
draft

Taming the Concurrency: Controlling Concurrent
Behavior while Testing Multithreaded Software

Evgeny Vainer Amiram Yehudai
The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel

{zvainer, amiramy}@post.tau.ac.il

Abstract
Developing multithreaded software is an extremely chal-
lenging task, even for experienced programmers. The chal-
lenge does not end after the code is written. There are other
tasks associated with a development process that become ex-
ceptionally hard in a multithreaded environment. A good ex-
ample of this is creating unit tests for concurrent data struc-
tures. In addition to the desired test logic, such a test contains
plenty of synchronization code that makes it hard to under-
stand and maintain.

In our work we propose a novel approach for specifying
and executing schedules for multithreaded tests. It allows
explicit specification of desired thread scheduling for some
unit test and enforces it during the test execution, giving the
developer an ability to construct deterministic and repeatable
unit tests. This goal is achieved by combining a few basic
tools available in every modern runtime/IDE and does not
require dedicated runtime environment, new specification
language or code under test modifications.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Debugging aids; D.3.3 [Language Con-
structs and Features]: Concurrent programming structures

General Terms Algorithms, Languages

Keywords concurrent code, unit test, multithreaded, thread
scheduling, bug reproduction

1. Introduction
In recent years multicore hardware has became a commodity
in end user products. In order to support such a change and to
guarantee better performance and hardware utilization, more
and more application developers had to switch to using mul-
tiple threads in their code. Developing such a code intro-

[Copyright notice will appear here once ’preprint’ option is removed.]

duces new challenges that the developer has to cope with,
like multiple threads synchronization or data races, mak-
ing concurrent applications much more difficult and com-
plicated to create, even for experienced developers [1, 2].
Fortunately, during the years, a lot of tools supporting de-
velopment process has been created - starting with new syn-
chronization primitives and concurrent data structures and
till frameworks that fully isolate all the multithreaded work
from the developer.

Another challenge the developer has to face while creat-
ing concurrent application is its testing and validation. While
testing “traditional” single threaded application, the tester is
usually able to reproduce the bug by providing the applica-
tion some constant set of input parameters. This capability
allows him, for example, to create a test (or unit test) that
demonstrates some buggy behavior and later on use it to
validate that the bug was fixed. Unfortunately, such a use-
ful property of the bugs disappear when switching to multi-
threaded code. In fact, the result of some multithreaded code
strongly depends on the context switches that happened dur-
ing the run, while the developer has almost no ability to con-
trol or even predict them [3, 4]. This kind of “non determin-
ism” during the tests run makes concurrent code very hard to
check - some test may always pass on developer’s machine
or team’s test server but always fail in end user’s environ-
ment.

To overcome this problem, the unit tests developers try
to force context switches in the critical code regions or
to delay some code block execution until the other code
block execution ends. These goals are usually achieved by
adding additional operations (like Sleep or Wait/Notify) to
the test logic, thus making a test more complicated. This
approach creates additional problems. The sleep intervals
are usually chosen by trial and error method, and there is
no guarantee that the next run will pass even if there is no
bug. Using Wait/Notify pair instead of Sleep method usually
requires modifications in the code under test , since the test
scheduling almost always depends on its state (i.e. test code
should wait until code under test will enter some state).
But even this is often not enough, since in many cases the
test failure depends on context switch that should happen in

short description of paper 1 2013/3/24

some third party component. In such a case, the developers
has no convenient way to reproduce the bug.

This problem is well known, and many papers and tools
have tried to simplify concurrent code testing [5, 6]. These
papers try to apply very powerful techniques like static and
runtime analysis or context switch enumeration in order to
decide whether or not some concurrent code is buggy. Al-
though these techniques are very powerful, the problem the
authors address is very complex. As a result, none of these
works can propose a complete solution. There are many in-
teresting and promising results (we mention some of them in
the Related Works section), but more work is required. The
authors of these techniques have to overcome such challeng-
ing problems like scale, precision rates (both for false pos-
itives and false negatives) and extend their methods to the
whole set of synchronization primitives existing in modern
languages.

In this work, we propose another approach to the given
problem. Instead of solving a very general question whether
a given code is correct, we want to give the developers
an ability to control the thread scheduling during the test
run. In other words, if the success or failure of the test
depends on the context switches that occur during the test
run, then include the desired schedule as part of the test set
up. To demonstrate and evaluate our ideas we implemented a
framework called Interleaving using the Java programming
language. Our framework allows the developers:

• to introduce context switches in any arbitrary place in the
code, including code under test and third party libraries

• to delay some code block execution until some other code
reaches the desired state

• to reproduce buggy behavior in a deterministic way
• to separate all scheduling logic from the test’s functional

logic

and much more. These capabilities are achieved by combin-
ing together a few simple tools most of the developers are
familiar with, so that there is no need for code under test
modifications, special runtime or a new language to define
the schedule. In addition, our work is based on ideas and
tools that exist in every modern platform and IDE and it has
no strict dependences on JRE, so a similar framework could
be easily implemented for other development platforms.

The rest of the paper is organized as follows:

• chapter two gives more detailed description of our idea,
including some implementation details

• chapter three provides some examples of usage of Inter-
leaving framework in order to reproduce bugs in concur-
rent code

• chapter four reviews some other works in this area
• chapter five concludes and provides some ideas for future

research

2. Solution
We now describe the core idea and the implementation de-
tails of the Interleaving framework.

2.1 Idea
To achieve such a challenging goals we would like to de-
fine a new concept we call Gate. For now, it is an abstract
concept and its implementation in Java environment will be
discussed later in this paper.

