Research Seminar: Advanced Software Tools,

Abstracts of the presentations of Oct 22 and Oct 29, 2007:
To be presented in Haifa Verification Conference 2007 
Locating Regression Bugs
Dor Nir, Shmuel Tyszberowicz, and Amiram Yehudai 

A regression bug is a bug that causes a feature that worked correctly to stop working after a certain event (system upgrade, system patching, daylight saving time switch, etc.). Very often an encompassed bug fix included in a patch causes the regression bug. Regression bugs are an annoying and painful phenomena in the software development process, requiring a great deal of effort to find. Many tools have been developed in order to find the existence of such bugs. However, a great deal of manual work is still needed to find the exact source code location that caused a regression bug. 

In this paper, we present the CodePsychologist, a tool that assists the programmer to locate source code segments that caused a given regression bug. The CodePsychologist goes beyond current tools that identify all the lines of code that changed since the feature in question worked properly (with the help of a Source Control Tool). The CodePsychologist uses various heuristics to select the lines most likely to be the cause of the error from the often large number of lines of code. This reduces the fixing time of regression bugs. It allows a quick response to field errors that need an immediate correction. 




GenUTest: A Unit Test and Mock Aspect Generation Tool

Benny Pasternak, Shmuel Tyszberowicz, and Amiram Yehudai 

Unit testing plays a major role in the software development process. It enables the immediate detection of bugs introduced into a unit whenever code changes occur. Hence, unit tests provide a safety net of regression tests and validation tests that encourage developers to refactor existing code. Nevertheless, not all software systems contain unit tests. When changes to such software are needed, writing unit tests from scratch might not be cost effective. 

In this paper, we propose a technique that automatically generates unit tests for software that does not have such tests. We implemented GenUTest, a tool that captures and logs inter-object interactions occurring during the execution of Java programs. The interactions are captured using AspectJ, an aspect-oriented language. These interactions are used to generate JUnit tests. They also serve in generating mock aspects-mock object-like entities, which assist the testing process. 
To be presented in SwSTE 07, IEEE International Conference on Software – Science, Technology and Engineering
Refactoring Aspects into Java Code
Michael Kleyman, Shmuel Tyszberowicz and Amiram Yehudai


The Agile Manifesto states that the Agile development methodology is intended “to satisfy the customer through early and continuous delivery of valuable software”. One of its principles is “welcome changing requirements even late in development”. Refactoring is a major technique used to cope with changes. It is a process and a set of techniques to reorganize code while preserving the external behavior. This process can be performed automatically. Aspect oriented programming (AOP) is a powerful technology that greatly improves programmer’s ability to quickly introduce changes to a software system. AOP enables easily modifying behavior of numerous locations in the system code or adding new behavior. The AOP technology is perceived by some people not to be mature enough, hence they avoid using it in production software. We have developed ACME, a tool that implements a refactoring process for aspects. ACME enables a developer to convert AspectJ code to pure Java code according to conversion patterns. The available patterns are creating a singleton class from an aspect and merging aspects into existing classes. The tool creates modular and readable object-oriented code. This paper presents ACME functionality using example transformations and discusses the tool’s applicability and decisions made during its design. 

AspectJTamer: The Controlled Weaving of Independently Developed Aspects
Constantin Serban and Shmuel Tyszberowicz

 
In recent years, Aspect Oriented Programming (AOP) has emerged as a promising model for modularizing large and complex programs, advancing towards wider acceptance for mainstream commercial development. The use of AOP techniques for developing commercial applications poses, however, a number of challenges — especially when such applications are composed of large numbers of binary components containing independently developed aspects. The interaction of such independently developed aspects with each other and with the rest of the system can lead to unexpected problems. First, aspects in binary distributions can be mistakenly treated as ordinary classes, thus ignoring their complex interaction with the rest of the system. Second, independently developed aspects might inadvertently make inappropriate assumptions about their application environment, thus creating unintended effects. This paper presents AspectJTamer, a tool for addressing these issues. First, AspectJTamer provides support for identifying aspects that are present in binary distributions and for documenting their specific interaction points, thus making explicit both their assumptions about, and their weaving scope within, an application. Second, AspectJTamer provides a mechanism to control the weaving scope of binary aspects in a flexible manner, thus offering supplemental constraints overriding the assumptions made by independently developed aspects.
Derived Requirements Generation The DRAS methodology
David Bar-On and Shmuel Tyszberowicz

In the early stages of system development, many requirements interdependencies exist. Interacting requirements may conflict with one another and they may impact (change or enhance) other requirements as well. Those interdependencies should be identified as early as possible in the development lifecycle. Conflicts should be resolved, so as to avoid the cost and schedule overhead that comes when detecting them late in the development process. Properly identifying the interactions, during the requirements elicitation and analysis, results in new and modified Derived Requirements (DRs). These DRs resolve interactions and undesirable conflicts. An important kind of requirements which interact with other requirements is Crosscutting Functional Requirements (FRs). These requirements change or override the function of other requirements they crosscut, usually for certain states of product functionality. The DRAS (Derived Requirements generation based on Actions and States) methodology presented in this paper helps both to identify FRs that crosscut other FRs and to generate the derived or modified requirements. To identify crosscutting requirements, the methodology matches actions used by requirement and the system modes and states related to the requirements. When the same action is used by two requirements it might indicates that one of the requirements may crosscut the other. In addition to actions directly used, DRAS takes into account actions implicit by them. For a specific action Act (referred to by a requirement), DRAS uses the following implied-actions: (a) Actions that are activated as a consequence or result of using Act, or (b) Actions that Act is the consequence of their use.

