperplanes defined by {xi = 0}. However, those hyperplanes are isomor-
phic to Pn−1 and we will be done by induction on dimension.
Assume, then, that ϕ(X\{P}) ∩ U 6= ∅. Then for every i, j the function
fij = ϕ∗

(
xi

xj

)
is a regular function on X\{P}, and in particular, is in K(X).

Now, let v be the valuation associated to RP . Define ri = v(fi0) for each
1 ≤ i ≤ n. Then for each i, j:

v(fij) = v

(
fi0
fj0

)
= ri − rj

Choose k such that rk is minimal among r0, ..., rn. Then v(fik) > 0 for all i, so
f0k, ..., fnk ∈ RP . Now extend ϕ by defining ϕ̄(P ) = (f0k(P ), ..., fnk(P )). To
show that this is a morphism, we just need to show that regular functions in a
neighbourhood of ϕ̄(P ) pull back to regular functions in a neighbourhood of P .
Now notice that fkk = 1, so:

ϕ̄(P ) ∈ Uk = {[x0 : ... : xn] |xk 6= 0} ' k
[
x0

xk
, ...,

xn
xk

]
These coordinates pull back to f0k, .., fnk, which are regular by construction, so
any regular functions on Ui pull back to regular functions on X. From this it
follows that the assertion is true for any smaller neighbourhood ϕ̄(P ) ∈ V ⊆ UK .
Hence, ϕ̄ is a morphism.
Uniqueness follows from the fact that two morphisms that extend X\{P} must
agree on a closed set.

We now come to the main results of this lecture:

Theorem 1. Let K be a function field of dimension 1 over k. Then the abstract
nonsingular curve CK is isomorphic to a nonsingular projective curve.

Proof. We saw earlier that given R ∈ CK there is a nonsingular affine curve X
and a point x ∈ X such that R ' Ox,X . The curve X is isomorphic (as we saw
earlier) to the abstract nonsingular curve U ⊆ CK where U = {Ox,X}. Then the
set {UR}R∈CK

is an open cover of CK . but since CK has the finite complement
topology, which has the property that every subset is compact, then we have a
finite cover of CK :

CK = U1 ∪ ... ∪ Ut
Where each Ui is isomorphic to a nonsingular affine curve Xi via some isomor-
phism ϕi : Ui → Xi. Now, let Yi be the closure of Xi in some projective space
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Pni . applying the previous lemma successively (remember we are in the finite
complement topology), there exists a morphism

ϕi : CK → Yi

extending the morphism on Ui. Define the product morphism:

ϕ : CK →
∏
i

Yi, ϕ(R) = (ϕ1(R), ..., ϕn(R))

and let Y be the closure of the image of ϕ. As the closure of an image of a mor-
phism, it is a projective curve. Let us show that ϕ : CK → Y is an isomorphism.

For any point P ∈ CK , we have P ∈ Ui for some i. Then if π : Y → Yi is
the projection, then π ◦ϕ = ϕi on Ui. This induces inclusions of the local rings:

Oϕi(P ),Yi

π∗

→ Oϕ(P ),Y
ϕ∗

→ OP,CK

Moreover, since ϕi is an isomorphism on Ui, we get that all three local
rings are isomorphic. In particular, for every P ∈ CK we have that OP,CK

and
Oϕ(P ),Y are isomorphic under ϕ∗.
Next let us show that ϕ is surjective. Let us have Q ∈ Y . Then OQ is dominated
by some DVR of K/k, R. We know that R = RP for some P ∈ CK , and
Oϕ(P ) ' R, so Q = ϕ(P ). Therefore ϕ is surjective. Also, since distinct point
of CK correspond to distinct subrings of K, we have that ϕ is injective.
We get, then, that ϕ is a bijective morphism of CK to Y , that satisfies for every
P ∈ CK that ϕ∗P is an isomorphism. Therefore, by [Hartshorne, Ex. 3.3b] we
have that ϕ is an isomorphism.

This theorem is the main result of this lecture. It produces the following two
corollaries, which we have promised to prove in the beginning of the lecture:

Corollary. Every curve is birationally equivalent to a nonsingular projective
curve.

Proof. For any curve Y with function field K, Y is birationally equivalent to
CK which is nonsingular and projective.

Corollary. The following three categories are equivalent:

(i) Nonsingular projective curves, and dominant morphisms.

(ii) Quasi-projective curves, and dominant rational maps.

(iii) Function fields of dimension 1 over k, and k-homomorphisms.

Proof. The functors from (i) to (ii) (taking the dominant morphism and map-
ping it to its corresponding rational map) and (ii) to (iii) (Y → K(Y )) are
already known. We need, then, a functor from (iii) to (i).
Let us have some function field K. Associate with it its nonsingular projective
curve CK . A homomorphism K1 → K2 induces (by the equivalence of (ii) to
(iii)) a rational map of CK1 → CK2 . This means, in particular, that we have a
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morphism ϕ : U → CK2 , where U ⊆ CK1 is open. Therefore (finite complement
topology) this extends to a morphism ϕ̄ : CK1 → CK2 . By uniqueness, it is
immediate to verify that this respects compositions, so K 7→ CK is a functor
from (iii) to (i). It is inverse to the functor given by (i) to (ii) to (iii), so we
have an equivalence of categories.

6 An (Important) Example
This is taken from exercise 6.2 in Hartshorne, and is intended to show that not
all curves are birationally equivalent. Let us look at the curve y2 = x3 − x:

This curve is easily shown to be nonsingular. Now, notice the following facts,
about rational curves not isomorphic to P1:

Let us have such a curve, X. Then:

• X is isomorphic to A1 minus a finite number of points: This is straight-
forward from the fact that X is isomorphic to a proper open subset of
P1.

• A(X) is a UFD: Notice X = A1\ {a1, . . . , an} for some ai’s. Then each
element of A(X) may be written uniquely as a(x − b1)c1 · · · · · (x − bn)cn

for some integers ci and some bi 6= a1, ..., an.

But now, returning to our curve Y , we have in A(Y ) that x|y2, but y and x
are irreducible (I will not prove it here, but in the book Hartshorne show how
to prove this - it is not very hard once you know what a norm is), so y is not
a unit times x. This implies that A(Y ) is not a UFD, and hence not a rational
curve!
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