DEFINITION 1. Gate
G =<L, C>
where:
L - some location in code which the execution flow could

reach during the test run
C - some boolean condition that evaluates to true or false

The intuition behind this definition is as following - like
any gate in the real world that has a location it is placed
in and could be opened or closed, our Interleaving gate is
placed somewhere in the code (L) and could be opened (C
evaluates to true) or closed (C evaluates to false).

Please note that the latter definition does not limit the po-
sition of gate in any way. The gate could be placed anywhere
- in the code of the test, in the code under test or even in some
third party library. Furthermore, the gate does not have to be
bound to a specific line of code. Its position could be defined
in some other way like “the first time method X is invoked”
or “the fifth iteration of loop P”.

The same remark holds for condition C - it could check
anything the one wants. For example, some condition could
evaluate to true only if the time of the day is between
8:00AM to 5:00PM while another one will be true only if it
rains outside. Of course, such a strange conditions will have
no value for real tests and its more likely that the test devel-
opers will be interested in conditions like “thread X passed
line Y of the code” or “object O is in state S”.

While executing the test, the execution flow of some
thread T could reach the location L. At this point the ex-
ecution of T is suspended and condition C is evaluated. The
following behavior of T depends on C’s value:

• C evaluates to true - thread T is resumed and continues
its execution in a regular way

• C evaluates to false - thread T remains suspended and
will be resumed only after the value of C changes to true

For now, we are not interested in the mechanism used to
notify the runtime about the changes in condition’s state. Let
us just assume that such a mechanism exists and that thread
T will be resumed as soon as C’s value will change to true.

Now assume that the unit test developer has an easy
and convenient way to define the gates (both location and
condition), to combine them into sets and to bind these
sets to a specified test. Such a powerful tool will allow the
developer to enforce any thread scheduling he wants. All the

short description of paper 2 2013/3/24

one needs to do is to identify the code blocks that should be
executed in a particular order and define the gate before the
latter (second) block that will open only after execution of
the first block is completed.

To demonstrate this idea let us assume the example in the
Java programming language shown in figure 1.

1 public class SharedMemoryAccessExample {
2 int multiplier = −1;
3 int result = 0;
4
5 class Worker1 extends Thread {
6 public void run() {
7 multiplier = 1;
8 }
9 }

10
11 class Worker2 extends Thread {
12 public void run() {
13 result = multiplier ∗ 10;
14 }
15 }
16
17 public int Calculate() throws Exception {
18 Thread t1 = new Worker1();
19 Thread t2 = new Worker2();
20
21 t1.start();
22 t2.start();
23 t1.join();
24 t2.join();
25 return result;
26 }
27 }

Figure 1. Shared Memory Access

In this very simple example each call to the Calculate
method will cause the runtime to create two threads, execute
them and return the value stored in “result” variable. One
could easily note that the value returned by Calculate method
depends on the order in which the worker threads were
executed. Lets assume that the result of 10 is the expected
one, while the result of -10 (which will be returned if line 13
executed before line 07) is a bug.

Even such a simple example of multithreaded class could
be very difficult to test. Following the encapsulation prin-
ciple of OOP all the members of this class are internal, so
the unit test code that is external to the class has no access
to them. As a result, the only thing the unit test developer
could do is to call the Calculate method and to check its re-
turn value. It is obvious that the outcome of such a test will
depend on thread schedule that took place during the test
run. Such a unit test has no value at all since its outcome is
not deterministic and the fact that the test passed does not

guarantee that the code is bug free. One could try to increase
the confidence of the test by calling the Calculate method
multiple times during the test and validating all the values
returned. Such a test will not be much better than the previ-
ous version since it still can result in false negative.

Now assume that the unit test developer is able to de-
fine gates as described before. In such a case, the one could
define the gate G =< line 07 , thread Worker2 has
finished its execution > and bind it to the test. Accord-
ing to the semantics of the gates defined earlier, doing so
will cause Worker1 thread to pause its execution just before
line 07 of the code and to remain suspended until Worker2
is done. As a result, a call to the Calculate method will re-
turn -10, thus failing the test. This thread ordering will be
constantly enforced every time the test will be executed, al-
lowing the the developer to reproduce the buggy behavior in
a deterministic way.

2.2 Implementation
In order to demonstrate and evaluate our ideas we imple-
mented the above concept using the Java programming lan-
guage and JRE environment. The resulting framework, we
called Interleaving, provides an ability to place the gates in
arbitrary places in code and to evaluate the conditions when
the gate is reached, forcing the behavior defined earlier. The
framework could be used together with Eclipce IDE, pro-
viding the developers familiar and convenient environment
to define and manage their gates. Of course, the concept of a
gate defined earlier is very general, so we had to make some
relaxations while implementing it.

2.2.1 Condition definition
First of all, in our implementation, we decided to utilize Java
programming language for gate conditions definitions. There
are several advantages for such a choice:

• Java is a very powerful programming language. It’s syn-
tax and semantics has been developed over years by a
large and experienced community. Any special language
we could create for condition definitions would be less
expressive than Java, so we decided not to limit our user
by introducing some syntactic limitations.

• JRE contains a lot of frameworks and code libraries that
allow the developers to perform very complicated tasks
and simplify the development process. All of them could
be used while defining gate conditions. Such a reuse sim-
plifies conditions’ definitions and allows the developers
to create more complicated gates without need to reim-
plement already existing functionality.

• Since our framework is intended to be used in Java en-
vironment, we can assume that all its users are familiar
with Java syntax and semantics. Using familiar language
to define gate conditions significantly simplifies migra-
tion to our framework.

short description of paper 3 2013/3/24

• Using Java for conditions definitions allows us to use JRE
in order to evaluate its state, thus saving us the effort to
develop our own evaluation engine.

