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1. Exactly one out of the four values O1, O2, O3, O4 is one. Show that with two queries you
can find with success probability one, the index i such that Oi = 1.

2. • Let f : {0, 1}N → {0, 1} be a symmetric function. Prove that if there exists a degree
k multi-variate polynomial p : RN → R that ε–approximates f , then there exists a
degree k symmetric, multi-variate polynomial p′ : RN → R that ε–approximates f .

• Let p : RN → R be a degree k symmetric polynomial. Prove that there exists a
degree k univariate polynomial q : R → R such that for every x1, . . . , xN ∈ {0, 1}N ,
p(x1, . . . , xN) = q(

∑
xi).

• Prove that deg(ORN) = N and conclude that QE(ORN) ≥ N
2

.

• Prove that for any symmetric, non-trivial function f : {0, 1}N → {0, 1} we have
deg(f) ≥ N

2
and conclude that QE(f) ≥ N

4
.

3. A quantum black-box algorithm solves the OR function with one-sided unbounded error, if

• On input O1 = O2, . . . = ON = 0 there is some positive probability of answering 0.

• On input O1, O2, . . . , ON such that OR(O1, . . . , ON) = 1 the answer is always 1. In
other words, whenever the answer is zero, OR(O1, . . . , ON) = 0.

Let us denote by Q1(OR) the minimal number of queries such an algorithm should make.
Prove that Q1(OR) ≥ N

2
.

4. (a) We are given O1, . . . , ON with the promise that there are exactly R elements with
Oi = 1. Show an algorithm that finds (with a constant probability) such an i using only

O(
√

N
R
) queries.

(b) Now we are given O : [N ] → [N ] with the promise that O is two-to-one (i.e., for
every i there is exactly one other element having the same value Oi). Devise a quantum
black-box algorithm that finds (with a constant probability) a collision (a pair {i, j}
such that Oi = Oj) using only O(N1/3) queries.

(c) Compare with Simon’s algorithm.

(d) Compare with classical algorithms.

5. Let R0(f) denote the query complexity of a probabilistic black-box algorithm that for every
input x ∈ {0, 1}N outputs ‘quit’ with probability at most half and f(x) otherwise (such an
algorithm is called a zero-error algorithm).

The majority function MAJ(x1, x2, x3) returns 1 if two or three of its inputs are 1, and zero
otherwise. The recursive-majority function is defined recursively as follows:

f(x1, x2, x3) = MAJ(x1, x2, x3)

f(x1, . . . , x3n) = f(f(x1, . . . , x3n−1), f(x3n−1+1, . . . , x2·3n−1), f(x2·3n−1+1, . . . , x3n))
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Let N = 3n.

Prove that R0(f) ≤ O(N log3 8−1) ≈ O(N0.892).

6. (the deterministic communication complexity of the median) Alice holds n elements x1, . . . , xn

each from [m] and Bob holds n elements y1, . . . , yn also from [m]. Their goal is to compute
the median element of {x1, . . . , xn, y1, . . . , yn}. More generally, they both know some 1 ≤
k ≤ 2n, and their goal is to compute the k’th largest element in the set {x1, . . . , xn, y1, . . . , yn}.

• Show a deterministic protocol using only O(log(m) · log(n)) communication bits.

• Improve that to show a deterministic protocol using only O(log(m) + log(n)) commu-
nication bits.
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