Non-singular varieties.
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Definition 1:

Let Y C A" be an affine variety and (f1,..., fn) be the generator set of I (V).
Then Y is called non-singular in point P € Y if

rank ||9fi/oz; (P)||=n—1r

where r =dimY.
Y is called non-singular if it is non-singular in every point.

Note: The formal derivatives of polynomials are well defined.

The matrix of partial derivatives is called Jacobian matrix.

Now we have defined non-singular affine variety but not general variety. For
this we will need the following definition and theorem.

Definition 2:

Let A be Noetherian ring with maximal ideal m and residue field k = 4/m.
A is called regular local ring if dimy ™/m? = dim A.

Theorem 1:

Let Y C A™ be an affine variety and P € Y be some point.
Y is non-singular at P iff the local ring Opy is regular local ring.

Proof: Let P = (ay,...,a,) € A" be some point. Look at the ideal ap =
(x1 —a1,...,op —ay) in A =k[z1,...,2,] it is a maximal ideal since it ideal
of one point. Define a linear map 6 : A — k™ s.t.

fv—><§—:;fl(P),...,§—xJ;(P)>

Notice that 0 (z; — a;) form basis of ™ and then the restriction 6’ : er/a2, — k™
is an isomorphism.
Now let b = I (Y) C A with generators (f1,..., f;). Notice that

rankJ = rank ||9fi/ox; (P)|| = dim (0 (b))



But we have and isomorphism 6 so we can say that
dim (6 (b)) = dim (b+ab/a2)

Remember how did we obtain Oy p we took quotient of A with b and then
localized at ap. Then if m is the maximal ideal of Oy, p it holds:

m/m2 = aP/(b—i—afD)

And thus we can see dim m/m?>+rankJ = n. For a theorem with a lot of statement
(around 4). dimOp = dimY := r. Hence dimj ™/m?> = r iff Op is regular local
ring. But is is essentially the same as rankJ = n — r which defines Y to be
non-singular at P.

O

Example 1 multiplicities:

Let Y C A? be a curve defined by equation f (z,y) = 0 and P = (a,b) € A? be
some point. Change the coordinates so P = (0,0). Rewrite f as sum of homo-

geneous polynomials in z and y, i.e. f = 2?21 fi- Then define multiplicity of
P on Y to be the smallest 7 s.t. f. # 0 denoted by up (V). The linear factors
of f, are called tangent directions at P.

Now if pup (Y) = 1 then rankJ =1 =2 — 1 and then Y is not singular at P.
Otherwise J is a null matrix and Y is singular at P.

1. 22 = 2* +y* is a tacnode as sum of homogeneous it is
—?+ (@t +yt) = fat fu=0
and then multiplicity of (0,0) is 2. Tangent direction is x/
2. 2y = 25 + 9% is a node and as some of homogeneous polynomials:
—zy+ (2 +9y°) =fo+ fo =0
the multiplicity of (0,0) is 2. Tangent directions are x and y.
3. 22 = 9% + 2* + y* - cusp same multiplicity. Tangent direction is .

4. 2%y +zy? = 2* +y* - triple point the multiplicity is 3. Tangent directions
are x and y.

All of them have one singular point which can be shown by direct calculation.
The form are determined from tangent directions (where does curve go).

Definition 3:

Let Y be a variety and P € Y some point. Then Y is called non-singular at
point P if Opy is regular local ring.
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Figure 1: Singularities of plane curves

Theorem 2(algebra):

If A is Noetherian local ring with maximal ideal m and quotient field &, then
dimy m/m2 > A.

Proof: See see Atityah-Macdonald 11.15

Theorem 3:

Let Y be a variety. Denote SingY the set of all singular points of Y. Then
SingY is proper closed subset of Y.

Proof:

Let Y = |JY; be an open covering of Y. Then we are first of all to show that
SingY; is closed for each i. By theorem! we may assume Y is affine variety. Then
by previous theorems we have rankJ < n — r for every point P € Y. Hence
for any singular point on Y holds rankJ < n —r. Thus we have an algebraic
definition of SingY as the set generated by I (Y) with all determinants® of
(n —7) X (n — ) submatricies of the matrix J. Hence SingY” is closed.

