
Regression Test Selection Techniques
for Test-Driven Development

Hagai Cibulski†
The Blavatnik School of Computer Science

Tel-Aviv University
Tel-Aviv, Israel

Email: hagaicib@tau.ac.il

Amiram Yehudai
The Blavatnik School of Computer Science

Tel-Aviv University
Tel-Aviv, Israel

Email: amiramy@tau.ac.il

Abstract—Test-Driven Development (TDD) is characterized by
repeated execution of a test suite, enabling developers to change
code with confidence. However, running an entire test suite after
every small code change is not always cost effective. Therefore,
regression test selection (RTS) techniques are important for TDD.
Particularly challenging for TDD is the task of selecting a small
subset of tests that are most likely to detect a regression fault in
a given small and localized code change.

We present cost-bounded RTS techniques based on both
dynamic program analysis and natural-language analysis. We
implemented our techniques in a tool called TestRank, and
evaluated its effectiveness on two open-source projects. We show
that using these techniques, developers can accelerate their
development cycle, while maintaining a high bug detection rate,
whether actually following TDD, or in any methodology that
combines testing during development.

Index Terms—Development Tools, Test coverage of code, Test
execution.

I. INTRODUCTION

The Test-Driven Development (TDD) methodology involves
small cycles of writing a test, implementing that test and
refactoring the code [1]. A regression test suite is executed
after each code change, to guard against regression bugs. Over
time the test suite grows larger and slower, while on the other
hand, TDD relies on rapid response to small code changes, in
the form of executing the regression test suite after each such
change. For example, JUnit FAQ [2] recommends to run tests
“ideally every time the code is changed”, but then immediately
adds “For larger systems, you may just run specific test suites
that are relevant to the code you’re working on.”. Indeed, TDD
developers look for ways to spend less time rerunning their
test suite, and one of the most effective ways to speed up
retesting, is to select and run only the tests that are relevant
to the latest code change.

How does one find the relevant tests for a given code
change? In the particular case of using strict unit tests, finding
the relevant test for a given unit is straight forward (i.e.,
using naming conventions). However, many TDD tests are
not unit tests. A TDD test, written before implementing some
functionality, may be called a functional programmer test. The
functionality tested by a single TDD test is implemented in
code that is scattered among many units. TDD also makes

†Supported in part by the Deutsch Institute

heavy use of refactoring [3], leading to highly factored code
where each unit has tangled functionality defined by many
tests.1 Functionality scattering and tangling mean that it is
not immediately clear which tests cover which units of code.
This results in developers either wasting a lot of time running
irrelevant tests, or trying to reduce the retesting time using
strategies such as procrastination and/or guessing. The result
of either is less rigorous practice of TDD and poorer code
quality. While this problem is particularly evident in TDD, it
also exists to some degree in any setting where frequent testing
is performed during development, which is a common theme
in many agile techniques.

Our goal is to automatically find, for a given small and
localized code change, a small subset of tests, with a bounded
cost of execution, that provides a high bug detection rate,
close enough to that of full retesting. This bounded regression
test selection (RTS) problem requires a different approach
from that of traditional RTS techniques. Instead of finding
an unbounded subset of tests that detect faults 100% of the
time, we want to find for example 20% of the tests that will
reveal a failure with 80% probability. Detecting a failure 80%
of the time is justified by the assumption that the developer
will eventually run all tests — at least once per day, in
order to secure a 100% safety net. This is different from safe
RTS techniques [4]–[6], which do not guarantee a bound on
the selection size, or general test case prioritization (TCP)
techniques [7], [8] that are generally not change sensitive.

More formally, given a program P , a test suite T and a
code change c, we define fail(T, P, c) as the subset of tests
in T that fail on program P after change c. We also define
the cost of executing a subset of the test suite, as a function
cost : P(T)→ R. We now define the Bounded RTS problem
as follows:
Given an upper bound α < 0.5, find T ′ = selection(T, P, c),
s.t:

cost(T ′) ≤ α · cost(T)

1For example, suppose that initially two tests were implemented by two
units. After factoring out the common code from the two units, the common
unit now participates in implementing both tests. We say that the common
unit has tangled functionality defined by the two tests.

and if t ∈ fail(T, P, c), then:

Pr(t ∈ fail(T ′, P, c)) ≥ 1− α

The bound α is equal to the worst case false positive rate.
The fault recall rate is equal to 1 − α. In practice, we will
often discuss bounded RTS results in terms of (α, β) pairs,
where β is the fault recall rate corresponding to the bound α.

Our approach to bounded RTS is reducing it to a priori-
tization problem. We implement bounded RTS by applying
change-sensitive test case prioritization on top of a safe RTS
filter, and selecting the top α test cases from the prioritized
list.

Like previous works on test selection and prioritization [8],
we will assume that all test cases in the test suite are
independent of each other. That is, a test case does not depend
on the state of the system that was established by previous test
cases. This assumption guarantees that a test’s result (pass or
fail) does not depend on what other test cases exist in the
selection, or on the ordering of test cases.

In the next section we will discuss dynamic program anal-
ysis techniques used in RTS and TCP. We will also examine
a useful technique of natural language program analysis,
which was found effective at solving similar problems in the
past. Section III presents our techniques that include novel
dynamic program analyses and natural-language analysis. We
describe a tool called TestRank that uses a combination of
these techniques in order to implement bounded RTS. We eval-
uated our techniques against safe selection (section IV), and
validated their effectiveness. Section V presents conclusions,
and discusses ideas for future research and applications.