• The fact that conditions are defined using the same pro-
gramming language that was used while developing the
application makes the conditions much more powerful.
For example, the code in gate condition can interact with
objects defined in application, check their states or even
call their methods. All of this is possible because of the
same language used to define conditions and application
and because of the same runtime used to execute them.

Using Java for conditions definitions limits the power of
gates, with respect to definition given in section 2.1. Nev-
ertheless, the code under test is created using the same pro-
gramming language and executed using the same runtime
engine as Interleaving’s gates’ conditions. This observation
refines the fact that the gates are at least as powerful as the
application itself, making this implementation decision af-
fordable.

2.2.2 Notification mechanism
Another implementation decision we made deals with the
gate notification mechanism. As section 2.1 states, if some
thread T is suspended on gate G =< L, C >, it is resumed
immediately when C’s value becomes true. This definition
assumes some mechanism that observes the value of the con-
dition all the time and is able to resume T whenever its state
changes. Although it is possible to implement such a mecha-
nism, the implementation may be pretty complex and some-
what tricky. Since the purpose of our framework is to demon-
strate the ideas and not to provide market ready solution, we
decided to simplify this behavior. In the Interleaving frame-
work,the implementation of the notification mechanism is
part of the condition’s logic and is the responsibility of the
test developer. In other words, when thread T reaches gate
G =< L, C > its state S is saved somewhere aside and the
condition’s logic is evaluated. This evaluation should return
only after the gate is considered to be opened. After the con-
dition’s evaluation ends, the thread’s state S is restored and
T continues its execution in the regular way. This behavior
fits the gate’s behavior from section 2.1, since thread T can
not continue it’s execution until C is satisfied. Since condi-
tions’ logic is defined using Java programming language, it
is not a problem to create such a complex conditions.

This relaxation allows test developers to define different
and complex conditions whose behavior depends on test re-
quirements. From the observations we made while evaluat-
ing our framework, most of the test scheduling could be cre-
ated using very simple “manual” gates, i.e. the gates whose
state has to be changed explicitly. The condition of such a
gate contains one expression only - calling for Wait method
on some object, while appropriate Notify call has to be made
explicitly somewhere else in the code. Please pay attention
that such a call could be placed anywhere in the code (even

in third party libraries) using fictitious gate whose condition
contains Notify call only. Of course, as we mentioned ear-
lier, more complex conditions could be introduced in order
to create more complex schedules. Some examples of such
conditions will be discussed later on, in the evaluation sec-
tion of this paper.

2.2.3 Location definition
Now we describe the technique we used to define the loca-
tion L for some gate. While developing Interleaving frame-
work we searched for a way to represent the location that
will satisfy the following requirements:

• The test developer should have fine grained control over
gates positions, i.e. one should be able to bind the gate
to some line in source code, to some instruction in the
binary file or, if possible, to some event that happens dur-
ing the application execution (like first exception thrown
or entering some method)

• The developer should be able to define gates locations
using some familiar and convenient technique, so we
would like to avoid creating special location definition
language or syntax.

• The framework should be able to intercept the execution
flow of any thread that reaches the location defined by
some gate G in order to evaluate the condition and sus-
pend thread’s execution if needed

Fortunately, we are not the the first who looked for such ca-
pabilities. The entity that satisfies these requirements was
invented long ago and already exists in all modern develop-
ment languages and platforms - it is a breakpoint. Indeed,
the breakpoint mechanism of JRE allows the developer to
put the breakpoint in almost arbitrary place in the code, in-
cluding third party libraries. It also supports more complex
conditions like hits counter, method entry/exit or class load
events. Every modern IDE (like Eclipse, for example) pro-
vides the developer some convenient, usually graphic, inter-
face for breakpoint definition, fully abstracting from the real
syntax used to define breakpoint location/condition. On the
other hand, Java Debugging Interface (JDI) libraries sup-
ported by the last versions of JVM provide very powerful
programmatic interface which allows us to define and re-
move breakpoints, receive notifications when some break-
point is hit and execute some custom action when this hap-
pens. All of this makes a breakpoint mechanism an ideal so-
lution for defining gates’ locations.

2.2.4 Flow control
We now present a short description of the technique the
Interleaving framework uses in order to intercept and control
the flow of test execution.

Each Interleaving test is a simple JUnit test while we use
JUnit rules to enrich its functionality. At runtime, JUnit will
discover that the test has additional rule and will pass the

short description of paper 4 2013/3/24

control to this rule. This is how Interleaving comes into the
game. The rule code will investigate current test and locate
the gates relevant for the test (the way we associate gates to
tests is described later in section 2.2.6). Next, a few things
will happen.

• First, Interleaving will compile the Java code defined in
gates’ conditions fields, creating separate static method
for each one of the gates.

• Next, Interleaving uses JDI to set the breakpoints in all
of the code locations defined by the gates, and starts a
special thread that will handle those breakpoints hits.

After this work is done, the rule returns the flow to JUnit and
it continues test execution in regular way.

While running the test, some of the breakpoints might be
hit. When this happens, the thread T that hit the breakpoint
is suspended by JVM (all other application threads continue
to run) and a notification is sent to the special Interleaving
thread mentioned earlier. The notification contains all the
necessary information required by Interleaving in order to
identify the gate that was reached and to locate a method
containing the gate’s condition’s code. Next, this method is
placed on top of T ’s stack and T is resumed. This technique
causes T to leave the state it was in when it hit the break-
point, and forces it to execute new code - the code of the
condition the developer supplied. Moreover, when the condi-
tion’s code will return, the stack frame of condition’s method
will be destroyed and the thread will return to the same state
it was in when it was suspended. Since the thread is not sus-
pended anymore it continues the execution of the original
test logic as if nothing happened. The only side effect one
could notice is a delay caused by the condition’s evaluation.
This delay, combined with the condition’s behavior defined
earlier (section 2.2.2), gives us all we need to enforce the
desired scheduling.