Now apply theorem 2 to Y to obtain a birational equivalence to P". Note
that birational varieties have isomorphic typologies we can reduce to the case
of hypersurface in P". It is enough to consider any open affine set of Y, so
we may assume that is a hypersurface in A", defined by a single polynomial
f(z1,...,zn) =0.

SingY” is the set of points in Y s.t. 9f/oz; (P) =0 foralli <n. If Y = SingY
then 0//9z; € I (Y) but I (Y) = (f) and hence deg (9f/oz;) < deg f — 1 but this
means 9f/az; = 0 for every 0 < i < n.

14,3 On any variety Y, there is a base for the topology consisting of open affine subsets.

2We take all the polynomial which show existence of singularity and all the polynomial
which define Y and they all together SingY and then we have algebraic set.

34.9 Any variety X of dimension r is birational to a hypersurface Y in P71,



If chark = 0 then we already have a contradiction. Otherwise we conclude

that f is a polynomial in xfk for each 7. But then we can take p-th root of the
coefficients to get polynomial g s.t. f = gP but f is irreducible.

Hence SingY < Y.

O

Blowing up singularities:

Cusp: Let Y be the cusp 2® = y2 + 2% 4+ y*. Show that Y is non singular at
0 = (0,0).

Let t,u be homogeneous coordinates on P'. Then X blowing-up of A? at
O is defined by the equation zu = ty inside A? x P'. O is replaced by P! and
the rest looks as A?. Denote F := P'.

Consider equations 2® = y? + 2* + y* and zu = ty. Now E is covered by
open sets t # 0 and u # 0.

If t # 0 denote t = 1 and then we get

23 =2t 4yt

Yy =zu
In A? with coordinates z,y, u substitute equations and get
—23 4 22u? + 2t + 2t = 22 (uQ—:E—I—a:Q (1—|—u4)) =0

Then we have two irreducible components one defined by z = 0 = y with any u
which is E and the other u? — z + 2 (1 + u4) =0 and y = zu this is Y. Note
Y meets E at one point u = 0.

Case u = 1. Then ty = x and the second equation of the curve

PP =Pyttt oyt =y -y +yt (1+ 1Y) =0

And thus there is no intersection.
O

Node: As we saw previously the node is a double point of a plane curve with
two distinct tangent directions. Show that if P is a node on a plane curve Y,
show that ¢~! (P) consists of two distinct nonsingular point on the blown-up
curve Y.

First of all make a linear change of coordinates s.t. P — O. Then we can
write f = f,. + -+ + fq since the multiplicity of P was 2 then » = 2. And f5
factors into x and y. So f = xzy + g with degg > 3 . Consider the pullback of
V (f) in the blow-up X in two parts ¢t # 0 and u # 0. If ¢ = 1 then f = 0 and
y = ux so substitute

ux? + g (x,uz) = 0



But again 22 | g (,ux) because deg g > 3. The f in this form factors as
LL‘Q (u + g(m,uz)/w2) =0

Then again 22 = 0 with any « gives us E. And u + 9(z.ua)/2? gives us X. If
x = 0 then v = 0 hence this cover meets E in one point x = u = 0. Multiplicity
of the curve is 1 and hence there is no singularity.

The same analysis for u # 0 gives us the second non-singular point.

O

Tacnode: The same as previous: 22 = x4+ y* the blow up of A? is obviously
the same. f =22 — (:104 + y4), notice 2 factors into 2 and x. The E is covered
by two open sets t # 0 and u # 0 and 22 — (;104+y4) =0and zu=ty. If t #0

then zu = y and substitute:
x? — a2t (1—|—u4) =0

As previously we can factor 22 (1 —2? (1 +u*)) = 0 . Same as above z = 0
with any u gives us E. And Y is

Y = ur
x2 (1 + u4) =1
Which has no intersections with F.
Now let u = 1. Then z = yt. Substitute

y2t2—y4(1+t4):0:>
=y* (P -y (1+tY)) =0

Then as above E is x = y = 0 with arbitrary ¢ and Y is

T =ty
t2 _ y2 — y2t4
The intersection with £ is t = 0 = x = y. Which is the singular point of
t? — y? = y*t* which is a node since the fo = (t — %) (t +y).
And then one more blow-up reserves the singularity.
|

y3 = x% Obvious that r = 3 and hence the point (0,0) is a triple point. The

same as above zu = yt.