II. RELATED WORK

There are many existing works on regression test selection
(RTS) [4]–[6]. However, these works focus on system valida-
tion testing, which is done after all the developers checked
in their changes, and a new version of the system was built.
The input in this case is not a program P and an isolated
change c, but rather two versions of the program P and P ′,
with many changes between them. Moreover, in the system
retesting scenario there is no need for immediate feedback
to the developer, so such techniques can incur significant
overhead [9]. Most important, the goal of system validation
is to assure the quality of the system as much as possible.
Consequently, almost all past RTS systems are “safe” RTS
systems, meaning if a test t should fail it must be included in
the selection T ′. We note that this “safety” is never absolute
due to possible nondeterminism in the system under test.
Handling nondeterminism in a conservative manner requires
further static analysis, incurring higher overhead and poor pre-
cision [4]. In the TDD context, we defined the bounded RTS
problem in which high precision is the goal, and sometimes
not reporting a test that actually will fail may be acceptable.
A “safe” RTS filter is a good starting point, but a bounded
RTS technique would still need to reduce the selection size.

Ren et al. [10] described a tool that can conservatively report
affected tests, given a a changed version of an object-oriented

program, while handling object-oriented programming diffi-
culties. This tool, called Chianti, uses static analysis to identify
code changes, such as overriding method introduction, that
might have a non-local effect.

A different approach to test suite optimization is test case
prioritization (TCP) [7], [8], [11], [12]. TCP’s goal is to
schedule the test cases in an order that increases the rate of
fault detection (fail fast). For example, a good heuristic for
this is ordering the tests by decreasing additional coverage.
In TCP safety is guaranteed because all tests are eventually
run. General TCP is “global”, and not change sensitive. That
is, it does not consider the code change that we wish to test.
Different code changes may cause different tests to fail, but
general TCP would always order the tests the same. This might
be a problem for bounded RTS, especially if the bound α is
very small.

Srivastava and Thiagarajan [13] described a tool that per-
forms version specific TCP. The tool, named Echelon, com-
pares two versions of a program, and orders the given tests by
decreasing additional coverage of changed basic blocks in the
program. The underlying assumption in this case is that the
program version P ′ contains multiple code changes. However,
in a typical short TDD cycle, the only input available might be
a single changed code fragment. As we shall see, our solution
ranks tests based on their relevance to a single changed code
fragment.

Elbaum et al. (2000) [7] suggested that version specific
TCP techniques (as in Srivastava and Thiagarajan [13]) were
found to improve the rate of fault detection of test suites in
system regression testing. The same paper describes a test
case prioritization technique based on mutation analysis [14].
However, the authors acknowledge that mutation analysis is
an extremely slow process.

Historically, most work on TCP was done on code bases
written in C. Do et al. [15] studied how TCP techniques gen-
eralize to Java programs and the JUnit testing framework [16].
They found additional-coverage version-specific TCP to be the
most effective (as in as in Srivastava and Thiagarajan [13] and
Elbaum et al. (2000) [7]). However, a surprising result was
that finer granularity analysis (block level vs. method level)
has no effect on TCP of Java programs. This is contrary to
previous work on TCP of C programs [11], and is probably
a results of small constructors and methods (i.e., getters
and setters) typical of object oriented programs.2 Such small
methods usually have only one or two basic blocks. In the
next section, we will present our solution for Java programs,
which uses method-level analysis that may be justified given
these findings.

Continuous Testing (CT) [17] is another approach to speed
up retesting during development. CT uses spare CPU cycles
to continuously run tests in the background, providing rapid
feedback about test failures, as source code is edited.3 In
practice, CT works best in combination with TCP. Therefore

2Since refactoring [3] is integral to TDD, it is expected that small methods
are even more common in TDD code bases.

3JUnit FAQ [2] even recommends Saff’s continuous testing plug-in.

introducing the notion of change sensitive TCP, may further
improve the effectiveness of CT tools.

CT techniques, as well as RTS and TCP, in the context of
testing during development, have recently achieved some pene-
tration into the software development industry. Infinitest [18] is
a CT runner. Clover coverage tool now features Test Optimiza-
tion [19]. Both Infinitest and Clover combine safe RTS with
simple global TCP (fast-tests- and recently-failed-tests- first).
Kent Beck, the “father” of TDD, developed JUnitMax [20],
which also features CT and similar simple TCP. Other similar
industry tools include Google Testar [21], JTestMe [22] and
ProTest [23]. None of these tools offer to bound the cost of
running the test suite. Nor does any of these tools order tests
by any criteria related to the current code edit. We believe that
such tools are an important step forward towards accelerating
TDD retesting, and that combining bounded RTS and change-
sensitive TCP with any of these tools may further improve
their effectiveness.

Pollock et al. [24] have observed strong indicators that there
are many natural language clues in program literals, identi-
fiers and comments that could be leveraged to increase the
effectiveness of many software tools. The CodePsychologist,
which was previously developed in our group [25], is a tool
which assists the programmer to locate source code segments
that caused a given regression bug. The CodePsychologist uses
affinity ranking to estimate how close a segment of code is to a
given test case. Affinity between groups of words is calculated
based on the semantic similarity between pairs of words from
each group, measured as the inverse path length in a WordNet
taxonomy [26], [27]. We use a similar algorithm for estimating
how close a test case is to a given segment of code (see section
III-C).

III. THE TESTRANK TECHNIQUE

In this section we will present a tool called TestRank that
implements our change-sensitive TCP technique. The overall
structure of the tool is illustrated in Fig. 1. The input to
TestRank is a program P and its related test suite T . Both
P and T are assumed to be written in the Java programming
language. An initial preprocessing phase creates the TestRank
database. This preprocessing can be performed off-line each
night, in order to synchronize the system with the latest
baseline version. Any change during the day is then queried
in the context of that baseline version. The TestRank query
engine accepts queries Q(file : line), and outputs a list of
tests from T ranked by relevance to changes in Q. The query
is very simple and efficient (In our experiments in the next
section it took less than one second).

We shall now explain these steps in more detail. After set-
ting up the system, a preprocessing stage is executed. During
preprocessing the entire test suite T is run under tracing. We
trace the tests through the production code, currently using
AspectJ [28]. AspectJ allows us to define a pointcut to identify
each method call and execution in the application under test,
and an advice to automatically intercept these execution points
with our tracing. As a result of AspectJ’s join-point model,

Fig. 1. TestRank Architecture

the basic traced unit is at the method level granularity. Finer
granularity techniques do not necessarily yield significant
improvement [7], especially in Java programs [15]. This is
significant since coarse granularity analysis is much faster,
especially for large or CPU intensive code bases.