It is important to notice that all the operations described
in the current section are achieved using standard APIs and
extension points provided by JUnit, JVM and JDI library.
At the cost of some additional code written, we manged to
implement these capabilities without modifications made to
any of those libraries. As a result, the Interleaving frame-
work does not requires special versions of JVM or JRE in
order to run the tests. The tests can be executed using the
same environment that is used in the production stage.

2.2.5 Putting everything together
Now, we would like to describe how all the things we men-
tioned earlier are combined together in the Interleaving
framework. For the demonstration purpose, we assume some
developer is required to create a test that reproduces a con-
current bug that exists in code on figure 1. After investigating
the bug, the developer concludes that the bug happens only if
line 13 of code is executed before line 07, so while creating
the test he needs to enforce this schedule.

To do so, he will have to use one of the gates defined in
Interleaving framework named “SimpleGate”. This gate de-
fines a simple API composed of two methods - Wait and
Open. Each SimpleGate instance maintains some internal
condition that initially evaluates to false (i.e. the gate is con-
sidered to be closed) and it remains so until the Open method
is called. Calling this method changes the internal condi-
tion’s value in such a way that from this point it always eval-
uates to true (i.e. the gate is considered to be open) and there
is no way to switch the gate back to the closed state. The
Wait method of the gate implements the notification logic
we described earlier in section 2.2.2. Whenever this method
is called it returns only after the gate’s instance it was called
on is in opened state. Using this gate the developer can en-
sure that the code block following the gate’s Wait call will
be executed only after the code block preceding the gate’s
Open call is done.

Now, in the test, the developer has to create an in-
stance of SimpleGate and give it some meaningful name,
“Worker2Done” for example. Next, he has to locate it some-
where in the code. Following the example, he wants to sus-
pend the execution of the code on line 07 so this is the line
where the gate should be located. In order to mark this line as
a gate location the developer puts a breakpoint on it. Now,
he has to specify the condition associated with the break-
point. For this purpose we decided to utilize the conditional
breakpoint window of Eclipse IDE. So, the developer marks
the earlier created breakpoint as conditional one and in the
condition window writes the code that calls for Wait method
of “Worker2Done” gate. Next, he has to choose the point
where the gate is to be opened. Obviously, this point is at line
14 (alternatively, it might be the point where some thread
finishes the execution of Worker2.run method). So, the de-
veloper puts another breakpoint on line 14 (or method exit
breakpoint on Worker2.run method), marks it as conditional
and writes the condition that calls for “Worker2Done” gate’s
Open method. The combination of these two breakpoints
creates a deterministic schedule which always enforces the
code at line 07 to run after the code at line 13.

Now, all is left is to write the test that calls for Calcu-
late method and to associate the gates created earlier to this
specific test. This association could be done using Working
Sets. Working set is a convenient way the Eclipse IDE pro-
vides for the purpose of grouping some related entities of
any kind. All the developer has to do to associate the gates
with the test is to create breakpoints working, give it a name
of the test and add the breakpoints created earlier to this set.
Now, the test can be run using standard JUnit test runner.

While executing the test the breakpoint set on line 07
will be hit by thread T1. At this point, Interleaving will use
the technique we described in section 2.2.4 to cause T1 to
execute the breakpoint’s condition. This condition contains
the call to Wait method of “Worker2Done” gate. As we
recall, the Wait method of the gate will return only after the

short description of paper 5 2013/3/24

Figure 2. UI for working with Interleaving framework

Open method of the same gate was called. Let us assume
that the Open method was not called yet. Therefore, T1 will
remain inside the code of Wait method, while all the other
application threads will execute the test logic in the regular
way. At some point of time, some other thread T2 will hit
the breakpoint located at line 14, this will cause T2 to stop
its current flow execution and to execute the code defined
by the condition of this breakpoint and, as a part of it, to
execute the call for Open method of “Worker2Done” gate.
This call will return immediately allowing T2 to return to the
test logic. In addition, this call will cause the Wait method
of “Worker2Done” gate to return, releasing T1 and allowing
it to return to the test logic execution.

As a conclusion of the flow described, one can notice
that adding gates to the test introduced some new ordering
constraints on events that occur during the test run. These
constraints are as follows (we use the notation of E1 → E2
to denote that event E1 occurs before event E2):

• The code in line 13 is executed (A) before the breakpoint
on line 14 is hit (B) (A → B)

• “Worker2Done” Open method is called (C) after the
breakpoint on line 14 is hit (B → C)

• “Worker2Done” Wait method returns (D) after its Open
method is called (C → D)

• condition evaluation in T1 ends (E) after “Worker2Done”
Wait method returns (D → E)

• thread T1 returns to test logic execution (F) after it com-
pleted condition evaluation (E → F)

• the breakpoint in line 07 is hit before the code on the
same line is executed, as a result T1 will execute the code
in line 07 (G) only after it returns back to the test logic
evaluation (F → G)

Events sequence above implies that A → G (i.e. the code
in line 13 will always be executed before the code in line
07), resulting in consistent bug reproduction, no matter what
was the threads scheduling created by JVM/OS for current
test execution.

