The Pentium® II/llI
Processor
“Compiler on a Chip”

Ronny Ronen

Senior Principal Engineer
Director of Architecture Research
Intel Labs - Haifa

Intel Corporation

Tel Aviv University
. January 20, 2004

Agenda

e General Information

e narchitecure basics

e Pentium® Pro Processor uarchitecure
e SW aspects

Technology Profile

Pentium Pro - 1995 Pentium-Il - 1998 Pentium-lll - 1999
Core @200MHz e Core @333MHz e Core @600MHz

256K L2 on package, e 512KB L2 in SEC e 512KB L2
@200MHz @167MHz @ ???MHz

Performance: Performance: Performance:
5 8.09 SPECint95 g 12.8 SPECint95 = 24.0 SPECint95

5 6.70 SPEC{p95 = 9.14 SPEC{p95 5 15.9 SPEC{p95
0.35 um BiCMOS (P55C: 7.12/5.21)
5.5M transistors 0.25 ym CMOS 0.25 pm CMOS
195 sq mm (14x14) process process
3.3V, 11.2A e 7.5M transistors 2?2?M transistors

28.1W / 35.0W

pentiumll =

Technology Profile (cont.)

e Tualatin (Pentium-Ill - 2002)
Core @1000MHz e Core @1400MHz
[J
o

Coppermine (Pentium-lll - 2000)

256KB L2 on chip @ 1000MHz 512KB L2 on chip @ 1400MHz
Performance: Performance (estimated):
5 >46 SPECint95 5 >60 SPECIint95
5 >20 SPECfp95 5 >30 SPECfp95
e 0.18 um CMOS process e 0.13 um CMOS process
e ~20M transistors e ~44M transistors

Pentium M Processor Banias 2003
Core @1800MHz
1024KB L2 on chip @ 1800MHz
Performance (estimated):
2 >80 SPECint95
g >50 SPECfp95
e 0.10 mm CMOS process
e ~77M transistors

Terminology

e Intel Architecture

e Pipeline, Super Scalar
e Branch Prediction

e Speculative Execution
e Dynamic Scheduling
e Data dependency

e Register Renaming

e Out Of Order

e Re-order Buffer & Memory Order Buffer
e Reservation Stations
e Micro-Operations

intgl. Skip to parch

Intel Architecture (X86)

e 8 registers only
— Can be partially accessed
—Many memory accesses, short life time

e One set of condition codes
— Modified by most ALU operations
— Various operations affect various flags
—Short Generate/Use distance

e Explicit stack
— Push/Pop/Call/Return operations

e Variable length instructions
— Implicit operands

Pipeline

e Break the work to smaller pieces
0 1 2 3 4 5 6 7 8 9 10 11 12
' 1 1/4 1PC = 4 CPI
13 |

12

D
3

F: Fetch

D: Decode
E: Execute
W: Write Back

e Increased throughput
— increased # of completed instructions per cycle
— Number of stages varies
intd — Small: 4-5 (Pentium), “Superpipeline” ~14 (Pentium Pro)
intgl.

11PC =1 CPI

Pipeline Stalls

e But there are “stalls” in the pipeline
— Data flow dependency (instructions output/input)
— Solved by: bypasses, renaming
— Control flow dependencies
— Solved by branch prediction
— Other (Cache misses, long latency instructions)

2 4 5 6 7 8 9 10 N 12

D E
F D L w
F E

F: Fetch
D: Decode D 3
E: Execute F

W: Write
Back Data Flow stall
Control Flow stall

Address Generation Interlock

W
F

SuperScalar
e Performs more in a single cycle

0 1 2 3 4 5 6 7 8 9 10 11 12
[F
[_F

|| O|O|m|m|

T|njo|om|m|S|=

2IPC =1/2 CPI

n|m|o|o|m|m|S|S

T|m|o|o|mim|S|S

|
E [w |

e Ideally, can multiply the throughput

— but stall penalty is increased

intal.

Super Pipeline

e Split to shorter stages - allows higher frequency
Oldclk= 0 1 2 3 5 (] 7 8

9 10 11 12

Newclk=0 1 2 9 10 11 12

[FA]F2]D1
F1[F2 1IPC=1CPI

F1 33% higher freq!
F: Fetch W2
D: Decode w1
E: Execute E1
W: Write Back

w2 |
D3 W1 [w2]

e Ideally, can (again) multiply the throughput, but
— Stall penalties do not scale (e.g., control flow stall, cache misses)

— Clock setup/hold reduces the amount of net cycle time more - each
instruction takes longer!