During tracing we collect the coverage data, which is used
as a basic safe-RTS filter. We also compute various metrics
that serve to estimate the correlation between test cases and the
units under test. These metrics are used to prioritize the tests
which passed the safe-RTS filter. We trace all test executions,
and method executions and calls. For each execution stemming
from test t, we record the number of times each method m
was executed, the number of distinct calls to that method
(how many methods call this method?), and the depth of the
stack during these calls. These dynamic analyses serve as the
basic prioritization heuristics, or predictors. We also record
the values of arguments flowing out of the test and those
reaching the method under test. These are used by the Value
Propagation predictor. We explain these dynamic predictors in
section III-B.

Another type of heuristics that we set out to explore are
natural language based. As was mentioned in the previous
section, past results [25] suggest that these types of heuristics
may increase the effectiveness of our tool. After tracing is
finished, we statically analyze the code looking for natural
language clues in the sources text, for further natural language
analysis, which will be described in Section III-C.

All scores for all pairs from the dynamic predictors and the
affinity based predictors are stored in the TestRank database
files. We do not persist any execution traces (The call graph
is temporarily created during preprocessing of Call Count and
Affinity Propagation correlation scores). We also store for each
file all methods’ start and end lines. The query engine’s locator
component uses this data to locate a method given a query
Q(file : line).

The TestRank query engine loads this database. It then uses
the correlation data to show the developer a list of tests which
might conflict with the block of code currently being edited.
This list of tests is sorted in descending order of correlation
scores, so the developer can run just the top tests that are most
likely to be specific to the current code change. We will next
provide the details of the heuristics used by each predictor.

TABLE I
TESTRANK PREDICTORS

Category Mnemonic Description
dynamic EXCNT execution count

CLCNT call count
STKEXCN stack depth sum
VALPROP value propagation
ICOV inverse coverage

natural language AFFIN simple affinity
AFFPROP affinity propagation

meta AVG linear combination

A. Predictors

This section describes the predictors that we have used.
Table I summarized these predictors.

We denote the score of a predictor p for the relevance of
a test t to a method m as scorep(t,m). Coverage is used
as a basic soundness filter for all predictors, meaning that if
method m is never called during the execution of test t, then
scorep(t,m) = 0. The rest of this section describes in detail
the heuristics used by each predictor.

B. Dynamic Predictors

These predictors track test metrics during test suite execu-
tion.

1) Execution Count Predictor: This predictor counts the
number of times that each method was executed, during the
execution stemming from test t. The more often the method
was executed, the more likely it is important in the flow of this
test. Let executions(t,m) be the set of executions of method
m during test t. We define the execution count score as:

scoreexcnt(t,m) = |executions(t,m)|

2) Call Count Predictor: This predictor counts the number
of distinct calls to each method, during the execution stemming
from test t. For example if f() is called five times, twice
from g() and three times from h(), then f ’s execution count
is 5 and its call count is 2. Distinct calls are assumed to be
more important than repeated calls from the same place, which
could be caused by loops. Let distinct calls(t,m) be the set
of distinct calls to method m during test t. We define the call
count score as:

scoreclcnt(t,m) = |distinct calls(t,m)|

3) Stack Depth Sum Predictor: This predictor sums the
inverse depth of the call stack, at the executions of each
method, during the execution stemming from test t. The
shallower the stack, the closer the method is to the test, hence
it is assumed to be more directly related to the test. Let
depth(executioni(t,m)) be the depth of the stack during the
i’th execution of method m during test t, and let n be the
number of executions of method m during test t. We define
the stack depth sum score as:

scorestkexcn(t,m) =

n∑
i=1

1

depth(executioni(t,m))

4) Value Propagation Predictor: The idea behind the Value
Propagation predictor is that different tests might cover the
same method with different data values. Therefore, a test
passing similar values to those received in the method is
assumed to be related to the method, and the same is true for
the return value going out of the method and received back
in the test. This predictor compares values of primitive types,
wrapper types and strings. It computes the size of intersection
between the two sets of values, and for each test/method pair,
finds the maximum intersection c out of all the method’s
executions.

For each execution e ∈ executions(t,m) of method m
during test t, let valse(m) be the set of values reaching method
m, and valse(t) be the last set of values to flow out of test
t before m was called, and let vals′e(m) and vals′e(t) be the
corresponding sets after adding the return value of m and the
returned value to t. We define the value propagation score as:

scorevalprop(t,m) = max
e∈executions(t,m)

{|vals′e(t)∩vals′e(m)|}

5) Inverse Coverage Predictor: The idea behind the Inverse
Coverage Predictor is that if test t covers method m, then
the relative “importance” of m for t depends on how many
other methods t covers. The fewer methods t covers, the more
significant is the fact that it covers m. Let trace(t) be the
set of methods executed during test t. This predictor simply
ranks t by increasing order of the number of methods which
t covers:

scoreicov(t,m) =

{ 1
|trace(t)| if m ∈ trace(t);
0 otherwise.

C. Natural Language based Predictors

Natural language program analysis techniques use Infor-
mation Retrieval similarity measures, to estimate the affinity
or similarity between two given segments of code [24]. The
underlying assumption behind natural language program anal-
ysis techniques is that programmers use meaningful identifiers,
in order to create a readable program. An identifier can be
broken into a concatenation of meaningful words, using code
conventions such as under lining, or CamelCase. In addition
English words are extracted from comments, again assuming
programmers indeed write comments in their code.

TestRank uses the WordNet lexicon [26] and an adapted
version of the CodePsychologist’s affinity score algorithm [25]
to assign each (test,method) pair a score between 0 and 1,
based on the textual similarity of the word groups from the
source code of the test and the method.

