
1

Page 1

G-Number

®® 1

The PentiumThe Pentium®® II/III II/III
ProcessorProcessor

“Compiler on a Chip”“Compiler on a Chip”
Ronny RonenRonny Ronen
Senior Principal EngineerSenior Principal Engineer
Director of Architecture ResearchDirector of Architecture Research
Intel Labs Intel Labs -- HaifaHaifa

Intel CorporationIntel Corporation

Tel Aviv UniversityTel Aviv University
January 20, 2004January 20, 2004

G-Number

®® 2

AgendaAgenda
General InformationGeneral Information
µµarchitecure basicsarchitecure basics
PentiumPentium®® Pro Processor Pro Processor µµarchitecurearchitecure
SW aspectsSW aspects

2

Page 2

G-Number

®® 3

Technology ProfileTechnology Profile
Pentium-II - 1998

Core @333MHz
512KB L2 in SEC
@167MHz
Performance:

12.8 SPECint95
9.14 SPECfp95
(P55C: 7.12/5.21)

0.25 µm CMOS
process
7.5M transistors

Pentium Pro - 1995
Core @200MHz
256K L2 on package,
@200MHz
Performance:

8.09 SPECint95
6.70 SPECfp95

0.35 µm BiCMOS
5.5M transistors
195 sq mm (14x14)
3.3V, 11.2A
28.1W / 35.0W

Pentium-III - 1999
Core @600MHz
512KB L2
@ ???MHz
Performance:

24.0 SPECint95
15.9 SPECfp95

0.25 µm CMOS
process
???M transistors

G-Number

®® 4

Technology Profile (cont.)Technology Profile (cont.)
Coppermine (Pentium-III - 2000)
Core @1000MHz
256KB L2 on chip @ 1000MHz
Performance:

>46 SPECint95
>20 SPECfp95

0.18 µm CMOS process
~20M transistors

Tualatin (Pentium-III - 2002)
Core @1400MHz
512KB L2 on chip @ 1400MHz
Performance (estimated):

>60 SPECint95
>30 SPECfp95

0.13 µm CMOS process
~44M transistors

Pentium M Processor Banias 2003
Core @1800MHz
1024KB L2 on chip @ 1800MHz
Performance (estimated):

>80 SPECint95
>50 SPECfp95

0.10 mm CMOS process
~77M transistors

3

Page 3

G-Number

®® 5

TerminologyTerminology
Intel ArchitectureIntel Architecture
Pipeline, Super ScalarPipeline, Super Scalar
Branch PredictionBranch Prediction
Speculative ExecutionSpeculative Execution
Dynamic SchedulingDynamic Scheduling
Data dependencyData dependency
Register RenamingRegister Renaming
Out Of OrderOut Of Order
ReRe--order Buffer & Memory Order Bufferorder Buffer & Memory Order Buffer
Reservation StationsReservation Stations
MicroMicro--OperationsOperations

Skip to µarch

G-Number

®® 6

Intel Architecture (X86)Intel Architecture (X86)
8 registers only8 registers only
–– Can be partially accessedCan be partially accessed
⇒⇒Many memory accesses, short life timeMany memory accesses, short life time

One set of condition codesOne set of condition codes
–– Modified by most ALU operationsModified by most ALU operations
–– Various operations affect various flagsVarious operations affect various flags
⇒⇒Short Generate/Use distance Short Generate/Use distance

Explicit stackExplicit stack
–– Push/Pop/Call/Return operationsPush/Pop/Call/Return operations

Variable length instructionsVariable length instructions
–– Implicit operandsImplicit operands

4

Page 4

G-Number

®® 7

PipelinePipeline
Break the work to smaller piecesBreak the work to smaller pieces

Increased throughputIncreased throughput
–– increased # of completed instructions per cycleincreased # of completed instructions per cycle
–– Number of stages variesNumber of stages varies

–– Small: 4Small: 4--5 (Pentium), “Superpipeline” ~14 (Pentium Pro)5 (Pentium), “Superpipeline” ~14 (Pentium Pro)

I1
I2

I3

F D E W
F D E W

F D E W
F D E W

F D E W
F D E W

0 1 2 3 4 5 6 7 8 9 10 11 12

1/4 IPC = 4 CPI

F: Fetch
D: Decode
E: Execute
W: Write Back

1 IPC = 1 CPI

G-Number

®® 8

Pipeline StallsPipeline Stalls
But there are “stalls” in the pipelineBut there are “stalls” in the pipeline

–– Data flow dependency (instructions output/input)Data flow dependency (instructions output/input)
–– Solved by: bypasses, renamingSolved by: bypasses, renaming

–– Control flow dependenciesControl flow dependencies
–– Solved by branch predictionSolved by branch prediction

–– Other (Cache misses, long latency instructions)Other (Cache misses, long latency instructions)

F D E W
F D stall W

F D E W
F E W

F D E W

0 1 2 3 4 5 6 7 8 9 10 11 12

F: Fetch
D: Decode
E: Execute
W: Write
Back

E
stall

D

Data Flow stall
Control Flow stall

stallstallstall
stall

Address Generation Interlock

stall

5

Page 5

G-Number

®® 9

SuperScalarSuperScalar
Performs more in a single cyclePerforms more in a single cycle

0 1 2 3 4 5 6 7 8 9 10 11 12
F D E W

F D E W

F D E W

F D E W
F D E W

F D E W

F D E W

F D E W

F D E W

F D E W

F D E W
F D E W

Ideally, can multiply the throughputIdeally, can multiply the throughput
–– but stall penalty is increasedbut stall penalty is increased

Stall

2 IPC = 1/2 CPI

G-Number

®® 10

Super PipelineSuper Pipeline
Split to shorter stages Split to shorter stages -- allows higher frequencyallows higher frequency

Ideally, can (again) multiply the throughput, but
– Stall penalties do not scale (e.g., control flow stall, cache misses)
– Clock setup/hold reduces the amount of net cycle time more - each

instruction takes longer!
In the example above: 2X stages, but performance gain is <<33%

0 1 2 3 4 5 6 7 8 9 10 11 12

F: Fetch
D: Decode
E: Execute
W: Write Back

1 IPC = 1 CPI
33% higher freq!

0 1 2 3 4 5 6 7 8 9 10 11 12

F1 F2 D1 D2 D3 E1 W1 W2
F1 F2 D1 D2 D3 E1 W1 W2

F1 F2 D1 D2 D3 E1 W1 W2
F1 F2 D1 D2 D3 E1 W1 W2

F1 F2 D1 D2 D3 E1 W1 W2
F1 F2 D1 D2 D3 E1 W1 W2

F1 F2 D1 D2 D3 E1 W1 W2
F1 F2 D1 D2 D3 E1 W1 W2

Old clk =

New clk =

6

Page 6

G-Number

®® 11

1 2 95 6 73 4 8

1 2 95 6 73 4 8

Out Of Order ExecutionOut Of Order Execution
So far So far -- instructions were processed in their program instructions were processed in their program
order.order.
–– Parallelism is limited.Parallelism is limited.