t =1 then y = zu and the second curve equation is z* (u® —2?) = 0. E
isz=0=yforany u. And YNFEis 2 = y = u = 0. The resulting form is
22 = u? which is cusp.

u =1 then z = ty and the second curve equation is y> (1 + y2t5) =0. Fis
y = 0 = x for any ¢t. And there is no intersection.

|



Completion:

For clarification and proofs see Atityah-Macdonald Chapter 10&11):
There are to cases of completion that we probably already seen:

1. Construction of formal power series from polynomials.

2. Formation of p-adic numbers. Take a prime number p and then work in
various rings Z/p*z. In some sense it is a limit of Z/p*z as n — oco.

The two examples are close but p-adic numbers does not have a natural embed-
ding of Z/p*z.

Completion as localization a method of simplifying around concrete point.
We will usually perform completion after localization, e.x. local ring of a non-
singular point on n dimensional variety. has always for its completion the ring
of formal power series in n variables. So we use completion after localization
when we need more simplification.

Also completion preserves exactness and Noetherian property.

Definitions 4 and 5:

Let G be a topological Abelian group, i.e. topological space with addiction
and substraction defined and continuous. Let a € G be a fixed point, define
translation T, : G — G with x — = + a it is homeomorphism of G since it is
continuous and it’s inverse 1_, is continuous. We see that U is any neighborhood
of 0 in G then U + a is a neighborhood of a in G and every neighbourhood of
a can be represented in this form.

Assume for simplicity that 0 has a countable fundamental system of neigh-
borhoods. Then completion G can be defined through Cauchy sequences®*On
the set of Cauchy sequences we define equivalence classes by

Tp ~Yn <= Tp —Yn — 0

And then G is exactly the set of all the equivalence classes. It is an Abelian
group. Also for z € G take (x) € G and then we have homomorphism of Abelian
groups (which is injective whenever G is Hausdorff, because ker ¢ = (U for U
neighbourhood of 0).

Purely algebraic definition: Let’s look at less general case: 0 € G has a
fundamental system of neighborhoods consisting of subgroups. Then we have a
sequence

G=Gy2G1D...

And then U is a neighbourhood of 0 iff it contains some G,, e.x. G, = p"Z.
Note that in this case G,,’s are clopen.

Now consider {A,} be a sequence of groups and and family of homomor-
phisms 0;; : A; — A; for i < j. We call this an inverse system if

4(xn) C G s.t. for any U neighbourhood of 0 there exists natural N s.t. zp, — zm, € U for
all m,n > N.



[ Hii:id
[ ] Hik:t?ijoﬁjkforigjgk

Then define
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i=1

Using this definition of the inverse limit we can say

= imG
G hin/Gn

Is the completion of G.
By the way we see that the inverse limit is just a subspace of the product
equipped with induced topology from the product topology.

Maybe: Let (x,) be a Cauchy sequence in G. Then the image of (zx) in ¢/,
in finely constant equal to g,,. If we pass from n+ 1 to n then €1 — €, under

G/Gia Ontg G/a,.

Thus the Cauchy sequence (zj) defines a coherent sequence (g,) s.t.
9n+15n+1 =E&n-

We see that equivalent Cauchy sequences define the same coherent sequence.
Also we construct Cauchy sequence from the coherent sequence: z,, can be any
element in the coset of ¢, s.t. x,,+1 —x, € G,. Then the completion G can be
defined as the set of of the coherent sequences with the obvious group structure.

a-adic completions: Let A = G be aring and G,, = a” for an ideal a. Then
the topology defined on A is called a-adic topology and the completion is called
a-adic completion. Easy to see that with this topology A is a topological ring
and Hausdorff (since the closure of 0 is 0). The completion A of A is again
a topological ring and ¢ : A — A is a continuous ring homomorphism with
kernel (a™.