In contrast with TestRank, CodePsychologist is designed for
use with regression testing in a system testing environment,
where the test cases are not programmer tests but rather
textual test plans or scripts for system test automation tools.
CodePsychologist’s input is not a single code change, but
rather a history of the source repository. Another difference
is CodePsychologist’s dependence on manual configurations,
and in particular relying on user supplied coverage filters,
instead of automatically discovering tests coverage. In spite of

these differences, TestRank borrows the same basic approach
as the CodePsychologist but for a different purpose, working
in “reverse psychology” mode — locating tests “looking after”
methods, instead of methods that fail tests.

We made the following adaptations and improvements to
CodePsychologist:

• Coverage is used as a basic soundness filter, mean-
ing if method m is not covered by test t, then
scoreaffin(t,m) = 0

• In addition to English words in the text compared using
the word affinity measure, we also extracted literals.
These include string literals, numbers and whole iden-
tifiers made of several words. Also, any word not found
in WordNet is considered a literal. For literals we used
simple string comparison. We also experimented with
comparing literals using edit distance, as in Simpson and
Dao [27]. However, the results were not conclusive so we
do not show them here.

• Words appearing in the method name are given extra
weight. For a constructor, which is anonymous in Java,
the class name is given extra weight. The weight factor
ω̇m(w) is one if the word w does not appear in the name
of method m. Otherwise it is set to constant value which
was determined in the tuning phase.

• We filter out stop words such as “to”, “the”, etc., These
are extremely common words that are not significant for
the affinity and only add noise and load to the system.

• In order to further reduce uninformative noise and load,
we filter out the most common words in the text. The
specific percentage of words left out was determined in
the tuning phase.

• We give each word in a word group a weight, according
to its relative importance in its context, using the Informa-
tion Retreival measure TF-IDF [29]. Term frequency (TF)
measures the importance of a word in a particular method
(or test). Suppose a word w occurs nw,m times in a
method m, and that there are a total of Nm distinct words
in the method, then tfidf(w,m) =

nw,m

Nm
. The inverse

document frequency (IDF) measures the importance of
the word among all methods. Suppose w occurs in dw
methods, and there are a total of D methods in all
the traces, then idf(w) = log D

dw
. TF-IDF balances the

relative frequency of the word in a particular method with
its overall frequency:

tfidf(w,m) = tf(w,m) · idf(w) = nw,m

Nm
· log D

dw

1) Simple Affinity Predictor: Given two collections of
words: A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm}, the
weighted word group affinity GrpAff (A,B) is calculated as
follows:

MaxAff (ω,B) = max
b∈B
{WrdAff (ω, b)}

bMaxω,B = argmax
b∈B
{WrdAff (ω, b)}

ẄA(ω,B) = tfidf(ω,A)ω̇A(ω) ·
tfidf(bMaxω,B , B)ω̇B(bMaxω,B)

AsyGrpAff (A,B) =

∑
ω∈A MaxAff (ω,B)ẄA(ω,B)∑

ω∈A ẄA(ω,B)

The final group affinity and affinity score are defined the same
as in the CodePsychologist [25]:

GrpAff (A,B) = [AsyGrpAff (A,B)+AsyGrpAff (B,A)]/2

scoreaffin = GrpAff (words(method), words(test))

2) Affinity Propagation Predictor: Suppose that test case t
has high affinity to some method m. Sometimes t might fail
due to a change in a method p, which calls m, even though m’s
code was not changed. For example, changing p might cause
m to be called with different arguments, or in a different state,
or even cause m not to be called at all. We may say then that p
is correlated with t because it calls a method that is correlated
with t. The Affinity Propagation predictor processing is done
after all simple affinities have been assigned. It runs in n
iterations, updating the current affinity propagation of each
method p with that of its “children”:

affprop0(p) = affinity(p)

affpropi+1(p) = (1− f)affpropi(p) +

f

|children(p)|
∑

c∈children(p)

affpropi(c)

Where f is a weight factor determining how much propagation
is used at each iteration. n and f were determined in the tuning
phase. We define for fixed t:

scoreaffprop(p) = affpropn(p)

D. Linear Combination

The relevance of each test t to the code change in method m
is given a score by each of the predictors described above. The
Linear Combination predictor attempts to combine the scores
from the different predictors into one meta predictor.

We first must make sure that the scores are normalized
for all predictors. In particular, the Execution Count, Call
Count, Stack Depth Sum and Value Propagation predictors
give nominal scores in whole numbers 0, 1, 2, 3, · · ·. We first
normalize these scores to the range [0, 1], by taking:

s′ =
s

s+ 1

where s is the original nominal score. Note that this normal-
ization function is monotonic, which is necessary in order to
use the scores for ranking.

We also experimented with normalizing scores using the
alternative function:

s′(m, t) =
s∑

j s(mj , t)

This alternative normalization function attempts to consider
s(m, t) in relation to all methods mj covered by t. However,

the results were not conclusive, and due to lack of space we
omit them here, and provide their details in [30].

The final score is a linear combination of all the predictor-
scores:

score(m, t)avg =

P∑
i=1

ωi · score′i(m)

where ωi is the coefficient of the predictor i, and P is the
number of predictors the algorithm uses. The values of the
coefficients are based on experimental tuning described in
Section IV-B.

E. Implementation

TestRank is implemented in Java and AspectJ. It uses the
Java API for WordNet Searching (JAWS) [31]. TestRank can
be used in any IDE and with any test runner. We used Eclipse
IDE with JUnit [16].

IV. EMPIRICAL EVALUATION ON OPEN-SOURCE PROJECTS

The aim of this section is to evaluate the effectiveness of
our techniques. The effectiveness of the change-sensitive TCP
process is measured by the rank of the actual failed test in the
ordered list of tests. In order to obtain an effective bounded
RTS process we need to be able to set the selection size bound
α low, and get a high fault recall rate β.