2.2.6 User interface
One of the things we always kept in mind while creating
the Interleaving framework is its usability. Providing the
developers with a tool that is based on concepts they are
familiar with significantly reduces the learning curve and
eases the migration. Till now we described two examples of
such a reuse in our framework:

• using Java programming language in order to describe
gates’ conditions

• using breakpoint mechanism in order to define gates’
locations

Another example of this approach is the user interface of the
Interleaving framework. All the operations the test developer
has to perform while creating and executing interleaved test
could be done using standard Eclipse IDE environment and

short description of paper 6 2013/3/24

no additional plugins/windows are required. In our opinion
such an integration is very important, since the developer
fills comfortable with the environment and can focus on
his actual job, instead of spending time on learning new
concepts. Figure 2 shows an Eclipse IDE window while
creating and executing the test, and describes how different
parts of this window come into play while working with the
Interleaving framework:

1. JUnit test runner window shows the last test run result.
Since each Interleaving test is also a regular JUnit test,
this window displays the results of interleaved tests ex-
ecuted during the run together with the regular tests re-
sults.

2. Breakpoints window is used to show the developer all
the breakpoints defined for the test run. The breakpoints
could be grouped into the Working Sets while each work-
ing set corresponds to some interleaved test and contains
all the breakpoints relevant to this test. This way the de-
veloper can easily manage the gates defined for some test.

3. The gate’s condition is shown in the Breakpoint’s con-
dition part of Breakpoints window. This window allows
the developer to enter the gate’s condition using Java
programming language providing it with the full set of
features he is used to while writing the code (like syn-
tax highlighting or Intellisence). The content of this con-
trol shows the condition of the breakpoint selected in the
above part of the same window (2), thus providing the
developer very convenient view of the gate he works on.

4. The code window could be used to examine the test
code/code under test while the gates locations are marked
by breakpoints icon on the margins of the window (5),
thus providing the developer with an easy way to under-
stand the context the gate is used in.

5. Eclipse IDE allows the developers to define new break-
points by simply clicking on the margins of the code win-
dow. In Interleaving terminology this operation defines a
new gate whose location is defined by the newly created
breakpoint. Afterwards, the gate’s condition has to be de-
fined and the breakpoint has to be moved to an appropri-
ate working set. Both of these operations were mentioned
earlier and could be performed using breakpoints window
(2, 3).

3. Evaluation
The evaluation of our work consists of two parts. First, we
looked for different examples of concurrent bugs that are
hard to reproduce using standard testing tools and created
the gates sets that reproduce the buggy behavior in a consis-
tent way. A few such examples are presented in this chapter.
Some of them are real bugs taken from the bugs reposito-
ries, while others are synthetic examples we created in order
to demonstrate the expressiveness and the power of our ap-

proach. The second part of the evaluation is done via the
comparison to other works. We show that our framework is
at least as powerful as some other tools presented in recent
papers, and in some cases more powerful.

3.1 Examples
3.1.1 BlockingQueue
We start with an example of the real unit test for Array-
BlockingQueue class in java.util.concurrent (JSR-166) [7].
This unit test was used by several authors [8, 9] in order
to demonstrate their approaches and we continue with this
tradition. The code of the test is presented in figure 3. It con-
tains two Thread.sleep calls used by the developer to enforce
the desired threads ordering. Although this technique works
for most of the runs, there still might be a run in which the
threads will be executed in a different order ending up with
an incorrect result.

1 @Test
2 public void ArrayBlockingQueue JUnit() throws

Exception {
3 final ArrayBlockingQueue<Integer> q = new

ArrayBlockingQueue<Integer>(1);
4
5 Thread addThread = new Thread(
6 new Runnable() {
7 public void run() {
8 q.add(1);
9 Thread.sleep(100);

10 q.add(2);
11 }
12 }
13);
14
15 addThread.start();
16 Thread.sleep(50);
17
18 Integer taken = q.take();
19 assertTrue(taken == 1 && q.isEmpty());
20 taken = q.take();
21 assertTrue(taken == 2 && q.isEmpty());
22
23 addThread.join();
24 }

Figure 3. Unit test for ArrayBlockingQueue class

Figure 4 shows the same test rewritten for Interleaving.
In addition to the code shown, the test’s set up contains
one gate placed inside ArrayBlockingQueue.take method,
just before it blocks (line 317), which opens the gate named
“started take2”.

In contrast to the original unit test, Interleaving test al-
ways enforces the correct threads ordering leading to con-
sistent results for all of the test runs. In addition, our code is

short description of paper 7 2013/3/24

1 @Test
2 @Interleaved
3 public void ArrayBlockingQueue Interleaved()

throws Exception {
4 final ArrayBlockingQueue<Integer> q =
5 new ArrayBlockingQueue<Integer>(1);
6
7 Thread addThread = new Thread(
8 new Runnable() {
9 public void run() {

10 q.add(1);
11 interleavings.GateManager.Open(”finished add1”);
12 interleavings.GateManager.Wait(”started take2”);
13 q.add(2);
14 }
15 }
16);
17
18 addThread.start();
19 GateManager.Wait(”finished add1”);
20
21 Integer taken = q.take();
22 assertTrue(taken == 1 && q.isEmpty());
23 taken = q.take();
24 assertTrue(taken == 2 && q.isEmpty());
25
26 addThread.join();
27 }

G =< ArrayBlockingQueue@317,
interleavings.GateManager.Open(”started take2”); >

Figure 4. Unit test and gate for ArrayBlockingQueue class
using Interleaving framework

easier to understand since the desired threads scheduling is
specified in the code in a clearer, declarative way.

