Problems

22/02/11

- 1. (basic) Let F_q be a finite field. Prove that $\prod_{\alpha \in F^*} (x \alpha) = x^{q-1} 1$.
- 2. (basic) Let F_q be a finite field of odd characteristic. An element $x \in F_q^*$ is a quadratic residue if there exists $y \in F_q$ such that $x = y^2$. What is the number of quadratic residues in F_q ? Prove that the set of quadratic residues is a multiplicative group.
- 3. (simple) Let F be a finite field. What is the expected number of roots of a random univariate polynomial of degree k over F?
- 4. (basic) We represent F_{16} as $F_2[X] \pmod{X^4 + X + 1}$. X is a generating element for F_{16}^* . Below you can find a table relating the vector space representation to powers of X. Find how many elements generate F_{16}^* . How many elements generate F_q^* for an arbitrary prime power q?

Power	Element	$Vector space representation \ $
_		
0	0	(0,0,0,0)
$X^0 = X^{15} = 1$	1	(0,0,0,1)
X	X	(0,0,1,0)
X^2	X^2	(0,1,0,0)
X^3	X^3	(1,0,0,0)
X^4	1+X	(0,0,1,1)
X^5	$X + X^2$	(0, 1, 1, 0)
X^6	$X^2 + X^3$	(1, 1, 0, 0)
X^7	$1 + X + X^3$	(1,0,1,1)
X^8	$1 + X^2$	(0, 1, 0, 1)
X^9	$X + X^3$	(1,0,0,1)
X^{10}	$1 + X + X^2$	(0,1,1,1)
X^{11}	$X + X^2 + X^3$	(1,1,1,0)
X^{12}	$1 + X + X^2 + X^3$	(1, 1, 1, 1)
X^{13}	$1 + X^2 + X^3$	(1, 1, 0, 1)
X^{14}	$1 + X^3$	(1,0,0,1)

5. (basic) Give an efficient algorithm (polynomial in the input length) that given a degree m polynomial E(X) that is irreducible over F_p , and a non-zero element $x \in F_q = F_p[X] \pmod{E}$, finds x^{-1} .

07/03/11

- 6. Prove Proposition 4, Lemma 5 and Propositions 6 and 7 of [Dvir, Kopparty, Saraf, Sudan].
- 7. Prove the generalized Schwartz-Zippel lemma (Lemma 8 in the above paper).
- 8. (basic) Let X, Y be distributions over Λ . Prove that $|X Y|_1 = \frac{1}{2} Max_{S \subseteq \Lambda} [X(S) Y(S)]$.

- 9. (basic) Let X, Y be distributions over Λ_1 . Let f be any probabilistic function mapping Λ_1 to Λ_2 . Prove that $|f(X) f(Y)|_1 \leq |X Y|_1$.
- 10. (moderate) Prove that any k-source X can be expressed as a convex combination of flat sources over 2^k elements.
- 11. Let A be a distribution over Λ . Prove that if A is not ϵ -close to a k-source then there exists a subset $S \subseteq \Lambda$ of cardinality at most 2^k such that $\Pr_{a \in A}[a \in S] \geq \epsilon$.

14/03/11 - Mandatory

In class we defined and constructed mergers. In this question I ask you to complete the proof. Feel free to consult the paper, but please write the solution yourself (photocoping the paper does not count).

- 12. Define a (k, ϵ) merger $E : (\{0, 1\}^m)^n \times \{0, 1\}^t \to \{0, 1\}^m$.
 - Describe the construction of the merger $E: (\{0,1\}^m)^n \times \{0,1\}^t \to \{0,1\}^m$ we gave in class.
 - Prove that E is a $((1 \delta)k, \epsilon)$ merger when $t \geq \frac{1}{\delta}log(\frac{8n}{\epsilon})$.