The same goes for an A-module M, take M = G and a"M = G,,. This
defines the a-adic topology on M and the completion M of M is a topological
A-module. If f : M — N is any A-module then f (a"M) = a™f (M) C a"N
and then f is continuous and so f : M — N is defined.

Theorem 4(algebra):

Let A be a Noetherian local ring with maximal ideal m and let A be its com-
pletion.

1. Ais alocal ring with maximal ideal m = mA and there is natural injective
homomorphism A — A.

2. If M is finitely generated A-module its completion M >~ M®s A with
respect to its m-adic topology.



3. dim A = dim A.

4. A is regular iff Ais regular.

Theorem 5(algebra):

If A is a complete® regular local ring of dimension n containing some field, then
A2 E[[z1,...,zy]] the ring of formal power series over the residue field k of A.

Definition 7:

Two points P € X and € Y are analytically isomorphic if there is an
isomorphism Op = O as k-algebras.

Example 3:

If X and Y have analytically isomorphic points then dim X = dim Y. See 5.4.c
and ex 3.12 which tells us the local ring of a point on a variety has the same
dimension as the variety.

Example 4:

If Pe X and Q € Y are nonsingular points on varieties of the same dimen-
sion, then P and @ are analytically isomorphic. This follows from 5.4 and 5.5.
And now we finally have the same kind of locality as in differential manifolds,
i.e. we know that two differential manifolds of the same dimension are locally
isomorphic.

Example 5:

chark # 2

Let X be the plane nodal cubic curve given by the equation y? = 2% (z + 1).
Let Y be the algebraic set in A% defined by the equation zy = 0. We will show
that the point O = (0,0) on X is analytically isomorphic to the point O on Y.
Notice Oo,y = (Klew)/(ay)),, ) and then Op y = klle.wl/(ay).

This example corresponds to the geometric fact that near O, X looks like
two lines crossing.

Notice that Oo,x = Hlz.wll/(y*~2?—2%). The leading form (i.e. the first ho-
mogeneous polynomial) is y? — z? it factorizes as (y — x) (z +y) . Now we want
to find power series s.t. their multiplication is f. We want all the polynomials
hi, g; to be homogeneous:

g=y+tr+go+gs+...

h=y—xz+hos+hs+...

5if ¢ : @ — G is an isomorphism then G is called complete.



Construct them by induction:

(y—x) g2+ (y+ ) hg = —2°
This is a legitimate construction since y — x and y + x generate a maximal ideal
in k [[z,y]]. Now construct ¢g,+1 and h,41 s.t.

(Y =) gnt1 + (Y + @) hny1 = —gnhn

This is again possible.

Thus (’507;{ = kll=9]l/(gh) but g and h begin with linearly independent linear
term and thus there is an automorphism of & [[z,y]] s.t. g,h — xz,y. Thus
@O,X = kl[z.9]l/(xy) as requested.

O

One more blow-up:

Let Y C P? be a non-singular plane curve of degree > 1, denote d, defined by
equation f (z,y,z) = 0. Let X C A® be the affine variety defined by f (this is
the cone over Y). Let P be the point (0,0,0) which is the vertex of the cone.
Let ¢ : X — X be the blowing up of X at P.

e Are there any singularities on X7
Remark: If f(xo,...,2,) is a homogeneous polynomial in k[z1,...,x,)

then
of 0

B, (o, .,y =1,...,2,) = o7,

(f(xo,...,zj=1,...,25))

From the remark obvious that X\ {0} is non-singular. And deg f > 1 gives
us O is singular.

e Does one blow-up resolve them?

Look at X NE all the possible singularities are there. Let (x,y,2,t: u: v)
the coordinates on A® x P?. The equations X are f = 0 and zu = yt, zv =
tz and yv = uz.

Then if ¢t = 1 holds f (z, zu, zv) = 0 then we can extract z%i.e. z%f (1,u,v).
Now 2¢ = 0 gives us E and f (1, u,v) gives the strict transformation. Note
that if the point (z,u,v) = (0,u,v) satisfies f (1,u,v) = 0 then it is not
singular since f is singular only at P. The same goes for v = 1 and v = 1.

e The affine cover is f (1,u,v), f(¢,1,v) and f(¢,u,1)
O