In the rest of this section we will first explain our exper-
imental method, and then we will present results from two
experiments. In order to evaluate our techniques, we used two
Apache open source projects. The first project Log4J was
used for experimenting and tuning TestRank. We will also use
Log4J as a running example to illustrate our method. The
second project Commons Math was used to test TestRank’s
effectiveness on unseen data. We conclude this section with a
discussion of the results and what expected fault recall rate
can be inferred from them.

A. Method

In both experiments we mutated methods in order to simu-
late a programmer accidentally introducing a bug to the code.
In order to perform a meaningful comparison to safe RTS, we
are most interested in the cases where safe-RTS would select
a large portion of the test cases. We used TestRank’s option
“−core” to find which methods have the highest test coverage,
and chose these methods as potential mutation methods (core
methods).

In order to find suitable mutations, we used the Jumble
mutation testing tool [32] on each potential class using all
the tests in the suite, obtaining a list of potential mutations.
The Jumble mutation operators used are detailed in table II.
Further details about Jumble’s mutation operators are available
at the Jumble web site [33].

We also created mutations manually, based on our experi-
ence with real programs, in order to create more realistic faults,
and also in cases where Jumble missed an obvious mutation,
and in order to save time and increase the overall number of
experiments.

TABLE II
JUMBLE MUTATION OPERATORS USED

default Negate conditionals
default Replace Binary Operation
-r Mutate return values
-k Mutate inline consts
-i Mutate increments
-w Mutate constant pool entries

For each method m with mutations, we determined the fail
set — fail(m), the tests that fail as a result of any mutation
in the method. We then selected the methods whose fail set
is positive and yet small as our mutation methods. We chose
methods with high test coverage and a small positive fail set,
to test that our technique performs beyond what might be
expected at random. (If test coverage is low then safe RTS
provides a small precise selection, and if fail set is high then
safe RTS is expected to fail fast.)

Since in most cases |fail(m)| > 1, and in order to
evaluate how high each failing test t ∈ fail(m) is ranked
independently of other failing tests in fail(m), we treated
each failing test separately as follows: We define a detected
mutation as a pair (m, t), where t is a test that fails as a result
of mutating the method m. After running preprocessing in
order to create the TestRank database, we executed a script to
perform TestRank’s “-query” option on each mutation method
m and produced ranks(m) — a list of all tests in T covering
m ranked by their relevance to m, as determined by a TestRank
predictor. The script also records for each t ∈ fail(m) its
relative rank in ranks(m) as follows: Let ranks(m, t) be the
same ordered list as ranks(m), but excluding all failing tests
except t, and let position(m, t) be the index of the failing test
t in this list. then the relative rank of t in the context of m is:

RRm(t) =
position(m, t)

|ranks(m, t)|

Thus, we obtained for each detected mutation (m, t) its
relative rank RRm(t), the smaller—the better, but of course

1
|ranks(m,t)| is a lower bound on RRm(t). The validation script
repeats this for each predictor p to obtain RRp

m(t), so we
can compare the effectiveness of the different predictors by
comparing the different values of RRp

m(t). In the next section,
we will demonstrate our method by walking through how we
used it for testing during the development process.

B. Verification During Development

In order to tune TestRank, and test it during development,
we used the open source project Log4J , the Apache Java
logging service project [34]. This project contains 32713 lines
of code and 252 test cases. For convenience, we used the
project’s test suite CoreTestSuite, which contains 202 out of
these test cases. The size of the TestRank database file was
∼ 580 KB.

As was explained in section IV-A, methods with high test
coverage and a small positive fail set are good candidates for
mutation. In the case of Log4J, out of all methods m covered

by at least 15 tests (core methods), we chose 8 mutation
methods satisfying 0 < fail(m) < 6. For these 8 method
we obtained 24 (method, test) detected mutations.

Table III shows the absolute rank position(m, t) that each
predictor prescribed to each test failure for each bug. Since
each bug may cause several tests to fail, each row represents
a test failure, and the rows are grouped by bugs. The Safe
RTS column records the number of tests needed to cover
each mutation using a safe RTS approach, which equals
|ranks(m, t)|.

Looking at the table we can observe several things. Different
heuristics predicted different failures. No predictor was always
the best. The highest effectiveness was achieved by Affinity,
Affinity Propagation and Linear Combination.

The dynamic predictors generally produced the worst re-
sults, out of which Call Count predictor was the best and
Inverse Coverage was the worst. We may also notice that
Execution Count was always worse than Call Count. Some
predictors, which were generally not highly effective, beat all
the others in a few cases. For example, Stack Depth was the
only predictor to rank test #1 of bug #1 at rank #2 out of 29,
and Value Propagation ranked test #1 of bug #6 at expected
rank #1 or #2 out of 20 tests.4

Another kind of analysis we performed was relative ranks
analysis. As an example, the Affinity predictor ranked the
second test that detected bug #1 as #3 out of 29 covering tests
for the mutated method. This means a relative rank of 10.3%.
The same test was ranked at the top 22.4% by Execution Count
Predictor, and its expected absolute rank is #6.5 out of 29.

Fig. 3 shows the results for the Log4J experiment in a box
plot.5 The diagram shows for each predictor, the distribution of
the predictor’s detection-effectiveness scores. On each detected
mutation (m, t) the detection-effectiveness score is defined as
1−RRm(t).

The linear combination was tuned at this stage to maximize
the results. The optimal combination found is 85% Affinity
Propagation, 8% Call Count, 5% Value Propagation and 2%
Stack Depth. Out of all the covering tests, TestRank’s Linear
Combination predictor (AVG) ranked the failing test in the top
23.8%, in 70% of the cases (out of 24 detected mutations), and
in the top 30.8% in 80% of the cases.

Fig. 2.A shows the results of the Linear Combination
predictor for the Log4J experiment in a Pareto chart. For each
relative rank cutoff, the chart shows in how many cases the
predictor ranked the detecting test lower than that cutoff value.