OOO: Instructions are executed based on “OOO: Instructions are executed based on “data flowdata flow” ”
rather than program orderrather than program order
Before:Before: srcsrc --> > destdest
(1) load(1) load (r10), r21(r10), r21
(2) (2) movmov r21, r31r21, r31 (2 depends on 1)(2 depends on 1)
(3) load(3) load a, r11a, r11
(4) (4) movmov r11, r22r11, r22 (4 depends on 3)(4 depends on 3)
(5) (5) movmov r22, r23r22, r23 (5 depends on 4)(5 depends on 4)

After:After:
(1)(1) loadload (r10), r21;(r10), r21; (3)(3) loadload a, r11;a, r11;

<wait for loads to complete><wait for loads to complete>
(2) (2) movmov r21,r31;r21,r31; (4)(4) movmov r11,r22;r11,r22;

(5)(5) movmov r22,r23;r22,r23;

Usually highly superscalarUsually highly superscalar

12

2F

3F

4F

1D

2D

3D

4D

5F 5D 5W

1W

2E

3w

4E

5E

2W

3W

4W

5E

1E

2E

3E

4E

5E

1E

2E

3E

4E

5E

12

2F

3F

4F

1D

2D

3D

4D

5F 5D 5W

1W

2E

3E

4E

5E

2W

3E

4E

5E

4E

5E

1E

2E

3E

4E

5E

1E

2E

3E

4E

5E

4W

5E

3W

In Order Processing

Out of Order Processing
In Order vs OOO execution.
Assuming:
- Unlimited resources
- 2 cycles load latency

G-Number

®® 12

Branch PredictionBranch Prediction
Goal Goal -- ensure enough instruction supply by ensure enough instruction supply by
correct prefetchingcorrect prefetching
up to 486 up to 486 -- prefetcher assumed prefetcher assumed fallfall--throughthrough
–– Lose on unconditional branch (e.g., call)Lose on unconditional branch (e.g., call)
–– Lose on frequently taken branches (e.g., loops)Lose on frequently taken branches (e.g., loops)

Branch predictionBranch prediction
–– Predict branch Predict branch taken/not takentaken/not taken
–– Predict the branch target addressPredict the branch target address ?

7

Page 7

G-Number

®® 13

Branch Prediction (cont.)Branch Prediction (cont.)
ImplementationImplementation
–– Use history (private or global) to predict directionUse history (private or global) to predict direction

(simple Lee&Smith, advanced Yeh&Patt) (simple Lee&Smith, advanced Yeh&Patt)
–– Target address taken from table (faster) or from the Target address taken from table (faster) or from the

instruction (slower) instruction (slower)
–– Table updated first based on prediction, later based Table updated first based on prediction, later based

on actual execution.on actual execution.

Misprediction cost varies (high on PPro)Misprediction cost varies (high on PPro)
Current prediction rate: ~92% Current prediction rate: ~92% -- 95%95%
~60~60--100 instructions between 100 instructions between mispredictionsmispredictions**

* Assuming branch every 5 instructions

G-Number

®® 14

Speculative ExecutionSpeculative Execution
Execution of instructions from a predicted Execution of instructions from a predicted
(yet unsure) path.(yet unsure) path.
Eventually, path may turn wrong.Eventually, path may turn wrong.
Advantages:Advantages:
–– Ensure instruction supplyEnsure instruction supply
–– Allow scheduling window Allow scheduling window

Issues:Issues:
–– Misprediction costMisprediction cost
–– Misprediction recoveryMisprediction recovery

8

Page 8

G-Number

®® 15

Dynamic SchedulingDynamic Scheduling
Scheduling instructions at run time, by the Scheduling instructions at run time, by the
HW, and not at compile time, by the SWHW, and not at compile time, by the SW
Advantages:Advantages:
–– Works on the dynamic instruction flow:Works on the dynamic instruction flow:

Can schedule across procedures, modules...Can schedule across procedures, modules...
–– Can see dynamic values (memory addresses)Can see dynamic values (memory addresses)
–– Can accommodate varying latenciesCan accommodate varying latencies

DisadvantagesDisadvantages
–– Can schedule within a limited window onlyCan schedule within a limited window only
–– Should be fast Should be fast -- cannot be too smartcannot be too smart

G-Number

®® 16

Data DependencyData Dependency
(1)(1) loadload R2,(R1)R2,(R1) [format: op dest, src][format: op dest, src]
(2)(2) movmov R3,R2R3,R2
(3)(3) movmov R1,aR1,a
(4)(4) movmov R2,R3R2,R3
(5)(5) movmov R2,R1R2,R1

True dependencyTrue dependency (R2:1>2, R3:2>4, R1:3>5)(R2:1>2, R3:2>4, R1:3>5)

False dependenciesFalse dependencies
–– Anti dependencyAnti dependency (R1:1>3, R2: 2>4)(R1:1>3, R2: 2>4)

–– Output dependencyOutput dependency (R2:1>4,R2:4>5)(R2:1>4,R2:4>5)

9

Page 9

G-Number

®® 17

Register RenamingRegister Renaming
beforebefore afterafter mappingmapping

(1)(1) loadload R2,(R1)R2,(R1) loadload r21,(r10)r21,(r10) [R2[R2-->r21]>r21]
(2)(2) movmov R3,R2R3,R2 movmov r31,r21r31,r21 [R3[R3-->r31]>r31]
(3)(3) movmov R1,aR1,a movmov r11,ar11,a [R1[R1-->r11]>r11]
(4)(4) movmov R2,R3R2,R3 movmov r22,r31r22,r31 [R2[R2-->r22]>r22]
(5)(5) addadd R2,R1R2,R1 addadd r23,r11,r22r23,r11,r22 [R2[R2-->r23]>r23]