3.1.2 Unspecified Time
The next example is the synthetic one, but it demonstrates
a very common scenario. Suppose the tester needs to check
the class that performs some long time operation in a dif-
ferent thread. The amount of time the operation could take
varies from run to run in hardly predictable way, and de-
pends mostly on the environment the test is run on. In order
to create such a test, the developer needs to execute the op-
eration, wait until the job is finished and only then check its
status. Figure 5 contains sample code that demonstrates this
approach.

In this example, we assume that the operation time is
upper bounded by some constant. If it is not the case, the test
could “busy wait” until the operation is done. Both methods
are not perfect - in the former case the test always takes the
maximal possible time even when the operation ends very

1 @Test
2 public void LongRunningTask JUnit() throws

InterruptedException
3 {
4 Task task = new LongRunningTaskExample().new

Task();
5
6 task.start();
7
8 Thread.sleep(task.MaxTime);
9 assertTrue(task.IsDone);

10 }

Figure 5. Unit test for LongRunningTask class

1 @Test
2 @Interleaved
3 public void LongRunningTask Interleaved() throws

InterruptedException
4 {
5 Task task = new LongRunningTaskExample().new

Task();
6
7 task.start();
8
9 //interleavings.GateManager.Wait(”task done”);

10 assertTrue(task.IsDone);
11 }

G1 =< LongRunningTask Interleaved@10,
interleavings.GateManager.Wait(”task done”); >

G2 =< LongRunningTaskExample@33,
interleavings.GateManager.Open(”task done”); >

Figure 6. Unit test and gate for LongRunningTask class
using Interleaving framework

fast, while the “busy wait” option consumes unnecessary
machine resources.

Figure 6 demonstrates Interleaving version of such a test.

It contains two gates:

• G1 is located just before the assertTrue call. The gate
remains closed until the task is done (optionally this gate
could be removed from the test set up and replaced by the
commented line)

• G2 is a fictitious gate (as described in section 2.2.2) that
opens G1 and is located on the last line of the checked
operation (line 33 of LongRunningTaskExample.java)

Using this technique the test gets the best of the two worlds
– it takes as little time as the checked job takes, and the test
thread is blocked while the operation performs. In addition,

short description of paper 8 2013/3/24

in case the operation class would not provide us with Max-
Time and IsDone members, the developer has no convenient
way to check this scenario without using Interleaving capa-
bilities.

3.1.3 StringBuffer
Our next example deals with the real bug that exists in
StringBuffer class in the current version of JRE [10, 11, 22].
Figure 7 contains the code of the append method of Abstract-
StringBuilder class which StringBuffer class inherits.

1 public AbstractStringBuilder append(StringBuffer sb)
{

2 if (sb == null)
3 return append(”null”);
4
5 int len = sb.length();
6 int newCount = count + len;
7 if (newCount > value.length)
8 expandCapacity(newCount);
9

10 sb.getChars(0, len, value, count);
11 count = newCount;
12 return this;
13 }

Figure 7. AbstractStringBuilder.append method

This method contains a potential data race while working
with the length of the received argument. If the length of sb
changes after line 05 was performed, but before line 10 is
executed, the method could end up with an exception. One
can easily write the test that tries to reproduce this scenario.
The example of such a test is shown in the figure 8.

Unfortunately, running this test as is will not reproduce
the bug. The reason for this is that the context switch be-
tween the worker thread and the test thread should happen
in a very specific and very short time window - after the
worker thread performed line 05 of append method but be-
fore it reaches line 10 of it. This timing window is pretty
tight and it is very unlikely for the context switch to happen
there in regular runs. The sleeps technique used in the Block-
ingQueue (section 3.1.1) example also fails to reproduce the
bug. Usage of this technique requires one of the sleep calls
to be located inside the append method, causing code under
test modification which is undesirable in most cases. In or-
der to reproduce the bug we tried to execute this test in some
different setups - we executed the test many times inside the
loop, we executed several instances of the test simultane-
ously, we ran it on different machines under different loads
- all with no success. The bug appeared in very few runs in
a very inconsistent way. The inability to reproduce the bug
was noticed by java developers too. The appropriate bug re-
ports mention that the bug “can be reproduced rarely” [10]

1 @Test
2 public void LengthRaceCondition() throws Exception
{

3 final StringBuffer sb1 = new
StringBuffer(”original data”);

4 final StringBuffer sb2 = new
StringBuffer(”appended data”);

5
6 Thread worker = new Thread(new Runnable() {
7 public void run() {
8 sb1.append(sb2);
9 }

10 });
11
12 worker.start();
13 sb2.setLength(3);
14 worker.join();
15 }

Figure 8. Test method for StringBuffer.append

and proposes a test containing two infinite loops (one loop
for each thread) [11] in order to reproduce it.

Using Interleaving framework we reproduced the buggy
behavior in all of the runs by adding only two gates to the test
and without changing the code at all. The first gate is located
in line 13 of the test and opens after the worker thread passed
line 05 of the append method, while the second is located
in line 10 of the append method and opens after the test
performed line 13 of its code. The formal gates definition
is presented in the figure 9.