4It is possible for a predictor to give the same score to more than one test,
which is often the case with dynamic predictors. In this case, the internal
order between tests with the same rank would be arbitrary. In order to deal
with this phenomenon, we designed the validation script to order the actual
failing test according to the expected-case of a random internal order. The
validation script thus calculates the rank of a test as the average between the
two extreme cases, where the test is first or last in its “equivalence class”
of tests. That is why we might often see non integer numbers like 6.5 in
TestRankValidator’s relative ranks output.

5Box plots provide a concise display of a distribution. The boxes display
the median, first and third quartiles. The whiskers stretch to the min and max
values within 1.5 box-ranges from the box. Min and max outliers are shown
as ’∗’.

In bounded RTS terms, the chart shows the fault detection rate
β as a function of the selection-size bound α.6

C. Validation Experiment

In order to evaluate TestRank effectiveness on unseen
test data, we used the open source project Commons Math,
the Apache Commons mathematics library [35]. This project
contains 42212 lines of code and 1882 test cases (in 152
test classes). The size of the TestRank database file was
∼ 11.4 MB.

As was explained in section IV-A, methods with high test
coverage and a small positive fail set are good candidates for
mutation. In the case of Commons Math, out of all 61 methods
m covered by at least 90 tests (core methods), we chose 8
mutation methods satisfying 0 < fail(m) < 10. For these 8
method we obtained 38 (method, test) detected mutations.

Fig. 4 shows the results for the Commons Math experiment
in a box plot.

Comparing the results to those of the previous experiment,
we can observe that Affinity and Affinity Propagation effec-
tiveness is now worse than on the tuning data, while all the
dynamic predictors, except Call Count, have improved. The
Value Propagation predictor was the best dynamic predictor,
ranking the failed tests in its top 45%, in 80% of the cases.

Further analysis reveals that the Linear Combination pre-
dictor (AVG), as tuned in the previous experiment, performs
as the best predictor in the current experiment, on several
statistics including average, median and 70% percentile. Out
of all the covering tests, TestRank’s Linear Combination
predictor (AVG) ranked the failing test in the top 30.5%, in
70% of the cases (out of 38 detected mutations), and in the
top 51.5% in 80% of the cases. Fig. 2.B shows the results
of the Linear Combination predictor for the Commons Math
experiment in a Pareto chart.

D. Threats to Validity

Like any empirical evaluation, this work has limitations that
must be considered when interpreting the results. Threats to
internal validity mostly concern possible errors in the way we
implemented our techniques that could affect outcomes. To
control for this threat, we verified parts of the implementations
on synthetic examples, and performed several sanity checks.
For the purpose of initial evaluation, we approximated a test
suite’s execution cost by the number of test cases in the test
suite. The more realistic cost measure is of course the running
time of the test suite. We expect to collect the running time for
each test case and improve the accuracy of our results in the
near future, but we expect that on average this approximation
should not bias the results much.

6This is somewhat similar to average precentage of faults detected, or
APFD [7]. The difference is that an APFD graph describes a single ex-
periment, showing how fast one general prioritization is detecting multiple
bugs, whereas our graph describes a distribution over many experiments,
showing the accumulated effectiveness of many change-specific prioritizations
in detecting a single bug each (In how many experiments the bug was detected
in the top x%).

TABLE III
LOG4J EXPERIMENT RESULTS — EXPECTED ABSOLUTE RANKSA

Bug Safe RTS EXCNT CLCNT STKEXCN VALPROP ICOV AFFIN AFFPROP AVG
1 29 6.5 2.5 2 15 29 3 3 3

20 16 21.5 15 29 3 3 4
2 21 5 4.5 3.5 7 5 8 6 5

5 4.5 3.5 3.5 5 8 6 5
3 17 14 9 16 2.5 13.5 2 2 2

14 9 13 10 9 3 3 3
14 9 13 2.5 9 2 2 2
14 9 13 10 9 3 3 3
14 9 13 10 9.5 2 2 2

4 17 9.5 9 9.5 9 17 1 1 1
5 17 9.5 9 9.5 9 17 2 2 2
6 20 16.5 10.5 14.5 1.5 16.5 9 9 6

16.5 10.5 14.5 10.5 18 9 9 10
16.5 10.5 14.5 10.5 11 10 10 12
16.5 10.5 14.5 10.5 11.5 10 10 11
16.5 10.5 14.5 10.5 12.5 9 9 10

7 12 10.5 6.5 10.5 10.5 12 4 4 8
10.5 6.5 10.5 5 7.5 1 1 1
10.5 6.5 10.5 5 7 1 1 1
10.5 6.5 10.5 5 7 1 1 1

8 13 6.5 3.5 4.5 9 13 3 3 4
3 1.5 2.5 9 7.5 2 2 3

1.5 1 1 9 7 2 2 1
3 1.5 2.5 9 7 3 3 3

A Rows represent ranks of failed tests, grouped by the bugs causing the tests to fail.

Fig. 2. Fault-detection rate vs. fraction of test suite used

The main threat to external validity is that our case study
included only two programs, and therefore we cannot claim
that these results generalize to other programs. Like many
other projects, which utilize automated tests, it is hard to say
how much the studied projects follow the TDD philosophy.
However, the programs are real software systems, and the test
suites used are the ones actually used by the developers of the
considered systems.

Another threat to the ability to use our tool in various code
bases is that, in our current implementation, preprocessing of
CPU intensive code is slow. This slowness is an artifact of a
design decision we made, which simplified the construction
of the prototype implementation, and we may improve on it
in the future. In any event, preprocessing is performed off-
line, so developers using the tool should not experience any

overhead.

E. Discussion
Our validation experiment (Commons Math experiment)

confirms that the results obtained during the first experiment
(Log4J experiment) do not deteriorate too much when validat-
ing the system on an unseen code base. The improvement we
can expect in relation to safe-RTS, is about 70/30 or 80/50.