= In the example above: 2X stages, but performance gain is <<33%

intal.

Out Of Order Execution

e So far - instructions were processed in their program
order.
— Parallelism is limited.

00QO: Instructions are executed based on “data flow”
rather than program order gAEn

Before: src -> dest 5

(1) load (r10), r21 4
(2) mov r21,r31 (2 depends on 1) %
(3)load a, r11

(4) mov r11,r22 (4 depends on 3)
(5) mov r22, r23 (5 depends on 4) AERER

2

2y

3456
Order Processing

After: i: 3¢ 3 i:
(1) load (r10),r21; (3)load a, r11; 5 5[50

<wait for loads to complete> 01 tZ f3o: SPG 789
(2)mov r21,r31; (4) mov r11,r22; ut of Order Processing

. In Order vs OO0 execution.
(5) mov r22,r23; Assuming:

) t.el Usually highly superscalar e s ouroes
intgl.

- 2 cycles load latency

Branch Prediction

e Goal - ensure enough instruction supply by
correct prefetching

e up to 486 - prefetcher assumed fall-through
— Lose on unconditional branch (e.g., call)
— Lose on frequently taken branches (e.g., loops)

e Branch prediction

— Predict branch taken/not taken
— Predict the branch target address n

Branch Prediction (cont.)

e Implementation

— Use history (private or global) to predict direction
(simple Lee&Smith, advanced Yeh&Patt)

— Target address taken from table (faster) or from the
instruction (slower)

— Table updated first based on prediction, later based
on actual execution.

e Misprediction cost varies (high on PPro)

e Current prediction rate: ~92% - 95%
~60-100 instructions between mispredictions®

* Assuming branch every 5 instructions

intal.

Speculative Execution

e Execution of instructions from a predicted
(yet unsure) path.
Eventually, path may turn wrong.
e Advantages:
— Ensure instruction supply
— Allow scheduling window
e Issues:
— Misprediction cost
— Misprediction recovery

Dynamic Scheduling

e Scheduling instructions at run time, by the
HW, and not at compile time, by the SW
e Advantages:

—Works on the dynamic instruction flow:
Can schedule across procedures, modules...

— Can see dynamic values (memory addresses)
— Can accommodate varying latencies

e Disadvantages
— Can schedule within a limited window only
— Should be fast - cannot be too smart

Data Dependency

(1) load R2,(R1) format: op dest, src]
(2) mov R3,R2
(&) mov R1,a %

(4) mov R2,R3
(5) mov R2,R1

e True dependency (R2:1>2, R3:2>4, R1:3>5)

e False dependencies
— Anti dependency (R1:1>3, R2: 2>4)
— Output dependency (R2:1>4,R2:4>5)

Register Renaming

before after mapping

(1) load R2,(R1) load r21,(r10) [R2->r21]
(2 mov R3,R2 mov r31,r21 [R3->r31]
(3) mov R1,a mov ri11,a [R1->r11]
(4) mov R2,R3 mov r22,r31 [R2->r22]
(5) add R2,R1 add r23,r11,r22 [R2->r23]

e Remove false dependencies
e Remove architecture limit for # of regs

e Help speculative execution

— Renamed register are kept until speculation is
verified to be correct

Out Of Order Execution

e Execute instructions based on “data
flow” rather than program order

Before:

(1) load r21,(r10)

(2) mov r31,r21 (2 depends on 1)
(3) movrii,a

(4) mov r22,r31 (4 depends on 2)
(5) mov r23,r11 (5 depends on 3)

After:

(1) loadr21,(r10); (3) mov ri11,a;
(2) movr31,r21; (5 mov r23,r11;
(4) mov r22,r31;

Out Of Order (cont.)

e Advantages
— Help exploit Instruction Level Parallelism (ILP)
—Help cover latencies (e.g., cache miss, divide)

— Superior/complementary to compiler scheduler
— Dynamic instruction window
— Can use more than 8 registers

e Complex microarchitecture

— Complex scheduler

— Requires reordering mechanism (retirement) in the
back-end for:
— Precise interrupt resolution
— Misprediction/speculation recovery
intgl. — Memory ordering

Re-order Buffer (ROB)

e Mechanism for renaming and retirement

e Table contains in-order instructions
— Instructions are entered in order
— Registers renamed by the entry#
— Once assigned: execution order unimportant
— After execution: entries marked “executed”

— An executed entry can be “retired” once all prior
instruction have retired. That is:
— Update “real registers” with value of renamed regs
— Update memory
— Leave the ROB

intal.