Remove false dependenciesRemove false dependencies
Remove architecture limit for # of regsRemove architecture limit for # of regs
Help speculative executionHelp speculative execution
–– Renamed register are kept until speculation is Renamed register are kept until speculation is

verified to be correctverified to be correct

G-Number

®® 18

Out Of Order ExecutionOut Of Order Execution
Execute instructions based on “Execute instructions based on “data data
flowflow” rather than program order” rather than program order

Before:Before:
(1)(1) loadload r21,(r10)r21,(r10)
(2)(2) movmov r31,r21r31,r21 (2 depends on 1)(2 depends on 1)
(3)(3) movmov r11,ar11,a
(4)(4) movmov r22,r31r22,r31 (4 depends on 2)(4 depends on 2)
(5)(5) movmov r23,r11r23,r11 (5 depends on 3)(5 depends on 3)

After:After:
(1)(1) loadload r21,(r10);r21,(r10); (3)(3) movmov r11,a;r11,a;
(2)(2) movmov r31,r21;r31,r21; (5)(5) movmov r23,r11;r23,r11;
(4)(4) movmov r22,r31;r22,r31;

10

Page 10

G-Number

®® 19

Out Of Order (cont.)Out Of Order (cont.)
AdvantagesAdvantages
–– Help exploit Help exploit Instruction Level Parallelism Instruction Level Parallelism (ILP)(ILP)
–– Help cover latencies (e.g., cache miss, divide)Help cover latencies (e.g., cache miss, divide)
–– Superior/complementary to compiler schedulerSuperior/complementary to compiler scheduler

–– Dynamic instruction windowDynamic instruction window
–– Can use more than 8 registersCan use more than 8 registers

Complex microarchitectureComplex microarchitecture
–– Complex schedulerComplex scheduler
–– Requires reordering mechanism (Requires reordering mechanism (retirementretirement) in the) in the

backback--end for:end for:
–– Precise interrupt resolutionPrecise interrupt resolution
–– Misprediction/speculation recoveryMisprediction/speculation recovery
–– Memory orderingMemory ordering

G-Number

®® 20

ReRe--order Buffer (ROB)order Buffer (ROB)
Mechanism for renaming and retirementMechanism for renaming and retirement
Table contains inTable contains in--order instructionsorder instructions
–– Instructions are entered in orderInstructions are entered in order
–– Registers renamed by the entry#Registers renamed by the entry#
–– Once assigned: execution order unimportantOnce assigned: execution order unimportant
–– After execution: entries marked After execution: entries marked “executed”“executed”
–– An executed entry can be An executed entry can be “retired”“retired” once all prior once all prior

instruction have retired. That is:instruction have retired. That is:
–– Update Update “real registers” “real registers” with value of renamed regswith value of renamed regs
–– Update memoryUpdate memory
–– Leave the ROBLeave the ROB

11

Page 11

G-Number

®® 21

Reservation Station(s)Reservation Station(s)
Pool(s) of all “not yet executed” instructionsPool(s) of all “not yet executed” instructions
Maintains operands status “Maintains operands status “readyready//notnot--ready”ready”
Each cycle, executed instructions make more Each cycle, executed instructions make more
operands operands “ready”“ready”
Instructions whose all operands are Instructions whose all operands are “ready” “ready”
can be can be “dispatched”“dispatched” for executionfor execution
Dispatcher chooses which of the Dispatcher chooses which of the “ready” “ready”
instructions will be executed next.instructions will be executed next.

G-Number

®® 22

Memory Order Buffer (MOB)Memory Order Buffer (MOB)
Idea Idea -- allow out of order among memory operationsallow out of order among memory operations
ProblemProblem-- Memory dependencies cannot fully resolved Memory dependencies cannot fully resolved
statically (memory disambiguation)statically (memory disambiguation)

–– store r1,a; load r2,b => can advance load before storestore r1,a; load r2,b => can advance load before store
–– store r1,[r3]; load r2,b => load should wait till r3 is knownstore r1,[r3]; load r2,b => load should wait till r3 is known

Structure similar in concept to ROBStructure similar in concept to ROB
Every access is allocated an entry.Every access is allocated an entry.
Address & data (for stores), are updated when knownAddress & data (for stores), are updated when known
Load is checked against all previous stores:Load is checked against all previous stores:

–– Waits if store to same address exist, but data not readyWaits if store to same address exist, but data not ready
–– If store data exists, just use itIf store data exists, just use it
–– Waits if store to unknown address existsWaits if store to unknown address exists
–– No address collision No address collision -- go to memorygo to memory

12

Page 12

G-Number

®® 23

Dynamic ExecutionDynamic Execution
Combination of three techniques:Combination of three techniques:
Multiple Branch predictionMultiple Branch prediction
Out Of Order execution: Dataflow analysisOut Of Order execution: Dataflow analysis
Speculative ExecutionSpeculative Execution

How does this machine really work?How does this machine really work?

G-Number

®® 24

Micro Operations (Uops)Micro Operations (Uops)
Each “CISC” inst is broken into one or more uopsEach “CISC” inst is broken into one or more uops

–– Simplicity:Simplicity:
–– Each uop is (relatively) simpleEach uop is (relatively) simple
–– Canonical representation of src/dest (3 src, 2 dest)Canonical representation of src/dest (3 src, 2 dest)

–– Increased ILPIncreased ILP
e.g., e.g., pop eax pop eax becomes becomes esp1<esp1<--esp0+4esp0+4, , eax1<eax1<--[esp0][esp0]

Typical uop count (it is not necessarily cycle count!)Typical uop count (it is not necessarily cycle count!)
RegReg--Reg ALU/Mov inst:Reg ALU/Mov inst: 1 uop1 uop
MemMem--Reg Mov (load)Reg Mov (load) 1 uop1 uop
MemMem--Reg ALUReg ALU (load + op)(load + op) 2 uops2 uops
RegReg--Mem Mov (store)Mem Mov (store) 2 uops (st addr, st data)2 uops (st addr, st data)
RegReg--Mem ALUMem ALU (ld + op + st)(ld + op + st) 4 uops4 uops
MicrocodeMicrocode VariesVaries