What are the expected improvements in a typical TDD
environment, in relation to not using any selection technique?
In order to answer this question, we need to asses the typical
distribution of test coverage in TDD projects. This data is a
subject for further research. For the purpose of this discussion,
we will just illustrate using a hypothetical example: Suppose
we have an application with 1000 tests, in which 60% of the
methods are covered by 100 tests each, 25% of the methods are

Fig. 3. Log4J Experiment Results boxplots — detection-effectiveness by predictor

Fig. 4. Commons Math Experiment Results boxplots — detection-effectiveness by predictor

covered by 200 tests each, and another 15% of the method by
300 tests each. Suppose further that we configure TestRank’s
bound to the top 100 tests. Then for 60% of the methods we
run all their covering tests and hence get 100% bug detection,
for 25% of the methods we select 50% of their covering tests
and expect to get 80% bug detection, and for another 15%
of the method we select 33% of their covering tests each,
and expect to get 70% bug detection. We obtain the following
expected fault recall rate:

0.6 · 1.0 + 0.25 · 0.8 + 0.15 · 0.7 = 0.905

So, in this case TestRank is expected to find 90% of the bugs,
while running only 10% of the tests after any code change.7

V. CONCLUSIONS AND FUTURE WORK

We have introduced TestRank, a bounded regression test
selection tool, using a combination of several change-sensitive
test case prioritization techniques. We based our techniques on
dynamic and natural language analyses of a code base and its
test suite. Our experimental results with Log4J and Commons
Math support our assumption that the technique works, and

7Of course, in order to confirm this hypothetical result, further validation
is needed on various code bases.

gives added value to developers in accelerating retesting during
development, while maintaining a high bug detection rate.
TestRank gives the TDD developer a good bug detection tool,
while considerably accelerating TDD testing. Finally, while
our approach is particularly suitable for TDD, we believe it
may be beneficial in any setting which emphasizes frequent
testing during development, a practice that is becoming more
widespread in the software industry.

This paper presented the first experience with TestRank,
which was limited to two medium sized projects. We would
like to do further empirical evaluation on larger projects, ide-
ally in a real world TDD work environment. Further research
is still needed into the alternative normalization scheme pre-
sented in section III-D, and how to apply it to affinity ranking.
Combining the different predictors in an optimal manner is still
another subject that has room for improvement. In addition,
in the future we want to combine some improvements, part of
which were found to be effective in previous works:
• Handling changes outside methods, such as overriding

method introduction, having a non-local effect [10].
• Ranking tests by relevance to multiple code changes [13],

expecting to improve the ranking precision.
• Using fine granularity tracing, i.e., basic blocks instead

of methods, thus potentially improving precision.
• Combining global ranking. Prefer tests that are shortest,

most recently failed or frequently failed, least recently
executed [12] or that are complex.8

• Setting in each rank a test that gives additional value to
whatever value was covered by the preceding tests.

• Reinforce a correlation score when a test actually fails
after a method changed, and vice versa.

• Use mutation analysis to record which tests fail after
mutating a code fragment [7].

• Annotation syntax for the developer to provide hint tags
to tests and code segments.

• Continuing the work on comparing literals, using edit
distance measures. Handling abbreviations.

• Consider changes in resources outside code (e.g., XML).
• Integration with real world environments like Eclipse.
• Filtering changes in comments, refactoring, dead code,

etc.
On a more general level, we introduced a technique for

estimating test-to-code correlation in TDD code bases. We
have focused on the application for test selection, but once
the test-to-code correlation is revealed, there can be further
interesting applications such as root cause analysis of bugs
(“CodePsychologist for TDD”), code comprehension (under-
standing a piece of code’s functionality, by finding the test that
it implements), change sensitivity analysis, test maintenance
(find tests that will need to change) and TDD implementation
assistance (find where to implement a changed test).

In addition, combining text-to-code or text-to-test corre-
lation for free text, can yield such applications as finding
relevant code to ticket in bug tracking system, finding potential
regression to known past tickets and feature location by
keywords.

REFERENCES

[1] K. Beck, Test Driven Development: By Example. Addison-Wesley
Professional, November 2002.

[2] “JUnit FAQ,” http://junit.sourceforge.net/doc/faq/faq.htm.
[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:

Improving the Design of Existing Code, 1st ed. Addison-Wesley
Professional, July 1999. [Online]. Available: http://www.amazon.com/
exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201485672

[4] Y. F. Chen, D. S. Rosenblum, and K. P. Vo, “Testtube: A
system for selective regression testing,” in International Conference
on Software Engineering, 1994, pp. 211–220. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.353

[5] G. Rothermel and M. J. Harrold, “A safe, efficient regression
test selection technique,” ACM Trans. Softw. Eng. Methodol.,
vol. 6, no. 2, pp. 173–210, April 1997. [Online]. Available:
http://dx.doi.org/10.1145/248233.248262

[6] A. Orso, N. Shi, and M. J. Harrold, “Scaling regression testing to large
software systems,” in SIGSOFT ’04/FSE-12: Proceedings of the 12th
ACM SIGSOFT Twelfth International Symposium on Foundations of
Software Engineering. New York, NY, USA: ACM, 2004, pp. 241–251.
[Online]. Available: http://dx.doi.org/10.1145/1029894.1029928

[7] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing test cases
for regression testing,” in ISSTA ’00: Proceedings of the 2000 ACM
SIGSOFT International Symposium on Software Testing and Analysis.
New York, NY, USA: ACM, 2000, pp. 102–112.

8But Elbaum et al. (2000) [7] suggests that complexity ranking does not
significantly improve prioritization effectiveness.

[8] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos, “Time-
aware test suite prioritization,” in ISSTA ’06: Proceedings of the 2006
International Symposium on Software Testing and Analysis. New York,
NY, USA: ACM, 2006, pp. 1–12.