Reservation Station(s)

e Pool(s) of all “not yet executed” instructions
e Maintains operands status “ready/not-ready”

e Each cycle, executed instructions make more
operands “ready”

e Instructions whose all operands are “ready”
can be “dispatched” for execution

e Dispatcher chooses which of the “ready”
instructions will be executed next.

intel.

Memory Order Buffer (MOB)

e Idea - allow out of order among memory operations
e Problem- Memory dependencies cannot fully resolved
statically (memory disambiguation)
— storerl,a; load r2,b => can advance load before store
— store r1,[r3]; load r2,b => load should wait till r3 is known

e Structure similar in concept to ROB

e Every access is allocated an entry.
Address & data (for stores), are updated when known
e Load is checked against all previous stores:
— Waits if store to same address exist, but data not ready
— If store data exists, just use it
— Waits if store to unknown address exists
— No address collision - go to memory

intel.

Dynamic Execution

e Combination of three techniques:

e Multiple Branch prediction

e Out Of Order execution: Dataflow analysis
e Speculative Execution

How does this machine really work?

Micro Operations (Uops)

e Each “CISC” inst is broken into one or more uops
— Simplicity:
— Each uop is (relatively) simple
— Canonical representation of src/dest (3 src, 2 dest)
— Increased ILP
e.g., pop eax becomes esp71<-esp0+4, eax1<-[esp0]

e Typical uop count (it is not necessarily cycle count!)
Reg-Reg ALU/Mov inst: 1 uop
Mem-Reg Mov (load) 1 uop
Mem-Reg ALU (load + op) 2 uops
Reg-Mem Mov (store) 2 uops (st addr, st data)
Reg-Mem ALU (Id + op + st) 4 uops
Microcode Varies

e Mainly an X86 artifact

CPU Microarchitecture

Exiernal Bus gy e In-Order Front End
— BIU: Bus Interface Unit
IFU: Inst. Fetch Unit (includes IC)
MOB BTB: Branch Target Buffer
ID: Instruction Decoder

<« pcu MIS: Micro-Instruction Sequencer
44__'1_“ RAT: Register Alias Table
MIU e Out-of-order Core
ROB: Reorder Buffer
RRF: Real Register File
RS: Reservation Stations
IEU: Integer Execution Unit
FEU: Floating-point Execution Unit
AGU: Address Generation Unit
MIU: Memory Interface Unit
DCU: Data Cache Unit

MOB: Memory Order Buffer
L2: Level 2 cache

e [n-Order Retire

Microarchitecture

External Bus
- e In-Order Front End

MOB

BTB: predicts the address of the

‘—W_ next instruction to be fetched
MIU

IFU: fetches bytes from the
instruction cache (or L2, or

memery)

ID: Decodes instructions and
converts them to uops (up to 3
uops/cycle).

@.. MIS: Produces uops for complex
—

instructions.
RAT: Register Alias Table

Branch Prediction

e Implementation
— Use local history to predict direction
— Need to predict multiple branches
= Need to predict branches before previous branches are resolved

= Branch history updated first based on prediction, later based on actual
execution (speculative history).

— Target address taken from BTB

e Prediction rate: ~92%

— ~60 instructions between mispredictions
(assuming 1 branch per 5 inst. on average)

— High prediction rate is very crucial for long pipelines
— Especially important for OOOE, speculative execution:

— On misprediction all instructions following the branch in the instruction
window are flushed

— Effective size of the window is determined by prediction accuracy.
e RSB used for Call/Return pairs
e Totally re-done on Banias!

intal.

The P6 BTB

e 2-level, local histories, per-set counters
e 4-way set associative: 512 entries in 128 sets

Prediction bit

\

\

Target counters

e
Pred=
msb of

32. counter

Branch Type
00- cond
01-ret

10- call

11- uncond

Return
Stack
Buffer

Vv & Per-Set
*

K

e Up to 4 branches can have a tag match

intal.

Microarchitecture

External Bus o
e e In-Order Front End

-+

Determine where each IA
instruction starts

Direct the bytes of each
inst. to the decoder

Convert instructions into
uops.

Buffers up to 6 uops:
Enables decoders keep
working even when next
pipe stages are stalled.