Mainly an X86 artifact Mainly an X86 artifact

13

Page 13

G-Number

®® 25

CPU MicroarchitectureCPU Microarchitecture

MISMIS

AGUAGU

MOBMOB

External BusExternal Bus

IEUIEU

MIUMIU

FEUFEU

ROBROB

BTBBTB

BIUBIU

IFUIFU

II
DD

RATRAT

RR
SS

L2L2

DCUDCU

InIn--Order Front EndOrder Front End
–– BIU: Bus Interface UnitBIU: Bus Interface Unit
–– IFU: Inst. Fetch Unit (includes IC)IFU: Inst. Fetch Unit (includes IC)
–– BTB: Branch Target BufferBTB: Branch Target Buffer
–– ID: Instruction DecoderID: Instruction Decoder
–– MIS: MicroMIS: Micro--Instruction SequencerInstruction Sequencer
–– RAT: Register Alias TableRAT: Register Alias Table

OutOut--ofof--order Coreorder Core
–– ROB: Reorder BufferROB: Reorder Buffer
–– RRF: Real Register FileRRF: Real Register File
–– RS: Reservation StationsRS: Reservation Stations
–– IEU: Integer Execution UnitIEU: Integer Execution Unit
–– FEU: FloatingFEU: Floating--point Execution Unit point Execution Unit
–– AGU: Address Generation UnitAGU: Address Generation Unit
–– MIU: Memory Interface UnitMIU: Memory Interface Unit
–– DCU: Data Cache UnitDCU: Data Cache Unit
–– MOB: Memory Order BufferMOB: Memory Order Buffer
–– L2: Level 2 cacheL2: Level 2 cache

InIn--Order RetireOrder Retire

G-Number

®® 26

MicroarchitectureMicroarchitecture

MISMIS

AGUAGU

MOBMOB

External BusExternal Bus

IEUIEU

MIUMIU

FEUFEU

ROBROB

BTBBTB

BIUBIU

IFUIFU

II
DD

RATRAT

RR
SS

L2L2

DCUDCU

InIn--Order Front EndOrder Front End

BTBBTB: predicts the address of the : predicts the address of the
next instruction to be fetchednext instruction to be fetched
IFU:IFU: fetches bytes from the fetches bytes from the
instruction cache (or L2, or instruction cache (or L2, or
memory)memory)
ID:ID: Decodes instructions and Decodes instructions and
converts them to uops (up to 3 converts them to uops (up to 3
uops/cycle).uops/cycle).
MISMIS: Produces uops for complex : Produces uops for complex
instructions. instructions.
RATRAT: Register Alias Table: Register Alias Table

14

Page 14

G-Number

®® 27

Branch PredictionBranch Prediction
ImplementationImplementation
–– Use local history to predict directionUse local history to predict direction
–– Need to predict multiple branches Need to predict multiple branches
⇒⇒ Need to predict branches before previous branches are resolvedNeed to predict branches before previous branches are resolved
⇒⇒ Branch history updated first based on prediction, later based oBranch history updated first based on prediction, later based on actual n actual

execution (speculative history).execution (speculative history).
–– Target address taken from BTBTarget address taken from BTB

Prediction rate: ~92%Prediction rate: ~92%
–– ~60 instructions between ~60 instructions between mispredictionsmispredictions

(assuming 1 branch per 5 inst. on average)(assuming 1 branch per 5 inst. on average)
–– High prediction rate is very crucial for long pipelinesHigh prediction rate is very crucial for long pipelines
–– Especially important for OOOE, speculative execution:Especially important for OOOE, speculative execution:

–– On misprediction all instructions following the branch in the inOn misprediction all instructions following the branch in the instruction struction
window are flushedwindow are flushed

–– Effective size of the window is determined by prediction accuracEffective size of the window is determined by prediction accuracy.y.

RSB used for Call/Return pairsRSB used for Call/Return pairs
Totally reTotally re--done on Banias!done on Banias!

G-Number

®® 28

The P6 BTBThe P6 BTB
22--level, local histories, perlevel, local histories, per--set countersset counters
44--way set associative: 512 entries in 128 setsway set associative: 512 entries in 128 sets

IP Tag Hist

1001

Pred=
msb of
counter

9

0

15

Way 0

Target

W
ay

 2

W
ay

 3

9 432

counters

128
sets

PTV

21 1 32

LRR

2

Per-Set

Branch Type
00- cond
01- ret
10- call
11- uncond

Return
Stack
Buffer

W
ay

 1

Prediction bit

4

ofst

Up to 4 branches can have a tag matchUp to 4 branches can have a tag match

15

Page 15

G-Number

®® 29

InIn--Order Front EndOrder Front End

MicroarchitectureMicroarchitecture

MISMIS

AGUAGU

MOBMOB

External BusExternal Bus

IEUIEU

MIUMIU

FEUFEU

ROBROB

BTBBTB

BIUBIU

IFUIFU

II
DD

RATRAT

RR
SS

L2L2

DCUDCU IA instrs

alignment

uop0 uop1 uop2

D1 D2D0

Determine where each IA Determine where each IA
instruction startsinstruction starts
Direct the bytes of each Direct the bytes of each
inst. to the decoder inst. to the decoder
Convert instructions into Convert instructions into
uops.uops.
Buffers up to 6 uops: Buffers up to 6 uops:
Enables decoders keep Enables decoders keep
working even when next working even when next
pipe stages are stalled. pipe stages are stalled.

G-Number

®® 30

Alloc & RATAlloc & RAT
The Allocator (Alloc) assigns each uop an entry The Allocator (Alloc) assigns each uop an entry
number in the ROBnumber in the ROB
The Register Alias Table (RAT) maps the 8 IA The Register Alias Table (RAT) maps the 8 IA
architectural registers into the physical registersarchitectural registers into the physical registers
Work together to perform the register allocation Work together to perform the register allocation
and renamingand renaming
Are able to work on up to 3 uops per clockAre able to work on up to 3 uops per clock
The Alloc also allocates Load & Store buffers in the The Alloc also allocates Load & Store buffers in the
MOBMOB
Special treatment for FP stack renamingSpecial treatment for FP stack renaming

16

Page 16

G-Number

®® 31

MicroarchitectureMicroarchitecture

MISMIS

AGUAGU

MOBMOB

External BusExternal Bus

IEUIEU

MIUMIU

FEUFEU

ROBROB

BTBBTB

BIUBIU

IFUIFU

II
DD

RATRAT

RR
SS

L2L2

DCUDCU

InIn--Order Front EndOrder Front End

G-Number

®® 32

MicroarchitectureMicroarchitecture
OutOut--ofof--order Coreorder Core

MISMIS

AGUAGU

MOBMOB

External BusExternal Bus

IEUIEU

MIUMIU

FEUFEU

ROBROB

BTBBTB

BIUBIU

IFUIFU

II
DD

RATRAT

RR
SS

L2L2

DCUDCU

ROB:ROB: Mechanism for renaming and Mechanism for renaming and
retirementretirement

–– 40 entries that hold instructions in40 entries that hold instructions in--
order.order.