14/03/11

- 13. Let G = (V, E) be an undirected graph over n vertices with transition matrix A. Prove (or recall) that $(I + A)^t[i, j] > 0$ iff there is a path of length at most t from i to j in G.
 - Give an $O(\log^2 n)$ space algorithm for computing A^n .
 - Conclude that $STCON \in Space(\log^2 n)$ and $NL \subseteq Space(\log^2 n)$
- 14. Prove that $BPL \subseteq Space(\log^2 n)$
- 15. Now we slightly strengthen the mixing lemma we gave in class. If you don't solve it yourself, you can find a proof, e.g., in http://www.cs.yale.edu/homes/spielman/eigs/lect9.pdf.

Let G = (V, E) be a D regular, undirected graph over N vertices, and $A, B \subseteq V$. For $X \subseteq V$ let $\rho(X) = |X|/|V|$ and $\overline{X} = V \setminus X$, i.e., the set complement of X. Prove that:

$$|E(A,B) - \rho(A)\rho(B)DN| \le \overline{\lambda}N\sqrt{\rho(A)\rho(\overline{A})\rho(B)\rho(\overline{B})}.$$

16. Prove Tanner inequality: under the above conditions, for every $X \subseteq V$,

$$|\Gamma(X)| \ge \frac{D^2|X|}{\overline{\lambda}^2 + \frac{|X|}{N}(D^2 - \overline{\lambda}^2)}.$$

- 17. Prove that the first eigenvalue of D-regular undirected graphs is 1.
- 18. Let G be a regular, undirected graph. Prove that the number of connected components of G equals the dimension of its 1-eigenspace.

- 19. Prove that if λ is an eigenvalue of an undirected bipartite graph, then do does $-\lambda$. Prove that a D-regular, undirected connected graph G is bipartite iff $\lambda_n = -1$. What is the associated eigenvector v_n ?
- 20. Let H be a group and S a set of generators. The Caylely graph C(H, S) is defined as follows: The vertices are labeled with elements of H, and (a, b) is an edge iff $a = bs^{-1}$ for some $s \in S$.
 - What is $C(Z_n, \{1, -1\})$?
 - What is $C(\mathbb{Z}_2^n, \{e_1, e_n\})$, where e_i has 1 in the i'th coordinate and 0 otherwise.

We will later on (Question 31) compute the spectrum of these graphs.

- 21. (basic) Let G be an undirected graph, A its adjacency matrix. Prove that: $\lambda_2(A) = \max_{v \perp 1} \frac{\langle v, Av \rangle}{\langle v, v \rangle}$.
- 22. Prove that for any undirected graph G, $h(G) \ge (d \lambda_2)/2$. Remark: Using the mixing lemma, you can deduce the same but with $\overline{\lambda} = \min\{-\lambda_n, \lambda_2\}$ replacing λ_2 .
- 23. Prove that in any *D*-regular, undirected graph with *N* vertices, if $D \leq N/2$ then $\overline{\lambda} = \min\{-\lambda_n, \lambda_2\} \geq \sqrt{D/2}$. Hint: Calculate $Tr(A^2)$ in two different ways.

21/03/11

- 24. (basic) Prove that the operator norm is a norm, and that if A is symmetric then $||A|| = \lambda_1(A)$.
- 25. (basic) Let A be a matrix. Define $||A|| = \sup_{v \neq 0} \frac{||Av||_1}{||v||_1}$. Prove:
 - $||A|| = max_i ||A_i||_1$, where A_i is the *i*'th row of A.
 - $||A + B|| \le ||A|| + ||B||$
 - ||cA|| = |c|||A||, ||A|| = 0 iff A = 0
 - $||AB|| \le ||A|| ||B||$
 - If A is a transition probability matrix then ||A|| = 1.
- 26. Calculate the seed length of Nisan's generator fooling branching programs of length n, width n and alphabet n. I.e., find the constant c hiding in the $O(\log^2 n)$ notation. The purpose of this of this exercise is to force you to completely follow the proof.
- 27. Can you find an ordering of the blocks of Nisan's generator that does not fool log-space machines?

