- 1. Exactly one out of the four values O_1, O_2, O_3, O_4 is one. Show that with two queries you can find *with success probability one*, the index *i* such that $O_i = 1$.
- Let f: {0,1}^N → {0,1} be a symmetric function. Prove that if there exists a degree k multi-variate polynomial p : ℝ^N → ℝ that ε-approximates f, then there exists a degree k symmetric, multi-variate polynomial p' : ℝ^N → ℝ that ε-approximates f.
 - Let p : ℝ^N → ℝ be a degree k symmetric polynomial. Prove that there exists a degree k univariate polynomial q : ℝ → ℝ such that for every x₁,..., x_N ∈ {0,1}^N, p(x₁,..., x_N) = q(∑x_i).
 - Prove that $deg(OR_N) = N$ and conclude that $Q_E(OR_N) \ge \frac{N}{2}$.
 - Prove that for any symmetric, non-trivial function $f : \{0,1\}^N \to \{0,1\}$ we have $\deg(f) \geq \frac{N}{2}$ and conclude that $Q_E(f) \geq \frac{N}{4}$.
- 3. A quantum black-box algorithm solves the OR function with one-sided unbounded error, if
 - On input $O_1 = O_2, \ldots = O_N = 0$ there is some positive probability of answering 0.
 - On input O_1, O_2, \ldots, O_N such that $OR(O_1, \ldots, O_N) = 1$ the answer is always 1. In other words, whenever the answer is zero, $OR(O_1, \ldots, O_N) = 0$.

Let us denote by $Q_1(OR)$ the minimal number of queries such an algorithm should make. Prove that $Q_1(OR) \ge \frac{N}{2}$.

- 4. (a) We are given O_1, \ldots, O_N with the promise that there are exactly R elements with $O_i = 1$. Show an algorithm that finds (with a constant probability) such an i using only $O(\sqrt{\frac{N}{R}})$ queries.
 - (b) Now we are given O : [N] → [N] with the promise that O is two-to-one (i.e., for every i there is exactly one other element having the same value O_i). Devise a quantum black-box algorithm that finds (with a constant probability) a collision (a pair {i, j} such that O_i = O_j) using only O(N^{1/3}) queries.
 - (c) Compare with Simon's algorithm.
 - (d) Compare with classical algorithms.
- 5. Let $R_0(f)$ denote the query complexity of a probabilistic black-box algorithm that for every input $x \in \{0, 1\}^N$ outputs 'quit' with probability at most half and f(x) otherwise (such an algorithm is called a zero-error algorithm).

The majority function $MAJ(x_1, x_2, x_3)$ returns 1 if two or three of its inputs are 1, and zero otherwise. The recursive-majority function is defined recursively as follows:

$$f(x_1, x_2, x_3) = MAJ(x_1, x_2, x_3)$$

$$f(x_1, \dots, x_{3^n}) = f(f(x_1, \dots, x_{3^{n-1}}), f(x_{3^{n-1}+1}, \dots, x_{2\cdot 3^{n-1}}), f(x_{2\cdot 3^{n-1}+1}, \dots, x_{3^n}))$$

Let $N = 3^{n}$. Prove that $R_{0}(f) \leq O(N^{\log_{3} 8 - 1}) \approx O(N^{0.892})$.

- 6. (the deterministic communication complexity of the median) Alice holds n elements x_1, \ldots, x_n each from [m] and Bob holds n elements y_1, \ldots, y_n also from [m]. Their goal is to compute the median element of $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$. More generally, they both know some $1 \le k \le 2n$, and their goal is to compute the k'th largest element in the set $\{x_1, \ldots, x_n, y_1, \ldots, y_n\}$.
 - Show a deterministic protocol using only $O(\log(m) \cdot \log(n))$ communication bits.
 - Improve that to show a deterministic protocol using only $O(\log(m) + \log(n))$ communication bits.