RSRS: pool of all “not yet executed” : pool of all “not yet executed”
instructions (up to 20)instructions (up to 20)
Execution UnitsExecution Units

–– IEU: Integer Execution UnitIEU: Integer Execution Unit
–– FEU: FloatingFEU: Floating--point Execution Unit point Execution Unit

Memory related unitsMemory related units
–– AGU: Address Generation Unit MIU: AGU: Address Generation Unit MIU:

Memory Interface UnitMemory Interface Unit
–– DCU: Data Cache UnitDCU: Data Cache Unit
–– MOB: Orders Memory operationsMOB: Orders Memory operations
–– L2: Level 2 cacheL2: Level 2 cache

17

Page 17

G-Number

®® 33

ReRe--order Buffer (ROB)order Buffer (ROB)
Mechanism for renaming and retirementMechanism for renaming and retirement
Basic ROB functionsBasic ROB functions
–– Provide large physical register space for register Provide large physical register space for register

renamingrenaming
–– Buffer results of speculative execution in a 40 entry Buffer results of speculative execution in a 40 entry

physical register filephysical register file
–– Commit architectural state only after speculation Commit architectural state only after speculation

(branch, exception) has resolved(branch, exception) has resolved
–– Detect exceptions and mispredictions and initiate Detect exceptions and mispredictions and initiate

repair to get machine back on right trackrepair to get machine back on right track
–– Holds also the “Real Register File” Holds also the “Real Register File” -- RRFRRF

G-Number

®® 34

ReRe--order Buffer (ROB) order Buffer (ROB) -- contcont
Uop flow through the ROB Uop flow through the ROB

–– Uops are entered in orderUops are entered in order
–– Registers renamed by the entry#Registers renamed by the entry#
–– Once assigned: execution order unimportantOnce assigned: execution order unimportant
–– After execution: entries marked After execution: entries marked “executed” “executed” and wait for and wait for

retirementretirement
–– An executed entry can be An executed entry can be “retired”“retired” once all prior instruction once all prior instruction

have retired. That is:have retired. That is:
–– Update Update “real registers” “real registers” with value of renamed registerswith value of renamed registers
–– Update memoryUpdate memory
–– Leave the ROBLeave the ROB

Only 2 read ports (for up to 6 operands)Only 2 read ports (for up to 6 operands)

18

Page 18

G-Number

®® 35

Reservation station (RS)Reservation station (RS)
Pool of all “not yet executed” uops (up to 20)Pool of all “not yet executed” uops (up to 20)

–– Holds the uop attributes and the uop source dataHolds the uop attributes and the uop source data

Maintains operands status “Maintains operands status “readyready//notnot--ready”ready”
–– Each cycle, executed uops make more operands Each cycle, executed uops make more operands “ready”“ready”
–– Uops whose all operands are Uops whose all operands are ready ready can be can be dispatcheddispatched for executionfor execution
–– Dispatcher chooses which of the Dispatcher chooses which of the ready ready uops to execute nextuops to execute next

Responsible for:Responsible for:
–– Holding the uop till it is dispatchedHolding the uop till it is dispatched
–– Monitoring the WB bus to capture data needed by awaiting uopMonitoring the WB bus to capture data needed by awaiting uop
–– Bypass control of data from WB bus directly to execution unitBypass control of data from WB bus directly to execution unit
–– Schedule the next uopsSchedule the next uops
–– Dispatch uops to functional units Dispatch uops to functional units
–– Arbitrate the WB busses between the unitsArbitrate the WB busses between the units

G-Number

®® 36

Memory Order Buffer (MOB)Memory Order Buffer (MOB)

Goal Goal -- allow outallow out--ofof--order among memory operationsorder among memory operations
ProblemProblem-- Memory dependencies cannot be fully Memory dependencies cannot be fully
resolved statically (memory disambiguation)resolved statically (memory disambiguation)

–– store r1,a; load r2,b store r1,a; load r2,b ⇒⇒ can advance load before storecan advance load before store
–– store r1,[r3]; load r2,b store r1,[r3]; load r2,b ⇒⇒ load should wait till r3 is knownload should wait till r3 is known

Structure similar in concept to ROBStructure similar in concept to ROB
Every memory uop is allocated an entry in order.Every memory uop is allocated an entry in order.
Address & data (for stores), are updated when knownAddress & data (for stores), are updated when known
Loads may pass loads/stores Loads may pass loads/stores
Stores are in orderStores are in order

19

Page 19

G-Number

®® 37

Memory Order Buffer (MOB)Memory Order Buffer (MOB)
Load is checked against all previous stores:Load is checked against all previous stores:
–– Waits if store to same address exist,Waits if store to same address exist,

but data not readybut data not ready
–– If store data exists, just use itIf store data exists, just use it
–– Waits till all previous store addresses are resolvedWaits till all previous store addresses are resolved
–– In case of no address collision In case of no address collision -- go to memorygo to memory

G-Number

®® 38

MISMIS

AGUAGU

MOBMOB

External BusExternal Bus

IEUIEU

MIUMIU

FEUFEU

ROBROB

BTBBTB

BIUBIU

IFUIFU

II
DD

RATRAT

RR
SS

L2L2

DCUDCU

MicroarchitectureMicroarchitecture
SHF

FMU
FDI
VIDI

VFA
UIEU

JEU
IEU

AGU

AGU

Port 0

Port 1

Port 2

Port 3,4

LDA

STA

20

Page 20

G-Number

®® 39

MicroarchitectureMicroarchitecture

OutOut--ofof--order Coreorder Core

MISMIS

AGUAGU

MOBMOB

External BusExternal Bus

IEUIEU

MIUMIU

FEUFEU

ROBROB

BTBBTB

BIUBIU

IFUIFU

II
DD

RATRAT

RR
SS

L2L2

DCUDCU

G-Number

®® 40

MicroarchitectureMicroarchitecture

InIn--Order RetireOrder Retire

MISMIS

AGUAGU

MOBMOB

External BusExternal Bus

IEUIEU

MIUMIU

FEUFEU

ROBROB

BTBBTB

BIUBIU

IFUIFU

II
DD

RATRAT

RR
SS

L2L2

DCUDCU

21

Page 21

G-Number

®® 41

In order RetirementIn order Retirement
The process of committing the results to the The process of committing the results to the
architectural state of the processorarchitectural state of the processor
Retires up to 3 uops per clockRetires up to 3 uops per clock
Copies the values to the RRFCopies the values to the RRF
Retirement is done In OrderRetirement is done In Order
Performs exception checkingPerforms exception checking
An instruction is retired after the following checksAn instruction is retired after the following checks