G1 =<test@13,
interleavings.GateManager.Wait(”afterget”);>

G1fictitious =<append@06,
interleavings.GateManager.Open(”afterget”);>

G2 =<append@10,
interleavings.GateManager.Wait(”afterset”);>

G2fictitious =<test@14,
interleavings.GateManager.Open(”afterset”);>

Figure 9. Gates defined for LengthRaceCondition test

Please recall that in our implementation all the gates are
manual, i.e. every conceptual gate consists of two parts -
the real gate and some fictitious gate that is responsible for
opening the real one, as described in section 2.2.2

3.2 Comparison to IMUnit
IMUnit [9] is another framework that provides test develop-
ers the ability to define the ordering of some events during
test execution. The scheduling definition for this framework
consists of two parts:

1. initiation of events of interest somewhere inside the code

short description of paper 9 2013/3/24

2. declarative definition of desired events ordering for the
test using some special syntax

The framework controls tests execution and ensures the de-
sired ordering in the following manner – while executing
the test, the flow could reach some event of interest (1) de-
fined by the test developer. At this moment, the execution of
the thread is suspended until all of the preceding events de-
fined for the test (2) occurred. In addition to the framework,
the authors provide a tool that allows relatively easy migra-
tion from the “sleep based” tests to IMUnit notation. Using
this tool the authors succeed to convert a large amount of
concurrent tests to be used with IMUnit, a result that im-
plies the good expressive power of IMUnit notation. We will
show that IMUnit events are a special case of Interleaving
gates and every IMUnit test could be easily rewritten for our
framework. One can immediately conclude that:

1. the same approach described in [9] can be used to convert
the tests to our notation.

2. the expressive power of Interleaving notation is at least
as good as that of the IMUnit notation.

Moreover, we will show that the StringBuffer bug mentioned
earlier (section 3.1.3) can not be reproduced using IMUnit
but can easily be reproduced using Interleaving, which im-
plies the greater expressiveness of the Interleaving frame-
work.

In order to substatntiate the claims above, we developed a
simple algorithm that allows to convert every IMUnit test to
Interleaving notation. This argorithm is presented on figure
10. We also provide the formal proof that the transformation
this algorithm applies to the test code does not affect the test
result and preserves the scheduling enforced by the frame-
work. Due to space limitations we will not present this proof
here, but only describe the intuition and the general idea. The
whole and formal proof will be provided in [24].

1. let ep → es be the IMUnit scheduling defined for the test
(which means that event ep should happen before event
es)

2. let Lep and Les to be the lines of code where events ep
and es are initiated, respectively

3. define gate Gep→es =< L, C > as follows:

3.1 L = Les

3.2 C = Lep was already executed

Figure 10. Transformation T(unit test) from IMUnit to In-
terleaving

The intuition behind this transformation is very simple –
the execution flow could not reach Les before it passes the
gate Gep , but the gate remains closed until the flow reaches
Lep . This implies that Lep will always be executed before
Les , enforcing the desired scheduling. In the full proof we

also show how to transform other types of scheduling (like
[ep] → es) and how to deal with complex scheduling that
contains multiple simple scheduling.

Using this simple algorithm one can easily understand
why all the tests created with IMUnit notation are a subset
of all the tests that could be created using Interleaving.
The reason for that is that while using IMUnit the events
can be initiated from the test code only, which implies that
appropriate gates in the transformed test will also be placed
inside the code of the test (while Interleaving mechanism
that uses breakpoints allows the developer to put the gate
almost everywhere - inside the code under test or even in
third parties code). This limitation significantly reduces the
set of bugs IMUnit is capable to reproduce. For example, the
StringBuffer bug mentioned above (section 3.1.3) can not be
reproduced using IMUnit because of this issue.

Another conclusion that is immediate from the algorithm
above is that every IMUnit event could be represented using
a gate with very simple and constant condition. This fact also
limits the expressive power of the framework. In order to
overcome this limitation IMUnit defines its own scheduling
specification language that allows the developer to specify
more complex condition like [ep] → es. The problem with
this approach is that every new condition complicates this
language specification and that test developers have to be
familiar with this language and all of its capabilities. Inter-
leaving, in contrast, does not limit the tester to a predefined
set of conditions but allows him to define every logic he de-
sires using the power of the Java programming language -
the language the developer is already familiar with. For ex-
ample, a condition code can check the internal state of cur-
rent “this” object or even the values of local variables on the
stack, things that are impossible while using IMUnit nota-
tion.

4. Related Works
The problem of concurrent software testing has been ad-
dressed by many researchers. Several approaches have been
developed in order to cope with it. O’Callahan and Coi
[12] analyze the runtime behavior of the application and ap-
ply lockset-based and happens-before techniques in order to
identify potential bugs. Eraser [13] tracks application actions
and uses collected data to detect possible dataraces. Race-
Track [14] is another tool that utilizes this approach but ap-
plies different algorithms in order to identify data races.

Another set of tools interfere with the threads sched-
uler work, forcing the execution of uncommon executions
flows. ConTest [15] introduces new context switches into the
program code thus revealing hidden bugs. ConCrash [16]
utilizes record and replay technique in order to reproduce
buggy runs. AtomFuzzer [17] forces the context switches in-
side critical region trying to cause atomicity violation. Mi-
crosoft Chess [18, 19] reruns each test multiple times while
enumerating over different possible thread schedulings. All

short description of paper 10 2013/3/24

the techniques above are fully automated and do not make
any use of the knowledge the developer has regarding his
code.

ConAn [20, 21] and MultithreadedTC [8] split the appli-
cation execution timeline to several slots providing the de-
veloper the ability to order the code blocks with respect to
those slots. IMUnit [9] introduces the concept of events that
occur during the test run and enforces events ordering spec-
ified for the test. This technique is very close to the one we
propose. The comparison of our work to IMUnit was pre-
sented earlier in the paper (section 3.2). Park and Sen [22]
use the information provided by the developer regarding the
buggy state and try to enforce the scheduling that will reach
this state.