Alloc & RAT

e The Allocator (Alloc) assigns each uop an entry
number in the ROB

e The Register Alias Table (RAT) maps the 8 IA
architectural registers into the physical registers

e Work together to perform the register allocation
and renaming

e Are able to work on up to 3 uops per clock

e The Alloc also allocates Load & Store buffers in the
MOB

e Special treatment for FP stack renaming

Microarchitecture

External Bus
A

e In-Order Front End

Microarchitecture

External Bus
nas

e Out-of-order Core

ROB: Mechanism for renaming and
retirement
— 40 entries that hold instructions in-
order.
RS: pool of all “not yet executed”
instructions (up to 20)

Execution Units
— IEU: Integer Execution Unit
— FEU: Floating-point Execution Unit

Memory related units

— AGU: Address Generation Unit MIU:
Memory Interface Unit

DCU: Data Cache Unit
MOB: Orders Memory operations
L2: Level 2 cache

Re-order Buffer (ROB)

e Mechanism for renaming and retirement

e Basic ROB functions

— Provide large physical register space for register
renaming

— Buffer results of speculative execution in a 40 entry
physical register file

— Commiit architectural state only after speculation
(branch, exception) has resolved

— Detect exceptions and mispredictions and initiate
repair to get machine back on right track

—Holds also the “Real Register File” - RRF

intal.

Re-order Buffer (ROB) - cont

e Uop flow through the ROB

— Uops are entered in order
— Registers renamed by the entry#
— Once assigned: execution order unimportant

— After execution: entries marked “executed” and wait for
retirement

— An executed entry can be “retired” once all prior instruction
have retired. That is:

— Update “real registers” with value of renamed registers
— Update memory
— Leave the ROB

e Only 2 read ports (for up to 6 operands)

intal.

Reservation station (RS)

e Pool of all “not yet executed” uops (up to 20)
— Holds the uop attributes and the uop source data

e Maintains operands status “ready/not-ready”
— Each cycle, executed uops make more operands “ready”
— Uops whose all operands are ready can be dispatched for execution
— Dispatcher chooses which of the ready uops to execute next

e Responsible for:
— Holding the uop till it is dispatched
— Monitoring the WB bus to capture data needed by awaiting uop
— Bypass control of data from WB bus directly to execution unit
— Schedule the next uops
— Dispatch uops to functional units
— Arbitrate the WB busses between the units

intal.

Memory Order Buffer (MOB)

e Goal - allow out-of-order among memory operations

e Problem- Memory dependencies cannot be fully
resolved statically (memory disambiguation)

— store r1,a; load r2,b = can advance load before store
— store r1,[r3]; load r2,b = load should wait till r3 is known

e Structure similar in concept to ROB

e Every memory uop is allocated an entry in order.

e Address & data (for stores), are updated when known
e Loads may pass loads/stores

e Stores are in order

intal.

Memory Order Buffer (MOB)

e Load is checked against all previous stores:

— Waits if store to same address exist,
but data not ready

— If store data exists, just use it
— Waits till all previous store addresses are resolved
—In case of no address collision - go to memory

Microarchitecture

External Bus
A=

Microarchitecture
Extsr_niLBus

w

BIU e Out-of-order Core

!

Microarchitecture

External Bus
el s

MOB

«»{Dcu eIn-Order Retire
MIU

BIU

In order Retirement

e The process of committing the results to the
architectural state of the processor

e Retires up to 3 uops per clock
e Copies the values to the RRF

e Retirement is done In Order

e Performs exception checking

e An instruction is retired after the following checks
— Instruction has executed
— All previous instructions have retired
— Instruction isn’t mis-predicted
— no exceptions

intal.

Flow of Uops through OOO Cluster

e |SSUE:

— ALLOC unit allocates one entry per uop in the RS and in the ROB (for up to 3
uops per cycle)

— If source data is available from the ROB (either from the RRF of from
the Result Buffer (RB) it is written in the RS entry

— Otherwise, it is marked invalid in the RS (and should be captured
from the WB bus)
e READY/SCHEDULE:
— Data-ready uops are checked to see if desired functional unit available
— Up to 5 resource-ready uops are selected, and dispatched per clock

e DISPATCH:
— Ship scheduled uops to appropriate functional unit (RS)
e WRITEBACK:

— Capture results returned by the functional units in a result buffer (ROB)
— Snoop result writeback ports for results that are sources to uops in RS
— Update data-ready status of these uops (RS)

intal.