–– Instruction has executedInstruction has executed
–– All previous instructions have retiredAll previous instructions have retired
–– Instruction isn’t misInstruction isn’t mis--predictedpredicted
–– no exceptionsno exceptions

G-Number

®® 42

Flow of Uops through OOO ClusterFlow of Uops through OOO Cluster
ISSUE: ISSUE:

–– ALLOC unit allocates one entry per uop in the RS and in the ROB ALLOC unit allocates one entry per uop in the RS and in the ROB (for up to 3 (for up to 3
uops per cycle)uops per cycle)

–– If source data is available from the ROB (either from the RRF ofIf source data is available from the ROB (either from the RRF of from from
the Result Buffer (RB) it is written in the RS entrythe Result Buffer (RB) it is written in the RS entry

–– Otherwise, it is marked invalid in the RS (and should be captureOtherwise, it is marked invalid in the RS (and should be captured d
from the WB bus) from the WB bus)

READY/SCHEDULE: READY/SCHEDULE:
–– DataData--ready uops are checked to see if desired functional unit availabready uops are checked to see if desired functional unit available le
–– Up to 5 resourceUp to 5 resource--ready uops are selected, and dispatched per clockready uops are selected, and dispatched per clock

DISPATCH:DISPATCH:
–– Ship scheduled uops to appropriate functional unit (RS)Ship scheduled uops to appropriate functional unit (RS)

WRITEBACK:WRITEBACK:
–– Capture results returned by the functional units in a result bufCapture results returned by the functional units in a result buffer (ROB)fer (ROB)
–– Snoop result writeback ports for results that are sources to uopSnoop result writeback ports for results that are sources to uops in RSs in RS
–– Update dataUpdate data--ready status of these uops (RS)ready status of these uops (RS)

22

Page 22

G-Number

®® 43

Flow of Uops through OOO Cluster Flow of Uops through OOO Cluster
(cont)(cont)

RETIREMENT: RETIREMENT:
–– 3 consecutive entries read out of the ROB 3 consecutive entries read out of the ROB

–– these entries are candidates for retirementthese entries are candidates for retirement
–– Algorithm to determine fitness for retirement: candidate is Algorithm to determine fitness for retirement: candidate is

retiredretired
–– its ready bit is setits ready bit is set
–– it will not cause an exceptionit will not cause an exception
–– all preceding candidates are eligible for retirementall preceding candidates are eligible for retirement

–– Commit results from result buffer to architecturally visible staCommit results from result buffer to architecturally visible state te
in original “Issue” orderin original “Issue” order

–– Clear machine and restart execution if “badness” occurs (ROB)Clear machine and restart execution if “badness” occurs (ROB)

G-Number

®® 44

Jump MispredictionJump Misprediction
When the JEU detects jump misprediction itWhen the JEU detects jump misprediction it

–– Flushes the inFlushes the in--order frontorder front--end and starts fetching and decoding end and starts fetching and decoding
from the “correct” execution pathfrom the “correct” execution path

–– The “correct” path may not be correct if a preceding uop that The “correct” path may not be correct if a preceding uop that
hasn’t executed yet could cause an exceptionhasn’t executed yet could cause an exception

–– Therefore, the “correct” instruction stream is stalled at the RATherefore, the “correct” instruction stream is stalled at the RAT T
until the mispredicted branch retiresuntil the mispredicted branch retires

–– Does not flush the OOO part of the machine, since all Does not flush the OOO part of the machine, since all
instructions preceding the jump must be completed and retiredinstructions preceding the jump must be completed and retired

When the mispredicted branch retires from the ROBWhen the mispredicted branch retires from the ROB
–– Resets all state in the OutResets all state in the Out--ofof--Order Engine (RS, RB, MOB, etc.)Order Engine (RS, RB, MOB, etc.)
–– UnUn--stalls the installs the in--order machineorder machine
–– The RS immediately grabs the correct uops from the RAT and The RS immediately grabs the correct uops from the RAT and

starts scheduling and dispatching themstarts scheduling and dispatching them

23

Page 23

G-Number

®® 45

PipelinePipeline

I1I1 I2I2 I3I3 I4I4 I5I5 I6I6 I7I7 I8I8

O1O1 O2O2 O3O3

R1R1 R2R2 R3R3

NextNext
IPIP

RegReg
RenRen

RSRS
WrWr

ExEx

IcacheIcache DecodeDecode

RS dispRS disp

RetirementRetirement

•• InIn--Order Front EndOrder Front End

•• OutOut--ofof--order Coreorder Core

•• InIn--order Retirementorder Retirement

1: Next IP
2: ICache lookup
3: IC2 /ILD (instruction length decode)
4: IC3/rotate
5: ID1
6: ID2
7: RAT- rename sources,

ALLOC-assign destinations
8: ROB-read sources

RS-schedule data-ready uops for dispatch
9: RS-dispatch uops
10:EX
11:Retirement

G-Number

®® 46

OOO Concept ExampleOOO Concept Example
Lets follow this code:Lets follow this code:
program counterprogram counter InstructionInstruction [format: op [format: op srcsrc, , destdest]]

nn movmov r4,r1r4,r1
n+1n+1 addadd r1,r2r1,r2
n+2n+2 movmov M2,r1M2,r1
n+3n+3 addadd r1,r3r1,r3
n+4n+4 jmpjmp L2L2
n+5n+5 addadd r3,r4r3,r4
n+6n+6 movmov M3,r1M3,r1
n+7n+7 addadd r1,r4r1,r4
n+8n+8 decdec r5r5