DataCollider [23] is the only tool we are aware of that
makes use of the breakpoints mechanism. It breaks the ex-
ecution on access to random memory locations and ana-
lyzes the program state in order to identify data races. Un-
like Interleaving, it does not uses this mechanism in order to
change the execution flow induced by OS threads scheduler.

5. Conclusions
Testing concurrent applications is a very challenging task.
One of the reasons for this is lack of control over threads
scheduling during test execution and inability to reproduce
the bug as the result of this. We propose a novel technique
that allows the unit test developer to specify the desired
threads scheduling as part of test setup. This scheduling will
be enforced during the test execution consequently repro-
ducing the bug on every test execution.

Our technique utilizes the breakpoints mechanism which
allows us to preempt the flow in arbitrary points in the
code, including code under test and third party libraries,
without the need for code modification. We also allow the
test developer to define the decision logic for every particular
context switch using Java programming language. All this
makes our framework very powerful but still easy to learn
and use.

We implemented the prototype of our ideas in the Inter-
leaving framework and used it to reproduce some concurrent
bugs that are very hard to reproduce using other tools. The
framework has good integration with Eclipse IDE and JUnit
and does not require dedicated runtime. Although the frame-
work is implemented using Java, the technique itself is not
bound to a specific language and can be implemented for
other platforms too.

We believe that our technique is promising and could be
combined with other works to achieve even better results.
For example, the declarative notation of IMUnit could be
combined with the freedom the Interleaving provides to
initiate the events from every place in the code. Moreover,
the idea of using breakpoints for execution flow interception
could be used for other purposes like invariants validation or
code instrumentation.

References
[1] Long, B., Strooper, P.: A classification of concurrency failures

in java components. In: Proc. of IPDPS 2003, p. 287.1. IEEE
Computer Society, Washington, DC, USA (2003)

[2] Lu, S., Park, S., Seo, E., Zhou, Y.: Learning from mistakes:
a comprehensive study on real world concurrency bug charac-
teristics. In: Proc. of ASPLOS 2008, pp. 329-339. ACM, New
York, NY, USA (2008)

[3] Yang, C-S. D.: Structural Testing of Shared Memory Parallel
Programs. PhD thesis, University of Delaware (1999)

[4] Radnoci, R.: Methods for Testing Concurrent Software. Master
thesis, University of Skı̈¿œvde (2009)

[5] Eytani, Y., Havelund, K., Stoller, S. D., Ur, S.: Toward a
Benchmark for Multi-Threaded Testing Tools.

[6] Souza, S. R. S., Brito, M. A. S., Silva, R. A., Souza, P. S.
L., and Zaluska, E.: Research in concurrent software testing:
a systematic review. In: Proc. of PADTAD 2011. ACM, New
York, NY, USA (2011)

[7] Java Community Process. JSR 166: Concurrency utilities.
http://g.oswego.edu/dl/concurrency-interest/

[8] Pugh, W., Ayewah, N.: Unit testing concurrent software. In:
ASE (2007)

[9] Jagannath, V., Gligoric, M., Jin, D., Luo, Q., Rosu, G., Marinov,
D.: Improved multithreaded unit testing. In: FSE 2011

[10] Bug 4810210 Java Bug Database.
http://bugs.sun.com/bugdatabase/view bug.do?bug id=4810210

[11] Bug 4813150 Java Bug Database.
http://bugs.sun.com/bugdatabase/view bug.do?bug id=4813150

[12] O’Callahan, R., Choi, J.-D.: Hybrid Dynamic Data Race
Detection. In: PPoPP (2003)

[13] Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., Ander-
son, T.: Eraser: A Dynamic Data Race Detector for Multi-
threaded Programs. In: ACM Transactions on Computer Sys-
tems, v.15 n.4, pp.391-411 (1997)

[14] Yu, Y., Rodeheffer, T., Chen, W.: RaceTrack: Efficient
Detection of Data Race Conditions via Adaptive Tracking. In:
SOSP (2005)

[15] Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., Ur, S.:
Multithreaded java program test generation. In: IBM system
journal, v.10 n.1, pp. 111-125, 2002

[16] Luo, Q., Zhang, S., Zhao, J.: A Lightweight and Portable
Approach to Making Concurrent Failures Reproducible. In:
Proc. of FASE 2010. pp. 323-337, Springer-Verlag, Berlin,
Heidelberg (2010)

[17] Park, C. S., Sen, K.: Randomized Active Atomicity Violation
Detection in Concurrent Programs. In: SIGSOFT (2008)

[18] Ball, T., Burckhardt, S., Musuvathi, M., Qadeer, S.: First-class
Concurrency Testing and Debugging. Position Paper, Workshop
on Exploiting Concurrency Efficiently and Correctly, 2008

[19] Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P. A.,
Neamtiu, I.: Finding and Reproducing Heisenbugs in Concurrent
Programs. In: Proc. of OSDI 2008. pp. 267-280. USENIX
Association, Berkeley, CA, USA.

short description of paper 11 2013/3/24

[20] Long, B.: Testing concurrent java components. PhD thesis,
The Universiy of Queesland (2005)

[21] Long, B., Hoffman, D., Strooper, P. A.: Tool support for
testing concurrent java components In: IEEE TSE (2003)

[22] Park, C. S., Sen, K.: Concurrent Breakpoints. In: Proc. of
PPoPP 2012. ACM, New York, NY, USA

[23] Erickson, J., Musuvathi, M., Burckhardt, S., Olynyk, K.:
Effective Data-Race Detection for the Kernel. In: Proc. of OSDI
2010. pp. 151-162

[24] Vainer, E.: Master thesis. Tel Aviv University, in preparation
(2013).

short description of paper 12 2013/3/24