Flow of Uops through OOO Cluster
(cont)

o RETIREMENT:
— 3 consecutive entries read out of the ROB
— these entries are candidates for retirement

— Algorithm to determine fitness for retirement: candidate is
retired

— its ready bit is set
— it will not cause an exception
— all preceding candidates are eligible for retirement

— Commit results from result buffer to architecturally visible state
in original “Issue” order

— Clear machine and restart execution if “badness” occurs (ROB)

Jump Misprediction

e When the JEU detects jump misprediction it

— Flushes the in-order front-end and starts fetching and decoding
from the “correct” execution path

— The “correct” path may not be correct if a preceding uop that
hasn’t executed yet could cause an exception

— Therefore, the “correct” instruction stream is stalled at the RAT
until the mispredicted branch retires

— Does not flush the OOO part of the machine, since all
instructions preceding the jump must be completed and retired

e When the mispredicted branch retires from the ROB
— Resets all state in the Out-of-Order Engine (RS, RB, MOB, etc.)
— Un-stalls the in-order machine

— The RS immediately grabs the correct uops from the RAT and
starts scheduling and dispatching them

Pipeline

Icache Decode itoy 25

Ren Wr

12 |13 |14 |I5 |16 |17

* In-Order Front End

» Out-of-order Core

: Next IP
: ICache lookup .
: IC2 /ILD (instruction length decode) —_Retirement

: IC3/rotate
g ;g; * In-order Retirement R1| R2| R3
: RAT- rename sources,
ALLOC-assign destinations
8: ROB-read sources
RS-schedule data-ready uops for dispatch
9: RS-dispatch uops
10:EX
11:Retirement

OO0 Concept Example

e Lets follow this code:

program counter Instruction [format: op src, dest]
n mov r4,r1
n+1 add r1,r2 Cycle 1 decode
n+2 mov M2,r1
n+3 add r1,r3
n+4 jmp L2
n+5 add r3,r4
n+6 mov M3,r1
n+7 add ri,r4
n+8 dec r5

Cycle 2 decode

Cycle 3 decode
e Every cycle, 4 instructions are decoded

intel. A demonstrating example, where RS and Rob are combined

Code Example (rename & Sched)

Lets follow this code:

PC Instructions After Renaming __ Execution

n mov r4r1 rd, 1 1 D DEW
add r1,r2 r1_1,r2,r2_1 D EW
mov M2,r1 M2,r1_2 DE W
add r1,r3 r11_2,r3,r3_1 D EW
jmp L2 DEW
add r3,r4 r3_1,r4,r4_1 D EW
mov M3,r1 M3,r1_3 DE W
add r1,r4 r11_3,r4 1, r4 2 D EW
dec r5 r5, r5 1 DE W

cycle:0 123456

e Every cycle, 4 instructions are decoded

intal.

Implementation Example

Cycle 1 Op Src, Dest

[icache | PC Instruction
mov r4,r1
ey
Destination mov M2,r1
s add ri,r3
jmp L2
add r3,rd4
mov M3,r1
add r1,r4
Add R1,R3 dec r5
Mov M2,R1
Add R1,R2
Mov R4,R1

Instruction| tag $1val |tag S2val

<«— Commit

R1
R r N . X
Fﬁg 2; 4 instructions entered into Reservation
R4 stations/ Register renaming

* 2 copies of R1 alive - tags connected

+ Available values read from committed
reg file

Implementation Example (Cont...)
Cycle 2 e

Instruction

mov rd,r1

Decode & Issue Logic r1,r2

Destination M2,r1
Value r,r3

Add R1,R4 L R4_2 L2

Mov M3,R1 - R1 3 r3,r4
Add R3,R4 R4 1 M3,r1
jmp L2 r1,r4
Add R1,R3| R1_: [~ R3.1 5

Mov M2,R1 R1_2 |
Add R1,R2| R1_ R2 1

Mov R4,R1 _RITT :_l_ Commit

Instruction

Zo—HcomXxm

* 4 new instructions entered into Reservation
stations and renamed (N+5, N+7)

Reg
File

* N & N+2 execute - results go to N+1 & N+3

* N will commit next cycle and its value go to
real R1

49

Implementation Example (Cont...)

Cycle 3
y Op Src, Dest

Instruction
mov rd,r1
Decode & Issue Logic add 2
Destination mov M2,r1
Harn add 1,13

Dec R5 jmp L2
Add R1,R4 | add r3,r4
Mov M3,R1 M3,r1
Add R3,R4 ,r4
jmp L2 5
Add R1,R3 | R1_ [m
Mov M2,R1 ss#

Add R1,R2 K (3 <— Commit

* N+8 added after decoding

Instruction

Zo—HcomXxm

Reg « N+1, N+3, N+4 & N+6 execute - results go to
File N+5 & N+7
* N+7 is not ready it still needs N+5

* N+1 -> N+4 will commit next cycle and their
values written to real reg file.