Every cycle, 4 instructions are decodedEvery cycle, 4 instructions are decoded

A demonstrating example, where RS and Rob are combinedA demonstrating example, where RS and Rob are combined

Cycle 1 decode

Cycle 2 decode

Cycle 3 decode

24

Page 24

G-Number

®® 47

Code Example (rename & Code Example (rename & SchedSched))
Lets follow this code:Lets follow this code:

PCPC InstructionsInstructions After RenamingAfter Renaming ExecutionExecution
nn movmov r4,r1r4,r1 r4, r1_1r4, r1_1 DD EE WW
n+1n+1 addadd r1,r2r1,r2 r1_1, r2, r2_1r1_1, r2, r2_1 DD EE WW
n+2n+2 movmov M2,r1M2,r1 M2, r1_2M2, r1_2 DD EE WW
n+3n+3 addadd r1,r3r1,r3 r1_2, r3, r3_1r1_2, r3, r3_1 DD EE WW
n+4n+4 jmpjmp L2L2 …… DD EE WW
n+5n+5 addadd r3,r4r3,r4 r3_1, r4, r4_1r3_1, r4, r4_1 DD EE WW
n+6n+6 movmov M3,r1M3,r1 M3, r1_3M3, r1_3 DD EE WW
n+7n+7 addadd r1,r4r1,r4 r1_3, r4_1, r4_2r1_3, r4_1, r4_2 DD EE WW
n+8n+8 decdec r5r5 r5, r5_1r5, r5_1 DD EE WW

cycle:cycle:00 11 22 33 44 55 66

Every cycle, 4 instructions are decodedEvery cycle, 4 instructions are decoded

G-Number

®® 48

Implementation ExampleImplementation Example
Cycle 1Cycle 1

n mov r4,r1
n+1 add r1,r2
n+2 mov M2,r1
n+3 add r1,r3
n+4 jmp L2
n+5 add r3,r4
n+6 mov M3,r1
n+7 add r1,r4
n+8 dec r5

PC InstructionIcache

Decode & Issue Logic

PC Instruction S1 S2 Destination
Tag Value Exec Valid

E
X
E
C
U
T
I
O
N

n
n+1
n+2
n+3

Mov R4,R1
Add R1,R2
Mov M2,R1
Add R1,R3

R4 R1_1
R1_1
M2 R1_2
R1_2 R3_1

Reg
File

R1
R2
R3
R4

xxx
yyy
zzz
ttt

tag val tag val

1
1
1
1
0
0
0
0
0

0
0
0
0
0
0
0
0
0

R2
R1

R3

ttt xxx
yyy

zzz

Commit

• 4 instructions entered into Reservation
stations/ Register renaming

• 2 copies of R1 alive - tags connected

• Available values read from committed
reg file

R2_1

Op Src, Dest

25

Page 25

G-Number

®® 49

n mov r4,r1
n+1 add r1,r2
n+2 mov M2,r1
n+3 add r1,r3
n+4 jmp L2
n+5 add r3,r4
n+6 mov M3,r1
n+7 add r1,r4
n+8 dec r5

PC InstructionIcache

Decode & Issue Logic

PC Instruction S1 S2 Destination
Tag Value Exec Valid

E
X
E
C
U
T
I
O
N

n
n+1
n+2

Mov R4,R1
Add R1,R2
Mov M2,R1
Add R1,R3

R4 R1_1
R1_1
M2 R1_2
R1_2 R3_1

tag val tag val

1
1
1
1
1
1
1
1
0

1
0
1
0
0
0
0
0
0

R2
R1

R3

ttt xxx
yyy

zzz

Committtt
ttt

sss
sssn+3

n+4
n+5
n+6
n+7

jmp L2
Add R3,R4

Mov M3,R1
Add R1,R4

R3_1 R4 ttt
M3
R1_3 R4_1

R4_1
R1_3
R4_2

Reg
File

R1
R2
R3
R4

xxx
yyy
zzz
ttt

R5 vvv

• 4 new instructions entered into Reservation
stations and renamed (N+5, N+7)

• N & N+2 execute - results go to N+1 & N+3

• N will commit next cycle and its value go to
real R1

R2_1

Op Src, Dest

Implementation Example (Cont…) Implementation Example (Cont…)
Cycle 2Cycle 2

G-Number

®® 50

n mov r4,r1
n+1 add r1,r2
n+2 mov M2,r1
n+3 add r1,r3
n+4 jmp L2
n+5 add r3,r4
n+6 mov M3,r1
n+7 add r1,r4
n+8 dec r5

PC InstructionIcache

Decode & Issue Logic

PC Instruction S1 S2 Destination
Tag Value Exec Valid

E
X
E
C
U
T
I
O
N

n+1
n+2

Add R1,R2
Mov M2,R1
Add R1,R3

R1_1
M2 R1_2

R1_2 R3_1

tag val tag val

1
1
1
1
1
1
1
0

1
1
1
0
1
0
0
0

R2

R3

yyy

zzz

Committtt
sss

sssn+3
n+4
n+5
n+6
n+7

jmp L2
Add R3,R4
Mov M3,R1
Add R1,R4

R3_1 R4 ttt
M3
R1_3 R4_1

R4_1
R1_3
R4_2

n+8 Dec R5 R5 vvv R5_1

1kkk

lll

lll
jjj

jjj

1

Reg
File

R1
R2
R3
R4

ttt
yyy
zzz
ttt

R5 vvv

• N+8 added after decoding

• N+1, N+3, N+4 & N+6 execute - results go to
N+5 & N+7

• N+7 is not ready it still needs N+5

• N+1 -> N+4 will commit next cycle and their
values written to real reg file.

R2_1

Op Src, Dest

Implementation Example (Cont…) Implementation Example (Cont…)
Cycle 3Cycle 3

26

Page 26

G-Number

®® 51

n mov r4,r1
n+1 add r1,r2
n+2 mov M2,r1
n+3 add r1,r3
n+4 jmp L2
n+5 add r3,r4
n+6 mov M3,r1
n+7 add r1,r4
n+8 dec r5

PC InstructionIcache

Decode & Issue Logic

PC Instruction S1 S2 Destination
Tag Value Exec Valid

E
X
E
C
U
T
I
O
N

tag val tag val

1
1
1

1

0

1

1
0

1

0

Commitn+5
n+6
n+7

Add R3,R4
Mov M3,R1
Add R1,R4

R3_1 R4 ttt
M3
R1_3 R4_1

R4_1

R1_3
R4_2

n+8 Dec R5 R5 vvv R5_1

Reg
File

R1
R2
R3
R4

sss
kkk
lll
ttt

R5 vvv

lll
jjj

jjj
ppp

ggg

ggg

00
00
00
00

• N+5 & N+8 execute - results go to N+7

• N+5 & 6 will commit next cycle and their
values written to real reg file.