[9] J. Bible, G. Rothermel, and D. S. Rosenblum, “A comparative study of
coarse- and fine-grained safe regression test-selection techniques,” ACM
Trans. Softw. Eng. Methodol., vol. 10, no. 2, pp. 149–183, 2001.

[10] X. Ren, B. G. Ryder, M. Stoerzer, and F. Tip, “Chianti: a change
impact analysis tool for Java programs,” in ICSE ’05: Proceedings
of the 27th international conference on Software engineering. New
York, NY, USA: ACM, 2005, pp. 664–665. [Online]. Available:
http://dx.doi.org/10.1145/1062455.1062598

[11] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test Case
Prioritization: A Family of Empirical Studies,” IEEE Trans. Softw.
Eng., vol. 28, no. 2, pp. 159–182, 2002. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.5403

[12] J.-M. Kim and A. Porter, “A history-based test prioritization technique
for regression testing in resource constrained environments,” in ICSE
’02: Proceedings of the 24th International Conference on Software
Engineering. New York, NY, USA: ACM, 2002, pp. 119–129.

[13] A. Srivastava and J. Thiagarajan, “Effectively prioritizing tests in de-
velopment environment,” in ISSTA ’02: Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software Testing and Analysis.
New York, NY, USA: ACM, 2002, pp. 97–106.

[14] R. DeMillo, R. Lipton, and F. Sayward, “Hints on test data selection:
Help for the practicing programmer,” Computer, vol. 11, no. 4, pp. 34
–41, apr. 1978.

[15] H. Do, G. Rothermel, and A. Kinneer, “Empirical studies of test case
prioritization in a junit testing environment,” Fifteenth International
Symposium on Software Reliability Engineering, pp. 113–124, 2004.

[16] “JUnit,” http://www.junit.org.
[17] D. Saff and M. D. Ernst, “Reducing wasted development time via

continuous testing,” in Fourteenth International Symposium on Software
Reliability Engineering, Denver, CO, November 17–20, 2003, pp. 281–
292.

[18] “Infinitest,” http://improvingworks.com/products/infinitest.
[19] “Clover test optimization,” http://www.atlassian.com/software/clover/

tour/code-coverage-test-optimization.jsp.
[20] K. Beck, “JUnit Max,” http://www.junitmax.com.
[21] “Google Testar,” http://google-testar.sourceforge.net.
[22] “JTestMe,” http://xircles.codehaus.org/projects/jtestme.
[23] “ProTest,” http://sourceforge.net/projects/protest.
[24] L. Pollock, K. Vijay-Shanker, D. Shepherd, E. Hill, Z. P. Fry, and

K. Maloor, “Introducing natural language program analysis,” in PASTE
’07: Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering. New York, NY,
USA: ACM, 2007, pp. 15–16.

[25] D. Nir, S. S. Tyszberowicz, and A. Yehudai, “Locating regression bugs,”
in Haifa Verification Conference, 2007, pp. 218–234.

[26] C. D. Fellbaum, WordNet: An Electronic Lexical Database. Cambridge,
MA: MIT Press, 1998.

[27] T. Simpson and T. Dao, “WordNet-based semantic similarity
measurement,”
http://www.codeproject.com/KB/string/semanticsimilaritywordnet.aspx.

[28] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An overview of aspectj,” in Proceedings of the 15th
European Conference on Object-Oriented Programming. London,
UK: Springer-Verlag, 2001, pp. 327–353.

[29] G. Salton and M. Mcgill, Introduction to Modern Information
Retrieval (Computer Science S.). McGraw-Hill Education, August
1983. [Online]. Available: http://www.worldcat.org/isbn/0070665265

[30] H. Cibulski, “Regression Test Selection Techniques for Test-Driven
Development,” Master’s thesis, Tel-Aviv University, Israel, 2011, in
preparation.

[31] B. Spell, “Java API for WordNet Searching (JAWS),”
http://lyle.smu.edu/∼tspell/jaws.

[32] S. A. Irvine, P. Tin, L. Trigg, J. G. Cleary, S. Inglis, and M. Utting,
“Jumble Java byte code to measure the effectiveness of unit tests,” in
Proc. Testing: Academic and Industrial Conf. Practice and Research
Techniques, 2007, pp. 169–175.

[33] “Jumble Mutations,” http://jumble.sourceforge.net/mutations.html.
[34] “Apache Log4J,” http://logging.apache.org/log4j/1.2/.
[35] “Apache Commons Math,” http://commons.apache.org/math.

http://junit.sourceforge.net/doc/faq/faq.htm
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201485672
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0201485672
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.53.353
http://dx.doi.org/10.1145/248233.248262
http://dx.doi.org/10.1145/1029894.1029928
http://dx.doi.org/10.1145/1062455.1062598
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.5403
http://www.junit.org
http://improvingworks.com/products/infinitest
http://www.atlassian.com/software/clover/tour/code-coverage-test-optimization.jsp
http://www.atlassian.com/software/clover/tour/code-coverage-test-optimization.jsp
http://www.junitmax.com
http://google-testar.sourceforge.net
http://xircles.codehaus.org/projects/jtestme
http://sourceforge.net/projects/protest
http://www.codeproject.com/KB/string/semanticsimilaritywordnet.aspx
http://www.worldcat.org/isbn/0070665265
http://lyle.smu.edu/~tspell/jaws
http://jumble.sourceforge.net/mutations.html
http://logging.apache.org/log4j/1.2/
http://commons.apache.org/math

	Introduction
	Related Work
	The TestRank Technique
	Predictors
	Dynamic Predictors
	Execution Count Predictor
	Call Count Predictor
	Stack Depth Sum Predictor
	Value Propagation Predictor
	Inverse Coverage Predictor

	Natural Language based Predictors
	Simple Affinity Predictor
	Affinity Propagation Predictor

	Linear Combination
	Implementation

	Empirical evaluation on open-source projects
	Method
	Verification During Development
	Validation Experiment
	Threats to Validity
	Discussion

	Conclusions and Future Work
	References

