
1

Collaboration support in SWCollaboration support in SW

2

CCollaborative ollaborative RReal eal TTime ime CCodingoding
Stas Levin

Advanced Software Tools Seminar, Tel Aviv University

March 28, 2011

3

AgendaAgenda

� Collaborative software & SCM systems

� The CRTC approach

� A CRTC prototype

� Future directions� Future directions

� Q&A

4

Collaboration support in SWCollaboration support in SW

5

Collaborative Text EditingCollaborative Text Editing

� Multiple users concurrently edit the same
document, in real time

� All changes are visible to all users, in real
timetime

� Group awareness mechanisms

6

Collaboration support in SWCollaboration support in SW

7

SSoftware oftware CControl ontrol MManagementanagement

“On any team project, a certain degree of confusion is
inevitable. The goal is to minimize this confusion so
that more work can get done … Configuration
management is the art of … and controlling
modifications to the software being built by a

“On any team project, a certain degree of confusion is
inevitable. The goal is to minimize this confusion so
that more work can get done … Configuration
management is the art of … and controlling
modifications to the software being built by a modifications to the software being built by a
programming team. The goal is to maximize
productivity by minimizing mistakes.”

� Wayne Babich
� Software Configuration Management: Coordination
for Team Productivity. Addison-Wesley, 1986.

modifications to the software being built by a
programming team. The goal is to maximize
productivity by minimizing mistakes.”

� Wayne Babich
� Software Configuration Management: Coordination
for Team Productivity. Addison-Wesley, 1986.

8

The Dreaded MergeThe Dreaded Merge

http://betterexplained.com/articles/a-visual-guide-to-version-control/ 9

A Use Case A Use Case –– current SCMcurrent SCM

Adds a new parameter of
type “int” to “Foo”, but types
in only “in”, missing the “t”

Fixes the “in” to “int”, making
his code compile

Change the name
of “Foo” to “Foo2”

Commits the code

Timeline

Developer1 Developer2

Tries to commits the code,
but fails as his version is stale

and out of date

Updates local copy and faces

a conflict rooted in

Develolper2’s change

Manually merges his changes
into the current code

10

Manual Merge is BadManual Merge is Bad

� Time consuming, may require:

◦ Understanding code written by others

◦ Efforts from multiple developers

◦ Regression tests◦ Regression tests

� Error prone, may:

◦ Introduce (new?) misbehaviors

◦ Leave an entire feature or parts of it out

11

For further information on the merge process:
“A State-of-the-Art Survey on Software Merging”, Tom Mens

Codebase is polled for changes
at will*

Conflict PromotersConflict Promoters

Encourages developers to have
stale code

Changes introduced based on
stale code might result in
conflicts

12

Collaboration support in SWCollaboration support in SW

13

CCollaborative ollaborative RReal eal TTime ime CCodingoding
Stas Levin

Advanced Software Tools Seminar, Tel Aviv University

March 28, 2011

14

CRTC to the rescueCRTC to the rescue

� Improve collaboration between
developers working on same codebase

1. Eliminate merges incurred by conflicts

2. Keep developers’ code up to date

3. Increase mutual awareness

4. …

15

Concurrent access controlConcurrent access control

� Optimistic locking

1. Execute, don’t lock

2. Handle conflict

� Pessimistic locking

1. Exclusively lock

2. Execute operation

16

The ChallengesThe Challenges

� How does one propagate code?

◦ Files

◦ Characters

◦ Elements (methods, classes, etc.)◦ Elements (methods, classes, etc.)

�When is the code propagated

◦ Periodically

◦ Upon certain events (save, build, etc.)

17

Suggested CRTC approachSuggested CRTC approach

� How does one propagate code?
◦ Elements (methods, classes, etc.)

� When is the code propagated
◦ Upon a successful background build◦ Upon a successful background build

� Pessimistic, but granular locking scheme:
◦ The locking scheme operates on semantic
elements (e.g. methods, fields etc.)
◦ Elements are pessimistically locked
◦ Granularity promotes lower conflict rates

18

CRTC system architectureCRTC system architecture

19

The PrototypeThe Prototype

� Plug in for the Eclipse IDE

�Written in Java

� Employing Eclipse SDK

� Using Spring� Using Spring

� Tested in a VM environment

20

A Use Case A Use Case –– current SCMcurrent SCM

Adds a new parameter of
type “int”, but types in only

“in”, missing the “t”

Fixes the “in” to “int”, making
his code compile

Change the name
of “Foo” to “Foo2”

Commits the code

Timeline

Developer1 Developer2

Tries to commits the code,
but fails as his version is stale

and out of date

Updates local copy and faces

a conflict rooted in

Develolper2’s change

Manually merges his changes
into the current code

21

A Use Case A Use Case –– using CRTCusing CRTC

Adds a new parameter of
type “int”, but mistakenly
types in only “in”, missing

the “t”

Timeline Developer1 Developer2

Foo element
is locked

Changes the name of
“Foo” to “Foo1”

Fixes the “in” to “int”,
making his code compile

Changes the name
of “Foo” to “Foo2”

Performs the
intended change 22

is locked

Foo element is
released

DEMODEMO

CRTC in action

23

Future DirectionsFuture Directions

� Redesigning SCM into CRTC

� CRTC & existing methodologies
◦ Agile

◦ Waterfall◦ Waterfall

� New methodologies
◦ Development process

◦ Coding conventions

◦ Refactoring guidelines

24

QUESTIONSQUESTIONS

25

SummarySummary

�We’ve introduced a new concept called
Collaborative Real Time Coding (CRTC)

� CRTC aims at:
◦◦ reducing the need for manual merges

◦ Generally boosting collaboration in software
development teams

�We’ve demonstrated a prototype for a
CRTC system

26

27