Op Src, Dest

Implementation Example (Cont…) Implementation Example (Cont…)
Cycle 4Cycle 4

G-Number

®® 52

n mov r4,r1
n+1 add r1,r2
n+2 mov M2,r1
n+3 add r1,r3
n+4 jmp L2
n+5 add r3,r4
n+6 mov M3,r1
n+7 add r1,r4
n+8 dec r5

PC InstructionIcache

Decode & Issue Logic

PC Instruction S1 S2 Destination
Tag Value Exec Valid

E
X
E
C
U
T
I
O
N

Reg
File

R1
R2
R3
R4

jjj
kkk
lll
ggg

tag val tag val

1
1

0

1
1

0

Commitn+7 Add R1,R4 R1_3 R4_1 R4_2
n+8 Dec R5 R5 vvv R5_1

R5 vvv

jjj ooo
ppp

ggg

00
00
00
00
00
00

Op Src, Dest

Implementation Example (Cont…) Implementation Example (Cont…)
Cycle 5Cycle 5

27

Page 27

G-Number

®® 53

n mov r4,r1
n+1 add r1,r2
n+2 mov M2,r1
n+3 add r1,r3
n+4 jmp L2
n+5 add r3,r4
n+6 mov M3,r1
n+7 add r1,r4
n+8 dec r5

PC InstructionIcache

Decode & Issue Logic

PC Instruction S1 S2 Destination
Tag Value Exec Valid

E
X
E
C
U
T
I
O
N

Reg
File

R1
R2
R3
R4

jjj
kkk
lll
ooo

tag val tag val
00

Commit

R5 ppp

00
00
00
00
00
00
00
00

Op Src, Dest

Implementation Example (Cont…) Implementation Example (Cont…)
Cycle 6Cycle 6

G-Number

®® 54

Register Renaming exampleRegister Renaming example

28

Page 28

G-Number

®® 55

An OOOE Example An OOOE Example -- IssueIssue
En tr y
Valid

 Uop cod e S rc 1/Sr c2 V Psrc s Pdst

RS

RB /RRF poin ter RRFV
 E AX

 EB X

EC X

RAT
Dat a

EA X

EB X

EC X
RR F

Dat a V L d st

35

42

57

19 229

522
RB

RO B

ISSU E

add EAX, EBX, EAX

EAX --> 42 1 --> 0
35 0

add
 xxx, 35, 42
EAX, EBX, EAX
RRFV

 0->1 add
229
522

1
1

xxx
35

42

xxx

1

1

0

EA X

EB X

EA X

229
312

Ic
ac

he

IL
D

ro
ta

to
r

de
co

de
 1

de
co

de
 2

re
na

m
e/

ro
b/

rs

di
sp

at
ch

ex
ec

ut
e

re
tir

e
1

al
lo

c

re
tir

e
2

An O -O -O Exampleadd EAX, EBX EAX
sub EAX,414 ECX

G-Number

®® 56

An OOOE Example An OOOE Example -- DispatchDispatch
En tr y
Valid

 Uop cod e S rc 1/Sr c2 V Psrc s Pdst

RS

RB /RRF poin ter RRFV
 E AX

 EB X

EC X

RAT
D ata

EA X

EB X

EC X
R R F

Dat a V L dst

35

42

57

19 229

522
R B

RO B

R EA DY /SC H EDU LE/DISPA TC H

42
35

0
0

add 229, 522, pdst= 42

1->0 add
229
522

1
1

xxx
35

42

1

1

0xxx

E AX

E BX

E A X

229
312

Ic
ac

he

IL
D

ro
ta

to
r

de
co

de
 1

de
co

de
 2

re
na

m
e/

ro
b/

rs

di
sp

at
ch

ex
ec

ut
e

re
tir

e
1

al
lo

c

re
tir

e
2

add EAX, EBX EAX
sub EAX,414 ECX

29

Page 29

G-Number

®® 57

An OOOE Example An OOOE Example -- ExecuteExecute
En tr y
Valid

 Uop cod e S rc 1/Sr c2 V Psrc s Pdst

RS

RB /RRF poin ter RRFV
 E AX

 EB X

EC X

RAT
Dat a

EA X

EB X

EC X
RR F

Dat a V L d st

35

42

57

19 229

522
RB

RO B

W R ITEBA C K

42
35

zzz --> 57

0
0
0

0->1 su b
xxx -> 751

414
0->1

1
42
45

57

1

1

0->1

0

xxx --> 751

yyy

EAX

EBX

EAX

ECX

229
312

resu lt= 751, pdst= 42

Ic
ac

he

IL
D

ro
ta

to
r

de
co

de
 1

de
co

de
 2

re
na

m
e/

ro
b/

rs

di
sp

at
ch

ex
ec

ut
e

re
tir

e
1

al
lo

c

re
tir

e
2

add EAX, EBX EAX
sub EAX,414 ECX

G-Number

®® 58

An OOOE Example An OOOE Example -- RetireRetire
En tr y
Valid

 Uop cod e S rc 1/Sr c2 V Psrc s Pdst

RS

RB /RRF poin ter RRFV
 E AX

 EB X

EC X

RAT
Dat a

EA X

EB X

EC X
RR F

Dat a V L d st

35

42

57

19 229

522
RB

RO B

RETIREM ENT

42
35

57

0->1
0->1

0

1 sub
751
414

1
1

42
45

57

1

1

1751

yyy 0

EAX

EBX

EAX

ECX

229->751
312->522

Ic
ac

he

IL
D

ro
ta

to
r

de
co

de
 1

de
co

de
 2

re
na

m
e/

ro
b/

rs

di
sp

at
ch

ex
ec

ut
e

re
tir

e
1

al
lo

c

re
tir

e
2

add EAX, EBX EAX
sub EAX,414 ECX

30

Page 30

G-Number

®® 59

Hope you liked that...Hope you liked that...

