Homework 5

- 1. Prove that $\sqrt{F}(\rho, \sum_i \lambda_i \sigma_i) \ge \sum_i \lambda_i \sqrt{F}(\rho, \sigma_i)$.
 - Prove that if the classical fidelity function F (over probability distributions) is concave, then so does the quantum fidelity (over density matrices).
 - Prove that $F(\rho, \sum_i \lambda_i \sigma_i) \ge \sum_i \lambda_i F(\rho, \sigma_i)$.
- 2. Prove that for every constant $\varepsilon > 0$, $Q_{\varepsilon}(IP) = \Omega(n)$.

In What follows you may us the following inequalities:

Sub-additivity : $S(AB) \leq S(A) + S(B)$, and,

Araki-Lieb inequality : $S(AB) \ge S(A) - S(B)$.

A fact about the Holevo quantity :

Suppose X is a random variable with $p_x = \Pr(X = x)$. Let ρ be any quantum encoding of X and denote $\rho_x = \rho(x)$. The Holevo quantity is $\chi(\rho) = S(\sum_x p_x \rho_x) - \sum_x p_x S(\rho_x)$. You may use the fact that if ρ is over quantum registers $A \otimes B$, then

$$\chi(\mathrm{Tr}_B(\rho)) \le \chi(\rho).$$

- 3. Show an example where I(A:B) > S(B). Prove that $I(A:B) \le 2S(B)$.
- 4. Alice wants to communicate an arbitrary x ∈ {0,1}ⁿ to Bob. Alice and Bob communicate in rounds, in each round Alice (or Bob) applies a unitary transformation on his/her part and transmits a quibt to the other side, until at the end Bob measures his state and tries to infer x. The protocol is successful if for every x ∈ {0,1}ⁿ Bob succeeds with probability 1. Let n_A / n_B) be the number of messages sent by Alice / Bob respectively.
 - (a) Show that for every n_A and n_B such that $n_A \ge \lceil n/2 \rceil$ and $n_A + n_B \ge n$ there exists a successful protocol with parameters n_A, n_B .
 - (b) Show that in any successful protocol n_A ≥ [n/2] and n_A + n_B ≥ n.
 Hint: Follow how S(ρ_i) and χ(ρ_i) change with i, where ρ_i is Bob's density matrix at round i.
 - (c) Define a protocol as *p*-successful if for every $x \in \{0, 1\}^n$ Bob succeeds with probability *p*. Prove a statement similar to item (b) for *p*-successful protocols.
- 5. Assume the same situation as Q4 except that now Alice and Bob may share unlimited preprepared entanglement. Prove that in any successful protocol $n_A \ge \lceil n/2 \rceil$.