50

Implementation Example (Cont...)
Cycle 4 e

Instruction
mov r4,r1

Decode & Issue Logic add r1,r2

Instruction: TaD es""atmnvmue :]d(:jv ::?;;1

jmp L2

add r3,r4
M3,r1

r1,r4
Dec R5 R5_1 PPP r5
Add R1,R4| R1_3| jij X R4_2

Mov M3,R1 R1_3 Jii

Add R3,R4 R4b<}/ 1 Commit

Reg * N+5 & N+8 execute - results go to N+7
File

Zo—HcomXxm

* N+5 & 6 will commit next cycle and their
values written to real reg file.

Implementation Example (Cont...)

Cycle 5
y Op Src, Dest

PC Instruction
mov rd,r1
_Decode & Issue Logic add r2
inati M2,r1
Instruction Destination mov 5
Ta Value add r1’r3
jmp L2
add r3,r4
M3,r1
r1,r4
r5

Zo—HcomXxm

Dec RS
Add R1,R4

Reg
File

Implementation Example (Cont...)

[toache | PC Instruction
mov r4,r1

add 1,2
mov M2,r1
add r1,r3
jmp L2
add r3,r4
mov M3,r1
add r1,r4
dec r5

E
X
E
Cc
u
T
I

o
N

Register Renaming example

| licode quene |

l add EAX, EBX, EAX
| ALLOC |
i add EAX, EBX, ROB37
 ————RAT S ————)
| EAX on RRF EAX 37 ROB |
| |
: EBX 19 ROB ||II EBX 19 ROB i
: ECX 23 ROB ECX 02 RRF :

r—— - - — - — — — — i ________ il

| |

| 19 v 0x12h |EBX 19 v 0x12h | EBX |

| | 3 RS

R = e 2L XXX XXX | add | srel 0x987h | sre2 0x12h ‘PDstS? |
I 37 I XX EXX ”II. 37 W EXX EAX :

|

G-Number

An OOOE Example - Issue

Entry yopcode
Valid

Srcl/Src2 v Psrcs Pdst
229 1 XXX
0->1 dd
‘ 522 1| s | #

add EAX, EBX 9 EAX
sub EAX,414 = ECX
ISSUE
o N = @
g HEREN N I ERER N
2 g ER 4 2 |le |e
add EAX, EBX, EAX
4
RB/RRF pointer RRFV
EAX
EAX --> 42 1-->0
EBX 35 0

35

XXX, , 42
add EAX, EBX, EAX
RRFV

An OOOE Example - Dispatch

READY/SCHEDULE/DISPATCH

Entry
add 229, 322, pdst=42 V‘;l:a Uopcode Srcl/Sre2 A% Psrcs Pdst
add EAX, EBX 9 EAX 50| add 229 1 xex |,
sub EAX,414 =% ECX 522 1 35

o slel .50z |- |
3 |a S EzlE |2 08 |2 |2
ERE ckEccl ENEE RN
RB/RRF pointer RRFV
EAX
42 0
EBX
35 0
4
itzle

G-Number

An OOOE Example - Execute

WRITEBACK
result=751, pdst=42 I{:’Tl:s Uopcode Srcl/Src2 v Psrcs Pdst
add EAX, EBX 9 EAX
sub EAX,414 9 ECX
xxx -> 751 |0->1| 42
0->1| sub 57
414 1 45
L= (S [s s 1- [«
£ S22 Eele |2 4G N2 |2
ERERERER EIER A A L
RB/RRF pointer RRFV
EAX
42 0
EBX
35 0
1rele
=
Numbor
]
An OOOE Example - Retire
RETIREMENT
Entry ,
Vnal% Uopcode Srcl/Sre2 AY Psrcs Pdst
add EAX, EBX =9 EAX
sub EAX,414 9 ECX
o I A R PEE
R ERERER B ERER R ERE
S |2 g [8 |8 |25 |2 |€ |5 JE [B
Data \4 Ldst
19
RB/RRF pointer RRFV 229 1 EAX
ax 42 0->1
EBX 3 522 1| EBX
ECx 35 0->1 RB
57 0 42 751 1 EAX
57 '
»y 0 ECX
—
Data
FAXT 229.>751
EBX 3125522 | rRF
1rele

G-Number

Hope you liked that...