12/04/11

28. Look at the paper "On Read-once vs. Multiple Access to Randomness in Logspace" by N. Nisan (can be found at http://www.cs.huji.ac.il/ noam/papers.html) and give an alternative, simpler proof of Theorem 1 there, based on what we have seen in class.

- 29. Let n be an integer and G be the group $(Z_n, + \text{mod } n)$.
 - Prove that there are exactly |G| characters of G.
 - Define a multiplication operator on the characters, and prove that the characters of G form a group \hat{G} under this product.
 - Prove that \widehat{G} is isomorphic to G.
- 30. solve question 29 for:
 - $G = Z_n \times Z_m$, for any two integers n and m,
 - $G = \mathbb{Z}_2^n$, for any integer n,
 - Any Abelian group G.
- 31. Let C(H, S) be as in question 20.
 - Prove that if H is Abelian then the characters of H form an orthonormal basis for C(H,S).
 - Calculate the eigenvalues and the spectral gap of the two Cayley graphs given in question 20.

13/04/11 - Mandatory

- 32. Prove (using the probabilistic method) that there exist constants c_1 and c_2 such that for every n there exists a function $E: \{0,1\}^n \times \{0,1\}^t \to \{0,1\}^m$ that is a (k,ϵ) strong extractor, for
 - $t = \log(n-k) + 2\log(\frac{1}{\epsilon}) + c_1$, and,
 - $m = k 2log(\frac{1}{\epsilon}) c_2$.

31/05/11

- 33. Two norm one vectors $v_1, v_2 \in R^d$ are almost orthogonal if $|\langle v1|v2\rangle| \leq \epsilon$. Show how to convert an (ℓ, a) design $S_1, \ldots, S_m \subseteq [t]$ into:
 - A set of m nearly orthogonal vectors.
 - \bullet A binary error correcting code of length t with m codewords and large distance.
- 34. Prove that for every $\ell, a \geq 1$, there exists an (ℓ, a) design $S_1, \ldots, S_m \subseteq [t]$ with $t = O(\ell^2/a)$ and $m = 2^{\Omega(a)}$.
- 35. How many orthogonal vectors can one put into \mathbb{R}^d ? How many ϵ -almost orthogonal vectors can you put into \mathbb{R}^d ? Upper bound, Lower bound (is it tight?), constructive bound?

For next weeks

- 36. n coins are laid covered on a table, k < n/3 of which are pure gold and the rest copper, and you are told to uncover and take 2n/3 coins!!! You are allowed to use any algorithm, no matter what its complexity is, but the adversary knows your algorithm and places the gold coins based on your algorithm.
 - Show that if you are deterministic, you get no gold.
 - Show that if you use n random coins you can almost certainly get $\Omega(k)$ gold coins.
 - Show that with $O(\log n)$ random coins, you can guarantee $\Omega(k)$ gold coins with probability at least 1 O(1/k).
 - Show that for $\epsilon \geq 1/k$, with $O(\log \log n + \log(1/\epsilon))$ coins, you can guarantee $\Omega(k)$ gold coins with probability at least 1ϵ .
- 37. Prove that a k-wise independent distribution $X = X_1, ..., X_n$ over $\{0,1\}^n$ with support S must have $|S| \ge \Omega(n^{k/2})$.

Guided solution:

- Prove that X has 0-bias with regard to any linear test $\alpha \in \{0,1\}^n$ of size $0 < |\alpha| \le k$.
- Let A be the $s \times n$ matrix having the elements of S as rows. For any test α define $v = v(\alpha) \in \{1, -1\}^s$ by $v_i = 1$ if $(A\alpha)_i = 0$ and -1 otherwise. Prove that $\{v(\alpha) \mid 0 < |\alpha| \le k/2\}$ is a set of orthogonal vectors.
- Conclude that $|S| \leq B(k/2, n)$, where B(r, n) is the number of words of weight at most r in the n dimensional Boolean cube.